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Abstract
Some safety events do not stabilise in a coherent state, presenting with transient or intermittent features. Such dynamism 
may pose problems for human performance, especially if combined with non-typical stimuli that are rarely encountered in 
everyday work. This may explain undesirable pilot behaviour and could be an important cognitive factor in recent aircraft 
accidents. Sixty-five airline pilots tested a real-world typicality gradient, composed of two cockpit events, a typical event, 
and a non-typical event, across two different forms of dynamism, a stable, single system transition, and an unstable, inter-
mittent system transition. We found that non-typical event stimuli elicited a greater number of response errors and incurred 
an increased response latency when compared to typical event stimuli, replicating the typicality effect. These performance 
deteriorations were amplified when a form of unstable system dynamism was introduced. Typical stimuli were unaffected by 
dynamism. This indicates that dynamic, non-typical events are problematic for pilots and may lead to poor event recognition 
and response. Typical is advantageous, even if dynamic. Manufacturers and airlines should evolve pilot training and crew 
procedures to take account of variety in event dynamics.
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1  Introduction

Everybody experiences intermittent problems with technol-
ogy. From washing machines to smart-phones, problems and 
malfunctions do not always rest and stabilise in an intelligi-
ble state. Systems may remain in dynamic transition, appear-
ing to work one moment, only to fail the next. In such cases 
we may resort to a repair behaviour common in the digital 
world, turning the object off, then back on. But what if that 
were not possible and it was necessary to capture the precise 
category of failure under these dynamic conditions?

1.1 � Dynamic events

Humans are sensitive to transitional, dynamic information—
we can detect change (Freyd 1987). Dynamic events change 

state over time, regardless of human input (Cellier et al. 
1997). Events have boundaries, they begin and they end. A 
thunderstorm starts with the first flash of lightening and per-
haps ends with a distant rumble of thunder. The perceptual 
system is geared to detecting boundaries, and this has led to 
the idea that events are dynamic objects, bounded by discon-
tinuities (Miller and Johnson-Laird 1976; Zacks and Tversky 
2001; Clark 2013). Spatial discontinuities define the location 
and temporal discontinuities define the beginning and the 
end of an event (Zacks and Tversky 2001). Understanding 
the temporal structure of events helps us organise action and 
recall past similar events (Zacks et al. 2001, 2007; Speer 
and Zacks 2005). Without boundaries, to segment perceptual 
signals into tractable temporal units, we would experience 
the world as a continuous flow (Sargent et al. 2015).

Pilots need to capture event information, not be swept 
away in a river of continuous change that may threaten safe 
operation. Pilots are skilled at recognising and managing 
events and malfunctions, using assistive technologies that 
display a degree of diagnostic information and may suggest 
remedial actions (for instance the Electronic Centralized 
Aircraft Monitor [ECAM] on Airbus aircraft and Engine 
Indicating and Crew Alerting System [EICAS] on Boeing 
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aircraft) (Ephrath and Young 1981; Thompson 1981). Pilots 
must identify events with enough precision so that the cor-
rect response protocol is followed. The real-world, however, 
can display a variety of dynamic events not captured in oper-
ating manuals or training encounters (Loukopoulos et al. 
2009). For example, periodic episodes of stimuli, where cues 
do not show a continuous, intelligible system state or trend. 
This was experienced by a Virgin Atlantic Airbus A330 
crew who received fifteen spurious cargo smoke warnings 
in 28 min, ranging in duration from 1 s to 173 s (see AAIB 
2014). Spike or transient indications, where cues rapidly 
rise and decay, temporarily jump to extreme values or vacil-
late from normal to abnormal states. Such fluctuations can 
impinge on numerous systems, depending on the functions 
of the data, as experienced by a Qantas Airbus A330 crew 
when faulty data caused the flight control system to demand 
a descent (see ATSB 2011). Unusual dynamism, where cues 
are in rare dynamic configurations or combinations, as expe-
rienced by the crew of an Asiana Boeing 777 that crashed on 
landing following an approach without normal instrument 
aids and automation, combined with engine thrust and flight 
path parameter exceedances (see NTSB 2014). Each of these 
cases challenges the idea of a stabilised, coherent event, with 
boundaries that help the crew tame dynamism.

1.2 � The typicality effect

Previous research suggests typicality may mediate pilot 
response to flight safety events (Clewley and Nixon 2019, 
2020). Typical stimuli are known to be cognitively advan-
tageous (Rosch et al. 1976). For the category ‘primate’, 
the chimpanzee is a better, more typical member, than the 
mongoose lemur. Variations in rated typicality are known as 
gradients, and they have been reliably demonstrated across 
a range of categories (Rosch 1978; Barsalou 1987; Dry and 
Storms 2010). Typical category members are more rapidly 
verified, easily recognised, and readily learnt. This is known 
as the typicality effect (Rosch et al. 1976). Benefits are par-
ticularly pronounced in cases proximal to the prototype, the 
clearest and best cases, that act as cognitive reference points 
(Rosch 1975). Alongside subjective ratings and behavioural 
evidence of typicality effects, electrophysiological data show 
typical stimuli receive preferential processing (Lei et al. 
2010; Wang et al. 2016) and display specific neural signa-
tures in distinct brain regions (Iordan et al. 2016).

The typicality principle has been exploited in a variety 
of real-world contexts, including medical diagnosis (Dore 
et al. 2012), understanding sematic impairment following 
brain injury (Sandberg et al. 2012) and the influential rec-
ognition primed decision (RPD) model from the naturalistic 
decision making paradigm (Klein 1993). The RPD model 
suggests prototypical instances of situations allow actors to 
rapidly implement responses, making elaborate evaluation 

unnecessary (Klein 1998), accounting for efficient decision 
making seen in real-world, dynamic environments like fire-
fighting (Klein et al. 2010).

Typicality confers cognitive advantage that translates to 
optimal behaviour. The corollary of this advantage, cog-
nitive disadvantage for the non-typical, has received little 
attention (Clewley and Nixon 2021), but could offer bet-
ter visibility of risk in human systems. Clewley and Nixon 
(2020) have recently described typicality gradients in the 
cockpit and view them as being potential proxies of cogni-
tive (dis)advantage. Responses to typical flight safety events 
may be safer. For example, they describe a significant typi-
cality gradient for aircraft fuel system events, locating can-
didate events for typicality effects. Fuel imbalances provide 
a typicality dividend, while fuel leaks do not, so risk poor 
recognition and response (Clewley and Nixon 2020).

1.3 � Dynamic, non‑typical events and contextual 
complexity

Dynamism places significant cognitive demands on pre-
diction of future states and the planning of response steps 
(Zacks et al. 2001; Zacks et al. 2007; Clark 2013). If any 
system is in transition, the human will be challenged to 
describe, define, and forecast the ‘next state’.

Dynamism experienced in the cockpit, such as intermit-
tent, unstable event cues, is demanding, and may be aug-
mented by the cognitive disadvantage of non-typical cues. 
Non-typical, dynamic flight safety events appear to pose par-
ticular problems for pilots. This accords with the idea of the 
complex problem space; multiple, dynamic events creating 
uncertainty (Walker et al. 2010). It is also supported by the 
notion of tractability (Hollnagel 2012). Tractable systems 
remain stable during description, in contrast to intractable 
systems, which continue to change during system descrip-
tion (Hollnagel 2012). This instability is fundamental to 
problematic dynamism. The rate of change, or degree of 
dynamism, is a form of contextual complexity, and there is 
evidence of its signature in recent aircraft accidents.

1.4 � Dynamic instability in the real world

The signatures of contextual complexity are found in real-
world accidents. In June 2009, an Air France Airbus A330, 
operating flight AF447, crashed into the Atlantic Ocean 
killing all 228 passengers and crew (BEA 2012). Ice had 
accumulated on speed sensors and made cockpit airspeed 
indications unreliable. In the first 99 s of the event there 
were approximately thirty system transitions, involving a 
wide array of cockpit indications, including the flight direc-
tor guidance system, automatic thrust mode, warning tones 
and oral messages, flight control law changes, auto-flight 
mode annunciations and a mixture of reliable and unreliable 
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airspeed data (see BEA 2012, pp. 60–62 for graphical sum-
mary). Many of these indications were switching between 
credible and incredible readings; now you see it, now you 
don’t.

The system state was changing during description and 
the crew were unable to adequately recognise the unreliable 
airspeed malfunction. Flight control inputs led to an aero-
dynamic stall and appropriate response protocols were not 
followed (BEA 2012). At least thirteen other flight crews, 
from five different airlines, had encountered in-flight air-
speed events similar to AF447, and each case appeared to be 
mismanaged, lacking adequate diagnosis or response (BEA 
2012).

Acute stress is known to adversely affect the cognitive 
performance of pilots (see NASA 2015, for a comprehensive 
review), and stress is a possible factor in the poor history of 
pilot management for these event types, especially as event-
induced stress may be difficult to faithfully replicate in simu-
lations. If dynamic states cannot be tracked and high value 
perceptual signals cannot be extracted, functional cognition 
could break down, perhaps leading to undesirable actions, 
where behaviour is not selected, but carried out instinctively 
(see BEA 2012, p. 174 for an explanation of an instinctive 
pull on the control stick to reduce speed if the crew suppose 
an overspeed is likely). Stressful, confusing, and dynamic 
proprioceptive cues, also difficult to replicate in simulations, 
could add further difficulty to event recognition, and unde-
sirable actions are also more likely when pilots are surprised 
(Landman et al. 2017b; see EASA/NLR 2018, for an evalu-
ation of training interventions).

The AF447 accident report describes two distinct sig-
natures when discussing airspeed anomalies (BEA 2012). 
Firstly, erroneous indications may show a drop, followed by 
a levelling off at a failed value (BEA 2012). This ‘classic 
system failure’, involves a single transition to a new, stable, 
albeit failed, state. The key characteristic being the system 
rests in the degraded state and is thus coherent, recognisable 
and tractable (Flach 2012; Hollnagel 2012).

Secondly, erroneous indications may show intermittent 
drops, ‘spiking’ up or down, showing accurate or failed val-
ues, depending on when the indication was sampled (BEA 
2012). This ‘unstable system failure’, experienced by the 
AF447 crew, involves intermittent, discontinuous system 
degradation. It is unruly and comprises multiple boundaries, 
as the ‘object’ appears, disappears, then reappears. This is 
the ‘now you see it, now you don’t’ event structure. In the 
strict application of the definition of an event, this can be 
viewed as multiple events, and this has implications for the 
AF447 accident.

The features of the event seen by the crew in the acci-
dent did not sufficiently overlap with the previous training 
encounters relating to airspeed anomalies. For example, 
training encounters in a simulator for airspeed anomalies 

are unlikely to include spiking and may exhibit contrasting 
temporal characteristics to a real-world event. Different 
temporal characteristics between training and real-world 
scenarios can hinder recall of training (Speer and Zacks 
2005; Zacks et al. 2007), and prevent identification of the 
category of failure for response (see Clewley and Nixon 
2019).

The interaction between typicality and dynamism, a sig-
nature of the AF447 accident, could be an important form 
of complexity in the cockpit, and an overlooked cognitive 
factor in aircraft accidents. Recent accidents involving the 
Boeing 737-MAX have brought further scrutiny on pilot 
recognition of malfunctions involving dynamic cues and 
sophisticated aircraft technology (AIB 2019; JATR 2019; 
KNKT 2019), underlining dynamism as a contemporary 
problem. Indeed, the test pilots in the Boeing 737-MAX 
certification programme had trouble responding to events 
that later proved beyond the capability of well-trained 
pilots (United States House Committee on Transportation 
and Infrastructure 2020). Further understanding may help 
evolve pilot training and response procedures, so that resil-
ience and recovery are more easily achieved in the cockpit.

The aim of this research is to extend the typicality effect 
to the real-world dynamic task of pilot event recognition. 
We draw the same distinction as the BEA (2012) and 
operationalise two forms of dynamism: dynamism seen in 
a classic system failure involving a single transition, and 
dynamism in an unstable system failure involving multiple 
transitions. Typicality can be operationalised through gra-
dients. This leads to the development of our hypotheses: 
We test a real-world typicality gradient comprising two 
cockpit events across the two levels of dynamism. Firstly, 
we predict a non-typical event will cause a greater num-
ber of response choice errors and elicit a greater response 
latency, when compared to a typical event. Secondly, we 
predict a high dynamism event will cause a greater num-
ber of response choice errors and elicit a greater response 
latency, when compared to low dynamism event. Finally, 
we predict event typicality and event dynamism will pro-
duce an interactive effect.

2 � Method

2.1 � Participants

Sixty-five airline pilots participated in the study. All par-
ticipants worked at the same European short-haul airline 
on the same aircraft type. The sample comprised 33 Cap-
tains, 32 First Officers, mean age 36.18 years (SD = 7.7), 
4 females and 61 males. Median flying experience 4250 h, 
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range = 350–11,100 h. Median flying experience on the air-
craft type 2000 h, range = 110–8000 h.

2.2 � Design

A 2 × 2, fully within-subjects design was used. There 
were two factors, typicality and dynamism, each with two 

levels, high and low (Table 1). The order of experimental 
conditions and response choices were randomized.

2.3 � Independent variables

Typicality was operationalised at two levels, high (typical) 
and low (non-typical), to create a typicality gradient. We 
consulted a senior management Captain at the host airline 
to act as a subject matter expert (SME) on flight safety 
events. The SME proposed candidate event cues at the 
level of ‘typical’ and ‘non-typical’, according to Clewley 
and Nixon (2019). The ice protection event cue ‘DEICE 
PRESS’ fulfilled the criteria for ‘typical’ (see Fig. 2, below, 
for event stimuli); it is seen regularly in flight operations and 
frequently features in Safety Management System (SMS) 
data capture (e.g. crew reports). The event cue signals deice 

Table 1   Summary of experimental conditions

Typicality Dynamism

Low High

 High Typical/stable Typical/unstable
 Low Non-typical/stable Non-typical/unstable

Fig. 1   The two dynamism 
conditions. The dots indicate 
system transitions, from normal 
to event or event to normal

Fig. 2   Experimental stimuli. 
Event ‘DEICE PRESS’ was 
typical, ‘ATT 1’ was non-typi-
cal. Each were presented in two 
dynamic states, low dynamism 
(stable transition) and high 
dynamism (unstable transition)



Cognition, Technology & Work	

1 3

system pressure is low. The instruments/auto-flight event 
‘ATT 1’ fulfilled the criteria for ‘non-typical’; it is rarely 
encountered in everyday work and seldom features in SMS 
data capture. The event cue signals abnormal configuration 
of the attitude/heading reference system after system failure. 
Both events feature in the evidence-based training matrix 
for large public transport aircraft (IATA 2013). This train-
ing matrix guides operators to develop pilot competencies 
in event management. The ‘ATT 1’ event falls under: “…
System failures that require monitoring and management 
of the flight path using degraded or alternative displays” 
(IATA 2013, p. 115, author italics). The ‘DEICE PRESS’ 
event falls under “…Thunderstorm, heavy rain, turbulence, 
ice build up to include de-icing issues” (ibid. p. 111). The 
visual stimuli for each event were captured from actual air-
craft systems.

Dynamism was operationalised to replicate a single, stable 
system transition (low dynamism), and discontinuous, inter-
mittent system behaviour (high dynamism), reflecting the 
two signatures discussed in the AF447 report (BEA 2012). 
For both levels of dynamism, the event stimuli were dynami-
cally animated and presented for 2 s (see Fig. 2, for event 
stimuli). In the low dynamism condition this comprised a 
single transition followed by 2 s of continuous presentation 
of the event stimuli (Fig. 1, top). In the high dynamism con-
dition this comprised normal system indications punctuated 
with two separate episodes of the event stimuli, both of 1 s 
duration, creating four transitions (Fig. 1, bottom).

2.4 � Dependent variables

Response choice accuracy was scored according to whether 
participants correctly identified the event stimuli from a list 
of six response choices. The list of six comprised the cor-
rect response, two alternative system states from the same 
section of the host airline expanded checklist and three 
unrelated event cues. The SME advised that this reflected 
the flight crew task with respect to recognition accuracy, 
checklist use and response selection.

Response latency was measured in seconds and was 
defined as the time taken to complete the event identifica-
tion. The identification task was timed to replicate the tem-
poral constraints seen in flight crew tasks. Participants were 
given 15 s to complete the task and a countdown timer was 
displayed in the bottom left-hand corner of the screen.

Rated typicality was measured on a 9-point scale, using 
the anchors ‘not at all’ (1) and ‘very’ (9). This is an estab-
lished approach to measuring typicality (Barsalou 1987; 
Rothbart et al. 1996).

2.5 � Materials and procedure

The research protocol was approved by the University Ethics 
Committee. Experimental materials were delivered by the 
Qualtrics survey platform (Qualtrics, Provo, Utah, USA). 
Response latency (time taken to complete the task) was cap-
tured by the software. Each respondent was sent a link to the 
Qualtrics survey platform and completed the research tasks 
on-line after giving informed consent.

Participants were presented with event stimuli, immedi-
ately followed by a list of six response choices. The on-
screen instructions asked participants ‘What did you see?’. 
Participants were instructed to move their choice to a box 
labelled ‘My answer’. After the experiment we collected 
rated typicality data for the event stimuli so that we could 
construct a typicality gradient. Screenshots of the two event 
stimuli and the response display are shown in Fig. 2.

2.6 � Data analysis

Response accuracy was binary (correct/incorrect), so we 
used Cochran’s Q to report main effects and McNemar’s Test 
for post-hoc comparisons. Alpha was Bonferroni corrected 
to limit type 1 error inflation. We used repeated measures 
analysis of variance (IBM SPSS version 25) to test for differ-
ences in response latency across the four conditions. Effect 
size was reported using ɲp

2. For the typicality ratings we 
used paired t test to compare means, reporting effect size 
using r (Cohen 1992). An alpha of < 0.05 was considered 
significant.

Fig. 3   The typicality gradient tested in this experiment, depicting two 
safety events. The ‘Ice Protection’ event served as the typical stimuli; 
the ‘Attitude’ event served as the non-typical stimuli. (95% confi-
dence interval)
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3 � Results

3.1 � Typicality gradient

Figure 3 shows the mean rated typicality for the two safety 
events used in the experiment. The ice protection event 
(M = 6.2, SD = 2.0) was rated more typical than the atti-
tude event (M = 2.3, SD = 1.4) [t (55) = 12.41, p < 0.001, 
r = 0.75]. This is the typicality gradient we tested.

3.2 � Response accuracy

We found significant differences in response accuracy 
(Q (3) = 78.10, p < 0.001, N = 65), as depicted in Fig. 4. 
Response accuracy for the typical event was equal in low 
and high dynamism conditions (98.47%). Post hoc compari-
son, using Bonferroni corrected McNemar’s Test, revealed 
response accuracy for the non-typical event was significantly 
better in the low dynamism condition (64.62%) than high 
dynamism condition (41.54%) [p = < 0.005, N = 65].

3.3 � Response latency

We found significant differences in response latency (Fig. 5; 
Table 2). Typicality showed a significant main effect (F 
(1, 64) = 133.21, p < 0.001, ɲp

2 0.68). Dynamism showed 
a significant main effect (F (1, 64) = 38.63, p < 0.001, ɲp

2 
0.38). There was also a significant interaction effect (F (1, 
64) = 26.42, p < 0.001, ɲp

2 0.29). Non-typical/high dyna-
mism event stimuli elicited the greatest mean response 
latency (M = 11.34 s, SD = 1.12 s), while typical/low dyna-
mism event stimuli elicited the shortest response latency 
(M = 6.96 s, SD = 2.65 s).

3.4 � Summary

Overall, pilots suffered a decline in performance when 
confronted with non-typical event stimuli. Response accu-
racy declined and response latency increased. This typical-
ity effect is amplified when the stimuli are presented in a 
dynamic, intermittent form, so pilots suffer further dec-
rement of response accuracy and additional increases in 
response latency. Conversely, for typical stimuli, recognition 
is stable despite system dynamism and only minor process-
ing delays are incurred.

4 � Discussion

The present study tested a real-world typicality gradient, 
composed of two cockpit events, across two different forms 
of dynamism: a single, low dynamism transition, and an 
unstable, high dynamism system transition. We have found 
that non-typical event stimuli elicit a greater number of 
response errors and incur an increased response latency 
when compared to typical event stimuli, replicating the 
typicality effect and supporting our first hypothesis. These 
performance deteriorations were amplified when a form of 
system dynamism was introduced, indicating dynamic, inter-
mittent event cues could be problematic in the cockpit when 

Fig. 4   The response accuracy for the four conditions

Fig. 5   The mean response latency (s) for the four conditions, show-
ing an interaction effect between typicality and dynamism (95% con-
fidence interval)

Table 2   The mean, standard deviation and 95% confidence intervals 
for response latency (s) in each of the conditions

Condition Mean (SD) 95% CI

Typical/dynamism low 6.96 s (SD = 2.65) 6.30–7.62
Typical/dynamism high 7.29 s (SD = 2.47) 6.68–7.90
Non-typical/dynamism low 8.91 s (SD = 2.48) 8.29–9.52
Non-typical/dynamism high 11.34 s (SD = 1.12) 11.06–11.61
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combined with non-typical stimuli. Cognitive performance 
with typical event stimuli appears to remain intact, despite 
system dynamism. Pilots are subject to typicality effects and 
these appear amplified during dynamic event encounters, 
supporting our hypothesis that dynamism and typicality 
exhibit an interactive effect.

This study supports the axiom that pilot knowledge tends 
to be concentrated around typical events (Clewley and Nixon 
2019, 2020). Dynamism had no notable effect on pilot 
behaviour for the typical event, indicating typicality may 
provide a protective cloak; cognition is geared to typicality 
(Clewley and Nixon 2020). Improving the quality of pilot 
exposure to non-typical events remains an important strat-
egy to mitigate the typicality effect. Typical stimuli receive 
preferential processing (Lei et al. 2010; Wang et al. 2016), 
and in the cockpit this appears to be a mechanism that can 
tame dynamism, leading to preferred response. For typical 
events, dynamism does not degrade cognitive performance.

Dynamic, unstable event features carry risk of delayed 
and inadequate recognition. Pilots in this study faced with 
a high dynamism, non-typical event took longer to make 
poorer recognition choices, and this event structure exhib-
ited an interactive effect. In real-world encounters this could 
promote two types of situations. Firstly, pilots may not ade-
quately recognise event stimuli, making it less likely that 
appropriate checklists and procedures are carried out. The 
accuracy of just 41.54% for the non-typical, high dynamism 
condition indicates clear cognitive problems for pilots in 
establishing basic event verification. This would seem to be 
particularly relevant to cases where the key event features do 
not remain extant for prolonged periods, as was the case for 
the AF447 crew (BEA 2012). Unstable, intermittent event 
features, that change during system description, may present 
significant cognitive challenges.

Secondly, dynamic, non-typical events induce a greater 
response latency, and in real-world encounters this could 
lead to unacceptable delays in desirable pilot behaviour, such 
as flight path interventions or response selection. Addition-
ally, events could escalate during these delays. In this study 
we tested two short bursts of dynamism, which we consider 
to be mild in comparison to the AF447 accident, where mul-
tiple systems remained in dynamic states for the first 3 min 
(BEA 2012). Dynamic, non-typical event stimuli carry risk 
in the cockpit, and the interactive effect explains undesirable 
pilot behaviour seen in some aircraft accidents.

We suggest pilots receive education and training on the 
temporal variety of dynamic events. It is unclear whether 
pilots currently receive training to manage cues and indica-
tions that do not stabilise in a coherent state. Such dynamic, 
contextual complexity may be met for the first time in a 
high risk, real-world event. This is particularly prescient 
given that recall of similar, past events, important in pilot 
response, may be damaged if a starkly different temporal 

structure is met (Zacks et al. 2001). The extent to which a 
training encounter has the same temporal characteristics as a 
real-world event may be important in some cases. If an event 
does not look like training, the training may not be recalled.

Dynamic variety could be introduced into aircraft ‘type 
ratings’ (training to fly a specific aircraft) and pilot recurrent 
simulator training. Both of these forums have acknowledged 
limitations, such as providing brief, contrived or predict-
able event examples (Casner et al. 2013; Clewley and Nixon 
2020). System spikes, episodes of intermittent system indi-
cations and failures that do not stabilise in a coherent state 
(dynamic variety) could be added to EASA Part-FCL, Sub-
part H, Section 1, AMC1 FCL.725(a), requirements for the 
issue of class and type ratings; Section 2, AMC2 FCL.735.A, 
multi-crew cooperation training courses (aeroplanes), sys-
tems abnormal and emergency operations; and GM1 to 
Appendix 9 of Annex I, Training, skill test and proficiency 
check for MPL, ATPL, type and class ratings, and proficiency 
check for IRs (see EASA 2020). Pilots may then have knowl-
edge of, and simulator experiences relating to, a variety of 
dynamic event characteristics. This is a shift towards educat-
ing pilots about the anatomy of events and event dynamics.

Additional resilience could be built into the cockpit through 
better pilot materials, checklists and procedures, that offer 
improved guidance on intermittent, transient cues, for example. 
Training a single system transition may not prepare pilots for 
intermittent cues. In this research we introduced two periods 
of event stimuli in the high dynamism condition, and that gen-
erates four system transitions. We believe that pilot recogni-
tion and response could be improved if flight crew education 
explicitly trains the three types of dynamism we have identified 
in Sect. 1.1, above: periodic episodes, spikes or transient cues 
and unusual dynamism. Real world events will continue to 
present these characteristics, they will continue to challenge 
the predictive faculties of humans. As currently trained, some 
real-world events may be beyond pilot knowledge.

Dynamic events pose clear problems for frame selection, 
complementing recent work on startle and surprise (Land-
man et al. 2017a). This approach suggests new system states 
require revised ‘frames’, or knowledge structures, to guide 
processing and provide context and meaning. The model 
specifies ‘surprise’, which requires cognitive effort to select 
a new, appropriate frame. Associated stress can also affect 
performance, leading to wide ranging effects on cognition, 
especially attentional tunnelling (see Vanderhaegen et al. 
2020, for a contemporary view of attentional resources in 
dynamic events and heartbeat synchronisation).

In a highly dynamic event, the frame ‘mis-match’ 
may endure as the system state vacillates. This is a pos-
sible explanation for the delay and effort seen in reframing 
event stimuli, as multiple event transitions require tracking. 
Dynamic states present a simple conundrum for the pilot or 
operator: which frame?
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Naturally, this research has limitations. We tested one 
typicality gradient, composed of two cockpit events, and 
two forms of system dynamism. This serves as an initial 
platform and we think the principle could be extended to 
examine pilot performance on a greater range of events and 
dynamics. We used real cockpit cues, animated dynami-
cally, but we feel this work would benefit from moving 
to a flight simulator environment to further validate the 
approach. These findings have potential applications in 
other complex, dynamic environments, such as medi-
cine (Perry and Wears 2012), firearms events (Mitchell 
and Flin 2007), crowd and stadium disasters (Challenger 
and Clegg 2011) and firefighting (Grenfell Tower Inquiry 
2017), where non-typical events can exhibit dynamic vari-
ety. Other dynamic activities that employ simulations (for 
example, see Crichton 2017, for a discussion on simulator 
exercises in drilling operations) could benefit from con-
sidering dynamic variety as a training variable. Dynamic 
events may not resemble trained for or anticipated events, 
and if paired with a non-typical situation, human perfor-
mance may decline, compromising safety.

5 � Conclusion

Some aircraft accidents, like the crash of flight AF447 
(BEA 2012), involve non-typical events that fail to stabi-
lise in a coherent, intelligible state. Such events present a 
deluge of intermittent cues: now you see it, now you don’t.

In this article we have outlined the role of typicality and 
event dynamism in aircraft accidents. We have extended the 
typicality effect to a real-world dynamic task. This study 
has indicated it is important that pilots experience events 
as coherent, intelligible entities, not a continuous ebb and 
flow of change, so we have suggested improvements to pilot 
training and cockpit materials. Event boundaries are impor-
tant in pilot response. We have presented evidence from 
experienced airline pilots that dynamism, when combined 
with non-typical stimuli, decreases response accuracy and 
increases response latency. Dynamism and typicality are 
axiomatic variables in aircraft accidents.
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