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In this work, a robust incremental three-dimensional (3D) guidance law is proposed considering terminal angle

constraint against maneuvering targets. As a stepping stone, the line-of-sight (LOS) tracking error dynamics is

employed for the 3Dguidance lawdesign.A sliding variable is constructed such that its first-order derivative excludes

the relative range in the perturbation, which avoids the unboundedness of system perturbation induced by target

maneuvers near collision. A time-varying version of the sliding variable is designed to accelerate convergence of the

LOS tracking errors and avoid large initial sliding variables. Then, two guidance laws are derived as a benchmark via

the nonlinear dynamic inversion (NDI)-based sliding mode control (NDI-SMC) and NDI-based time-varying sliding

mode control (NDI-TVSMC), respectively. To further improve guidance robustness with reduced system

perturbation, the sensor-based incremental nonlinear dynamic inversion (INDI) control is used to design the

INDI-SMC-based and INDI-TVSMC-based guidance laws. The sensor-based guidance laws exploit the LOS

angular acceleration and guidance command output at the latest step, which result in smaller guidance gains to

reject the perturbation than the NDI guidance laws. Numerical simulations in various cases and comparison studies

are conducted to verify the effectiveness and robustness of the proposed method.

I. Introduction

G UIDANCE system has been playing a crucial role in generating

feasible trajectories for missiles against various target motions

[1,2] and planetary powered descent trajectory design [3]. The pri-

mary aim of designing guidance laws, e.g., the well-known propor-

tional navigation guidance (PNG) laws, is to achieve the minimal

miss distance [4,5]. Besides the precise interception mission, it is of

special significance for investigating advanced guidance laws with

terminal angle constraint near target [6–9]. Specifically, to maximize

the warhead lethality and improve missile survivability, the impact

angle constraint is required for missiles against enhanced protections

(such as harder armor) on tanks and advanced defense systems (such

as the close-in weapon system and electronic counter measure sys-

tem) on warships [6,7]. To achieve desired approaching direction or

obstacle avoidance, the terminal approach angle constraint can be

imposed on missiles and autonomous vehicles [8,9].

In recent years, the terminal angle constrained guidance problem

has been widely investigated in the aerospace community. For

instance, Ref. [6] proposed an impact angle guidance law via solving

a linear quadratic optimal control problem. The desired impact angle

was achieved in [7] for intercepting stationary targets via the optimal

control theory. To obtain the shortest distance for obstacle avoidance,
zero yaw angles near the passing waypoint were considered in [8]. To
achieve the desired approach velocity direction at a desired time, a
hybrid guidance scheme was introduced in [9]. The PNG law was
combined with an orientation strategy [10] and modified with biased
forms [11,12] to meet the desired impact angle. To intercept maneu-
vering targets with constrained terminal angle, the sliding mode
control (SMC) was used to derive the guidance law for enhancing
system robustness [14–19].
Note that these terminal angle constrained guidance laws are devel-

oped in a planar case, which assumes decoupled three-dimensional
(3D) engagement dynamics. However, a real 3D interception is more
practical for guidance lawdesign,which attracts the recent studyon the
design of 3D guidance laws [20–30]. Thus, it is of practical signifi-
cance to investigate the terminal angle constrained guidance law in the
3D space. There have been several 3D guidance laws considering the
terminal angle constraint. In [23], a trajectory shaping3Dguidance law
with impact angle constraint was proposed via developing reference
line-of-sight (LOS) profiles. Then, adaptivemultivariable twisting and
super-twisting controls were employed to handle the impact angle
constrained 3D guidance problems in [24,25]. In [26,27], the 3D
guidance law was derived via the Lyapunov-based approach and
SMC with dual sliding surfaces. Using the rotation angle and Euler
axis of quaternion, the impact angle constraint was achieved in a 3D
space in [28]. The impact angle constrained 3D guidance law was
developed based on the SMC method in [29,30].
It is worth mentioning that the problem of advanced guidance law

design with terminal angle constraint remains open in three aspects:
1) Most of the above guidance laws are designed for stationary

targets or in a planar case, which will hinder its application to
maneuvering targets in the 3D space. The terminal angle constrained
3D guidance law considering maneuvering targets can be found in
[24,29,30].
2) The lumped perturbation including the target maneuvers or

system uncertainties for guidance law designs in [15,20,24,25,29]
increases with the decreased relative range. This is because the
relative range takes part in the denominator of the unknown pertur-
bation. Although the gain adaption and disturbance observer tech-
niques are useful tools to compensate such unknown perturbations
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([24,29], to name a few), the fact that the perturbation becomes large
if the relative range is near zero and even infinite at the collision point
(relative range is zero) is still true. This issue would lead to the
difficulty of achieving desired terminal angles at the collision point
because of the limited perturbation rejection ability, which results
from the third aspect:
3) Most of the above robust terminal angle constrained guidance

laws are based on the condition that the perturbation cancellation
gains are greater than the upper boundof the perturbation. Thismeans
that higher gains are required when the perturbation (such as the
target maneuver) increases. The disadvantages of involving high
gains include the following: a) large guidance commands will be
created; b) undesirable chattering issue will occur for SMC-based
guidance laws.
Motivated by the above discussions, this work aims to resolve the

aforementioned three issues simultaneously. The terminal angle con-
strained 3D guidance law against maneuvering targets is designed by
removing the relative range from the lumpedperturbation and reducing
the upper bound of the lumped perturbation. Specifically, a sliding
variable is constructed such that the lumpedperturbation existing in the
sliding dynamics is not related to the relative range. Then, the nonlinear
dynamic inversion (NDI)-based SMC (NDI-SMC) and NDI-based
time-varying sliding mode control (NDI-TVSMC) are developed to
construct the 3D guidance law. To reduce the upper bound of the
lumped perturbation and improve system robustness, the idea of
combining sensor-based incremental nonlinear dynamic inversion
control (INDI) and SMC (named INDI-SMC [31–33]) that inherits
the merits and avoids the defects of both methods is employed to
design the INDI-SMC and INDI-TVSMC 3D guidance laws. To the
best of our knowledge, this is the first paper developing the incremental
guidance law. The main contributions are as follows:
1) The 3D guidance law with terminal angle constraint against

maneuvering targets is designed without introducing unbounded
perturbation induced by target maneuvers near collision.
2) The sensor-based incremental control concept is combinedwith

the SMC and TVSMC for guidance law design, which reduces the
upper bound of the unknown lumped perturbation and enhances the
guidance system robustness simultaneously.
3) Under the bounded target maneuvers, the unknown lumped

perturbation can be rejected by INDI-SMC-based and INDI-
TVSMC-based guidance laws using smaller gains than that by
NDI-SMC-based and NDI-TVSMC-based guidance laws.
The rest of this paper is organized as follows. The problem is

described in Sec. II. The guidance law design and analysis are
presented in Sec. III. Simulation results are shown in Sec. IV, and
concluding remarks are given in Sec. V.

II. Problem Description

In this section, the nonlinear 3Dguidancemodel for themissile and
target is presented, and the guidancemission in this work is described
in detail.

A. Three-Dimensional Interception Kinematics and Dynamics

The 3D homing interception geometry for the missile (denoted
as M) and target (denoted as T) is shown in Fig. 1. Based on the
Cartesian inertial reference frame OXIYIZI , the missile and target
body coordinates as well as the LOS frame are described by
OXMYMZM, OXTYTZT , and OXLYLZL, respectively. The LOS
angles, velocity lead angles, and flight path angles of the missile
are represented as θL, ϕL, θM, ϕM, and γM, ϑM, respectively. The
velocity lead angles, and flight path angles of the target are repre-
sented as θT , ϕT , and γT , ϑT , respectively. The missile and target’s
speeds are denoted by VM and VT , respectively. The relative range
between the missile and target is r.
The 3D interception kinematics and dynamics can be given as

follows [34]:

_r � VT cos θT cosϕT − VM cos θM cosϕM (1)

r_θL � VT sin θT − VM sin θM (2)

r _ϕL cos θL � VT cos θT sinϕT − VM cos θM sinϕM (3)

_θM � AzM∕VM − cosϕM
_θL − sin θL sinϕM

_ϕL (4)

_ϕM �
AyM

VM cos θM
− tan θM sinϕM

_θL − _ϕL cos θL

� sin θL tan θM cosϕM
_ϕL (5)

_θT � AzT∕VT − cosϕT
_θL − sin θL sinϕT

_ϕL (6)

_ϕT �
AyT

VT cos θT
− tan θT sinϕT

_θL − _ϕL cos θL

� sin θL tan θT cosϕT
_ϕL (7)

where AzM, AyM and AzT , AyT denote the missile and target’s normal

accelerations in the pitch and yaw planes, respectively. The inertial

positions of the missile and target (denoted as xM, yM, zM and xT , yT ,

zT) are governed by
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(8)

B. Guidance Objectives

This work aims to achieve the following guidance objectives:
Zero miss distance: The missile should successfully intercept the

target, i.e., r → 0.
Terminal angle constraint: The missile needs to achieve desired

terminal LOS angle constraints at the collision point. Specifically, the
LOS angles should meet θL, ϕL → θLF, ϕLF (θLF, ϕLF are the
expected terminal LOS angles) to achieve the impact angle constraint
for non-maneuvering targets because there exists a specific relation
between them [19]. For maneuvering targets, because their maneuvers
are unknown in this work, the desired terminal LOS angle refers to the
approach angle constraint instead of the impact angle constraint [24].
Guidance robustness: The guidance system is robust to the lumped

perturbation (including the systemuncertainties and targetmaneuvers)

Fig. 1 Three-dimensional interception geometry for the missile and
target.
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whose upper bound is reduced and the unboundedness near collision
is avoided.
Remark 1: The third objective is a challenging task for guidance

law design against maneuvering targets based on the LOS dynamics.
Specifically, the perturbation induced by target maneuvers is usually
presented in the form of h�Az;yT�∕r ([20,24,25], to name a few),
where h�Az;yT� is a function of the target acceleration. It is obvious

that h�Az;yT�∕r will diverge if the relative range goes near zero

(depending on the minimum miss distance requirement). Especially,
this term becomes infinitewhen the relative range is zero. This results
in limited perturbation rejection ability of the guidance system,
and consequently inaccurate terminal angles at the collision point
will occur.

III. Sensor-Based Incremental Guidance Law Design

To achieve the above guidance objectives, a 3D guidance law is
first designed as a benchmark via theNDI-basedSMC technique. The
convergence rate of LOS tracking errors is accelerated by extending
the sliding variable to a time-varying version. Then, the sensor-based
incremental guidance law is designed based on the combination
of the INDI and SMC methods. Finally, the NDI-SMC-based,
NDI-TVSMC-based, INDI-SMC-based, and INDI-TVSMC-based
guidance laws are compared.

A. LOS Tracking Error Dynamics

The nonlinear coupled LOS dynamics can be obtained from
Eqs. (2–7) as [30]

�θL � −
2_r_θL

r
−
cos θM

r
AzM �

cos θT

r
AzT − _ϕ2

L sin θL cos θL (9)

�ϕL � −
2_r _ϕL

r
�

sin θM sinϕM

r cos θL
AzM −

cosϕM

r cos θL
AyM

−
sin θT sinϕT

r cos θL
AzT �

cosϕT

r cos θL
AyT � 2 _ϕL

_θL tan θL (10)

Define the LOS tracking errors as e1 � θL − θLF, e2 � ϕL − ϕLF,
and the error dynamics can be presented as

�

_eLOS � eRate
_eRate � A� BU �D

(11)

where eLOS � �e1; e2�
T , U � �AzM; AyM�

T , eRate � � _e1; _e2�
T �

�_θL − _θLF; _ϕL − _ϕLF�
T , and

A �

2

4

− 2_r_θL
r

− 1
2
_ϕ2
L sin 2θL − �θLF

− 2_r _ϕL

r
� 2 _ϕL

_θL tan θL − �ϕLF

3

5;

B �

2

4

− cos θM
r

0

sin θM sinϕM

r cos θL

− cosϕM

r cos θL

3

5;

D �

2

4

AzT cos θT∕r

�cosϕTAyT − sin θT sinϕTAzT�∕�r cos θL�

3

5

Assumption 1 [26]:The velocity lead angles are assumed to satisfy
jθMj ≠ π∕2 and jϕMj ≠ π∕2, and the LOS angle jθLj � π∕2 that
performs a high diving maneuver is not considered.

_θLF, _ϕLF , �θLF , �ϕLF are the first-order and second-order derivatives
of the desired LOS angles, respectively. Because the desired LOS

angles are constant values, _θLF � _ϕLF � �θLF � �ϕLF � 0 holds in
this work. D is the perturbation induced by the unknown target
maneuvers. Note that the perturbation will increase dramatically
and become infinite as the relative range decreases towards zero.
The guidance law design directly based on Eq. (11) requires adaptive

control or disturbance observer techniques to compensate for the

large perturbations near collision.

B. NDI-SMC Guidance Law

To avoid the unbounded perturbationD near collision, the follow-

ing sliding variable (denoted as s) is designed:

s � reRate � keLOS (12)

where k is a positive parameter to be designed.
Taking the first-order derivative of Eq. (12) leads to

_s � _reRate � r _eRate � keRate (13)

Substituting Eq. (11) into Eq. (13) yields

_s � _reRate � r�A� BU�D� � keRate (14)

Rewriting Eq. (14) as

_s � ~A� ~BU � ~D (15)

where

~A � �_r� k�eRate � rA �

2

4

�− _r� k�_θL − 1
2
r _ϕ2

L sin 2θL

�−_r� k� _ϕL � 2r _ϕL
_θL tan θL

3

5;

~B � rB �

2

4

− cos θM 0

sin θM sinϕM

cos θL

− cosϕM

cos θL

3

5

~D � rD �

�

AzT cos θT
�cosϕTAyT − sin θT sinϕTAzT�∕ cos θL

�

Assumption 2: The target maneuvers are continuous and bounded

such that ~D is bounded and satisfy k ~Dk ≤ Lwith a positive scalar L.
Remark 2: Assumption 2 is reasonable and more practical com-

pared with the direct boundedness assumption on D, because the

relative range in the denominator of D is removed.
Note that s � keLOS if r � 0 as per Eq. (12), which means that the

sliding variable does not make sense for guidance law design under

this case. Therefore, s � 0 should be achieved before collision. To

ensure convergence of the sliding variable, the NDI-SMC-based

guidance law can be designed from Eq. (15) as follows:

UNDI−SMC � U
eq
NDI−SMC � ~B−1v (16)

where v � −βs∕ksk is a vector to reject the perturbation ~D, β is a

positive parameter to be designed, and

U
eq
NDI−SMC � − ~B−1 ~A (17)

Select a Lyapunov function as W1 � 1∕2sTs, then _W1 � sT� ~A �
~BU � ~D�. Substituting Eq. (16) into it yields

_W1 � sT�−βs∕ksk � ~D� ≤ �−β� L�ksk < 0 (18)

Therefore, the sliding variable s can converge to the origin if β > L.

After s reaches the condition s � 0, it can be obtained from Eq. (12)

that

eRate � −�k∕r�eLOS (19)

which means

_e1 � −�k∕r�e1; _e2 � −�k∕r�e2 (20)

3



Select a Lyapunov function as W2 � 1∕2�e21 � e22�, and it can be

derived from Eq. (20) that

_W2 � e1 _e1 � e2 _e2 � −�k∕r��e21 � e22� � −�2k∕r�W2 (21)

Because k and r are positive, the LOS tracking errors e1, e2 can
converge to the origin exponentially. This also implies that θL,

ϕL → θLF , ϕLF, and _θL, _ϕL →
_θLF, _ϕLF � 0. With the zero LOS

rates, it can be known that zero miss distance can be finally achieved.

Because the perturbation ~D will not diverge to undesirable values

near collision such that k ~Dk > L, the condition −β� L < 0 for
Eq. (18) will be valid throughout the guidance process.
Remark 3: It should be noted from Eq. (20) that the convergence

rate of e1, e2 is affected by the parameter k and the relative range r.
For example, because the relative range r is large at the initial stage,
a small k would cause e1 ≠ 0, e2 ≠ 0 throughout the guidance

process, which means _θL � _e1 � −�k∕r�e1 → ∞ and _ϕL � _e2 �
−�k∕r�e2 → ∞ as the relative range r → 0. This implies that small k
will lead to LOS rate and guidance command divergence. One may
suggest that selecting a large k can ensure fast convergence of the
LOS tracking errors. However, large kwill cause large initial sliding
variables that require high gains of β to eliminate, which will lead to
undesirable chattering. This dilemma will be addressed in the next
subsection.

C. NDI-TVSMC Guidance Law

To accelerate convergence rate of e1, e2 and avoid large initial
sliding variables, the sliding variable in Eq. (12) is extended to a time-
varying sliding variable as follows:

sv � reRate � kv�t�eLOS (22)

where

kv�t� � kv0 � α�t − t0� > 0 (23)

with kv�t0� � kv0 > 0, α is a positive constant, and t ≥ t0 is the
flight time.
Taking the first-order derivative of Eq. (22) leads to

_sv � r _eRate � _reRate � kv�t�eRate � _kv�t�eLOS (24)

Substituting Eqs. (11) and (23) into Eq. (24) yields

_sv � rA� rBU� rD� _reRate � kv�t�eRate � αeLOS (25)

Rewriting Eq. (25) as

_sv � ~Av � ~BU − αC� ~D (26)

where C � �θLF;ϕLF�
T , and

~Av �

2

4

�−_r� kv�_θL − 1
2
r _ϕ2

L sin 2θL � αθL

�− _r� kv� _ϕL � 2r _ϕL
_θL tan θL � αϕL

3

5

Similar to the NDI-SMC-based guidance law in Eq. (16), the NDI-
TVSMC-based guidance law can be designed as

UNDI−TVSMC � U
eq
NDI−TVSMC � ~B−1vv (27)

where vv � −βvsv∕ksvk with a positive parameter βv, and

U
eq
NDI−TVSMC � ~B−1

�

− ~Av � αC
�

(28)

Define a Lyapunov function as Wv � 1∕2sTv sv, then _Wv �

sTv � ~Av � ~BU − αC� ~D�. Substituting Eq. (27) into it leads to _Wv ≤
�−βv � L�ksvk. Obviously, the sliding variable sv can converge to

the origin if βv > L. When sv � 0 is met, it can be obtained from

Eq. (22) that

_e1 � −�kv∕r�e1; _e2 � −�kv∕r�e2 (29)

Under the same kv0, the convergence rate of e1, e2 under Eq. (29)

increases with a larger α selected in Eq. (23).
Compared with the NDI-SMC, the benefits of the NDI-TVSMC

are as follows:
1) Under the same system initial conditions and β � βv, the

convergence rate of the sliding variable can be accelerated by select-
ing a small initial kv0 to meet a small initial sliding variable.
2) After the sliding variable reaches zero, the convergence rate of

e1, e2 can be accelerated with the increased parameter kv. Moreover,
the convergence rate can be further enhanced with greater α.

To better understand the convergence differences between the

sliding variables s, sv and the tracking errors e1, e2, a set of illustrative

examples is shown in Figs. 2–4. The initial conditions are set to

r0 � 5000, e10 � 60°, e20 � −60°, _e10 � −1 × 10−3 rad∕s, and

_e20 � 1 × 10−3 rad∕s; _r � −10–40t is selected. In Figs. 2 and 3, it

can be seen that the SMC cannot enforce the tracking errors to zero

under a small gain of k � 100, despite that the convergence of the
sliding variables is equivalent to that byTVSMC.By increasing k and

β, the system tracking errors can be driven to the origin by SMC.

However, the initial sliding variable is greatly increased, which

reduces the convergence rate of the sliding variables. At the same

time, another issue caused by higher gains is the undesirable frequent
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Fig. 2 Comparison of system tracking errors by SMC and TVSMC.

Fig. 3 Comparison of sliding variables by SMC and TVSMC.
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chattering. On the contrary, the TVSMC has faster convergence on
the tracking errors than SMC and avoids large initial sliding varia-
bles. In Fig. 4, it can be seen that the system tracking errors under
TVSMC can converge to zero faster by increasing α.

D. Sensor-Based Incremental Guidance Law

In addition to the convergence rate improvement, the robustness
issue still exists in the above guidance laws. Specifically, the above
guidance laws require that the gains in v and vv should satisfy β > L

and βv > L, respectively. For some cases that the perturbation leads
to a greater L, higher gains of β and βv are needed. However, the
disadvantage of introducing high gains in v and vv is potential
undesirable chattering. One may suggest that gain adaption methods

for β, βv can be useful to compensate ~D. Nevertheless, the adaption is
to avoid gain overestimation, and theminimumvalues of β, βv should
still be greater than L. Therefore, it is necessary to design the
guidance law with reduced upper bound of the system perturbation,
such that the robustness against target maneuvers can be enhanced
and the chattering issue can be mitigated with smaller gains of β, βv.
To achieve the aim, this paper leverages the sensor-based INDI

method [31–33] that exploits the latest angular acceleration meas-
urement and control output into the guidance law design. Specifi-
cally, the NDI-SMC-based and NDI-TVSMC-based guidance laws
are extended to sensor-based INDI-SMC and INDI-TVSMC guid-
ance laws, respectively.
Taking the design process of INDI-TVSMC guidance law as an

example, the first step is to rewrite Eq. (26) as

_svr � ~Av�x� � ~B�x�U �Dr − αC (30)

where svr has the same form of sv in Eq. (22), x represents the system
state, and

Dr � ~D� d (31)

where d is the unknown but bounded term caused by system uncer-
tainties and external disturbances.
Then, the incremental dynamics of svr can be obtained by taking

the first-order Taylor expansion of Eq. (30) around t0 � t − Δt (Δt is
the sampling interval) [31–33] as follows:

_svr � _svr0 � ~B0ΔU� ΔDr � ρ�x� (32)

where _svr0 is the derivative of the sliding variable svr at t0. ΔU �
U − U0 is the increment ofU from t0 to t.ΔDr denotes the variations

of the perturbation Dr over Δt, and ~B0 � ~B�x0�. ρ�x� is defined
as [31]

ρ�x� �
∂� ~Av�x� � ~B�x�U�

∂x

�

�

�

�

0

Δx�O�Δx2� (33)

where Δx � x − x0 is the increment of x from t0 to t, and O�Δx2�
includes the remaining higher-order terms.
Assumption 3 [32]: The partial derivatives of ~A, ~Av, and ~B with

respect to x are bounded for any order.
For the dynamics in Eq. (32), the equivalent incremental TVSMC

guidance law can be designed as

ΔU
eq
INDI−TVSMC � − ~B−1

0 _svr0 (34)

Remark 4: Note that _svr0 can be estimated/measured because
_svr0 � r0 _eRate0 � �_r0 � kv0�eRate0 � αeLOS0, where kv0 and α are

known parameters, and r0, _r0, eRate0 � �_θL0; _ϕL0�
T , and eLOS0 �

�θL0 − θLF;ϕL0 − ϕLF�
T require the relative range, relative speed,

LOS rates, and LOS angles, which are measurable by the onboard

seeker sensors. As for the term _eRate0 � ��θL0; �ϕL0�
T , it can be esti-

mated via sampled LOS angles θL, ϕL and filter algorithms with

recently developed high sampling rate sensors and low-cost compu-

tational elements [35]. Such information has been used in the angular

acceleration guidance (AAG) law [35] design and implementation.

Another alternative is to directly estimate _svr0 using svr. Nonetheless,
this is not the focus of this work and will not be discussed in detail.
Substituting Eq. (34) into Eq. (32) yields

_svr � εINDI−TVSMC � ΔDr � ρ�x� (35)

where εINDI−TVSMC is the lumped perturbation. Because of the limited

system in practice,ΔDr is bounded (its upper bound is denoted as η1)

during a sampling interval. Moreover, it can be known from Eq. (33)

andAssumption 3 that ρ�x� is bounded (its upper bound is denoted as
η2) because kΔxk → 0 with a sufficiently small Δt.

Obviously, it can be obtained from Eq. (35) that

kεINDI−TVSMCk ≤ η1 � η2 (36)

which means that the perturbation is bounded. To compensate

εINDI−TVSMC, the incremental TVSMC guidance law is designed as

ΔUINDI−TVSMC � ΔU
eq
INDI−TVSMC � ~B−1

0 vvr (37)

where

vvr � −βvr
svr

ksvrk
(38)

with a positive parameter βvr. Substituting Eq. (37) into Eq. (32)

leads to

_svr � vvr � εINDI−TVSMC (39)

Select a Lyapunov function asWvr � 1∕2sTvrsvr, it can be derived that

_Wvr � sTvr�vvr � εINDI−TVSMC�

� sTvr

�

−βvr
svr

ksvrk
� εINDI−TVSMC

	

≤ −�βvr − kεINDI−TVSMCk�ksvrk (40)

To ensure _Wvr < 0, it can be obtained that

βvr > kεINDI−TVSMCk (41)

In other words, svr can converge to the origin by selecting βvr as

Eq. (41). After svr � 0 is met, the LOS tracking error dynamics has

the same formof Eq. (29), which guarantees the convergence of e1, e2
to the origin.

s

Fig. 4 Comparison of system tracking errors by TVSMC under

βv � 50, kv0 � 100.
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The whole INDI-TVSMC guidance law can be presented as

UINDI−TVSMC � U0 � ΔUINDI−TVSMC (42)

whereU0 � �AzM0; AyM0�
T denotes the missile’s guidance command

at t0.
Remark 5: It is worth noting that the proposed INDI guidance law

differs from the LOS angular acceleration guidance law [35] in that

1) both the LOS angular acceleration and guidance command at their

latest step are used in the INDI guidance law, and 2) the guidance

robustness and performance are enhanced by inheriting the advan-

tages of both INDI and SMC/TVSMC controls.
Similar to the design process of the INDI-TVSMC guidance law,

the whole INDI-SMC guidance law can be presented as

UINDI−SMC � U0 � ΔUINDI−SMC (43)

where

ΔUINDI−SMC � ΔU
eq
INDI−SMC � ~B−1

0 vr (44)

ΔU
eq
INDI−SMC � − ~B−1

0 _sr0 (45)

vr � −βr
sr

ksrk
(46)

with βr > 0, sr has the same form of s in Eq. (12), and
_sr0 � r0 _eRate0 � �_r0 � k�eRate0 can be similarly estimated/measured

as claimed in Remark 4. Similar to Eq. (35), εINDI−SMC can be

presented as

εINDI−SMC � ΔDr � ρ 0�x� (47)

where

ρ 0�x� �
∂� ~A�x� � ~B�x�U�

∂x

�

�

�

�

0

Δx�O�Δx2� (48)

Similarly, the system perturbation εINDI−SMC is bounded by

kεINDI−SMCk ≤ η1 � η3 (49)

where η3 is the upper bound of ρ 0�x�. Moreover, sr can converge to

the origin by selecting βr as

βr > kεINDI−SMCk (50)

After sr � 0 is met, the LOS tracking error dynamics has the same

form of Eq. (20), which guarantees the convergence of e1, e2 to the

origin.

The structure of theNDI-SMC-based, NDI-TVSMC-based, INDI-

SMC-based, and INDI-TVSMC-based guidance laws can be pre-

sented in Fig. 5. Therein, four switch points (denoted as SP1, SP2,

SP3, and SP4) are used to trigger different guidance laws. Specifi-

cally, if SP1 andSP2 are connected to the “TVSMC” block, the INDI-

TVSMC-based or NDI-TVSMC-based guidance law is used when

SP3 and SP4 connect to the solid line or dashed lines, respectively. If

SP1 and SP2 are connected to the “SMC” block, the INDI-SMC-

based or NDI-SMC-based guidance law is used when SP3 and SP4

connect to the solid line or dashed lines, respectively. It can be seen

that the INDI-based TVSMC and SMC guidance laws exploit the

sensor-based estimation/measurement of _svr0 or _sr0, whereas the

NDI-based TVSMC and SMC guidance laws use the information
~Av or ~A.

E. Robustness Comparisons

To compare the above guidance laws for practical application, the

NDI-SMC-based guidance law is first analyzed by applying it into

the uncertain system as follows:

_s � ~A� ~BU�Dr (51)

whereDr is presented in Eq. (31). Substituting UNDI−SMC [Eq. (16)]

into Eq. (51) leads to

_s � v� εNDI−SMC (52)

where εNDI−SMC � Dr. For the Lyapunov functionW1 � 1∕2sTs, it
can be derived that

_W1 � sT�v� εNDI−SMC� � sT
�

−β
s

ksk
� εNDI−SMC

	

≤ −�β − kεNDI−SMCk�ksk (53)

Because the perturbation εNDI−SMC is bounded, the convergence of s

can be ensured by the condition β > kεNDI−SMCk. For the NDI-

TVSMC-based guidance law in Eq. (27), the system perturbation is

εNDI−TVSMC � Dr � εNDI−SMC. To ensure the convergence of sv, βv
should meet βv > kεNDI−TVSMCk.
From the analysis results in Sec. III.D, the perturbations resulted

from different guidance laws under the uncertain system are com-

pared in Table 1. The parameter selections for perturbation cancella-

tion of each guidance law are also presented. Because the parameter

selections are related to the norm of the perturbations, the following

relations are presented:

kεINDI−TVSMCk � kΔDr � ρk ≤ kΔDrk � kρk (54)

kεINDI−SMCk � kΔDr � ρ 0k ≤ kΔDrk � kρ 0k (55)

Fig. 5 Structure of the NDI-SMC-based, NDI-TVSMC-based, INDI-SMC-based, and INDI-TVSMC-based guidance laws.
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kεNDI−TVSMCk � kDrk (56)

kεNDI−SMCk � kDrk (57)

According to Eqs. (33) and (48), kρk and kρ 0k can be negligible

because kΔxk → 0 with a sufficiently small Δt. Meanwhile, if

Dr ≠ 0, there exists a sufficiently small Δt such that

kΔDrk < kDrk [32,33]. This implies that a sufficiently small Δt

can guarantee that the following conditions are satisfied:

kεINDI−TVSMCk < kεNDI−TVSMCk; kεINDI−TVSMCk < kεNDI−SMCk;

kεINDI−SMCk < kεNDI−SMCk; kεINDI−SMCk < kεNDI−TVSMCk

(58)

Thismeans that βvr and βr can be selected smaller than βv and β under

the same system uncertainties and target maneuvers.
Remark 6:Thegains βvr,βr,βv, β are required to be greater than the

corresponding perturbations as shown in Table 1. It is alternative to

update βvr, βr, βv, β via the adaptive sliding mode control [24,29].

However, it is not the focus in this work and does not affect the

discussion of perturbations under the above guidance laws.

IV. Numerical Simulations

In this section, the NDI-SMC-based, INDI-SMC-based, NDI-

TVSMC-based, INDI-TVSMC-based guidance laws are validated

via numerical simulations against constant moving targets and

maneuvering targets with desired terminal LOS angles. A realistic

missile model [36,37] is considered for verification. The speed and

thrust Tm are governed by Eqs. (59) and (60) in this work. Dm �

0.5�ρV2
MSrefCD is the aerodynamic drag, where CD, �ρ denote the

drag coefficient and atmospheric density calculated from [36],

g � 9.81 m∕s2 is the gravity constant, and Sref � 0.1 m2 and

Mm � 80 kg are selected for the missile’s reference area and mass,

respectively.

_VM � �Tm −Dm�∕Mm − g�cosϕM cos θM sin θL � sin θM cos θL�

(59)

Tm �

8

<

:

1000 N; for 0 ≤ t ≤ 3 s

750 N; for 3 < t ≤ 10 s

0; for t > 10 s

(60)

The initial positions are set to �xM0; yM0; zM0� � �0; 0; 10� km
and �xT0; yT0; zT0� � �10; 10; 0� km, and the initial flight path

angles are γM0 � ϑM0 � 30°, γT0 � ϑT0 � 0°. The initial speeds

of the missile and target are 500 and 200 m∕s, respectively. Both

themissile accelerationsAzM andAyM are bounded by 200 m∕s2. For

all the cases, if not given specifically, the parameters of the above

guidance laws are selected as listed in Table 2. Therein, the param-

eters for NDI-SMC and INDI-SMC, NDI-TVSMC, and INDI-

TVSMCare the same for fair comparison. Simulations are terminated

when the relative range is less than 1 m or the missile misses the

target. The unit vector S∕kSk (S denotes the sliding variable under

each guidance law) is modified as S∕�kSk � 0.01� to avoid undesir-
able chattering.

A. Constant Moving Targets Under Nominal Conditions

The first set of simulations is to verify the feasibility of the

proposed guidance laws against constant moving targets under nomi-

nal conditions. If not specifically emphasized, the thin lines represent

the state variations in the pitch plane in the upcoming figures. The

simulation results under θLF � −30°, ϕLF � 30° are presented in

Figs. 6 and 7. It can be seen that all the guidance laws successfully

intercept the target via various trajectories created by different guid-

ance laws. In Fig. 7, it can be observed that the LOS angles and LOS

rates driven by the INDI-TVSMC and NDI-TVSMC guidance laws

converge to their desired values faster than that by INDI-SMC and

NDI-SMC guidance laws. All the guidance laws can generate fea-

sible and reasonable acceleration commands, and all the LOS angle

tracking errors converge to zero before collision.

Besides, another pair of the constraint θLF � 0°, ϕLF � 0° is

selected to verify the guidance performance. In Figs. 8 and 9, the

3D trajectories and guidance performance are obtained using the

same parameters listed in Table 2. The INDI-TVSMC and NDI-

TVSMC guidance laws generate greater guidance commands than

the NDI-SMC and INDI-SMC guidance laws to eliminate the LOS

tracking errors. It can be seen that the INDI-TVSMC and NDI-

TVSMCguidance laws can achieve the desired LOSangle constraint,

whereas theNDI-SMC and INDI-SMCguidance laws cannot. This is

because the initial sliding variables for NDI-SMC and INDI-SMC

become too large to be eliminated by the gains listed in Table 2. To

handle this issue, there are two ways for NDI-SMC and INDI-SMC

guidance laws: 1) increase βr and β to accelerate convergence of the

sliding variables; 2) select smaller k to reduce the initial sliding

variable such that the sliding variable can be driven to zero before

collision. The results are shown in Fig. 10. It can be seen that the LOS

tracking errors can converge to zero by increasing βr and β to 30,

and reach zero on collision by decreasing k to 200. However, these

high gains of βr and β lead to undesirable chattering in the guidance

commands. Because the LOS tracking errors under k � 200 are still
nonzero near collision, the guidance commands diverge because
_θL � _e1 � −�k∕r�e1 → ∞ and _ϕL � _e2 � −�k∕r�e2 → ∞ as

r → 0. These disadvantages are consistent with the discussions

in Remark 3. It can be concluded that the NDI-TVSMC and

Table 2 Guidance parameters for
different guidance laws

Guidance law Guidance parameters

INDI-TVSMC kv0 � 100, α � 50, βvr � 15

INDI-SMC k � 700, βr � 15

NDI-TVSMC kv0 � 100, α � 50, βv � 15

NDI-SMC k � 700, β � 15

Table 1 Comparison of perturbations and conditions for different
guidance laws

Guidance law Perturbations in the uncertain system Parameter selection

INDI-TVSMC εINDI−TVSMC � ΔDr � ρ βvr > kεINDI−TVSMCk

INDI-SMC εINDI−SMC � ΔDr � ρ 0 βr > kεINDI−SMCk

NDI-TVSMC εNDI−TVSMC � Dr βv > kεNDI−TVSMCk

NDI-SMC εNDI−SMC � Dr β > kεNDI−SMCk

Fig. 6 Three-dimensional trajectories against the constant moving tar-
get under θLF � −30°, ϕLF � 30°.
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INDI-TVSMC guidance laws are more feasible than the NDI-SMC

and INDI-SMC guidance laws.

B. Maneuvering Targets Under Nominal Conditions

To validate the guidance law against maneuvering targets, the

target acceleration is assumed to have the form of AzT � az cos�ϖt�
and AyT � ay sin�ϖt�. The constraint θLF � −30°, ϕLF � 30° is

selected. Firstly, the results under az � ay � 5, ϖ � 0.3 are pre-

sented in Figs. 11 and 12. It can be seen that the target is successfully

intercepted by all the guidance laws. Again, it can be observed that the

LOS angles can converge to their desired values by the INDI-TVSMC

and NDI-TVSMC guidance laws faster than that by the INDI-SMC

and NDI-SMC guidance laws. Note that all the guidance laws can

create feasible guidance commands with bounded terminal accelera-

tion even in the case of unknown target maneuvers.

Meanwhile, the guidance laws are verified by increasing the target

maneuvers to az � ay � 30. The results are shown in Figs. 13 and

14. Note that all the guidance laws can ensure the successful inter-

ception of the target. The INDI-SMC and INDI-TVSMC guidance

°
m

s

s
Fig. 7 Guidance performance against the constant moving target under θLF � −30°, ϕLF � 30°.

Fig. 8 Three-dimensional trajectories against the constant moving tar-
get under θLF � 0°, ϕLF � 0°.
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Fig. 9 Guidance performance against the constant moving target under θLF � 0°, ϕLF � 0°.
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laws can enforce the LOS tracking errors to zero before interception

using the same gains listed in Table 2. However, the NDI-SMC and

NDI-TVSMC guidance laws cannot achieve the desired LOS angles

because the increased target maneuvers lead to higher perturbations

that are greater than the gains listed in Table 2. By equally increasing

the gains βv and β to 30 and 45, the results for theNDI-SMCandNDI-

TVSMC guidance laws are presented in Fig. 15. Compared with the

results by NDI-SMC and NDI-TVSMC guidance laws in Fig. 14, the

°
m

s

Fig. 10 Gains tuning for NDI-SMC and INDI-SMC against the constant moving target under θLF � 0°, ϕLF � 0°.

Fig. 11 Three-dimensional trajectories against the maneuvering target
under AzT � 5 cos�0.3t�, AyT � 5 sin�0.3t�.

° m
s

Fig. 12 Guidance performance against the maneuvering target under AzT � 5 cos�0.3t�, AyT � 5 sin�0.3t�.

Fig. 13 Three-dimensional trajectories against the maneuvering target
under AzT � 30 cos�0.3t�, AyT � 30 sin�0.3t�.
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terminal LOS angle errors become smaller with higher gains of βv, β.

Although the desired LOS angles are achieved by βv � β � 45,
undesirable chattering is induced, as can be seen from Fig. 15.

To show the guidance feasibility under discontinuous target

maneuvers that do not satisfy Assumption 2, the target lateral accel-

erations are assumed to change abruptly every 15 s with the profiles

shown in Fig. 16. The 3D trajectories and guidance performance are

shown in Figs. 17 and 18. All the guidance laws can successfully

intercept the target. Themissile under INDI-SMCand INDI-TVSMC

can meet the expected LOS angles before collision using the gains

in Table 2. However, the NDI-SMC and NDI-TVSMC guidance

laws cannot achieve the desired LOS angles because the selected

gains β � βv � 15 cannot cancel the resulting perturbations. By

increasing the gains βv and β to 30, the NDI-SMC and NDI-TVSMC

guidance performances are presented in Fig. 19. Compared with the

results under NDI-SMC and NDI-TVSMC with β � βv � 15, zero
LOS tracking errors are achieved. However, similar to the results in

Fig. 15, undesirable chattering occurs in guidance commands.

C. Monte Carlo Simulations Under Uncertain Conditions

In this subsection, the dispersions in the missile’s initial flight path
angles and initial positions are assumed to follow normal distribu-

tions with zero means, and standard deviations of 1 deg and 500 m,

respectively. Moreover, a standard deviation of 10 N is assumed for

the thrust uncertainty, 1 deg for the LOS angle measurement noise,

°

Fig. 14 Guidance performance against the maneuvering target under AzT � 30 cos�0.3t�, AyT � 30 sin�0.3t�.

Fig. 15 Results for NDI-SMC and NDI-TVSMC under AzT � 30 cos�0.3t�, AyT � 30 sin�0.3t� with higher gains.

Fig. 16 Discontinuous target maneuver profiles.

Fig. 17 Three-dimensional trajectories against discontinuous target
maneuvers.
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10 m∕s for the relativevelocitymeasurement noise, and 100m for the

relative range measurement noise. In addition, because the sensor-

based guidance methods require the LOS angular acceleration, a

standard deviation of 0.02 rad∕s2 is assumed for the LOS angular

acceleration measurement noise for INDI-SMC and INDI-TVSMC

guidance laws.

By employing the above settings and the guidance parameters in

Table 2, 500 Monte Carlo runs are performed for each guidance law

against the maneuvering target with the constraint θLF � −30°,
ϕLF � 30°. The distributions of the miss distance and terminal

LOS angle errors under AzT � 5 cos�0.3t�, AyT � 5 sin�0.3t� are

presented in Figs. 20–22. It can be seen from Fig. 20 that all the

guidance laws are capable of intercepting the target with the miss

distance less than 1 m. In Fig. 21, it can be observed that different

distribution results are obtained by different guidance laws. Specifi-

cally, more than 90% of the θL errors are smaller than 0.05 deg under

m
s

°
s

°

Fig. 18 Guidance performance against discontinuous target maneuvers under θLF � −30°, ϕLF � 30°.

°

Fig. 19 Results for NDI-SMC and NDI-TVSMC against discontinuous target maneuvers with higher gains.

Fig. 20 Miss distance distribution under AzT � 5 cos�0.3t�, AyT � 5 sin�0.3t� and θLF � −30°, ϕLF � 30°.
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the INDI-SMC and INDI-TVSMC guidance laws. However, all the

θL errors under the NDI-SMC and NDI-TVSMC guidance laws are

around 1.4 and 1 deg, respectively. It can be observed from Fig. 22

that most ϕL errors are smaller than 0.05 deg under the INDI-SMC

and INDI-TVSMC. TheϕL errors caused by theNDI-SMC andNDI-

TVSMCguidance laws are smaller than 0.4 and 0.2 deg, respectively.

In addition, the mean values and standard deviations for the miss

distance, terminal LOS angle errors, and terminal LOS rates are listed

in Table 3. Note that all themeanvalues and standard deviations are in

acceptable ranges. The terminal LOS rates are around zero, and the

mean terminal LOS angle errors by the INDI-SMC and INDI-

TVSMC guidance laws are smaller than that by the NDI-SMC and

NDI-TVSMC guidance laws.

In addition, the Monte Carlo results under AzT � 30 cos�0.3t�,
AyT � 30 sin�0.3t� are presented in Figs. 23–25. Figure 23 shows

that all the guidance laws are capable of intercepting the target with

° ° ° °

Fig. 21 Distribution of θL errors under AzT � 5 cos�0.3t�, AyT � 5 sin�0.3t� and θLF � −30°, ϕLF � 30°.

° ° ° °

Fig. 22 Distribution of ϕL errors under AzT � 5 cos�0.3t�, AyT � 5 sin�0.3t� and θLF � −30°, ϕLF � 30°.

Table 3 Statistic results of the Monte Carlo simulations under AzT � 5 cos�0.3t�,
AyT � 5 sin�0.3t�

Guidance law Data type rf , m θL errors, deg ϕL errors, deg _θLf , deg∕s _ϕLf, deg∕s

NDI-SMC Mean 0.8073 1.3994 0.1414 0.0721 0.3543
Standard deviation 0.1042 0.0311 0.0880 0.2011 0.6328

NDI-TVSMC Mean 0.8253 1.0165 0.0574 0.0306 0.1542
Standard deviation 0.0992 0.0157 0.0398 0.4665 0.5940

INDI-SMC Mean 0.8085 0.0159 0.0158 −0.0683 −0.0108

Standard deviation 0.1106 0.0129 0.0121 0.3708 0.5438
INDI-TVSMC Mean 0.8190 0.0188 0.0088 −0.0675 0.0633

Standard deviation 0.1058 0.0156 0.0027 0.0335 0.4970

Fig. 23 Miss distance distribution under AzT � 30 cos�0.3t�, AyT � 30 sin�0.3t� and θLF � −30°, ϕLF � 30°.
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the miss distance less than 1 m. In Figs. 24 and 25, it can be observed
that the θL errors and ϕL errors under INDI-SMC and INDI-TVSMC
guidance laws are similar to the Monte Carlo results with AzT �
5 cos�0.3t�, AyT � 5 sin�0.3t�. However, all the θL errors under the

NDI-SMC andNDI-TVSMCguidance laws are around 12 and 4 deg,
respectively. Meanwhile, most ϕL errors range from 0 to 5 deg and 0
to 1.6 degunder theNDI-SMCandNDI-TVSMCguidance laws. The
mean values and standard deviations for the miss distance, terminal
LOS angle errors, and terminal LOS rates are listed in Table 4. The
terminal LOS rates under the NDI-SMC guidance law are relatively
larger than the others. Moreover, the mean values of θL errors are not
acceptable under the NDI-SMC and NDI-TVSMC guidance laws,
whereas small errors are created by the INDI-SMC and INDI-
TVSMC guidance laws.

V. Conclusions

The 3Dguidance problem formissiles againstmaneuvering targets
is addressed in this paper, considering coupling effects and terminal
LOS angle constraint. The unbounded perturbation near collision
caused by target maneuvers is avoided by constructing a sliding
variable based on the LOS error dynamics. Two guidance laws using

NDI-SMC and NDI-TVSMC are derived and extended to sensor-
based INDI-SMC and INDI-TVSMC guidance laws. The guidance
robustness is improved with reduced upper bound of the system
perturbation by exploiting the sensor-based guidance laws. The
NDI-TVSMC and INDI-TVSMC guidance laws can accelerate the
convergence of the LOS tracking errors and avoid large initial sliding
variables, as compared with the NDI-SMC and INDI-SMC guidance
laws. Compared with the NDI-SMC and NDI-TVSMC guidance
laws, the INDI-SMC and INDI-TVSMC guidance laws require
smaller gains for perturbation cancellation under the same system
uncertainties and target maneuvers. Simulations show that the NDI-
SMC and NDI-TVSMC guidance laws are not feasible against larger
target maneuvers. The INDI-SMC can achieve most guidance mis-
sions, whereas it is not applicable in handling large initial LOS
tracking errors. In contrast, the INDI-TVSMCguidance law achieves
all the guidance missions without changing gains in various scenar-
ios. Monte Carlo simulations show that the INDI-SMC and
INDI-TVSMC guidance laws can achieve more accurate guidance
objectives comparedwith theNDI-SMC andNDI-TVSMCguidance
laws. Although the large perturbations can be rejected by NDI-SMC
and NDI-TVSMC with higher gains, undesirable chattering is
introduced.

Fig. 25 Distribution of ϕL errors under AzT � 30 cos�0.3t�, AyT � 30 sin�0.3t� and θLF � −30°, ϕLF � 30°.

Table 4 Statistic results of the Monte Carlo simulations under AzT � 30 cos�0.3t�,
AyT � 30 sin�0.3t�

Guidance law Data type rf , m θL errors, deg ϕL errors, deg _θLf , deg∕s _ϕLf, deg∕s

NDI-SMC Mean 0.8209 11.6946 1.8514 3.0026 6.2626
Standard deviation 0.1092 0.7677 1.2455 1.0152 0.6307

NDI-TVSMC Mean 0.8121 3.6756 0.5172 0.2553 0.9313
Standard deviation 0.1105 0.1419 0.3629 0.1758 0.2851

INDI-SMC Mean 0.7977 0.0160 0.0163 −0.0696 −0.0855

Standard deviation 0.1179 0.0129 0.0116 0.8163 0.6906
INDI-TVSMC Mean 0.7998 0.0147 0.0113 −0.0650 0.0891

Standard deviation 0.1176 0.0114 0.0088 0.2540 0.4460

Fig. 24 Distribution of θL errors under AzT � 30 cos�0.3t�, AyT � 30 sin�0.3t� and θLF � −30°, ϕLF � 30°.
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