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Spatio-temporal modelling of solar photovoltaic adoption: An integrated 
neural networks and agent-based modelling approach 
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H I G H L I G H T S  

• Integrated agent-based and artificial neural networks model for solar PV adoption. 
• The agents’ adoption process is characterised using past experiences. 
• Spatio-temporally explicit estimations for up to five months with accuracy of 80%. 
• Integrated ABM and ANN model has adaptive capabilities over other diffusion models. 
• Income, electricity usage and average household size variables yield best results.  
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A B S T R A C T   

This paper investigates the spatio-temporal patterns of solar photovoltaic (PV) adoption, solving the ongoing 
need to inform the management of the distribution networks with spatially explicit estimations of PV adoption 
rates. This work addresses a key limitation of agent-based models (ABMs) that use rule or equation-based de-
cision-making. It achieves this by adopting an aggregated definition of the agents using artificial neural networks 
(ANN) as the criteria for decision-making. This novel approachdraws from both ABM and Spatial Regression 
methods. It incorporates spatial and temporal dependencies as well as social dynamics that drive the adoption of 
PVs. Consequently, the model yields a more realistic characterisation of decision-making whilst reflecting in-
dividual behaviours for each location following the real-world layout. The model utilises the ANN’s approxi-
mation capabilities to generate knowledge from historical PV data, as well as adapt to changes in data trends. 
First, an autoregressive model is developed. This is then extended to capture the population heterogeneity by 
introducing socioeconomic variables into the agent’s decision-making. Both models are empirically validated 
and benchmarked against the Bass Model. 

Results suggest that the model can account for the spatio-temporal and social dynamics that drive the adoption 
process and that the ABM and ANN integrated model has superior adaptive capabilities to the Bass model. The 
proposed model can estimate spatio-temporally explicit forecasts for up to five months with an accuracy of 80%. 
In line with the literature, results suggest that income, electricity consumption and the average household size 
variables yield the best results.   

1. Introduction 

A growing number of authors point out that adoption patterns 
modelled for domestic solar photovoltaic (PV) panels present spatial 
regularities [1–3]. High geographical concentrations of these inaccura-
cies have potential to cause problems on low voltage lines by creating 
reverse flows and diminishing the predictability of load, voltage and 
demand flows [1,4]. This modelling process shapes the evolution and 

characteristics of the energy system [5], as network reinforcements are 
required to accommodate the extra PV generation [6,7] as well as 
control systems to ensure stability in the voltage [8,9]. 

Because of the need to predict where these technologies will appear 
and at what pace they will evolve, the development of tools and methods 
that account for spatial regularities is relevant for management of dis-
tribution networks [1,10]. Yet, the diffusion of PVs is highly uncertain as 
their adoption is driven by subjective factors such as perceived 
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affordability [11], social influences from other individuals and one’s 
neighbourhoods [1,12], or personal beliefs [13]. The adoption process is 
also affected by objective factors like income [2,14,15], energy costs 
[3,14], or available policies [16]. Current approaches to analyse the 
adoption of PVs fall into two broad categories. Agent-based modelling 
(ABM) which characterises the individual decision-making of whether 
or not to adopt such technologies as a result of the social interaction of 
the agents [17–21]. Alternatively, spatial regression1 (SR) methods 
seeks to understand the effect of different factors that drive the adoption 
process, whilst considering the associated spatial regularities in the 
adoption patterns [1–3,15,22,23]. 

Whilst the ABM approach has been widely applied to the diffusion of 
innovation [24–26] and more specifically to PV adoption [27–32], this 
approach presents a some limitations. Firstly as ABMs focus on system- 
level outcomes, they don’t consider the spatial location of the agents 
except for [28,29]. Nevertheless, these authors note that when inte-
grating a measure of spatial regularities to the ABMs models tend to 
perform significantly worse [28], i.e. this phenomenon is not analysed 
for solar PVs. Secondly, the decision-making process in ABMs commonly 
assumes that agents have access to perfect market information and can 
evaluate the benefit of their decisions [17,33–35]. It is these challenges 
associated with undertaking such complicated calculations that led 
Noori and Tatari [36] to propose considering alternative and more 
realistic behavioural models by including other characteristics of human 
decision-making, namely artificial neural networks (ANN). ANN recog-
nises that decision-making is driven by experience and perception rather 
than evaluations, as informed by the bounded rationality theory 
[28,37–40]. While a few studies present how ANNs can address the 
limitations of the decision-making process in ABMs, these are either 

theoretical [41] or don’t fully utilise their capabilities [42]. Thirdly, as 
ABMs don’t capture actual timescales they present limitations in char-
acterising the dynamic evolution of agent properties as the preference’s 
parameters are fixed [25,37]. 

The main novelty of this study lies in integrating ANN and ABM 
approaches to predict future spatially explicit domestic PV adoption 
patterns for the UK. This is relevant for the network operators as PVs 
have the potential to diminish predictability of loads, voltage and de-
mand flows [6,43,44]. Therefore, this paper addresses the following 
research question: 

It is possible to explicitly characterise the spatio-temporal dynamics of the 
decision-making towards PVs, whilst including the social dynamics? 

The analysis draws from three strands of research, ABM, SR and ANN 
(Fig. 1) and follows bounded rationality theory to attempt to answer this 
question, whilst addressing some of the ABM’s limitations. An integrated 
model is developed, implemented and validated using Birmingham as a 
case study. In this context, the bounded rationality theory argues that a 
group of individuals with similar socioeconomic characteristics and 
common interests can be characterised as singular decision-making 
units [38,45]. Using actual PV installation data from 2011, the model 
is used to predict domestic PV uptake at the monthly level for postcode 
districts in the city of Birmingham. 

In the integrated ABM and ANN model, the autonomous decision- 
making of the agents, i.e. geographical areas, is informed by their own 
past decisions as well as the choices of their neighbouring agents. The 
results highlight three features (i) that the ABM and ANN integrated 
model has superior adaptive capabilities over other diffusion models, (ii) 
the model yields spatio-temporally explicit forecasts of up to five months 
with an accuracy of 80%, and (iii) that best results are achieved when 
including the income, electricity consumption and average household 
size variables. 

Fig. 1. Conceptual framework to develop an integrated AB and ANN model.  

1 The spatial regression will be referred as SR from now on. 
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In the paper as follows: Section 2 presents an overview of the solar 
PV ABM models characterising the spatio-temporal dynamics of the PV 
adoption available in the literature. Section 3 describes the methodology 
to integrate ABM and ANN. Section 4 presents the results from the model 
simulations, which are then discussed in Section 5 with the conclusions 
presented in Section 6. 

2. Overview of domestic solar PV modelling 

ABM is one of the most commonly applied techniques used to analyse 
social-technical systems as it allows modelling of the entire system by 
characterising the role of individual actors that comprise the system 
[25,32]. ABM simulates the interaction of these actors through physical 
and social networks which cumulatively result in system-level outcomes 
[16,17,32]. Nevertheless, ABM faces limitations because the decision- 

making process assumes that agents decide by assessing financial ben-
efits from a set of alternatives, and that social utility is based on personal 
and social norms. However, social utility is subjective and consumers 
rarely possess perfect information of the whole range of alternatives to 
make economic comparisons. To address these uncertainties, some au-
thors such as Al-Alawi & Bradley [46] have run sensitivity analyses on 
market conditions. 

Additionally, some scholars have pointed to the need for alternative 
decision-making methods that consider elements from human cognition 
[36]. Kang and Choi [41] propose an integrated theoretical ABM and 
ANN model as an alternative to the decision-making process. The ANN 
model emulates how the human brain generates information by asso-
ciating experience, i.e. historical data, and the associated decision, the 
output. The experience-based knowledge generated reduces uncertainty 
as the model can adapt to new conditions that are not available during 

Theoretical ABM + ANN 

[41] 

Spatio-temporally 

explicit integrated  

ABM and ANN 

Integrated ANN + Bass 

[42] 

Fig. 2. Comparison of implementation of ABM and ANN integrated models.  

Fig. 3. Spatio-temporal assessment of ABM, SR and ANN models on PV adoption (analysed studies are: ABM - [29,32,50–54]; SR - [1,2,22,55–57]; ANN - [42,60]).  
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the training. Kang and Choi’s [41] model optimises the combination of 
each individual’s decision which is chosen from a set of possible de-
cisions within simulated scenarios. This approach uses the ANN to 
optimise strategies that agents execute, i.e. evaluating the global fitness 
of the model to solve a specific problem. However, this decision-making 
is not completed by the ANN but chosen from a list of possible actions. 
Then, through the training process the ANN learns which combination of 
actions produces the best model fitness and communicates that to the 
agents. In this sense, the ANN interacts with the agents in a hierarchical 
way which is a contradiction to the ABM philosophy as agents are not 
autonomous [32] and the system cannot be controlled in its entirety 
[17]. 

Fig. 2 shows the proposed model (middle) using ANN for both the 
decision-making and estimation of the adoption rates. The ANN directly 
substitutes the rule-based adoption criteria by generating knowledge 
from the time-series and at the same time estimating future rates of 
adoption. As informed by bounded rationality [28,37,38], agents rely on 
experience and perception more than from complicated calculations, i.e. 
equation-based decision-making. This way we show how experienced- 
based ANNs’ approach to knowledge can be applied to the decision- 
making of the ABMs whilst ensuring the agents’ autonomy [47–49]. 
Moreover, this is expected to provide a more realistic characterisation of 
the adoption process, whilst providing an explicit time horizon for the 
decision-making (see Fig. 2). 

Here we consider those ABM, SR and ANN models that have been 
developed to incorporate spatio-temporal patterns of PV adoption. In 
turn, the extent to which these models characterise the spatial and 
temporal dynamics of the adoption process and the corresponding 
models’ fitness (if provided as the size of each bubble2) are considered. 
The assessment of related ABM [29,32,50–54], SR [1,2,22,55–57] and 
ANN [42,58] studies used to capture spatial or temporal aspects of solar 
PV adoption is displayed on a 5-point scale in Fig. 3. The value of 1 is 
used to show that either the spatial or temporal element is disregarded 
while a ranking of 5 reveals that this element and its regularities are 
characterised explicitly (see Table 1 for details). For instance, Schwarz 
and Ernst’s ABM model [51] uses a previous survey to simulate the 
location of each agent, but does not consider spatial dependence; 
yielding a score of 3. The authors then use explicit periods for the sim-
ulations. Here, temporal dependence is not included in the adoption 
process, resulting in a score of 4 for temporal dependence. In general, 
the SR tends to oversee the time variable and thus have marginal fitness. 
On the other hand, the ABM approaches have limitations to represent 
the heterogeneity of the populations, mainly because of data availabil-
ity, as mentioned in [53,59]). This also incurs limitations in representing 
the actual spatial distribution of the agents. However, these ABM studies 
can incorporate time as a variable and thus they exhibit greater fitness 
than the SR. An exception to this is the ABMs without a defined time 
horizon. These are more explorative studies than actual forecasting 
methods, therefore lack a fitness indicator. Furthermore, these ABMs do 
not consider the evolution of the agents’ characteristics nor spatial de-
pendency. Furthermore, it is noted that when integrating a measure of 

spatial regularities to the ABMs, models tend to perform significantly 
worse [28]. Despite these two models informing the potential of ANN to 
achieve integration of ABM and ANN [41,42], decision-making within 
these studies is still not fully characterised by the ANN. 

The adoption of PVs is studied via ABM in a German context by Krebs 
[54] where an empirical model is used to characterise interactions be-
tween households. The author classifies the agent’s behaviour based on 
socioeconomic classifications and simulates scenarios under different 
assumptions of ecological utility, i.e. ecological concern. This ABM 
characterises agents using continuous uniform distribution based on 
empirical data and type of lifestyle segmentations; both taken from 
previous surveys. The SR analyses the effect of socioeconomic variables 
on the adoption of PVs, whilst considering spatial regularities in these 
adoption patterns. Some of the recent studies include a study in the UK 
where Balta-Ozkanet al. [1] develop a spatial econometric method to 
predict spatial characteristics of the factors that affect the diffusion of 
PV. The authors point out the relevance of locally produced insights for 
policy making and make use of socioeconomic data defined in close 
geographical detail. For completeness, two ANN models that combine 
the use of cellular automata and the Bass model are also included. These 
models identify and classify the saturation of PV in each area using 
historical data and then estimate future levels of adoption using an S- 
curve which is discussed in Section 3.3 in more detail. 

In SR studies, the cumulative number of PVs is used as the dependent 
variable. Most authors apply the total number of PVs, except for 
[2,10,57], who acknowledge the disparity in locations’ size and popu-
lation density. Langheim [2] normalises the number of PV installations 
in Southern California by considering the number of single-family 
buildings. Here the market size at each location is incorporated in the 
model. Schaffer and Brun [57] acknowledge the variation in size of lo-
cations by calculating the total PV systems divided by the location’s 
area. The authors here use selected socioeconomic variables for the 
German population including solar radiation, house density, home-
ownership ratio, Gross Regional Product per capita. In Section 3.2, the 
spatial and temporal resolution and socioeconomic variable selection 
are discussed3. 

Here the authors argue that the characterisation of agents and their 
decision-making in ABM models is a focus where key contributions can 
be made. The ABM models in current research characterise agents as 
individuals [27–29,32] or households [61,62], considering only the 
consumer to consumer interactions, and disregarding the merchandising 
activity and the seller-consumer interaction. Modellers commonly use 
georeferenced data (and geographical information systems) to create a 
world-like layout and locate the agents. The number of agents varies 
from a small proportion of the population to entire populations. For 
instance, Adepetu and Keshav [32] create a semi-empirical population 
that is assigned with real socioeconomic characteristics of 100 house-
holds, yet it is not clear whether the sample is statistically significant for 
the total population in Ontario. Instead, Rai and Robinson [27], Rob-
inson and Rai [28], and Robinson et al. [29] model the total households 
from Austin (Texas, US), using data from the census. They then differ-
entiate adopters from non-adopters, applying the findings from a pre-
vious survey carried out for PV adopters. 

An alternative approach combines current survey data with other 
methods or software to create a virtual population. Survey data has been 
used to characterise significant samples of the population, which is then 
simulated as many times as needed to capture the actual population size 
[14,50,52]. Similarly, Cui et al. [61] generate a virtual population of 
households based on actual aggregated data. By applying the copula- 
based household synthesiser4, they generate an individual virtual 

Table 1 
The criteria to assess the strengths and weaknesses of the reviewed studies.  

Score Description 

1 The model disregards this modelling element. 
2 The authors have implemented a proxy for this element (i.e. replicating the 

same analysis for different periods or locations) 
3 The model can characterise this element explicitly but uses simulated or 

semi-empirical data to implement it. 
4 The model can characterise this element explicitly but disregards its 

regularities (i.e. explicit location and spatial dependence). 
5 The model can characterise this element explicitly and its regularities.  

2 In cases the fitness isn’t provided explicitly, it’s set to 40% by default. 

3 For a recent review of SR studies, the interested readers may wish to see 
[90]. 

4 This method simulates households using local distributions (i.e. the statis-
tics of each census block), which allows to keep empirical correlations. 
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household population with similar characteristics (with intra-group 
variance), resulting in the simulation of 190,965 agents. Eppstein 
et al. [62] create a full virtual population of households. First, they 
generate a virtual distribution of income, considering five hypothetical 
cities. Drawing from previous experimentations showing no significant 
differences between simulations with 1,000 or 10,000 agents, the au-
thors use 1,000 in the interest of computational efficiency. These agents 
are created using the turning bands method. The location of the agents is 
fully related to the agents’ characterisation, yet empirical or semi- 
empirical characterisation may imply a simulated location. Hence, the 
actual location may differ from the simulation and may involve a loss in 
data accuracy [14]. Although ’the agents’ location needs to be accurate, 
it is a challenging task to obtain the personal characteristics of the entire 
population [61]. 

Commonly ABMs use rational choice principles where one assumes 
that agents have access to perfect market information and can evaluate 
the benefit of their decisions. However, this is rather limiting as some of 
the drivers such as peer-effect or personal beliefs have subjective value, 
and individuals rarely possess perfect market information [17,33–35]. 
Authors then use a utility or social threshold to characterise their 
decision-making process [62,63]. Such utility thresholds consider 
exogenous and objective elements to the agents, e.g. electricity prices or 
government subsidies and this is usually associated with the financial 
benefits of adopting a certain technology. On the other hand, the social 
threshold reflects subjective elements such as the agents’ personal be-
liefs, values, and therefore reflects how adopting a certain technology 
satisfies the interpersonal preferences of the individual. 

Agents’ decision-making process are commonly defined by a single 
criterion [14,16,32,61,63]. Yet some studies employ a multi-step pro-
cess, including Eppstein et al. [62]. These characterise agents with an 
equation to calculate the relative cost of, for example buying a new 
vehicle amongst a set of options. They consider the purchase cost, 
financing, fuel and electricity cost. The agent then compares this cost 
with net annual income. If the sum of these costs exceeds 20% of the 
annual income, this is considered unaffordable. However, if the vehicle 
is affordable the agent then considers the social benefits. The agent then 

calculates the perceived social benefit of each vehicle; if these benefits 
exceed the social threshold, the agent adopts that specific option. Others 
such as Robinson et al. [28,29] model the decision-making process using 
both social and utility thresholds. Financial benefits are calculated based 
on the financial payback, considering the energy produced by the solar 
panel, the price per kWh generated, and the government subsidies. In 
this context, social threshold is related to the attitudinal variables which 
change according to the social network effect. 

Regardless of the type of threshold used to characterise the decision- 
making process most ABM studies implement the interaction among 
agents. These interactions can be described in two ways, the peer-effect 
and the social norms. The former refers to the direct influence of the 
social network in the decisions (perception). The latter comprises the 
impact of collective behaviour on the agent’s decision-making. The 
agent’s social network may be characterised using different approaches, 
for instance, defining a spatial neighbourhood or choosing between 
those agents with similar characteristics. Eppstein et al. [62] define the 
agent’s social network as the k nearest neighbourhood (starting with k 
= 2) and generate random social networks. Similarly, Adepetu, Keshav 
and Arya [14] and Schwarz and Ernst [51] define spatial proximity and 
connect the agents with similar socioeconomic characteristics. Robinson 
and Rai [28] combine the distance-based and agents similarity criteria 
with a random connection so that agents are connected with other 
agents anywhere in the area. Exceptionally, Cui et al. [61] do not pro-
vide detail on the agents’ social network structure. Alternatively, the 
social norm has been modelled by considering the adoption rate of the 
total population as a proxy for the social effect [16,32,63]. Similarly, 
Eppstein et al. [62] use the media coverage in an area as an indication of 
the environmental awareness which increases over time, whilst Rob-
inson and Rai [28] implement the perception of the technology as a 
measurement of social awareness of the social norm. 

Regarding the ANN studies, Zhao et al. [42] and Liu et al. [58] use 
the ANN only as decision-making, whilst the estimation of adoption 
rates is done using the Bass model. In this study, the neural network 
model is trained to memorise the socioeconomic characteristics of the 
areas with PVs, and then identify when a location reaches these 

Fig. 4. 2-phase methodology for the implementation of an integrated spatio-temporally explicit ABM and ANN model.  
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characteristics. The areas in this model are uniformly defined grid cells. 
Real-world layout and impacts of areas on each other are disregarded. 
The forecasting process calculates the total amount of PV in each region 
using an S-curve, which shows the historical growth of the PV in the 
entire population. The assignment of local values from regional char-
acteristics does not allow the model to consider local regularities. 

The social dynamics that drive the adoption process also present 
spatial regularities. Namely, these social dynamics include the peer- 
effect and social norms and capturing the influence that one individ-
ual has on another or the influence of the overall society’s trend, 
respectively. Despite the limitations of the ABM to implement the spatial 
dependence, some authors have defined the agent’s social network using 
the distance between agents as criteria to connect two agents [51,62]. 
However, whether the distance between agents reinforces or decreases 

the social effects has not yet been tested. 
In contract, the SR allows explicit characterisation of the spatial 

layout of the diffusion process. Despite this, these approaches tend to 
overlook the temporal dimension of the adoption process. In spatial 
regression, the so-called spillover effect captures the information flow 
between or within specific locations [1,12,22]. This effect is imple-
mented in different means, for instance, Balta-Ozkan et al. [1] charac-
terise this as the influence of one area over the adjacent locations. 
Conversely, Richter [12] defines this as the transmission of information 
between individuals in the same area. Like the ABM, areas are influ-
enced by those in their social network, despite this social network being 
based on geographical elements. Spatial regression models identify this 
relationship in two ways: adjacency and distance. In the former, this 
influence has the same magnitude for all areas that share a border, 
whilst disregarding the influence of areas that are not adjacent [64]. The 
distance-based approach disregards the adjacency and assumes that the 
social influence decreases with the distance such that the influence of 
one area over another will have a greater impact the closer they are. 
Thus, this research argues that the spill-over effect as a representation of 
spatial dependence can be homologous to the social influence of the 
ABMs. 

Step-by-step development of an ABM model that implements the 
spatio-temporal and social dynamics of the adoption process is 
explained in the following section. 

3. Methodology 

Here the authors propose an integrated agent-based modelling and 
artificial neural networks to characterise the spatio-temporal adoption 
patterns of PVs. As illustrated in Fig. 4, the analysis is performed in four 
stages. Because of the complexity of constructing this new approach, the 
first step is to design an autoregressive model for the PV adoption pro-
cess. This stage focuses on defining the characterisation of agents’ and 
their decision-making, and showing how the model captures the 
different adoption factors and the general structure of the ANN. The 
second step includes data collection and processing, including spatial 
mapping and statistical exploratory data analysis. This stage defines the 
resolution of the data, i.e. the number of agents and time-steps in the 
simulation (total number of time series observations). The third and 
fourth steps comprise the implementation of the autoregressive and 
multivariable models and the analysis of the results after the training of 

Fig. 5. Conceptual model of a spatio-temporal explicit ABM.  

Fig. 6. Artificial neural network design for a spatio-temporal explicit ABM.  
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the ANN. Although both steps comprise the validation and presentation 
of their results, the multivariable model is only implemented once the 
autoregressive model has been validated. 

3.1. Model design 

Fig. 5 illustrates the configuration of the (i) spatial and (ii) temporal 
dependence, (iii) peer-effect, (iv) spill-over effect of a spatio-temporally 
explicit ABM and ANN approach. The agents are geographical areas 
(Areai) that represent the cumulative decision making of the individuals 
living in that area [12,38]. The model accounts only for the end-users 
interactions and ignores any activity done by the sellers/car retailers 
[1,12,32,55]. Eq. (3.1) abstracts the agents’ decision-making, which 
estimates the number of PVs considering these elements. Eq. (3.2) shows 
the extended characterisation which includes socioeconomic variables. 

PVt = f
(

LocalPVt− 1,
∑

d*NeighbouringPVt− 1

)
. (3.1)  

PVt = f
(

LocalPVt− 1,
∑

d*NeighbouringPVt− 1, Socioeconomict− 1

)
. (3.2)  

where PVt is the total number of PVs in a specific time, LocalPVt− 1 is an 
autoregressive element (peer-effect), NeighbouringPVt− 1 is the number 
of PVs in the adjacent areas (neighbourhood effect), d is the distance 
between the locations and weights the social effects (spatial depen-
dence), Socioeconomict− 1 is a set of independent variables, and the 
temporal dependence is denoted by lagging these inputs in t-1. 

3.1.1. Agents’ decision making 
Decision-making by the agent (Eqs. (3.1) and (3.2)) is characterised 

by an artificial neural network. ANNs are like linear (and non-linear) 
least squares regression, in the sense that both attempt to minimize 
the sum of squared errors. In this case, the fitting takes place through a 
training process, which consists of presenting pairs of inputs and out-
puts, calculating the error of estimation, and subsequently adjusting the 
ANNs’ weights. Fig. 6 shows the structure of the ANN used as the agents’ 
decision-making, linear and sequential structure, with three layers of 
neurons, the input, the hidden and the output layers. A linear structure 
with a single hidden layer has been proven to be sufficient to approach 
any nonlinear function [65] and used to forecast the PV generation 
[58,66]. 

The input layer (yellow) includes a node for each of the social effects 
for t-1; the hidden layer (green) comprises one neuron for each of the 
inputs, and the output (red) layer contains a single neuron to produce a 
single output. The multivariable characterisation increases the number 
of input neurons, which depends on the number of socioeconomic var-
iables selected. The neurons use an activation function, which is similar 
to the biological activation threshold [47,67,68]. No calculations are 
made at the input layer; then, because the model accounts for the de-
cision of whether to adopt or not (a binary decision), the hidden and 
output neurons the model implements the sigmoid function, and the 
learning rate is 0.1 [47,58,69]. The synaptic weights that connect the 

layers are randomly initialized with values between [0–1]. Additionally, 
the model includes bias nodes in the input and hidden layers [47,58,69]. 
These are nodes with a constant value of (1) and can be interpreted as 
the β0 in a Linear Regression; which is a constant term reflecting the 
intercept of the function. 

The training uses the Backpropagation algorithm, which is a two- 
phase process. During the forward phase, inputs from the training sub-
set are passed through the neural network to determine the output. Once 
an output has been estimated, an error of estimation is calculated against 
the expected value. Then, this error is propagated through the network 
in the backward phase, by adjusting the weights and minimizing the 
error of estimation. Once the whole training subset has been presented, 
the model validates the ANN’s estimations against the validation subset. 
If the ANN does not meet the stopping criteria, the process is repeated, 
presenting the whole training subset again. Commonly, the stopping 
criteria are related to the level of error; in other words, if the ANN can 
estimate the actual data at a certain accuracy level then the training is 
over. For a detailed mathematical description of the backpropagation 
see [47,69,70]. 

3.2. Data gathering: Spatial and temporal resolution and variable 
selection 

The analysis builds upon Balta-Ozkan et al.’s spatial-econometric 
model [1] for the diffusion of PVs in the UK. To identify the list of so-
cioeconomic variables that affect the adoption process [71], the 
econometric stepwise method is used to assess how each variable pre-
dicts the adoption rate. Table 2 shows the characteristics and data 
sources of the variables included Balta-Ozkan et al.’s model [1]. PV data 
is available in the Feed-in Tariff Installation Report published by the 
Office of Gas and Electricity Markets (Ofgem) quarterly, which contains 
the registration date (dd/mm/yyyy) of domestic PVs. Socioeconomic 
data is published by the Office of National Statistics, containing data 
such as income and homeownership which are available for 2001 and 
2011. Appendix A summarises the statistics of the potential explanatory 
variables, presenting min, max and range of values. The boxplots for the 
variables show that as more PCs are included, the statistics fluctuate. It is 
expected that the ANN adapts to a wide variety of data behaviour, 
improving the confidence in the model. 

Because the spatio-temporal resolution of some of these variables’ is 
not in the required resolution, the data is either aggregated or dis-
aggregated to produce monthly observations. Table 2 shows which 
treatment was given to the variables to meet the spatial resolution re-
quirements. The variables at Lower Layer Super Output Area (LSOA) or 
Medium Layer Super Output Area (MSOA) level were aggregated to PC 
level using Office of National Statistics reference lookup tables5. The 

Table 2 
List of independent socioeconomic variables and their resolution.  

Variable Spatial resolution* Temporal resolution Data points Data source Aggregation Disaggregation Temporal 

Spatial Temp. 

PV installations LSOA Daily 2011–15 OFGEM X X  
Weekly income MSOA Weekly 2013, 2015 ONS X X  
Population density PC Census 2001,2011 ONS   X 
% Owned household PC Census 2001,2011 ONS   X 
% Detached household PC Census 2001,2011 ONS   X 
Electricity consumption LSOA Annual 2001, 2011–15 ONS X  X 
Education level PC Census 2010,2015 ONS   X 
Average household size PC Census 2001,2011 ONS   X 
CO2 emissions proxy LSOA Annual 2001,2011 ONS x  X  

5 Office of National Statistics Source (accessed on 16/09/2020): https://ons. 
maps.arcgis.com/home/item.html?id=ef72efd6adf64b11a2228f7b3e95deea 
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only exception is the solar irradiation data because the changes in solar 
irradiation between one area to another, in this study scope, is negli-
gible6. A similar process is taken for the variables with higher temporal 
resolutions, these are aggregated on monthly basis. On the other hand, 
data for the variables that are available annually or included in the 
census are temporally disaggregated following the UK Office of National 
Statistics (ONS) methodologies for temporal disaggregation [72]. Tem-
poral disaggregation is a process that generates a time series at a higher 
frequency from data with a lower temporal resolution. Monthly gross 
domestic product (GDP) observations have been estimated from the 
annual time-series, by applying Fernandez’ technique and using the 
Index of Services7 [72]. Then, following the ONS methodology, monthly 
observations are estimated with the Fernandez algorithm. As this esti-
mation is at the national level, the Index of Services is replaced by an 
index of house pricing which has a high spatio-temporal resolution 
(monthly/LAD). 

3.2.1. Case study 
To illustrate and validate how this approach works in a real-world 

scenario, this analysis uses historical PV installation data for the City 
of Birmingham in England. The Feed-in Tariff Installation Report accounts 
for the geo-referenced8 database of all renewable energy installations 
such as anaerobic digestion, combined heat and power, hydro, wind, 
and solar photovoltaic. The analysis comprises data from Jan 2011 to 
Dec 2015, resulting in a total of 60 observations (months) for the 49 
postcodes districts (PCs) in Birmingham. 

Over this period the number of domestic PVs installed increased from 
N = 30 to 12,1489. Fig. 7 shows the range of values among the PCs, 

which have an average of 151 PVs. Despite most of the areas having a 
total number of PVs between 100 and 200, there are areas with extreme 
values (more than 400 and 0 PVs), resulting in a large variance in the 
data across the areas. It is expected that that given the individuality of 
the ANNs, the agents can adapt to the local variations, instead of fitting 
their behaviour to the overall data trend. The spatial distribution of PVs 
at PC resolution is shown in Fig. 8. As seen, there are a few areas with 
less than 50 PVs, most of which correspond to the city centre areas 
where the number of residential buildings is low. 

3.3. Model validation criteria 

The analysis assesses the model’s performance in space and time 
using the Mean Absolute Percentage Error (MAPE) [47], which mea-
sures the overall performance over a specific time horizon (Eq. (3.3)). 
This is a widely used measurement of error in a variety of areas such as 
energy usage/output forecasting [21,58,73,74], diffusion of technology 
[42,60], or financial forecasting [75,76]. Because the model comprises a 
population of agents, their individual performance is aggregated and 
weighted against the population size. The Individual and population’s 
MAPE’s definition is shown in Eqs. (3.3) and (3.4). 

MAPEj =
100%

n
∑n

i=1

⃒
⃒
⃒
⃒
PVt − P̂V t

PVt

⃒
⃒
⃒
⃒. (3.3)  

Population MAPE =
1
m

∑m

k=1
MAPEk. (3.4)  

where n is the time series size, PVt is the current number of PVs in the 
month t, P̂Vtis the estimation of the number of PVs in the month t, i is 
the specific month (among the time-series), and j is the specific postcode 
district. Then, for the Population MAPE, m is the population size, k is the 
specific area (among the 49 PCs). Additionally, the Bass model is used to 
calculate the saturation curves (s-curves) and benchmark to validate the 
ABM and ANN models. The Bass model is commonly used to model the 
adoption of innovation [46,77,78], assuming that these technologies are 
adopted by imitation or media-effect influence [46,79]. Al-Alawi and 
Bradley [46] and Heymann et al. [80] mention that the Bass model is the 
most extensively used approach for the adoption of innovation. Despite 
the academic community has extended the Bass model to capture the 
complexity of communication channels and trends of adoption of new 
products [81], the model does not consider the spatial dependence and 
have limited capabilities to account for the temporal dynamics of the 
adoption process [82]. The analysts estimate the market saturation s- 
curves using the same datasets as described in Appendix B; which 
summarises the methodology followed; the errors of estimation are 
calculated in the same way as those for the ANNs. 

3.4. Model implementation 

The simulations follow the four steps procedure shown in Fig. 9, 
which starts with the agents’ characterisation, creating an agent for each 
of the PCs in the Birmingham area; the pseudocode of this procedure is 
presented in Appendix C. The model uses boundary files (.shp) to define 
the shape of each area and to assign a georeference according to the 
population centroid. Each of these areas (agents) makes a query to the 
PV installation database, loading their time-series. Using the adjacency 
principle, the model associates neighbouring PCs and calculate the 
distance between their centroids. This is then used to calculate the spill- 
over effect. Afterwards, each of the agents is assigned with a neural 
network, which is initialised using random values. 

In the second step, the ANN is trained by presenting pairs of inputs 
and outputs to the neural network where knowledge is generated 
through the learning algorithm. Because the decision-making considers 
the actions of other agents, the algorithm must communicate each 

Fig. 7. Boxplot of the total PV installations in Birmingham.  

6 The distance between Birmingham and Edinburgh is ~394km, whilst the 
horizontal solar irradiance changes only by less than 10% [88]. Yet, the 
longitude of a cross section of Birmingham is around 30km.  

7 The Index of Services measures the quantity of output from all UK services 
industries, and accounts for more than three-quarters of the output approach to 
the measurement of Gross Domestic Product.  

8 Each registration is geo-referenced to a postcode, which can be later be 
associated with other spatial resolution, such as Local Authorities.  

9 Note that because of the low level of PV adoption before Jan 2011, this data 
was excluded from the analysis (Total PV < 3% before 2011; Average PV per PC 
< 4) 
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decision to the population. The information flows occur considering the 
social network of each agent and their distance. To reduce computation 
time during the training, instead of calculating the number of PVs in the 
surrounding areas, this number is calculated beforehand from the raw 
data and included in the database. Thus, the time-series for training 
comprises the total number of PVs in the adjacent areas which are 
weighted by the distance between the areas. The training validation is 
an internal process of this step and is independent of the overall model 
validation. In this case, if the ANN’s error meets the stopping condition 
(training error < 0.001), the training stops, otherwise the training 
continues. 

The forecast process takes place in steps three and four. First, each 
agent estimates their PV adoption rates, then they communicate these 
estimations to the agents in their social network. Because of the limited 
number of observations (N = 60), the time-series are divided into 90%, 
5%, 5% sets for the training, validation and forecast [47,67,68]. After 
optimising the ANN synaptic weights, the training and the validation 
subsets are merged, enlarging the training set (95–5%). Given the 
random element of the synaptic weights, the model runs the whole 
simulation 100 times, then, the results report the average behaviour of 
the model’s output. 

The model was implemented using the AnyLogic v7.3.2 software, 
Java programming language for the ANN module, Python 3.5 and Arc-
Map v10.4.1for the statistical tests. Algorithm 1, in Appendix E, shows 
the pseudocode for the step-by-step main procedure for the simulations. 

4. Results 

In this section, we present results from the autoregressive and 
multivariable ABM and ANN models in comparison to the Bass model 
where relevant. Firstly, the temporal results are presented to visualize 
their behaviour over time. Then, the spatial distribution of the results is 
presented either at the end of the training period or specific forecast 
periods. 

4.1. Presentation of results temporally 

Fig. 10 shows the PV adoption rates estimated by the autoregressive, 
multivariable and Bass models, together with the actual PV values. The 
differences in performance of these three approaches are clear during 

the mid-periods characterised by large deviations. The ANNs’ estima-
tions follow the actual PV installations closely most of the time, how-
ever, the ANNs are more likely to produce extreme values at the 
beginning of the training because the neural network has been fed with a 
small proportion of the time-series data [65,67,68,83]. The results re-
ported are the average of the 100 simulations. The randomness in the 
ANNs initialisation means that from the results, it is recognised that 
there could be a best and worst case scenario. Fig. D1 shows the average 
MAPE for the 100 simulations, as well as the best scenario and worst 
scenario. As seen, these last two follow the same patterns like the 
average, suggesting that even with the random element the training 
algorithm converges. 

At the end of the series the autoregressive ABM model produces 
significant larger estimations; at a rate of eight times higher than the 
multivariable model. On the other hand, the Bass model is closer to the 
actual data at the beginning and at the end of the time series, when the 
data has no deviations. However, the Bass estimations diverge from the 
actual values in the middle of the series, as this model has no adaptive 
capabilities. 

Among the three models, the multivariable ABM produces the esti-
mations closest to the actual behaviour. These results are yielded when 
the income, electricity consumption and average household size are 
included. This combination of variables increases the accuracy of esti-
mations to 95%. As expected, the addition of socioeconomic variables 
yield better results than the autoregressive model [47,84]. Similar to the 
SR, these added variables explain the variance of the dependent vari-
able. The variables included in the multivariable model are in line with 
those that have been proven to drive the adoption process in SR studies. 
For instance, income has been used both to define the agents’ utility or 
social threshold in ABM studies [14] and as a key variable determining 
the decision to adopt the PV technology in SR studies [1,7,85,86]. The 
electricity consumption variable reflects the concerns of households 
with high energy usage to become self-sufficient [1,7]. Average 
household size has a statistically significant negative impact on PV 
diffusion, as bigger families may have less cash flow for a PV installation 
[1,15,55]. Table F1 in Appendix F shows the stepwise process of variable 
selection, which in this case stops at the fourth step. 

To visualise the adaptation of the ANNs to the disturbances during 
the middle of the time-series, the analysis calculates the absolute mar-
ginal change of the MAPE over time and the average of those changes, 

Fig. 8. Spatial distribution of the PV installations in the Birmingham postcodes (Dec 2015) (All maps presented in this thesis are self-elaborated using the data stated 
in each of the chapters, using the ArcMap v10.4.1 software.). 
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using Eqs. (4.1) and (4.2): 

Absolute marginal changei = |MAPEi − MAPEi− 1|. (4.1)  

Average marginal change =
1
n

∑n

i=1
Absolute marginal changei. (4.2) 

Fig. 11 shows the distribution over time of the marginal changes that 
were higher than the average. The autoregressive residuals show three 
major disturbances or sharp changes in the agents’ behaviour. In 
contrast, the multivariable model presents only one major disturbance at 
the end of November 2011. The concentration of these changes suggests 
that some of the agents’ behaviour is not captured either by the autor-
egressive or multivariable models and that there might be other factors 
that are driving this shift. One hypothesis could be that these peaks 
might be linked to the changes in Feed-in Tarrif (FiT) rates which have 
been shown to play a significant impact on PV adoption [12,87–89]. 
Moreover, these disturbances are not present in all the PCs, thus, it can 

be argued that the effect of the FiTs rates may present spatial regular-
ities. This highlights the importance of considering local socioeconomic 
factors when designing new policies [90]. Fig. 12 shows the marginal 
changes in the total number of PVs for each PC from October to 
November 2011, one could argue that this reflects the local responses to 
the FiT. Building on this assumption, the spatial distribution of these 
marginal changes are shown in Fig. 12. As shown, the most responsive 
areas are those at the edges of the city, while PCs near the centre are less 
responsive. 

4.2. Presentation of results spatially 

Fig. 13 shows the distribution of the estimation errors for both ABM 
and Bass models, respectively. Here, the Bass model yields a more uni-
form distribution of the errors, with most of them between 11% and 
30%. On the other hand, the ANN estimations present a more random 

Fig. 9. A four-step process for the implementation of the model and simulations.  
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spatial distribution of the estimation errors, with most of them between 
1% and 10%. For the three models, the largest estimation errors are 
present in the city centre PCs (Fig. 13a, b, c). Since these PCs have a low 
density of residential buildings, they also have a low or null number of 
PVs. Because the MAPE calculation is sensitive to any minor change in 
small numbers, the relative under or overestimation in one unit will 
produce a larger error than in areas with a higher number of PVs. To 
assess the significance of the spatial patterns of the estimation errors, the 
results are analysed by considering the spatial regularities of the errors 
using the hot spot analysis [91,92]. 

Fig. 14 presents the maps for the hot spot analysis for the three 

estimations. In both cases, most of the areas present non-significant 
regularities except for the central PCs, meaning that the MAPE is 
mostly randomly distributed and that the model can capture most of the 
spatial dependence [92]. The clusters exhibited by the estimation errors 
correspond to the areas with low residential buildings, as mentioned 
before. 

4.3. Domestic PV adoption prediction 

Fig. 15 shows the five forecasted months of PV adoption across the 
integrated ABM and ANN and the Bass models. As seen, both ABMs 

Fig. 10. Cumulative adoption rates of PVs estimated by the ABM and the Bass model vs. actual data.  

Fig. 11. The temporal patterns of the marginal changes of the estimation errors over time – autoregressive and multivariable ABM and ANN models.  
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exhibit opposite behaviours: Firstly, the estimation errors of the autor-
egressive model quickly accumulate reaching levels higher than 70%. 
Because the forecast is completed dynamically after the training, each 
estimation considers also the estimation errors. Thus, the total number 
of PVs in a given period may accumulate errors from all estimations for 
the preceding periods. Yet, as expected, the multivariable model accu-
mulates the errors at a significantly lower rate. This is because the 

multivariable model reduces the error’s magnitude at the end of the 
training, i.e. having a 10% error at the end of the 5th period against 75% 
error accumulation of the autoregressive model. While the error levels of 
the Bass model present a more stable behaviour, they are greater than 
those for the multivariable one. As the Bass model disregards the tem-
poral dependency, its estimations are independent of each other and the 
errors do not accumulate. 

Fig. 12. Spatial distribution of the assumed impact of FiT on the adoption rates by November 2011.  

Fig. 13. Spatial distribution of the estimation’s error by the end of the training - a) ANN autoregressive, b) ANN multivariable, c) Bass model.  

Fig. 14. Hot spot analysis of the estimation’s error by the end of the training – d) ANN autoregressive e) ANN multivariable, f) Bass model.  
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Fig. 15. Estimation error for the forecasted periods - autoregressive model vs. multivariable.  

Fig. 16. Spatial distribution of the autoregressive ANN estimation’s error – (a) First, (b) Third and (c) Fifth forecasted period.  

Fig. 17. Spatial distribution of the multivariable ANN estimation’s error – g) First, h) Third and i) Fifth forecasted period.  

Fig. 18. Spatial distribution of the Bass model estimation’s error – d) First, e) Third and f) Fifth forecasted period.  
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The spatial distribution of the ANN’s estimations by PCs are shown in 
Fig. 16, Fig. 17 and Fig. 18. These follow the spatial distribution of 
Birmingham’s PCs. Fig. 15 shows the aggregated MAPE for the entire 
population. These figures show the individual MAPE for each area. To 
assist with visual comparison, only the MAPE for the 1st, 3rd and 5th 
forecasts are displayed, corresponding for August, October and 
December 2015. During the first month of the forecast, the autore-
gressive model produces an error of estimation below 10% for most of 
the areas. However, by the fifth forecast, the error almost doubles, 
resulting in almost 80% of the agents having more than 10% errors in 
estimations (see Fig. 16a, b and c). Thus, while the autoregressive model 
can capture the spatio-temporal nature of the PV adoption process, it is 
only able to produce short term forecasts. 

The multivariable model reaches an error level of below 10% for 
most of the areas, during the first forecast period. Then, by the fifth 
forecast, the error significantly increases where almost 30% of the areas 
having more than 10% of errors. Nevertheless, the accumulation of er-
rors over time reduces in comparison with the autoregressive model. 
These temporal results suggest that characterising the evolution of 
agents’ heterogeneity improves the model’s performance as they 
generate a lower MAPE. This suggests that the preferences of agents are 
dynamic and so is their decision-making. It could be argued that the PV 
autoregressive model disregards the evolution of the preferences and 
focuses only on the experiences and social dynamics, thus resulting in a 
larger accumulation of error. 

5. Discussion 

Despite ABMs’ strength in providing insights on emergent system 
behaviour, two main limitations are still outstanding: the use of rational 
choice-based decision-making [33–35] and synthetic characterisation of 
their temporal dynamics, rather than utilising actual time horizons. 
Then, the use of ANNs as a basis for decision-making could be consid-
ered to help address the limitations of ABM. First, the model substitutes 
rational choice-based decision-making, adopting an experience-based 
approach. The model assumes that the agents’ decision-making is 
driven by experience and perceptions [38–40] instead of complicated 
estimations about affordability [11], energy economics [16,62] or 
payback period [50,52,54], and rarely possessing perfect market infor-
mation [17,33–35]. Secondly, the use of ANN provides an actual time 
horizon for the adoption process to take place. Moreover, given the need 
to reflect the evolution of the agents’ preferences, the multivariable 
model updates the agents’ characteristics at each time step during the 
simulation. As expected, the multivariable characterisation of the 
decision-making process improves the model’s accuracy. 

These autoregressive models can estimate the monthly PV adoption 
rate upmost of three months, with an accuracy higher than 80%. The 
results show that the autoregressive models perform better than the Bass 
model especially for the months in the middle of the time series, those 
with most of the fluctuations in the number of PVs. The Bass model 
minimises the overall estimation error, meaning that estimations with 
high accuracy will offset the estimations with low accuracy. Then, on 
average the model minimises the estimation error but has limited ca-
pabilities to adapt to temporal changes in the data behaviour. 

The assumption within the autoregressive model is that the adoption 
process is driven by the experience and that exposure to PV technology is 
extended by including socioeconomic variables. Thus, multivariable 
models that integrates the income, household size and total electricity 
consumption variables improve the model performance from 90% to 
95%. The multivariable model slows down the accumulation of the 

estimation errors, forecasting up to five months with an accuracy higher 
than 90%. This could be because the decision-making does not only 
consider the experience with the PV technology or the social influences 
but is also driven by the socioeconomic characteristics of the individuals 
[11]. Here the results show that a relatively small improvement in the 
model’s performance leads to a lower accumulation of errors, suggesting 
that marginal changes in decision-making may result in more confident 
decision-making in the future. 

Because of the data-driven nature of ANN included in the agent’s 
decision-making, if the model is to include any data, for example the 
amount of apple consumption in a PC, it would be hard to explain the 
nature of the influence of such variables on the agents’ preferences. In 
this context, this paper builds on the insights of the SR to make sense of 
the electricity consumption variables being selected, reflecting that 
those households with a high energy usage tend to be concerned about 
being self-sufficient [1] and reduce their energy bills [3]. This suggests 
that besides improving the performance of the model, the multivariable 
model can also identify some of the contexts of the adoption process. 
However, both ABM and ANN models developed in this paper may not 
be self-sufficient to provide a sense of meaning to the selected variables 
without the assistance of more contextual studies. For instance, the SR 
can translate the selected variables and the value of their coefficient to 
provide insights about the impact of each variable. Moreover, because 
the initial list of variables corresponds to a single relevant study [1], one 
can argue that a different list of variables may result in a different 
configuration and insights produced by the model. 

The results presented in Section 4.1 suggest that the FiT incentive is 
more effective at the edges of the city than in the city centre. Therefore, 
it could be argued that a key difference is the density of residential 
buildings [1,55,57]. However, this variable was not selected during the 
step-wise process, whilst the multivariable model has already accounted 
for the effects of income, household size and total electricity con-
sumption, which could be indirectly related to the density of residential 
buildings. Additionally, one can argue that the results and variables 
selected may be exclusive to the area of Birmingham and surrounding 
local authorities. Therefore, future analysis may include other cities of 
the UK to investigate whether the same list of variables produces similar 
results. 

Drawing from the bounded rationality theory, an assumption within 
the model is that a group of individuals with similar socioeconomic 
characteristics make similar decisions. In which case, groups can be 
characterised as singular decision-making units. Then, this aggregated 
characterisation of agents allows the model to integrate the spatial 
dependence by weighting the spill-over effect against the distance be-
tween areas. Secondly, the peer-effect is captured by the influence that 
individuals within an area have over those in the same neighbourhood 
and thus reflects how individuals tend to associate with those of similar 
attitudes and values. 

Although the spatial accuracy of the model inputs is important [61] 
gathering this information for entire populations is a challenge. There-
fore, those ABMs that simulate data or use semi-empirical data, due to 
the high data-intensive needs, may present a loss in the spatial accuracy 
of results [14]. Alternatively, the ABM and ANN model defines agents as 
geographical areas, recognising that they have similar socioeconomic 
characteristics, common interests and presenting similar behaviours 
[38,45]. The use of spatially explicit data at the postcode district level 
allows the modelling of real-world layout, without excluding any loca-
tions. However, the aggregated characterisation is not without imper-
fections because of the aggregated nature of the data. There is 
potentially a loss of heterogeneity in the individuals’ own decision 
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choices in an area. The spatial resolution is driven by the data avail-
ability and temporal variability within it, highlighting a trade-off be-
tween these two elements. While higher spatial resolution improves 
spatial accuracy, this is at the expense of lower temporal variability in 
the adoption rates. Conversely, higher temporal resolution results in less 
data variability whilst the number of observations increase. 

In a general sense, this paper develops an empirical characterisation 
of the Kunz [38] model and improves the Bierkandt et al. [45] model 
through the introduction of learning into the model. Furthermore, in the 
attempt to answer our research question, this work demonstrates that it 
is possible to explicitly characterise the spatio-temporal dynamics of the 
PV adoption. Such aggregated characterisation of the ABM allows for: (i) 
including the spill-over effect, which can be a proxy of the spatial 
dependence if it is weighted against the distance between areas; and (ii) 
implementing the peer-effect as the influence of past adoption rates 
within the same area. 

5.1. Improving the agent’s decision-making characterisation 

The ABM and ANN model assumes that individuals with similar 
decision-making, attitudes and interests tend to spatially cluster [3], 
creating social networks [52] and that knowledge is generated through 
experience-based learning [38–40]. On the other hand, in conventional 
applications of ABMs, the agents are assigned with an adoption rule or 
adoption probability at the beginning of the simulation. Section 4.1 
shows that early stages of the training produce large errors, as the model 
is not fed with enough data. Therefore, it follows that the actual 
behaviour in a specific location could still be unknown to the modeller 
(early stages of adoption). Therefore, it is argued that assigning an 
adoption rule to areas in the early stages of adoption may increase 
uncertainty. 

Alternatively, the aggregated characterisation of the agents and the 
use of ANNs can allow the modelling of the entire population. Such an 
approach could disregard the specific individuals’ preferences, by 
generating knowledge over time. The modelling approach takes into 
consideration historical data, even for those areas with a low number of 
PVs. This can be seen in the error produced by the model output, as the 
performance of ANN increases as it is fed with more data and starts 
adapting to the changes in data behaviours, i.e. as individuals have 
experienced more situations [65,67,68,83]. Additionally, the aggre-
gated characterisation of the agents allows the ABM to provide a more 
realistic representation of the decision-making process. The characteri-
sation of agents as geographical areas allows integrating the ANN as 
their decision-making, reducing the need for more detailed data at the 
individual agent level [93]. Besides, adjusting the strength of the spill- 
over effect as a function of the distance between the areas reflects the 
spatial dependence of the PV adoption. Thus, the model accounts for 
both the influence between and within locations [12]. The model ag-
gregates the number of PVs registered by month, then in turn the social 
influence is defined by the number of PVs in the adjacent areas on 
monthly basis. 

6. Conclusion 

This paper explains the model design, then develops and empirically 
validates a novel spatio-temporal explicit agent-based model that in-
tegrates artificial neural networks into the agent’s decision-making. The 
model advances ABMs by characterising the spatio-temporal depen-
dence of the PV adoption process, whilst improving the agents’ decision- 
making procedure. This approach not only builds on prior ABM research 

but draws from disciplines such as SR. The use of spatially explicit data 
sets allows reflection of individual behaviours for each location and 
follows the real-world layout for the city of Birmingham. The model 
utilises the ANN’s capabilities to approximate historical PV data in the 
generation of knowledge and adapts to changes in data trends. There-
fore, the model is shown to reduce uncertainties in the agents’ decision- 
making. 

The paper also shows how capturing the evolution of the population 
heterogeneity improves the model’s predictive accuracy by introducing 
socioeconomic variables. In line with the literature, the results suggest 
that income is a key decision variable for households to adopt PV 
technology. Another important variable is electricity consumption 
indicating that households with high energy usage are more likely to 
adopt PVs due to potential concerns about being self-sufficient. The 
average household size variable captures the negative impact of PV 
ownership, as bigger families may have less cash flow for a PV instal-
lation. Although this multivariable characterisation does not increase 
the models’ accuracy significantly (only 5%), it allows reducing drasti-
cally the errors from the forecast, from 10% to 2% for the first forecast 
and from 73% to 9% for the fifth forecast. 

The results suggest that the model can account for the spatial, tem-
poral and social dynamics that drive the adoption process. Furthermore, 
the ABM and ANN model can produce a better estimation than a Bass 
model, this could be because the Bass model does not consider the social 
effect nor the spatial dependence of the adoption process. In principle, 
spatio-temporally explicit forecasts could inform network planning and 
investment decisions of the energy industry. Yet, this potential currently 
is limited as the model is only able to produce short-term forecasts due to 
the limited availability of data for 60 time periods. Yet, with the 
increasing availability of data, this integrated approach has the potential 
to produce spatio-temporally explicit forecasts for longer periods. 
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Appendix A. Summary of the potential socioeconomic variables 

Figs. A1–A8. 

Fig. A2. Boxplot of the PC’s population density in Birmingham.  

Fig. A3. Boxplot of the PC’s share of owned households in Birmingham.  

Fig. A4. Boxplot of the PC’s share of detached households in Birmingham.  

Fig. A1. Boxplot of the PC’s income in Birmingham.  
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Appendix B. Bass model estimation 

The Bass model is used to estimate the s-curve of each area, using Ordinary Least squares to estimates the parameter of the model. The model 
assumes 2050 as the horizon for total uptake of the PVs, and the number of residential building owned by the householder (per area) as the number of 
potential adopters. Then, following [46,79] the Bass model is defined as: 

S(t) =
(

p + q*
Y(t)
m

)

(m− (Y(t).)

where 

Fig. A6. Boxplot of the PC’s education level in Birmingham.  

Fig. A7. Boxplot of the PC’s average household size in Birmingham.  

Fig. A8. Boxplot of the PC’s Deprivation Index in Birmingham.  

Fig. A5. Boxplot of the PC’s electricity consumption in Birmingham.  
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S(t) is the number of new PV installations 
p is the coefficient of innovation 
q is the coefficient of imitation 
Y(t) is the number of adopters 
m is potential adopter 

B 1shows the different S-curves for the PCs in Birmingham city, the line in black represent the estimation for the Total number of PVs in Bir-
mingham (See Fig. B1). 

Appendix C. Model implementation pseudocode  

Algorithm 1 The PV adoption process 

Agents characterisation 

1. for each agent PC in Birmingham do 
2. PC.location ← actual population centroid 
3. PC.PVt ← PV installation dataset  
4. function AGENT_NEIGHBOURS() 
5. for each PC in agent_aux.Neighbours do 
6. agent_aux.calculatePVNeighbourhood() 
7. agent_aux.calculateDistance() 
8. end for 
9. end function 
10. function AGENT_ANN() 
11. for each PC in Birmingham do 
12. agent_aux.ANN(weight) ← random_between(0,1) 
13. end for 
14. end function 
15. end for 
Training 

16. function TRAIN() 
17. for each agent PC in Birmingham do18. PC.train()19. PC.estimationError ← Mean absolute percentage 

error20. end for 
21. end function 
Forecasting 
22. for each PC in Birmingham do 
23. PC.PVt+1 ← PC.forecastPV()24. PC. calculatePVNeighbourhood()  
25. end for 

Fig. B1. Bass model’s estimations for the PV uptake in the Birmingham’s PCs.  
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Appendix D. Estimation’s convergence 

See Fig. D1. 

Appendix E. Training Algorithm  

Algorithm 2 Backpropagation learning algorithm 

Initialisation 
1. for each agent PC in Birmingham do 
2. PC.data ← historical PV installation data by month 
3. for each month m in PC.data do 
4. FORWARDS PASS 

5. Starting from the input layer, use each activation function to compute the outputs 
6. Use the synaptic weights to pass the outputs from each layer to the following one 
7. Calculate the network output and the error of estimation 
8. Check for stop condition 
9. BACKWARDS PASS 
10. Beginning from the last layer, compute the derivates of the output layer’s function with respect to the 
estimation error 
11. Compute the derivates of each other hidden layer with respect to the previous layer neurons function 
12. Calculate the adjustment coefficient for each synaptic weight considering the previous layer neurons function 

13. end for 
end for  

Fig. D1. Estimation error of the autoregressive model.  
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Appendix F. Stepwise process of variable selection 

Table F1. 
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