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Abstract

The developmental disorder Burn-McKeown Syndrome (BMKS) is characterised by

choanal atresia and specific craniofacial features. BMKS is caused by biallelic variants

in the pre-messenger RNA splicing factor TXNL4A. Most patients have a loss-of-

function variant in trans with a 34-base pair (bp) deletion (type 1 Δ34) in the pro-

moter region. Here, we identified two patients with BMKS. One individual has a

TXNL4A c.93_94delCC, p.His32Argfs *21 variant combined with a type 1 Δ34 pro-

moter deletion. The other has an intronic TXNL4A splice site variant (c.258-3C>G)

and a type 1 Δ34 promoter deletion. We show the c.258-3C>G variant and a previ-

ously reported c.258-2A>G variant, cause skipping of the final exon of TXNL4A in a

minigene splicing assay. Furthermore, we identify putative transcription factor bind-

ing sites within the 56 bp of the TXNL4A promoter affected by the type 1 and type

2 Δ34 and use dual luciferase assays to identify a 22 bp repeated motif essential for

TXNL4A expression within this promoter region. We propose that additional variants

affecting critical transcription factor binding nucleotides within the 22 bp repeated

motif could be relevant to BMKS aetiology. Finally, our data emphasises the need to

analyse the non-coding sequence in individuals where a single likely pathogenic cod-

ing variant is identified in an autosomal recessive disorder consistent with the clinical

presentation.
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1 | INTRODUCTION

Burn-McKeown Syndrome (BMKS, MIM 608572) is an autosomal

recessive developmental craniofacial disorder with fewer than

20 families being described in the literature. Although there is clinical

overlap with other craniofacial disorders including Treacher Collins

syndrome, the recessive mode of inheritance and characteristic con-

stellation of features differentiate BMKS from other craniofacial
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disorders. Affected individuals present with choanal atresia/stenosis,

short palpebral fissures, lower eyelid coloboma, prominent nasal

bridge, cleft lip and/or palate and large protruding ears.1–7 Choanal

atresia/stenosis has been reported in all affected individuals to date.

Extra-craniofacial phenotypes of conductive and sensorineural hearing

loss, congenital heart defects, inguinal hernias and short stature are

observed in some patients. One BMKS individual has been reported

with intellectual disability and developmental delay.8

Wieczorek et al. identified biallelic variants in TXNL4A as causative

in BMKS.4 Most affected individuals carry a 34-base pair (bp) deletion

(chr18: g.77748581_77,748614del [GRCh37, hg19]), known as the

type 1 Δ34) in the TXNL4A promoter of one allele combined with a

loss-of-function variant on the other allele. Loss-of-function variants

include microdeletions, splice site, nonsense and frameshift variants.4,6

Alternatively, some affected individuals are homozygous for a different

34 bp deletion, (chr18: g.77748604_77,748 637 [GRCh37, hg19],

known as the type 2 Δ34) in the TXNL4A promoter.4,6,7 It is proposed

that reduced TXNL4A expression causes BMKS, with complete loss-of-

function likely embryonically lethal.

TXNL4A/DIM1 is a spliceosomal U5 small nuclear ribonucleopro-

tein particle (snRNP) component, responsible for all precursor mRNA

(pre-mRNA) splicing.9–11 It is postulated that decreased TXNL4A

expression reduces tri-snRNP assembly disrupting splicing of a spe-

cific subset of pre-mRNAs required for craniofacial develop-

ment.4,12,13 Mis-splicing of pre-mRNAs relevant to craniofacial

development would result in the tissue-specific and restricted pheno-

type of BMKS patients.

A difficulty hindering the diagnosis of BMKS is the identification

of the 34 bp TXNL4A promoter deletions from sequencing data. Pro-

moter deletions may not be identified by whole-exome sequencing

(WES), while bioinformatics pipelines for whole-genome sequencing

(WGS) frequently do not cover non-coding sequences encompassing

promoter and deep intronic regions.14 Here, we identify two

unreported individuals with BMKS with novel TXNL4A genotypes. We

show that a novel TXNL4A c.258-3C>G splice acceptor variant in one

patient, as well as a previously reported c.258-2A>G variant affecting

the adjacent nucleotide, cause skipping of the final exon of TXNL4A.

Furthermore, we identify potential transcription factor binding sites

within the TXNL4A type 1 and type 2 Δ34 promoter deletions and use

a dual luciferase assay to identify a 22 bp repeated motif which is cru-

cial for TXNL4A promoter activity. These findings expand the genetic

spectrum of TXNL4A variants underlying BMKS and identify why

TXNL4A Δ34 promoter deletions influence TXNL4A expression.

2 | MATERIALS AND METHODS

See Data S1.

3 | RESULTS AND DISCUSSION

3.1 | Identification of novel patients with BMKS
from WGS data

We sought to identify undiagnosed patients with BMKS using WGS

data from the 100 000 (100 K) Genomes Project. Using available

sequence variant data from the standard variant filtering pipeline, we

identified heterozygous loss-of-function variants in TXNL4A in two

individuals with phenotypes consistent with BMKS. Sequence variant

filtering identified only TXNL4A mono-allelic coding variants meaning

the potential diagnoses of BMKS had not been made. We then used

manual bioinformatics analysis of WGS data to screen for TXNL4A

promoter deletions in affected individuals. Both patients were found

F IGURE 1 Confirmation of
biallelic variants in TXNL4A from
patients with BMKS identified from
whole-genome sequencing data.
(A) i. heterozygous type 1 34 bp
deletion and ii. heterozygous TXNL4A
c.93_94delCC variants in family
1 proband. Red line indicates position
of 2 bp deletion, after which a double
sequencing trace indicates
heterozygous frameshift.
(B) i. heterozygous type 1 34 bp
deletion and ii. heterozygous TXNL4A
c.258-3C>G variant in family 2
proband. Red box indicates single
nucleotide variant, with double peak
indicating variant heterozygosity
[Colour figure can be viewed at
wileyonlinelibrary.com]
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to have a heterozygous type 1 Δ34 promoter deletion, which was

confirmed by Sanger sequencing (Figure 1).

3.2 | Proband phenotyping

The family 1 proband is a white British female only child born to

unrelated parents who presented in the genetic clinic in adulthood

with mixed conductive sensorineural hearing loss and jaw ankylosis

(Figure 2A). She had previous treatment for bilateral choanal atresia

and displayed dysmorphic craniofacial features including lower eyelid

coloboma, malar flattening, a high palate and micrognathia, right-sided

microtia and protruding ears (Figure 2B, Table S1). Sequencing rev-

ealed a heterozygous chr18:77748298TGG>T (GRCh37), TXNL4A

c.93_94delCC (NM_006701), p.His32Argfs*21 (NP_006692) variant

with a heterozygous type 1 Δ34 promoter deletion (Table S1). The

frameshift variant is not present in gnomAD and has not been previ-

ously associated with BMKS. Parental genotyping revealed that

the type 1 Δ34 promoter was maternally inherited, while the

c.93_94delCC was paternally inherited (Figure 2A, Table S1). The

mother is clinically unaffected. The father died at 44 years of oesophageal

carcinoma. He possibly had choanal atresia as, at 11–12 years, he had an

operation to drill one side out of his nose as his nasal passages had not

fully developed. He also possibly had a flat malar region (Table S1). It is

possible that the father may be mildly clinically affected based on his

reported phenotype. Sanger sequencing of the whole TXNL4A coding

and promoter sequence for the father did not reveal any additional

variants which could account for his craniofacial features. As he was

deceased, the father was not recruited to the 100 K Genomes Project.

Therefore, WGS was not available. It is unlikely that the oesophageal

carcinoma is related to his TXNL4A genotype as this association has not

been described in other carriers of TNXL4A variants. While somatic

mutations in some core spliceosome components have been associated

with cancer, there are no reports to date of TXNL4A mutations in

tumours.15,16

The family 2 proband is a white British male and only child of

healthy, non-related, parents with phenotypic features including

choanal atresia, conductive hearing impairment, a cleft upper lip

and distinctive craniofacial features including downslanted palpebral

fissures, malar flattening and dysplastic ears (Figure 2A). The left

ear was atretic with closure of the external auditory ear canal

(microtia) (Figure 2C, Table S1). Sequencing revealed a heterozygous

chr18:77733859G>C (GRCh37), TXNL4A c.258-3C>G (NM_006701)

splice acceptor variant and a heterozygous type 1 Δ34 promoter dele-

tion (Table S1). The splice acceptor variant is not observed in the

gnomAD population database and has not been previously described

in a BMKS patient. However, a variant in the adjacent nucleotide,

TXNL4A c.258-2A>G (NM_006701) has been described in an individ-

ual with BMKS.6 In silico prediction of variant pathogenicity suggested

both splice site variants are disease-causing by disrupting the splice

acceptor site (Table S1). We conducted minigene splicing assays for

the c.258-2A>G and c.258-3C>G variants; both led to complete skip-

ping of the TXNL4A final exon (Data S1; Figure S1). Deletion of

TXNL4A exon 3 in trans to a type 1 Δ34 has been reported in another

BMKS patient.4 The heterozygous c.258-3C>G splice acceptor variant

was maternally inherited while the heterozygous type 1 Δ34 was

paternally inherited (Figure 2A, Table S1). Comparison of the clinical

features observed in patients here and previously reported patients is

provided in Table S1.

3.3 | Identifying putative transcription factor
binding sites within the human TXNL4A promoter
type 1 Δ34

Wieczorek et al. found that TXNL4A type 1 and type 2 Δ34 dele-

tions reduced promoter activity by 59% and 72%, respectively.4

This promoter region consists of two repeated 22 bp motifs sepa-

rated by a 12 bp spacer, with each Δ34 deletion containing one of

the 22 bp repeated motifs with the spacer region overlapping the

type 1 and type 2 Δ34 (Figure 3A). These 34 bp regions were pro-

posed to contain binding sites for transcription factors which pro-

mote TXNL4A expression, the loss of which cause decreased

promoter activity in patients and carriers of the deletions.4 We

predicted potential binding sites for four transcription factors

(XBP-1, c-JUN, AhR/ARNT and ATF3) in the type 1 Δ34 (Figure 3A).

All but three nucleotides in these binding sites were within the

F IGURE 2 Family pedigrees and facial phenotypes of individuals
with BMKS. (A) Pedigrees for family 1 and family 2 with TXNL4A
genotypes indicated. Filled in symbols affected individuals, diagonal
line deceased individual. (B) Craniofacial phenotype of affected family
1 individual. (C) Craniofacial phenotype of affected family 2 individual.
Consent for publication of photographs was obtained [Colour figure
can be viewed at wileyonlinelibrary.com]

WOOD ET AL. 3

http://wileyonlinelibrary.com


repeated 22 bp motif rather than the 12 bp spacer, meaning of the

four predicted transcription factors, only XBP-1 is not predicted to

also bind to the type 2 Δ34. Interestingly, only twelve heterozygous

and one homozygous variant in the 56 bp region of the TXNL4A

promoter were found in the gnomAD database, indicating an impor-

tant and sequence-specific role in promoter activity (Data S1;

Table S2).

3.4 | In vitro analysis of putative transcription
factor binding sites on promoter function

To test whether the identified putative transcription factor binding

sites are important in TXNL4A promoter function, we cloned a

601 bp TXNL4A promoter fragment into a luciferase reporter vector

and performed dual luciferase assays. Constructs contained the wild

type promoter region, the type 1 Δ34 or several smaller deletions

(Figure 3A). Similar to Wieczorek et al., we found type 1 Δ34

reduced promoter activity to 46% (Figure 3B).4 Smaller deletions

(deletions 1 and 2) reduced promoter activity to 59% and 63%,

respectively, while deletion 3 (12 bp spacer) only reduced promoter

activity by 7% (Figure 3B). Deletion 4 (spanning deletions 1 and 2)

reduced activity to 47% (Figure 3B). Scrambling deletion 4 reduced

activity to 70%, suggesting sequence specificity of this region

(Figure 3B). We then deleted the 22 bp repeated motif within the

type 1 Δ34 (repeated region 2, RR2) or type 2 Δ34 (repeated region

2, RR2) (Figure 3A). RR1 reduced promoter activity to 54%, while

RR2 reduced activity to 45%, the same as the full type 1 Δ34

(Figure 3B). Deleting or scrambling both RR1 and RR2 together

reduced promoter activity to 10% (Figure 3B). These findings suggest

F IGURE 3 Analysis of the human
TXNL4A promoter. (A) Structure of
TXNL4A promoter region affected by
type 1 (orange) and type 2 (red) 34 bp
deletions in BMKS patients; 12 bp
spacer region (yellow) and 22 bp
repeated regions (pink). Putative
transcription factor binding sites
identified using ALGGEN PROMO

indicated in grey. Hypothetical
deletions 1–4 in luciferase reporter
gene constructs are highlighted in
purple. B) Effects of TXNL4A promoter
deletions on luciferase expression.
Relative firefly luciferase expression
for each construct, normalised to
renilla luciferase expression, is
indicated as a percentage of the wild
type promoter region expression.
n = 4. **p-value <0.01, ****p-value
<0.0001 [Colour figure can be viewed
at wileyonlinelibrary.com]
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that RR1 and RR2 contain the critical nucleotides for TXNL4A pro-

moter activity and act independently and cumulatively to promote

TXNL4A expression.

This study has reiterated the power of WGS in diagnosing

patients with rare disorders and emphasises the need to consider

non-coding regions when analysing WGS data, especially when a

single pathogenic coding variant is identified in a disease-

associated gene known to cause a recessive condition consistent

with the clinical presentation. We have also developed an analysis

approach for screening existing and novel promoter variants in a

gene of interest. This approach may prove useful for disorders

associated with promoter variants where few patients have been

identified and where it is unclear whether a single pathogenic vari-

ant or spectrum of different promoter variants underlie the

phenotype.
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