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Objective. In this study we developed an automatic method to predict tumour volume and shape in
weeks 3 and 4 of radiotherapy (RT), using cone-beam computed tomography (CBCT) scans acquired
up to week 2, allowing identification of large tumour changes. Approach. 240 non-small cell lung
cancer (NSCLC) patients, treated with 55 Gy in 20 fractions, were collected. CBCT's were rigidly
registered to the planning CT. Intensity values were extracted in each voxel of the planning target
volume across all CBCT images from days 1, 2, 3, 7 and 14. For each patient and in each voxel, four
regression models were fitted to voxel intensity; applying linear, Gaussian, quadratic and cubic
methods. These models predicted the intensity value for each voxel in weeks 3 and 4, and the tumour
volume found by thresholding. Each model was evaluated by computing the root mean square error in
pixel value and structural similarity index metric (SSIM) for all patients. Finally, the sensitivity and
specificity to predict a 30% change in volume were calculated for each model. Main results. The linear,
Gaussian, quadratic and cubic models achieved a comparable similarity score, the average SSIM for all
patients was 0.94, 0.94, 0.90, 0.83 in week 3, respectively. At week 3, a sensitivity of 84%, 53%, 90%
and 88%, and specificity of 99%, 100%, 91% and 42% were observed for the linear, Gaussian,
quadratic and cubic models respectively. Overall, the linear model performed best at predicting those
patients that will benefit from RT adaptation. The linear model identified 21% and 23% of patients in
our cohort with more than 30% tumour volume reduction to benefit from treatment adaptation in
weeks 3 and 4 respectively. Significance. We have shown that it is feasible to predict the shape and
volume of NSCLC tumours from routine CBCTs and effectively identify patients who will respond to
treatment early.

1. Introduction

Non-small cell lung cancer (NSCLC) patients are a diverse population, with different characteristics, tumour
sizes and tumour biology. For, inoperable NSCLC patients, radiotherapy (RT), chemotherapy or the
combination are treatment options (Fried et al 2014, Postmus et al 2017). During RT of lung cancer, varying
degree of tumour-response has been observed (Das et al 2010, Barker et al 2015, O’Connor et al 2015). Some
tumours shrink during RT while others show no change in tumour size. Given this heterogeneity in tumour
response, there is a clinical need to identify patients who are responding to RT as early in their treatment as
possible.

Medical imaging is increasingly used as a non-invasive way to assess tumour response to treatment. Unlike,
invasive techniques such as biopsies, imaging can provide spatial and temporal information about the tumour
(Cook et al 2014). This information may be useful in improving RT by maximising tumour control and reducing
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RT related toxicities. In recent years, novel treatment techniques such as adaptive radiotherapy (ART) have
emerged in the treatment planning process (Guckenberger et al2012). ART which was first described by Yan ez al
(1997), and aims to optimise RT by incorporating patient-level changes observed during RT in treatment plan
modification. However, most previous studies have used computed tomography (CT) or positron emission
tomography with CT to evaluate tumour regression for ART (Guckenberger et al 2011, Berkovic et al 2017,
Roengvoraphoj et al 2018).

Inlung RT, cone-beam computed tomography (CBCT) images are widely used to verify the patient’ position
before treatment. CBCT images can provide additional information about the tumour on the day of treatment.
Previous studies have utilised CBCT images to monitor tumour response and demonstrated ART during the
course of RT of lung cancer patients (Elsayad et al 2016, Mgller et al 2016). Elsayad et al (2016) reported
intrathoracic changes in 74% of patients occurring within the first three weeks of treatment. Adaptations were
performed in 60% (N = 43) of the patients. However, in 25% of patients, new planning CT (pCT) for
adaptation needed to be performed with urgency. In alarger study (N = 177) applying a strict adaptation
criterion, Moller et al (2016) found that adaptation decreased lung dose in 75% of all the patients with ART. In
both studies, adaptation was triggered by visually observed changes. Triggered adaptation is unpredictable and
can constraint arrangements for resource allocation (re-scanning and re-planning). Contrarily, identifying
patients who will benefit from ART early on during the course of RT will enable departments to plan, schedule
and predict the resources that will need to be allocated.

This study posits that automatic analysis of CBCT images taken early in treatment (weeks 1 and 2) can be
used to predict the shape and volume of the tumour in the later weeks (3 and 4) of RT so that adaptation can be
scheduled timely.

2.Methods

2.1. Patients

In this retrospective study, 240 NSCLC patients who received 55 Gy in 20 fractions, with or without induction
chemotherapy, treated at The Christie NHS Trust between 1 January 2013 and 31 October 2018 were collected.
All images were collected with the Christie NHS Trust approval (UKCat, REC reference 17/NW /0060). Patient
demographics are summarised in table 1 of supplementary material (available online at stacks.iop.org/PMB/
66,/225002/mmedia). All patients included met the following requirements; (1) CBCT images were available of
the first three fractions, as well as CBCT images at fraction seven and fourteen, and (2) CBCT images were
available in weeks 3 and 4. (3) CBCTs have sufficient image quality and no signs of non-tumour pulmonary
changes such as atelectasis. A radiation oncologist reviewed all CBCT's identified to have insufficient quality and
non-tumour pulmonary changes. These criteria resulted in a study cohort of 201 patients with a total of 1206
CBCT images. No other patient selection criteria were used.

2.2.Image registration
The purpose of image registration is to find the appropriate transformation (7) that spatially maps
corresponding pixels between pCT and subsequent CBCT's. Image registration was performed to automatically
rigidly align follow up CBCT images to the pCT, using a two-step alignment process. The first step involved the
rigid alignment of bony anatomy in 3D, correcting for patient rotations and translations alongall three axes.
This was achieved by creating a region of interest (ROI) including the vertebrae in all CT slices containing
planning target volume (PTV). Next, registration was fine-tuned to align the soft tissue, using translations only.
For this, a ROI containing the PTV was created, ensuring that the alignment of the soft tissue includes the gross
tumour volume (GTV) and surrounding lung.

All registrations were visually checked for large errors. Image registration was performed using in-house
software, World-match v9.0 (Wolthaus ef al 2005), using the identical algorithm as used in XVIv5.6. No user
interaction was involved at all.

2.3. Definition of region interest for pixel value analysis

All registered CBCT images were normalised to correct intensity information: to fix calibration differences
between treatment machines and to allow comparison of CBCT between patients using the approach adapted
from van Timmeren et al (2017), as described in our earlier work (Amugongo et al 2020). After, all CBCTs were
cropped to focus on the tumour. A rectangular ROI was created using the GTV contour as defined on pCT,
expanded by 1.3 cm, see figure 1(a)). This expansion is compatible with the extent of microscopic disease spread
that rarely falls outside 1.3 cm from the radiographically defined GTV (Giraud et al 2000). In addition, an
extension of 1.3 cm was used to include the immediately surrounding tissue in the prediction to allow enough
surrounding tissue to be visible.
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Figure 1. Schematic diagram of our approach. (a) After rigid image registration, ROI was defined, and CBCT images were cropped to
focus on the tumour. (b) CBCT's from days 1, 2, 3, 7 and 14 were stacked up into a 4D array and intensity extracted in each voxel across.
(c) A polynomial model was used to predict the value in a given voxel in weeks 3 and 4 of RT. (d) predicted volume in week 3 or 4.

(e) The predicted tumour was automatically isolated by applying a threshold and volume calculated.

This part of the work was also carried out using World-match v9.0 (in-house software).

2.4. Prediction of density changes in each voxel
For all patients, intensity values were extracted in each voxel across all CBCT images from days 1,2, 3,7 and 14
(see figure 1(b)); these days correspond to the offline standard imaging protocol used in our institution at the
time. In each voxel, four regression models were fitted, applying linear, quadratic and cubic polynomials, and a
Gaussian process method. The Gaussian process is a generic supervised learning technique developed to solve
regression and probabilistic classification problems (Rasmussen and Williams 2006). These models were used
for extrapolation in the time domain and predict intensity values in each voxel for the CBCT image in week 3
(days 17-21) and 4 (days 24—28) of RT respectively, see figure 1(c)). The predicted intensity values for all voxels
were visualised in 3D.

This part of the work was performed in python version 3.7, using polyfit regression, included in the NumPy
package.

2.5. Tumour segmentation
Image segmentation by thresholding is a simple but powerful technique for segmenting images having bright
intensities on dark background. In this study, a thresholding approach was used to segment the tumour volume.
To getan approximate GTV segmentation in the predicted and the actual CBCT image acquired in weeks 3 and 4
of RT. Three threshold values were tested, and the threshold value of 374 HU provided the best segmentation
results was chosen and applied. All pixel intensities above 374 HU were classified as tumour and included in the
tumour segmentation. To guide the thresholding process, the GTV contour defined on the pCT expanded by 5
mm was used (see figure 1(d)), with thresholding performed inside this region only. This approach was preferred
for its simplicity. The segmented tumour volumes were visually verified to exclude gross errors and exported as
Neuroimaging Informatics Technology Initiative files. Sensitivity analysis was performed to see how changing
the threshold value affects the segmented tumour volume. For this, segmentation threshold values of 281 and
468 HU were applied.

This part of the work was carried out in python version 3.7 using NumPy and NiBabel packages.
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2.6. Model evaluation

For each model, the root mean square error (RMSE) was calculated in each voxel and summarised for each
patient. RMSE measures the average magnitude of the errors between the predicted and actual measured values.
Unlike other metrics, such as mean square error and mean absolute error, RMSE does not take the absolute value
and gives high weight to large errors (Hyndman and Koehler 2006).

An independent metric, the structural similarity index metric (SSIM), was also used to assess visual
similarities between the predicted and actual CBCT images acquired in weeks 3 and 4 of RT. Unlike RMSE which
tries to estimate the perceived errors between the predicted and actual voxel intensities, SSIM is a perceptual
metric that quantifies the similarities between two images by looking at the change in structural information; i.e.
if voxel intensities in the two images have similar density values or line-up (Wang et al 2004). The range of SSIM
is from —1 to 1, and SSIM of 1 indicates that the two images (predicted and actual) to be identical and — 1 means
no similarity. SSIM was implemented as described by Wang et al (2004). Briefly, SSIM is used to compare the
predicted and actual CBCT images. Therefore, quantify the visibility of errors (differences) between the
predicted and actual CBCT images. SSIM and RMSE were calculated per model for all patients, comparing the
observed actual CBCT images acquired in weeks 3 and 4 of RT, with the corresponding images generated by the
models. The range was computed for each model.

For each patient, the tumour was segmented from the predicted and actual CBCT image acquired in week 3
and 4 of RT and tumour volume in cm’ were computed. Next, the mean distance to agreement (DTA) in
millimetres (mm) between the segmented tumour volume from predicted and actual CBCT images was
calculated. In this study, we define DTA as the minimum distance from each point on the surface of the
segmented predicted volume to the actual tumour volume (vice versa). We summarise these distances by
calculating the mean and maximum values, following equations (1) and (2)

> dist(p,, T)d .\ >, dist(g;, P)
M N

mean DTA = 0.5 , (1)

max DTA = max(max;(dist(p;, T)), max;(dist(g;, P))), ()

where p and g correspond to points on the surface of the predicted and actual tumour, respectively; M and N are
the number of points on the surface of the predicted and actual tumour, respectively; T'and P the surface of the
actual tumour and predicted volumes. Mean DTA represents the degree of mismatch between the two volumes,
with a high value indicating the existence of regions of dissimilarity between the two sets, and a zero indicates
that the volumes are identical. Unlike, the Hausdorff distance which measures the largest distance between two
segmentations to characterise the worst matching region, and the Dice coefficient is dependent on volume. The
mean DTA is the most appropriate metric as it measures the overall surface distance between the segmented
predicted and actual tumour volume.

The mean DTA was calculated using World-match v9.0. The model evaluation was performed in python
version 3.7, using sklearn and skimage packages respectively.

2.7. Tumour response classification

The actual and predicted percentage volume change at weeks 3 and 4 were computed for each patient for all
models. A threshold of 30% was used to classify patients who will benefit from treatment adaptation in either
week. The 30% reduction was derived from a clinical study that suggested that tumours with greater than 30% in
tumour reduction are good candidates for ART (Woodford et al 2007). Receiver-operating characteristic
analysis was performed to evaluate the overall performance of each model. We report the sensitivity (true
positive rate), specificity (true negative rate), precision (ratio of correctly predicted positive cases over the total
number of predicted positive cases), accuracy (ratio of correctly predicted cases to the total number of cases) and
F1-measure (harmonic average of precision and sensitivity) in weeks 3 and 4 for each model. The formal
definitions are provided in the supplementary material. The sensitivity is defined as the percentage of patients
with a reduction of more than 30% that were correctly predicted to benefit from ART by the methods. The
specificity represents the percentage of patients that were correctly predicted by the methods not benefit from
ART. Additional experiments, using the threshold of 20% and 40% to patients who will benefit from ART are
provided in the supplementary materials.

2.8.Rigid image registration uncertainties

When performing image registration, uncertainties are inevitable. These uncertainties can lead to errors in
model predictions, depending on the nature of registration failure. The impact of rigid registration uncertainties
was estimated by shifting each CBCT with a random offset sampled from a 3D Gaussian distribution (u =0,

0 =3 mm). These parameters correspond to typically baseline shifts in lung cancer patients (Kanakavelu and
Samuel 2016).
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Figure 2. A responder example patient: CBCT image at the start of RT, actual CBCT and predicted image in week 3 of RT in axial,
sagittal and coronal views. The blue contour is the GTV from the planning CT.
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After these shifts, we calculated the volume, mean DTA, RMSE and SSIM. Simulations were repeated 100
times. Simulated results were compared to the initial prediction results using the original registration.
Simulations were only performed for the predictions in week 3. This part of the work was carried out in python
version 3.7, using the SimpleI TK package.

3. Results

3.1. Image registration

Thirty-nine patients were excluded; three were because of unrelated pulmonary change (atelectasis), one
because of inadequate image quality (structures not visible) and 25 patients were excluded because they did not
have all the required CBCT images. Registration accuracy was visually assessed by examining whether the clip
boxes were in the right positions and CBCT's well aligned to the pCT. Ten patients were excluded because of poor
rigid image registration failures.

3.2. Prediction of density changes in each voxel

An example of a prediction in one voxel using a linear, quadratic, cubic and Gaussian model is shown in figure 1
of supplementary material. It indicates that the linear and Gaussian models performed better compared to the
quadratic and cubic models. Figure 2 shows a patient CBCT series visualised in the axial, sagittal and coronal
planes, predicted using the linear model.

It is evident that this patient displays visible tumour shrinkage on the CBCT acquired in week 3 of RT; a
linear model predicts a visually similar image. Quantitatively, the GTV has shrunk from 12.85 cm’ (tumour
volume measured on pCT at the start of treatment) to 0.42 cm?’ (tumour volume on the CBCT at week 3). The
predicted tumour volume in week 3 of RT for this patient was 0.32,1.52,0.91 and 2.71 cm? for the linear,
Gaussian, quadratic and cubic models respectively.




10P Publishing

Phys. Med. Biol. 66 (2021) 225002 LM Amugongo et al

Predicted

Figure 3. Non-responder example patient: CBCT image at the start of RT, actual CBCT and predicted CBCT image in week 3 of RT in
axial, sagittal and coronal views. The blue contour is the GTV at the start of treatment.

Figure 3 shows an example case of a patient who with little tumour shrinkage. Both the predicted and actual
image of the CBCT acquired in week 3 of RT displays little change. In this case, the tumour volume remains
nearly the same throughout treatment, with a 4% actual reduction in tumour size. The volume change was
—7.66,—0.11, —34.11 and —78.89 cm?, indicating a 4%, 0.1%, 18% and 41% decrease in tumour volume from
the start of treatment as predicted by linear, Gaussian, quadratic and cubic models respectively.

3.3. Segmentation

After prediction, threshold-based segmentation was applied to identify the tumour. On visual inspection, gross
segmentation errors were found in 3 cases and the majority of the patients (198 cases) had visually acceptable
segmentations. Figure 4 shows an example of a segmented tumour volume for a representative patient.

3.4.Model validation

For all patients, the average RMSE score for the linear model is provided in figure 5. The average RMSE for the
Gaussian, quadratic and cubic models is provided in figure 2 of supplementary material. The high order
polynomial regression models performed worst. The linear model performed acceptably and was preferred.
Figure 3 of supplementary material illustrates the performance of all models across all patients.

The SSIM for the linear model can be seen in figure 6. The SSIM for the Gaussian, quadratic and cubic
models is shown in figure 4 of supplementary material. The average SSIM score for linear, Gaussian, quadratic
and cubic models is 0.94, 0.94, 0.90 and 0.84 in week 3 of RT, respectively. In week 4, the average SSIM of 0.93,
0.92,0.92 and 0.86 was observed for the linear, Gaussian, quadratic and cubic models respectively. These scores
indicate most models predict tumours that look similar to the actual tumour, and the cubic model performed
worst.
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Figure 4. Segmentation example-images and segmented tumour volume visualised on axial, sagittal and coronal axes. In blue is the
contour used to guide the tumour volume segmentation.
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Figure 5. The average prediction error in pixel value, root mean square error (RMSE) for the linear model for all patients; in (a) week 3,
and (b) week 4 respectively.

Figure 7 shows the correlation between the predicted tumour volume change for the linear model and the
measured tumour volume change on the CBCT image acquired in week 3 of RT. The scatter plots for the
Gaussian, quadratic and cubic models can be found in figure 5 of supplementary material. The best correlation
between the predicted tumour volume change and the measured tumour volume change is obtained using a
linear fit. The linear model predicted an average tumour volume of 52 cubic centimetres (cm®) at week 3
compared to the measured tumour volume of 49 cubic cm’, an average range of 2 cm’. The ranges were
33.76 cm?, 58.88 cm>, 92.67 cm> and 171.50 cm? for the linear, Gaussian, quadratic and cubic models
respectively. Scatterplots depicting the correlation between the predicted and measured tumour volume change
in week 4 of RT for all models can be found in figure 6 of supplementary material. The Bland and Altman plots

7



IOP Publishing Phys. Med. Biol. 66 (2021) 225002 LM Amugongo et al
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Figure 6. Structural similarity index matrix (SSIM) for all patients for the linear model. (a) SSIM in week 3 and (b) week 4. This implies
that the tumour shape predicted by all models is similar to the actual tumour shape at the treatment for the majority of the patients.
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Figure 7. Correlation between the actual and predicted tumour volume change as a percentage (%) for the linear model in week 3. The
black vertical and horizontal lines represent the threshold used to distinguish patients who may or not benefit from RT adaptation.
The red band is the confidence band for the regression line, showing the upper and lower confidence bounds for all points within the
range of the data.
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Table 1. The performance of the linear model at weeks 3 and 4. The threshold value for volume change and tumour
response classification used was 0.3 (30%). The linear and Gaussian models perform better at identifying true
positives and true negatives at week 3 than week 4.

TP FP N EN TPR TNR Precision Accuracy F-measure

Week 3 43 2 148 8 0.84 0.99 0.96 0.95 0.9
Week 4 46 9 135 11 0.81 0.94 0.84 0.9 0.82

Table 2. Mean, SD and maximum distance to agreement between the actual and predicted tumour volume for the initial prediction and after

applying XYZ offset.
Initial prediction Prediction after applying random XYZ shifts, 100 simulations
Linear Linear
Mean DTA (mm) 0.55 0.60
SD (mm) 0.46 0.49
Max DTA (mm) 3.42 3.61

showing the percentage difference between the actual and predicted tumour volume in both weeks 3 and 4 are
provided in figures 7 and 8 of the supplementary material.

3.5. Tumour response classification

In week 3, the sensitivity (true positive rate) for the linear model was 84%. Whereas, the specificity (true negative
rate) was 99% for the linear model, see table 1. The sensitivity and specificity of the Gaussian, quadratic and
cubic models are shown in table 2 of supplementary material. Overall, the linear fit performed best at identifying
patients who will benefit from treatment adaption in week 3, while the quadratic model performed acceptably
and the cubic model performed worst.

TP true positive, FP false positive, TN true negative, FN false negative, TPR true positive rate, and TNR true
negative rate.

Table 1 present the sensitivity, specificity, accuracy, precision and F-measure for the linear model in week 4
of RT. The sensitivity for the Gaussian, quadratic and cubic models is provided in table 3 of supplementary
material. Again, higher accuracy was observed using the linear fit compared to the other models.

Compared to week 3, alower sensitivity was observed in the gaussian model. This is a result of
overestimation by the Gaussian model in week 4. In week 4 of RT, the false positive rate of 38% and 78% was
observed for the quadratic and cubic models, respectively. The linear fit identified 21% and 23% of the patients
to benefit from RT adaptation in weeks 3 and 4, respectively. Additional experiments, using the threshold of 20%
and 40% to identify good responders for ART are provided in the supplementary materials, see figure 9. As
expected, with a higher threshold, the number of patients eligible for ART decreases. The sensitivity analysis
results are provided in tables 4 and 5 of supplementary material. As seen the higher-order polynomial models
performed worse compared to the linear model.

3.6. Rigid image registration uncertainties

Table 2 shows the mean DTA, Standard deviation and max DTA between predicted and observed tumour
segmentation for all patients; for initial prediction and after applying random XYZ shifts (100 simulations) using
the linear model. The registration uncertainties for the Gaussian, quadratic and cubic models is illustrated in
table 6 of the supplementary material. The results show that the predicted tumour volume was within Imm in
the majority of the patients. Plausible registration inaccuracies have only a very small impact on the results. The
registration uncertainties for the Gaussian, quadratic and cubic models is illustrated in table 6 of the
supplementary material.

DTA distance to agreement, GP gaussian process, mm millimetres, SD standard deviation.

The mean DTA for all simulations for two example patients are shown in figure 8; (a) a patient most affected
by registration uncertainties and (b) the patient with the maximum DTA. The variations in mean DTA for each
patient are also visible on the overlapped segmentation on the left. The mean DTA for all patients is shown in
figure 10 of supplementary material. The standard deviation of the mean DTA for all patients is shown in figure
11 of the supplementary material. The mean and standard deviation of the RMSE and SSIM for all simulations is
summarised in table 7 of supplementary material.
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Figure 8. Histograms of the simulated mean DTA for two example patients predicted using a linear model; (a) patient with the most
variation in DTA. (b) Patient with maximum DTA. On the right of each histogram is the respective overlapped segmented volumes for
all simulations viewed on the axial axis.

4. Discussion

To the best of our knowledge, this is the first study that has quantitatively predicted NSCLC tumour volume and
shape at later weeks during RT using longitudinal CBCT images acquired up to mid-treatment of RT to
proactively inform ART early. Our results show that individualised regression models built per-voxel using the
intensity values from on-treatment CBCTs in the first two weeks of RT can predict tumour shape and volume in
weeks 3 and 4 of RT, i.e. one and two weeks ahead.

Several studies have retrospectively investigated the need for ART in lung cancer patients due to tumour
volume changes (Siker et al 2006, Britton et al 2007, Woodford et al 2007, Fox et al 2009) or intrathoracic changes
(Kwint etal 2014, Moller et al 2016). In a cohort of 13 patients, Guckenberger et al (2011) illustrated that
performing ART twice (week 3 or 5) during RT does not underdose the microscopic spread of the disease and
can reduce the dose to the lung by 5%—-8%. Another study by Guckenberger, Kavanagh and Partridge (2012)
concluded that ART is safe and can improve tumour control probability. However, for ART to be effective
sufficient regression has to be observed early on during treatment (Sonke and Belderbos 2010). Most of the
studies in the literature, reported atelectasis making up a large percentage of all adaptations, 10% in Persoon et al
(2015) and 12% in Moller et al (2014). In this study, patients with atelectasis were excluded, since we focused on
tumour regression. Woodford et al (2007) found that 40% of patients in their cohort had a sufficient magnitude
of tumour reduction to benefit from ART. Monitoring anatomical changes on daily CBCT's, Moller et al (2016)
reported a false positive rate of 20% in patients requiring adaptation. In our study, the linear model achieved a
false positive rate of 16% and 19% at weeks 3 and 4 respectively. However, inspecting figure 7(a) shows that only
two patients were wrongly predicted to benefit from ART using the linear model.

Different studies have suggested the benefits of ART based on simulations. However, only a few studies have
shown the clinical outcome of ART implementation. Tvilum et al (2015) demonstrated that ART can improve
loco-regional control in a small cohort of 52 patients. The first study to report the clinical outcome of ART, the
LARTIA trial reported marginal relapse in 6% of the patients and low toxicity (2% and 4% acute and lung
damage) (Ramella et al 2017). However, in both cases the decisions to adapt are qualitative, for example,
anatomical changes judged by radiation oncologists. Kwint et al (2014) proposed a semi-quantitative approach
to evaluate intrathoracic changes. However, they did not include tumour volume changes in their criteria.
Accounting for tumour position, lymph nodes, organs at risk and dosimetric impact, Moller et al (2016)
described stricter adaptation criteria.

In the majority of studies that have implemented ART strategies, adaptation is triggered by the changes
deemed detrimental as visually observed during RT. The unpredictable nature of triggered adaptation can
constraint resource allocation because arrangements for re-scanning or re-planning is only made once the
changes are detected (Sonke et al 2019). In busy departments, scheduling a re-scan and treatment re-plan may
take several days (up to 5 days). Our findings demonstrate that we can predict tumour changes early during RT,
suggesting that it is possible to identify patients who may benefit from ART early on. Early identification of
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patients that benefit from ART will enable departments to allocate the required resources ahead of time. Our
approach is not intended to replace radiation oncologists but to improve the ART clinical workflow by removing
the manual inspection step in the selection of patients eligible for ART. The manual step is error-prone and
subjective.

In our study, the linear model correctly predicted that 21% and 23% of patients may benefit from ART in
weeks 3 and 4, respectively. Accepting the false positive rate would lead to 2 and 9 patients being re-planned
unnecessarily at weeks (3 and 4), since their tumour shrinkage was wrongly predicted to be over 30%, while in
reality, it ranged from 10.8 to 14.4% and 9.6%—29.1%, respectively. One patient had actual tumour regression of
29.1% and the linear model predicted a 34.4% reduction. Though the actual regression is not more than 30%,
the model prediction was close. The 30% threshold used in this study is not intended to be a concrete principle
but is useful as a criterion to identify or ‘flag’ patients for adaptive planning evaluation.

Although the results of this study are promising, limitations exist. First, the quality of CBCT images is poor
compared to conventional CT. Intensity correction was applied according to the method described by van
Timmeren et al (2017) to correct the distribution of intensities between CBCT images. However, image noise
and artefacts remain a challenge; standard 3D CBCT images acquired in free-breathing were used in this study.
Possible solutions to this have been proposed in the literature by optimising scatter correction (Poludniowski
etal 2009) or performing motion compensation (Rit et al 2009).

Second, prediction accuracy could have been affected by the biases in the model, such as overfitting. To
overcome this challenge, four regression models applying a linear, Gaussian, quadratic and cubic fit were used
and their prediction results were compared. Large errors were observed in the higher-order (quadratic and
cubic) models, and this can be a result of ill-conditioning, which causes the coefficients to be sensitive to small
variations in the data. Lung cancer patients are now imaged daily. More information provided by daily CBCT's
can potentially improve prediction accuracy, especially for the higher-order regression models.

In this study, a threshold value of 374 HU was used. However, the sensitivity analysis applying two different
threshold values showed that the segmentation did not deteriorate the results, see tables 4 and 5 of
supplementary material. The linear model still performed better at identifying patients with large tumour
regression to benefit from ART. Different institutions should explore and determine the appropriate threshold
values or perhaps apply an individual threshold value for each patient. Another limitation is that threshold
selection and final evaluation of the model was performed on the same dataset. In addition, our segmentation
approach uses an expanded region to guide the thresholding process. Though this is sensible for tumours
surrounded by lung tissue, this can lead to tumour volume overestimation for tumours adjacent to the chest wall
or mediastinal because normal surrounding tissue with similar density may be included in tumour volume.
Consequently, underestimating relative volume reduction for these tumours. To reduce the impact of
overestimation of tumour volume, the lung contour was then used to ensure the expanded region did not extend
into other tissue outside the lung, i.e. mediastinum, diaphragm or chest wall. Also, the automatic segmentation
used in this study is limited by qualitative assessment based on visual inspection only. Thus, further
improvement in tumour volume segmentation may improve predictions.

Another issue that could have affected our results is image registration. In this study rigid image registration
was used, rigid image registration cannot deal with complex deformations, for example, large anatomical
changes, including weight loss and normal tissue response. To estimate the impact of image registration
uncertainties, we simulated the prediction 100 times, applying a random 3D translation. We found that the
average mean DTA was oftf by less than 3 mm in all patients for all four models implying that image registration
uncertainties did not affect the results in the majority of the patients. Lastly, the lack of an external validation
dataset can limit the clinical relevance of this study.

Because we are not extracting features of the segmented tumour on subsequent CBCT images, our approach
maintains the spatial and temporal information of the tumour. The spatial information is important because
tumours do not change homogeneously, different regions of the tumour are expected to respond differently to a
treatment. Also, our approach applies fits in each voxel individually, thus can be applied to any patient.
Clinically, our model will be useful in identifying tumours that are likely to change during treatment early. As
part of a clinical workflow, a CT scan can be scheduled proactively for patients identified as good responders.
Early identification of patients with large tumour regression will give radiation oncologists sufficient time to
determine the safety of ART for each patient. However, to evaluate the safety of treatment adaptation, more
information about changes around the surrounding tissues will be needed to distinguish the mode of tumour
change, i.e. elastic and inelastic change. The former is favourable for the adaptation of treatment volumes,
whereas the latter implies that treatment volumes should remain unchanged, at least for an intermediate dose
level. A boost on the shrunken tumour may be more appropriate. Future work will explore complementary
techniques such as deformable image registration to investigate changes happening to the surrounding tissue,
therefore distinguish modes of tumour change. In addition, future work will also explore associating early
regression with clinical data and explore the possibility to predict tumour control and patient’s outcome early.

11



10P Publishing

Phys. Med. Biol. 66 (2021) 225002 LM Amugongo et al

We have shown that individualised regression models built per voxel on intensity values from on-treatment
CBCT images can predict tumour volume and shape in weeks 3 and 4 of RT. If we can identify tumours
responding to treatment early, patients that will benefit from plan adaption can be identified early.

5. Conclusion and future works

In this study, we have shown that it is possible to predict the tumour volume and shape in weeks 3 and 4 of RT,
using intensity values extracted per-voxel longitudinally across CBCT images acquired in the first half of RT
treatment. Image registration uncertainties did not impact the prediction accuracy. Finally, the linear model
achieved good results at predicting the tumour volume and identifying patients who will or not benefit from RT
adaptation early on during the course of RT.
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