
 

 

 

 

 

The internal and external demands of multi-directional running and the 

subsequent effect on side cut biomechanics in male and female team sport 

athletes 

 

Thesis submitted in accordance with the requirements of the University of Chester 

for the degree of Doctor of Philosophy  

 

By Chelsea Oxendale 

 

 

 

 

 

 

 

 

 

 



 

 

i 

Abstract 

The aim of this thesis was to examine the physiological and biomechanical responses 

to multi-directional running in male and female team sport athletes. Chapter 4 

compared measures of energy expenditure derived from indirect calorimetry and 

microtechnology, as well as high power and high-speed activity, during linear and 

multi-directional running. Measured energy expenditure was higher during the multi-

directional trial (9.0 ± 2.0 cf. 5.9 ± 1.4 kcal.min-1), whereas estimated energy 

expenditure was higher during the linear trial (8.7 ± 2.1 cf. 6.5 ± 1.5 kcal.min-1). Whilst 

measures of energy expenditure were strongly related (r > 0.89, p < 0.001), metabolic 

power underestimated energy expenditure by 52% (95% LoA: 20-93%) and 34% (95% 

LoA: 12-59%) during the multi-directional and linear trial, respectively. Time at high 

power was 41% (95% LoA: 4-92%) greater than time at high speed during the multi-

directional trial, whereas time at high power was 5% (95% LoA: -17-9%) lower than 

time at high speed during the linear trial. Chapter 5 explored the internal and external 

responses to linear and multi-directional running, specifically examining if measures 

of high speed and high power reflect changes in internal load. High speed distance (p 

< 0.001) was higher during the linear trial, whereas time at high power (p = 0.046) and 

accelerations performed (p < 0.001) were higher during the multi-directional trial. 

Summated HR (-0.8; ±0.5, p = 0.003), B[La] (-0.9; ±0.6, p = 0.002) and RPE (-0.7; 

±0.6, p = 0.024) were higher during the multi-directional trial. There was a large 

difference in the ratio of high speed:summated HR (1.5; ±0.5, p = 0.001) and high 

speed:total V̇O2 (2.6; ±1.2, p < 0.001) between linear and multi-directional running, 

whilst high power:summated HR (0.3; ±0.5, p = 0.246) and high power:total V̇O2 (0.1; 

±0.8, p = 0.727) were similar. A small decrement in knee flexor torque was observed 

after the multi-directional (0.4; ±0.4, p = 0.017) and linear (0.2; ±0.3, p = 0.077) trials, 
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respectively. Collectively, Chapters 4 and 5 reveal that more directional changes 

induce a greater internal response, despite reducing the high-speed distance 

someone is likely to cover. High power better reflects internal responses to multi-

directional running than high speed, but microtechnology cannot be used to determine 

the absolute energy cost of multi-directional running.  

 

Chapters 6 and 7 explored alterations in side cut biomechanics in males and females 

immediately (Chapter 6) and 48 h (Chapter 7) after multi-directional running. In 

Chapter 6, 20 m sprint time was higher (ES: 0.65 – 1.17, p < 0.001) after multi-

directional running, indicating the presence of fatigue. Males and females displayed 

trivial to moderate changes in trunk flexion (0.16 – 0.28, p = 0.082), peak hip internal 

rotation (0.46 – 0.54, p = 0.090), and knee flexion (0.17 – 0.41, p = 0.055) and higher 

knee abduction (0.40 – 0.51, p = 0.045) and internal rotation (0.59 – 0.81, p = 0.038) 

angular velocities, during the weight acceptance phase of side cuts after multi-

directional running. Peak hip extensor (0.19 – 0.29, p = 0.055) and knee internal 

rotation moment (0.22 – 0.34, p = 0.052) displayed trivial to small increases after multi-

directional running, whereas peak hip external rotation (0.44 – 0.57, p = 0.011), knee 

extensor (0.33 – 0.45, p = 0.003) moment and knee to hip extensor ratio (0.15 – 0.45, 

p = 0.005) were lower. In addition, IGRF displayed trivial to moderate changes (0.04 

– 0.79, p = 0.066) and lateral GRF was lower (0.29 – 0.85, p = 0.002) after multi-

directional running. In Chapter 7, CK concentration (2.4 – 4.94, p = 0.009), perceived 

muscle soreness (4.2 – 4.8, p < 0.001) and 20 m sprint time (0.6 – 0.9, p < 0.001) 

were higher 48 h after multi-directional running, indicating the presence of EIMD. 

Males and females displayed trivial to moderate changes in peak torso flexion (0.13 – 

0.35, p = 0.055), hip internal rotation angular velocity (0.43 – 0.64, p = 0.073) and 
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more knee internal rotation (0.31 – 0.5, p = 0.009) 48 h after multi-directional running. 

A tendency for an interaction between sex and time was noted for peak knee flexion 

(p = 0.068) and internal rotation angular velocity (p = 0.057), with males only displaying 

a moderate increase. Males and females also displayed a lower peak knee extensor 

moment (0.43 – 0.56, p = 0.001) and a small increase in extensor moment (0.21 – 

0.46, p = 0.066) and knee external rotation moment (0.34 – 0.78, p = 0.062). An 

interaction between sex and time was noted for IGRF (p = 0.037); there was a large 

increase in IGRF at 48 h in females (1.4) but not males (0.08). For the first time, these 

data highlight multi-directional running which elicits fatigue and EIMD causes 

alterations in side cut biomechanics which can persist for at least 48 h. Specifically, 

both males and females performed side cuts in a more extended position, with higher 

peak angular velocities, and peak knee external rotation moments and less knee 

extensor moments both immediately and 48 h after multi-directional running.  
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Chapter 1 
 

 Introduction 
 
 

1.1 The characteristics of team sports training and competition 

Team sport athletes typically cover 3 – 12 km during training and match-play. This 

incorporates numerous high-intensity movements, such as accelerations (33 - 656), 

decelerations (49 - 612) and high-speed runs (119 – 930 m), interspersed with 

prolonged periods of low-intensity movements (Akenhead, Hayes, Thompson, & 

French, 2013; Dalen, Jørgen, Gertian, Geir Havard, & Ulrik, 2016; Gabbett, Jenkins, 

& Abernethy, 2012; Kempton, Sirotic, Rampinini, & Coutts, 2015; Russell et al., 2016; 

Springham et al., 2020; Strauss, Sparks, & Pienaar, 2019; Tierney, Young, Clarke, & 

Duncan, 2016; Trewin, Meylan, Varley, & Cronin, 2018; Varley, Gabbett, & Aughey, 

2014; Waldron, Twist, Highton, Worsfold, & Daniels, 2011). The movements and 

activities performed by team sport athletes evoke acute psychophysiological 

responses such as an elevated heart rate (~80-88% of maximum heart rate; Aslan et 

al., 2012; Cunniffe et al., 2009; Dubois et al., 2017; Iacono, Martone, Cular, Milic, & 

Padulo, 2017; Lythe & Kilding, 2011; Waldron et al., 2011), blood lactate concentration 

(3 – 8 mmol·L-1; Aslan et al., 2012; Coutts et al., 2003; Deutsch, Maw, Jenkins & 

Reaburn, 1998; Krustrup et al., 2010; Krustrup et al., 2006), rating of perceived 

exertion (10.4 – 14.8; Aslan et al., 2012; Roberts et al., 2010) and oxygen consumption 

(70-80% of V̇O2max; Bangsbo, Mohr & Krustrup, 2006; Coutts et al., 2003), which 

indicate a high reliance on both aerobic and anaerobic metabolism.  

 

Mechanical stresses imposed from team sport activity also elicit structural damage 

and soreness to the musculoskeletal system immediately, and in the days after, team 

sport activity (Keane, Salicki, Goodall, Thomas, & Howatson, 2015; Nedelec et al., 
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2014; Oxendale, Twist, Daniels, & Highton, 2016; Russell et al., 2016; Varley, Lewin, 

Needham, Thorpe & Burbeary, 2017). These psychophysiological responses are 

specific to the nature, intensity and duration of the task, and provide the stimulus for 

acute and chronic performance adaptations after single and repeated bouts of activity, 

respectively (Impellizzeri, Marcora & Coutts, 2019). However, exposure to such stimuli 

might increase the likelihood of fatigue and injury (Halson, 2014; Gabbett, 2016). 

Accordingly, consideration of both the movements and activities performed by athletes 

and their resulting psychophysiological responses are required to better control and 

optimize an individual’s adaptive response. 

 

1.2 Monitoring internal and external load in team sports 

The movements and activities performed by team sport athletes and the resulting 

psychophysiological response comprise loads that can be classified as external and 

internal. External load represents the physical work done during a training session or 

match (e.g. distance covered) and the internal load represents the 

psychophysiological and biomechanical response (Impellizzeri et al., 2019; 

Impellizzeri, Rampinini, & Marcora, 2005; McLaren et al., 2018; Vanrenterghem, 

Nedergaard, Robinson, & Drust, 2017). Quantifying external loads provides the coach 

with valuable information on the organisation, quality and quantity of exercise, that 

helps to understand the prescribed training and monitor physical adaptations 

(Cummins et al., 2013; Impellizzeri et al., 2019). This external load might also be used 

to assess the risk of overtraining and maladaptation, as greater amounts of high-speed 

running (Gabbett & Ullah, 2012) and accelerations performed (Bowen, Gross, Gimpel 

& Li, 2017) have been associated with an increased risk of non-contact soft-tissue 

injuries. The internal load is dependent on the training/fitness, nutritional and 
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psychological status of an individual (Delaney, Duthie, Thornton & Pyne, 2018; 

Impellizzeri et al., 2019) and their sex (Harmer et al., 2014; Hunter, 2016; Hunter, 

2014; Yoon, Doverl, Widule & Hunter, 2015). Due to the lack of a single or gold-

standard measure of external and internal load, these are quantified using a range of 

variables which describe an individual’s response to exercise (Impellizzeri et al., 

2019). 

 

Acute and chronic training adaptations are ultimately determined by the internal rather 

than the external load, and therefore internal load should be monitored (Impellizzeri et 

al., 2019; McLaren et al., 2018). However, in practice it is not always possible to 

measure internal load directly, due to the lack of readily available valid indicators 

(Impellizzeri et al., 2019) and/or the practical and methodological issues of quantifying 

these loads in applied contexts (Osgnach, Poser, Bernardini, Rinaldo, & di Prampero, 

2010). A greater external load often results in a greater internal load (Delaney et al., 

2018; Gaudino et al., 2015; Polglaze et al., 2018b). This forms the basis of the acute 

dose – response paradigm (Impellizzeri et al., 2005) whereby the dose represents the 

external load, and the response represents the internal load. Attention has therefore 

shifted into the assessment of external load using wearable microtechnology (global 

positioning systems [GPS] incorporating accelerometers, gyroscopes and 

magnetometers), which has become commonplace in running-based team sports 

(Akenhead, Hayes, Thompson & French, 2013; Cunningham et al., 2018; Dalen et al., 

2016; Hulin et al., 2015; Oxendale et al., 2016; Russell et al., 2016; Springham et al., 

2020; Strauss et al., 2019; Tee, Lambert, & Coopoo, 2016; Varley et al., 2014; 

Vescovi, 2016). These devices provide reliable (Johnston et al., 2014; Varley, 

Fairweather & Aughey, 2012) and valid (Jennings, Cormack, Cutts, Boyd & Aughey, 
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2010; Johnston et al., 2014; Nikolaidis, Clemente, van der Linden, Rosemann & 

Knechtle, 2018; Rampinini et al., 2015) assessment of distance and velocity-based 

variables below ~ 20 km.h-1, and have some physiological relevance, as the energy 

cost of constant speed running is influenced by distance covered (Brueckner et al., 

1991). However, the common use of arbitrary speed zones underestimates a 

significant proportion of distance covered by sprinting, compared with individualised 

speed zones (Hunter et al., 2015; Rago, Brito, Figueiredo, Krustrup, & Rebelo, 2020), 

which could impair the coach’s ability to make informed decisions on external training 

dose prescription. The assessment of external load using distance covered in speed 

zones only (e.g. Cunningham et al., 2018; Strauss et al., 2019) also fails to account 

for the numerous accelerations and decelerations performed during team sports. Such 

actions elicit a greater physiological response than constant speed running, such as a 

higher blood lactate concentration (Ashton & Twist, 2015; Buchheit, Bishop, Haydar, 

Nakamura, & Ahmaidi, 2010), oxygen consumption (Hatamoto et al., 2014) and heart 

rate (Akenhead, French, Thompson, & Hayes, 2014) in male and female team sport 

athletes. Measurement of accelerations and decelerations are therefore necessary for 

the accurate quantification of external load, which will subsequently affect an 

individual’s response to exercise (i.e. their internal load). 

 

Estimating the internal load of team sports from microtechnology derived accelerations 

and metabolic power equations has received recent attention (di Prampero & 

Osgnach, 2018; Osgnach et al., 2010). Briefly, metabolic power is a mathematically 

derived marker of external load (see Appendix 1.1 for calculation) based on the speed-

time profile of the athlete, and the assumption that estimated energy cost of 

accelerated/decelerated running on a flat terrain is equivalent to constant speed 
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running uphill/downhill (di Prampero et al., 2005; Osgnach et al., 2010). 

Measurements of internal load have demonstrated stronger associations with 

metabolic power derived variables (i.e. time/distance over high metabolic power 

threshold [>20 W∙kg-1]), in comparison to distance-based metrics (Delaney et al., 2018; 

Polglaze et al., 2018b). For example, Delaney et al. (2018) reported a stronger 

correlation between heart rate derived internal load and distance covered at high 

metabolic power during rugby league training, in comparison to distance covered at 

high speed (r = 0.92 cf. r = 0.67, respectively). Whilst this suggests metabolic power 

derived variables can better reflect internal load compared with traditional speed 

thresholds, the validity of metabolic power has been questioned (Brown, Dwyer, 

Robertson & Gastin, 2016; Buchheit et al., 2015; Highton, et al., 2017; Stevens et al., 

2015). Specifically, underestimations between estimated energy expenditure derived 

using the metabolic power approach with energy expenditure (EE) derived from V̇O2 

during team sport activity have been reported (~15 – 85%; Brown et al., 2016; Buchheit 

et al., 2015; Highton et al., 2017; Stevens et al., 2015). The variation in 

underestimation reported likely reflects the non-uniformity of protocols used, the use 

of inferior tracking devices below 10 Hz (Buchheit et al., 2015) that leads to 

questionable acceleration data (di Prampero & Osgnach, 2018), and the inappropriate 

comparison of measured V̇O2 (which includes the oxygen consumption value at rest) 

with the net estimated energy cost using metabolic power (above rest) (Osgnach et 

al., 2016). Previous comparisons of energy expenditure derived using the metabolic 

power approach and V̇O2 are therefore limited and contrast the strong associations 

between metabolic power and internal load. A more in-depth assessment of the validity 

of metabolic power during team sport activity and evaluation of causation between 
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externally derived metabolic power and internal load is required to fully understand its 

utility in the monitoring and assessment of team sport activity.  

 

1.3 Recovery after team sport activity 

An individual’s internal response to team sport activity can elicit fatigue and exercise-

induced muscle damage (EIMD) before returning to normal, collectively referred to as 

the recovery phase. Fatigue is characterised by an objective decline in performance 

(e.g. peak torque, CMJ/sprint performance) over a discrete period of time, whether or 

not the task can be continued (Bishop, 2012; Enoka & Duchateau, 2008, Enoka & 

Duchateau, 2016), whilst EIMD is characterised by stiffness and swelling of the 

muscles, a decreased force of muscular contraction and delayed onset muscle 

soreness (Byrne, Twist, & Eston, 2004). After team sport activity, symptoms of fatigue 

(Ashton & Twist, 2015; Behan, Willis, Pain, & Folland, 2018; Brownstein et al., 2017; 

Duffield et al., 2019; Goodall et al., 2017; Goodall, Charlton, Howatson, & Thomas, 

2015; Johnston, Gabbett, Jenkins & Hulin, 2015; Mullen, Twist, & Highton, 2019; 

Rampinini et al., 2011) and EIMD (de Hoyo et al., 2016; Gastin, Hunkin, Fahrner, & 

Robertson, 2019; Keane, Salicki, Goodall, Thomas, & Hotwatson, 2015; Nedelec et 

al., 2014; Oxendale et al., 2016; Russell et al., 2016; Souglis, Bogdanis, 

Chryssanthopoulos, Apostolidis, & Geladas, 2018; Twist, Waldron, Highton, Burt, & 

Daniels, 2012; Varley et al., 2017; Wiig, Raastad, Luteberget, Ims, & Spencer, 2019) 

are common in athletes immediately and for up to several days after team sport 

activity. Recovery from team sport activity is therefore considered biphasic (Garrett et 

al., 2019), with the immediate fatigue largely owing to a combination of central and 

peripheral factors (Minett & Duffield, 2014), and EIMD symptoms peaking at 

approximately 48 h post-exercise due to structural damage to myofibrils, disrupted 
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calcium homeostasis and inflammation (Hydahl & Hubal, 2014; Owens, Twist, Cobley, 

Howatson, & Close, 2019; Peake, Neubauer, Della Gatta, & Nosaka, 2017). 

 

Markers of fatigue and EIMD are known to be related to the external movements (i.e. 

total distance, high-speed distance, accelerations and changes of direction) performed 

by athletes during the initial exercise bout (Ashton & Twist, 2015; de Hoyo et al., 2016; 

Hader, Mendez-Villanueva, Ahmaidi, Williams, & Buchheit, 2014; Jones et al., 2014; 

Nedelec et al., 2014; Oxendale et al., 2016; Varley et al., 2017). For example, running 

with more changes of direction and accelerations can induce a more pronounced on-

set of fatigue (Ashton & Twist, 2015; Hader et al., 2014) and the magnitude of change 

in markers associated with EIMD has been positively associated with the number of 

sprints (Coppalle et al., 2019; Oxendale et al., 2016; Thorpe & Sunderland, 2012; 

Varley et al., 2017), accelerations (de Hoyo et al., 2016; Oxendale et al., 2016; Varley 

et al., 2017) and decelerations (de Hoyo et al., 2016; Oxendale et al., 2016) performed 

during the initial insult. Sex can also affect markers of fatigue as females have been 

reported to be less fatigable than males (Harmer et al., 2014; Hunter, 2016; Hunter, 

2014; Yoon et al., 2015). Conversely, sex has little to no effect on markers associated 

with EIMD (Hicks, Onambele, Winwood & Morse, 2017; Hubal & Clarkson, 2009).  

 

Studies which assess an individual’s response after team sport activity often use 

simulation protocols (e.g. Goodall et al., 2017; Twist & Sykes, 2011), given the high 

variability in high-speed running, accelerations and decelerations reported during 

team sports (Gregson, Drust, Atkinson, & Di Salvo, 2010; Harper, Carling, & Kiely, 

2019; Kempton, Sirotic, & Coutts, 2014). Whilst this provides some insight into an 

individual’s response to team sport activity, the protocols used are often based on 
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distance covered in arbitrary speed thresholds during team sports (Russell, Rees, 

Benton, & Kingsley, 2011; Savage, Lay, Wills, Lloyd, & Doyle, 2018; Sykes, Nicholas, 

Lamb, & Twist, 2013). As a result, such protocols might not adequately mimic the 

acceleration and deceleration demands of team sports, and therefore markers of 

fatigue and EIMD observed in the days after. The high variation in the number of 

accelerations and decelerations performed during team sports (Harper et al., 2019), 

also demonstrate further work is required to better understand how the systematic 

manipulation of the number of accelerations and decelerations influences an 

individual’s response to team sport activity. 

 

1.4 Acute physiological and biomechanical responses from team sport activity 

Impaired neuromuscular performance, i.e., lower CMJ height and slower sprint times, 

are evident in males (Behan et al., 2018; Brownstein et al., 2017; Duffield et al., 2019; 

Goodall et al., 2017; Lovell, Midgley, Barrett, Carter & Small, 2011; Rampinini et al., 

2011) and females (Andersson et al., 2008; Ashton & Twist, 2015; Krustrup, Zebis, 

Jensen & Mohr, 2010) after team sport activity. Given congested schedules, team 

sport athletes are therefore required to train or compete before a full recovery is 

achieved (Dupont et al., 2010; Johnston, Gabbett & Jenkins, 2013; Mohr et al., 2015). 

During this time, athletes might be most vulnerable to non-functional over-reaching 

and injury (Hogarth, Burkett, & McKean, 2015; Jones, Griffiths, & Mellalieu, 2017). 

Indeed, injuries are already a common occurrence in team sports, accounting for 7.7 

– 37.3 injuries per 1000 hours of match exposure (Lopez-Valenciano et al., 2020; 

Stovitz & Shrier, 2012). The most commonly injured anatomical region is the knee joint 

(Lopez-Valenciano et al., 2020; Yeomans et al., 2018) and injury to the anterior 

cruciate ligament (ACL) accounts for a considerable proportion of injuries to the knee 
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(20 – 25%; Joseph et al., 2013; Majewski, Susanne, & Klaus, 2006; Swenson et al., 

2013). ACL tears and ruptures are considered the most severe knee injury; accounting 

for the longest time to return to play (~236 days; Awwad, Coleman, Dunkley, & Dewar, 

2019). The rate of ACL injuries per exposure are also ~2 – 6 fold higher in females 

compared with males (Gray et al., 2019; Hewett et al., 2005; Stanley et al., 2016). 

 

Epidemiology studies demonstrate most ACL injuries occur during a non-contact side 

cutting manoeuvre (Koga et al., 2010; Olsen et al., 2004; Walden et al., 2015), and 

the risk of sustaining an ACL injury is partly related to an individual’s side cut 

biomechanics (Bencke et al., 2013; Besier, Lloyd, Cochrane, & Ackland, 2001; Collins, 

Almonroeder, Ebersole, & O’Connor, 2016; Dai et al., 2015; Iguchi, Tateuchi, 

Taniguchi, & Ichihashi, 2014; Imwalle, Myer, Ford, & Hewett, 2009; Kipp, McLean, & 

Palmieri-Smith, 2011; McLean, Huang, Su, & van den Bogert, 2004; Sanna & 

O’Connor, 2008). Briefly, limited trunk and lower limb flexion angles (Blackburn & 

Padua, 2009; Kipp et al., 2011; Walden et al., 2015), an abducted and internally 

rotated knee position (Kobayashi et al., 2010; Koga et al., 2010; Olsen et al., 2004; 

Walden et al., 2015), and knee abduction and internal tibial rotation moments (Kiapour 

et al., 2014; Myer et al., 2015; Shin, Chaudhari & Andriacchi, 2011) are key 

biomechanical factors contributing to ACL injury. Females have displayed less knee 

flexion (McLean, Lipfert & Van den Bogert, 2004; Weinhandl, Irmischer, Sievert & 

Fontenot, 2017) and higher knee abduction moments (Sigward & Powers, 2006; 

Weinhandl et al., 2017) compared with males during a side cut, which partly explain 

the greater prevalence of ACL injuries in females (Stanley et al., 2016). Practically, 

these data can be used to help identify athletes who are at greater risk of sustaining 

an ACL injury and to inform ACL injury preventative interventions.  
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Fatigue can influence the biomechanics of side cuts and could therefore be considered 

a mechanism of ACL injury. Specifically, athletes can adopt a more upright side cutting 

position when fatigued (Cortes et al., 2013; Khalid et al., 2015; Lucci, Cortes, Van 

Lunen, Ringleb, & Onate, 2011; McGovern et al., 2015; Raja Azidin, Sankey, Drust, 

Robinson & Vanrenterghem, 2015) and can display changes in vertical ground 

reaction force (GRF) and sagittal joint loading (Iguchi et al., 2014; Khalid et al., 2015; 

Savage et al., 2018). Whilst some have reported fatigue-induced alterations in frontal 

plane biomechanics (Collins et al., 2016; Tsai, Sigward, Ollard, Fletcher & Powers, 

2008), others have reported no change (Raja Azidin et al., 2015; Sanna & O’Connor, 

2008). Similarly, it is not clear if transverse plane biomechanics are affected by fatigue 

(Lucci et al., 2011; Tsai, et al., 2008) or not (Collins et al., 2016; Savage et al., 2018) 

during a side cut. While thought to provide a role, how fatigue specifically influences 

the biomechanics of side cuts and subsequent ACL injury risk remains unclear. 

Furthermore, few studies have assessed the interaction between sex and fatigue on 

side cut biomechanics (Iguchi et al., 2014; Khalid, Sujae, Loke, Hamill, & Xingda, 

2015; McGovern et al., 2015), so it is unclear if consistent interactions between sex 

and fatigue exist. Discrepancies amongst the literature likely reflect the non-uniformity 

of fatigue protocols, ranging from repetitive explosive movements such as vertical 

jumps combined with sprints (Lucci et al., 2011; Tsai et al., 2008) to 60 minutes of 

intermittent shuttle running over 20 m (Collins et al., 2016; Sanna et al., 2008). Few 

studies have used protocols which incorporate numerous accelerations and 

decelerations that occur during team sports (Akenhead et al., 2013; Russell et al., 

2016; Springham et al., 2020; Varley et al., 2014). As recovery after team sport activity 

is dependent on the external movements performed (de Hoyo et al., 2016; Jones et 
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al., 2014; Nedelec et al., 2014; Oxendale et al., 2016; Varley et al., 2017), research 

utilising fatigue protocols which mimic the external movements of team sports are 

warranted to fully understand how side cut mechanics are altered after team sport 

activity. This is important because critical information on fatigue-induced alterations to 

side cut biomechanics after team sport activity can help inform ACL screening and 

preventative programmes, with the ultimate goal of reducing ACL incidence rates. 

 

Few studies have examined if side cut mechanics are altered in the days after team 

sport activity when athletes experience symptoms of EIMD. During this time, 

decrements in hamstring torque are common (Draganidis et al., 2015; Twist & Sykes, 

2011; Wollin, Thorborg & Pizzari, 2017) and could increase risk of an ACL injury, as 

the hamstrings play a crucial role in stabilising the knee joint during valgus and internal 

rotation moments (Besier, Lloyd & Ackland, 2003). Indeed, alterations to sagittal plane 

walking and running biomechanics after EIMD are evident (Chen, Nosaka, Lin, Chen 

& Wu, 2009; Dutto & Braun, 2004; Paquette, Peel, Schilling, Melcher & Bloomer, 2017; 

Tsatalas et al., 2013a; Tsatalas et al., 2013b; Paschalis et al., 2007a). However, 

cutting manoeuvres place a greater emphasis on transverse and frontal mechanics 

compared with straight running (Besier et al., 2001), and running does not place 

sufficient loading on the ACL required to identify ACL injury mechanisms 

(Vanrenterghem et al., 2012). To date, only one study has explored the effect of EIMD 

on side cut mechanics (Snyder, Hutchison, Mills, & Parsons, 2019), reporting an 

increase in posterior GRF and anterior tibial shear force after muscle damaging 

exercise. Whilst this suggests EIMD could have implications for ACL injury risk, a more 

in-depth assessment of side cut biomechanics in the days after team sport activity, 

when symptoms of EIMD exist, would develop current knowledge on how EIMD alters 
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side cut biomechanics. This might also help identify whether or not EIMD indirectly 

contributes to ACL injury risk. 

 

1.5 Summary 

Team sports are multi-directional and involve repeated high-intensity efforts performed 

over short distances. Therefore, measurements of distance covered in arbitrary 

defined speed zones fail to account for the numerous accelerations and decelerations 

performed during team sports, which also elicit a greater psychophysiological 

response. Further consideration over the assessment of external load, and how this 

affects an individual’s response to exercise is required to improve the assessment of 

external load. Measurements of metabolic power, in particular, have demonstrated 

stronger relationships with an athlete’s internal response when compared with high 

speed distance covered. Metabolic power might therefore better reflect multi-

directional movements than high speed distance covered, yet further investigation of 

its utility to reflect an individual’s internal response is still required. The specific 

external movements performed by athletes are also related to the magnitude of fatigue 

and EIMD experienced during the biphasic recovery period after team sport activity. 

During this time, athletes might be more susceptible to severe injuries, with injuries to 

the knee joint, specifically the ACL during a side cut, being a common occurrence in 

team sport athletes. Indeed, exercise-induced fatigue can cause alterations in the 

biomechanics of side cuts, but discrepancies in the literature still exist, due to the non-

uniformity of fatigue protocols used. The effect of EIMD on side cut biomechanics has 

also received limited attention, but might provide further insight into ACL injury 

mechanisms, given that EIMD persists in the days after team sport activity and can 

impair neuromuscular function and alter walking and running biomechanics. A 
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summary of the current understanding (black text) of how the external and internal 

demands of team sports interact, and the physiological and biomechanical responses 

during the recovery process are presented in Figure 1.1. The red text denotes areas 

where the current thesis will attempt to contribute new knowledge to the topic area.  

 

Figure 1.1 Proposed framework of the internal and external demands of team 

sports, and the subsequent acute physiological and biomechanical responses during 

the recovery process, in relation to anterior cruciate ligament (ACL) injury risk. The 

red ink denotes topic areas the thesis will explore and which chapter of the thesis 

each area has been explored (i.e. C4 represents Chapter 4). COD = change of 

direction, DOMS = delayed on-set of muscle soreness, HR = heart rate, RPE = rating 

of perceived exertion ↓ = decrease 
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1.6 Aims  

This thesis focuses on the central theme of understanding the physiological and 

biomechanical responses to multi-directional running in male and female team sport 

players. The aims were: (1) to assess the utility of metabolic power compared with 

traditional speed based thresholds to quantify the external movements of linear and 

multi-directional running; (2) to examine how the systematic manipulation of the 

number of directional changes performed during running influences the internal load, 

the utility of metabolic power using integrated ratios, and neuromuscular function 

immediately after; (3) to examine the acute biomechanical adaptations in side cut 

mechanics as a result of fatigue in males and females; and (4) to examine how EIMD 

after multi-directional running alters the biomechanics of side cuts in males and 

females. 

 

1.7 Organisation of the thesis 

Chapter 2 of this thesis offers a review of the literature relating to the internal and 

external demands of team sports, fatigue and muscle damage after team sport activity, 

the biomechanical mechanisms and assessment of ACL injuries and the effect of 

fatigue and muscle damage on ACL injury risk in both males and females. Chapter 3 

is a General Methods that details common procedures used throughout the four 

empirical data chapters. Thereafter, four empirical chapters are presented that seek 

to address the aforementioned aims of this body of work (see section 1.6). Chapter 4 

examines the assessment of external load during linear and multi-directional running 

and Chapter 5 examines whether changes in external load can reflect changes in 

internal load between linear and multi-directional running, using integrated ratios. 

Chapters 6 and 7 assess the biomechanics of side cuts using 3D motion capture after 
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multi-directional running induced fatigue (Chapter 6) and with symptoms of EIMD 

(Chapter 7). Finally, Chapter 8 presents conclusions on how the external and internal 

demands of linear and multi-directional running are related, and the implications for 

ACL injury risk during recovery from multi-directional running, detailing the implications 

for practitioners and recommendations for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

16 

Chapter 2 

Literature Review 

2.1 Introduction 

The purpose of this Chapter was threefold. Firstly, to review the literature describing 

the external and internal demands of team sports; secondly, to review markers of 

fatigue and muscle damage after team sport activity; and finally, to evaluate the 

effect of fatigue and muscle damage from team sport activity on ACL injury risk. 

 

2.2 The internal and external demands of team sport activity 

The use of GPS incorporating accelerometers, gyroscopes and magnetometers 

(collectively referred to as microtechnology) to quantify the movements of team sports 

is routine in research and applied practice. Data on durations, player velocities, 

distances covered, accelerations and sport specific actions can be calculated. This 

information allows for greater understanding of the physical demands of match-play 

(Dalen et al., 2016), which can be used to profile successful performance (Gabbett, 

2013) and minimise injury risk (Gabbett, 2016). However, external demands used in 

isolation do not provide an indication of an individual’s psychophysiological response 

to training (Delaney et al., 2018). Internal measures such as heart rate (HR) (Cunniffe, 

Proctor, Baker & Davies, 2009; Lythe & Kilding, 2011) and blood lactate concentration 

(B[La]) (Aslan et al., 2012; Krustrup, Zebis, Jensen & Mohr, 2010) have therefore been 

quantified during team sport activity. Given the practical and methodological issues of 

taking internal measures during competition (e.g. Alexandre et al., 2012), methods of 

estimating the internal demands of sport from external load has received recent 

attention (di Prampero & Osgnach, 2018; Osgnach et al., 2010). Yet, it is unclear 

whether the external demands of team sport activity reflect the internal demand 
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imposed on athletes. Therefore, the following sections of this Chapter will detail the 

internal and external demands of team sports, as well as their relationship.  

 

2.2.1 External movement demands of team sports 

The movements of team sports using microtechnology have been extensively 

researched (see reviews by Cummins, Orr, O’Connor & West, 2013; Hausler, Halaki 

& Orr, 2016) and are therefore discussed briefly here. Team sports involve frequent 

bouts of high intensity activity interspersed with prolonged periods of low intensity 

activity. The total distance covered typically ranges between 3 – 12 km, equating to 

53 – 131 m·min-1 (Table 2.1). Approximately 200 – 1,800 m (1.4 – 10 m·min-1) are 

performed at high speed, which can exceed 20 m·min-1 (Table 2.1) and occur during 

pivotal moments during a match (Faude, Koch, & Meyer, 2012). The range of values 

reported is likely explained by differences in rules for each sport (Varley et al., 2014), 

differences in position specific demands (e.g. Dalen et al., 2016; Jones, West, 

Crewther, Cook, & Kilduff, 2015), field position (Gabbett, Polley, Dwyer, Kearney, & 

Corvo, 2013), formation (Tierney, Young, Clarke, & Duncan, 2016), the classification 

of high speed running (> 4 – 5.8 m·s-1; Table 1) and differences in playing time (e.g. 

soccer: 95.3 ± 1.8 cf. rugby league: 64.9 ± 18.8 min; Varley et al., 2014). Given the 

latter, reporting relative distances covered allows for more appropriate comparisons 

between sports (Cummins et al., 2013), and might be more representative of a player’s 

actual workload (Aughey, 2010). However, factors such as formation and field position 

can still change from match-to-match and might partly explain the high variability in 

high speed running and sprinting reported during team sports (CV: 13.3 – 30.8 %; 

Gregson et al., 2010; Kempton et al., 2014).  
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The number of accelerations and decelerations performed during team sports has 

been quantified, given that these actions are an important aspect of team sport 

performance (Brughelli, Cronin, Levin & Chaouachi, 2008). A wide range of 

accelerations (5 – 650; Table 2.1), decelerations (8 – 610; Table 2.1) and changes of 

direction (~12 ± 5 – 727 ± 203; Bloomfield, Polman, & O’Donoghue, 2007; Nedelec et 

al., 2014) have been reported, which likely reflects the varied classifications of 

acceleration actions (> 0.5 – > 3 m·s-2; Table 2.1). The high frequency of accelerations 

demonstrates the intermittent nature of team sports, which is associated with an 

increased physiological strain (Akenhead et al., 2014). Measures of high speed and 

accelerations might therefore provide a more comprehensive indication of the high 

intensity demands of team sports than measures of high speed alone (Dubois et al., 

2017). In agreement, recent studies have demonstrated speed-based parameters are 

not appropriate for the classification of team sport activity, and instead suggest the 

use of metabolic power derived variables, such as distance covered at high metabolic 

power threshold (Polglaze et al., 2018b). Collectively, these data highlight the overall 

work-rate, high speed and accelerations demands of team sports, which provide useful 

guidelines for practitioners to follow when designing conditioning programmes 

(Waldron et al., 2011).  

 

 



 

 

19 

Table 2.1 The external demands of team sports using microtechnology 

Study  Total distance (m) 

(Relative distance; 

m·min-1) 

High speed (HS) 

distance (m) 

(Relative distance; 

m·min-1) 

Accelerations (n)  

(Relative 

accelerations; n 

·min-1) 

Decelerations (n) 

(Relative 

decelerations; n 

·min-1) 

Comments 

Football 
Akenhead et 

al. (2013) 

 

10,451 ± 760  

 

505 ± 209 

  

 

178 ± 38 

 

 

162 ± 29 

 

10 Hz GPS, HS > 5.8 

m·s-1. Accelerations >3 

m·s-2 

Wehbe et al. 

(2014) 

~9,642.6 – 

10,769.6 (~104.7 - 

116.1) 

~589.1 - 716.7 Medium accels: 

~79.8 - 114.4 

High accels: ~4.8 - 

8.0 

Medium decels: 

~101.6 - 136.3 

High decels: ~16.0 

- 32.1 

5 Hz GPS, HS > 19.8 

km·h-1. Medium 

accelerations = 2.5 - 4 

m·s-2. High accelerations 

> 4 m·s-1 

Varley et al. 

(2014) 

10,274 ± 946        

(104 ± 10) 

517 ± 239            

(5.42 ± 2.49) 

65 ± 21                

(0.68 ± 0.22) 

- 5 Hz GPS, HS > 5.5 m·s-

1. Accelerations > 2.78 

m·s-2 

Suarez-

Arrones et al. 

(2015) 

(~103.7 - 127.7) HS: (~7.6 - 15.7) 

Sprint: (~3.3 - 7.6) 

- - Data is during the first 

half only, 5 Hz GPS.                

HS > 18 km·h-1, Sprint > 

21 km·h-1 

Dalen et al. 

(2016) 

11,046 ± 1,015 HS: 847 ± 349 

Sprint: 214 ± 130 

76 ± 22 54 ± 16 20 Hz RadioEye sensor, 

HS = 19.8 – 25.2 km·h-1, 

Sprint > 25.2 km·h-1. 

Accelerations > 2 m·s-2 

Russell et al. 

(2016) 

~ 9,457               

(~103) 

~487  Total: ~656 

HI accels: ~26 

Total: ~612 

HI decels: ~43 

10 Hz GPS, HS > 5.5 

m·s-1. Accelerations > 0.5 

m·s-2 and HI 

accelerations > 3 m·s-2 

Continued on next page 
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Table 2.1. Continued 

Continued on next page 

Study  Total distance  

(Relative distance; 

m·min-1) 

High speed (HS) 

distance (m) 

(Relative distance; 

m·min-1) 

Accelerations (n)  

(Relative 

accelerations; n 

·min-1) 

Decelerations (n)  

(Relative 

decelerations; n 

·min-1) 

Comments 

Tierney et al. 

(2016) 

10,131 ± 583 497 ± 175 33 ± 10 49 ± 14 Based on a 4-4-2 playing 

formation, 10 Hz GPS 

HS > 19.8 km·h-1 and 

accelerations > 3 m·s-2 

Springham et 

al. (2020) 

10,604 ± 1,180 752 ± 237.1 101 ± 25.6 112 ± 28.5 HS = distance covered 

between 5.5 m·s-1 and 

80% of individual max 

speed. Accelerations > 3 

m·s-2 

Female 
football 
Trewin et al. 

(2018) 

 

10,368 ± 952        

(108 ± 10) 

 

930 ± 348              

(9.7 ± 3.7) 

 

174 ± 33              

(1.82 ± 0.35) 

 

- 

 

10 Hz GPS,                    

HS > 4.58 m·s-1 and 

accelerations > 2.26 m·s-

2 

Strauss et al. 

(2019) 

5,567 – 6,065  

(74 – 87) 

(3.6 – 5.7) - - 10 Hz GPS, HS > 4.4 

m·s-1                    

Rugby 
League 
Waldron et al. 

(2011) 

 

4,181 – 6,917       

(89-95) 

 

119 - 316 

 

- 

 

- 

 

5 Hz GPS, HS > 21 m·s-1 

Gabbett et al. 

(2012) 

3,569 – 6,819 (93-

101) 

235 - 583 - - 5 Hz GPS, HS > 5 m·s-1 

Austin & Kelly 

(2013) 

4,597 – 8,500         

(82 - 102) 

432 - 749 - - 5 Hz GPS, HS > 18 km·h-

1 
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Table 2.1. Continued 

 
Study  Total distance (m) 

(Relative distance; 

m·min-1) 

High speed (HS) 

distance (m) 

(Relative distance; 

m·min-1) 

Accelerations (n)  

(Relative 

accelerations; n 

·min-1) 

Decelerations (n) 

(Relative 

decelerations; n 

·min-1) 

Comments 

Varley et al. 

(2014) 

6,276 ± 1,950        

(97 ± 16) 

327 ± 168              

(4.9 ± 2.1) 

71 ± 38                  

(1.1 ± 0.56) 

- 5 Hz GPS, HS > 5.5 m·s-

1. Accelerations > 2.78 

m·s-2 

Kempton et 

al. (2015) 

~4,289 – 7,298 

(~83 - 91) 

 

~274 - 695 ~51.6 - 78.3 ~59.6 - 93.3 5 Hz GPS,                        

HS > 18.1 km·h-1. 

Accelerations > 2.78 m·s-

2 

Hulin et al. 

(2015) 
Successful:          

(~67 - 68) 

Unsuccessful:     

(~88 - 92) 

Successful: (~2 - 5) 

Unsuccessful:        

(~6 - 7) 

- - 10 Hz GPS, HS > 5 m·s-1 

Oxendale et 

al. (2016) 
~4,675 – 5,640     

(~81.9 – 83.2) 

~306.5 – 481.4 

(~5.1-6.6) 

~4.7 – 9.1 ~8.4 – 9.6 10 Hz GPS, HS > 18 

km·h-1. Accelerations > 

2.79 m·s-2 

Rugby Union 
Jones et al. 

(2015) 

 

~4,746 – 6,436    

(~52.7 – 71.7) 

 

~102 – 642         

(~1.4 – 6.8) 

 

~ 93.8 

 

~ 54.2 

 

10 Hz GPS, HS > 5 m·s-1. 

Accelerations > 3 m·s-2 

Reardon et 

al. (2015) 
~5,638.6 – 6,171.3 

(~71.6 – 81.0) 

~290.4 – 672.6 

(~3.77 – 8.67) 

- - 10 Hz GPS, HS > 5 m·s-1 

Tee et al. 

(2016) 
5,050 ± 1,636        

(69 ± 8)  

Striding: (10 ± 4) 

Sprinting: (2.4 ± 

1.9) 

1 every 6 ± 10 min  5 Hz GPS, Striding: 4-6 

m·s-1, Sprinting > 6 m·s-1. 

Accelerations > 2.75 m·s-2 

Cunningham 

et al. (2018) 

(106.7 ± 15.0) (20.9 ± 13.5) - - 10 Hz GPS, HS > 5 m·s-1 

Worst case scenario over 

240 s period 

Continued on next page 
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Table 2.1. Continued 

 

Study  Total distance (m) 

(Relative distance; 

m·min-1) 

High speed (HS) 

distance (m) 

(Relative distance; 

m·min-1) 

Accelerations (n)  

(Relative 

accelerations; n 

·min-1) 

Decelerations (n) 

(Relative 

decelerations; n 

·min-1) 

Comments 

Hockey  
Jennings et 

al. (2012) 

 

~9,453 – 10,160 

 

~1,734 – 2,554 

 

- 

 

- 

 

5 Hz GPS, HS > 4.17 m·s-

1 

Polglaze et 

al. (2015)  
6,095 ± 938          

(131 ± 11) 

- - - 10 Hz GPS 

Female 
Hockey  
Vescovi 

(2016) 

 

 

2,817 – 5,626        

(97 - 116) 

 

HS: 310 – 580       

Sprinting: 62 - 134 

 

 

- 

 

- 

 

5 Hz GPS, HS = 16.1 – 20 

km·h-1. Sprinting > 20.1 

km·h-1 

GPS = global positioning system, HS = high speed, HI = high intensity, accels = accelerations, decels = decelerations. 
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2.2.2 Validity and reliability of external movement demands assessed using 

microtechnology 

The first commercially available GPS units, sampling at 1 Hz, demonstrated high 

between trial variance for high speed movements (CV: 11.2 – 32.4 %; Coutts & 

Duffield, 2010) and high errors (CV: 9.6 – 32.4 %) during shorter movement distances 

ranging from 10 to 40 m (Jennings, Cormack, Cutts, Boyd & Aughey, 2010), and are 

therefore not discussed further.  

 

Measures of total distance have demonstrated an acceptable level of accuracy (CV: 

1.3 – 2.8 %) using 5 and 10 Hz GPS units (Nikolaidis et al., 2018; Rampinini et al., 

2015). However, 10 Hz GPS units have demonstrated superior accuracy for 

measuring distance covered at high speed (CV: 4.7 cf. 7.5 %; Rampinini et al., 2015), 

instantaneous speed during constant velocity running (CV: 3.1 – 8.3 % cf. 3.6 – 11.1 

%; Varley, Fairweather & Aughey, 2012) and accelerations (CV: 3.6 – 5.9 % cf. 7.1 – 

14.9 %; Varley, et al., 2012) in comparison to 5 Hz devices. In addition, 10 Hz devices 

are up to six-fold more reliable (CV: 1.9 – 6.0 %) than 5 Hz devices (CV: 6.3 – 31.8 

%) for assessing instantaneous speed (Varley et al., 2012). Whilst these data reaffirm 

the sampling rate limits the accuracy of reported distances and running velocities 

(Jennings et al., 2010), it is noteworthy that Johnston et al. (2014) reported 10 Hz 

Catapult units demonstrated greater reliability for distances covered at low to high 

speeds (CV: 1.7 – 4.8 %) in comparison to 15 Hz GPSport devices (CV 2.0 – 7.6 %). 

GPS units sampling at 10 – 15 Hz have also demonstrated less than favourable 

reliability (CV: 11.5 – 12.1 %; Johnston et al., 2014) and validity (CV: 10.5 %; 

Rampinini et al., 2015) during high speed running over 20 km.h-1. Collectively, whilst 

a higher sampling rate can typically improve the reliability and validity of GPS metrics, 
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factors such as model of device should be considered (Johnston et al., 2014). 

Moreover, it might be beneficial to classify the lower band of high-speed running as 

less than 20 km·h-1 to improve the reliability and validity of these movements 

measured using microtechnology.  

 

The validity of GPS distance and speed metrics are also dependent on the number of 

directional changes during running. Specifically, the validity (CV: 2 – 3.9 % cf. CV: 1.3 

– 2.2 %; Nikolaidis et al., 2018) and reliability (CV: 4.6 – 5.3 cf. 5.3 – 6.7 %; Portas, 

Harley, Barnes & Rush, 2010) of GPS distance measurements can be reduced during 

running with more directional changes. Movement over shorter (5 – 15 m) compared 

with longer (20 – 30 m) distances can also reduce the accuracy of GPS distance (CV: 

10.9 cf. 5.1 %; Castellano, Casamichana, Calleja-Gonzalez, San Roman & Ostojic, 

2011) and speed metrics (11.9 ± 11.3 % cf. 6.6 ± 3.5 %; Beato, Bartolini, Ghia & 

Zamparo, 2016). However, the mean difference between actual and 10 Hz GPS 

distances during running with changes of direction (-2.16 – 2.13 m; Nikolaidis et al., 

2018; Rawstorn et al., 2014) is deemed acceptable for monitoring training and 

performance.  

 

GPS housed accelerometers have demonstrated a favourable level of reliability for 

measuring PlayerLoadTM during dynamic tasks (CV: 0.9 – 1.9 %; Boyd, Ball & Aughey, 

2011) and peak gravitational accelerations during impacts (CV: 1.9 – 2.2 %; Kelly, 

Murphy, Watsford, Austin & Rennie, 2015). Accordingly, accelerometers can be used 

to detect changes in activity with confidence (Scott, Scott & Kelly, 2016). However, the 

validity of accelerometers to measure peak acceleration during high frequency 

movements is less favourable (CV: 28 – 35 %; Kelly et al., 2015), and consistently 
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measured a lower magnitude of acceleration during both static and dynamic testing, 

compared with a criterion. Whilst caution is recommended when measuring the 

absolute magnitude of peak acceleration, future research exploring the agreement 

between accelerometer and criterion derived acceleration could inform the possibility 

of a correction equation to improve the validity of peak acceleration.  

 

2.2.3 Comtemporary metrics used to monitor external load 

2.2.3.1 PlayerLoadTM 

PlayerLoadTM (also referred to as Body Load or Dynamic Stress Load) provides a 

summative measure of acceleration, from a tri-axial accelerometer which typically 

operates at 100 Hz (Vanrenterghem et al., 2017). Recent studies used PlayerLoadTM 

to quantify typical profiles during team sports. Specifically, values ranging from 544 to 

717 AU, equating to ~8.7 – 13.2 PL.min-1, have been reported (Gabbett, 2015; 

Polglaze, Dawson, Hiscock & Peeling, 2015; McLaren, Weston, Smith, Cramb & 

Portas, 2015). Whilst Dalen and colleagues (2016) reported higher PlayerLoadTM 

values during football (13,327 ± 2,197 AU), differences in the calculation of 

PlayerLoadTM (see Appendix 2.1) partly explain such differences. 

 

Studies have demonstrated total distance covered (R2 = 52 – 74 %; Polglaze et al., 

2015; Casamichana, Castellano, Calleja-Gonzalez, San Roman & Castagna, 2013), 

accelerations (R2 = 7 – 10 %; Dalen et al., 2016) and decelerations (R2 = 5 – 7 %; 

Dalen et al., 2016) explain a considerable proportion of the variance in total 

PlayerLoadTM. Decrements in total PlayerLoadTM are also evident from the first half to 

the second half of match-play (Dalen et al., 2016), which is consistent with between-

half decrements in high speed running and accelerations (Russell et al., 2016). These 
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data demonstrate the utility of PlayerLoadTM to estimate the biomechanical load of the 

whole body (Vanrenterghem et al., 2017), which can discriminate between different 

playing standards (Cormack, Smith, Mooney, Young & O’Brien, 2014). However, the 

ability of PlayerLoadTM to reflect whole-body external load is dependent on the 

approach speed and angle of directional changes (Nedergaard et al., 2017), which 

might make comparisons of PlayerLoadTM between different movement patterns 

inappropriate.  

 

2.2.3.2 Metabolic Power 

Metabolic power assumes that energy expenditure can be estimated based on the 

equivalence of an accelerating frame of reference (i.e. a runner’s centre of mass) with 

the Earth’s gravitational field (di Prampero et al., 2005). This is calculated on the 

assumption that the energetic cost of accelerative running is equivalent to constant 

speed running, up an equivalent slope, while carrying an additional mass (di Prampero 

et al., 2005), as detailed in Appendix 1.1. 

 

Recently, metabolic power derived variables have been used to quantify the demands 

of team sports, as it can estimate the metabolic requirement of activities where speed 

is constantly changing (Osgnach et al., 2010). Estimated energy expenditure using 

metabolic power ranges from 14.4 to 65.6 kJ.kg-1 during team sport match-play (Coutts 

et al., 2015; Dubois et al., 2017; Kempton, Sirotic, Rampinini, & Coutts, 2015; 

Polglaze, Dawson, Buttfield, & Peeling, 2018a; Vescovi, 2016; Walker, McAinch, 

Sweeting, & Aughey, 2016). The range of values likely reflects sport and position 

specific movements (see section 2.2.1), and the higher metabolic requirement of 

collision-based activities (Highton, Mullen, Norris, Oxendale, & Twist, 2017). 
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Measures of average metabolic power (~5 – 11 W.kg-1; Coutts et al., 2015; Dubois et 

al., 2017; Kempton et al., 2015; Polglaze et al., 2018a; Vescovi, 2016) and time (5.0 

– 12.2 min; Coutts et al., 2015; Kempton et al., 2015; Polglaze et al., 2018a) or 

distance covered (571 – 1745; Dubois et al., 2017; Kempton et al., 2015; Polglaze et 

al., 2018a) at high metabolic power (> 20 W.kg-1) have also been reported to provide 

an indication of the average and high-intensity energetic demands of team sports. 

These data reaffirm the intermittent nature of team sports and provide information on 

the total contribution of high intensity efforts during match-play. When comparing 

metabolic power to traditional variables, high metabolic power is ~ 27 – 62 % higher 

than high speed distance covered (Dubois et al., 2017; Hoppe, Baumgart, Slomka, 

Polglaze, & Freiwald, 2017; Kempton et al., 2015; Polglaze et al., 2018a), which 

suggests velocity categories might underestimate the high intensity demands of team 

sports (Gaudino et al., 2013). Accordingly, measures of metabolic power might provide 

a more informative alternative to analyse high intensity activity (Dubois et al., 2017; 

Gaudino et al., 2013). However, the validity of metabolic power may question its use 

within team sports. 

 

2.2.3.3 Validity of metabolic power 

Several studies have reported varying underestimations between estimated energy 

expenditure derived using the metabolic power approach with energy expenditure 

(EE) derived from V̇O2 during team sport activity (~15 – 57 %; Brown, Dwyer, 

Robertson, & Gastin, 2016; Highton, et al., 2017; Stevens et al., 2015). This variation 

in underestimation likely reflects differences in the intermittent nature of protocols 

used, as Buchheit and colleagues (2015) found the underestimation of EE was 

particularly prevalent during stationary recovery periods (~85 %; Buchheit, 
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Manouvrier, Cassiram, & Morin, 2015). In theory, when athletes are stationary 

metabolic power derived EE would be zero as forward acceleration would be zero. 

This fails to consider the contribution of excess post-exercise oxygen consumption 

(EPOC) to the overall energy cost of exercise during stationary periods (Tabata et al., 

1997). Conversely, overestimations in metabolic power derived EE have been 

reported during continuous constant speed running (6 – 11 %; Stevens et al., 2015), 

emphasising that metabolic power derived energy expenditure only accounts for the 

EE attributable to locomotion (Polglaze & Hoppe, 2019) and is influenced by the 

intermittentness of protocols. However, it is not clear how the systematic manipulation 

of directional changes can influence the agreement of estimated and measured EE. 

Furthermore, whilst time at high metabolic power has demonstrated stronger 

associations with an individual’s internal response to exercise, compared with 

measures of high speed (see section 2.2.5 and Table 2.2), further research is required 

to investigate whether high metabolic power better reflects the internal response to 

running in comparison to high speed. 

 

2.2.4 Internal demands of team sports 

Average HR ranges from 156 to 172 b·min-1 during football (Aslan et al., 2012; Coelho, 

et al., 2010; Eniseler, 2005; Thatcher & Batterham, 2004), hockey (Lythe & Kilding, 

2011), rugby league (Coutts, Reaburn & Abt, 2003; Waldron et al., 2011) and rugby 

union (Cunniffe et al., 2009). This equates to ~80-88 % of maximum heart rate (HRmax) 

(Aslan et al., 2012; Cunniffe et al., 2009; Dubois et al., 2017; Iacono, Martone, Cular, 

Milic & Padulo, 2017; Lythe & Kilding, 2011; Waldron et al., 2011) and 70-80 % of 

V̇O2max (Bangsbo, Mohr & Krustrup, 2006; Coutts et al., 2003), based on the linear 
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relationship between HR and oxygen uptake (Coelho et al., 2010). These data indicate 

a high reliance on aerobic metabolism during team sports.  

 

Studies which have assessed HR in accordance with pre-defined zones have 

demonstrated HR typically remains above 70 % HRmax, whilst players spend ~19 – 

51% of match time above 85 % HRmax (Coelho et al., 2011; Coutts et al., 2003; Dubois 

et al., 2017), which corresponds to the anaerobic threshold (Coelho et al., 2011; 

Stolen, Chamari, Castagna & Wisloff, 2005). Others have reported summated HR 

(e.g., 242 – 435 AU; Waldron et al., 2011), which places greater weighting on higher 

HRs. Measures of estimated energy expenditure based on HR have also been 

reported during team sports ranging from 1100 to 2000 kcal (Coelho et al., 2010; 

Coutts et al., 2003; Cunniffe et al., 2009; Osgnach et al., 2010). Collectively, these 

findings suggest team sports incur a high metabolic cost. However, estimated energy 

expenditure derived from GPS was lower than those reported using HR (Coutts et al., 

2003; Cunniffe et al., 2009), indicating metabolic variables derived from GPS might 

underestimate the actual energy cost of team sport activity (see section 2.2.3.3). 

 

Blood lactate concentration (B[La]), both during and after team sports has been 

reported to assess the metabolic demands from anaerobic glycolysis. Studies have 

documented average B[La] values between 3 – 8 mmol·L-1 during team sports (Aslan 

et al., 2012; Coutts et al., 2003; Deutsch, Maw, Jenkins & Reaburn, 1998; Krustrup et 

al., 2010; Krustrup et al., 2006). Typically, B[La] is lower during the second half of a 

match compared with the first half (2.7 – 5.9 cf. 4.5 – 8.4 mmol·L-1; Aslan et al., 2012; 

Coutts et al., 2003; Krustrup et al., 2010; Krustrup et al, 2006) which might be 

indicative of a limited availability of muscle glycogen, compromising energy turnover 
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from glycolysis (Nielsen et al., 2012). B[La] responses after team sport activity are also 

dependent on position. Specifically, B[La] responses after rugby league were higher 

in forwards compared to backs (8.5 cf. 6.5 mmol·L-1; Coutts et al., 2003) and values 

of 3.2, 4.0 and 4.6 mmol·L-1 have been reported during a football match for the 

defenders, midfielders and forwards, respectively (Aslan et al., 2012). These findings 

reflect the differences in movement demands for specific positions within team sports 

(see section 2.2.1) and indicate the rate of anaerobic glycolysis during field-based 

team sports is high. 

 

Borg’s rating of perceived exertion (RPE) scale, ranging from 6 – 20 (Borg, 1970), and 

the modified session RPE scale, ranging from 0 – 10 (Foster et al. 1995), have been 

implemented to assess the global physical and psychological stress of the most recent 

exercise intensity and the whole session, respectively (Impellizzeri, Rampinini, Coutts, 

Sassi, & Marcora, 2004). RPE and session RPE values during team sport activity 

range from 10.4 – 14.8 and 4 – 7 AU, respectively (Aslan et al., 2012; Casamichana, 

Castellano, Calleja-Gonzalez, San Roman, & Castagna, 2013; Impellizzeri et al., 

2004; Roberts et al., 2010) which corresponds to “light – hard” perceived intensity. 

Interestingly, a progressive increase in RPE from the first 15 minutes (10.4) to the last 

15 minutes (14.5) during a football match (Aslan et al., 2012) indicates players 

perceived the progressive periods of the match as “harder” despite being less active 

in the latter periods (Russell et al., 2016). Thus, RPE values might provide a practical 

indication to the accumulation of fatigue during intermittent prolonged activity (Martin 

& Andersen, 2000), particularly given the strong associations between RPE and HR (r 

= 0.74) and RPE and B[La] (r = 0.83) (Scherr et al., 2013). 
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2.2.5 The relationship between internal and external demands 

The relationship between internal and external loads in team sports has received much 

attention (see review by McLaren et al., 2018). Total distance covered demonstrates 

the strongest association with measures of session RPE (r = 0.75 – 0.81; Table 2.2) 

and HR (r = 0.87; Table 2.2).  This likely reflects the increased metabolic energy cost 

required to run a greater distance (Wallace, Slattery & Coutts, 2014). Conversely, 

Casamichana and Castellano (2015) reported weak associations between total 

distance and session RPE (r = 0.24; Table 2.2), which might be explained by the use 

of intensity based external measures (session RPE and mean HR), compared to 

measures of load (which integrate intensity and duration). Specifically, a single 

measure of exercise intensity might underrepresent the stochastic nature of team 

sport movement patterns which affect perceived effort (Drust, Reilly, & Cable, 2000), 

whereas multiplying session RPE by duration provides a more robust index of internal 

load (Gaudino et al., 2015).  

 

High speed distance covered displayed a range of associations with session RPE (r = 

0.34 – 0.75; Table 2.2) and HR (r = 0.44 – 0.72; Table 2.2), which might reflect the 

limited ability of session RPE and HR to reflect efforts performed at supramaximal 

intensity (Casamichana et al., 2013; Alexandre et al., 2012). Indeed, as the duration 

between high speed efforts can influence HR (Brown & Glaister, 2014), and perceived 

effort (Little & Williams, 2007), the intermittent nature of exercise has demonstrated 

some ability to modulate the relationship between internal and external demands (see 

Table 2.2; McLaren et al., 2018). Conversely, acceleration-based metrics (i.e. number 

of accelerations, metabolic power and PlayerLoadTM) demonstrated stronger 

associations with internal metrics (r = 0.63 – 0.92; Table 2.2) when compared with 
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high speed distance covered. Recent studies have shown high speed metrics can 

underestimate the high intensity demands of team sports (Akenhead et al., 2014; 

Gaudino et al., 2013), given the numerous acceleration and deceleration actions 

performed (see section 2.2.1). In addition, running with an increased number of 

directional changes and accelerations increases B[La] (20.3 – 32.7 %; Ashton & Twist, 

2015; Dellal et al., 2009), RPE (9.4 – 66.7 %; Ashton & Twist, 2015; Dellal et al., 2009; 

Tang et al., 2018), HR (Tang et al., 2018) and V̇O2 (R2 = 0.95; Hatamoto et al., 2013) 

in comparison to in-line running with fewer directional changes. The large propulsive 

and braking forces applied by the lower limbs to the ground during directional changes 

(Hewit, Cronin, Button & Hume, 2011), result in a greater muscle activation during 

accelerations/decelerations (Besier et al., 2003) and might explain the higher 

metabolic demands associated with an increased number of accelerations. These 

data highlight the potential application of acceleration-based metrics to reflect the 

internal demands of team sport activity. However, the ability of PlayerLoadTM to reflect 

internal physiological load (Vanrenterghem et al., 2017) and the accuracy of metabolic 

power derived variables (see section 2.2.3.3) remains unclear. Thus, further research 

examining the ability of accelerometer-based metrics to reflect internal load are 

warranted.  
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Table 2.2 Relationship between internal and external load during team sports 
 
Study  Total distance (m) 

 
High speed (HS) 
distance (m) 
 

Accelerations/ 
decelerations (n)  

Metabolic power/ 
PlayerLoadTM 
(MP/PL) 

Comments 

Session RPE 
Casamichana 
et al. (2013) 

 
r = 0.74* 

 
r = 0.64* 

  
PL: r = 0.76* 

 
Correlated with sRPE 
during soccer training 

Scott et al. 
(2013) 

r = 0.81* r = 0.71* - PL: r = 0.83* Correlated with sRPE x 
training duration during 
soccer training. 

Weaving et 
al. (2014) 

- r = 0.75* (SSG) 
r = 0.34 (CON) 

- - Correlated with sRPE x 
training duration during 
rugby league small sided 
games (SSG) and 
conditioning (CON)  

Casamichana 
& Castellano 
(2015) 

r = 0.24 r = 0.13  PL: r = 0.14 Correlate with sRPE 
during 7 v 7 SSG soccer 

Gaudino et 
al. (2015) 

- r = 0.61* r = 0.631* - Correlated with sRPE x 
training duration during 
soccer training 

Bartlett et al. 
(2017) 

r = 0.77* r = 0.69* - - Correlated with sRPE 
during Australian football. 

Delaney et al. 
(2018) 

r = 0.75 ± 0.06 r = 0.61 ± 0.22 r = 0.79 ± 0.07 HP: r = 0.77 ± 0.09 Correlated with sRPE x 
training duration during 
rugby league training 

Continued on next page 
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Table 2.2 Continued 
 
Study  Total distance (m) 

 
High speed (HS) 
distance (m) 
 

Accelerations/ 
decelerations (n)  
 

Metabolic power/ 
PlayerLoadTM 
(MP/PL) 

Comments 

Jaspers et al. 
(2018) 

 IS = 0.507 Accels: IS = 0.515 
Decels: IS = 0.51 

PL: IS = 0.487 IS derived from advanced 
linear regression, to 
predict sRPE 

HR 
Casamichana 
et al. (2013) 

 
- 

 
r = 0.37 

 
- 

 
PL: r = 0.72 

 
Correlated with Edwards 
summated HR during 
soccer training 

Weaving et 
al. (2014) 

- r = 0.52* (SSG) 
r = 0.44 (CON) 

- - Correlated with iTRIMP 
during rugby league small 
sided games (SSG) and 
conditioning (CON) 

Casamichana 
& Castellano 
(2015) 

r = 0.267 r = 0.21 - PL: r = 0.14 Correlated with average 
HR during 7 v 7 SSG 
soccer 
 

Delaney et al. 
(2018) 

r = 0.87 ± 0.06 r = 0.67 ± 0.24 r = 0.88 ± 0.06 HP: r = 0.92 ± 0.09 Correlated with iTRIMP 
during rugby league 
training. 

Polglaze et 
al. (2018b) 

- CS: r = 0.719*  CP: r = 0.867* Correlated with time 
above 85% HRmax 
during hockey matches. 

r denotes a correlation coefficient, HP = high metabolic power, r = Spearmans rank correlation matrix, IS = Importance score, CS = 
critical speed and CP = critical power, accels = accelerations, decels = decelerations, sRPE = session RPE, iTRIMP = individual 
training impulse, SSG = small sided games, CON = conditioning, HRmax = maximum heart rate, MP = metabolic power, PL = 
PlayerLoadTM
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Given the relationship between external and internal load, integrated ratios (i.e. 

external load divided by internal load), also referred to as the efficiency index (Torreño 

et al., 2016), have been used to assess the dose-response relationship between 

training and psychophysiological responses (Akubat, Barrett & Abt, 2014). Aerobic 

capacity during football has demonstrated stronger associations with the ratio of 

internal (HR) to external (high speed distance) load (r = 0.58 – 0.69) compared with 

external markers alone (r = 0.14 – 0.28). Similarly, the ratio of internal (HR) to external 

(high speed, PlayerLoadTM and high metabolic power) load demonstrated moderate to 

strong associations (r = 0.54 – 0.72; Akubat, Barrett, Sagarra & Abt, 2018; Delaney et 

al., 2018; Taylor, Sanders, Myers & Akubat, 2017) with changes in aerobic capacity. 

The ratio of external to internal load can also detect changes in physical performance 

over the course of a match and between different playing positions (Torreño et al., 

2016). The use of an external to internal ratio has therefore been advocated to assess 

an individual’s responses to prescribed training (Delaney et al., 2018; Akubat et al., 

2018), but might also be useful to examine the extent external load reflects internal 

load between exercise modalities. For example, an increase in HR during a small-

sided game compared to sprint interval training might also be accompanied by an 

increase in accelerations, and therefore the ratio between these two exercise 

modalities should not be different.  

 

2.3 Mechanisms and symptoms of fatigue and muscle damage in team sports 

Due to the high-intensity, intermittent nature of team sport activity (see section 2.2.1), 

fatigue, characterised by a reversible reduction in maximal force, power or speed that 

is associated with a decline in performance, can occur whether or not the task can be 

continued (Bishop, 2012; Enoka & Duchateau, 2008). In team sports, fatigue occurs 
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temporarily after short intense periods (Black, Gabbett, Naughton & McLean, 2016), 

towards the end of a match (Akenhead et al., 2013) and immediately afterwards 

(McLellan, Lovell & Gass, 2011; Rampinini et al., 2011). Fatigue can recover quickly 

(within hours) after team sport activity (Carroll, Taylor & Gandevia, 2017), whereas 

muscle damage; accompanied by myofibrillar structural damage, takes longer 

(Finsterer, 2012) and is therefore discussed separately (see section 2.3.2). The cause 

of fatigue cannot be attributed to one factor; instead, it is because of several central 

and peripheral mechanisms, which relate to fatigue through processes proximal and 

distal to the neuromuscular junction, respectively (Minett & Duffield, 2014). This can 

range from a reduced central motor drive, limiting the ability to recruit available motor 

units, to the accumulation of metabolites within the muscle, reducing the muscle’s 

ability to perform work (Girard, Mendez-Villanueva & Bishop, 2011). The possible 

mechanisms of fatigue that accompany team sport activity have been reviewed 

extensively (see Girard et al., 2011; Minett & Duffield, 2014; Waldron & Highton, 2014), 

therefore this section briefly details these mechanisms. 

 

2.3.1 Fatigue 

2.3.1.1 Mechanisms of fatigue 

2.3.1.1.1 Central factors 

The central nervous system (CNS) plays a vital role in regulating muscle contraction 

(Noakes, Gibson & Lambert, 2005). Fatigue associated with a failure of the 

physiological systems proximal to the neuromuscular junction (i.e. the CNS), is termed 

‘central fatigue’ (Gandevia, 2001). Muscle contraction associated with sprint exercise 

requires an increased neural drive (Ross, Leveritt & Riek, 2001); therefore, a reduction 

in neural drive will impair neuromuscular function and performance (Girard, Lattier, 
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Maffiuletti, Micallef & Millet, 2008). Typically, researchers have measured a decline in 

maximal voluntary contraction torque compared to that elicited by peripheral electrical 

stimulation (Goodall, Charlton, Howatson, & Thomas, 2015; Minett et al., 2014; 

Tomazin, Morin, & Millet, 2017), and/or a reduced electromyography signal amplitude 

(Medez-Villanueva, Hamer, & Bishop, 2008; Medez-Villanueva, Hamer, & Bishop, 

2007) to demonstrate reduced central drive and therefore central fatigue, after 

repeated sprint exercise (~6 – 8%; Table 2.3). Some studies have also assessed EMG 

responses to transcranial magnetic stimulation and have reported no differences after 

repeated sprint running exercise (Brownstein et al., 2017; Goodall et al., 2015), 

whereas reductions in voluntary activation with transcranial magnetic stimulation have 

been reported (~9%; Goodall et al., 2015). Whilst the current mechanisms of central 

fatigue remain unclear, these data suggest central fatigue after repeated sprint 

exercise is due to spinal factors (i.e. inhibition of motor neurons’ excitability due to 

neutrally transmitted afferent feedback from the muscles; Davis & Bailey, 1997) and 

to a lesser extent, supraspinal factors (i.e. corticospinal excitability; Collins, Pearcey, 

Buckle, Power, & Button, 2018). Compared with peripheral fatigue, central fatigue 

tends to occur later during repeated sprint exercise (Goodall et al., 2015; Monks, 

Compton, Yetman, Power, & Button, 2017) and may act as a protective mechanism to 

limit further increases in peripheral fatigue. 

 

2.3.1.1.2 Peripheral fatigue 

Fatigue through processes at or distal to the neuromuscular junction is typically 

referred to as peripheral fatigue (Gandevia, 2001). After intense exercise, marked 

disturbances in intracellular sodium (Na+) and both intracellular and extracellular 

potassium (K+) concentration have been associated with muscle fatigue (Allen, Lamb, 
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& Westerblad, 2008a; Cairns & Lindinger, 2008; Fowles, Green, Tupling, O’Brain, & 

Roy, 2002). Specifically, the Na+/K+ pump is unable to reverse the K+ efflux from the 

working muscles, leading to a two-fold increase in the extracellular K+ (Cairns & 

Lindinger, 2008; Juel, Pilegaard, Nielsen, & Bangsbo, 2000). These disturbances 

produce a depolarization and reduce the chemical gradient of Na+, which can lead to 

an inactivation of voltage gated Na+ channels and reduce the amplitude of action 

potentials (Nielsen & Calusen, 2000) and corresponding M-wave amplitude (evoked 

by stimulus to the motor nerve). Whilst some have reported an increase in M-wave 

amplitude after team sport activity (Perrey, Racinais, Saimouaa & Girard, 2010), most 

report no change (Brownstein et al., 2017; Girard et al., 2008; Thomas, Dent, 

Howatson, & Goodall, 2017; Tomazin et al., 2017) indicating sarcolemma excitability 

plays little role in fatigue after team sport activity. Conversely, reductions in evoked 

twitch torque after repeated sprint running (Girard et al., 2008; Thomas et al., 2017; 

Tomazin, Morin, & Millet, 2017) highlight a failure of excitation-contraction coupling, 

likely related to impaired sarcoplasmic reticulum activity (Mador, Kufel, Pineda, & 

Sharma, 2000) and/or the accumulation of intramuscular metabolites (e.g. Pi and H+; 

Fitts, 1994). Whilst the specific mechanism is still debated, the accumulation of 

intracellular hydrogen ions (H+) and lactate, because of glycolytic ATP re-synthesis 

has been associated with fatigue (Kayser, 2010), lowers the muscle pH and might 

reduce muscle force by decreasing calcium (Ca2) release from the sarcoplasmic 

reticulum, decreasing the sensitivity of troponin to Ca2+ and interfering with cross-

bridge cycling (Stackhourse, Reisman, & Binder-Macleod, 2001). Increases in 

inorganic phosphate (Pi), caused by the increased breakdown of phosphocreatine 

(PCr), can also reduce sarcoplasmic reticulum Ca2+ release and Ca2+ sensitivity (Allen 

et al., 2008a), resulting in less active cross-bridges and subsequent a decline in 
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muscle function (Allen et al., 2008b). The accumulation of Pi is therefore considered 

a major contributor towards muscular fatigue during and after repeated sprint running 

(Glaister, 2005; Westerblad, Allen & Lannergren, 2002). Limited availability of PCr 

stores used to re-synthesis ATP have also been suggested to limit repeated sprint 

performance (Bishop, 2012; Mendez-Villanueva, Edge, Suriano, Hamer, & Bishop, 

2012), albeit this has largely been assessed during cycling. 

 

2.3.1.2 Sex-related differences in fatigue 

During isometric and slow velocity dynamic contractions, females are typically less 

fatigable than males (Ansdell et al., 2020; Harmer et al., 2014; Hunter, 2016; Hunter, 

2014; Yoon et al., 2015). The specific mechanism is related to sex differences in 

muscle Ca2+ regulation; as females possess a greater proportional area of type 1 

muscle fibres than males (Miller, MacDougall, Tarnopolsky, & Sale, 1993) and slower 

rates of sarcoplasmic reticulum Ca2+ reuptake compared with males (Harmer et al., 

2014; Hunter, 2014; Yoon et al., 2015), causing a slower rate of relaxation in females. 

Large absolute contractions exerted by males can also limit blood flow (and therefore 

oxygen supply) more rapidly in males leading to a more rapid accumulation of 

metabolites and rate of muscle fatigue (Hunter 2016; Hunter, 2009). Conversely, 

supraspinal fatigue (measured from motor evoked potentials from transcranial 

magnetic stimulation) is similar between males and females, which suggests activation 

of the motor neuron pool are similar in males and females with fatigue (Temesi et al., 

2015; Yoon et al., 2015). During high velocity dynamic contractions, differences in 

fatigue between the sexes are diminished (Senefeld, Yoon, Bement, & Hunter, 2013). 

A possible explanation is differences in energy utilization as the greater proportion of 

type 1 muscle fibres in females require larger increases in energy utilization compared 
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with type 2 muscle fibres (Hunter, 2016). These data highlight males and females can 

respond differently to a fatiguing task at the same relative intensity during isometric 

and slow velocity contractions, largely via peripheral compared with central 

mechanisms, and that generally females are less fatigable than males. More studies 

using females to assess muscle fatigability and performance under differing task 

conditions are warranted given, to date, many studies assessing fatigue have used 

proportionally more males than females (Hunter, 2014).  

 

2.3.1.3 Markers of fatigue after team sport activity 

A variety of markers have been used to monitor fatigue after team sport activity 

(Nedelec et al., 2012). Whilst it has been recommended that practitioners assess a 

combination of these markers regularly to accurately monitor individual responses to 

a given training stimulus (Wiewelhove et al., 2015), measures of neuromuscular 

function are typically used within a team sport environment (Twist & Highton, 2013). 

Specifically, measures of sprint performance (Brownstein et al., 2017; Duffield et al., 

2019; Lovell, Midgley, Barrett, Carter & Small, 2011; Rampinini et al., 2011), CMJ 

(Brownstein et al., 2017; Duffield et al., 2019) and isolated maximal voluntary strength 

(Behan et al., 2018; Brownstein et al., 2017; Goodall et al., 2017; Nedelec et al., 2012) 

are often used to monitor fatigue after team sport activity (see Table 2.3), which are 

briefly discussed below.  

 

2.3.1.3.1 Sprint and CMJ performance 

A ~3 – 7 % impairment in sprint performance is evident after prolonged intermittent 

activity (see Table 2.3). Typically, short sprint distances of 20 m are assessed given 

that short sprint performance is an important aspect of success in team sports 
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(Nedelec et al., 2012), and can provide insight into task-specific fatigue (Gathercole, 

Sporer, Stellingwerff, & Sleivert, 2015; Twist & Highton, 2013). Furthermore, sprint 

performance assessed with infrared timing gates over short distances (10 – 30 m) 

offers a reliable measurement (CV = 1.0 – 1.5 %; Waldron, Worsfold, Twist & Lamb, 

2011), meaning small decrements in neuromuscular function because of fatigue can 

be accurately monitored before and after team sport activity. Similar reductions (~3 – 

4 %) in repeated sprint performance are also evident after team sport activity (see 

Table 2.3). However, given that repeated sprint tests can be physically exhausting, 

previous research has typically incorporated fewer sprints than those implemented 

within repeated sprint tests to allow for easy implementation during the recovery 

process (Nedelec et al., 2012). 

 

In contrast to the narrow range of changes observed in sprint performance, the 

reported decrements observed in CMJ peak power (no change to a 41 % reduction) 

and CMJ height (2 – 12 % reduction) after team sport activity are varied (see Table 

2.3). Such variation might be indicative of the ‘task dependency’ of fatigue, i.e., the 

degree of fatigue experienced is dependent on the task performed (Girard et al., 2011). 

Discrepancies amongst the literature might also be partly due to differences in the 

CMJ protocol used. For example, systematic overestimations in jump height have 

been reported when using a jump mat compared with a force platform (Dobbin, 

Hunwicks, Highton, & Twist, 2017; Rogan, Radlinger, Imhasly, Kneubuehler, & Hilfiker, 

2015), suggesting CMJ values obtained using different equipment are not 

interchangeable. When fatigue markers are compared, measures of 20 m sprint 

performance are more repeatable than CMJ performance (CV: ~1 – 3 % cf. ~3 – 5 %; 

Carr, McMahon, & Comfort, 2015; Gathercole et al., 2015).  
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2.3.1.3.2 Maximal voluntary contraction  

Typically, reductions of 7 – 14 % in maximal isometric strength, 7 – 17 % in concentric 

strength and 15 – 31 % in eccentric strength have been reported after team sport 

activity (see Table 2.3). Notably, the hamstrings are more susceptible to decrements 

in strength after team sport activity compared to the quadriceps (see Table 2.3; Ashton 

& Twist, 2015; Delextrat et al., 2010; Magalhães et al., 2010). Decrements in MVC are 

also largely dependent on the task being performed, as greater reductions in MVC 

have been observed from studies incorporating a greater volume of high-speed 

running (e.g. Magalhães et al., 2010 cf. Ashton & Twist, 2015), more time spent on the 

field (r = -0.5; Duffield et al., 2012) and running with more directional changes (~17.9 

% cf. ~5.9 %; Ashton & Twist, 2015). 
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Table 2.3 Measures of neuromuscular fatigue after team sport activity 

Study Sport/Exercise Participants Pre to post change in marker 

Sprint performance CMJ MVC at knee joint 

Ronglan et al. 
(2006) 

Handball match 7 elite females ~4 % ↑ in 20 m sprint 
time 

8.4% ↓ in CMJ 
height 

6.9 % ↓ in peak CON extensor torque 
at 60 º.s-1 

Ascensão et 
al. (2008) 

Soccer match 16 elite males ~7 % ↑ in 20 m sprint 
time 

- ~ 10 % ↓ in peak CON extensor 
torque at 90 º.s-1 

Delextrat et al. 
(2010) 

LIST 8 male 
University level 
soccer players 

- - 16.6 % ↓ in peak CON extensor 
torque 
17.7 % ↓ in peak CON flexor torque 
31.4 % ↓ in peak ECC flexor torque at 
60 º.s-1 

Krustrup et al. 
(2010) 

Soccer match 14 elite 
females 

~4 % ↑ in 3 x 20 m 
sprint time with 25 s 
rest 

NS - 

Magalhães et 
al. (2010) 

LIST 16 elite male 
soccer players 

~5 % ↑ in 20 m sprint 
time 

~12 % ↓ in CMJ 
height  

~15 % ↓ in peak CON flexor torque 
and ~11 % ↓ in peak CON extensor 
torque at 90 º.s-1 

Small et al. 
(2010) 

SAFT90 16 semi-
professional 
males 

- - 16.8 % ↓ in peak ECC flexor torque  
NS change in peak CON flexor and 
extensor torque 

Thorlund et al. 
(2010) 

Soccer match 9 young elite 
males 

- 2.1 % ↓ in CMJ 
height 

~11 % ↓ in peak ISO extensor torque 
and ~7 % ↓ in peak flexor torque at 
70º 

Continued on next page 
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Table 2.3 Continued 
 

Study Sport/Exercise Participants Pre to post change in marker 
Sprint performance CMJ MVC at knee joint 

McLellan et 
al. (2011) 

Rugby league 17 elite males - ~23 % ↓ in peak 
force and ~41 % 
↓ in peak power 

 

Rampinini et 
al. (2011) 

Soccer match 22 young elite 
males 

~3 % ↑ in 2 x 20 m 
sprint time 

- ~11 % ↓ in peak ISO extensor torque 
at 90º and ~8 % ↓ in %VA using 
electrically evoked stimuli 

Twist & 
Sykes (2011) 

Simulated rugby 
league match 

10 University 
level males 

- ~10 % ↓ in CMJ 
height  

13.6 N.m-1 ↓ in CON peak flexor 
torque and 26.2 N.m-1 ↓ in peak CON 
extensor torque at 60 º.s-1 

Duffield et al. 
(2012) 

Rugby league 
match 

11 amateur 
males 

- 4.8 % ↓ in CMJ 
height 

8.4 % ↓ in peak ISO extensor torque 
at 90º flexion 

Dittrich et al. 
(2013) 

40 min of 
intermittent 
treadmill running  

12 male 
trained 
endurance 
athletes 

- - ~14 % ↓ in peak ISO extensor torque 
at 60º 

Timmins et 
al. (2014) 

3 sets of 6 x 20 m 
sprints 

17 
recreationally 
active men 

- - ~15 % ↓ in ECC peak flexor torque 
from 90 to 5º and ~10 % ↓ in CON 
peak flexor torque from 5 to 90º 

Ashton & 
Twist (2015) 

30 min of LIST 
over 10 m 
shuttles 

10 female 
university level 
netball players 

~4.9 % ↑ in 20 m sprint 
time 

- ~17.9 % ↓ in peak CON flexor torque 
at 60 º.s-1. NS change in peak CON 
extensor torque 

      
      

Continued on next page 



 

 

45 

Table 2.3 Continued  
 

Study Sport/Exercise Participants Pre to post change in marker 
Sprint performance CMJ MVC at knee joint 

Johnston et 
al. (2015) 

Rugby league 
match 

21 sub-elite 
youth males 

- ~5 – 7 % ↓ in 
CMJ peak power 

- 

Goodall et al. 
(2015) 

12 x 30 m sprints  12 males 
intermittent 
sprint sport 
players 

  ~12 % ↓ in peak isometric extensor 
torque. ~23 % ↓ potentiated twitch 
force and ~9 % ↓ in VA with 
transcutaneous muscle stimulation. ~ 
15 % ↓ in potentiated quadricep 
twitch force 

Brownstein et 
al. (2017)  

Competitive 
soccer match 

16 semi-
professional 
soccer players 

~4 % ↑ in 20 m sprint 
time 

~5 % ↓ in CMJ 
height 

~14 % ↓ in peak isometric extensor 
torque. ~7% ↓ in VA with motor nerve 
stimulation and ~5 % ↓ in VA with 
motor cortical stimulation. ~14 % ↓ in 
potentiated quadricep twitch force  

Goodall et al. 
(2017) 

Simulated soccer 
exercise 

10 amateur 
football players 

- - ~11 % and ~20 % ↓ in extensor MVC 
at half time and full time, respectively. 

Behan et al. 
(2018) 

90 min of LIST 15 male team 
sport players 

- - ~12 % ↓ in peak isometric extensor 
torque and ~15 % in peak flexor 
torque 

Duffield et al. 
(2019) 

Rugby union 
match 

22 
professional 
male rugby 
union players 

~3 % ↓ in 30 m sprint 
speed 

~10 % ↓ in CMJ 
height 

- 

      
Continued on next page 
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Table 2.3 Continued  
 

Study Sport/Exercise Participants Pre to post change in marker 
Sprint performance CMJ MVC at knee joint 

Mullen et al. 
(2019) 

23 min rugby 
movement 
simulation 

20 male rugby 
players 

- - ~12 % ↓ in peak isometric extensor 
torque and ~6 % ↓ in %VA using 
electrically evoked stimuli 

      
CMJ = counter-movement jump, MVC = maximum voluntary contraction, CON = concentric, ISO = isometric, VA = voluntary activation, NS = 
non-significant, LIST = Loughborough intermittent shuttle test, SAFT90 = soccer-specific aerobic field test, ­ = increase, ¯ = decrease
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Marked reductions in voluntary activation using electrically evoked stimuli to the 

muscle (~6 – 8 %) and using transcranial magnetic stimulation (~5 – 9 %) have been 

reported after team sport activity (see Table 2.3). These data suggest substantial 

deficits in CNS function are evident after team sport activity (Rampinini et al., 2011; 

Thorlund, Michalsik, Madsen & Aagaard, 2008), which can be attributed to spinal and 

supraspinal fatigue assessed by electrical stimulation of the muscle and transcranial 

stimulation, respectively. The observed decrease in force output of the muscle in 

response to electrical stimulation (~14 – 15 %; Brownstein et al., 2017; Goodall et al. 

2015), also indicates the presence of peripheral fatigue. Taken together, fatigue after 

team sport activity, evident by reductions in MVC, CMJ and sprint performance, can 

be attributed to both central and peripheral factors.  

 

Whilst the use of isometric and isokinetic dynamometry to assess neuromuscular 

function after team sport performance has been criticized for a lack of ecological 

validity (Twist & Highton, 2013), it can provide a favourable level of relative reliability 

for measurements of peak torque at the knee (ICC: 0.85 – 0.93; Hartmann, Knols, 

Murer, & de Bruin, 2009; Lund et al., 2005; Symons, Vandervoort, Rice, Overend, & 

Marsh, 2005; Timmins et al., 2014) and an acceptable coefficient of variation (CV: 3.8 

– 6.1 %) for isometric and isokinetic contractions at a variety of speeds (Almosnino, 

Stevenson, Bardana, Diaconescu, & Dvir, 2012; Ferri-Morales, Alegre, Basco, & 

Aguado, 2014). Measurements of neuromuscular function using dynamometry before 

and after exercise can therefore be used to assess neuromuscular fatigue (Minshull, 

Gleeson, Walters-Edwards, Eston, & Rees, 2007), but might be difficult to implement 

in applied practice (see section 2.3.3). 
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2.3.2 Exercise-induced muscle damage 

Exercise-induced muscle damage (EIMD) is a common phenomenon that typically 

occurs both immediately and for several days after team sport activity (Gastin, Hunkin, 

Fahrner, & Robertson, 2019; Howatson & Milak; 2009; Nedelec et al., 2014; Oxendale 

et al., 2016; Twist & Sykes, 2011). The symptoms of EIMD include stiffness and 

swelling of the muscles, a decreased force of muscular contraction and delayed onset 

muscle soreness (Byrne, Twist, & Eston, 2004). Whilst the exact mechanisms that 

contribute to EIMD are not fully understood, previous research has divided this 

phenomenon into two general areas; the initial primary damage, both metabolic and 

mechanical, and secondary damage associated with the inflammatory response 

(Hydahl & Hubal, 2014; Owens, Twist, Cobley, Howatson, & Close, 2019; Peake, 

Neubauer, Della Gatta, & Nosaka, 2017; Tee, Bosch & Lambert, 2007). This section 

briefly details the current known mechanisms of muscle damage and neuromuscular 

markers which have been used to assess the magnitude of damage after team sport 

activity. 

 

2.3.2.1 Mechanisms of muscle damage 

Mechanical disruption relates to damage that occurs from mechanical loading on the 

myofibers (Howatson & Van Someren, 2008; Hydahl & Hubal, 2014; Peake et al., 

2017). The weakest sarcomeres are located at different regions of each myofibril, and 

it is believed the non-uniform lengthening of these sarcomeres during eccentric muscle 

contractions results in some myofibers being over-stretched and thus are no longer 

able to overlap (Talbot & Morgan, 1996). Consequently, the longest sarcomeres 

become weaker, and passive structures assume more tension (Howatson & Van 

Someren, 2008) and undergo what is termed ‘popping’ (Morgan, 1990). This 
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encompasses a shearing of myofibrils, exposing membranes, especially t-tubules, to 

large deformations (Morgan & Proske, 2004) causing Z-line streaming (Fridén, 

Sjöström, & Ekblom, 1983; Newham, McPhail, Mills, & Edwards, 1983). This leads to 

disruption of myofiber damage, membrane disruption, opening of stretch activated 

channels and subsequently excitation-contraction (E-C) coupling dysfunction (see 

Figure 2.1; Hydahl & Hubal, 2014; Owens et al., 2019; Peake et al., 2016). E-C 

coupling involves a sequence of events that starts with the release of acetylcholine at 

the neuromuscular junction and ends with the release of Ca2+ from the sarcoplasmic 

reticulum (Warren, Ingalls, Lowe, & Armstrong, 2001). Increased influx of Ca2+ into the 

muscle cell through stretch-activated channels stimulate calpain (Zhang, Yeung, Allen, 

Qin, & Yeung, 2008) which degrades contractile or excitation-contraction coupling 

proteins (i.e. desmin; Peake et al., 2017) resulting in inhibition of the interaction of 

actin and myosin (Szent-Györgyi, 1975) and prolonged loss of muscle strength 

(Hydahl & Hubal, 2014). Specifically, E-C coupling failure is thought to account for 57 

– 75% of strength loss after muscle damaging exercise (Warren et al., 2001).  
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Figure 2.1. Potential molecular mechanisms of muscle damage after eccentric actions 

(Adapted from Hydahl & Hubal, 2014). (1) Overstretched sarcomeres, (2) opening of 

stretch activated channels, (3) EC coupling dysfunction, (4) influx of extracellular 

calcium and (5) calcium activated calpains.  

 

The metabolic stress model proposes that the initial events of muscle damage are 

caused by metabolic deficiencies within the working muscle. During exercise, 

metabolic flux through the glycolytic and oxidative metabolic pathways is increased to 

match the increased rate of adenosine triphosphate (ATP) synthesis (Krisanda, 

Moreland, & Kushmerick, 1988). However, ATP concentrations could decrease to 

concentrations sufficiently low enough to induce muscle damage, particularly in the 

presence of glycogen depletion (Tee et al., 2007). The proposed mechanism for 

metabolic muscle injury would be a decreased action of the calcium adenosine 

triphosphatase (ATPase), compromising the removal of calcium (Tee et al., 2007). An 

increase in hydrogen ions, affecting the ability of the sarcoplasmic reticulum to take 

up calcium (Kendall & Eston, 2002), insufficient mitochondrial respiration and oxygen 

free radial production (Armstrong, 1990) have also been proposed to cause the initial 
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stimulus for damage. However, metabolic factors are unlikely causes of muscle 

damage after eccentrically biased exercise, which have a lower metabolic cost when 

compared with concentric actions (Howatson & Van Someren, 2008). Furthermore, 

EIMD is minimal after concentric vs. eccentric contractions (Lavender & Nosaka, 2006; 

Newham, McPhail, Mills, & Edwards, 1983). Accordingly, mechanical loading is more 

likely responsible for EIMD (Owen et al., 2019; Proske & Morgan, 2001). 

 

The secondary phase of muscle damage is initiated by the aforementioned disruption 

of intracellular calcium homeostasis (Howatson & Someren, 2008). This can trigger 

proteolysis (the breakdown of structural proteins) and facilitate breakdown of the 

damaged fibres (Gissel, 2005; Proske & Allen, 2005). The subsequent inflammatory 

cascade, in which damaged areas are invaded by leucocytes, in particular neutrophils 

and macrophages (Tidball, 2004), is necessary to clear damaged tissue and initiate 

tissue repair and adaptation (Chazaud, 2016). Specifically, leucocytes primarily 

perform three functions: attack and breakdown of debris, removal of cellular debris 

and regeneration of cells (Kendall & Eston, 2002; Paulsen, Mikkelsen, Raastad, & 

Peake, 2012). In doing so, neutrophil activation can release high concentrations of 

cytolytic and cytotoxic molecules that can exacerbate existing muscle damage; and is 

hence, a secondary damage process (Nguyen & Tidball, 2003; Tiddus, 1998). It is 

commonly believed that micro trauma of myofibers and the subsequent inflammation 

is responsible for delayed on-set muscle soreness (DOMS) (Damas, Nosaka, Libardi, 

Chen & Ugrinowitsch, 2016; Peak et al., 2017; Proske & Allen, 2005). Recent reviews 

have also highlighted a new potential mechanism for DOMS, in which activation of 

nerve growth factor and glial cell-lined-derived neurotrophic factor produced by muscle 
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fibres and/or satellite cells, directly or in-directly stimulate nociceptors (Mizumura & 

Taguchi, 2016; Peak et al., 2017).  

 

2.3.2.2 Sex-related differences in EIMD 

Females might have some resistance to EIMD compared with males, due to the 

mitigating effect of oestrogen on muscle damage, disruption and inflammation (Tiidis, 

2005). Specifically, oestrogen is a strong antioxidant and has the potential to stabilize 

the membrane of skeletal muscle cells during exercise, which could help protect 

females from EIMD and promote repair (Hubal & Clarkson, 2009). However, studies 

have reported no sex differences in muscle function after muscle damaging exercise 

(Borsa & Sauers, 2000; Sayer & Clarkson, 2001), and no differences in markers of 

EIMD in female oral contraceptive pill users (who displayed lower oestrogen 

concentrations) compared with female non-contraceptive pill users (Hicks, Onambele, 

Winwood & Morse, 2017). Taken together, current literature would suggest sex does 

not influence post-exercise indices of muscle damage (Hubal & Clarkson, 2009).  

 

2.3.2.3 Markers of muscle damage after team sport activity 

The symptoms of EIMD can persist up to 7 days after team sport activity (Gastin et al., 

2019; Hughes, Denton, Lloyd, Oliver & De Ste Croix, 2018; Keane et al., 2015; 

McLellan et al., 2011; Oxendale et al., 2016; Souglis, Bogdanis, Chryssanthopoulos, 

Apostolidis, & Geladas, 2018), the magnitude of which is dependent on match 

demands, such as the number of sprints (Coppalle et al., 2019; Oxendale et al., 2016; 

Thorpe & Sunderland, 2012; Varley et al., 2017), accelerations (de Hoyo et al., 2016; 

Oxendale et al., 2016; Varley et al., 2017) and decelerations (de Hoyo et al., 2016; 

Oxendale et al., 2016). Direct measurements of muscle damage using electron or light 
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microscopy to analyse myofibrillar disruption of a muscle biopsy sample (Gibala et al., 

2000; Stupka, Tarnopolsky, Yardley, & Phillips, 2000) are typically used as a gold 

standard measure of muscle damage (Paulsen et al., 2010). However, given the 

invasive nature of a muscle biopsy, markers of DOMS, biochemical blood markers and 

measurements of muscle function, have been used to indirectly measure the 

magnitude and time course of muscle damage after team sport activity (see Table 2.4), 

which typically peaks after 24 – 48 h (Howatson & Milak, 2009; Keane et al., 2015; 

Leeder et al., 2014; Nedelec et al., 2014).  

 

Measurements of MVC have been advocated to provide the most effective in-direct 

method of assessing the magnitude and duration of EIMD (Damas et al., 2016; 

Warren, Lowe, & Armstrong, 1999). However, the assessment of MVC can be 

impractical and can lack ecological validity, as the angular speeds used to assessed 

MVC are much lower than those observed during multi-joint actions like sprinting (60-

300 cf. 970°.s-1; Nedelec et al., 2012). Instead, the use of dynamic movements utilising 

the stretch-shortening cycle (i.e. CMJ and 20 m sprint performance) have been 

recommended for the routine assessment of muscle damage after sport specific 

exercise (Wiewelhove et al., 2015), given the utility, specificity and reliability of these 

measurements (Twist & Highton, 2013; Komi, 2000). Specifically, 20 m sprint 

performance has demonstrated greater reliability when compared with CMJ 

performance (CV: 0.9 ± 0.1 cf. 3.0 ± 1.1 %; Gathercole et al., 2015) and might therefore 

be more sensitive to small changes in neuromuscular function. Creatine kinase (CK) 

concentration is a simple diagnostic marker of EIMD and DOMS provides a reflection 

of inflammation within the extracellular matrix, and is associated with EIMD (Damas et 

al., 2016; Peake et al., 2017; Silva et al., 2018; Wiewelhove et al., 2015). Specifically, 
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DOMS is easy to use, cost effective and sensitive to inflammatory responses to muscle 

damage (Peak et al., 2017; Silva et al., 2018) and CK reflects mechanical sarcomere 

damage in the muscle (Brancaccio, Maffulli & Limongelli, 2007; Wiewelhove et al., 

2015). Accordingly, the subsequent section briefly details in-direct markers of muscle 

damage (consisting of sprint performance, CK concentration and muscle soreness) 24 

– 48 h after over-ground team sport activity, to identify what factors (if any) mediate 

muscle damage after team sport activity. More extensive recent reviews documenting 

muscle damage after team sport activity are available elsewhere (Doeven, Brink, 

Kosse, & Lemmink, 2018; Hagstrom & Shorter, 2018). 

 

2.3.2.3.1 Sprint and CMJ performance 

An impairment of ~1 – 5 % in short sprint performance was evident 24 – 48 h after 

team sport activity in most studies (see Table 2.4). A loss of muscle strength (Khan et 

al., 2016) and a reduced reflex sensitivity during the stretch-shortening cycle (Avela, 

Kyröläinen, Komi, & Rama, 1999) likely explain the reduced sprint performance. Yet, 

two studies indicated no change in sprint performance at 24 h (Table 4), which might 

in part be explained by the high between match variation in high intensity actions 

performed during a soccer match (CV: 16.2 – 30.8 %; Gregson et al., 2010) and the 

association between markers of muscle damage and high intensity actions performed 

during a team sport match (Jones et al., 2014; Oxendale et al., 2016). Similarly, whilst 

small improvements in CMJ performance at 24 h were observed in comparison to 

measurements made immediately after match-play (McLellan et al., 2011; Magalhäes 

et al., 2010; Twist & Sykes, 2011), decrements in CMJ performance were evident at 

24 h (4 – 27 %; Table 2.4). Whilst this suggests rapid stretch-shortening cycle 

movements can be impaired after intermittent team sport activity, Byrne and Eston 
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(2002) showed a squat jump was affected to a greater extent than a CMJ after EIMD 

(91.6 cf. 95.2 % of pre-exercise values). These data demonstrate stretch-shortening 

cycle movements can attenuate the effect of EIMD (Byrne & Eston, 2002) and might 

partly explain the small improvement in CMJ performance at 24 h (Table 2.4). The 

range of decrements in CMJ performance observed can be attributed to the different 

demands of team sport matches. Specifically, moderate relationships between the 

number of hard changes of direction (r = -0.47; Nedelec et al., 2014) and decelerations 

(r = -0.47; de Hoyo et al., 2016) performed during a soccer match with CMJ 

performance decrement at 24 – 48 h, have been reported. Collectively, these findings 

suggest an increase in the number of high intensity actions performed during team 

sport activity can cause greater decrements in explosive movements of sprinting and 

jumping in the days after.  

 

2.3.2.3.2 Creatine kinase concentration 

Creatine kinase-MM (an isoform of the enzyme located in the sarcomere) catalyses 

the reversible exchange of high energy phosphate bonds between phosphocreatine 

and ADP to regenerate ATP (Brancaccio, Maffulli & Limongelli, 2007). High serum 

concentrations of CK reflect sarcomere damage arising from strenuous exercise or 

muscular pathology (Brancaccio et al., 2007). Indeed, elevations in CK concentration 

from 39 – 391 % (see Table 2.4) have been reported after sport-specific running. The 

range of values reported partly reflect the individual variability in CK concentration due 

to sex, training status and distribution of fibre types in skeletal muscles (Heled, Bloom, 

Wu, Stephens, & Deuster, 2007; Oosthuyse & Bosch, 2017; Magal et al., 2010; 

Souglis et al., 2018). Specifically, several studies have reported strong associations 

between sprinting metrics (r = 0.39 – 0.76; Jones et al., 2014; Oxendale et al., 2016; 
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Varley et al, 2017), accelerations (r = 0.44 – 0.48; Varley et al., 2017; de Hoyo et al., 

2016; Oxendale et al., 2016), decelerations (r = 0.48 – 0.71; de Hoyo et al., 2016; 

Oxendale et al., 2016) and collisions (r = 0.64 - 0.67; Jones et al., 2014; Oxendale et 

al., 2016) with CK responses at 12 – 48 h post-exercise.  The high-intensity muscle 

contractions and ground reaction force associated with sprinting (Kyröläinen, Avela, & 

Komi, 2005) and the intense eccentric contractions performed during deceleration 

actions (Savage, Fantini & Brüggemann, 2011), which can increase muscle activation 

to stabilise the knee joint (Besier et al., 2003), partly explain the muscle damage 

observed in the aforementioned studies. Such mechanical loading presumably places 

high strain on weak sarcomeres and/or the extracellular matrix surrounding the muscle 

fibres, inducing muscle damage (Morgan & Proske, 2006). Indeed, Grazioli et al. 

(2019) reported no changes in muscle damage markers after performing linear sprints 

with no rapid deceleration, which has been shown to induce muscle damage in similar 

exercise protocols (e.g. Howatson & Milak, 2009). Taken together, these data 

emphasise the movements patterns associated with EIMD discussed in section 

2.3.3.1. 
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Table 2.4. Indirect markers of muscle damage 24 – 48 h after team sport activity 

 
Study Sport/Exercise Participants 24 - 48 h change in marker 

Sprint/CMJ performance CK Perceived muscle 
soreness 

Ascensão et 
al. (2008) 

Football match 16 male 
professional 
football players 

~5 % ↑ in 20 m sprint 
time (24-48 h) 

­ (24 and 48 h, values 
not reported) 

­ (24 and 48 h, values 
not reported) 

Howatson & 
Milak (2009) 

Repeated 
sprints 15 x 30 
m sprints 

20 male 
collegiate team 
sport players 

- 391 % ­ (24 h) ­ (24-72 h post 
exercise, values not 
reported) 

Magalhães et 
al. (2010) 

LIST 16 elite male 
football players 

~ 1 % ↑ in 20 m sprint 
time. ~8 % ↓ in CMJ 
height 

­ (24 and 48 h, values 
not reported) 

­ (24 and 48 h, values 
not reported). 

McLellan et al. 
(2011) 

Rugby league 
match 

17 elite rugby 
league players 

~10 % ↓ in CMJ peak 
force (24 h). 3 % ↓ (48 
h) 

267 % ­ (24 h) 
131 % ­ (48 h) 

- 

Rampinini et 
al. (2011) 

Football match 20 male 
professional 
football players 

~1 % ↑ in 40 m sprint 
time (24 h) 

~224 % ­ (24 h) 
~160 % ­ (48 h) 

­ (24 h, values not 
reported). 

Singh et al. 
(2011) 

Non-contact 
team sport 
circuit 

11 male team 
sport athletes 

No change in sprint 
performance. CMJ 
height ¯ at 48 h (values 
not reported) 

­ (value not reported, 24 
h)  

~ 200 % ­ (24 and 48 h) 

Twist & Sykes 
(2011) 

Simulated rugby 
league match 

10 university 
males 

~5 % ↓ in CMJ height S ­ (24 h, values not 
reported) 

~ 500 % ­ (24 h) 

Continued on next page 
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Table 2.4. Continued 

Study Sport/Exercise Participants 24 - 48 h change in marker 

Sprint/CMJ performance CK Perceived muscle 
soreness 

Twist et al. 
(2012) 

Rugby League 
match 

23 male 
professional 
rugby league 
players 

↓ in CMJ height (24 and 
48 h) 

­ (ES = 1.7 – 2.3; 24 h 
and ES = 1.2 – 1.3; 48 
h) 

~150 – 160 % ­ (24 h) 
~140 – 165 % ­ (48 h) 

Silva et al. 
(2013) 

Football match 7 professional 
males 

NS change in 5 and 30 
m sprint.  ~7 % ↓ in CMJ 
height 

~87 % ­ (48 h)  

Nedelec et al. 
(2014) 

Football match 10 
professional 
football players 

~5 % ¯ in peak speed 
during a 6 s sprint. ~ 7 
% ↓ in CMJ height (48 h) 

105 % ­ (48 h) ~80 % ­ (48 h) 

Leeder et al. 
(2014) 

LIST 8 well trained 
male team 
sport athletes 

~-6 % ¯ in CMJ 
performance (at 24 h) 

194 % ­ (48 h) ­ (value not reported) 

Keane et al. 
(2015) 

Repeated sprint 
activity (15 x 30 
m sprints) 

11 well-trained 
females 

~6 % ↑ in 30 m sprint 
time. ~ 10% ↓ in CMJ 
height (48 h) 

­ (318 % at 24 h) ­ (value not reported) 

de Hoyo et al. 
(2016) 

Football match 15 U-19 elite 
males 

~13 % ¯ in CMJ height 
(24 h) 

­ ~52 % (24 h)  - 

Oxendale et 
al. (2016) 

Rugby league 
match 

17 elite males ~4.7 % ↓ in CMJ flight 
time (at 36 h) 

­ ~178 % (36 h) ~17 % ­ (36 h) 

Continued on next page 
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Table 2.4. Continued 
 

Study Sport/Exercise Participants 24 - 48 h change in marker 

Sprint/CMJ performance CK Perceived muscle 
soreness 

Russell et al. 
(2016) 

Football match-
play 

15 elite males ~3 % ¯ in CMJ peak 
power output (48 h) 

­ ~39 % (48 h) - 

Varley et al. 
(2017) 

Football match-
play 

16 elite soccer 
players 

No change in CMJ 
performance 

­ (ES = 1.11; 40 h) ­ (ES = 0.73; 40 h) 

Souglis et al. 
(2018) 

Football match-
play  

30 male and 
30 female 
professional 
players 

- ­ at 24 and 48 h (value 
not reported) 

- 

Gastin et al. 
(2019) 

Australian 
Football match-
play 

26 male 
professional 
players 

- ­ ~129 % (34 – 40 h) - 

Grazioli et al. 
(2019) 

15 x 20 m 
sprints 

30 well trained 
collegiate 
athletes 

No change in CMJ 
height 

No change No change 

Wiig et al. 
(2019) 

Football match 75 semi-
professional 
football players 

↓ in CMJ height (ES = 
0.68 at 24 and 48 h) 

­ (ES = 1.2; 24 h and 
ES = 0.67; 48 h) 

- 

CMJ = counter-movement jump, CK = creatine kinase, NS = non-significant, ES = effect size, LIST = Loughborough intermittent shuttle test, ­ 
= increase, ¯ = decrease
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2.3.2.3.3. Perceived muscle soreness (DOMS) 

It is widely accepted that EIMD results in delayed onset muscle soreness, which 

typically peaks 24 – 72 h after exercise (Cheung, Hume & Maxwell, 2003). In 

agreement, elevations (80 – 500 %; Table 2.4) in perceived muscle soreness have 

been reported in the days after team sport activity. Nedelec et al. (2014) reported a 

strong association between the number of short sprints performed (<5 m) and muscle 

soreness 48 h after a football match (r = 0.74), reflecting the rapid deceleration 

associated with short sprints that can lead to muscle damage in the days after (de 

Hoyo et al., 2016; Howatson & Milak, 2009; Oxendale et al., 2016). Furthermore, whilst 

DOMS is assessed subjectively and interpretation can be easily manipulated by 

athletes (Twist & Highton, 2013), it is strongly correlated with circulating myocellular 

proteins (r = 0.67 – 0.73; Kanda et al., 2013) and inflammation-related biomarkers (r 

= 0.46 – 0.59; Kawamura et al., 2018) resulting from muscle damage. 

 

2.3.3 Contemporary issues with monitoring fatigue and EIMD after team sport activity 

Whilst the aforementioned sections highlight the use of fatigue and in-direct markers 

of EIMD, some noteworthy issues warrant acknowledgement. The notion of central 

and peripheral fatigue as separate mechanisms of fatigue has recently been critiqued 

(Enoka & Duchateau, 2016). Specifically, Enoka and Duchateau (2016) suggest the 

neuromuscular activity needed to counteract an exercise-induced decrease in force 

capacity is not independent from those involved in generating the accompanying 

sensations, and thus the aetiology of fatigue (i.e. central or peripheral) cannot be 

definitively determined. Instead, Kluger, Krupp and Enoka (2013) propose the concept 

of fatigue in two attributes: performance fatigue and perceived fatigue. This concept 

of fatigue highlights the need to assess contractile capabilities/activation of the 
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involved muscle as well as the perceived rate of change in sensations and 

acknowledges that most voluntary actions performed by humans involve significant 

interactions between the two domains (i.e. performance and perceived fatigue; Enoka 

& Duchateau, 2016). However, the assessment of muscle function is unlikely to be 

routinely and simultaneously employed in a large squad of players (Carling et al., 

2018), and therefore lacks practicality. The use of CMJ and/or single sprint efforts 

provide a more pragmatic means of determining neuromuscular fatigue (Carling et al., 

2018). Sprint efforts occur during pivotal moments during a match (Faude et al., 2012), 

and therefore a decrement in sprint performance has relevance and ecological validity 

in a team sport context (Enoka & Duchateau, 2016).    

                                

It remains unclear if elevations in CK concentration after exercise represent a degree 

of actual muscle damage or some form of disruption in energy control processes or 

other molecular reaction mechanism (Baird, Graham, Baker, & Bickerstaff, 2012). The 

ability of CK concentration to reflect EIMD has therefore been questioned. Specifically, 

CK concentration is highly variable between individuals (Brancaccio et al., 2007) and 

has demonstrated less than favourable reliability (CV: 26 %; Roe et al., 2016). 

However, such individual variation can be partly accounted for by assessing individual 

resting values and consideration of the reliability of CK concentration when 

determining a meaningful change can help overcome some of the issues with this in-

direct marker of muscle damage. The specific mechanism of where DOMS originates 

is also still debated (Mizumura & Taguchi, 2016; Peake et al., 2017). Neurotrophic 

factor-mediated mechanisms, as opposed to inflammatory changes caused by 

myofiber damage, have recently been suggested as a mechanism of DOMS (Hayashi 

et al., 2017; Peake et al., 2017), as studies have reported changes in muscle function, 
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myofibrillar damage and/or inflammation were not related to DOMS (Paulsen et al., 

2010a; Paulson et al., 2010b). Accordingly, DOMS is a common symptom of EIMD 

(Paulson et al., 2012) but not an indicator of muscle damage. Based on the 

aforementioned issues, caution should be taken when assessing muscle damage 

magnitude based on DOMS and CK concentration (Damas et al., 2016). Instead, it is 

recommended in the assessment of EIMD a multidimensional approach is employed 

using a variety of in-direct markers (Heidari et al., 2019). 

 

2.4. Mechanisms of ACL injury risk  

Injury and rupture to the ACL is a common occurrence in team sports such as football, 

netball and rugby (Agel, Rockwood, & Klossner, 2016), and accounts for 65% of total 

ACL injuries resulting in surgery (Gianotti, Marshall, Hume, & Bunt, 2009). Most 

occurrences are non-contact in nature (Boden, Dean, Feagin, & Garrett, 2000; Walden 

et al., 2015) and often happen during a 30 – 90° side cut in males (Grassi et al., 2017; 

Walden et al., 2015) and females (Koga et al., 2010). Whilst it is unclear if ACL 

incidence rates differ between halves of match-play (Grassi et al., 2017; Hawkins, 

Hulse, Wilkinson, Hodson, & Gibson, 2001), in vivo studies have demonstrated the 

ACL is susceptible to fatigue (Wojtys, Beaulieu, & Ashton-Miller, 2016). Previous 

research has also reported fatigue-induced modifications in side cut kinematics and 

kinetics that could increase the risk of a non-contact ACL injury (Collins et al., 2016; 

Khalid, Harris, Michael, Joseph & Qu, 2015; McLean et al., 2007; Savage et al., 2018). 

Furthermore, whilst changes in gait biomechanics after EIMD have been reported 

(Paquette et al., 2017; Tsatalas et al., 2013a; Tsatalas et al., 2013b; Paschalis et al., 

2007a), the effect of EIMD on ACL injury risk has received limited attention. The 
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purpose of this section is to briefly review the biomechanical mechanisms of ACL injury 

risk, before discussing the effect of fatigue and EIMD on ACL injury risk. 

 

2.4.1 Biomechanical mechanisms of ACL injury 

2.4.1.1. Sagittal plane kinematics 

Landing and/or cutting with an extended trunk (Blackburn & Padua, 2009; Davis, 

Hinshaw, Critchley, & Dai, 2019; Podraza & White, 2012), reduced hip (Kipp, McLean, 

& Palmieri-Smith, 2011) and knee flexion angles (~20°; Koga et al., 2010; Walden et 

al., 2015; Weiss & Whatman, 2015) and reduced hip and knee angular velocities 

(Bakker et al., 2016) are associated with an increased risk of ACL injury/ACL strain. 

Reduced flexion angles increase quadriceps loading (DeMorat, Weinhold, Blackburn, 

Chudik, & Garrett, 2004; Fujiya, Kousa, Fleming, Churchill, & Beynnon, 2011) leading 

to insufficient hamstring activation (Yanagawa, Shelburne, Serpas, & Pandy, 2002), 

which elicits higher anterior tibial shear loads and therefore ACL strain. Reduced hip 

and trunk flexion angles have also been reported to best predict maximum ACL strain 

(Bakker et al., 2016), and a reduced trunk angle has been observed in ACL injured 

participants compared to a control group (Sheehan, Sipprell & Boden, 2012). Trunk 

position therefore plays a key role in ACL injury risk, yet it is often not assessed in 

studies assessing ACL injury risk (e.g. Benjaminse et al., 2008; Cortes, Greska, 

Kollock, Ambegaonkar, & Onate, 2013; Iguchi et al., 2014; McGovern et al., 2015; 

Savage et al., 2018). Notable differences between sexes are also evident. Typically, 

females exhibit smaller hip (~39 – 49 cf. 44 – 54º; Landry, McKean, Hubley-Kozey, 

Stanish, & Deluzio, 2007; Pollard, Sigward, & Powers, 2007) and knee (~3 – 16°; 

Chappell et al., 2007; Dai et al., 2015; Decker, Torry, Wyland, Sterett, & Steadman, 
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2003; McGovern et al., 2015; Yu et al., 2006) flexion angles compared to males during 

a side cutting manoeuvre and therefore could be at greater risk of ACL injury.  

 

2.4.1.2 Sagittal plane kinetics 

Landing with an erect posture increases vertical GRF (Podraza & White, 2012) 

associated with increased ACL injury risk (Hewett, 2000; Kirkendall & Garrett, 2000), 

and decreases hip extensor moment (Shimokochi, Ambegaonkar, Mayer, Lee, & 

Shultz, 2013; Kulas et al., 2008), suggesting a reduced ability of the hip extensors to 

produce work. This can increase knee extensor moments (Kulas et al., 2008), which 

are associated with an increased ACL strain (r > 0.86; Yu, Lin & Garrett, 2006) and a 

reduced time to peak ACL strain (r = -0.38; Bakker et al., 2016) and can distinguish 

individuals who go on to sustain an ACL injury (Leppänen et al., 2017). Whilst Bakker 

et al. (2016) reported maximum hip extensor moment was more associated with ACL 

strain than knee extensor moment, Leppänen et al. (2017) reported hip extensor 

moment was not associated with ACL injury risk, in a prospective study. Furthermore, 

an increase in hip extensor moment might reflect a change in work distribution 

(between the hip and knee) to help absorb mechanical energy (Coventry, O’Connor, 

Hart, Earl, & Ebersole, 2006). Females also exhibit smaller hip extensor moments 

compared to males during a side cutting manoeuvre (Landry et al., 2007; Pollard et 

al., 2007). This indicates a reduced strength of the hip extensors in females, (which is 

required to decelerate in the sagittal plane), resulting in greater exploitation of the 

frontal and transverse planes (Pollard et al., 2007), such as an increase knee internal 

rotation moment in females (Kipp, McLean, & Palmieri-Smith, 2011). Whilst the 

subsequent effect of sagittal hip moments might be a risk factor for the ACL, sagittal 
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hip moments alone play a limited role in ACL injuries (Leppänen et al., 2017; Mclean, 

Huang, Su, & van den Bogert, 2004). 

 

Higher peak vertical GRF (> 3/4 x BW; Bakker et al., 2016; Hewett et al., 2005; Koga 

et al., 2010; Yu & Garrett, 2007), reduced time to peak vertical GRF (Bates, Ford, Myer 

& Hewett, 2013) and high impulses (Bates et al., 2013) can increase ACL injury risk. 

Stiff landings (characterised by reduced lower limb flexion angles) produce larger 

vertical GRF (Ali, Robertson & Rouhi, 2014; Myer et al., 2011) and are therefore 

related to ACL injury risk. Specifically, higher range of motion of hip and knee flexion 

when landing, play a more important role in reducing impact forces (Yin, Sun, Mei, Gu, 

Baker, & Feng, 2015) and increasing time to peak ACL strain (Bakker et al., 2016) in 

comparison to joint positions at initial contact. 

 

2.4.1.3. Frontal plane kinematics 

Lateral flexion of the trunk in the opposite direction of a side cutting manoeuvre 

(Dempsey et al., 2007; Hewett, Torg & Boden, 2009) and high knee abduction angles 

(9 – 12º) during landing and cutting manoeuvres have been associated with ACL 

injuries (Hewett et al., 2009; Hewett et al., 2005; Koga et al., 2010; Myer et al., 2015). 

Specifically, epidemiology studies have observed lateral displacement of the trunk 

(Zazulak, Hewett, Reeves, Goldberg, & Cholewicki, 2007) and knee abduction/ knee 

valgus (categorized by knee abduction and internal rotation; Hewett et al., 2009; 

Hewett et al., 2005; Grassi et al., 2017; Stuelcken, Mellifont, Gorman, & Sayers, 2016; 

Walden et al., 2015) in the majority of ACL injuries analysed. Females have also 

demonstrated greater knee abduction angles (8º cf. 4º) during a side cut (Ford, Myer, 

Toms, & Hewett, 2005) and landing (Hewett et al., 2009; Krosshaug et al., 2007) and 
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a greater tendency towards lateral trunk flexion during a side cut (Figure 2.2; Pollard 

et al., 2007), compared with males. Valgus collapse (characterised by high knee 

abduction angular velocities) also appears to be a key mechanism in females 

(Krosshaug et al., 2007; Stuelcken et al., 2016) but less so in males (Walden et al., 

2015), which collectively suggests females could be at greater risk of ACL injury. 

 

Figure 2.2 An example of how females tended to lean their trunk over their stance 

leg when performing a cutting manoeuvre (taken from Pollard et al., 2007). 

 

The contribution of frontal plane hip mechanics to ACL injury risk has been disputed. 

Specifically, hip abduction has been reported in females with increased knee valgus 

moments (Sigward & Powers, 2007) and could move the body’s centre of mass (COM) 

resulting in GRF acting on the lateral side of the knee joint, straining the ACL (Weiss 

& Wahtmann, 2015). Yet, hip adduction has been reported as a common mechanism 

during ACL injuries (Grassi et al., 2017; Hewett et al., 2005). Increased hip adduction 

results in medial translation of the knee joint centre relative to the foot (Hewett et al., 

2005) and is therefore associated with increased knee abduction angle in females 

during a side cut (r = 0.49; Imwalle, Myer, Ford, & Hewett, 2009). Accordingly, hip 

adduction is likely a secondary mechanism of ACL injury risk.  
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2.4.1.4 Frontal plane kinetics 

Lateral flexion of the trunk in the opposite direction of a side cut can place excessive 

loading on the knee joint (Dempsey et al., 2007), increase knee abduction moment 

(Jamison, Pan & Chaudhari, 2012; Kristianslund et al., 2014) and is associated with 

an increased ACL injury risk using in vivo data within a simulation model (Shin, 

Chaudhari & Andriacchi, 2011). Conversely, both hip adduction (Frank et al., 2013; 

Hewett et al., 2005) and hip abduction moments (Kristianslund, Faul, Bahr, Myklebust 

& Krosshaug, 2014) have been associated with knee valgus moment; an important 

mechanism of ACL injury (Kristianslund et al., 2014). Inconsistencies in the literature 

might reflect the definition of joint moments (i.e. internal or external) and the influence 

of lateral trunk flexion on frontal plane hip motion (Havens & Sigward, 2015), which 

highlights the need to consider key variables collectively when assessing ACL injury 

risk.  

 

High peak knee abduction moments (>25 / 45 ± 29 N.m) during both landing and side 

cuts are key mechanisms of ACL injuries (Hewett et al., 2005; Koga et al., 2010; Myer 

et al., 2015). Specifically, high external knee abduction / knee valgus moments are 

strongly correlated to ACL force (r = 0.82; Navacchia, Bates, Schilaty, Krych, & Hewett, 

2019) and are associated with peak vertical GRF (r = 0.74 and r = 0.67, respectively; 

Hewett et al., 2005) and an increased lateral GRF (1.5 ± 0.9 N.kg-1; Sigward & Powers, 

2007), which increase the strain on the ACL. Hewett et al. (2005) also found knee 

abduction / knee valgus moment was the most significant predictor of ACL injury in 

females compared with other biomechanical variables and could predict ACL injury 

status with 73% specificity and 78% sensitivity. Females have also demonstrated 

higher knee abduction moments than males during a landing task (Chappell, Yu, 
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Kirkendall, & Garrett, 2002) and side cut (Sigward, Cesar, & Havens, 2015). These 

data collectively suggest knee abduction / knee valgus moments are key mechanisms 

of ACL injury and females are potentially more susceptible to ACL injury risk, due to 

altered frontal plane knee mechanics.  

 

2.4.1.5 Transverse plane kinematics 

Trunk rotation towards the uninjured leg (Stuelcken et al., 2016; Walden et al., 2015) 

and internal rotation at the hip (Boden, Torg, Knowles, & Hewett, 2009; Krosshaug et 

al., 2007) have been observed during ACL injuries. An increase in hip internal rotation 

increases peak valgus moments in males (r = ~0.75) and females (r = ~0.77) during a 

side cutting manoeuvre (McLean et al., 2005). Whilst research has also highlighted a 

correlation between external hip rotation and increased knee valgus (Weltin, Gollhofer, 

& Mornieux, 2016), the use of a lateral reactive jump (Weiltin et al., 2016), compared 

with a side cut which elicits greater hip internal rotation (Pollard, Sigward, & Powers, 

2007), partly explain differences in the contribution of hip rotation to knee loading. 

These data suggest internal hip rotation is a mechanism of ACL injury during a side 

cut task.  

 

Whilst both internal (5 – 12º) and external rotation of the tibia (5 – 15º) have been 

observed during ACL injuries (Grassi et al., 2017; Koga et al., 2010; Olsen, Myklebust, 

Engebretsen, & Bahr, 2004), internal rotation is more associated with ACL injury risk.  

Specifically, combined knee abduction and internal tibial rotation increases ACL strain 

more than any individual degree of freedom in vitro (Bates, Nesbitt, Shearn, Myer, & 

Hewett, 2017) and internal tibial rotation was evident in most non-contact ACL injuries 

from an extensive study of 1700 cases (Kobayashi et al., 2010). Upon landing, the 
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tibia is characteristically externally rotated at initial contact and then undergoes internal 

tibial rotation during the first 40 ms (Koga et al., 2010; Olsen et al., 2004), which is 

when ACL strain reaches peak values (Shin, Chaudhari & Andriacchi, 2007). Thus, 

inconsistencies amongst the literature might be dependent on the timing of reported 

variables. 

 

2.4.1.6 Transverse plane kinetics 

Despite the limited research examining the influence of trunk rotation moments on 

ACL injury risk, internal hip rotation moments have been reported to coincide with knee 

valgus moment during a side cutting manoeuvre (Jesper et al., 2013). An increased 

hip internal rotation moment has also been associated with increased knee abduction 

load (McLean & Samorezov, 2009), suggesting a possible link between internal hip 

rotation moment and ACL injury risk.  

 

Internal tibial rotation moments have been reported to increase the strain placed on 

the ACL more so than external tibial rotation moments (Fleming et al., 2001; Oh, Lipps, 

Ashton-Miller, & Wojtys, 2012). Whilst internal tibial rotation moments are strongly 

correlated to ACL force (r = 0.78; Navacchia et al., 2019), in vivo cadaver models have 

demonstrated internal tibial rotation moments alone are not enough to rupture the ACL 

(Shin et al., 2011). However, the coupled effect of knee abduction/valgus and internal 

tibial rotation moment can increase stain on the ACL and potentially cause a rupture 

(Kiapour et al., 2015; Navacchia et al., 2019; Shin et al., 2011). These data suggest 

both knee valgus and internal tibial moments contribute to increased ACL strain, yet 

knee abduction/valgus has the ultimate impact on ACL integrity.  
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2.4.1.7 Movement variability  

Movement variability, defined as normal variations in motor performance over multiple 

trials (Stergiou & Decker, 2011), has been linked with acute and overuse injuries 

(Bartlett, Wheat & Robins, 2007; James, 2004; Nordin & Dufek, 2019). The variability-

overuse hypothesis suggests an increased movement variability might allow 

individuals to adapt to environmental perturbations and reduce the risk of overuse 

injuries (James, 2004; James, Dufek & Bates, 2000; Nordin & Dufek, 2019). However, 

acute injuries are associated with a single traumatic loading event which exceeds the 

threshold of musculoskeletal tissues (Nordin & Dufek, 2019), therefore an increase in 

movement variability might increase ACL injury risk. Specifically, McLean et al. (2004) 

reported females exhibited greater variability in knee abduction angle compared with 

males, and increased knee abduction angles are associated with ACL loading/ACL 

injury risk (Donelon, Dos’Santos, Pitchers, Brown & Jones, 2020; Hewett et al., 2005). 

Taken together, whilst an increase in movement variability can reduce the risk of 

overuse injuries, it can increase the risk of extreme movement patterns, such as knee 

abduction angle, and could increase ACL injury risk.   

 

2.4.2 Assessment of ACL injury risk 

2.4.2.1 Functional tasks 

Given the mechanisms of ACL injury risk, both side cutting manoeuvres and single leg 

landings have typically been used to assess ACL injury risk. Yet, most ACL injuries 

during team sports occur during a side cutting manoeuvre in both males (Walden et 

al., 2015) and females (Koga et al., 2010; Olsen et al., 2004). This could be associated 

with the high frequency of cutting manoeuvres performed during team sports 

(Bloomfield et al., 2007) and the position of the knee joint during cutting manoeuvres. 
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Specifically, decreases in knee flexion (20.9º cf. 31.5º) and increases in knee valgus 

angle (11.5º cf. 5.6º) as well as knee abduction moment (1.58 Nm.kg-1 cf. 0.25 Nm.kg-

1) have been reported during a side cutting manoeuvre in comparison to a single leg 

landing (Kristianslund & Krosshaug, 2013), all of which are associated with ACL injury 

risk (see section 2.4.1). Collectively, these data suggest a side cutting manoeuvre 

might provide a more sport specific assessment of ACL injury risk in team sport 

athletes.  

 

2.4.2.2 Side cutting task achievement  

Injury to the ACL typically occurs when players move forward at high speed and cut at 

an intended angle between 30 – 90° (Walden et al., 2015). Specifically, ACL strain 

reaches peak values during the weight acceptance phase of stance (0 – 25% of 

stance/ 0 – 83 ms after initial contact; Koga et al., 2010; Shin, Chaudhari, & Andriacchi, 

2007; Sigward & Power, 2007), where there is a large deceleration component. 

Research has therefore typically utilized a 45° side cutting manoeuvre in the 

assessment of ACL injury mechanisms (Collins et al., 2016; Imwalle, Myer, Ford & 

Hewett, 2009; Jamison et al., 2012; Sanna & O’Connor, 2008) and focused on the 

weight acceptance phase of stance, as knee joint loading must be sufficiently close to 

knee loads associated with ACL injury to identify ACL injury mechanisms 

(Vanrenterghem, Venables, Pataky, & Robinson, 2012). A 45° cutting angle is acute 

enough to require a substantial deceleration, but shallow enough for a change of 

direction to be achieved during a single foot contact (Alenezi, Herrington, Jones, & 

Jones, 2016) with higher approach speeds. Specifically, Vanrenterghem et al. (2012) 

identified knee loading mechanisms during a side cutting manoeuvre only reached 

meaningful values from an approach speed of 4 m.s-1. Taken together, a 45° side 
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cutting manoeuvre at an approach speed of at least 4 m.s-1 can be used to identify the 

mechanisms associated with ACL injury. 

 

2.4.2.3 Biomechanical measurement variables  

Previous research has examined joint kinematics and kinetics at 30 to 100 ms after 

initial contact (McGovern et al., 2015; Kristianslund et al., 2014), the loading phase of 

stance (0 – 50% of stance; Hanson, Padua, Blackburn, Prentice, & Hirth, 2008; 

Sigward & Powers, 2007), the weight acceptance phase (initial contact to peak knee 

flexion; Jamison et al., 2012) and peak values (Collins et al., 2016) during a side cut. 

Whilst examining data within discrete parameters can lead to severe reduction in the 

data and the loss of important information (Deluzio, Harrison, Coffey, & Caldwell, 

2014), peak values (i.e. peak knee abduction moment and peak GRF) are directly 

related to ACL injury risk (Hewett et al., 2005). Accordingly, examining kinematic and 

kinetic variables over the whole of stance as well as relevant peak values, can provide 

an insight into ACL injury risk. 

 

When undertaking movement analysis, it is important to consider the reliability of 

biomechanical variables to identify true changes after an intervention. Studies have 

reported interclass correlation coefficients (ICC) to indicate the relative agreement of 

biomechanical variables (e.g., Alenezi, et al., 2016). However, ICC values alone are 

not presented in the context of the original data, making it difficult to use practically to 

interpret the reliability of actual data (Sankey et al., 2015) and do not indicate the level 

of disagreement between measurements (Alenezi, et al., 2016). To help interpret 

whether a kinematic / kinetic change is meaningful, a standard error of measurement 

(an estimate of how much a measured kinematic/kinetic value are spread around the 



 

 

73 

“true” value) should therefore be used when reporting 3D kinematics of the knee joint 

during side cutting manoeuvres (Benoit et al., 2006). Accordingly, only studies which 

report reliability data using the standard error of measurement (SEM) and/or markers 

of variability (e.g. standard deviation) are discussed.  

 

During a side cutting manoeuvre, GRF has demonstrated a high level of relative 

agreement (SEM: 0.14 X BW) and less variability compared with kinematic and kinetic 

data (Alenezi, et al., 2016). Lower limb kinematic data has also demonstrated good 

reliability (~2-5°/<5% variability; Alenezi et al., 2016; Sankey et al., 2015), with hip 

adduction, internal rotation and knee internal rotation angle demonstrating the highest 

SEM within-day (3.37, 3.81 and 2.71° respectively; Alenezi et al., 2016). Whilst lower 

limb kinetic data has demonstrated greater variability in all three planes (16.9 – 31.8 

N.m; Sankey et al., 2015), Alenezi et al. (2016) reported hip flexion (0.27 N.m.kg-1), 

knee valgus (0.18 N.m.kg-1), and knee flexion (0.16 N.m.kg-1) moments demonstrated 

acceptable SEM and relative agreement (ICC > 0.82). Robinson and Vanrenterghem 

(2012) recommend maximum differences of <4º for frontal and sagittal plane knee 

angles and <10 N.m for sagittal knee moments and <8 N.m for frontal knee moments 

during a side cutting manoeuvre are unlikely to be meaningful differences. Collectively, 

these data suggest certain biomechanical variables show sufficient consistency, 

however some frontal and transverse motions would require considerable changes to 

identify effects from an intervention.   

 

2.4.2.4 3D biomechanical analysis 

The accuracy of 3D biomechanical data is influenced by marker configuration (Manal, 

McClay, Stanhope, Richards, & Galinat, 2000), which can be improved by using a 
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functional method to define hip and knee joint centres (Besier, Sturnieks, Alderson, & 

Lloyd, 2003) and incorporating a point cluster technique (Ishii, Nangano, Ida, 

Fukubayashi, & Maruyama, 2011; Manal, McClay, Stanhope, Richards, & Galinat, 

2000). Whilst previous marker models used to assess ACL injury risk typically 

incorporate these aspects (Dempsey et al., 2007; Khalid et al., 2015; Vanrenterghem, 

Gormley, Robinson & Lees, 2010), not all incorporate a functional method to assess 

the location of hip and knee joint centres (Frank et al., 2013; McGovern et al., 2015; 

Sanna & O’Connor, 2008). This is important given that Robinson and Vanrenterghem 

(2012) found the use of a function frame to define the knee axis can provide accurate 

knee biomechanics, in comparison to anatomical landmarks, during a side cutting 

manoeuvre. Furthermore, most studies assessing ACL injury risk during a side cut do 

not incorporate trunk markers to assess trunk position (e.g., Collins et al., 2016; Khalid 

et al., 2015; McGovern et al., 2015; Sanna et al., 2008), which can provide an 

important indication of ACL injury risk (see section 2.4.1). The Liverpool John Moores 

University (LJMU) lower limb and trunk model can provide an appropriate 

representation of the COM during a side cut (accounting for 82% of body mass; 

Vanrenterhem et al., 2010), which also incorporates a point cluster technique and a 

functional method for the assessment of hip and knee joint centres. This marker model 

has since been used to estimate COM variables (Sankey, Robinson & Vanrenterghem, 

2020; Jamkrajang, Robinson, Limroongreungrat, & Vanrenterghem, 2017), which 

could provide further insight into the ACL injury risk. Specifically, the position of the 

whole-body centre of mass is associated with peak knee abduction moment (Donnelly, 

Lloyd, Elliott, & Reinbolt, 2012; Sankey et al., 2020), a key mechanism of ACL injury. 

Accordingly, the LJMU lower-limb and trunk model (Vanrenterhem et al., 2010), might 
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provide a more accurate understanding of ACL injury risk during a side cutting 

manoeuvre.  

 

The movement between surface markers and underlying bone, referred to as soft 

tissue artefact, can also influence the accuracy of biomechanical data (Benoit, 

Damsgaard & Anderson, 2015), regardless of the model used, as the digitised 

coordinates will still contain some random errors referred to as noise (Bartlett, 2014). 

Noise is typically lower in amplitude and can be removed using a low-pass filter 

(Sinclair, Taylor, & Hobbs, 2013), of which a fourth-order zero-lag Butterworth filter is 

frequently utilized within biomechanical analysis (Collins et al., 2016; Iguchi et al., 

2014; Sanna & O’Connor, 2008). Butterworth filters yield a weighted average of data 

points across the kinematic waveform to determine the cut off frequency (Derrick, 

2012). Determining the most appropriate cut off frequency is essential, given the 

influence on lower extremity kinematic data (Sinclair et al., 2013). Specifically, Fourier 

transformation and residual analysis have been deemed sufficiently reliable methods 

for determining cut-off frequencies (see Sinclair et al., 2013), yielding values of 10 – 

15 Hz for 3D kinematic data during running and cutting manoeuvres (Collins et al., 

2016; Sanna & O’Connor, 2008; Sinclair et al., 2013).  

 

2.4.3 Effect of fatigue on ACL injury risk  

Several authors have suggested an increased risk of ACL injury due to fatigue. 

Specifically, increases in hip extension (~4º; Borotikar, Newcomer, Koppes & McLean, 

2008), hip internal rotation (~2º; Borotikar et al., 2008), knee abduction/knee valgus 

angles (~1 – 7º; Borotikar et al., 2008; McLean et al., 2007; Smith, Sizer, & James, 

2009) and increases in peak knee internal rotation (~0.17 N.m.kg-1), abduction 
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moments (0.21 N.m.kg-1; McLean et al., 2007), and increases in sagittal plane angular 

velocities (6%; Tamura et al., 2017) have been reported after fatiguing exercise during 

single leg landing activities. Similar fatigue induced modifications during side cutting 

manoeuvres such as decreases in knee flexion angle (~ 3º; Cortes et al., 2013; Lucci 

et al., 2011), and increases in peak knee abduction angles (~2º; Collins et al., 2016; 

Tsai, Sigward, Ollard, Fletcher & Powers, 2008) and moments (0.3 N.m.kg-1; Tsai, et 

al., 2008), and knee internal rotation angle (~1 – 6º; Lucci et al., 2011; Tsai, et al., 

2008) have also been reported. Notably, females exhibit an increased knee 

abduction/valgus moment, which is indicative of an increased ACL injury risk (Inguchi 

et al., 2014; McLean et al., 2007). However, others have reported no such differences 

in knee flexion angle (Inguchi et al., 2014; McLean et al., 2007) or increases in hip and 

knee flexion angle at initial contact (Coventry, O’Connor, Hart, Earl & Ebersole, 2006) 

during single leg landings and side cutting manoeuvres with fatigue. Changes in GRF 

with fatigue also appear to be equivocal (see review by Zadpoor & Nikooyan, 2012), 

suggesting further research examining the effect of fatigue on lower limb mechanics 

is warranted. 

 

Discrepancies amongst the literature examining fatigue and ACL injury risk might 

partly be explained by the variety of fatigue protocols used and the use of male and/or 

female participants. Indeed, changes in vertical GRF impulse (Inguchi et al., 2014) 

and knee kinematics (Kernozek, Torry, & Iwasaki, 2008) under fatigue can be sex 

dependant, and fatigue responses during landing activities are highly dependent on 

which muscle has been fatigued (Kellis & Kouvelioti, 2009). For example, hip abductor 

fatigue caused no change to frontal plane hip and knee mechanics (Patrek, Kernozek, 

Willson, Wright, & Doberstein, 2011), whereas isolated hip rotator fatigue has been 
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reported to increase hip internal rotation at initial contact during a single leg drop jump 

(Thomas, Palmieri-Smith, & McLean, 2009). The non-uniformity of fatigue protocols 

used in the literature, such as 4 minutes of jumping, stepping and bounding tasks 

(McLean et al., 2007), successive counter-movement jumps (Inguchi et al., 2014) and 

knee extensor and flexor contractions on a dynamometer (Kellis & Kouvelioti, 2009), 

make comparisons amongst the literature difficult. In addition, as these protocols do 

not mimic the specific movements of team sport activity, these findings are equivocal 

and lack ecological validity. Accordingly, the rest of this section focuses on lower limb 

mechanics after fatiguing exercise protocols which mimic the intermittent movement 

patterns typical of team sport activity (discussed in section 2.2.1). 

 

Several studies have examined changes in lower limb kinematics and kinetics after 

intermittent activity (see Table 2.5). Typically, athletes adopt a more erected position, 

displaying less hip (~4º) and knee flexion (~4º) during a side cutting manoeuvre (Khalid 

et al., 2015; McGovern et al., 2015; Raja Azidin et al., 2015). Whilst this contrasts with 

Savage et al. (2018) who reported a ~7º increase in knee flexion angle, both Savage 

et al. (2018) and Khalid et al. (2015) reported increases in knee extensor moment, 

which has been linked to an increased eccentric action of the quadriceps. Of the 

studies reviewed, increases in knee internal rotation range of motion (Sanna & 

O’Connor, 2008), hip and knee external rotation at initial contact (Sanna & O’Connor, 

2008) and a reduction in knee external rotation moment (Khalid et al., 2015) have been 

reported during a side cutting manoeuvre, whereas others have reported no such 

changes (Collins et al., 2016; McGovern et al., 2015). Thus, it is unclear whether 

transverse plane biomechanics are affected by fatigue.  
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Fatigue induced modifications in frontal plane kinematics have received limited 

attention and it remains unclear as to whether adduction and abduction motions 

change (see Table 2.5). Similarly, only one of the studies reviewed has reported 

changes in GRF, which found fatigue increased peak vertical and anterior/posterior 

GRF (Khalid et al., 2015). An increase in GRF following fatigue can be expected, given 

that athletes adopt a more erected position, and decreases in hip and knee flexion can 

significantly increase vertical GRF (Blackburn & Padua, 2009). 

 

Sex dependant fatigue related modifications in lower limb kinematics and kinetics have 

been observed during a side cutting manoeuvre (Khalid et al., 2015; McGovern et al., 

2015). Specifically, Khalid et al. (2015) reported males exhibited greater peak knee 

internal rotation moments and vertical GRF at initial contact in comparison to women. 

Conversely, McGovern et al. (2015) reported females performed side cut manoeuvres 

in a more erected position with less knee flexion and more internal hip rotation than 

males. Such discrepancies might be attributed to differences in the mechanisms of 

fatigue caused by different protocols. Indeed, Stern and colleagues reported females 

had greater quadriceps dominance after fatiguing exercise, as quadriceps torque 

remained unchanged whereas hamstring torque decreased by 5.7 % (Stern, Kuenze, 

Herman, Sauer, & Hart, 2012). Conversely, males had greater decrements in 

quadriceps torque (-8.5 %) in comparison to hamstring torque (-3.7 %). As quadriceps 

dominance is associated with increase ACL injury risk (Sigward & Powers, 2006), this 

would suggest fatigue increases the risk of ACL injury in females.  

 

The contrasting literature regarding sex dependant fatigue modifications in lower limb 

kinematics and kinetics might also be explained by between subject aerobic fitness 
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and within subject movement variability. Specifically, enhanced oxygen delivery to 

exercising muscles directly attenuates muscle fatigue (Wan, Qin, Wang, Sun, & Liu, 

2017), so athletes with a greater aerobic capacity could display some tolerance to 

fatigue from the same task. Increased within subject movement variability (calculated 

as the average standard deviation of the joint angle) has also been reported after 

fatiguing exercise (Cowley & Gates, 2017; Scholes, McDonald, & Parker, 2012), and 

higher movement variability during a fatigue protocol were reported in a participant 

who sustained an ACL injury compared with a control group (Hamdan & Raja Azidin, 

2020). Such increases in movement variability might be an attempt to help adapt 

movement patterns affected by fatigue (Cowley & Gates, 2017), but could increase 

the risk of extreme movement patterns. Conversely, Cortes et al. (2014) reported a 

decrease in mean variability of GRF and knee moments after fatiguing exercise, thus 

further research exploring how fatigue affects movement variability during a side cut 

task are warrented. 
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Table 2.5 Changes in lower limb kinematics and kinetics at the hip and knee joint, during a side cut (or similar action), after 

prolonged intermittent running activity  

 

 Continued on next page 

Study Fatigue protocol 

 

Participants Sagittal Frontal Transverse GRF 

Sanna & 

O’Connor 

(2008) 

60 minutes of 

20 m shuttles  

12 college 

female soccer 

players 

No change No change ↑ ~3.3º knee 

internal rotation 

ROM from IC to 

peak and NS ↑ 

1.1-1.3º in hip and 

knee external 

rotation at IC 

 

- 

Schmitz et al. 

(2014) 

90 minutes of 

intermittent 

running (soccer 

simulation) 

30 male and 

29 female 

collegiate and 

club sport 

athletes 

↓ in hip flexion 

angle and hip 

loading at IC 

↓ in knee loading 

(values not 

reported) 

- ↓ in knee shear 

forces (values not 

reported) 

- 

Khalid et al. 

(2015) 

Yo-yo 

intermittent 

recovery test 

6 male and 6 

female 

university 

soccer players 

↑ 0.11 N.m.kg-1 

peak knee 

extension moment 

and ↑ ~3º knee 

extension angle at 

IC 

- 

 

↓ 0.06 N.m.kg-1 

peak knee 

external rotation 

moment  

↑ 0.15 X BW 

vertical GRF and 

↑ 0.08 X BW peak 

anterior/posterior 

GRF 

McGovern et 

al. (2015) 

Prolonged 

modified t test 

10 male and 

19 female 

university 

soccer players 

 

↓ 4º hip and knee 

flexion angle 

↑ ~3º hip 

adduction angle 

(males only) 

No change - 
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Table 2.5 Continued 

IC = initial contact, ↑ = increase, ↓ = decrease, ROM = range of motion, GRF = ground reaction force, NS = non-significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study Fatigue protocol 

 

Participants Sagittal Frontal Transverse GRF 

Raja Azidin et 

al. (2015) 

Soccer match 

simulation 

19 male 

recreational 

soccer players 

↑ knee extension 

angle at IC 

(values not 

reported) 

No change - - 

Collins et al. 

(2016) 

60 minutes of 

intermittent 

shuttle running 

13 collegiate 

female soccer 

players 

No change  ↑ 2.4º peak knee 

abduction angle  

No change - 

Savage et al. 

(2018) 

4 x 20 minutes 

of intermittent 

non-motorised 

treadmill 

8 male 

Australian 

football 

players 

↑ ~7º knee flexion 

angle at IC and ↑ 

knee extensor 

moment (values 

not reported) 

- No change - 
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2.4.4 Effect of EIMD on ACL injury risk 

The effect of EIMD on ACL injury risk has received limited attention, however several 

studies have examined the effect of EIMD on walking and running kinematics. 

Decreases in both hip (~2 – 7º; Tsatalas et al., 2013a) and knee (~1 – 10º; Chen, 

Nosaka, Lin, Chen & Wu, 2009; Dutto & Braun, 2004; Paquette et al., 2017; Paschalis 

et al., 2007a; Tsatalas et al., 2013a; Tsatalas et al., 2013b) range of motion during 

walking and running have been observed after muscle-damaging exercise. These 

findings were consistent with a decrease in stride length (Burt, Lamb, Nicholas & Twist, 

2014; Chen et al., 2009; Tsatalas et al., 2013b) and an increase in stride rate during 

sub-maximal running after muscle-damaging exercise (Tsatalas et al., 2013a; 

Tsatalas et al., 2013b). Increasing stride rate has been associated with an increase in 

vertical leg stiffness (Farley & Gonzalez, 1996), which could increase risk of injury due 

to a reduction in shock absorption capabilities (Dutto & Braun, 2004). From these data, 

it would seem likely that knee flexion is reduced with EIMD, which is associated with 

ACL injury risk. However, during initial contact knee flexion has been found to increase 

(~1.4 – 3.7º; Tsatalas et al., 2013a; Tsatalas et al., 2013b) and decrease (~1.1 – 2º; 

Dutto & Braun, 2004; Paschalis et al., 2007a; Paquette et al., 2017) during walking 

and running activities. Such discrepancies are task dependant, given that increases in 

knee flexion were observed during walking (Tsatalas et al., 2013a; Tsatalas et al., 

2013b) and decreases in knee flexion were observed during running (Dutto & Braun, 

2004; Paschalis et al., 2007a; Paquette et al., 2017). 

 

Changes in walking kinetics have also been reported after muscle-damaging exercise. 

Tsatalas et al. (2013a) reported decreases in peak hip flexor moment (-1.3 cf. -1.09 

N.m.kg-1) and increases in peak knee flexor moment (-0.09 cf. -0.15 N.m.kg-1), which 
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has been postulated as a protective mechanism to reduce loading on painful tissues. 

Furthermore, peak vertical (119.9 cf. 113.7 % BW) and posterior (-23.3 cf. -18.9 % 

BW) GRF decreased with EIMD, although the first minimum vertical GRF (72.1 cf. 82.0 

% BW) was increased (Tsatalas et al., 2013a). These data suggest an increased 

loading during the weight acceptance phase of stance (Tsatalas et al., 2013a), which 

could increase injury risk. Collectively, whilst these data suggest an increased risk of 

injury with EIMD, the specific risk of injury to the ACL following EIMD cannot be 

determined, as running does not place sufficient loading on the ACL required to 

identify ACL injury mechanisms (Vanrenterghem et al., 2012). To the authors 

knowledge, only one study has assessed the effect of EIMD on side cut biomechanics 

(Snyder, Hutchison, Mills & Parsons, 2019). Specifically, Snyder et al. (2019) reported 

peak posterior GRF (0.77 cf. 0.87 xBW) and anterior tibial shear force (1.15 cf. 1.24 

xBW) increased after muscle damaging exercise and such changes have been 

associated with an increased risk of ACL injury. Taken together, these findings 

highlight further research assessing the effect of EIMD on lower limb kinematics and 

kinetics during a side cut is warranted to fully understand the effect of EIMD on ACL 

injury risk.  

 

2.5 Conclusion 

Team sport athletes perform numerous high-speed efforts, accelerations and 

decelerations during match-play which elicit acute psychophysiological responses 

such as an elevated V̇O2, HR, B[La] and RPE. These psychophysiological responses 

are strongly correlated with specific movements performed by athletes (i.e. 

accelerations, decelerations and high-speed running). In particular, metabolic power 

has demonstrated the strongest associations with an athlete’s internal 
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psychophysiological response in comparison to high speed running, and therefore has 

potential to reflect an individual’s internal response to team sport activity. However, 

the validity of metabolic power has been questioned and is influenced by the 

intermittentness of exercise. Further research is therefore required to investigate 

whether metabolic power better reflects the internal response to team sport activity, in 

comparison to high speed. 

 

The movement characteristics of team sports cause symptoms of fatigue and muscle 

damage that appear immediately, and for days after exercise, and can be attributed to 

a combination of central and peripheral mechanisms. For example, decrements in 

MVC, CMJ and sprint performance have been reported after team sport activity and 

are associated with the amount of high-speed running and directional changes 

performed by the player. Similar associations between sprints, accelerations and 

decelerations with indirect markers of muscle damage have also been reported. It is 

therefore essential that research assessing fatigue and muscle damage after team 

sport activity incorporates key movement patterns that are performed frequently during 

match-play (see section 2.1.1).  

 

Injury to the ACL often occurs during a side cut in team sport athletes. Whilst the 

mechanisms of ACL injury are multifaceted, knee abduction / valgus and internal tibial 

rotation motions and moments are key mechanisms reported during an ACL injury. 

Smaller flexion angles (at the trunk, hip and knee), hip adduction and trunk rotation 

are also common secondary mechanisms associated with ACL injuries. ACL injury risk 

also appears to be dependent on sex and fatigability. Specifically, under fatigue, 

females typically adopt a more erected side cut position which is associated with an 
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increased risk of injury. However, discrepancies in reported modifications in frontal 

and transverse plane lower limb mechanics after fatigue are evident and potentially 

reflect the non-uniformity of fatigue protocols used. Further research is therefore 

warranted to assess how fatigability from team sport activity influences side cut 

biomechanics to help inform ACL injury risk after team sport activity, ACL screening 

and preventative programmes. Finally, the current literature on the effect of EIMD on 

side cut mechanics and ACL injury risk is minimal, but EIMD-induced changes in 

running mechanics are evident. As team sport athletes might have to perform whilst 

exhibiting symptoms of EIMD, these data highlight the need to assess side cut 

biomechanics after muscle damaging exercise, to help identify whether or not EIMD 

contributes to ACL injury risk. 
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Chapter 3 

General Methods 

This section details common procedures used in Chapters 4-7. 

 

3.1 Multi-stage fitness test (Chapters 4,5,6 and 7) 

The 20 m multi-stage fitness test (Ramsbottom, Brewer, & Williams, 1988) involved 

participants running back and forth along a 20 m indoor linear course. Movement 

speeds were controlled using an audio CD, with the initial speed starting at 8.5 km.h-1 

and progressively increasing by 0.5 km.h-1 every ~60 s until volitional exhaustion. The 

calculation (Chapter 4 and 5) and estimation (Chapter 6 and 7) of the participant’s 

V̇O2peak is discussed further in the relevant chapters. The multi-stage fitness test has 

demonstrated favourable relative agreement with measured V̇O2max (r = 0.87 - 0.92) 

with an estimated standard deviation of 3.5 ml.kg-1.min-1 and standard error of 

measurement of 4.1 ml.kg-1.min-1 (Paradisis et al., 2014; Ramsbottom et al., 1988). 

The multi-stage fitness test has also demonstrated high relative reliability (r = 0.95), 

however the absolute reliability is less favourable (95% limits of agreement (LoA: 0.0 

± 5.5; Lamb & Rogers, 2007). Taken together, these data suggest the multi-stage 

fitness test can be used to estimate V̇O2max, but the repeatability is less favourable, as 

a participant with an estimated V̇O2max of 55 ml.kg-1.min-1 might have an estimated value 

as high as 60.5 or as low as 49.5 ml.kg-1.min-1 in subsequent trials.  

 

3.2 Multi-directional running protocol (Chapters 4,5,6 and 7) 

The multi-directional trial comprised repeated bouts of ~60 s of intermittent activity 

(jogging and sprinting) followed by 120 s of passive rest, where participants covered 

175 m during each bout. The specific number of bouts performed are detailed in the 



 

 

87 

relevant chapters. The specific pattern of activity comprised of three 10 m sprints 

forward interspersed with a 5 m jog backwards. Thereafter, a 2.5 m lateral jog to the 

right and left was performed, followed by two 10 m sprints forward interspersed with a 

5 m jog backwards. This was followed by a 10 m jog forwards, a 2.5 m lateral jog to 

the right and left into a 35 m sprint forward. Finally, a 5 m diagonal jog, a 15 m jog 

forwards, a 5 m jog backwards followed by a 20 m sprint forwards was performed 

during each bout (Figure 3.1). Reliability data for the multi-directional trial are provided 

in Chapter 4. 

 

Figure 3.1. Schematic representation of the multi-directional running condition. Each 

X indicates a change of direction. 
 

All participants completed a warm up consisting of two submaximal bouts of the multi-

directional trial and three progressive accelerations over 10 m before commencing the 

protocol. 
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3.3 Linear running protocol (Chapters 4 and 5) 

The linear trial comprised repeated bouts of ~60 s of intermittent activity (jogging and 

sprinting) followed by 120 s of passive rest, where participants covered 175 m during 

each bout. The specific activity pattern involved 3 x 35 m sprints interspersed with 2 x 

35 m jogs along a linear course. 

 

All participants completed a warm up consisting of two submaximal bouts of the linear 

trial and three progressive accelerations over 10 m before commencing the linear trial. 

 

3.4 Sprint performance (Chapters 6 and 7) 

Participants performed three single maximal 20 m sprints on an outdoor running track, 

with times recorded using four infrared timing gates (Brower Speed Trap 2; Brower, 

UT, USA). Timing gates were positioned at zero and 20 m, at a height of ~ 1 m, and 

all participants wore running trainers. Participants comenced each sprint from a 

standing start, positioned 0.5 m behind the initial timing gate, and were instructed to 

declerate only once they had passed the final timing gate. Each sprint was 

interspersed with a 2-minute passive recovery. The fastest 20 m sprint time was used 

for analysis. Single beam timing gates have demonstrated favourable between trial 

reliability (CV: 1%; Waldron et al., 2011) and favourable absolute agreement 

compared with high speed video analysis (95% LoA: 0.006 – 0.120 s; Altmann et al., 

2017) over sprint distances of 20 – 30 m. 

 

3.5 Three-dimensional motion capture of 45° side cuts (Chapters 6 and 7) 

Twenty-eight reflective markers were placed on the trunk, pelvis and lower extremities 

in accordance with the Liverpool John Moores University (LJMU) lower-limb and trunk 
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model (Vanrenterghem et al., 2010). Specifically, trunk markers were placed on the 

right and left acromion, proximal sternum, xiphoid process and vertebra C7 and T8. 

Pelvis markers were placed on the right and left iliac crest, anterior superior iliac spine, 

posterior superior iliac spine and greater trochanters. Lower limb markers were placed 

on the medial and lateral femoral epicondyles, medial and lateral malleoli and the heel, 

first and fifth metatarsal of each foot. In addition, non-collinear cluster markers, 

mounted on rigid plates were securely placed on the right and left thigh and shank 

(Figure 3.2). Thereafter a 3-second static calibration and a dynamic calibration for the 

right and left hip and knee was recorded to define functional joint centres. Three flexion 

and extension, abduction and adduction and circumduction movements were 

performed at the hip joint. For the knee joint participants performed three flexion and 

extension movements. After calibration, the medial malleolus, medial and lateral knee 

and left and right greater trochanters were removed, so only tracking markers 

remained (Vanrenterghem et al., 2010).  

 

Figure 3.2 (A) Anterior view of the static marker model used and (B) Visual 3D 

representation of a particicpant performing a 45° side cut 
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Participants were permitted several practice attempts of the run and cutting 

manoeuvre. This involved 45° cutting manoeuvres at an approach speed of 4 – 4.5 

m.s-1 (see section 2.4.2.2; Vanrenterghem et al., 2012) which was assessed using two 

infrared timing gates (Brower Speed Trap 2; Brower, UT, USA) located 1.5 m apart 

prior to the force platform, at a height of ~ 1 m (Figure 3.3). Thereafter participants 

performed five cutting maneouvers on the dominant side, interspersed with a 1-minute 

passive recovery. Successful trials were those in which the approach speed was 

maintained, the entire foot contacted the force platform and the cutting manoeuvre 

was performed the correct exit angle at 45°.  

 

Figure 3.3 Schematic representation of the 3D motion capture data collection of 45° 

side cuts 

 

Three-dimensional marker trajectories were recorded using seven three-dimensional 

cameras (Oqus 7, Qualisys, Sweden) sampling at 300 Hz. Simultaneous 

measurements of three-dimensional GRF were recorded on a force platform (Kistler, 

X
Timing gates

Force platform

Direction of
motion

1.5 m

45°

3D camera
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Switzerland), sampling at 900 Hz. All kinematic and kinetic data were captured using 

biomechanical software (Qualisys Track Manager 2.15, Qualisys, Sweden).  

 

3.6 Data Analysis of 45° side cuts (Chapters 6 and 7) 

Kinematic and kinetic calculations from tracked marker trajectories and GRF data were 

conducted using Visual3DTM (version 5.1, C-Motion Inc., Rockville, USA). Trajectory 

data and GRF data were filtered using a fourth-order, zero-lag low-pass Butterworth 

filter at 12 Hz and 40 Hz, respectively, based on residual analysis (see appendix 3.1; 

Winter, 1990) and previous recommendations (Roewer, Ford, Myer & Hewett, 2014). 

A trunk and lower limb model (trunk, pelvis, 2 x thigh, 2 x shank, 2 x foot) was created 

for each participant from the standing calibration, which accounts for 82% of body 

mass and can therefore be used to estimate centre of mass variables (see section 

2.4.2.4; Jamkrajang et al., 2017; Sankey et al., 2020). Participant-specific hip and knee 

functional joint centres were estimated from dynamic calibration, which provide a valid 

assessment of a fixed joint axis (Ehrig, Taylor, Duda & Heller, 2007) and accurate 

biomechancis compared with anatomical landmarks (Robinson & Vanrenterghem, 

2012). Three-dimensional GRF was calculated and normalized to body weight (N.kg-

1). Joint motions (°) and angular velocities (°.s-1) in all three planes were calculated 

using Cardan x-y-z rotation sequence. The hip and knee angle were measured relative 

to the next most proximal segment. Estimated whole-body centre of mass (COM) 

based on the LJMU lower limb and trunk model (Vanrenterghem et al., 2010) was used 

to calculate the extrapolated centre of mass (XCOM) in accordance with Hof (2008), 

as detailed below: 

 
XCOM = pCOM + (vCOM) 
                                 √gl-1 
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where pCOM is the medio-lateral position of the COM, vCOM is the medio-lateral 

velocity of the COM, g is gravity and l is the distance between the COM and the ankle 

(defined by the lateral malleolus marker) in the frontal plane (Hof, 2008; Sankey et al., 

2020). The medio-lateral foot placement was then calculated as the medio-lateral 

distance from the XCOM relative to the base of support (BOS; defined by the fifth 

metatarsal head; Sankey et al., 2020).  

 

Task achievement was evaluated using the first derivative of COM position to calculate 

COM velocity and cut angle. Three-dimensional hip and knee internal moments were 

calculated using Newton-Euler inverse dynamics procedures (Bresler & Frankel, 

1950) and estimated body segment parameters from Dempster (1955). Specifically, 

hip adduction, extension and external rotation moment and knee adduction, extension 

and external rotation moments were calculated. The net internal joint moments 

produced by joints and ligaments are presented which counterbalance the external 

joint moments. For example, an external knee flexion moment, which tends to flex the 

knee, is counterbalanced by an internal knee extensor moment, generated by the 

quadriceps. In addition, the relationship between peak knee extensor and hip extensor 

moments were examined using the knee to hip extensor moment ratio (calculated by 

peak knee extensor moment divided by peak hip extensor moment). Using this ratio, 

a value greater than “1” would indicate increased knee extensor moments compared 

to hip extensor moments while a value of less than “1” would indicate increased hip 

extensor moments compared to knee extensor moments (Pollard, Sigward & Powers, 

2010). The joint co-ordinate system was used as a reference frame for joint moments 

(Kristianslund, Krosshaug, Mok, McLean, & van den Bogert, 2014) and all joint 

moments were normalized to body mass (N.m.kg-1). All data were time-normalized to 
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100% of stance, which was defined as the time vertical GRF exceeded 50 N (Collins 

et al., 2016). Peak kinematic and kinetic data during the weight acceptance phase of 

the cutting manoeuvre; defined as the interval between initial contact and peak knee 

flexion (Jamison et al., 2012) were quantified. Vertical GRF impulse (IGRF) during the 

weight acceptance phase was derived via integration of the vertical GRF over time 

(Caldwell, Robertson, & Whittlesey, 2014), normalized to body weight.   

 

3.7 Statistical analysis approach (Chapters 4, 5, 6 and 7) 

Traditional null hypothesis testing is the standard for quantitative research in sport 

science. However, the shortcomings and misinterpretations of null hypothesis testing 

and p values have recently been highlighted (Szuc & Ioannidis, 2017; Greenland et 

al., 2016). Briefly, the use of a global arbitrary cut off p value (i.e. p < 0.05 = a 

significant effect), which is not specific to the research question, does not provide a 

good measure of evidence regarding a hypothesis (Wasserstein & Lazar, 2016). A 

lone p value is also uninformative as it is prone to false positives and says nothing 

about the magnitude of the effect (Kruschke, 2010). Indeed, a review on the effect of 

fatigue on lower limb neuromuscular function highlighted only 22% of the reviewed 

studies provided effect sizes in addition to p values (Barber-Westin & Noyes, 2017). 

Here, the authors highlighted the need to assess the magnitude of the effect, 

particularly in small samples, as the use of statistically significant findings alone may 

have limited clinical relevance (Barber-Westin & Noyes, 2017).  

 

Given the aforementioned issues with the lone p value and to adapt a practical 

approach to the analyses conducted in this thesis, the use of p values, effect sizes 

and accompanying 95% confidence intervals has been adopted throughout. Specific 
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p values are reported for all analysis, to avoid the false belief of automatic statistical 

inference if p < 0.05 (Szuc & Ioannidis, 2017). The use of effect sizes and 95% 

confidence intervals are also included to aid comparisons amongst the literature 

discussed in the topic area (e.g. Ashton & Twist, 2015; Fox, Patterson & Waldron, 

2017; Polglaze et al., 2017) and to indicate the magnitude of the effect, which is not 

possible with traditional hypothesis testing alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

95 

Chapter 4 

Energy expenditure, metabolic power and high-speed activity during linear and 

multi-directional running 

 

 

 

 

 

 

 

 

4.1 Introduction 

Assessing the physical demands of team sports has become common practice during 

training and match-play (Varley et al., 2014; Waldron et al., 2011). Typically, measures 

such as relative distance (Varley et al., 2014; Vigne, Gaudino, Rogowski, Alloatti & 

Hautier, 2010) and distance at high speed (Lythe & Kilding, 2011; Oxendale et al., 

2016) have been used to describe match and training loads. This information can 

provide useful guidelines for practitioners when designing conditioning programmes 

specific to individual positions (Waldron et al., 2011) and performance profiles of 

successful compared with unsuccessful match outcomes (Gabbett, 2013). In addition, 

coaches can alter measured daily training load to allow for progressive improvements 

in player fitness, whilst minimizing injury risk (Gabbett & Ullah, 2012). However, the 

use of speed dependant time-motion data has recently been challenged (Osgnach et 

al., 2010; Varley & Aughey, 2013) because it does not account for the physiological 

load associated with accelerations that occur frequently (~650-1000) in team sports 

Rationale summary 
The metabolic power approach, which accounts for the metabolic 
requirement of accelerations and decelerations, has the potential 
to provide a detailed profile of the metabolic demands of team 
sport activity. However, it is unclear how fluctuations in the number 
of directional changes performed affects the agreement between 
measured and estimated energy expenditure. This study therefore 
compared measurements of energy expenditure derived using 
microtechnology and indirect calorimetry during linear and multi-
directional running. 
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(Russell et al., 2016; Akenhead et al., 2013). Consequently, the use of distance 

covered within a predefined speed threshold, such as high-speed running (>14.4 km.h-

1; Rampinini, Coutts, Castagna, Sassi & Impellizzeri, 2007), is unlikely to accurately 

quantify an individual’s external load. 

 

The use of time-motion data to estimate energy expenditure of accelerated running 

(Osgnach et al., 2010) has the potential to address some of the practical and 

methodological issues associated with internal load measures. For example, HR 

recordings do not reflect the physiological demands of short duration, high intensity 

bouts (Achten & Jeukendrup, 2003) and blood lactate concentration largely depends 

on the activity undertaken in the 5 minutes before blood sampling (Stolen et al., 2005). 

Direct measurements of V̇O2 are also unfeasible during training sessions or matches 

(Osgnach et al., 2010). Therefore, estimations of energy expenditure are typically 

based on HR data, which is likely to overestimate energy expenditure by 15-20% 

(Achten & Jeukendrup, 2003; Rodríguez & Iglesias, 1998). Consequently, estimations 

of energy expenditure which assume that accelerative running on flat terrain is 

metabolically equivalent to constant speed running up an equivalent slope, have been 

advocated (Osgnach et al., 2010). Energy expenditure is then multiplied by 

instantaneous speed to calculate metabolic power (Osgnach et al., 2010). In contrast 

to traditional speed dependant zones, this approach accounts for the metabolic 

requirement of accelerations and decelerations, which can exceed the metabolic 

requirement of constant speed running (Akenhead et al., 2014). Indeed, several 

authors have reported that the distance covered at a high metabolic intensity (>20 

W.kg-1) during team sport activity was nearly two times the distance covered at high 

speed (Gaudino et al., 2013; Kempton et al., 2015; Osgnach et al., 2010). Accordingly, 
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the quantification of high metabolic power might provide a more suitable reflection of 

the high intensity demands of team sport activity, which can be used to design match-

specific training programmes.  

 

Given the growing interest in the metabolic demands of acceleration and deceleration 

associated with directional change (Ashton & Twist, 2015; Buchheit et al., 2010; Hader 

et al., 2014), recent studies have used this approach to measure energy expenditure 

and metabolic power during team sport activity. Specifically, measurements of energy 

expenditure (Brown et al., 2016; Coutts et al., 2015; Gaudino et al., 2013; Kempton et 

al., 2015; Walker et al., 2016), average metabolic power (Gaudino et al., 2013; 

Kempton et al., 2015; Vescovi, 2016) and time at high metabolic power (Coutts et al., 

2015; Kempton et al., 2015) derived from microtechnology have been documented in 

several team sports to provide a profile of match and training load. Such 

measurements have also been strongly correlated with determinants of aerobic fitness 

(r = 0.55 – 0.83; Manzi, Impellizzeri & Castagna, 2014) and could therefore provide a 

more detailed profile of player physical performance, as well as the metabolic 

demands of training and match-play. However, the metabolic power approach 

overestimated energy expenditure during constant speed running (~8%; Stevens et 

al., 2015), whereas underestimations in energy expenditure and metabolic power were 

observed during shuttle running (~15%; Stevens et al., 2015) and a soccer specific 

drill (~29%; Buchheit et al., 2015), respectively. Changes in movement speed 

therefore appear to affect the agreement between estimated and measured energy 

expenditure. Whilst these studies question the validity of this approach, the potential 

effect of directional changes on estimated energy expenditure and metabolic power 

remains unclear. The metabolic power approach has the potential to estimate the 
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energy expenditure of a directional change, as the acceleration phase accounts for 

>80% of the energy requirement of a change of direction (Hader, Mendez-Villanueva, 

Palazzi, Ahmaidi & Buchheit, 2016). Given the variation in accelerations and 

decelerations (Russell et al., 2016) and high-speed running (Carling, Bradley, McCall 

& Dupont, 2016) performed during match-play, assessing how fluctuations in 

directional changes influence estimated energy expenditure and metabolic power 

warrants further investigation. 

 

The use of continuous (Stevens et al., 2015) and low speed movements protocols 

(Buchhiet et al., 2015; Stevens et al., 2015) are likely to under-represent the intense 

demands of team sport activity and cannot assess the agreement between activities 

at high metabolic power and high speed. The use of 4 Hz global positioning systems 

(GPS) to assess validity (Buchheit et al., 2015), which are unable to accurately detect 

instantaneous changes in speed (Varley et al., 2012), also warrants further 

investigation using microtechnology with higher sampling frequencies (Stevens et al., 

2015). Thus, the purpose of this study was to compare measurements of energy 

expenditure derived using microtechnology and indirect calorimetry during linear and 

multi-directional running. The agreement between high speed and high metabolic 

power movement demands was also evaluated. It was hypothesized that the energy 

expenditure of multi-directional running would be higher than linear running. 

Furthermore, the agreement between measures of energy expenditure as well as high 

speed and high power activities would decrease when more changes of direction are 

performed. 
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4.2 Method 

4.2.1 Participants 

With institutional ethics approval (see Appendix 4.1), seven male and five female 

participants (age: 20.8 ± 2.7 y; stature: 176.0 ± 12.0 cm; mass: 73.3 ± 12.8 kg; V̇O2peak: 

45.2 ± 2.9 ml.kg-1.min-1) were recruited from University-level team sports (rugby, 

football, hockey and netball). This sample size was based on a retrospective power 

calculation (Faul, Erdfelder, Buchner & Lang, 2009), using an effect size of 1.13 for 

differences between energy expenditure calculated from indirect calorimetry and 

microtechnology (see Appendix 4.2). All participants took part in team sport training 

sessions at least twice per week and competed in at least one match a month. 

Participants were briefed on all the procedures and provided written informed consent 

before participating in the study. 

 

4.2.2 Design 

In a repeated measures design, participants completed four sessions lasting 

approximately 60 minutes each. On the first visit, participants completed a multi-stage 

fitness test to ensure they met the inclusion criteria of an estimated maximal aerobic 

capacity above 40 ml·kg-1·min-1 for females (Vescovi, Brown & Murray, 2006) or 45 

ml·kg·-1min-1 for males (Ostojic, 2004), based on the physiological characteristics of 

amateur team sport athletes. Thereafter, all participants were familiarized with the 

procedures and movements for each trial. In the second visit, participants completed 

the multi-directional trial to determine the reliability of the metabolic power derived 

measurements. Due to device malfunction, only 10 of the 12 participants’ data were 

included in the reliability analysis. In the two subsequent visits participants completed 

the multi-directional and linear trials in a randomised order, separated by 3 – 7 days. 
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During both trials, energy expenditure was calculated using indirect calorimetry 

(EEVO2) and estimated using microtechnology embedded within the GPS unit (EEGPS). 

Measurements of high metabolic power and high-speed running were calculated for 

both trials, and the reliability of EEGPS, time at high metabolic power and high speed 

were calculated for the multi-directional trial. Participants were required to abstain from 

performing any strenuous activity and consuming nutritional supplements 48 h before 

completing the multi-directional and linear trials.  

 

4.2.3 Procedures 

4.2.3.1 Multi-stage fitness test 

During the test participants also wore a pre-calibrated portable gas analyser (Cosmed 

K4b2, Cosmrd S.r.I, Rome, Italy), so V̇O2peak could be calculated as the highest value 

recorded over a 30 s period (Edgett et al., 2013). Please refer to General Methods 

section 3.2 for procedures. 

 

4.2.3.2 Multi-directional and linear trials  

The multi-directional and linear trials comprised eight bouts of ~60 s of intermittent 

activity (jogging and sprinting) followed by 120 s of passive rest. Please refer to 

General Methods section 3.3 and 3.4 for procedures.   

 

Both trials were performed on an outdoor running track at a similar time of day (± 2 

hours) to reduce the effects of diurnal variation. Mean temperature (p = 0.70) and 

humidity (p = 0.65) during the multi-directional (19.0 ± 4.2º and 32.5 ± 6.2%) and linear 

(19.6 ± 4.2º and 31.6 ± 3.7%) trials were similar. During each trial participants were 

instructed not to deviate from the prescribed running path. 
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4.2.3.3 Indirect calorimetry 

Expired air was collected using a breath-by-breath portable gas analyser (Cosmed 

K4b2; Cosmed Slr, Rome, Italy), which was calibrated in accordance with the 

manufacturer’s guidelines before each trial. Energy expenditure was calculated by the 

Cosmed K4b2 system from oxygen consumption (V̇O2) and carbon dioxide production 

(V̇CO2), based on the equation (Weir, 1949):  

EE = [3.801*(V̇O2 – V̇O2 p) + 1.244*(V̇CO2 – V̇CO2 p)]*1440 

Where p = protein 

V̇O2 during the 120 s rest periods in each trial was included in the analysis to account 

for anaerobic contributions to total energy expenditure during exercise (Scott, 2006). 

Resting energy expenditure (assumed to be 1.29 kcal.min-1 for males and 1.03 

kcal.min-1 for females; Thompson & Manore, 1996) was subtracted from total energy 

expenditure during each trial to provide net energy expenditure associated with 

exercise (EEVO2; Osgnach, Paolini, Roberti, Vettor & di Prampero, 2016). Given its 

accuracy (Maiolo, Melchiorri, Iacopino, Masala & De Lorenzo, 2003), indirect 

calorimetry has been considered a gold standard to assess energy expenditure for the 

types of activities described here (Buchheit et al., 2015; Stevens et al., 2015).  

 

4.2.3.4 Microtechnology  

The movement characteristics of the multi-directional and linear trials were recorded 

using MinimaxX GPS units (Team 2.5, Catapult Innovations, Melbourne, Australia) 

sampling at 10 Hz. The same GPS device was used throughout the study for all 

participants to eliminate inter-device variability (Akenhead et al., 2013). Data was 

subsequently downloaded and analysed (Sprint, Version 5.1, Catapult Sports, VIC, 

Australia) to calculate EEGPS. Calculations were based on the approach developed by 
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Osgnach et al. (2010), which assumes running on a flat terrain is energetically 

equivalent to uphill running at a constant speed. Accordingly, the following equation 

was used to calculate energy expenditure of accelerated running: 

EE = (155.4ES5 – 30.4ES4 – 43.3ES3 + 46.3ES2 + 19.5ES +3.6) x EM x KT 

Where ES is the equivalent slope of accelerated running and EM is the additional force 

required to overcome acceleration. Calculations for these variables are detailed in di 

Prampero, Botter and Osgnach (2015). KT is the terrain constant of 1.29.  

 

Metabolic power was calculated by multiplying energy expenditure with instantaneous 

speed (Osgnach et al., 2010). Time above high metabolic power were compared with 

time at high speed (> 14.4 km.h-1) and very high speed (> 16 km.h-1) to examine the 

differences in speed and metabolic power derived measurements of movement 

characteristics. Two definitions of high speed were used to compare a common high-

speed definition used in previous literature comparing high speed and high power (> 

14.4 km.h-1; Gaudino et al., 2013; Kempton et al., 2015) and the speed equivalent of 

high metabolic power, during constant-speed running (>16 km.h-1; Osgnach et al., 

2010). The number of satellites detected by the GPS receiver and the horizontal 

dilution of precision was 13.7 ± 0.8 and 0.7 ± 0.1, respectively.  

 

4.2.4 Statistical analysis  

Descriptive statistics were calculated for EEVO2 , EEGPS, metabolic power and speed 

measurements. A two-way analysis of variance (ANOVA) was used to determine 

differences between measurements of energy expenditure between trials and time at 

high speed, very high speed and high power between trials. Paired sample t-tests were 

used to determine any specific effects. Agreement between these measures were 
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calculated using Pearson’s product-moment correlation coefficient (r), the 95% 

confidence interval (CI) and the 95% limits of agreement (LoA: bias ± 1.96 x SDdiff). 

Due to the presence of heteroscedasticity, ratio LoA were calculated by applying 

natural logarithmic transformations to the data (Nevill & Atkinson, 1997). Pearson’s 

product-moment correlation coefficient (r) was also calculated to assess the 

relationship between measurements of energy expenditure (EEVO2 and EEGPS) and 

metabolic power with speed measurements. The coefficient of variation (CV), ratio 

LoA, intraclass correlation coefficient (ICC) and the 95% CI were calculated to 

determine the reliability of EEVO2, EEGPS, time at high power, high speed and very high 

speed during the multi-directional trial. Natural logarithmic transformations were 

applied to the data before ICC analysis (Atkinson & Nevill, 1998). Where appropriate, 

p values were reported. The reader should refer to General Method section 3.8 for 

further information regarding the statistical approach adopted. 

 

4.3 Results 

4.3.1 Energy expenditure 

EEVO2 and EEGPS during the multi-directional and linear trials are presented in Table 

4.1. Whilst measurements of energy expenditure were strongly related (r > 0.89, p < 

0.001), they were different (F = 153.4, p < 0.001). EEVO2 was higher during the multi-

directional (t = 10.9, p < 0.001) and linear trials (t = 9.1, p < 0.001) when compared to 

EEGPS. The ratio LoA for energy expenditure during the multi-directional trial 

demonstrated that EEGPS underestimated EEVO2 by 52% (range: 20 – 93%). Similarly, 

EEGPS during the linear trial was underestimated by 34% (range: 12% – 59%). 
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Table 4.1 Agreement between EEVO2 and EEGPS during the multi-directional and linear trials 

Trial EEVO2 

kcal (kcal.min-1)  

EEGPS 

kcal (kcal.min-1) 

Mean 
difference ± 
SD difference 
(kcal) 

r 95% CI Ratio LoA 

Multi-directional  213.5 ± 44.2  
(9.0 ± 2.0) 

140.9 ± 30.9 
(5.9 ± 1.4)   

72.6 ± 23.0 0.89* 0.69 to 0.99 1.52 x/÷ 1.27 

Linear 199.9 ± 47.8 
(8.7 ± 2.1) 

148.9 ± 34.6  
(6.5 ± 1.5) 

51.0 ± 19.5 0.95* 0.86 to 0.99 1.34 x/÷ 1.19 

* Denotes a significant correlation (p < 0.001). EEVO2 = energy expenditure from indirect calorimetry, EEGPS = energy expenditure 
from GPS  
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4.3.2 Metabolic power 

Comparisons between the equivalent threshold for time at high speed, very high speed 

and high power during the multi-directional and linear trials are presented in Table 4.2 

and 4.3. Whilst time at high speed and high power demonstrated a strong relationship 

(Table 4.2), there was a difference between time at high speed and high power (F = 

84.9, p < 0.001) and a difference between trials (F = 10.7, p = 0.007). Time at high 

power was higher than time at high speed during the multi-directional trial (t = 10.3, p 

< 0.001). Conversely, time at high power was lower than time at high speed during the 

linear trial (t = -2.7, p = 0.021). Furthermore, time at high speed was lower (t = -5.8, p 

< 0.001) and time at high power was higher (t = 2.2, p = 0.046) during the multi-

directional trial in comparison to the linear trial. The ratio LoA demonstrated time at 

high power was 41% higher (range: 4 – 92%) than time at high speed during the multi-

directional trial. During the linear trial time at high power was 5% lower (range: -17% 

– 9%) than time at high speed. 

 

A difference between time at very high speed and high power (F = 368, p < 0.001) and 

a difference between trials (F = 51.7, p < 0.001) was also observed (Table 4.3). 

Specifically, time at high power was 149% (range: 44 – 331%) higher during the multi-

directional trial (t = 27.7, p < 0.001) and 4% (range: -9 – 19%) higher during the linear 

trial (t = 2.27, p = 0.045), compared with time at very high speed. Furthermore, time at 

very high speed was lower (t = -13.3, p < 0.001) during the multi-directional trial in 

comparison to the linear trial.  
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Table 4.2 Agreement between time at high power and high speed during the multi-directional and linear trials 

Trial Time at high 
power 
(s) 

Time at high 
speed 
(s) 

Mean 
difference ± 
SD difference 
(s) 

r 95% CI Ratio LoA 

Multi-directional 118.4 ± 11.7 85.5 ± 18.7  32.9 ± 11.1 0.86* 0.55 to 0.97 1.41 x/÷ 1.36 
Linear 111.5 ± 10.4 117.4 ± 5.9  -5.9 ± 7.6 0.71* 0.40 to 0.90 0.95 x/÷ 1.15 
* Denotes a significant correlation (p < 0.01) 

 

Table 4.3 Agreement between time at high power and very high speed during the multi-directional and linear trials 

Trial Time at high 
power 
(s) 

Time at very 
high speed 
(s) 

Mean 
difference ± 
SD difference 
(s) 

r 95% CI Ratio LoA 

Multi-directional 118.4 ± 11.7  49.8 ± 15.7   68.6 ± 8.6 0.84* 0.61 to 0.94 2.49 x/÷ 1.73 
Linear 111.5 ± 10.4  106.6 ± 8.0  4.9 ± 7.5  0.71* 0.35 to 0.95 1.04 x/÷ 1.14 
* Denotes a significant correlation (p < 0.01) 
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4.3.3 Reliability 

The between-trial CV, ICC and ratio LoA for EEVO2 during the multi-directional trial was 

7.6%, 0.95 (0.81-0.99) and 0.95 x/÷ 1.30, respectively. EEGPS (2.2%), time at high 

power (4.2%) and time at high speed (6.1%) all demonstrated a lower CV in 

comparison to EEVO2, whereas time at very high speed was higher (11.7%). The ICC 

varied for EEGPS (>0.99; 95% CI: 0.98 – >0.99), time at high speed (0.96; 0.83 – 0.99), 

time at very high speed (0.92; 0.69 – 0.98) and time at high power (0.90; 0.61 – 0.98). 

The ratio limits of agreement for EEGPS (1.02 x/÷ 1.06; range: -4 – 8%), time at high 

speed (0.99 x/÷ 1.21; range: -18 – 20%), time at very high speed (1.01 x/÷ 1.47; range: 

-31 – 48%) and time at high power (0.99 x/÷ 1.14; range: -13 – 13%) demonstrated 

small changes in the mean difference (< 3%), and less repeatability for time at very 

high speed compared with EEGPS during multi-directional running. 

 

4.4 Discussion  

This study has demonstrated that regardless of movement type, energy expenditure 

derived using microtechnology systematically underestimates energy expenditure 

measured using indirect calorimetry, despite a strong association between the two 

measures. Measurements of high power, high speed and very high speed also differed 

during linear and multi-directional running, suggesting the two measures reflect 

different external loads. Furthermore, metabolic power derived measures of EEGPS 

and time at high power demonstrated a good level of reliability during the multi-

directional trial. 

 
 
Whilst measurements of EEGPS and EEVO2 were strongly related (r > 0.89), EEGPS 

during the multi-directional and linear trials was underestimated by 52% (range: 20 – 
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93%) and 34% (range: 12% - 59%), respectively. This data reaffirms reports that 

energy expenditure derived from microtechnology underestimates measured energy 

expenditure (Brown et al., 2016; Buchheit et al., 2015; Highton et al., 2017; Steven et 

al., 2015; Walker et al., 2016), albeit the magnitude of this disagreement varies 

between studies. For example, underestimations in energy expenditure as large as 

~44 – 51% have been reported during intermittent team sport circuits when compared 

with energy expenditure derived from V̇O2 (Brown et al., 2016; Buchheit et al., 2015). 

Conversely, Walker et al. (2016) reported differences of only ~9.4% in estimated 

energy expenditure between methods during Australian football match-play. These 

differences are possibly explained by the use of regression equations based on 

oxygen uptake and accelerometer data during a maximal test to estimate energy 

expenditure (Walker et al., 2016), which do not account for elevations in energy 

expenditure associated with excess post-exercise oxygen consumption during 

intermittent activity (Lyons et al., 2006). Accordingly, the use of varied criterion 

measures of energy expenditure, and the measurement of energy expenditure during 

static rest periods appears to affect the agreement with estimated energy expenditure 

derived from microtechnology. Furthermore, energy expenditure derived from 

microtechnology should not be used to determine the energy requirement of 

intermittent exercise.  

 

The underestimation of energy expenditure was expectedly higher during the multi-

directional trial compared with the linear trial, which might be because of the increase 

in aerobic (Hatamoto et al., 2013) and anaerobic (Ashton & Twist, 2015; Dellal et al., 

2010) metabolism when performing an increased number of directional changes (160 

cf. 32). As the metabolic power approach is based on linear running (di Prampero et 
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al., 2015), the additional energy requirement associated with directional changes 

might not be accounted for, despite the inclusion of acceleration and deceleration 

actions within the energy expenditure calculation. Indeed, Stevens et al. (2015) 

reported metabolic power derived energy expenditure was overestimated (6 – 11%) 

during constant running, whereas underestimations of 13 – 16% were observed during 

shuttle running with directional change. A greater V̇O2 during backwards (Paes & 

Fernandez, 2016; Williford, Olson, Gauger, Duey & Blessing, 1998) and lateral 

(Williford et al., 1998) running, compared to forward running at the same speed has 

been observed indicating such activities are associated with a greater energy 

expenditure. Yet, the metabolic power approach is based on forward running 

(Osgnach et al., 2010) and potentially cannot account for the additional energy 

requirement of lateral and backwards movement, which reduces the agreement 

between the two measures. Collectively, these data suggest the agreement between 

EEVO2 and EEGPS is reduced during running with an increased number of directional 

changes as well as backwards and lateral movement. 

 

Time at high power was 41% greater (range: 4 – 92%) than time at high speed during 

the multi-directional trial, which is consistent with previous reports (37 – 84%; Gaudino 

et al., 2013; Kempton et al., 2015), despite a strong agreement between the two 

measures (r = 0.85). This disagreement was greater (149%) when time at high power 

was compared with time at very high speed. Conversely, during the linear trial, time at 

high power was 5% lower (range: -17 – 9%) and 4% higher (range: -9 – 19%) than 

time at high speed and very high speed, respectively. An improved agreement 

between time at high speed, very high speed and high power during linear running 

where participants performed fewer accelerations and decelerations, might be 
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anticipated given that the metabolic cost of running at 16 km.h-1 has previously been 

shown to be approximately 20 W.kg-1 (Osgnach et al., 2010). During multi-directional 

activity, a greater number of accelerations over short distances would limit a 

participant’s ability to attain the high-speed threshold (Gaudino et al., 2013; Kempton 

et al., 2015). Interestingly, time at high power and EEVO2 both demonstrated that the 

multi-directional trial imposed a greater load than the linear trial. Time at high speed 

and very high speed did not follow this pattern, suggesting time at high power better 

reflects changes in internal load during multi-directional activity, when participants are 

unable to attain the threshold of high-speed running. Accordingly, the use of high-

speed running categories might underestimate the metabolic demands of team sport 

activity (di Prampero et al. 2005). Moreover, the agreement between time at high 

speed, very high speed and high power is dependent on the number of acceleration 

efforts performed, suggesting these two measures represent different external loads. 

 

Finally, this study examined the reliability of measures of EEVO2, EEGPS and time at 

high power, high speed and very high speed during multi-directional running. EEVO2 

demonstrated a similar level of reliability to previous measures of V̇O2 and CO2 during 

high-intensity running (Duffield, Dawson, Pinnington & Wong, 2004). In addition, the 

CV for EEVO2 was lower than the minimal detectable change in V̇O2 during exercise 

(>10%; Darter, Rodriguez & Wilken, 2013), indicating an acceptable level of reliability 

for EEVO2. Time at high speed (CV: 6.1%) presented a similar reliability to the distance 

covered at high speed reported by Castellano et al. (2011). However, reliability for high 

power was much better than that reported previously during soccer specific exercise 

(CV: 74%, ICC: 0.09; Buchheit et al., 2015), which might partly be explained by the 

higher sampling frequency (10 Hz) of the GPS device used here. Buchheit et al. (2015) 
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used GPS devices sampling at only 4 Hz, which have demonstrated greater 

measurement error for measuring high speed running and accelerations when 

compared to 10 Hz devices (Varley et al., 2012). Furthermore, Buchheit and 

colleagues had participants dribble a ball for much of the distance covered during a 

circuit. This might have influenced the consistency of acceleration and deceleration 

actions, thus altering the distance covered at high power between trials (Buchheit et 

al., 2015). The CV for EEGPS and time at high power was lower than the observed 

between-match variations in EEGPS (4.0%), time at high power (8.2%) during team 

sport activity (Kempton et al., 2015), and time at very high speed in the present study 

(11.7%). Combined with the very high ICCs (>0.90), low CVs (< 7%) and low 

percentage mean difference (< 3%, range: -13 – 13%), these data suggest that 

metabolic power derived measures can be used to detect small changes in multi-

directional running load. 

 

This study is not without limitations. The comparison of indirect calorimetry inclusive 

of static rest periods with microtechnology, which cannot quantify energy expenditure 

when an athlete is stationary (Highton et al., 2017) is a potential limitation. However, 

it was deemed essential to measure energy expenditure during rest periods to quantify 

the anaerobic contribution to total energy expenditure using EPOC.  Whilst this does 

not account for energy expenditure from rapid anaerobic glycolytic ATP turnover 

(Scott, 2005), the lack of a reasonable estimate of anaerobic energy expenditure, such 

as EPOC, would increase the error in quantifying total energy expenditure (Scott, 

2006). Indeed, previous studies have utilised exercise protocols that were 

predominately aerobic (Buchheit et al., 2015; Stevens et al., 2015), hence it seemed 

necessary to implement a protocol that simulated the high intensity running demands 



 

 

112 

typically observed in team sports. The use of one microtechnology device also 

potentially limits the generalizability of the present findings, despite the use of the 

same energy expenditure calculation amongst different microtechnology devices 

(Buchheit et al., 2015; Gaudino et al., 2013; Vescovi, 2016). Finally, the sample size 

was small, particularly for the reliability analysis of metabolic power, however the 

reported confidence intervals for the ICCs and LoA indicates the precision of our 

reliability measurements (Hopkins, 2000).  

 

4.5 Conclusion  

Whilst demonstrating a good level of reliability between trials, energy expenditure 

derived using microtechnology underestimates the energy expenditure of linear and 

multi-directional running when compared with indirect calorimetry. Accordingly, EEGPS 

should not be used to determine the energy cost of intermittent exercise, but it can be 

used to detect small changes in load during multi-directional running. The agreement 

between time at high power and high speed appears to be dependent on the number 

of directional changes performed. This suggests that time at high speed and very high 

speed is likely to underestimate the high intensity demands of running incorporating 

multiple directional changes. Accordingly, metabolic power parameters can be used 

to quantify load during running with multiple directional changes.  

 

 

 

 

 

 

Key messages 
• Energy expenditure derived from microtechnology 

underestimates the energy cost of exercise. 
• Running with more changes of direction reduced the agreement 

between time at high speed and high power. 
• Time at high power reflected changes in internal load during 

running more so than time at high speed. 
Next steps 

• Future research should further explore the utility of time at high 
power to reflect an individual’s psychophysiological response to 
exercise. 
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Chapter 5 

Can player tracking devices monitor changes in internal load during multi-

directional running? A comparison of high speed and high metabolic power 

 

 

 

 

 

 

 

 

5.1 Introduction  

Intermittent team sports are characterised by numerous (20 - 60) high speed efforts 

over 10 – 30 m (Gabbett, 2012; Russell et al., 2016; Spencer, Bishop, Dawson, & 

Goodman, 2005), which can occur at pivotal moments during a match (Faude et al., 

2012). Measures of high speed are therefore used to describe the external demands 

of team sport activity (Austin & Kelly, 2013; Cunningham et al., 2018; Springham et 

al., 2020; see Chapter 2.2.1). More recently, studies have also shown that team sport 

athletes perform numerous accelerations (~650) and decelerations (~600) during 

match-play (Russell et al., 2016), that evoke greater psychophysiological responses 

than running with fewer accelerations and decelerations, such as a higher blood 

lactate concentration (Ashton & Twist, 2015; Buchheit et al., 2010), rating of perceived 

exertion (Tang et al., 2018), oxygen consumption (Hatamoto et al., 2014) and heart 

rate (Akenhead et al., 2014; Tang et al., 2018). Greater decrements in peak knee 

flexor torque (Ashton & Twist, 2015) and muscular activity of the vastus lateralis and 

Rationale summary 
Running with more directional changes can induce a greater 
internal response. However, it is unclear if measures of 
external load derived from player tracking devices (i.e. high 
speed and high power) reflect changes in internal load during 
running with more directional changes. This study therefore 
examined the internal and external demands of linear and 
multi-directional running to determine whether high speed or 
power better reflect changes in internal load. 
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semitendinosus (Hader et al., 2014) also occur after running with an increased number 

of directional changes. Running with directional changes can therefore induce a 

greater internal response and neuromuscular fatigue when compared to linear running 

at a similar speed. However, few studies have reported the magnitude of force loss 

when directional changes are systematically manipulated and measured the external 

movement patterns of the change of direction protocols used. This would provide a 

more comprehensive understanding of neuromuscular adjustments from high-intensity 

exercise protocols including directional changes. 

 

It is unclear if measures of external load derived from player tracking devices reflect 

changes in internal load during running with more directional changes, with varying 

associations reported between measures of high-speed distance and internal load 

during team sport activity (r = 0.13 cf. r = 0.71; Casamichana & Castellano, 2015; 

Delaney et al., 2018). Furthermore, correlating absolute markers of external load with 

internal load does not account for the between-participant variation in fitness, which 

largely dictates the internal response to a given external load (Weaving, Scantlebury, 

Roe & Jones, 2017). When expressed as a ratio, the external to internal load 

(quantified using measures of high-speed distance covered [external] and iTRIMP 

[internal]), has a moderate to strong relationship (r = 0.58 – 0.69) with measures of 

aerobic power during football (Akubat et al., 2018; Akubat et al., 2014). The external 

to internal load ratio has therefore been recommended to assess an individual player’s 

readiness to perform (Akubat et al., 2014). However, high-speed running distance 

does not account for the numerous accelerations and decelerations performed during 

team sport match-play, that evoke greater physiological responses contributing to 

greater fatigue (Akenhead et al., 2014; Ashton & Twist, 2015; Buchheit et al., 2010). 
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Metabolic power, which accounts for both speed and acceleration has recently 

emerged as an alternative metric to quantify high intensity activity (Osgnach et al., 

2010) that better reflects an individual’s internal response (Polglaze et al., 2018a; see 

Chapter 4). However, further work is required to better understand how the systematic 

manipulation of the number of directional changes influences the demands of exercise 

and the utility of metabolic power using integrated ratios. Therefore, the aims of this 

study were twofold: a) to examine the internal and external demands of linear and 

multi-directional running and subsequent neuromuscular fatigue, b) to determine 

whether measures of high speed or power better reflect changes in internal load 

associated with linear and multi-directional running. 

 
5.2 Method 

5.2.1 Participants 

With institutional ethics approval (see Appendix 4.1), seven male and five female 

participants (age: 20.8 ± 2.7 y; stature: 176.0 ± 12.0 cm; mass: 73.3 ± 12.8 kg; V̇O2: 

45.2 ± 2.9 ml.kg-1.min-1) were recruited from University-level team sports (rugby, 

football, hockey and netball). The sample size exceeds an a priori sample size 

calculation using estimated power (Faul et al., 2009) and an effect size of 1.1 for 

differences in HR during running with an increased number of directional changes 

(Tang et al., 2018; see Appendix 5.1). All participants took part in team sport training 

sessions at least twice per week and competed in a minimum of one match per month. 

Participants were briefed on all procedures, provided written informed consent to take 

part in the study and completed pre-test health screening to ensure there were no 

contraindications to exercise.  
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5.2.2 Design 

In a repeated measures design, participants completed three visits to the laboratory 

on separate days. On the first visit, participants performed a multi-stage fitness test to 

ensure they met the inclusion criteria of having an estimated maximal aerobic power 

>40 ml·kg-1·min-1 for females (Vescovi et al., 2006) or >45 ml·kg-1·min-1 for males 

(Ostojic, 2004) based on physiological characteristics of amateur team sport athletes. 

Thereafter, participants were habituated to the multi-directional and linear trials and 

the assessment of isometric muscle function of the knee extensors and flexors. In the 

subsequent two visits, participants completed the linear and multi-directional trials, 

separated by 3 – 7 days, in a randomized, cross-over design. During each of these 

trials movement was recorded using microtechnology and measurements of oxygen 

consumption (V̇O2), blood lactate concentration (B[La]), heart rate (HR) and rating of 

perceived exertion (RPE) were taken. Isometric muscle function was assessed 

immediately before and after each trial. Participants were required to abstain from 

performing any strenuous activity and consuming nutritional supplements 48 h before 

completing each trial. 

 

5.2.3 Procedures 

5.2.3.1 Multi-stage fitness test 

During the test participants also wore a pre-calibrated portable gas analyser (Cosmed 

K4b2, Cosmrd S.r.I, Rome, Italy), with V̇O2peak calculated as the highest value 

recorded over a 30 s epoch (Edgett et al., 2013). Please refer to General Methods 

section 3.2 for procedures. 
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5.2.3.2 Multi-directional and linear trials 

The multi-directional and linear trials comprised eight bouts of ~60 s of intermittent 

activity (jogging and sprinting) followed by 120 s of passive rest. Please refer to 

General Methods section 3.3 and 3.4 for procedures.   

 

All trials were conducted on an outdoor running track at a similar time of day (± 2 

hours) to reduce the effects of diurnal variation. Mean temperature (p = 0.70) and 

humidity (p = 0.65) during the multi-directional (19.0 ± 4.2º and 32.5 ± 6.2%) and linear 

(19.6 ± 4.2º and 31.6 ± 3.7%) trials were similar. The coefficient of variation (CV) for 

total distance covered and time at high speed and high power during the multi-

directional trial was 1.4%, 6.1% and 4.3%, respectively (see Chapter 4). Protocols 

similar to the linear trial have demonstrated good reliability (CV: 2.0-3.5%) for speed 

measures (De Andrade, Santiago, Kalva Filho, Campos, & Papoti, 2016). 

 

5.2.3.3 Global positioning system and heart rate 

Movement patterns were recorded using an OptimEye S5 global positioning system 

(GPS) unit sampling at 10 Hz with a 100 Hz tri-axial accelerometer (Team 2.5, Catapult 

Innovations, Melbourne, Australia). Total distance, relative distance (m.min-1), 

distance and time at high speed (>14.4 km.h-1) and very high speed (>16 km.h-1) during 

the whole trial, as well as mean speed during active bouts only (negating passive rest 

periods), were recorded. Two definitions of high speed were used to compare a 

common high-speed definition used in the literature (> 14.4 km.h-1; Kempton et al., 

2015) and the speed equivalent of high metabolic power, during constant-speed 

running (>16 km.h-1; Osgnach et al., 2010).  Kalman filtering techniques to combine 

accelerometer and gyroscope information to create a non-gravity vector were used to 
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quantify the total number of accelerations and decelerations (>1.5 m·s-2) performed 

during each trial. Accumulated PlayerLoadTM, based on tri-axial accelerometer data, 

time at high metabolic power (> 20 W.kg-1), and estimated energy expenditure (EEGPS) 

were also calculated using the manufacturer’s software (Sprint, Version 5.1, Catapult 

Sports, VIC, Australia). The same microtechnology device was used throughout the 

study for all participants to eliminate inter-device variability (Akenhead, French, 

Thompson & Hayes, 2013). The number of satellites detected by the player tracking 

device and the horizontal dilution of precision was 13.7 ± 0.8 and 0.7 ± 0.1, 

respectively. HR was measured at 5 s epochs throughout each trial using a HR monitor 

(Polar Electro, Oy, Finland) and recorded by the microtechnology unit using short-

range telemetry to calculate mean and peak HR. Summated HR was also calculated 

based on the method devised by Edwards (1993): 

(duration in zone 1 x 1) + (duration in zone 2 x 2) + (duration in zone 3 x 3) + 

(duration in zone 4 x 4) + (duration in zone 5 x 5) 

where zone 1 = 50-60% HRpeak, zone 2 = 60-70% HRpeak, zone 3 = 70-80% HRpeak, 

zone 4 = 80-90% HRpeak and zone 5 = 90-100% HRpeak 

 

5.2.3.4 Physiological and perceptual responses 

During each trial, expired air was measured using a portable, breath-by-breath gas 

analyser (Cosmed K4b2, Cosmed S.r.I, Rome, Italy) to calculate V̇O2. Before testing, 

the gas analyser was calibrated in accordance with manufacturer guidelines. V̇O2 data 

was subsequently averaged over the whole protocol (including rest periods). Mean 

V̇O2 in L.min-1 was multiplied by the duration of each trial to calculate total V̇O2. B[La] 

was determined immediately after bouts 4 and 8 of the multi-directional and linear trials 

and analysed using a portable lactate analyser (Lactate Pro, Arkray, Japen). Blood 
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samples were obtained from a single fingertip using a spring-loaded disposable lancet. 

At the end of each exercise bout, rating of perceived exertion was recorded using the 

Borg 6-20 scale (Borg, 1998).  

 

5.2.3.5 External to internal ratio 

The external to internal load ratio was calculated during each trial, to determine the 

extent to which measures of high speed and high power reflect changes in internal 

load. External load was quantified using time at high speed, very high speed and high 

power (s). Internal load was quantified using summated HR (AU) and total V̇O2 (L). 

External load measures were divided by each measurement of internal load to 

calculate the external to internal load ratio during each trial (Akubat et al., 2014). These 

ratios were used to determine the extent to which high speed, very high speed and 

high power reflect changes in internal load that might be induced by performing more 

multi-directional running. For example, a higher summated HR with multi-directional 

compared to linear running might also be accompanied by a greater time at high 

speed, and therefore the ratio between these two measurements should not be 

different between each running trial. 

 

5.2.3.6 Neuromuscular function 

A dynamometer (Biodex Medical, System 3, New York, USA) was used to measure 

isometric knee extensor and flexor peak torque at 80° knee flexion. For baseline 

measurements, participants performed a warm-up consisting of 5-min cycling at 90 W 

(model E834, Monark, Varup, Sweden). The dominant leg was fixed into the input arm 

of the dynamometer, and the limb mass was measured to allow for gravitational 

correction of peak torques. After two submaximal repetitions, participants performed 
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three maximum efforts of knee extension and flexion for 4 s with 15 s passive recovery 

between each. Peak torque for each movement was taken for analysis. Participants 

were verbally encouraged to achieve maximum efforts and exceed target values 

achieved during habituation. 

 

5.2.4 Statistical analysis 

Descriptive data are reported as mean ± standard deviation. Comparisons between 

multi-directional and linear trials were analysed using paired sample t-tests and effect 

sizes with accompanying 95% confidence intervals (ES; ±95%CI). Furthermore, the 

magnitude of change in peak torque measurements (Pre-Post) across trials was 

directly compared using a two-way analysis of variance (ANOVA). Where differences 

were identified, post hoc analysis was performed (t-tests). The effect size was 

calculated as the difference in means divided by the pooled standard deviation. An 

effect size of 0.2, 0.6 and 1.2 were considered small, moderate and large, respectively. 

P values were reported for all analysis. All statistical analyses were performed using 

the Statistical Package for Social Sciences (SPSS, version 22; SPSS, Inc., IL, USA) 

and Microsoft Excel. The reader should refer to General Method section 3.8 for further 

information regarding the statistical approach adopted.  

 
 
5.3 Results  

The external demands of the linear and multi-directional trials are displayed in Table 

5.1. A large increase in total distance, relative distance, distance covered at high 

speed and mean speed during active bouts was observed during the linear compared 

to the multi-directional trial. Conversely, a large decrease in total accelerations and 

decelerations performed was observed during the linear compared to the multi-
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directional trial. Time at high power demonstrated a moderate decrease during the 

linear trial, whereas EEGPS demonstrated a small increase. A moderate decrease in 

exercise duration was observed during the linear compared to the multi-directional 

trial. PlayerLoadTM remained the same between trials.
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Table 5.1 The external demands of the multi-directional and linear trials 

 Multi-directional Linear Mean difference 
± SD difference 

ES; ±95% CI P value 

Total distance (m) 1513.4 ± 59.6 1592.2 ± 90.4 78.8 ± 64.6 1.2; ±0.8 0.001 
Duration (s) 1428.3 ± 40.3 1381.7 ± 45.6 -46.7 ± 39.0 -1.0; ±0.7 0.002 
Relative distance (m.min-1) 68.2 ± 3.0  74.7 ± 5.0  6.4 ± 2.7 1.9; ±1.0 < 0.001 
High speed distance (m) 416.5 ± 97.4 677.2 ± 57.5 260.7 ± 71.3 2.4; ±1.2 < 0.001 
Time at high speed (s) 85.5 ± 18.7 117.4 ± 5.9 31.9 ± 19.2 1.5; ±0.9 < 0.001 
Time at very high speed (s) 49.8 ± 15.0 106.6 ± 7.7 56.8 ± 14.7 3.4; ±1.6 < 0.001 
Total accelerations (n) 48.3 ± 21.5 7.2 ± 3.8 -41.1 ± 20.3 -1.7; ±0.9 < 0.001 
Total decelerations (n) 38.8 ± 19.5 3.8 ± 6.3 -33.8 ± 16.9 -1.5; ±0.8 < 0.001 
Mean speed (km.h-1) 9.7 ± 0.5 11.3 ± 0.9 1.6 ± 0.7 2.9; ±1.5 < 0.001 
PlayerLoadTM (AU) 175.8 ± 17.4 173.8 ± 18.4 -2.0 ± 17.1 -0.1; ±0.6 0.7 
Time at high power (s) 118.4 ± 11.7 111.5 ± 10.2 -6.9 ± 10.7 -0.5; ±0.6 0.046 
EEGPS (kcal.min-1) 5.9 ± 1.4 6.5 ± 1.5 0.5 ± 0.3 0.4 ±0.2 < 0.001 
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The internal demands of the multi-directional and linear trials are presented in Table 

5.2. A moderate lower mean RPE, summated HR and bout 8 B[La] was observed 

during the linear compared with the multi-directional trial. Total V̇O2 and mean HR 

demonstrated a small decrease during the linear compared with the multi-directional 

trial. Mean V̇O2, Bout 4 B[La] and peak HR were similar between trials. 
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Table 5.2 The internal demands of the multi-directional and linear trials 

 Multi-directional  Linear Mean difference 
± SD difference 

ES; ±95%CI P value 

Mean RPE 15.7 ± 1.1 14.9 ± 1.1 -0.83 ± 1.1 -0.7; ±0.6 0.024 
Bout 4 B[La] (mmol.L-1) 8.7 ± 1.9 7.8 ± 2.9 -0.89 ± 2.9 -0.4; ±0.9 0.314 
Bout 8 B[La] (mmol.L-1) 10.2 ± 2.0 8.2 ± 2.6 -2.1 ± 1.8 -0.9; ±0.6 0.002 
Mean V̇O2 (ml.kg-1.min-1) 27.0 ± 2.6 26.0 ± 1.9 -1.0 ± 2.8 -0.4; ±0.6 0.237 
Total V̇O2 (L) 46.9 ± 9.0 44.2 ± 10.1 -2.7 ± 5.0 -0.3; ±0.3 0.087 
Summated HR (AU) 78.1 ± 10.5 69.1 ± 10.1 -8.9 ± 8.1 -0.8; ±0.5 0.003 
Mean HR (b.min-1) 161.6 ± 10.8 158.3 ± 12.6 -3.3 ± 6.2 -0.3; ±0.3 0.099 
Peak HR (b.min-1) 199.9 ± 14.5 201.8 ± 14.7 1.9 ± 18.5 0.1; ±0.7 0.727 
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Measurements of external to internal load during the linear and multi-directional trials 

are displayed in Figure 5.1. Measures of very high speed:summated HR, high 

speed:summated HR, very high speed:total V̇O2 and high speed:total V̇O2 

demonstrated large differences between the multi-directional and linear trials (Figure 

5.1). Conversely, high power: summated HR and high power:total V̇O2 were the same 

between trials.  
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Figure 5.1 The external to internal ratio during the linear and multi-directional trials and the effect size; ±95% confidence intervals for 

differences in the external to internal ratio between trials using measures of time at very high speed, high speed and high power. 

Trivial changes (-0.2 < effect size < 0.2) are shaded in grey. Interpretation: A higher summated HR with multi-directional compared 

to linear running was also accompanied by a greater time at high power, and therefore the ratio between these two measurements 

was not different between each running trial.
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There was a difference between pre and post peak extensor torque (F = 13.07, p = 

0.004), but not between trials (F = 1.42, p = 0.26). Small reductions in peak knee 

extensor torque were observed after both trials (Figure 5.2). Differences in pre and 

post peak flexor torque were also evident (F = 14.08, p = 0.003), but not between trials 

(F = 0.06, p = 0.811). Specifically, a small reduction in knee flexor torque was evident 

after the multi-directional trial, and a tendency for a small reduction in knee flexor after 

the linear trial was noted (p = 0.077). Baseline extensor torque (p = 0.495) and flexor 

torque (p = 0.419) was similar between the multi-directional and linear trials. 

Comparison of sex specific changes in knee extensor and flexor torque after multi-

directional running are provided in Appendix 5.2. 
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Figure 5.2 Peak knee torque for flexion and extension before (pre) and after (post) 

after the multi-directional and linear trials. Values are the effect size; ±95% confidence 

interval and accompanying p value. 
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5.4 Discussion 

The purpose of the current study was to examine differences in internal and external 

load in response to linear and multi-directional running. Whilst trials were matched for 

total distance, participants covered more distance during the linear compared with the 

multi-directional trial. This difference is possibly explained by the use of GPS, which 

can underestimate distance measurements during rapid directional changes by ~3 ± 

2.5% (Rawstorn, Maddison, Ali, Foskett, & Gant, 2014). Distance covered at high 

speed was also higher during the linear trial, which was expected in team sport 

athletes where peak acceleration does not occur until ~9-10 m (Vescovi, 2012; 

Brechue, Mayhew & Piper, 2010). During the multi-directional trial, participants 

performed multiple directional changes over short distances that meant they were 

unable to achieve velocities comparable with those achieved during the linear trial. 

Concomitantly, the duration of the multi-directional trial was ~47 s higher because 

sprint times increase when directional changes are included (Buchheit et al., 2012). 

Whilst others have accounted for the longer duration of directional changes when 

comparing linear and multi-directional running (Buchheit et al., 2012), such 

adjustments do not replicate real world practice.  

 

More accelerations and decelerations suggest directional changes are the primary 

cause of increased internal load observed (as measured by RPE, HR, V̇O2 and B[La]), 

during multi-directional running. This coincides with the greater time at high power 

during the multi-directional trial, given that a high metabolic power (di Prampero et al., 

2005) and a greater estimated energy cost (Stevens et al., 2015) occurs at lower 

running speeds when performing an increased number of directional changes. Indeed, 

Fox et al. (2017) reported high metabolic power distances were greater than high-
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speed distances covered during a soccer match, which reflects the inability of 

traditional speed-based thresholds to account for discrete, short duration acceleration 

movements. Conversely, EEGPS was higher during the linear trial, which might be due 

to the underestimation of EEGPS for changes of direction and backwards/lateral 

movement incorporated in the multi-directional trial (Chapter 4; Stevens et al., 2015). 

The measurement of metabolic power above 20 W.kg-1 might provide a more suitable 

measure of the high intensity demands of team sport activity when compared with high 

speed running, particularly when directional changes are performed.  

 

The similarity in PlayerLoadTM between trials is probably explained by a higher total 

and high-speed distance covered during the linear trial, offsetting the higher 

accelerations and decelerations performed during the multi-directional trial. Indeed, 

both accelerations and decelerations (12 – 16%; Dalen et al., 2016) and total distance 

covered (56%; Casamichana et al., 2013) share considerably variability with 

PlayerLoadTM, suggesting some ambiguity when making comparisons of 

PlayerLoadTM between different movement patterns. From the present study, it 

remains unclear if PlayerLoadTM reflects changes in the external demands of linear 

and multi-directional running.  

 

The small increase in total V̇O2 during the multi-directional trial is consistent with 

previous literature demonstrating an increase in V̇O2 when more directional changes 

are performed (Buchheit et al., 2010; Buglione & Prampero, 2013; Hatamoto et al., 

2014). The increased accelerations associated with more directional changes 

(Akenhead et al., 2014) and the inclusion of backwards movement (Williford, Olson, 

Gauger, Duey, & Blessing, 1998) during the multi-directional trial likely caused a higher 
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V̇O2 compared with forward running at the same speed. The multi-directional trial also 

elicited a higher mean HR and summated HR, again reaffirming an increased cardio-

vascular strain during running with more directional changes (Akenhead et al., 2014; 

Dellal et al., 2010). Whilst others have reported a lower mean heart rate during running 

with more directional changes (e.g. Ashton & Twist, 2015), direct comparisons 

between protocols are difficult, given different recoveries (active vs. passive; Miladi, 

Temfemo, Mandengué, & Ahmaidi, 2011) and movement patterns (forward vs. 

backwards; Williford et al., 1998).   

 

A higher B[La] after the multi-directional trial is also consistent with previous reports, 

reaffirming a greater reliance on anaerobic metabolism when an increased number of 

directional changes are performed (Akenhead et al., 2014; Ashton & Twist, 2015; 

Buchheit et al., 2010; Dellal et al., 2010). Whilst the specific mechanism for this change 

is unclear, di Prampero et al. (2005) suggest overcoming the body’s inertia when 

changing direction requires an increased recruitment of larger motor units, composed 

of type II muscle fibres with a high glycolytic capacity (Mero, 1988). The findings here 

contrast with others who have reported a higher B[La] after linear running (Buchheit et 

al., 2012; Hader et al., 2014), which might be accounted for by the reduced running 

speed and running distance during directional changes (Buchheit et al., 2012; Hader 

et al., 2014). The moderate increase in RPE in response to the multi-directional trial 

reaffirms reports of an increased sense of exertion during exercise that includes more 

changes of direction (Ashton & Twist, 2015; Dellal et al., 2009; Tang et al., 2018), 

despite a reduction in high speed distance covered. In agreement, increases in RPE 

have been reported during intermittent compared with continuous running (Bartlett, 

Close, Drust, & Morton, 2010; Drust, Reilly, & Cable, 2000) and running with an 
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increased number of accelerations (Gaudino et al., 2015). Future studies should 

explore the implications of an increased perceived exertion on exercise tolerance 

during high-intensity multi-directional exercise (Marcora & Staiano, 2010). Overall, 

these data indicate running with more directional changes causes a small to moderate 

increase in the metabolic and perceptual demands of exercise. 

 

The external to internal ratio using time at high-speed and very high-speed were 

different (large effect) between trials, whereas external to internal ratio using time at 

high-power were similar between trials. This suggests increases in summated HR and 

total V̇O2 (the ‘response’) induced by altering running patterns (the ‘dose’) are 

accurately reflected by time at high power but not time at high speed and very high 

speed. These findings support studies reporting strong associations between 

measures of high metabolic power with measures of internal load (r = 0.77 – 0.92; 

Delaney et al., 2018) and determinants of aerobic fitness during team sport activity (r 

= 0.54 – 0.67; Akubat et al., 2018). In addition, Polglaze and colleagues (2018) 

reported measures of high metabolic power displayed a stronger association with time 

spent above 85% HR compared with measures of high-speed. The observation that 

high-speed does not reflect changes in internal responses contrasts the strong 

association between critical speed and time spent above 85% HR (r = 0.719; Polglaze 

et al., 2018b) and the ratio of high-speed distance to iTRIMP with markers of aerobic 

power (r = 0.58 – 0.65; Akubat et al., 2014). It can be speculated the multi-directional 

protocol incorporated more directional changes and short distance efforts compared 

to other protocols (Akubat et al., 2014; Polglaze et al., 2018b), which likely account for 

the differences observed. Taken together, the present study proposes integrated 

ratios using measures of time at high power provide a sensitive interpretation of the 



 

 

133 

individual’s response during different forms of running (i.e. linear and multi-directional). 

This is pertinent given the practical and methodological issues of HR and V̇O2 

measurements in applied contexts (Osgnach et al., 2010). 

 

The similar small decrease in knee extensor torque after both trials is expected given 

that both the linear and multi-directional trials incorporated high intensity movement 

patterns (sprinting and accelerating). Specifically, muscle activity of the quadriceps 

increases during running at increasing velocities (Tsuji, Ishida, Oba, Ueki & Fujihashi, 

2015) and running with an increased number of directional changes (Beisier et al., 

2003), which might accelerate the accumulation of fatiguing metabolites (Mohr et al., 

2004; Westerblad, Allen & Lannergren, 2002) and/or inhibit motor neurons, leading to 

neuromuscular fatigue (Hader et al., 2014). The higher speeds achieved during the 

linear trial could have been offset by the increased number of directional changes 

performed during the multi-directional trial. Accordingly, the magnitude of force loss 

after both linear and multi-directional running is similar but can be attributed to different 

causes. Decrements in knee flexor torque were similar after the multi-directional and 

linear trial, albeit the probability of obtaining the sample result if the null hypothesis 

were true was greater for the linear trial (p = 0.077 cf. p = 0.017). Previous reports 

have suggested a greater number of directional changes during intermittent running 

incur more likely activation and fatigue of the knee flexors (Ashton & Twist, 2015; 

Hader et al., 2014). The greater number of decelerations performed during the multi-

directional trial requires the hamstrings and gastrocnemius to eccentrically contract to 

stabilize the knee joint as it experiences larger valgus and rotation moments (Besier 

et al., 2003). This, in turn, can lead to an inhibition of motor units (Hader et al., 2014), 

causing reductions in knee flexor torque, despite the reduction in high speed running. 
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Such decrements in knee flexor strength could have implications for injury risk, as 

hamstring fatigue has been associated with a mechanical loss of knee stability that 

can contribute towards increased risk of ACL injury (Melnyk & Gollhofer, 2007). 

Collectively, these data suggest decrements in neuromuscular function of the knee 

flexors are similar after multi-directional and linear running, despite an overall slower 

movement speed in the multi-directional trial. Future studies might seek to examine 

the effect of multi-directional running on lower limb injury risk. 

 

It is important to acknowledge the limitations of the present study. Although the running 

courses used for both trials were matched for distance, differences in running style 

and technique both within and between participants were not controlled. Whilst the 

reliability of the microtechnology device for measuring distance, low and high-speed 

distance and high metabolic power was deemed favourable (<10%) during the multi-

directional trial, repeatability of acceleration/deceleration metrics are known to be 

more variable (CV%: 3.1-11.3%; Varley et al., 2012). The direct compatibility of an 

absolute marker of internal load with an intensity marker of external load to calculate 

the external to internal load might be considered a limitation. However, gross V̇O2 has 

demonstrated very strong associations with intensity markers of external load 

(Hatamoto et al., 2014) and such markers of external to internal load are commonplace 

amongst the literature (McLaren et al., 2018). Finally, measures of muscle function 

relied on voluntary contraction of the muscle to assess fatigue. Future studies might 

wish to consider changes in voluntary activation to assess the contribution of 

peripheral and central mechanisms to reductions in force after linear and multi-

directional running.  
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5.5 Conclusion 

In conclusion, this study reaffirms that running incorporating multiple directional 

changes induces a greater physiological and perceptual response when compared to 

linear running, despite the reduced mean speed and work rate (m.min-1). Time at high 

power reflected changes in internal load between trials, whilst measures of high speed 

and very high speed did not. Decrements in knee flexor torque were similar after both 

trials, despite the reduction in high speed running. Practitioners should be wary of 

using measures of high speed alone to quantify the high intensity demands of running 

incorporating multiple directional changes. Here, the use of time at high metabolic 

power is proposed as an alternative measure of external load, which can also reflect 

an individual’s internal response to multi-directional running.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key messages 
• Running with more changes of direction increases the 

psychophysiological response to exercise. 
• Time at high power can reflect changes in internal load between 

linear and multi-directional running, whilst time at high speed can 
not. 

• Small reductions in knee extensor and flexor torque were 
observed after multi-directional running and could have 
implications for injury risk. 

Next steps 
• Future research should explore if injury risk is altered after multi-

directional running. 
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Chapter 6  

Effect of multi-directional running on the biomechanics of side cuts in males 

and females 

 

 

 

 

 

 

 

 

 

6.1 Introduction  

The incidence of ACL injury continues to rise in a collegiate athletic population (Agel 

et al., 2016), with most occurrences being non-contact in nature (Walden et al., 2015). 

Team sports, in particular, have a high incidence of ACL injuries (0.3 – 3.2 per 10,000 

athlete exposures; Agel et al., 2016; Stanley, Kerr, Dompier, & Padua, 2016) as 

athletes perform numerous pressing, landing, deceleration and side cutting 

manoeuvres that increase the risk for this injury (Grassi et al., 2017; Krosshaug et al., 

2007). Most ACL injuries during team sports occur during a 30-90° side cut in both 

male (Walden et al., 2015) and female (Koga et al., 2010) athletes. While some have 

quantified side cut kinematic mechanisms associated with ACL injury during 

competition (e.g. Grassi et al., 2017; Walden et al., 2015), 2D video footage from 

match-play are subject to errors due to low-quality video and limited camera angles 

(Grassi et al., 2017). The poor agreement reported between 2D and 3D frontal motion 

Rationale summary 
Multi-directional running elicits a greater psychophysiological 
response compared with linear running and small 
decrements in knee flexor torque (Chapter 5) and could have 
implications for ACL injury risk. However, inconsistencies in 
fatigue-induced modifications in side cut biomechanics are 
apparent and likely reflect the non-uniformity of fatigue 
protocols, which arguably do not mimic the numerous 
changes of directions performed during team sports. Sex 
specific differences in side cut mechanics also make 
comparisons difficult. Accordingly, this study assessed the 
effect of fatigue induced by multi-directional running on side 
cut biomechanics in males and females. 

 



 

 

137 

(Sorenson, Kernozek, Willson, Ragan, & Hove, 2015) also question the accuracy of 

2D motion capture, given that 3D motion capture is considered the gold standard to 

assess movement strategies that might predispose an athlete to ACL injury (Fox, 

Bonacci, McLean, & Saunders, 2017). Studies have examined biomechanical factors 

during a 45° side cut which are associated with ACL injury risk using 3D motion 

capture (McGovern et al., 2015; McLean et al., 2004; Savage et al., 2018) to help 

develop more specific preventative programmes. A 45° cutting angle is acute enough 

to require a substantial deceleration, but shallow enough for a change of direction to 

be achieved during a single foot contact (Alenezi et al., 2016), whilst maintaining 

speeds required to substantially load the knee joint (Dos’Santos, Thomas, Comfort, & 

Jones, 2018). 

 

Side cutting or landing with decreased trunk (Blackburn & Padua, 2009), hip (Kipp, 

McLean & Palmieri-Smith, 2011) and knee (Walden et al., 2015) flexion angles, 

increased hip adduction (Grassi et al., 2017), knee valgus/abduction angles 

(Kobayashi et al., 2010; Walden et al., 2015) and increased knee abduction moments 

(Myer et al., 2015) are some of the reported mechanisms associated with increased 

risk of ACL injury. Whilst some debate still exists over the relative contribution of 

sagittal plane mechanics to ACL injury risk (Bakker et al., 2016; McLean et al., 2004), 

knee abduction angle, knee abduction moment and internal tibial rotation moment 

appear the most detrimental factors contributing to ACL injury (Kiapour et al., 2014; 

Myer et al., 2015; Shin, Chaudhari, & Andriacchi, 2011), particularly when combined 

(Navacchia et al., 2019; Shin et al., 2011). Specifically, larger knee abduction 

moments are associated with an increased risk of subsequent ACL injury (Myer et al., 

2015) and both knee abduction moments (Navacchia et al., 2019) and angles (Kiapour 
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et al., 2016) have demonstrated strong associations with peak ACL force during 

impacts (r = 0.67 - 0.82; Kiapour et al., 2016; Navacchia et al., 2019). Comparisons of 

individual mechanisms reveal knee abduction angle has a ~ 2-fold greater effect on 

the magnitude of peak ACL strain when compared with internal tibial rotation (Kiapour 

et al., 2016). Yet, internal tibial rotation moment plays a primary role in increasing ACL 

strain (Oh et al., 2012) and a combination of knee abduction and internal tibial rotation 

moments can increase ACL strain more so than either alone (Shin et al., 2011). Whilst 

these findings highlight the importance of knee frontal and transverse plane 

mechanics in the assessment of ACL injury risk, the mechanism of ACL injury is 

multifaceted. Indeed, hip adduction (Imwalle et al., 2009), knee abduction, hip rotation 

moment (Myer et al., 2014), hip internal rotation angle (McLean et al., 2004), lateral 

trunk position (Jamison et al., 2012) and braking ground reaction force (GRF) (Jones, 

Herrington, & Graham-Smith, 2015) are associated with knee abduction moment and 

might indirectly contribute towards ACL injury. The assessment of multi-planar 

motions, moments and GRF is therefore essential to understand factors which 

contribute to ACL injury risk. 

 

Notable differences in cutting mechanics between the sexes have been identified. 

Females have been reported to cut in a more extended position, with less knee flexion 

(McGovern et al., 2015), less hip flexion and a smaller hip flexor moment (Landry et 

al., 2007), more knee abduction (Weinhandl, Irmischer, Sievert & Fontenot, 2017) and 

hip internal rotation (Landry et al., 2007; McGovern et al., 2015), higher vertical GRF 

(Sigward, Cesar & Haven, 2015) and a greater tendency towards lateral trunk flexion 

(Pollard et al., 2007), compared to males. Such movement patterns can increase strain 

on the ACL and concur with the ~2 – 6-fold higher ACL injury incidence rate sustained 
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in females compared with males (Gray et al., 2019; Hewett et al., 2005; Stanley et al., 

2016). However, sex comparisons in side cut mechanics have focused on hip and 

knee mechanics, typically in the sagittal and frontal plane (Iguchi et al., 2014; 

McGovern et al., 2015; McLean et al., 2007; Weinhandl et al., 2017). Further research 

examining potential differences in side cut mechanics between sexes with fatigue 

should include analysis of all three planes and the assessment of proximal segments, 

such as the trunk.  

 

Altered side cut biomechanics have also been documented after fatiguing exercise. 

Fatigue is characterised by an objective decline in performance (e.g. peak torque, 

CMJ/sprint performance) over a discrete period of time, whether or not the task can 

be continued (Bishop, 2012; Enoka & Duchateau, 2016). Decrements in lower limb 

maximal voluntary force are evident after team sport activity (Chapter 5; Ashton & 

Twist, 2015; Goodall et al., 2017; Silva, Ascensão, Marques, Seabra, Rebelo & 

Magalhães, 2013) and have been associated with a mechanical loss of knee stability 

(Melnyk & Gollhofer, 2007). In vivo data has also demonstrated the ACL is susceptible 

to fatigue failure (Wojtys, Beaulieu & Ashton-Miller, 2016). Specifically, Wojtys et al. 

(2016) found when the knee joint was loaded multiple times (30-60 times) the 

simulated landing force required to cause an ACL injury was lower. Previous research 

has therefore explored the influence of fatigue on the mechanics of side cuts; however, 

results appear contradictory. For example, some studies have reported decreased hip 

and knee flexion (Lucci et al., 2011; McGovern et al., 2015) and knee internal rotation 

(Lucci et al., 2011), increased knee abduction (Collins et al., 2016; Tsai et al., 2008) 

and knee extensor moments (Savage et al., 2018) during a side cut with fatigue. 

Conversely, others have reported no such differences in knee flexion angle (Inguchi 
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et al., 2014) or knee moments (Collins et al., 2016) and increases knee internal 

rotation (Sanna et al., 2008) and knee adduction (McGovern et al., 2015). 

Discrepancies amongst the literature are potentially due to the use of male (e.g. 

Savage et al., 2018) compared with female (e.g. Collins et al., 2016) participants, as 

an interaction effect between sex and fatigue has previously been reported (Inguchi et 

al., 2014). Fatigue is also specific to the nature, intensity and duration of the task 

performed (Impellizzeri et al., 2019), so the use of protocols ranging from repetitive 

explosive movements such as vertical jumps combined with sprints (Lucci et al., 2011; 

Tsai et al., 2008) to 60 minutes of intermittent shuttle running over 20 m (Collins et al., 

2016; Sanna et al., 2008), might account for differences in side cut biomechanics after 

fatiguing exercise. These data highlight the need for careful consideration of the 

fatigue protocol used when assessing side cut biomechanics under fatigue. 

Inconsistencies in fatigue induced alterations in GRF (Iguchi et al., 2014; Khalid et al., 

2015) and movement variability (Cortes, Onate & Morrison, 2014) during a side cut 

are also apparent, and warrant further research. 

 

Whilst recent studies have used intermittent running protocols that better reflect the 

mechanical demands of team sport activity (Collins et al., 2016; Savage et al., 2018), 

they do not account for the numerous changes of direction team sport athletes perform 

during match-play (~700; Bloomfield et al., 2007). This is important given that running 

with an increased number of directional changes can induce greater decrements in 

knee flexor torque when compared with linear shuttle running (see Chapter 5), which 

are associated with a mechanical loss of knee stability and a higher risk of ACL injury 

(Melnyk & Gollhofer, 2007). However, few studies have investigated fatigue induced 

modifications in trunk and lower limb mechanics after intermittent running with 
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numerous directional changes in both men and women. Thus, the purpose of this 

study was to assess the effect of fatigue induced by multi-directional running on trunk, 

hip and knee kinematics and kinetics and GRF during 45º side cuts in male and female 

team sport athletes. 

 

6.2 Method 

6.2.1 Participants 

After institutional ethics approval (see Appendix 6.1), 16 team sport players, made up 

of 8 males (stature: 175.5 ± 8.0 cm; mass: 74.6 ± 8.5 kg; age: 21.6 ± 2.2 years; V̇O2 

peak: 46.0 ± 4.1 ml.kg.-1min-1) and 8 females (stature: 165.8 ± 8.5 cm; mass: 63.1 ± 13.5 

kg; age: 21.3 ± 3.2 years; V̇O2 peak: 39.4 ± 5.3 ml.kg.-1min-1) were recruited from 

University-level team sports (rugby, football, hockey and netball). This sample size 

was based on the number of participants used in previous research examining the 

effect of fatigue and sex on lower limb mechanics during a side cut (Iguchi et al., 2014; 

Khalid et al., 2015). This value also exceeds an a priori sample size calculation, based 

on estimated power (Faul et al., 2009) and an effect size of 1.08 for fatigue induced 

modifications in lower limb kinematics after intermittent running (McGovern et al., 

2015; see Appendix 6.2). All participants took part in team sport training sessions at 

least twice per week. Participants completed pre-test health screening to ensure they 

had no previous history of knee surgery and/or no lower limb injuries in the past 6 

months (Thomas, McLean & Palmieri-Smith, 2010). Participants were also required to 

refrain from exercise 48 h before each visit. 
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6.2.2 Design 

Participants completed two sessions on separate days. In the first visit, participants 

completed a multi-stage fitness test to provide an estimate of peak aerobic capacity. 

Three to seven days later, participants completed baseline measurements of 20 m 

sprints and side cuts followed by the multi-directional trial. Repeated measurements 

of the 20 m sprints and side cuts were taken within 30 minutes after the multi-

directional trial. 

 

6.2.3 Procedures 

6.2.3.1 Multi-stage fitness test 

The multi-stage fitness test was used to estimate each participant’s V̇O2 peak. Please 

refer to General Methods section 3.2 for procedures.  

 

6.2.3.2 Multi-directional trial 

The multi-directional trial comprised twelve bouts of ~60 s of work followed by 120 s 

of passive rest, procedures for which can be found in the General Methods section 

3.3. The multi-directional trial has previously demonstrated a good level of reliability 

(see Chapter 5). 

 

6.2.3.3 Sprint performance  

Participants performed three single maximal 20 m sprints immediately before and after 

the multi-directional trial. Please refer to General Methods section 3.5 for procedures.   
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6.2.3.4 Three-dimensional motion capture of 45° side cuts  

Please refer to General Methods section 3.6 for procedures. Participants required 

between 5 - 27 and 6 – 14 attempts to perform the 5 successful side cuts before and 

after multi-directional running, respectively. Please refer to General Method section 

3.6 for procedures. 

 

6.2.3.5 Data Analysis of 45° side cuts 

Please refer to General Methods section 3.7 for procedures.  

 

6.2.4 Statistical analysis 

Descriptive data are reported as mean ± standard deviation. Data were analysed using 

two-way mixed ANOVAs with time (pre vs. post multi-directional running) as a within-

subject factor and sex (males vs. females) as a between-subject factor. The effect of 

time and the interaction of sex x time are reported. P values were reported for all 

analyses. Further post hoc analyses consisting of effect sizes with accompanying 95% 

confidence intervals (ES; ±95%CI) were performed for each sex. The effect size was 

calculated as the difference in means divided by the pooled standard deviation. An 

effect size of 0.2, 0.6 and 1.2 were considered small, moderate and large, respectively. 

The co-efficient of variation (CV%) was used to assess within-subject variability in 

sagittal plane variables and GRF. All statistical analyses were performed using the 

Statistical Package for Social Sciences (SPSS, version 22; SPSS, Inc., IL, USA) and 

Microsoft Excel (version 16.41, Microsoft). Please refer to the General Methods 

section 3.8 for further information regarding the adopted statistical approach. 
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6.3 Results  

Peak 20 m sprint time was different before compared with after multi-directional 

running (F = 30.655, p < 0.001), however no interaction between time (pre vs. post) 

and sex (males vs. females) was noted (F = 1.754, p = 0.207). Specifically, peak 20 

m sprint time was higher in females (3.48 ± 0.2 cf. 3.76 ± 0.2 s; ES; ±95% CI: 1.17; 

±0.67) and males (3.09 ± 0.2 cf. 3.26 ± 0.3 s; 0.65; ±0.41) after multi-directional 

running. Data on task achievement during the side cuts are presented in Table 6.1. 

Centre of mass velocity at initial contact (F = 1.669, p = 0.219) and toe off (F = 1.603, 

p = 0.228) was similar before and after multi-directional running and no interaction 

between time and sex was noted at initial contact (F = 0.199, p = 0.663) or toe off (F 

= 0.07, p = 0.795). No differences in cut angle (F = 0.138, p = 0.716) and stance time 

(F = 0.720, p = 0.410) were observed before compared with after multi-directional 

running, and no interaction of time and sex was noted (p = 0.682 and p = 0.717, 

respectively). Time (pre vs. post) had an effect on percentage of stance time in weight 

acceptance (F = 4.849, p = 0.045), however no interaction between time and sex was 

noted (F = 1.477, p = 0.244). Specifically, percentage of stance time in weight 

acceptance was higher in females (0.73; ±0.97) and males (0.37; ±0.48) after multi-

directional running. 
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Table 6.1 Task achievement during 45° side cuts in all participants. 

 Females (n = 8) Males (n = 8) 

 Pre Post Pre Post 

Centre of mass 

velocity at IC (m.s-1) 
4.2 ± 0.3 4.1 ± 0.3 4.2 ± 0.2 4.1 ± 0.2 

Centre of mass 

velocity at TO (m.s-1) 
3.8 ± 0.3 3.7 ± 0.4 3.8 ± 0.3 3.7 ± 0.3 

Change in centre of 

mass angle from IC 

to TO (°) 

21.7 ± 2.0 21.7 ± 4.4 25.9 ± 4.6 25.4 ± 4.2 

Stance time (s) 0.20 ± 0.03 0.21 ± 0.03 0.25 ± 0.04 0.25 ± 0.03 

Weight acceptance 

percentage of stance 

(%) 

53.9 ± 7.3 59.9 ± 7.6 47.7 ± 4.2 49.5 ± 5.1 

IC = initial contact. TO = toe off 

 

6.3.1 Kinematics 

Discrete trunk kinematic data are presented in Table 6.2 and hip and knee angular 

data over stance for females and males are presented in Figures 6.1 and 6.2, 

respectively. Peak trunk flexion angle during the weight acceptance phase 

demonstrated a trivial to small increase after multi-directional running (Table 6.2). 

Peak hip internal rotation angle demonstrated a small decrease after multi-directional 

running (F = 3.313, p = 0.090) in females (-0.54; ±0.54) and males (-0.46; ±1.43), 

whereas peak knee extension angle demonstrated a trivial to small increase (F = 

4.397, p = 0.055) in females (0.41; ±0.51) and males (0.17; ±0.38). Angular data at 

initial contact are included in Appendix 6.4. At initial contact, hip internal rotation angle 

(F = 3.323, p = 0.090) and knee abduction angle (F = 3.778, p = 0.072) demonstrated 

trivial to large decreases in females (-0.84; ±0.57 and -0.07; ±0.46, respectively) and 
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males (-0.09; ±1.38 and -1.28; ±1.45, respectively) after multi-directional running. No 

other differences before and after multi-directional running in peak angular data (see 

Appendix 6.3) and angular data at initial contact (Appendix 6.4) were noted. In 

addition, no interactions between sex and time were observed (see Appendix 6.3 and 

6.4). Peak knee abduction angular velocity (F = 4.835, p = 0.045) in females (212.8 ± 

81.9 cf. 249.7 ± 116.4 °. s-1; 0.40; ±0.54) and males (118.5 ± 49.1 cf. 146.4 ± 57.0 °. s-

1; 0.51; ±0.88) and knee internal rotation angular velocity (F = 5.226, p = 0.038) in 

females (476.6 ± 84.9 cf. 533.1 ± 155.2°. s-1; 0.59; ±1.18) and males (384.2 ± 124.8 

cf. 498.3 ± 149.5 °. s-1; 0.81; ±0.97) was higher after multi-directional running. No other 

differences or interactions in peak angular velocities at the trunk, hip and knee were 

found (Table 6.2 and Appendix 6.5). Medio-lateral foot placement during the weight 

acceptance phase was similar before compared with after multi-directional running, 

and no interaction of time and sex was observed (see Appendix 6.6).  
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Table 6.2 Peak torso kinematic data during the weight acceptance phase in males and females, before and after multi-directional 

running 

 Females (n = 8) 
 

Males (n = 8) P value from two-
way ANOVA 

 Before After ES; ±95% 
CI 

Before After ES; ±95% 
CI 

Time Sex x 
Time 

Torso angle:         
Flexion (°) 7.4 ± 9.4 

 
9.0 ± 9.3 0.16; ±0.38 14.1 ± 8.0 16.6 ± 6.9 0.28; ±0.37 0.082 0.701 

Lateral lean over 
stance leg (°) 
 

4.0 ± 5.4 3.6 ± 7.5 -0.06; ±0.38 2.7 ± 6.3 3.5 ± 6.3 0.11; ±0.39 0.790 0.455 

Rotation over 
stance (°) 

6.6 ± 11.2 5.5 ± 10.0 -0.08; ±0.36 9.1 ± 7.7 6.4 ± 7.0 -0.31; ±0.47 0.172 0.541 

Torso angular 
velocity: 

        

Flexion (°.s-1) 135.7 ± 73.2  156.9 ± 61.5  0.26; ±0.46 
 

169.2 ± 42.8  213.5 ± 122.5  0.92; ±1.93 0.145 0.596 

Lateral lean over 
stance leg (°.s-1) 
 

 44.2 ± 23.1  46.3 ± 25.9  0.08; ±0.76 88.2 ± 44.7  100.0 ± 40.0 0.23; ±0.33 
 

0.225 0.391 

Rotation to new 
direction of travel 
(°.s-1) 

230.3 ± 79.2  225.0 ± 73.5  -0.06; ±0.37 170.5 ± 59.5  174.8 ± 49.0  0.06; ±0.41 
 

0.958 0.605 

ES = effect size, CI = confidence interval 
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Figure 6.1. Mean female hip and knee angular data in the stance leg during a 45° side cut. The grey shaded area indicates the 

weight acceptance phase. The between group standard deviation for pre (grey) and post (blue) multi-directional running are also 

displayed.  
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Figure 6.2. Mean male hip and knee angular data in the stance leg during a 45° side cut. The grey shaded area indicates the 
weight acceptance phase. The between group standard deviation for pre (grey) and post (blue) multi-directional running are also 
displayed. 
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6.3.2 Kinetics 

Peak GRF data are presented in Appendix 6.7. Peak lateral GRF during the weight 

acceptance phase was lower after multi-directional running (F = 15.159, p = 0.002) 

and a sex x time interaction was observed (F = 4.447, p = 0.053). Specifically, peak 

lateral GRF was moderately lower in females after multi-directional running (1.23 ± 0.2 

cf. 1.04 ± 0.17 N.BW-1; -0.85; ±0.55) but only demonstrated a small decrease in males 

(1.13 ± 0.18 cf. 1.07 ± 0.22 N.BW-1; -0.29; ±0.42). No other changes or interactions in 

peak GRF were observed. IGRF demonstrated a trivial to moderate increase after 

multi-directional running (F = 3.975, p = 0.066) in females (0.79; ±0.77) and males 

(0.04; ±0.35) during the weight acceptance phase of side cuts (Figure 6.3).  

 

 

Figure 6.3 Mean IGRF in females (black line) and males (black dashed line) during 

the weight acceptance phase before and after multi-directional running. Individual 

participant changes are shown in blue.  

 

Hip and knee moment data over stance in females and males are presented in Figures 

6.4 and 6.5, respectively. After multi-directional running, peak hip extensor moment (F 

= 0.4372, p = 0.055) displayed a trivial to small increase in females (ES; ±95% CI: 

0.19; ±0.27) and males (0.29; ±0.51) and peak hip external rotation moment was lower 
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(F = 8.683, p = 0.011) in females (-0.44; ±0.44) and males (-0.57; ±0.70) during the 

weight acceptance phase of side cuts. Peak knee extensor moment was lower (F = 

13.336, p = 0.003) in females (-0.33; ±0.23) and males (-0.45; ±0.59) after multi-

directional running, whereas peak knee external rotation moment displayed a small 

increase (F = 4.495, p = 0.052) in females (0.34; ±0.35) and males (0.22; ±0.51). The 

knee to hip peak extensor ratio was lower after multi-directional running (F = 11.409, 

p = 0.005) in females (0.88 ± 0.56 cf. 0.79 ± 0.54; -0.15; ±0.12) and males (0.93 ± 0.23 

cf. 0.82 ± 0.18; -0.45; ±0.49). No other changes in peak moments during the weight 

acceptance phase of stance (see Appendix 6.8) and no interaction between time and 

sex for peak moments were observed. 
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Figure 6.4. Mean female hip and knee moment data in the stance leg during a 45° side cut.  The grey shaded area indicates the 

weight acceptance phase. The between group standard deviation for pre (grey) and post (blue) multi-directional running are also 

displayed.  
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Figure 6.5. Mean male hip and knee moment data in the stance leg during a 45° side cut.  The grey shaded area indicates the 
weight acceptance phase. The between group standard deviation for pre (grey) and post (blue) multi-directional running are also 
displayed. 
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6.3.3 Movement variability 

Most variables displayed no change in movement variability after multi-directional 

running (see Appendix 6.9). However, peak hip extension angle displayed a moderate 

to large increase (F = 3.837, p = 0.072) in females (CV: 10.5 ± 4.9 cf. 34.5 ± 36.3%; 

3.69; ±6.03) and males (12.1 ± 7.3 cf. 17.2 ± 11.0%; 0.62; ±0.75) after multi-directional 

running.  

 

6.4 Discussion 

The purpose of the study was to assess the effect of fatigue from a multi-directional 

running protocol on side cut mechanics in male and female team sport players. The 

moderate to large increase in 20 m sprint times (~7% in females and ~5% males) after 

running indicates that the multi-directional caused fatigue in both sexes. This reaffirms 

the decrease in knee extensor and flexor strength observed after the same multi-

directional protocol in Chapter 5 and similar team sport protocols reported elsewhere 

(Goodall et al., 2015; Greig, 2019). While the precise mechanisms are beyond the 

scope of this study, a combination of central (e.g. reduced central motor drive; Girard, 

Mendez-Villanueva & Bishop, 2011; Rampinini et al., 2011) and peripheral factors 

(e.g. accumulation of metabolites; Brownstein et al., 2017; Goodall et al. 2015) are 

likely causes of fatigue that explain a decline in sprint performance observed here.  

 

Data regarding task achievement demonstrates a disparity between the prescribed cut 

angle (45°) and the actual cut angle performed (~22 – 26°), i.e., the directional change 

in centre of mass. This likely reflects the trade-off between approach speed and cut 

angle (Vanrenterghem et al., 2012) and is consistent with previous literature indicating 

the executed angle is lower than the intended angle (David, Komnik, Peters, Funken 

Internal rotation 
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& Potthast, 2017; Vanrenterghem et al., 2012). It is noteworthy that side cutting 

technique is angle and velocity dependant (Dos’Santos et al., 2019) and task 

execution did not differ after multi-directional running. Taken together, task execution 

can be disregarded as a confounding variable.  

 

The effect of multi-directional running on side cut kinematics was similar in males and 

females as no interaction between time and sex was noted. Peak trunk flexion 

displayed a trivial and small increase after multi-directional running, in females and 

males, respectively. Increasing trunk flexion during landing has been reported to 

decrease knee abduction angle and moment (Davis, Hinshaw, Critchley & Dai, 2019) 

and is therefore associated with a reduction in peak ACL strain (Kiapour et al., 2016; 

Navacchia et al., 2019). However, the trivial difference in trunk flexion (~1.6°) noted in 

females is unlikely to lead to meaningful reduction in ACL injury risk, given the ~2° 

measurement error in sagittal plane kinematics during a side cut (Alenezi et al., 2016). 

 

A small reduction in peak hip internal rotation (a trivial to large reduction in hip internal 

rotation at initial contact) and a trivial to small increase in knee extension angle was 

noted in males and females, respectively, after multi-directional running. Landing in a 

more extended position is a common mechanism reported during an ACL injury (Koga 

et al., 2010; Walden et al., 2015) and peak knee flexion angles have shown a 

moderate negative correlation with peak ACL strain (r = -0.4; Bakker et al., 2015) using 

a combined in vivo/computational/in vitro approach. These data highlight cutting with 

less knee flexion can increase ACL strain. However, it is noteworthy that alterations in 

sagittal plane mechanics alone might be insufficient to cause an ACL rupture (McLean 

et al., 2004), compared with knee abduction and internal rotation, which places the 
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greatest strain on the ACL in vitro (Bates et al., 2017). The trivial increase in knee 

extension in males (~ 1.2°) is also unlikely to have meaningful effect on ACL injury 

risk. The reduction in peak hip internal rotation angle observed after multi-directional 

running can increase ACL injury risk, given the association between decreased 

internal femoral rotation and ACL strain in silico (Bedi et al., 2016; Beaulieu, Oh, Bedi, 

Ashton-Miller & Wojtys, 2014). Data from the present study are consistent with reports 

of increased knee extension angles (Khalid et al., 2015; McGovern et al., 2015; Raja 

Azidin et al., 2015; Zago, Sforza, Ferrario, Esposito & Galli, 2018), and no change in 

peak frontal knee angles (McGovern et al., 2015), and a shift towards external hip 

rotation (Sanna & O’Connor, 2008), during a side cutting task after intermittent 

running. Whilst others have reported an increase in knee flexion (Savage et al., 2018) 

and knee abduction angle (Collins et al., 2016) after intermittent running, differences 

in the mechanical loading of fatigue protocols (e.g. with or without change of direction; 

Savage et al., 2018), which can alter the neuromuscular load of exercise (Hader et al., 

2014), might partly explain contrasting findings. A reduced knee abduction angle at 

initial contact was also observed, and whilst no interaction between time and sex was 

noted, the size of the effect was deemed large in males and trivial in females. Whilst 

a reduction in knee abduction angle has been associated with reduced ACL injury risk 

in a prospective study (Hewett et al., 2005), peak ACL strain occurs simultaneously 

with peak knee abduction angle during a simulated landing task using a validated 

physiological cadaveric model (Kiapour et al., 2014). ACL injury risk is therefore 

unlikely to be reduced as peak knee abduction angle remained the same after multi-

directional running. Taken together, fatigue that manifests as reduced sprint 

performance after multi-directional running appears to trigger similar and small 

adaptations in joint angles in males and females. Notably, the increased peak knee 
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extension angle reaffirms previous studies, whilst the small decrease in peak hip 

internal rotation angle offers further insight into side cut alterations with fatigue as 

transverse hip kinematics have been investigated to a limited extend after multi-

directional running (Chapter 2). 

 

To the authors knowledge, this is the first study to evaluate the effects of fatigue on 

tri-planar angular velocities during a side cut. A moderate increase in knee abduction 

angular velocity and a moderate to large increase in peak knee internal rotation 

angular velocity, was observed after multi-directional running in females and males, 

respectively. Typically, increases in sagittal plane angular velocities have been 

reported under fatigue and are indicative of a reduced ability of the body to attenuate 

impact (Moran & Marshall, 2006; Tamura et al., 2017). Whilst few studies have 

examined frontal and transverse angular velocities after fatiguing exercise, the 

increase in abduction and internal rotation angular velocity observed in the present 

study indicates a reduced ability to control angular velocities after multi-directional 

running (Jenkins, Williams, Williams, Herner & Welch, 2017). A reduced activation of 

the biceps femoris could be responsible for the increase in knee internal rotation 

angular velocity (Fuji, Sato & Takahira, 2012; Olson, 2020), however this was not 

assessed in the present study. With regards to ACL injury risk, dynamic valgus 

collapse (defined as hip adduction, knee abduction and tibial internal rotation) has 

been reported as a key mechanism during injury to the ACL in females (Krosshaug et 

al., 2007; Stuelcken, Mellifont, Gorman & Sayers, 2016), but less so in males (Walden 

et al., 2015). An increase in knee abduction and internal rotation angular velocity after 

multi-directional running could therefore increase ACL injury risk, particularly in 
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females. Further understanding of joint angular velocities during a side cut is 

warranted to comprehensively evaluate how this metric can inform injury risk.  

 

Peak lateral GRF demonstrated a small and moderate reduction after multi-directional 

running, in males and females, respectively, and a propensity for a sex x time 

interaction was noted.  This decrease in lateral GRF might serve as a strategy to 

maintain balance and avoid excessive lateral forces, which can increase disposition 

to ankle injuries (McClay et al., 1994). Whilst some have reported an association 

between lateral GRF and knee abduction moment (Sigward et al., 2015), knee 

adduction moment remained unaltered after multi-directional running, so it is unclear 

whether a reduction in peak lateral GRF would reduce ACL injury risk. Whilst peak 

vertical GRF remained unchanged, IGRF displayed a trivial increase in males and a 

moderate increase in females, albeit no interaction of sex x fatigue was noted. These 

findings are consistent with Iguchi and colleagues (2014) who reported females 

demonstrated larger IGRF during the first 50 ms of a side cut, after fatiguing exercise. 

The trivial and small increase in knee extension angle observed in males and females 

in the present study, respectively, partially explains the trivial to moderate changes in 

IGRF, given that landing with less knee flexion is associated with a higher GRF (Yu, 

Lin & Garrett, 2006). The moderately higher IGRF in females suggests an increased 

effort to decelerate the downward movement of the centre of mass during the weight 

acceptance phase (Harry, Freedman Silvernail, Mercer & Dufek, 2017) that can 

increase tibiofemoral compression (Iguchi et al., 2014) and might be a factor related 

to non-contact ACL injuries (Iguchi et al., 2014). Collectively, whilst a higher IGRF 

could increase joint loading, body position might play a greater role in knee abduction 

loading, compared with the magnitude of forces (Kristainslund, Faul, Bahr, Myklebust 
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& Krosshaug, 2014), and the trivial effect in males is unlikely to have a meaningful 

effect on ACL injury risk. 

 

Peak hip extensor moment displayed a trivial to small increase, whereas peak knee 

extensor moment was lower, after multi-directional running in both males and females. 

Previous studies have reported both increases (Khalid et al., 2015) and decreases 

(Schmitz et al., 2014) in knee extensor moments under fatigue, which appear to be 

dependent on the fatigue protocol used (Zhang et al., 2018). With regards to ACL 

strain, Bakker et al. (2016) demonstrated peak knee moments were not associated 

with ACL strain, suggesting that maximum quadricep force was not associated with 

ACL strain, but peak knee extensor moment was correlated with time to peak ACL 

strain. Accordingly, the small reduction in peak knee extensor moment observed in 

the present study might not reduce ACL strain, but could increase the time to peak 

ACL strain. A lower knee to hip peak extensor ratio was also observed after multi-

directional running, albeit the effect size was trivial in females and small in males. This 

is suggestive of increased use of the hip extensors compared to knee extensor as a 

means to control the deceleration phase of the side cut (Pollard, Sigward & Powers, 

2017), and concurs with the decrease in knee extensor toque after multi-directional 

running (see Chapter 5). A greater distribution of hip moment can reduce knee 

abduction moment during a single leg landing (Nguyen, Taylor, Wimbish, Keith & Ford, 

2018), but this was not observed in the present study. The trivial and small reduction 

in knee to hip peak extensor ratio, noted in females and males respectively, might 

have been insufficient to reduce frontal plane knee loading. 
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The small reduction in peak hip external rotation moments observed in males and 

females after multi-directional running could increase ACL injury risk as a prospective 

study found participants landing with less hip external rotation moment were over 8 

times more likely to sustain a second ACL injury, compared to those with greater hip 

external rotation moment (Paterno et al., 2010). The increase in knee external rotation 

moment would likely increase risk of an ACL injury given that internal tibial moment 

(expressed as an external moment) plays a primary role in increasing ACL strain (Oh 

et al., 2012), particularly when combined with a knee abduction moment (Shin et al., 

2011). Whilst knee adduction moment did not change after multi-directional running in 

the present study, the peak knee adduction values for females are considered high 

(Hewett et al., 2005), and therefore small alterations to joint loading which increase 

ACL risk further are important considerations. Taken together, fatigue induced from 

multi-directional running caused small alterations in lower limb joint moments which 

can increase ACL strain in males and females.  

 

Fatigue caused by multi-directional running also caused moderate to large increases 

in movement variability of peak hip extension angles. In agreement, greater variability 

in kinematic data during a side cut has been reported after fatiguing exercise caused 

by intermittent running (Cortes et al., 2014). In the present study, peak hip extension 

occurs later during the weight acceptance of stance, and this is when the signal can 

become more irregular (Cortes et al., 2014). An increase in variability might reflect 

increased neuromuscular noise under fatigue (Cowley & Gates, 2017) and can 

redistribute the load placed on the tissues by spreading the load across different areas 

(Mathiassen, 2006). However, this could result in a loss of movement co-ordination 

(Cortes et al., 2014) and increase the possibility of extreme movements (i.e. landing 
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in a more extended position) and injury. Indeed, in a recent case study higher 

movement variability during a fatigue protocol were reported in a participant who 

sustained an ACL injury compared with a control group (Hamdan & Raja Azidin, 2020). 

An increase in movement variability after multi-directional running might therefore 

increase ACL injury risk, however future research examining more trials are required 

to collaborate these data. 

 

This study is not without limitations. There was a ~30-minutes delay between the end 

of the multi-directional running protocol and the first measurement of side cuts 

performed afterwards. Participants are therefore likely to have been afforded some 

recovery in that period of time that meant fatigue had subsided and subsequent 

kinematic and kinetic modifications in side cuts would be less pronounced had 

measures been performed more proximal to the running protocol. However, Tsai, 

Sigward, Pollard, Fletcher and Powers (2009) reported kinematic and kinetic 

alterations were generally similar when measured immediately after fatiguing exercise 

compared with 20 and 40 minutes afterwards. Furthermore, having a delay between 

fatiguing exercise and side cut measurements might be more representative of a team 

sport athletes typical training schedule, involving multiple training sessions a day 

interspersed with rest periods, and therefore help improve the generalizability of the 

findings of the present study. With regard to data processing, some have suggested 

that force and movement data should be processed with the same filter cut-off 

frequency (Bisseling & Hof, 2006; Kristianslund, Krosshaug & van den Bogert, 2011). 

However, Roewer and colleagues (2014) recommend force to be filtered at a higher 

frequency to ensure valuable GRF data is not removed that could lead to erroneous 

prediction of injury risk. In the present study residual analysis was used to determine 
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the appropriate cut off frequencies for force and movement data (Winter, 1990). 

Researchers should be cautious when comparing these data to other literature which 

has used different processing techniques. Finally, whilst some of the changes in side 

cut mechanics are small, these are larger than the within day standard error of 

measurement for sagittal (~2°) and frontal (~2°) and transverse (~3°) angles during a 

side cut (Alenezi et al., 2016). Changes of 2° in joint angles can reduce injury threshold 

by 1 body weight (Chaudhari & Andriacchi, 2006), and therefore have meaningful 

implications for injury risk. Changes in sagittal kinetics in the present study (0.29 

N.m.kg-1 for males and females combined) are also greater than the inter-trial 

variability reported for sagittal kinetic variables (32 N.m [~0.27 N.m.kg-1 for a 70 kg 

person]) using the same data collection procedures (Sankey et al., 2015). However, 

the percentage increase in knee external rotation moment in males and females (~16 

- 28%) was lower than previous reports of the percentage variability in this variable 

(34%; Sankey et al., 2015). Whilst it is unclear if the small increase in knee external 

rotation moment is due to variability of the measurement or multi-directional running, 

small changes in knee rotation moment can still affect ACL strain (Shin et al., 2011). 

The changes in kinematic and kinetic variables are therefore deemed meaningful for 

ACL injury, but researchers should take into consideration the standard error of 

measurement for the variables, when interpreting the changes reported in the present 

study.  

 

6.5 Conclusion 

In conclusion, multi-directional running did not impair side cut task achievement but 

did cause small modifications in the biomechanics of side cuts which were similar 

between sexes. In particular, both males and females performed side cuts with less 
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peak hip internal rotation angle and peak knee extensor moment and more peak knee 

abduction and internal rotation angular velocity and more peak knee external rotation 

moment. Such changes in side cut biomechanics (with the exception of knee extensor 

moment) have previously been reported to contribute to ACL injury risk. Peak lateral 

GRF was the only variable to display an interaction between sex and time, which 

suggests fatigue induced from multi-directional running has a similar effect on side cut 

biomechanics between sexes. In the present study some additional trivial effects were 

noted (e.g. trunk flexion in females, knee extension in males), which are unlikely to 

have a meaningful effect on ACL injury risk. Accordingly, future research should 

assess the size of the effect to help determine which changes in kinematic and kinetic 

data are meaningful.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key messages 
• Multi-directional running caused fatigue and small modifications 

in side cut biomechanics which were similar in males and 
females. 

• Specifically, increases in frontal and transverse angular 
velocities and transverse joint moments at the knee were 
observed after multi-directional running, despite a lower peak 
lateral GRF and knee extensor moment. 

• Fatigue from multi-directional running might therefore indirectly 
contribute to ACL injury risk. 
 

Next steps 
• Future research should explore if side cut alterations after multi-

directional running persist in the days after exercise. 
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Chapter 7 

The effect of exercise-induced muscle damage on the biomechanics of side 

cuts in males and females 

 

 

 

 

 

 

 

7.1 Introduction 

Symptoms of EIMD are common in team sport athletes, typically lasting for several 

days after exercise (Gastin et al., 2019; Howatson & Milak; 2009; Oxendale et al., 

2016; Nedelec et al., 2014; Twist & Sykes, 2011). These symptoms include large 

increases in creatine kinase activity (CK; ~170 – 390% increase; Howatson & Milak, 

2009; Malone et al., 2018; Oxendale et al., 2016), perceived muscle soreness (17 – 

80% increase; Nedelec et al., 2014; Oxendale et al., 2016), and reductions in knee 

flexor and extensor strength (~ 6 – 15% decrease; Nedelec et al., 2014; Snyder et al., 

2019), counter-movement jump (~ 5 – 15% decrease; Keane et al., 2015; Malone et 

al., 2018; Nedelec et al., 2014; Roe et al., 2017; Oxendale et al., 2016) and sprint 

performance (~5 – 6% decrease; Keane et al., 2015; Nedelec et al., 2014) 24 – 48 h 

after team sport activity. These markers of muscle damage are strongly correlated with 

the number of sprints (r = 0.39 – 0.76; Nedelec et al., 2014; Oxendale et al., 2016), 

accelerations and decelerations (r = 0.44 – 0.48; Oxendale et al., 2016) and changes 

of direction performed (r = -0.55; Nedelec et al., 2014), suggesting movement patterns 

Rationale summary 
The biomechanical mechanisms of ACL injuries during 
side cuts (see Chapter 2) and the effect of fatigue on side 
cut mechanics (see Chapter 6) has been explored. Yet, the 
effect of exercise-induced muscle damage (EIMD) on the 
biomechanics of side cuts in males and females is poorly 
understood. Accordingly, this study assessed the effect of 
multi-directional running on indirect markers of EIMD and 
the biomechanics of side cuts in males and females. 
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typical of team sports place a high mechanical demand on the active musculature. 

During congested fixture and training schedules, athletes have to perform whilst 

experiencing symptoms of EIMD. This could have implications for injury risk as injury 

incidence in team sport players can be higher when they perform two compared with 

one match per week (25.6 cf. 4.1 injuries per 1000 hours of exposure; Dupont et al., 

2010).  

 

A reduction in knee proprioception (Naderi, Rezvani & Degens, 2020; Torres, 

Vasques, Duarte & Cabri, 2010), reflex sensitivity (Avela & Komi, 1998) and impaired 

balance performance (Twist, Gleeson & Eston, 2008) have been reported after muscle 

damaging exercise. Such impairments might be related to pain that might impair 

proprioception (Naderi et al., 2020; Paschalis et al., 2007b) and/or impairment in the 

intrafusal fibres of the muscle spindles (Naderi et al., 2020; Torres et al., 2010). EIMD 

can also affect walking and running biomechanics, as decreases in stride length (Burt 

et al., 2014; Chen et al., 2009; Tsatalas et al., 2013b) and reductions in lower limb 

range of motion during walking (Paquette et al., 2017; Paschalis et al., 2007a; Tsatalas 

et al., 2010) and running (Chen et al., 2009; Paschalis et al., 2007a; Tsatalas et al., 

2013a) have been reported with symptoms of EIMD. Some have suggested this is due 

to an increased knee flexion angle at initial contact during walking and running (~1.4 

– 3.7º; Tsatalas et al., 2013a; Tsatalas et al., 2013b) and might serve as a mechanism 

to prevent further musculoskeletal injury of the impaired muscles (Tsatalas et al., 

2013b). However, others have reported a decrease in peak knee flexion angles (~ 4º; 

Paquette et al., 2017) and knee flexion angles at initial contact (~2º; Paschalis et al., 

2007a) during running. A reduction in knee flexion has been identified as a common 

mechanism during an ACL injury in males and females (Koga et al., 2010; Walden et 



 

 

166 

al., 2015), which suggests EIMD could have implications for knee injury risk. Indeed, 

ACL injuries account for a high injury incidence (0.3 – 3.2 per 10,000 athlete 

exposures; Agel et al., 2016; Stanley et al., 2016) and the longest time to return to 

play (~236 days; Awwad, Coleman, Dunkley & Dewar, 2019). However, most ACL 

injuries occur during a 30-90° side cut in both male (Walden et al., 2015) and female 

(Koga et al., 2010) team sport athletes, and side cuts place a greater emphasis on 

transverse and frontal mechanics compared with straight running (Besier et al., 2001). 

Taken together, these data highlight EIMD has the capacity to modify movement, 

however assessment of how EIMD affects side cut biomechanics is required to 

comprehensively evaluate the effect of EIMD on ACL injury risk. 

 

Decreases in hip and knee flexion (Lucci et al., 2011; McGovern et al., 2015) and knee 

internal rotation angles (Lucci et al., 2011), increased knee abduction angles and 

moments (Collins et al., 2016; Tsai et al., 2008), knee extensor moments (Savage et 

al., 2018) and knee abduction and internal rotation angular velocities (Chapter 6) have 

been reported during a side cut with fatigue. These data highlight fatigue can increase 

ACL injury risk as reductions in knee flexion angles (Walden et al., 2015), and 

increases in knee abduction angles (Kobayashi et al., 2010; Walden et al., 2015) and 

moments (Myer et al., 2015) are some of the mechanisms reported during an ACL 

injury. However, these data do not indicate the effect on EIMD on side cut 

biomechanics, as the mechanisms of fatigue and muscle damage differ. Briefly, 

fatigue is associated with reduced central motor drive and limited ability to recruit 

available motor units, to the accumulation of metabolites within the muscle, reducing 

the muscle’s ability to perform work (Girard et al., 2011); this fatigue often recovers 

quickly (within hours) after team sport activity (Carroll, Taylor & Gandevia, 2017). 
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Conversely, EIMD is accompanied by myofibrillar structural damage, E-C coupling 

failure, low frequency fatigue and significant muscle soreness, where recovery often 

takes longer (up to several days; Finsterer, 2012) and should therefore be considered 

separately.  

 

To the author’s knowledge, only one study has assessed the biomechanics of side 

cuts during EIMD. Specifically, Snyder et al. (2019) reported that reductions in 

isometric knee extensor strength 12 h after match-play were accompanied by 

concurrent increases in posterior GRF and anterior tibial shear force during a side cut 

in females. These findings are particularly interesting given the ACL plays a key role 

in resisting anterior tibial shear force (Butler, Grood & Noyes, 1980) and suggests 

EIMD caused by a congested match fixture could increase ACL injury risk. This might 

also partly account for the ~2 – 6-fold higher ACL injury incidence rate sustained in 

females compared with males (Gray et al., 2019; Hewett et al., 2005; Stanley et al., 

2016;). However, Snyder et al. (2019) only assessed females so it is not clear how 

EIMD might affect the biomechanics of side cuts in males, given that side cut knee 

kinetics have been reported to differ between sexes with fatigue (Sigward & Powers, 

2006). Assessing EIMD 12 h after match-play is also unlikely to represent the peak 

magnitude of EIMD (see Chapter 2.3.2). In addition, Snyder et al. (2019) failed to 

assess knee abduction and internal rotation angles and moments, and trunk position, 

which are considered key mechanisms of ACL strain and injury (Hewett et al., 2009; 

Kiapour et al., 2016; Myer et al., 2015; Navacchia et al., 2019; Shin et al., 2011). 

Where team sport athletes are exposed to congested periods of training/competition 

they are likely to perform whilst exhibiting symptoms of EIMD. Accordingly, it seems 

prudent to explore the effect of EIMD on side cut biomechanics, in both male and 
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female team sport athletes to understand how EIMD effects ACL injury risk. Thus, the 

purpose of the study was to assess the effect of EIMD induced from multi-directional 

running on trunk, hip and knee kinematics and kinetics and GRF during 45º side cuts 

in male and female team sport athletes. 

 

7.2 Method 

7.2.1 Participants 

With institutional ethics approval (see Appendix 6.1), 8 males (stature: 175.5 ± 8.0 cm; 

mass: 74.6 ± 8.5 kg; age: 21.6 ± 2.2 years; V̇O2 peak: 46.0 ± 4.1 ml.kg.-1min-1) and 8 

females (stature: 166.0 ± 8.4 cm; mass: 60.6 ± 9.2 kg; age: 21.8 ± 3.1 years; estimated 

V̇O2 peak: 39.8 ± 4.5 ml.kg.-1min-1) were recruited from University-level team sports 

(football, netball, hockey and rugby). This sample size was based on the number of 

participants used in previous research examining the effect of EIMD from congested 

match fixtures on lower limb mechanics during a side cut (Snyder et al., 2019). This 

value also exceeds a priori sample size calculation (see Appendix 7.1), based on 

estimated power (Faul et al., 2009) and an effect size of 1.49, for EIMD modifications 

in GRF (Snyder et al., 2019). All participants took part in team sport training sessions 

at least twice per week. Participants completed pre-test health screening to ensure 

they had no previous history of knee surgery and/or no lower limb injuries in the past 

6 months (Thomas et al., 2010). Participants were also required to refrain from 

exercise 48 h before each visit. 

 

7.2.2 Design 

Participants completed three sessions on separate days. In the first visit, participants 

completed a 20 m multi-stage fitness test to provide an estimate of maximal aerobic 
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capacity. Three to seven days later, baseline measurements of creatine kinase (CK) 

concentration, perceived muscle soreness, 20 m sprint time and side cut mechanics 

were measured. Thereafter, participants completed the multi-directional trial and 

repeated measurements of CK concentration, perceived muscle soreness, 20 m sprint 

time and side cut mechanics at 48 (± 2) hours after the multi-directional trial, when in-

direct markers of EIMD typically peak (see section 2.3.2.3). 

 

7.2.3 Procedures 

7.2.3.1 Multi-stage fitness test 

The multi-stage fitness test was used to estimate each participant’s V̇O2 peak. Please 

refer to General Methods section 3.2 for procedures.  

 

7.2.3.2 Multi-directional trial 

The multi-directional trial comprised twelve bouts of ~60 s of work followed by 120 s 

of passive rest, procedures for which can be found in the General Methods section 

3.3. The multi-directional trial has previously demonstrated a good level of reliability 

(see Chapter 5). 

 

7.2.3.3 CK concentration 

CK concentration was determined from a fingertip capillary sample whilst participants 

adopted a seated position. After cleaning the participant’s middle finger with an alcohol 

wipe and waiting 1 minute for it to dry, a 30 μL sample of whole blood was taken using 

a spring-loaded disposable lancet. The whole blood sample was immediately analysed 

using a colorimetric assay procedure (Reflotron, Type 4, Boehringer, Germany).  
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7.2.3.4 Perceived muscle soreness 

Participants provided a rating of their perceived muscle soreness for the lower limbs 

using a visual analogue scale. The sliding scale was numbered on the reserve side, 

where 0 indicated “no soreness on movement”, 5 indicated “muscles sore on 

movement” and 10 indicated “muscles too sore to move”. All participants performed a 

squat to an approximate knee angle of 90° with their hands-on hips, and then provided 

an overall rating of their perceived muscle soreness using the sliding scale.  

 

7.2.3.5 Sprint performance  

Participants performed three single maximal 20 m sprints immediately before and 48 

± 2 h after the multi-directional trial. Please refer to General Methods section 3.5 for 

procedures.   

 

7.2.3.6 Three-dimensional motion capture of 45° side cuts  

Please refer to General Methods section 3.6 for procedures.  

 

7.2.3.7 Data Analysis of 45° side cuts 

Please refer to General Methods section 3.7 for procedures.  

 

7.2.4 Statistical analysis 

Descriptive data are reported as mean ± standard deviation. Data were analysed using 

separate two-way mixed ANOVAs with time (before vs. 48 h after multi-directional 

running) as a within-subject factor, and sex (males vs. females) as a between-subject 

factor. P values were reported for all analyses. Further post hoc analyses consisting 

of effect sizes with accompanying 95% confidence intervals (ES; ±95%CI) were 
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performed for each sex. The effect size was calculated as the difference in means 

divided by the pooled standard deviation. An effect size of 0.2, 0.6 and 1.2 were 

considered small, moderate and large, respectively. The coefficient of variation (CV%) 

was used to assess within-subject variability in sagittal plane variables and GRF. All 

statistical analyses were performed using the Statistical Package for Social Sciences 

(SPSS, version 22; SPSS, Inc., IL, USA) and Microsoft Excel. The reader should refer 

to General Method section 3.8, for further information regarding the statistical 

approach adopted.  

 

7.3 Results 

Indirect markers of EIMD before and 48 h after the multi-directional trial are displayed 

in Table 7.1. There was an increase in CK concentration 48 h after multi-directional 

running (F = 9.261, p = 0.009) which was large in males (ES; ±95% CI; 2.4; ±2.3) and 

females (4.94; ±5.39). Perceived muscle soreness (F = 82.283, p < 0.001) 

demonstrated a large increase in females (4.8; ±1.4) and males (4.2; ±1.9) and 20 m 

sprint time (F = 30.655, p < 0.001) demonstrated a moderate increase in females (0.9; 

±0.7) and males (0.6; ±0.3) 48 h after the multi-directional trial. No interactions 

between time and sex were noted for any indirect markers of EIMD.  
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Table 7.1. In-direct markers of EIMD before and 48 h after the multi-directional trial 

 Females Males 

 Baseline 48 h Baseline 48 h 

CK concentration  

(U.L-1) 
93.3 ± 38.9 308.9 ± 295.7 155.1 ± 47.8 282.3 ± 155.4 

Perceived soreness 

(AU) 
0.5 ± 0.8 4.6 ± 1.2 0.7 ± 0.7  4.1 ± 2.0 

20 m sprint time (s) 3.4 ± 0.2 3.7 ± 0.3 3.1 ± 0.2 3.3 ± 0.2 

 

Data on task achievement during the side cuts are presented in Table 7.2. Centre of 

mass velocity was similar at baseline and 48 h after multi-directional running at initial 

contact (F = 0.036, p = 0.853) in females (ES; ±95% CI: 0.16; ±0.44) and males (0.14; 

±0.87) and at toe off (F = 0.238, p = 0.663) in females (0.17; ±0.54) and males (0.02; 

±0.70). Centre of mass cut angle (F = 0.041, p = 0.842) and stance time (F = 0.669, p 

= 0.427) also remained similar 48 h after multi-directional running in females (0.14; 

±0.82 and 0.37; ±0.65, respectively) and males (-0.17; ±0.46 and 0.00; ±0.51, 

respectively). Percentage of stance time in weight acceptance differed at 48 h (F = 

3.786, p = 0.072) and an interaction between time (baseline vs. 48 hours) and sex 

(males vs. females) was noted (F = 8.335, p = 0.012). Specifically, females 

demonstrated a moderate increase in percentage of stance time in weight acceptance 

(0.87; ±0.75) whereas males displayed a small decrease (-0.29; ±0.66) 48 h after 

multi-directional running.  
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Table 7.2 Task achievement during 45° side cuts in all participants before and at 48 

h after the multi-directional trial 

 Females Males 

 Baseline 48 h Baseline 48 h 

Centre of mass 

velocity at IC (m.s-1) 
4.2 ± 0.3 4.3 ± 0.2 4.2 ± 0.2 4.2 ± 0.2 

Centre of mass 

velocity at TO (m.s-1) 
3.8 ± 0.3 3.7 ± 0.2 3.8 ± 0.3 3.8 ± 0.2 

Change in centre of 

mass angle from IC 

to TO (°) 

21.0 ± 3.4 21.3 ± 2.0 25.9 ± 4.6 25.1 ± 4.0 

Stance time (s) 0.2 ± 0.03 0.21 ± 0.03   0.25 ± 0.04  0.25 ± 0.04  

Weight acceptance 

percentage of stance 

(%) 

56.0 ± 7.2  63.1 ± 10.5   47.7 ± 4.2  46.4 ± 4.6  

IC = initial contact. TO = toe off 

 

7.3.1 Kinematics 

Discrete trunk kinematic data are presented in Table 7.3 and hip and knee angular 

data over stance for females and males are presented in Figures 7.1 and 7.2, 

respectively. Peak trunk flexion angle during the weight acceptance phase displayed 

a trivial to small decrease 48 h after multi-directional running (see Table 7.3), whereas 

peak knee internal rotation angle was higher (F = 9.167, p = 0.009) in females (0.5; 

±0.39) and males (0.31; ±0.47). No other changes in peak angle data 48 h after multi-

directional running or interactions between sex and time were noted. At initial contact, 

knee abduction angle was lower at 48 h (F = 7.141, p = 0.018) in females (-0.4; ±0.64) 

and males (-0.91; ±0.76) and an interaction between sex and time was noted for knee 

internal rotation angle (F = 3.954, p = 0.067). Specifically, females displayed more 

knee internal rotation at initial contact (0.51; ±0.41) whereas males displayed less 
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knee internal rotation (-0.29; ±0.81) 48 h after the multi-directional trial. Peak angular 

data and angular data at initial contact are included in Appendix 7.2 and 7.3, 

respectively. 

 

Peak angular velocity data for the trunk, hip and knee are presented in Table 7.3 and 

Appendix 7.4. Peak hip internal rotation angular velocity demonstrated a small 

decrease 48 h after multi-directional running (F = 3.749, p = 0.073) in females (200.7 

± 79.2 cf. 143.5 ± 95.3 °. s-1; -0.64; ±0.59) and males (187.1 ± 128.2 cf. 124.8 ± 112.0 

°. s-1; -0.43; ±0.94). An interaction between sex and time was noted for peak knee 

flexion angular velocity (F = 3.925, p = 0.068), as males displayed an increase in peak 

knee flexion angular velocity (727.9 ± 86.3 cf. 655.6 ± 101.6 °. s-1; 0.74 ±0.7) at 48 h, 

whereas the size of the effect in females was trivial (-0.04; ±0.29). Peak knee internal 

rotation angular velocity changed 48 h after multi-directional running (F = 3.369, p = 

0.088) and an interaction between sex and time was noted (F = 4.309, p = 0.057). 

Specifically, peak knee internal rotation angular velocity was higher in males at 48 h 

(384.2 ± 124.8 cf. 484.6 cf. 130.1 °. s-1; 0.72 ±0.8) but the size of the effect was trivial 

in females (-0.06; ±0.46). No other differences in peak angular velocity at the trunk, 

hip and knee were found. The minimum/maximum medio-lateral foot placement during 

the weight acceptance phase did not differ between baseline and 48 h in males and 

females (see Appendix 7.5). 
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Table 7.3. Peak trunk kinematic data during the weight acceptance phase in males and females, before and 48 h after the multi-

directional trial.  

 Female (n = 8) Male (n = 8) P value from two-
way ANOVA 

 Baseline 48 h ES; ±95% CI Baseline 48 h ES; ±95% CI Time Sex x 
Time 

Torso angle:         
Flexion (°) 9.7 ± 10.0  

 
 5.8 ± 9.3  -0.35; ±0.2 

 
14.1 ± 8.0 12.9 ± 8.0  -0.13; ±0.56 0.055 0.285 

Lateral lean over 
stance leg (°) 
 

3.9 ± 5.5  3.9 ± 7.2  0.00; ±0.51 2.7 ± 6.3 5.4 ± 9.7 0.39; ±0.89 0.354 0.355 

Rotation over 
stance (°) 
 

 5.5 ± 11.8  5.5 ± 9.8  0.00; ±0.35 9.1 ± 7.7 5.5 ± 8.3 -0.42; ±0.78 0.321 0.307 

Torso angular 
velocity: 

        

Flexion (°.s-1) 144.0 ± 87.0  
 

136.9 ± 45.5  -0.07; ±0.54 169.3 ±42.9 163.6 ± 47.6 -0.12; ±0.59 0.623 0.957 

Lateral lean over 
stance leg (°.s-1) 
 

 69.6 ± 82.1  42.0 ± 15.0  -0.3; ±0.68 88.2 ± 44.7 91.2 ± 28.7 0.06; ±0.43 
 

0.397 0.295 

Rotation to new 
direction of travel 
(°.s-1) 

235.9 ± 84.0 199.3 ± 81.8  -0.39; ±0.53 
 

170.5 ±59.5 157.5 ± 47.3 -0.19; ±0.72 0.115 0.437 
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Figure 7.1. Mean female hip and knee angular data in the stance leg during a 45° side cut. The grey shaded area indicates the 

weight acceptance phase. The between group standard deviation for baseline (grey) and 48 h (blue) are also displayed.  
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Figure 7.2 Mean male hip and knee angular data in the stance leg during a 45° side cut. The grey shaded area indicates the weight 

acceptance phase. The between group standard deviation for baseline (grey) and 48 h (blue) are also displayed.  
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7.3.2 Kinetics 

Peak GRF data are presented in Appendix 7.6. Peak lateral GRF during the weight 

acceptance phase displayed a trivial to small decrease at 48 h (F = 3.578, p = 0.079) 

in females (1.23 ± 0.20 cf. 1.20 ± 0.26 N.BW-1; -0.14; ±0.52) and males (1.13 ± 0.2 cf. 

1.04 ± 0.2 N.BW-1; -0.46; ±0.45), compared with baseline. An interaction between sex 

and time was noted for IGRF (F = 5.329, p = 0.037). Specifically, IGRF was higher in 

females at 48 h compared with baseline (1.4; ±1.4) but demonstrated a trivial change 

in males (-0.08; ±0.33; see Figure 7.3). No other changes in GRF were found.   

 

 

Figure 7.3. Mean IGRF during the weight acceptance phase in females (black line) 

and males (black dashed line) at baseline and 48 h. Individual changes are shown in 

blue. 

 

Hip and knee moment data before and 48 h after the multi-directional trial in females 

and males are presented in Figures 7.4 and 7.5, respectively. At 48 h, peak hip 

extensor moment demonstrated a small increase (F = 3.988, p = 0.066) in females 

(0.21; ±0.41) and males (0.46; ±0.56) and peak knee extensor moment was lower (F 

= 23.176, p < 0.001) in females (-0.43; ±0.25) and males (-0.56; ±0.51) during the 

weight acceptance phase of the side cuts. In addition, peak knee external rotation 

moment displayed a small to moderate increase (F = 4.122, p = 0.062) in females 

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Baseline 48 h

IG
R

F W
A

(B
W
)

Female Mean

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

Baseline 48 h

IG
R

F W
A

(B
W
)

Male Mean



 

 

179 

(0.78; ±0.9) and males (0.34; ±0.91) 48 h after multi-directional running. No other 

changes in peak hip and knee moments during the weight acceptance phase of stance 

were observed (see Appendix 7.7).  
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Figure 7.4. Mean female hip and knee moment data in the stance leg during a 45° side cut. The grey shaded area indicates the 

weight acceptance phase. The between group standard deviation for baseline (grey) and 48 h (blue) are also displayed.  
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Figure 7.5. Mean male hip and knee moment data in the stance leg during a 45° side cut. The grey shaded area indicates the 

weight acceptance phase. The between group standard deviation for baseline (grey) and 48 h (blue) are also displayed.
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7.3.3 Movement variability 

Peak knee extensor moment displayed a moderate increase in variability (F = 4.174, 

p = 0.060) in females (0.55; ±0.68) and males (0.47; ±1.49) at 48 h (see Appendix 

7.8). No other changes in movement variability were observed. 

 

7.4 Discussion 

The purpose of the study was to assess the effect of EIMD on the biomechanics of 

side cuts in males and females. The observed increases in CK concentration (~180 – 

330%), perceived muscle soreness (~580 – 900%) and sprint times (~ 6 – 8%) were 

similar between males and females and provide indirect evidence that muscle damage 

was present 48 h after the multi-directional trial (Byrne et al., 2004). The similarity in 

magnitude of EIMD markers between males and females also reaffirm sex does not 

influence post-exercise muscle damage (Hicks et al., 2017; Rinard, Clarkson, Smith & 

Grossman, 2000). The percentage increase in CK and sprint times are similar to those 

reported after team sport activity (Keane et al., 2015; Malone et al., 2018; Nedelec et 

al., 2014; Oxendale et al., 2016), suggesting muscle damage in the present study is 

comparable. The increase in perceived muscle soreness in the present study is higher 

than previous reports (e.g. Nedelec et al., 2014), but this likely reflects differences in 

the training status of the participants, as well-trained athletes incur less delayed onset 

muscle soreness (Smith, 1992).  

 

The numerous changes of direction in the multi-directional trial, which require high 

breaking forces and eccentric contractions to rapidly decelerate, is likely to have 

caused the muscle damage response (Howatson & Milak, 2009). Specifically, 

microdamage to the muscle fibre induced by the stretch of high force eccentric actions 



 

 

183 

causes disproportionate lengthening of the sarcomeres within the muscle myofibril, 

leading to disrupted or “popped” sarcomeres (Morgan, 1990). This disruption has been 

associated with the appearance of sarcoplasmic proteins in the blood (e.g. CK; Hody, 

Croiser, Bury, Rogister & Leprince, 2019). The initial mechanical damage then triggers 

a cascade of events leading to secondary muscle damage, which has been discussed 

elsewhere (Hody et al., 2019; see Chapter 2.3.2).  

 

As highlighted in Chapter 6, the difference in prescribed cut angle (45°) and the actual 

cut angle performed (~22 – 26°), is expected (David et al., 2017; Vanrenterghem et 

al., 2012) and reflects the trade-off between approach speed and cut angle 

(Vanrenterghem et al., 2012). The similarity in angle, COM velocity and stance time 

before compared with after muscle damaging exercise suggests task execution was 

the same at baseline and 48 h. However, an interaction between sex and time was 

noted for percentage of stance time in weight acceptance. Specifically, females had a 

moderate increase in weight acceptance percentage phase of side cuts after muscle 

damaging exercise. Whilst few studies have assessed changes in side cut weight 

acceptance after muscle damaging exercise, increases in walking and running stance 

time with EIMD have been reported (Tsatalas et al., 2013b; Tsatalas et al., 2010). This 

could serve as a protective mechanism to reduce mechanical strain (by increasing the 

time to absorb force) (Regueme, Nicol, Barthelemy & Grelot, 2005) and/or reflects 

impaired eccentric contractions and a loss of tolerance to imposed stretch loads which 

limit the ability of the body to attenuate shock, resulting in a progressive increase in 

contact time during braking (Komi, 2000; Tamura et al., 2016). In agreement, impaired 

mechanical efficiency of elastic elements in the muscle (Cheung et al., 2003; Vaczi, 

Racz, Hortobagyi & Tihanyi, 2013) and a reduced stretch reflex response (Nicol, Avela 
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& Komi, 2006) have been reported with EIMD. In the present study, the increase in 

percentage of stance time in weight acceptance also coincides with the large increase 

in IGRF during the weight acceptance phase of stance in females. 

 

The trivial to small decrease in peak trunk flexion angle might be a strategy to reduce 

hamstring pain as the muscle stretches (Cleak & Eston, 1992) during trunk flexion, 

given that pain has the capacity to modify movement patterns (Henriksen et al., 2007). 

An increase in muscle spindle discharge rates with EIMD has also been proposed as 

a mechanism to alter perceived joint position, leading participants to concentrically 

contract their muscles and land in a more extended position (Proske & Gandevia, 

2012; Paschalis et al., 2007b). Landing with reduced flexion has been reported with 

impaired hamstring force production (Weinhandl et al., 2014). A more extended trunk 

(Hewett et al., 2009; Sheehan et al., 2012) is also associated with an increased ACL 

injury risk, due to the increase in ACL strain (Bakker et al., 2016) and the increase in 

quadricep force requirement and subsequent load placed on the ACL (Blackburn & 

Padua, 2009). However, the trivial difference in trunk flexion (~1.2°) noted in males is 

unlikely to lead to meaningful reduction in ACL injury risk, given the ~2° measurement 

error in sagittal plane kinematics during a side cut (Alenezi et al., 2016). 

 

Small changes in transverse kinematics with EIMD were also evident. Males and 

females had a small increase in peak knee internal rotation angle and females also 

displayed a small increase in knee internal rotation angle at initial contact. An increase 

in knee internal rotation is a common mechanism reported during ACL injuries (Grassi 

et al., 2017; Koga et al., 2010; Walden et al., 2015). Muscle damage could impair 

control of the lower limb during weight acceptance (Paquette et al., 2017; 
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Satkunskiene, Stasiulis, Enkoviene, Sakalauskaite & Rauktys, 2015), which Paquette 

and colleagues speculate could be due to delayed neural deficits and/or attenuated 

fibre excitability (Paquette et al., 2017). A reduction in knee proprioception has also 

been reported with EIMD (Torres et al., 2010), and can alter single leg landing 

biomechanics (Nagai, Sell, House, Abt & Lephart, 2013). Whilst few studies have 

assessed transverse side cut mechanics with EIMD, an increase in knee internal 

rotation angle (Cortes, Quammen, Lucci, Greska & Onate, 2012; Tsai et al., 2009; 

Sanna & O’Connor, 2008) and knee internal rotation angular velocity (see Chapter 6) 

have been observed during a side cut under fatigue. Fatigue induced alterations in 

side-cut mechanics might therefore have a prolonged effect if muscle damage is 

evident in the days after. 

 

Hip internal rotation angular velocity displayed a small decrease in males and females 

48 h after multi-directional running, which indicates a greater emphasis on control at 

the hip joint (Olson, 2020) and an increase in hip external rotators (e.g. gluteus 

maximus) contribution during the weight acceptance phase of the side cut. A moderate 

increase in knee flexion and internal rotation angular velocity was also observed in 

males but not females. An increase in knee flexion angular velocity after muscle 

damage suggests a decreased ability to attenuate impact (Tamura et al., 2017). This 

might be because the quadriceps had difficulty eccentrically controlling the weight 

acceptance phase of the side cut and concurs with a decrease in quadricep torque 

reported after the multi-directional trial (see Chapter 5). Whilst others have suggested 

increased knee flexion angular velocity can reduce vertical GRF given the strong 

negative correlation between the two variables (r = -0.6; Yu, Lin & Garrett, 2006), 

vertical GRF did not change in males. The increase in knee internal rotation angular 
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velocity indicates a reduced ability to control transverse plane rotation velocities 

(Jenkins et al., 2017), and increases in internal tibial rotation has been associated with 

an increase in ACL strain (Beaulieu et al., 2014). Interestingly, in-direct markers of 

muscle damage did not differ between males and females in the present study, and 

the mechanisms of EIMD are not affected by sex (Lee et al., 2017; Nikolaidis, 2017). 

The reason for the change in angular velocity in males but not females is therefore not 

fully clear but might reflect differences in muscle activation strategies between sexes. 

Specifically, females activate their quadriceps to a greater extent during a side cut task 

whilst males have greater hamstring activation (Landry et al., 2007; Sigward & Powers, 

2006). It could be speculated that muscle damage induced from multi-directional 

running affected the males muscle activation strategy more so than the females, 

however future research is required to substantiate this claim. Taken together, muscle 

damage induced some small to moderate changes in kinematics, which were similar 

in males and females for joint angles, but some sex differences were noted for angular 

velocity data.  

 

A decrease in lateral GRF was observed 48 h after multi-directional running, and whilst 

no sex interaction was noted, the size of the effect was small in males and trivial in 

females. A small decrease in lateral GRF might serve as a strategy to maintain balance 

and to avoid excessive lateral forces, which can increase disposition to ankle injuries 

(McClay et al., 1994) and increase frontal plane knee loading (Sigward, Cesar & 

Havens, 2015). Indeed, it has been proposed that the body is equipped with a 

protective mechanism which lowers GRF when muscle function is impaired to reduce 

loading of painful tissues (Tsatalas et al., 2013a) and protect the body from possible 

injuries (Zadpoor & Nikoovan, 2012). A large increase in IGRF was observed in 
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females 48 h after the multi-directional trial. This suggests an increased effort to 

decelerate the downward movement of the centre of mass during the weight 

acceptance phase (Harry et al., 2017), by increasing force and/or the time the force is 

applied during weight acceptance. In agreement, a reduced tolerance to impact and a 

loss of elastic energy potential has been reported after muscle damaging exercise 

(Komi, 2000). Taken together, GRF data suggest females required more effort to 

decelerate the body during a side cut after muscle damaging exercise. Males on the 

other hand adapted a protective strategy to maintain or reduce GRF. 

 

Peak hip extensor moment displayed a small increase whereas peak knee extensor 

moments demonstrated a small decrease in males and females at 48 h. This is 

consistent with an increase in hip extensor moment during a side cut with fatigue 

(Whyte, Richter, O’Connor & Moran, 2018) and whilst not directly comparable, is also 

consistent with a decrease in knee extensor torque during running with muscle 

damage (Paquette et al., 2017). Quadricep strength has been associated with knee 

extensor moment (Asaeda et al., 2019), so impaired quadricep function caused by the 

multi-directional trial might explain the reduction in knee extensor moment observed 

and might serve as a protective mechanism to reduce loading of painful tissues 

(Tsatalas et al., 2013a). Impaired utilization of elastic energy (associated with 

decreased muscle stiffness and reduced muscle pre-activation) has also been 

reported after stretch-shortening cycle exercise (Avela & Komi, 1998) and is related to 

knee joint moment during the eccentric phase of a drop jump (r = 0.7; Horita, Komi, 

Nicol & Kyröläinen, 2002). Therefore, it could be speculated muscle damage induced 

from multi-directional running reduced the stiffness and pre activation of the 

quadriceps during the weight acceptance phase of the side cuts, reducing the peak 
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knee extensor moment. Whilst a reduction in knee extensor might seem favourable, 

changes in knee extensor moment alone are considered a minor contributing factor to 

ACL loading (Bakker et al., 2016) and injury (Hewett, Ford, Hoogenboom & Myer, 

2010). The observed changes in hip and knee extensor moment suggest increased 

use of the hip extensors compared to the knee extensors to control the deceleration 

phase of the side cut (Pollard, Sigward & Powers, 2017), however it is noteworthy that 

the knee to hip extensor ratio did not differ 48 h after multi-directional running.  

 

Knee external rotation moment displayed a small and moderate increase in males and 

females respectively, 48 h after multi-directional running. Internal tibial rotation 

moments (expressed as an external moment), when combined with knee abduction 

moments, probably constitutes the greatest risk of a non-contact ACL injury (Dempsey 

et al., 2007) as internal tibial rotation moments are strongly correlated to ACL force (r 

= 0.78; Navacchia et al., 2019) in vivo cadaver models. Knee internal/external rotation 

moments are considered a key biomechanical variable associated with ACL loading 

(Markolf et al., 1995). Whilst few studies have assessed transverse moments after 

muscle impairment, results from the present study are consistent with Savage et al. 

(2018) who reported an increase in internal tibial rotation moment during side cutting 

with fatigue. Collectively, these data highlight shifts in sagittal joint loading and 

increased transverse joint loading are present 48 h after multi-directional running in 

males and females, some of which have previously been associated with ACL injury.  

 

Finally, this study assessed the movement variability of sagittal plane variables and 

GRF. Frontal and transverse plane variables were not assessed as the coefficient of 

variation is overly sensitive for mean values close to zero (Brown, Bowser & Simpson, 
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2012). Only one variable, peak knee extensor moment, displayed a small increase in 

variability in males and females at 48 h, which is consistent with an increase in 

movement variability during a side cut with fatigue (Chapter 6; Cortes, Onate & 

Morrison, 2014). Pain, which is a common symptom of muscle damage and was 

observed in this study at 48 h, can impair proprioception and orientation (Malmström, 

Westergren, Fransson, Karlberg, & Magnusson, 2013). Accordingly, the nervous 

system might take advantage of the variability of multiple options available during a 

complex multi-joint task (Bergin, Tucket, Vicenzino, van den Hoorn & Hodges, 2014), 

such as a side cut, to alleviate the load and pain placed on the tissues by spreading 

the load across different areas (Mathiassen, 2006). The increase in knee extensor 

moment movement variability could also be due to impairment of muscle function, 

resulting in reduced control of the joints, as fewer muscles are functioning to achieve 

the desired movement pattern (Ferber, & Pohl, 2011). Whilst an increase in movement 

variability during landing can reduce the likelihood of overuse injuries (Nordin & Dufek, 

2019), it could increase the possibility of extreme movements and injury. 

 

This study is not without limitations. Limitations regarding data processing and 

consideration of a meaningful change in kinematic and kinetic variables have been 

highlighted in Chapter 6 and are therefore not repeated. Regarding movement 

variability, analysing a small number of trials can limit the ability to draw conclusions 

about variability (Nordin & Dufek, 2019). Accordingly, future research should 

incorporate 10-20 trials to assess the effect of muscle damage on movement 

variability. Whilst the presence of muscle damage was confirmed, the mechanisms of 

muscle damage symptoms, and the effect on flexor and extensor joint torque, was not 

assessed. Finally, the potential effect of the menstrual cycle when assessing female 
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responses to muscle damaging exercise, should be considered in future research.  

Whilst these limitations are noteworthy, the findings of the present study offer useful 

insight for those working in team sports and highlight the need for future research 

assessing the mechanics of side cuts after muscle damaging exercise.  

 

7.5 Conclusion 

In conclusion, the multi-directional trial elicited a similar magnitude of EIMD between 

sexes. Whilst the task achievement of the side cut was not affected by EIMD, 

alterations in sagittal and transverse kinematics and kinetics of a side cut in males and 

females were observed. Sex specific differences were noted for angular velocity and 

IGRF, although the specific mechanism for the difference observed remain unclear, 

females showed an increased effort to decelerate. The increase in two factors in 

particular: peak knee internal rotation angle and knee external rotation moment, have 

been previously identified as ACL injury risk factors, suggesting EIMD might indirectly 

contribute to ACL injuries in males and females.  

 

 

 

 

 

 

 

 

 

 

Key messages 
• Multi-directional running elicited symptoms of EIMD in the days 

after, which was accompanied by small changes in side cut 
biomechanics.  

• In particular, peak knee internal rotation angle and knee external 
rotation moment was higher 2 days after multi-directional 
running. 

• EIMD from multi-directional running might therefore indirectly 
contribute to ACL injury risk in males and females. 
 

Next steps 
• Future research should explore if symptoms of EIMD are present 

when athletes sustain ACL injuries in team sports to identify if 
EIMD is a factor for ACL injury incidence.  
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Chapter 8 

 General Discussion 

This thesis has explored the internal and external demands of multi-directional running 

and the subsequent effect on side cut biomechanics in males and females. More 

specifically, the extent to which metabolic power derived variables compare with 

traditional speed-based thresholds from player tracking devices when quantifying the 

external demands of linear and multi-directional running (Chapter 4), and how the 

systematic manipulation of the number of directional changes performed during 

running influences the internal demands of exercise, metabolic power using integrated 

ratios, and subsequent neuromuscular function (Chapter 5) was examined. With a 

deeper understanding of the physiological and neuromuscular demands of multi-

directional running, the subsequent two chapters then focussed on the acute 

biomechanical adaptations in side cut biomechanics as a result of fatigue (Chapter 6) 

and EIMD (Chapter 7) from multi-directional running. A summary of the collective main 

findings from the four empirical studies, and how they inform the present 

understanding of load associated with multi-directional running, are presented in 

Figure 8.1. These findings are discussed below, along with the potential limitations, 

practical applications and areas for future research.  
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Figure 8.1 An appraisal of the internal and external demands of team sports, and the 

subsequent acute physiological and biomechanical responses in the days after multi-

directional running, with reference to ACL injury risk. This figure has been adapted from 

Figure 1.1 based on the collective findings of Chapter 4-7 (denoted in red text). COD = 

change of direction, DOMS = delayed on-set of muscle soreness, CK = creatine kinase, HR 

= heart rate, ACL = anterior cruciate ligament, ¯ = decrease, ­ = increase 

 

8.1 Load monitoring during multi-directional running  

Data from this thesis (Chapter 4 and 5) reaffirms that running with more directional 

changes increases the physiological and perceptual response to exercise (Akenhead 

et al., 2014; Ashton & Twist, 2015; Buchheit et al., 2010; Dellal et al., 2010; Hatamoto 
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et al., 2014; Tang et al., 2018), which has implications for the monitoring of physical 

performance and implementation of team sport specific training drills. Practitioners can 

therefore manipulate the number of directional changes to alter the dose and therefore 

the response of athletes. Specifically, to increase the psychophysiological stimulus 

practitioners can increase the number of directional changes performed by athletes, 

and whilst this can cause symptoms of EIMD in the days after the initial insult (Chapter 

7), repeated exposure to such stimuli might later provide some protection, due to the 

repeated bout effect (Lima & Denadai, 2015). Similarly, practitioners can reduce the 

number of directional changes performed to reduce the psychophysiological stimulus 

and promote recovery.  

 

For the first time this thesis demonstrated the increase in internal load during running 

with more directional changes coincided with a reduction in distance covered in 

arbitrarily defined speed thresholds (Chapters 4 and 5), which contrasts with the strong 

associations reported previously between arbitrarily defined speed thresholds and 

markers of internal load (Gaudino et al., 2015; Polglaze et al., 2018b; Scott et al., 

2013; Weaving et al., 2014). These data question the use of a single measure of 

distance covered at an arbitrary defined speed threshold (i.e. distance covered at high 

speed) to quantify an individual’s external load, particularly when numerous changes 

of direction are performed. A more holistic approach, encompassing more measures 

of the external demands of team sports (see Figure 8.1), is required when quantifying 

load during multi-directional activity. 
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8.1.1 The use of metabolic power to monitor changes in load 

Data from Chapters 4 and 5 collectively demonstrate time at high power (> 20 W.kg-1) 

and estimated energy cost using microtechnology can reflect changes in internal load 

induced by altering running patterns (see Figure 8.1), but estimated energy cost 

cannot accurately quantify energy expenditure. Specifically, Chapter 4 reaffirms the 

underestimations in energy expenditure derived from the metabolic power approach 

compared with indirect calorimetry (13 – 51%; Brown et al., 2016; Buchheit et al., 2015; 

Stevens et al., 2015), but also highlights that the underestimation of energy cost 

derived from the metabolic power approach is influenced by the number of directional 

changes performed during running. That is, the underestimation of energy cost is 

higher when more changes of direction are performed. As team sports involve 

numerous changes of direction, accelerations and decelerations (Russell et al., 2016; 

Springham et al., 2020; Varley et al., 2014), energy expenditure derived using the 

metabolic power approach should not be used to determine the metabolic energy cost 

of intermittent team sport activity. However, the strong correlation between estimated 

and measured energy expenditure (r = 0.89; Chapter 4) suggests estimated energy 

expenditure can be used to detect relative changes in load during multi-directional 

running. 

 

Time at high power better reflected changes in energy expenditure (derived from 

indirect calorimetry) during linear and multi-directional running, compared with time at 

high speed and very high speed (Chapter 4). Specifically, increases in internal load 

(summated HR and total VO2 - the ‘response’) induced by altering running patterns 

(the ‘dose’) were also accompanied by a greater time at high power but not time at 

high speed and very high speed (Chapter 5), and further evidence the lack of 
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agreement between measures of high speed and high power during running with more 

directional changes (Chapter 4). Time at high power also possessed sufficient 

reliability (CV: 4.2%) during multi-directional running (Chapter 4) which contrasts 

previous reports (e.g. Buchheit et al., 2015) using inferior player tracking devices 

(Chapter 2.2.2). Collectively, these data suggest time at high metabolic power can be 

used to detect small changes in external load and reflect changes in internal load 

during multi-directional running, whilst measures of high speed and very high speed 

cannot. 

 

8.2 Fatigue and EIMD after multi-directional running  

Small decrements in knee extensor and flexor torque (11 – 14%; Chapter 5) and 

moderate to large decrements in 20 m sprint performance (5 – 7%; Chapter 6) 

immediately after multi-directional running, confirm short-term running protocols 

incorporating numerous changes of direction can elicit fatigue. Despite an overall 

slower movement speed in the multi-directional trial (see Figure 8.1), the similar 

decrements in knee flexor torque after linear and multi-directional running reaffirm 

more directional changes during running can induce fatigue (Ashton & Twist, 2015; 

Hader et al., 2014) and further highlight the need to consider the contributions of 

accelerations and decelerations to player fatigue (Tang et al., 2018). That multi-

directional running also elicited symptoms of EIMD at 48 h (Chapter 7) was also 

expected, given the association between accelerations, decelerations and changes of 

directions during team sports with markers of EIMD (de Hoyo et al., 2016; Nedelec et 

al., 2014; Oxendale et al., 2016; Varley et al., 2017). These data further highlight the 

importance of incorporating accelerations and decelerations when mimicking the 
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specific movement demands of team sport activity, particularly when assessing the 

implications of fatigue and EIMD in team sports.  

 

8.3 Alterations in side cut biomechanics after multi-directional running  

Inconsistencies in fatigue-induced alterations in side cut biomechanics after exercise 

still exist in the literature (Collins et al., 2016; Inguchi et al., 2014; Lucci et al., 2011; 

McGovern et al., 2015), and likely reflect the non-uniformity of fatigue protocols 

utilised, which often do not mimic the acceleration and deceleration demands of team 

sport activity. Similarly, few studies have assessed side cut biomechanics in the days 

after exercise when symptoms of EIMD can persist. Chapters 6 and 7 resolve these 

issues, by determining alterations in side cut biomechanics immediately and 48 h after 

multi-directional running, which are summarised in Table 8.1. Data from Chapters 6 

and 7 indicate there are meaningful changes in side cut biomechanics, and some of 

these alterations differed depending on the time of the measurement. Both males and 

females tended to land in a more extended position and displayed increased peak 

angular velocities, particularly in males, immediately and 48 h after multi-directional 

running (see Table 8.1). Changes in transverse joints angle differed depending on the 

time of measurement. For example, knee internal rotation angle was increased at 48 

h but displayed no change immediately after multi-directional running, suggesting 

alterations in side cut biomechanics might only be evident in the days after activity. 

 

Interestingly, changes in joint moments were generally consistent both immediately 

and 48 h after multi-directional running (see Table 8.1). For the first time, these data 

indicate short-term intermittent running that elicits fatigue and EIMD causes changes 

in side cut kinetics which persist for at least 48 h in both males and females. The 
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changes in transverse kinematics and kinetics observed immediately and 48 h after 

multi-directional running are common mechanisms associated with ACL strain (Bakker 

et al., 2016; Navacchia et al., 2019; Oh et al., 2012) and have been reported during 

ACL injuries (Koga et al., 2010; Olsen et al., 2004; Waldén et al., 2015). These data 

confirm that fatigue induced from multi-directional running can cause ‘risky’ 

modifications in side cut biomechanics (Collins et al., 2016; McGovern et al., 2015; 

Sanna & O’Connor, 2008). Furthermore, multi-directional running causes alterations 

in side cut biomechanics in males and females which can persist for up to 48 h, 

suggesting fatigue and EIMD might indirectly contribute to ACL injuries in males and 

females (see Figure 8.1). 

 

Table 8.1. Changes in peak kinematics and kinetics of side cuts immediately and 48 

h after multi-directional running.  

Variable Change in variables compared with baseline 
Post 48 h 

Kinematics   
Torso flexion ­ ¯  
Hip internal rotation ¯  - 
Knee extension ­  - 
Knee internal rotation - ­  
Hip internal rotation angular velocity - ¯ 
Knee flexion angular velocity - SI ­ in M 
Knee abduction angular velocity ­ - 
Knee internal rotation angular 
velocity 

­ SI ­ in M 

   
Kinetics   
Hip extensor moment ­ ­ 
Hip external rotation moment ¯  - 
Knee extensor moment ¯  ¯  
Knee external rotation moment ­  ­ 
GRF impulse ­  SI ­ in F 
Lateral GRF SI ¯ in M and F ¯ 

SI = sex interaction, M = males, F = females 
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Whilst alterations in side cut biomechanics were similar between males and females, 

some sex specific changes in GRF and angular velocities were noted in Chapters 6 

and 7. Sex can influence side cut biomechanics with females possessing a ~2-6 fold 

increased incidence of ACL injury compared with males (Gray et al., 2019; Iguchi et 

al., 2014; McGovern et al., 2015; McLean et al., 2007; Stanley et al., 2016; Weinhandl 

et al., 2017). Whilst the specific mechanism for the differences between sexes is 

beyond the scope of this thesis, these data highlight the need to consider the effect of 

sex on side cut biomechanics and examine how differences between sexes might 

contribute to ACL incidence rates. 

 

8.4 Potential Limitations 

8.4.1 Assessment of fatigue and EIMD 

The assessment of fatigue relied on voluntary contraction of the muscle and 20 m 

sprint performance in Chapters 5 and 6. Accordingly, these studies can confirm the 

presence of fatigue (Enoka & Duchateau, 2016), but the specific mechanisms 

contributing to fatigue cannot be determined. This information could help provide a 

mechanistic insight into why performance decrements were observed in relation to the 

demands of the task (Hunter, 2018) and provide further insight into the cause of the 

altered side cut biomechanics reported in Chapter 6. The presence of muscle damage 

was confirmed in Chapter 7, using appropriate in-direct markers of EIMD (Damas et 

al., 2016). However, the extent to which EIMD induced from multi-directional running 

affected knee flexor and extensor torque was not determined, which might provide 

insight into the observed changed in side cut biomechanics in Chapter 7. 
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8.4.2 Biomechanical measurement error  

Whilst all of the reported kinematic and kinetic changes in side cut biomechanics were 

generally considered small to moderate (Chapter 6 and 7), these generally exceeded 

the standard error of measurement and were deemed to be of a meaningful magnitude 

(see Chapter 6). Mean changes in knee external rotation moment in this thesis ranged 

from ~16 – 62%, and in some cases was below previous reports of the trial to trial 

variability in this variable (34%; Sankey et al., 2015). Changes in knee external rotation 

moment reported in this thesis could have implications for ACL injury risk (Shin et al., 

2011), but researchers should interpret this change with caution. Finally, whilst this 

thesis demonstrates alterations in side cut mechanics after exercise can persist for up 

to 48 h in the presence of EIMD, it is important to note the reliability of between day 

biomechanics during a side cut is less favourable than within day (Alenezi et al., 2016). 

For example, the standard error of measurement for knee internal rotation angle during 

a run task is 2.8º and 3.5º for within and between day, and the mean change in knee 

internal rotation angle observed in Chapter 7 was 2.4º for males and 3.5º for females. 

Future research should incorporate a control group, where possible, to corroborate the 

biomechanical alterations reported. Finally, the use of different cut off filter values for 

force and movement data continues to be an area of debate (Kristianslund et al., 2011; 

Roewer et al., 2014). Whilst this is beyond the scope of the thesis, researchers should 

consider differences in processing techniques when comparing data from this thesis 

to other literature.  

 

8.4.3 Training status of participants 

Amateur standard team sport athletes have been used in the present thesis, and the 

average participant estimated aerobic capacity in Chapters 4 – 7 (39.4 – 46.0 ml.kg.-
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1min-1), are similar to previous reports of amateur standard team sport athletes (40 – 

45 ml·kg·-1min-1; Ostojic, 2004; Vescovi et al., 2006). Whilst direct comparisons to elite 

athletes should be carefully considered, as these players are likely to possess superior 

fitness (e.g. ~55 ml·kg·-1min-1; Gabbett, Jenkins & Abernethy, 2011), the percentage 

decrease in knee flexor and extensor torque (Chapter 5), and increase in CK 

concentration (Chapter 7) and sprint times (Chapters 6 and 7) are similar to those 

reported in elite athletes after team sport activity (Magalhães et al., 2010; Nedelec et 

al., 2014; Oxendale et al., 2016; Rampinini et al., 2011). The magnitude of fatigue and 

EIMD markers in this thesis are therefore comparable with previous literature but 

highlight elite athletes with superior fitness might have an attenuated response to 

multi-directional running (Johnston, Gabbett & Jenkins, 2015). Finally, the use of 

amateur athletes in this thesis reflects a large population who typically participate in 

team sports for health and well-being benefits (Griffin et al., 2021b). Injury in amateur 

athletes can have long term consequences for an individual’s health (Hind et al., 

2020), so understanding factors which are associated with an increased risk of injury 

in this population, has wider implications for risk minimisation and health effect 

maximisation (Griffin et al., 2021a).  

 

8.5 Practical implications 

8.5.1 Use of time at high metabolic power to quantify the demands of team sports 

Practitioners should be wary of using measures of high speed alone to quantify the 

high intensity demands of running incorporating multiple directional changes. Here, 

the use of time at high metabolic power is proposed as an alternative measure of 

external load, which can be used to detect small changes in external load and reflects 

an individual’s internal response to multi-directional running. Furthermore, the use of 
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integrated ratios using measures of time at high metabolic power might provide a more 

sensitive interpretation of an individual’s response during different forms of running 

compared with traditional speed-based thresholds. 

 

8.5.2 Multi-directional running for sport specific training/simulations and ACL 

screening 

Manipulating the number of directional changes during running can alter the internal 

demands of running, and whilst this can reduce the quantity of high-speed running 

performed, it does not reduce decrements in knee extensor / flexor torque and 

therefore fatigue. Performing multi-directional running can also induce symptoms of 

EIMD which should be considered in athlete recovery programmes, particularly given 

that EIMD can alter side cut biomechanics which have previously been reported to 

increase ACL injury risk. This means practitioners can manipulate the number of 

changes of direction for the desired response, e.g. increase the number of directional 

changes to increase internal load and training response or reduce the number of 

directional changes performed to attenuate symptoms of EIMD and altered side cut 

biomechanics after training. This is particularly important for team sport simulations, 

as the use of treadmill-based match simulations (e.g. Savage et al., 2018) are unlikely 

to mimic the change of direction demands of the sport, and therefore the athlete’s 

internal response. 

 

Screening of ACL injury risk often involves the assessment of bilateral landing 

mechanics (Fox et al., 2016; Padua et al., 2015), however key determinants of ACL 

injury, such as knee abduction moments, differ during a drop landing compared to a 

side cut (Kristianslund & Krosshaug, 2013). This thesis highlights ACL injuries often 
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occur during side cuts in males and females (Chapter 2) and multi-directional running 

can alter side cut mechanics immediately, and for at least 2 days after (Chapters 6 

and 7). Accordingly, practitioners should use side cuts as an injury screening tool and 

incorporate fatigue and EIMD induced from multi-directional running as part of a 

multifaceted screening approach, in accordance with the procedures adopted in this 

thesis. This can provide an insight into an athlete’s risk of ACL injury during a sport 

specific action, when experiencing symptoms of fatigue and EIMD, to provide a more 

comprehensive assessment of ACL injury risk in team sports. This proposed screening 

method could also be implemented as part of return to sport testing (Capin, Synder-

Mackler, Risberg & Grindem, 2019a) given the need to consider sport exposure 

(Capin, Synder-Mackler, Risberg & Grindem, 2019b). 

 

8.5.3. Interventions to offset ‘risky’ biomechanical alterations in side cuts after multi-

directional running 

Multi-directional running induced some negative changes in side cut biomechanics, 

such as increases in knee internal rotation angle and knee external rotation moment 

in males and females. Injury-prevention intervention programmes might help off-set 

these biomechanical changes after multi-directional running and should therefore be 

implemented in training. Whilst the effect of specific warm-up interventions (e.g. F-

Marc 11+) on side cut biomechanics are equivocal (Dos’Santos, Thomas, Comfort & 

Jones, 2019; Thompson et al., 2017), the use of augmented feedback (Neilson, Ward, 

Hume, Lewis & McDaid, 2019) and body weight plyometric, resistance and balance 

exercises over a 6 – 16 week training period (see review by Dos’Santos et al., 2019) 

have been shown to reduce transverse joint moments and GRF, promoting safer side 

cut biomechanics. Balance exercise interventions have been advocated as an 



 

 

203 

effective means to improve side cut biomechanics (Cochrane et al., 2010; Donnelly et 

al., 2012; Oliveira et al., 2017), however transverse kinematics (Cochrane et al., 2010; 

Donnelly et al., 2012) and the prolonged effect of prevention interventions are often 

not assessed. Questions therefore remain regarding the use of such interventions and 

whether reductions in transverse kinetics are affected by fatigue and EIMD. Future 

research should therefore assess prolonged modifications in side cut mechanics after 

prevention interventions, and where possible incorporate the assessment of side cut 

mechanics under fatigue and EIMD (see section 8.6.1). 

 

8.6 Future research 

8.6.1 Chronic adaptation from change of direction training  

Given the changes in internal and external response with multi-directional running, 

future research should assess the chronic adaptations from change of direction 

training on performance and injury risk. An editorial by Chaabene (2017) highlighted 

the need for longitudinal studies examining the effect of eccentric training on change 

of direction outcomes and eccentric strength training has been associated with 

improved change of direction performance in athletes (Chaabene, Prieske, Negra & 

Granacher, 2018). As changes of direction involve a rapid deceleration (Spiteri, 

Cochrane, Hart, Haff & Nimphius, 2013) and eccentric muscle actions, it is speculated 

that change of direction training itself could promote change of direction performance. 

Assessment of side cut biomechanics after several weeks of multi-directional running 

could also have implications for injury risk, given that changes of direction require high 

core activation (Staynor, Alderson, Cresswell & Donnelly, 2018) and several weeks of 

balance training can promote safer side cut mechanics (Cochrane et al., 2010). In 

accordance with procedures adapted in this thesis, future research could compare the 
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longitudinal effect of linear compared with multi-directional running on side cut 

performance and injury risk. 

 

8.6.2 Comparison of continuous versus discrete biomechanical data 

This thesis assessed discrete peak biomechanical variables during a side cut, as 

discrete peak values have been directly related to ACL injury risk (Hewett et al., 2005). 

Specifically, Hewett et al. (2005) reported peak knee abduction moment predicted ACL 

injury status with 73% specificity and 78% sensitivity, and therefore the assessment 

of peak values has clinical relevance. However, the assessment of the whole 

kinematic and kinetic waveform could provide further insight into biomechanical 

alterations in technique that exist over a specific phase of a movement and negate the 

need to preselect discrete measures to be analysed (Pataky, Robinson & 

Vanrenterghem, 2013; Richter, O’Connor, Marshall & Moran, 2014). For example, 

Whyte et al. (2018) reported knee extension moment was smaller at 70-98% of the 

weight acceptance phase of a side cut when athletes were fatigued using statistical 

parametric mapping. These data are consistent with Chapter 6, and the reduction in 

peak knee extension moment observed in the thesis likely occurred during the same 

phase of stance reported by Whyte et al. (2018). Accordingly, the assessment of 

discrete peak measures in the present thesis can adequately identify differences in 

side cut technique with fatigue but comparing the whole wave form can provide 

additional information on when, and for how long, biomechanical alterations were 

observed. Future research should therefore include more comprehensive statistical 

approaches, such as statistical parametric mapping (Pataky et al., 2013) to provide 

more information on biomechanical alterations in technique relative to the specific 

phase of a movement, immediately, and the in the days after team sport activity.  
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8.6.3 Consideration of fatigue and EIMD when reporting ACL incidence rates 

Whilst data from this thesis demonstrates fatigue and EIMD can alter side cut 

biomechanics, it is still unclear if fatigue and EIMD contribute to ACL incidence rates 

or not. Accordingly, future epidemiology research assessing ACL injury rates in team 

sports should, where possible, consider the fatigue/EIMD status of athletes when an 

injury has occurred. Indeed, the use of player tracking devices, physical performance 

tests and athlete self-report measures to monitor training load and the fatigue status 

of athletes are now routine in both research and practice (Thorpe, Atkinson, Drust & 

Gregson, 2017). Whilst issues remain regarding the validity of single measure athlete 

self-reports for monitoring training responses (Jeffries et al., 2020), combining 

objective measures of training load and fatigue status described in this thesis with 

injury incidences rates can further clarify the role of fatigue and EIMD in ACL injuries. 

 

8.6.4 Mechanisms of fatigue after multi-directional running  

Further investigation into the potential causes of altered side cut biomechanics after 

multi-directional running via the assessment of muscle activity and/or changes in 

voluntary and involuntary joint torque are warranted. Indeed, previous literature has 

investigated the mechanisms of fatigue after repeated sprint exercise (Goodall et al., 

2015) and simulated soccer match-play (Thomas et al., 2017). Greater understanding 

of the mechanisms of fatigue after multi-directional running can help inform 

performance decrements observed and help explain alterations in side cut 

biomechanics under fatigue. 
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8.7 Overall conclusion 

This thesis highlights running with more directional changes induces an increased 

psychophysiological response to exercise as well as small alterations in side cut 

biomechanics after exercise, which has implications for training prescription, recovery 

and injury risk. Specifically, time at high metabolic power was able to reflect changes 

in internal load induced by altering running patterns and can therefore be used as a 

surrogate marker of internal load. Practitioners should carefully consider the number 

of directional changes performed during running to optimise the training stimulus of a 

session or promote recovery. Symptoms of fatigue and EIMD observed immediately, 

and in the days after multi-directional running, were accompanied by small alterations 

in side cut biomechanics, which have previously been associated with an increased 

risk of ACL injury. Fatigue and EIMD induced from multi-directional running might 

therefore indirectly contribute to ACL injury in males and females and should be 

considered in future research examining ACL incidence rates. 
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Appendix 1.1 
 

Calculation of metabolic power 

Metabolic power is based on the assumption that estimated energy cost can be 

calculated based on the equivalence of an accelerating frame of reference (i.e. a 

runner’s centre of mass) with the Earth’s gravitational field (di Prampero et al., 2005; 

Figure 1). During sprinting accelerated running can be considered equivalent to 

running at a constant speed up an “equivalent slope” (ES) where: 

ES = tan(90 – α) = forward acceleration 
                              acceleration of gravity 
 

where 90 - α = the angle between T (terrain) and H (horizontal). 

 

Figure 1.1.1 The subject is accelerating forward while running on a flat terrain (left) 

or running uphill at a constant speed (right). Taken from de Prampero, Bottter and 

Osgnach (2015). COM is the subjects centre of mass, af is forward acceleration and 

g’ is the acceleration of gravity.  
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The average force exerted by the muscles during sprinting is greater than the 

subject’s body weight by a ratio called “equivalent mass” (EM). 

EM =   M x g’ = Facc 

           M x g     Fconst 

 
Where Facc is the force acting on the subject during accelerated running and Fconst is 

the force acting during constant speed running 

 

According to Minetti, Moia, Roi, Susta & Ferrett (2002) the energy cost (EC) of uphill 

running at a constant speed can be calculated as:  

EC = 155.4ES5 – 30.4ES4 – 43.3ES3 + 46.3ES2 + 19.5ES + 3.6 

where 3.6 (J.kg-1.m-1) is the EC of running at a constant velocity on a flat terrain. 

Therefore, the EC of accelerated running can be determined as follows: 

EC = (155.4ES5 – 30.4ES4 – 43.3ES3 + 46.3ES2 + 19.5ES + 3.6)EM 

Finally, metabolic power (P) can be calculated by multiplying the EC by running 

velocity (v): 

P = ECv 

The model proposed by di Prampero et al. (2005) is based on several assumption, 

which have been detailed by di Prampero, Botter & Osgnach (2015) below. 

i) energy expenditure during accelerated running is the same as uphill running 

at a constant speed. 

ii) Stride frequency of accelerated running is equal to that of constant speed 

running over the corresponding incline. 

iii) The efficiency of metabolic to mechanical energy transformation during 

accelerated running is the same to that of constant speed running over a 

corresponding incline.  
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iv) Energy cost and metabolic power do not take into consideration energy 

expenditure against air resistance. 
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Appendix 2.1 

Differences in the calculation of Player LoadTM 

 

Dalen et al. (2016): 

Player load = {($%) + ((%) + ()%)} ÷ 800  

 

McLaren et al. (2015); Polglaze et al. (2015); Gabbett (2015): 

Player load = .($/0123	 − $/01)% +	((/0123	 − (/01)% + ()/0123	 − )/01)% 

Were X, Y and Z are forward, sideways and upwards accelerometer values, 

respectively, and t is time. 
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Appendix 3.1 
 

 Residual analysis 

 

Figure A. Residual plot for knee joint angle in the sagittal, frontal and transverse 

plane. 
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Figure B. Residual plot for GRF in the vertical, anterior-posterior and medio-lateral axis 
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Appendix 4.1 
 

Ethics Approval for Chapters 4 and 5 
 
 
 

 
 
 
 
 

   Faculty of Life Sciences 
Research Ethics Committee 

 
frec@chester.ac.uk 

 
 
 
Chelsea Oxendale 
Rhuddlan Court,  
Saltney,  
Chester. 
 
26/02/2015 
 
 
Dear Chelsea 
 
Study title: The external validity and reliability of a novel touch rugby simulation 

protocol.      
FREC reference: 1001/15/CO/SES  
Version number: 1  
 
Thank you for the above application which was considered by the Faculty Research Ethics 
Committee at the meeting held on Wednesday, 18th February 2015  
 

Provisional opinion 

 
The Committee would be pleased to give ethical approval of the research, subject to receiving 
a complete response to the request for further information set out below.   
Your response will be considered by Dr Clare Soulsby (Lead Reviewer) and  
Dr Stephen Fallows (Chair of the Faculty Research Ethics Committee) on behalf of the 
Committee. 
 

Further information or clarification  

 
• Clarify whether validity is being assessed - i.e. both reliability and validity 

and revise title of the study accordingly. 
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• If validity is to be assessed provide an appropriate protocol. 
• Expand Risk Assessment to include strains, sprains, slips, bangs etc.  
• Replace PIS - download the current version of the Participant Information 

Sheet from the FREC web page which includes the recommended text. 
 
 
Please send three copies of your response template and revised documentation to the 
Committee, underlining or otherwise highlighting the changes you have made, and giving 
revised version numbers and dates to all documents.  
 
Responses should be submitted within two months of the date of this letter.  You do not need 
to resubmit your full application. Please send your response to the FREC Secretary, Faculty of 
Life Sciences Administration Office, Molloy 106, University of Chester, Parkgate Road, 
Chester CH1 4BJ with an electronic copy to frec@chester.ac.uk 
 
The Committee will confirm the final ethical opinion on the application within a maximum of 
10 working days from receipt of an appropriate and acceptable response. 
 
Yours sincerely, 
 
 
 
 
 
   
 
Dr. Stephen Fallows 
Chair, Faculty Research Ethics Committee 
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Faculty of Life Sciences 
Research Ethics Committee 

 
frec@chester.ac.uk 

31/03/2015 
 
Chelsea Oxendale 
Rhuddlan Court 
Saltney 
Chester 
 
 
Dear Chelsea 
 
Study title: The external validity and reliability of a novel touch rugby simulation 
protocol.      
FREC reference: 1001/15/CO/SES  
Version number: 2  
 
Thank you for providing notice of variation to the above project.   
 
The following variation has been approved by the Faculty Research Ethics Committee:- 
 

• Addition of third simulation trial without changes of direction and cutting 
manoeuvers. 

• Changes of title to “The reliability of a novel multidirectional team sport simulation 
protocol: A comparison to linear based running”. 

• Addition of additional markers of oxygen consumption and use of a RPE scale.  
 
With the Committee’s best wishes for the success of this project. 
 
Yours sincerely, 

 
 
 
 
 
Dr. Stephen Fallows 
Chair, Faculty Research Ethics Committee 
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Appendix 4.2 
 

Sample size calculation for Chapter 4 
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Appendix 5.1 
 

Sample size calculation for Chapter 5 
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Appendix 5.2 
 

Males vs. female comparison of muscle function changes before and after the multi-

directional trial 

 

No trial (multi-directional vs. linear), sex (male vs. females) and movement (flexor vs. 

extensor) interaction was apparent in the muscle function data (F = 0.011, p = 0.917). 

Similarly, no trial (multi-directional vs. linear), sex (male vs. females) and time (before 

vs after) interaction was apparent (F = 0.038, p = 0.850). However, there was a 

tendency for an interaction between time (before vs. after) and sex (male vs female) 

in the muscle function data (F = 3.567, p = 0.088). Specific changes in knee flexor and 

extensor torque for males and females only are provided below in Table 5.2.1 

 

Table 5.2.1 Changes in knee extensor and flexor torque in males and females during 

the multi-directional and linear trial 

 
Torque (Trial: 
MD or LIN) 

Female Male 
ES; ±95% CI P value ES; ±95% CI P value 

Knee extensor 
(MD) 

0.24; ±0.46 0.223 0.75; ±0.64 0.027 

Knee Flexor 
(MD) 

0.36; ±0.39 0.062 1.01; ±1.24 0.092 

Knee extensor 
(LIN) 

0.24; ±0.29 0.084 0.56; ±0.57 0.055 

Knee flexor 
(LIN) 

0.19; ±0.37 0.234 0.41; ±0.67 0.183 

 
 
These data indicate females generally showed trivial to small reductions in knee 

extensor and flexor torque after multidirectional and linear running, whereas males 

demonstrated small to moderate reductions in knee flexor and extensor torque. These 

data are in agreement with previous literature demonstrating females are generally 

less fatigable than males (see section 2.3.1.2). 
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Appendix 6.1 
Ethics approval for Chapters 6 and 7 

 

 

03/11/2016  

Department of Sport and Exercise Sciences (CTW 605), University of Chester, 
Parkgate Road, 
Chester,  

CH1 4BJ  

Dear Chelsea  

Study title:  

FREC reference: Version number:  

Lower limb kinematics and kinetics following multi-directional running: Effect of fatigue and 
exercise-induced muscle damage 
1216/16/CO/SES  

Thank you for sending your application to the Faculty of Medicine, Dentistry and Life Sciences 
Research Ethics Committee for review.  

I am pleased to confirm ethical approval for the above research, provided that you comply with the 
conditions set out in the attached document, and adhere to the processes described in your 
application form and supporting documentation.  

The final list of documents reviewed and approved by the Committee is as follows:  

Faculty of Medicine, Dentistry and Life Sciences Research Ethics Committee  

frec@chester.ac.uk  

Document  Version  Date  
Application Form  1  October 2016  
Appendix 1 – List of References  1  October 2016  
Appendix 2 – Summary CV for Lead Researcher  1  October 2016  
Appendix 3 – Risk Assessment  2  October 2016  
Appendix 4 – Participant Information Sheet [PIS]  2  October 2016  
Appendix 5 – Consent Form  1  October 2016  
Appendix 6 - Health screening document  1  October 2016  

Approval 2016/17  
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Appendix 7 – Definition of biomechanical terms  1  October 2016  
Appendix 8 – Side cutting manoeuvre  1  October 2016  
Appendix 9 – Marker placement  1  October 2016  
Appendix 10 – Figure of the multi-directional condition  1  October 2016  
Appendix 11 – Example email to recruit participants  2  October 2016  
Response to FREC request for further information or clarification  1   

Please note that this approval is given in accordance with the requirements of English law only. For 
research taking place wholly or partly within other jurisdictions (including Wales, Scotland and 
Northern Ireland), you should seek further advice from the Committee Chair / Secretary or the 
Research and Knowledge Transfer Office and may need additional approval from the appropriate 
agencies in the country (or countries) in which the research will take place.  

With the Committee’s best wishes for the success of this project. Yours sincerely,  

Professor Ben Green  

Chair, Faculty Research Ethics Committee Enclosures: Standard conditions of approval. Cc. 
Supervisor  
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Appendix 6.2 
Sample size calculation for Chapter 6 
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Appendix 6.3  

Peak angle data in males and females during a 45º side cut before and after the multi-directional trial 

 Females (n = 8) 
 

Males (n = 8) P value from two-way 
ANOVA 

 Pre (°) Post (°) ES; ±95% 
CI 

Pre (°) Post (°) ES; ±95% 
CI 

Time Sex x Time 

Hip extension  
(0° = full extension) 

 26.0 ± 13.2  24.3 ± 12.4  0.11; ±0.40 35.1 ± 10.5   31.4 ± 9.5  0.31; ±0.46 
 

0.140 0.565 

Hip adduction  
(0° = full adduction) 

 4.7 ± 6.2  5.1 ± 2.7  0.06; ±0.49 8.4 ± 5.6  10.1 ± 5.8  0.27; ±088 
 

0.457 0.638 

Hip internal rotation 12.7 ± 8.6  7.5 ± 10.9  0.54; ±0.54  7.7 ± 5.9  4.6 ± 9.6  0.46; ±1.43 
 

0.090 0.636 

Knee extension  
(0° = full extension) 

15.0 ± 4.9  12.7 ± 4.8  0.41; ±0.51 15.1 ± 6.5  13.9 ± 4.3   0.17; ±0.38 
 

0.055 0.550 

Knee abduction 11.1 ± 5.0  13.1 ± 6.8  0.36; ±0.58  7.6 ± 2.1  8.7 ± 5.7   0.45; ±1.85 
 

0.203 0.688 

Knee internal 
rotation 
 

7.9 ± 6.2  10.4 ± 5.9  0.36; ±0.63 
 

9.2 ± 7.0  11.23 ± 7.3  0.26; ±1.02 
 

0.261 0.915 

ES = effect size, CI = confidence interval 

 

n.b. Peak torso data are presented in Table 6.3. 
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Appendix 6.4 
 

Angular data at initial contact in males and females during a 45º side cut before and after the multi-directional trial 
 
 Females (n = 8) 

 
Males (n = 8) P value from two-way 

ANOVA 
 Pre (°) Post (°) ES; ± 95% 

CI 
Pre (°) Post (°) ES; ±95% 

CI 
Time Sex x Time 

Trunk flexion 
 

0.6 ± 7.2 0.9 ± 7.8 0.04; ±0.39 4.3 ± 7.5 6.1 ± 6.2 0.22; ±0.56 0.365 0.535 

Trunk lateral flexion 
over stance  

2.1 ± 5.8 1.7 ± 7.2 0.07; ±0.25 -2.4 ± 4.5 -1.4 ± 5.1 0.20; ±0.32 
 

0.567 0.163 

Trunk rotation over 
stance 

7.8 ± 10.7 6.7 ± 9.7 0.09; ±0.39 9.5 ± 7.4 6.8 ± 6.7 0.33; ±0.47 
 

0.165 0.521 

Hip flexion 
 

36.1 ± 8.9 35.9 ± 7.7 0.02; ±0.79 40.4 ± 9.9 38.4 ± 8.7 0.18; ±0.64 0.634 0.694 

Hip abduction 
 

8.8 ± 5.0 9.3 ± 4.1 0.09; ±0.79 11.2 ± 6.0 14.6  ± 4.3 0.50; ±0.80 0.216 0.349 

Hip internal rotation 
 

11.4 ± 9.4 2.6 ± 9.9 0.84; ±0.57 3.2  ± 6.9 2.6 ± 11.4 0.09; ±1.38 0.090 0.141 

Knee flexion 
 

14.8 ± 6.8 13.0 ± 4.8 0.24; ±0.67 15.3 ± 6.6 14.5 ± 4.7 0.12; ±0.40 0.307 0.711 

Knee abduction 2.0 ± 5.0 1.6 ± 5.8 0.07; ±0.46 2.7 ± 2.4 0.8 ± 4.1 1.28; ±1.45 
 

0.072 0.143 

Knee internal 
rotation 

6.9 ±7.1 6.6 ± 9.9 0.04; ±0.79 2.8 ± 8.0 4.4 ± 7.3 0.17; ±1.03 0.803 0.698 

ES = effect size, CI = confidence interval 
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Appendix 6.5  

 
Angular velocity data in males and females during a 45º side cut before and after the multi-directional trial 

 
 Females (n = 8) 

 
Males (n = 8) P value from two-way 

ANOVA 
 Pre (°) Post (°) ES; ±95% CI Pre (°) Post (°) ES; ±95% CI 

 
Time Sex x Time 

Hip flexion 
 

166.2 ± 97.5  124.6 ± 
108.6  

0.38; ±0.63  290.1 ± 
147.3  

324.9 ± 
179.3  

0.21; ±0.83 0.918 0.260 

Hip abduction 
 

244.8 ± 96.0  270.0 ± 76.8  0.23; ±0.79  210.3 ± 78.0  232.2 ± 93.4  0.25; ±1.30 0.448 0.958 

Hip internal 
rotation 

194.7 ± 83.2  199.3 ± 84.1  0.05; ±0.80 
 

187.1 ± 
128.2  

183.0 ± 
105.3  

0.03; ±0.59 0.992 0.858 

Knee flexion 
 

671.9 ± 
222.5  

694.9 ± 
194.0  

0.09; ±0.31  727.9 ± 86.3  708.3 ± 79.8  0.20; ±0.35 0.927 0.260 

Knee abduction 212.8 ± 81.9  249.7 ± 
116.4  

0.40; ±0.54  118.5 ± 49.1  146.4 ± 57.0  0.51; ±0.88 
  

0.045 0.765 

Knee internal 
rotation 
 

476.6 ± 84.9 533.1 ± 
155.2  

0.59; ±1.18  384.2 ± 
124.8  

498.3 ± 
149.5  

0.81; ±0.97 0.038 0.453 

ES = effect size, CI = confidence interval 

 
 

n.b. Peak torso angular velocity data are presented in Table 6.3.  
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Appendix 6.6  

 
Medio-lateral foot placement data in males and females during a 45º side cut before and after the multi-directional trial 

 
 
BOS- 
XCOM (m) 

Females (n = 8) 
 

Males (n = 8) P value from two-way 
ANOVA 

Before After ES; ±95% CI 
 

Before After ES; ±95% CI 
 

Time Sex x Time 

Minimum 0.52 ± 0.04 0.49 ± 0.03 0.66; ±0.74 0.42 ± 0.06 0.42 ± 0.06 0.02; ±0.36 
 

0.138 0.101 

Maximum 0.83 ± 0.08 0.82 ± 0.05 0.10; ±0.56 0.75 ± 0.08 0.79 ± 0.11 0.35; ±0.58 0.390 0.177 

ES = effect size, CI = confidence interval 
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Appendix 6.7 

 
GRF data in males and females during a 45º side cut before and after the multi-directional trial 

 
 
GRF 
(N.BW-1) 

Females (n = 8) 
 

Males (n = 8) P value from two-way 
ANOVA 

Pre Post ES; ±95% CI Pre Post ES; ±95% CI Time Sex x Time 

Lateral  1.23 ± 0.2  1.04 ± 0.17  0.85; ±0.55 1.13 ± 0.18 1.07 ± 0.22  0.29; ±0.42 0.002 0.053 

Posterior  1.43 ± 0.40  1.41 ± 0.25  0.05; ±0.58 1.44 ± 0.30 1.43 ± 0.27  0.02; ±0.62 0.839 0.921 

Vertical  3.41 ± 0.40  3.30 ± 0.45  0.26; ±0.55 3.36 ± 0.52  3.39 ± 0.62  0.04; ±0.51 0.577 0.398 

ES = effect size, CI = confidence interval 
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Appendix 6.8  

 
Peak joint moment data in males and females during a 45º side cut before and after the multi-directional trial 

 
 Females (n = 8) 

 
Males (n = 8) P value from two-way 

ANOVA 
 Pre (N.m.kg-

1) 
Post (N.m.kg-

1) 
ES; ±95% CI Pre (N.m.kg-

1) 
Post (N.m.kg-

1) 
ES; ±95% CI Time Sex x Time 

Hip extension 
 

 4.50 ± 2.2 0 4.96 ± 2.85 0.19; ±0.27 4.11 ± 0.92   4.41 ± 0.95  0.29; ±0.51 0.055 0.670 

Hip Adduction 
 

0.79 ± 0.56 0.83 ± 0.67 0.08; ±0.76 0.30 ± 0.42 0.45 ± 0.45 0.32; ±0.51 0.398 0.661 

Hip external 
rotation 
 

0.40 ± 0.22 0.29 ± 0.16 0.44; ±0.44 0.36 ± 0.20 0.23 ± 0.14 0.57; ±0.70 0.011 0.818 

Knee extension 
 

2.96 ± 1.01 2.59 ± 1.03 0.33; ±0.23 3.66 ± 0.43 3.45 ± 0.26 0.45; ±0.59 0.003 0.354 

Knee Adduction 
 

1.40 ± 0.59 1.32 ± 0.64 0.13; ±0.52 0.92 ± 0.42 0.81 ± 0.50 0.23; ±0.72 0.367 0.925 

Knee external 
rotation 

0.13 ± 0.09  0.16 ± 0.09  0.34; ±0.35 0.19 ± 0.09  0.22 ± 0.08  0.22; ±0.51 0.052 0.644 

Knee to hip 
extensor ratio 

0.88 ± 0.56 0.79 ± 0.54 0.15; ±0.12 0.93 ± 0.23 0.82 ± 0.18 0.45; ±0.49 0.005 0.747 

ES = effect size, CI = confidence interval 
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Appendix 6.9 

 
Movement variability data in males and females during a 45º side cut before and after the multi-directional trial 

 
 Females (n = 8) 

 
Males (n = 8) P value from two-way 

ANOVA 
 Pre (CV%) Post (CV%) ES; ±95% CI Pre (CV%) Post (CV%) ES; ±95% CI Time Sex x Time 

Angle:         
Hip extension 
 

10.5 ± 4.9 34.6 ± 36.3 3.69; ±6.03 12.1 ± 7.3 17.2 ± 11.0 0.62; ±0.75 0.072 0.258 

Knee extension 26.4 ± 28.0 31.3 ± 28.7 0.16; ±0.84 17.1 ± 12.2 25.4 ± 13.0 0.61; ±1.22 0.332 0.803 

Angular 
velocity: 

        

Hip flexion 
 

93.4 ± 160.8 61.2 ± 202.9 0.18; ±0.70  33.4 ± 16.4 54.6 ± 26.0 1.15; ±1.37 0.843 0.345 

Knee flexion 16.4 ± 8.0 23.0 ± 6.7 0.24; ±1.17 9.7 ± 1.7 12.7 ± 5.8 1.60; ±2.71 0.190 0.482 

Moment:         
Hip extensor 23.0 ± 16.2 16.4 ± 7.0 0.36; ±0.83 13.7 ± 8.0 17.2 ± 5.1 0.39; ±0.73 0.665 0.172 

Knee extensor 19.9 ± 16.9 18.2 ± 13.9 0.09; ±0.25 6.4 ± 2.6 7.8 ± 2.3 0.49; ±1.23 0.898 0.224 

GRF:         
GRF X 
 

14.0 ± 4.3 14.0 ± 6.2 0.00; ±0.67 19.6 ± 7.8 15.9 ± 5.0 0.42; ±0.91 0.330 0.333 

GRF Y 
 

17.7 ± 10.9 17.2 ± 10.7 0.04; ±0.56 20.3 ± 12.0 23.0 ±10.0 0.20; ±1.14 0.762 0.654 

GRF Z 9.6 ± 3.8 6.3 ± 2.5 0.77; ±0.86 12.4 ± 6.0 10.6 ± 4.5 0.26; ±0.97 0.133 0.644 

ES = effect size, CI = confidence interval 
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Appendix 7.1 
G power prior sample size calculation for Chapter 7 
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Appendix 7.2 

Peak angle data in males and females at baseline and 48 h during a 45º side cut 

 Females (n = 8) 
 

Males (n = 8) P value from two-way 
ANOVA 

 Baseline (°) 48 hr (°) ES; ±95% CI 
 

Baseline (°) 48 hr (°) ES; ±95% CI 
 

Time Sex x 
Time 

Hip extension (0° = 
full extension) 

 27.5 ± 13.0  21.3 ± 13.4  0.43; ±0.43 35.1 ± 10.5  35.3 ± 11.7  0.02; ±0.85 
 

0.252 0.222 

Hip adduction (0° = 
full adduction) 

 4.9 ± 6.4  5.7 ± 2.3  0.11; ±0.57 
 

8.4 ± 5.6 7.8 ± 5.5  0.1; ±0.72 
 

0.948 0.587 

Hip internal rotation 12.7 ± 8.6  11.1 ± 8.0  0.16; ±0.34 
 

 7.7 ± 5.9  5.4 ± 7.0  0.35; ±0.9 
 

0.199 0.800 

Knee extension (0° 
= full extension) 

 16.2 ± 5.6   15.0 ± 6.0  0.19; ±0.56 
 

15.1 ± 6.5  15.2 ± 4.2  0.01; ±0.43 
 

0.578 0.545 

Knee abduction  11.9 ± 4.9  11.7 ± 5.2  0.04; ±0.61  7.6 ± 2.1  8.4 ± 2.8  0.31; ±0.65 
 

0.749 0.541 

Knee internal 
rotation 
 

8.7 ± 6.3 12.2 ± 4.4 0.5; ±0.39 9.2 ± 7.0  11.6 ± 5.9  0.31; ±0.65 
 

0.009 0.583 

ES = effect size, CI = confidence interval 

 

n.b. Peak torso data are presented in Table 7.3. 
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Appendix 7.3 

Angle data at initial contact in males and females at baseline and 48 h during a 45º side cut 
 

 Females (n = 8) 
 

Males (n = 8) P value from two-way 
ANOVA 

 Baseline (°) 48 hr (°) ES; ±95% CI 
 

Baseline (°) 48 hr (°) ES; ±95% CI 
 

Time Sex x 
Time 

Trunk flexion (+) 
 

 3.2 ± 7.9   -0.9 ± 6.7  0.05; ±0.99 4.3 ± 7.5  2.8 ± 4.6  0.61; ±0.81 0.254 0.338 

Trunk lateral flexion 
over stance (+) 

 2.6 ± 5.2   1.5 ± 6.6  0.4; ±1.27  -2.4 ± 4.5   0.2 ± 7.2  0.76; ±1.19 
 

0.710 0.148 

Trunk rotation over 
stance 

 6.7 ± 11.3   5.2 ± 9.6  0.11; ±0.88  9.5 ± 7.4   5.3 ± 7.6  0.52; ±1.12 0.370 0.635 

Hip flexion 
 

 38.8 ± 8.1  35.0 ± 7.8  0.41; ±0.78  40.4 ± 9.9  40.3 ± 10.5  0.01; ±0.9 0.469 0.499 

Hip abduction 
 

 9.4 ± 5.0  10.8 ± 3.4  0.25; ±0.62  11.2 ± 6.0  10.1 ± 4.8  0.15; ±0.76 0.890 0.370 

Hip internal rotation  11.5 ± 9.3  7.6 ± 8.1  0.38; ±0.58  3.3 ± 6.9  2.8 ± 7.6  
 

0.06; ±0.79 0.250 0.355 

Knee flexion 
 

 15.7 ± 6.8  17.9 ± 5.7  0.28; ±0.82  15.3 ± 6.6   15.5 ± 4.5  0.02; ±0.45 0.466 0.518 

Knee abduction (+)  2.1 ± 5.1 -0.2 ± 4.3  0.4; ±0.64  2.7 ± 2.4  -0.2 ± 2.0  0.91; ±0.76 0.018 0.913 
Knee external 
rotation 
 

 7.4 ± 7.0  3.3 ± 4.7  0.51; ±0.41   2.8 ± 8.0  5.5 ± 7.4  0.29; ±0.81 0.677 0.067 

ES = effect size, CI = confidence interval  
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Appendix 7.4  
 

Angular velocity data in males and females during a 45º side cut at baseline and 48 h after the multi-directional trial 
 

 Females (n = 8) 
 

Males (n = 8) P value from two-way 
ANOVA 

 Baseline (°) 48 hr (°) ES; ±95% CI 
 

Baseline (°) 48 hr (°) ES; ±95% CI 
 

Time Sex x Time 

Hip flexion 
 

173.3 ± 98.2  153.4 ± 
133.0  

0.18; ±0.58 290.1 ± 
147.3  

341 ± 222.0   0.31; ±0.61 0.541 0.178 

Hip abduction 
 

260.6 ± 76.7   255.3 ± 74.7   0.06; ±0.6 210.3 ± 78.0  230.1 ± 
118.5  

0.23; ±1.34 0.793 0.651 

Hip internal rotation 200.7 ± 79.2  143.5 ± 95.3   0.64; ±0.59 187.1 ± 
128.2  

124.8 ± 
112.0  

0.43; ±0.94 0.073 0.934 

Knee flexion 
 

692.8 ± 
221.8   

704.0 ± 
223.1   

0.04; ±0.29  727.9 ± 86.3  655.6 ± 
101.6  

0.75; ±0.7 0.169 0.068 

Knee abduction 205.9 ± 85.8  209.5 ± 90.2  0.04; ±0.67 118.5 ± 49.1  141.6 ± 42.8   0.42; ±0.81 
  

0.438 0.567 

Knee internal 
rotation 
 

473.4 ± 88.0  467.3 ± 77.9   0.06; ±0.46 384.2 ± 
124.8  

484 ± 130.1   0.72 ±0.8 0.088 0.057 

ES = effect size, CI = confidence interval 

 
 

n.b. Peak torso angular velocity data are presented in Table 7.3.  
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Appendix 7.5:  
 

Medio-lateral foot placement data in males and females during a 45º side cut at baseline and 48 h 
 
 
BOS- 
XCOM (m) 

Females (n = 8) 
 

Males (n = 8) P value from two-way 
ANOVA 

Baseline 48 hr ES; ±95% CI 
 

Baseline 48 h ES; ±95% CI 
 

Time Sex x Time 

Minimum 0.52 ± 0.04 0.51 ± 0.05 0.38; ±1.07 0.43 ± 0.06 0.45 ± 0.06 0.26; ±0.45 
 

0.930 0.230 

Maximum 0.82 ± 0.08 0.85 ± 0.08 0.4; ±0.59 0.75 ± 0.08 0.76 ± 0.07 0.1; ±0.6 
 

0.185 0.418 

ES = effect size, CI = confidence interval 
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Appendix 7.6  
 

GRF data at maximum vertical GRF in males and females at baseline and 48 h during a 45º side cut 

GRF 

(N.BW-1) 

Females (n = 8) 
 

Males (n = 8) P value from two-way 
ANOVA 

Baseline 48 hr ES; ±95% CI Baseline 48 hr ES; ±95% CI Time Sex x Time 

Lateral 1.23 ± 0.20 1.20 ± 0.26 0.14; ±0.52 1.13 ± 0.18 1.04 ± 0.23 0.46; ±0.45 0.079 0.387 

Posterior 1.43 ± 0.4 1.56 ± 0.43 0.31; ±0.62 1.44 ± 0.30 1.32 ± 0.28 0.37; ±0.85 0.942 0.140 

Vertical 3.41 ± 0.4 3.41 ± 0.56 0.04; ±0.53 3.36 ± 0.52 3.21 ± 0.38 0.26; ±0.42 0.388 0.258 

ES = effect size, CI = confidence interval 
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Appendix 7.7 

Peak joint moment data in males and females during a 45º side cut before and 48 h after the multi-directional trial 
 
 Females (n = 8) 

 
Males (n = 8) P value from two-way 

ANOVA 
 Baseline 

(N.m.kg-1) 
48hr (N.m.kg-

1) 
ES; ±95% CI 
 

Baseline 
(N.m.kg-1) 

48 hr (N.m.kg-

1) 
ES; ±95% CI 
 

Time Sex x 
Time 

Hip extension 
 

 4.92 ± 2.19  5.43 ± 3.03  0.21; ±0.41 4.11 ± 0.92   4.59 ± 1.27 0.46; ±0.56 0.066 0.946 

Hip Adduction 
 

 0.85 ± 0.48   0.95 ± 0.7  0.18; ±1.3 0.30 ± 0.42  0.35 ± 0.35  0.11; ±1.13 0.689 0.900 

Hip external 
rotation 
 

 0.40 ± 0.22   0.31 ± 0.14  0.35; ±0.69 
 

0.36 ± 0.20  0.29 ± 0.19  0.31; ±0.73 0.135 0.863 

Knee extension 
 

 2.91 ± 1.03   2.41 ± 0.95  0.43; ±0.25 3.66 ± 0.43  3.39 ± 0.44  0.56; ±0.51 0.001 0.170 

Knee Adduction 
 

 1.32 ± 0.64   1.25 ± 0.66  0.1; ±0.8 0.92 ± 0.42 0.81 ± 0.36  0.25; ±0.60 0.513 0.872 

Knee external 
rotation 

 0.13 ± 0.09  0.21 ± 0.14  0.78; ±0.90 0.19 ± 0.09  0.23 ± 0.09  0.34; ±0.91 0.062 0.428 

Knee to hip 
extensor ratio 

 0.81 ± 0.58  0.74 ± 0.64  0.12; ±0.46 0.93 ± 0.23 0.78 ± 0.19  0.57; ±0.61 0.148 0.626 

ES = effect size, CI = confidence interval 

 

 

 
 
 
 
 



 

 

277 

Appendix 7.8 
 

Movement variability in males and females at baseline and 48 h during a 45º side cut 
 
 Females (n = 8) 

 
Males (n = 8) P value from two-way 

ANOVA 
 Baseline 

(CV%) 
48 hr (CV%) ES; ±95% CI Baseline 

(CV%) 
48 hr (CV%) ES; ±95% CI Time Sex x Time 

Angle:         
Hip extension 18.0 ± 11.9   25.7 ± 10.4  0.57; ±0.7 

 
12.1 ± 7.3  15.6 ± 14.4  0.43; ±1.64 0.139 0.570 

Knee extension 28.8 ± 27.7   23.1 ±  22.9 0.18; ±0.95 17.1 ± 12.2  27.9 ± 13.6   0.79; ±0.63 0.696 0.228 
Angular 
velocity: 

        

Hip flexion 
 

98.8 ± 159.5   29.4 ± 68.2  0.39; ±1.04  33.4 ± 16.4  50.0 ± 34.3  0.9; ±2.09 0.521 0.302 

Knee flexion 12.3 ± 5.7  11.7 ± 6.4  0.09; ±1.0 9.7 ± 1.7  10.2 ± 3.3  0.26; ±1.46 0.980 0.722 
Moment:         
Hip extensor 
 

29.1 ± 18.0  26.6 ± 11.0  0.13; ±0.59 13.7 ± 8.0 17.2 ± 5.4  0.39; ±0.69 0.876 0.306 

Knee extensor 
 

21.7 ± 16.1   31.7 ± 25.4  0.55; ±0.68 6.4 ± 2.6  7.8 ± 3.2  0.47; ±1.49 0.060 0.141 

GRF:         
GRF X 
 

13.9 ± 4.6  13.1 ± 6.2  0.15; ±1.36 19.6 ± 7.8 18.4 ± 7.7  0.14; ±1.09 0.699 0.932 

GRF Y 
 

19.9 ± 11.4   13.9 ± 6.4  0.47; ±0.75 20.3 ± 12.0  25.0 ± 9.4 0.34; ±0.89 0.841 0.125 

GRF Z 11.2 ± 4.7   10.0 ± 2.5  0.22; ±0.73 
 

12.4 ± 6.0  11.5 ± 2.3  0.13; ±0.58 0.390 0.915 

ES = effect size, CI = confidence interval 

 
 
 


