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Abstract
In this work, we study a new family of rings, Bj,k , whose base field is the finite field Fpr .
We study the structure of this family of rings and show that each member of the family is a
commutative Frobenius ring. We define a Gray map for the new family of rings, study G-
codes, self-dual G-codes, and reversible G-codes over this family. In particular, we show
that the projection of a G-code over Bj,k to a code over Bl,m is also a G-code and the image
under the Gray map of a self-dual G-code is also a self-dual G-code when the characteristic
of the base field is 2. Moreover, we show that the image of a reversible G-code under the
Gray map is also a reversible G2j+k

-code. The Gray images of these codes are shown to
have a rich automorphism group which arises from the algebraic structure of the rings and
the groups. Finally, we show that quasi-G codes, which are the images of G-codes under
the Gray map, are also Gs-codes for some s.
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Mathematics Subject Classification 2010 94B05 · 16S34

1 Introduction

In [1], a new family of rings,

Fj,k = F4[v1, v2, . . . , vj , u1, u2, . . . , uk]/〈v2i − vi, u
2
i 〉,

was introduced. The base field of this ring is the finite field of order 4, denoted by F4. This
family of rings was used to construct codes which were reversible, which is a desirable
quality for DNA codes. In the present work, we generalise the family of rings Fj,k so that
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the base field is in an arbitrary finite field Fpr . We also define a Gray map � which is a
generalization of the Gray map given in [1, 13, 14].

Assume the indeterminates ui and vi all commute.

Definition 1.1 Let p be a prime and let Fpr be the finite field of order pr . Let

Bj,k = Fpr [v1, v2, . . . , vj , u1, u2, . . . , uk]/〈v2i − vi, u
2
i 〉. (1.1)

This definition generalises the definition of Fj,k in [1] as well as the rings Rk =
F2[u1, u2, . . . , uk]/〈u2i = 0〉 in [6–8], the rings Ak = F2[v1, v2, . . . , vk]/〈v2i = vi〉 in [2]
and the rings Fpr [v1, v2, . . . , vk]/〈v2i − vi, vivj − vj vi〉 given in [11].

In essence, all of the families of rings were studied together with Gray maps to ambient
spaces over finite fields. They use the algebraic structure of the family of rings to obtain
desirable properties for the codes over finite fields. One desirable property is that one can
obtain codes with a rich automorphism group via the algebraic structure of the ring through
the Gray map. In this construction, one can find codes that might have been missed by
more classical construction techniques, for example, one may find extremal binary self-
dual codes with new weight enumerators or with a different orders of the automorphism
group. Further in [4],G-codes were used to construct binary self-dual codes from codes over
Rk . By combining these techniques, self-dual binary codes with very rich automorphism
groups were found which had been missed during the decades long search for binary self-
dual codes. The primary reason was that these techniques allowed the authors to find codes
that had different automorphism groups than those constructed from the usual techniques.
It is precisely this type of scenario we exploit in the present paper. Our goal is to study
the algebra of the new family of rings, the corresponding Gray maps, and the group G,
so that one can employ our results to construct useful and interesting codes over finite
fields that would not be constructed with other techniques. Additionally, we present matrix
constructions for self-dual and reversible G- codes and study their properties over the new
family of rings.

2 The ringBj,k

We begin by describing the family of rings Bj,k . Set

Bj,k = Fpr [v1, v2, . . . , vj , u1, u2, . . . , uk]/〈v2i − vi, u
2
i 〉.

For A ⊆ [j ] = {1, 2, 3, . . . , j} and B ⊆ [k] = {1, 2, 3, . . . , k}, we denote
vA :=

∏

i∈A

vi and uB :=
∏

i∈B

ui,

with u∅ = 1 and v∅ = 1. Every element in the ring can be written as∑

A⊆[j ]
B⊆[k]

cA,BvAuB, (2.1)

where cA,B ∈ Fpr .
It is immediate that

uAuA′ =
{
0 if A ∩ A′ 	= ∅,

uA∪A′ if A ∩ A′ = ∅. (2.2)

Similarly, we have
vAvA′ = vA∪A′ . (2.3)
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By using (2.2) and (2.3), multiplication of two elements in Bj,k is given by:
⎛

⎝
∑

A,B

cA,BvAuB

⎞

⎠

⎛

⎝
∑

A′,B ′
cA′,B ′vA′uB ′

⎞

⎠ =
∑

A,B,A′,B ′
B∩B ′=∅

(cA,BcA′,B ′)vA∪A′uB∪B ′ , (2.4)

where A,A′ are subsets of [j ] and B,B ′ are subsets of [k].

Lemma 2.1 The commutative ring Bj,k has characteristic p, and |Bj,k| = (pr)2
j+k

.

Proof The commutativity of the ring follows from the fact that Fpr is commutative and that
the indeterminates commute. Since the characteristic of Fpr is p, thenBj,k has characteristic
p. When we look at the representation of elements of Bj,k given in (2.1), we see that there
are 2j2k = 2j+k subsets and pr choices for each coefficient cA,B . This gives that Bj,k has

cardinality (pr)2
j+k

.

We now give some structural theorems about the family of rings.

Theorem 2.2 Let j and k be non-negative integers.

1. The ring Bj,k is isomorphic to ⊕2j

i=1B0,k .
2. An element a is a unit in Bj,k if and only if the projection to each component of

⊕2j

i=1B0,k is a unit.

Proof The ideals 〈vj 〉 and 〈1 + vj 〉 are relatively prime ideals. By Lemma 2.3 in [3], we
have that Bj,k

∼= Bj−1,k × Bj−1,k . Then, by induction on j , we have the first result.
The second result follows immediately from the isomorphisms in the first.

Since Bj,k is isomorphic to ⊕2j

i=1B0,k , it is natural to look at the structure of the ring
B0,k = Fpr [u1, u2, . . . , uk]/〈u2i 〉 to understand the structure of Bj,k .

Lemma 2.3 Let
∑

A⊆[k] cAuA ∈ B0,k , with c∅ = 0, then
⎛

⎝
∑

A⊆[k]
cAuA

⎞

⎠
p

= 0

where p is the characteristic of B0,k .

Proof First, we note that if A 	= ∅, then u2A = 0. Then, we see that the coefficient of any
monomial in this expansion, other than the first or the last is divisible by p and hence 0.
Therefore, all of the terms are 0.

Lemma 2.4 An element a of the ring B0,k is a unit if and only if c∅ 	= 0.

Proof We write an element in B0,k as c∅ +∑
A⊂[k] cAuA by hypothesis, with c∅ 	= 0. Since

the ring has characteristic p and by Lemma 2.3, the inverse of c∅ + ∑
A⊂[k] cAuA is:

p−1∑

i=0

(
p − 1

i

)
(c−1

∅ )i+1

⎛

⎝
∑

A⊆[k]
cAuA

⎞

⎠
i

.
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The term c−1
∅ exists if and only if c∅ 	= 0.

Theorem 2.5 An element a of the ring B0,k is a zero-divisor if and only if c∅ = 0. The set

of all non-units form a maximal ideal and the cardinality of this maximal ideal is (pr)2
k−1

and therefore the ring B0,k is local.

Proof For the first statement, we know by Lemma 2.3 that
⎛

⎝
∑

A⊆[k]
cAuA

⎞

⎠

⎛

⎝
∑

A⊆[k]
cAuA

⎞

⎠
p−1

= 0,

when c∅ = 0. Therefore it is a zero-divisor. Lemma 2.4 gives the other direction.
Next, let m = 〈u1, u2, . . . , uk〉. Elements of this ideal are all of the form, c∅ +∑
A⊂[k] cAuA where c∅ = 0. This is necessarily all non-units and is therefore the unique

maximal ideal.

Theorem 2.6 The ring Bj,k is not local for non-zero j .

Proof The ring Bj,k is isomorphic to ⊕2j

i=1B0,k by Theorem 2.2. Then each ideal corre-
sponding to the sum of (k − 1) zero-ideals with one copy of B0,k is a maximal ideal.
Therefore, the ring is not local.

As an example of this, consider the ring B1,0 = Fp[v1]/〈v21 −v1〉. The ring is isomorphic
via Theorem 2.2 to Fp × Fp . This ring has two maximal ideals corresponding to Fp × {0}
and to {0} × Fp . Therefore, the ring is not local.

Given the definition of inner-product and the fact that the ring is commutative it is easy
to see that for any ideal I , Ann(I) = I⊥. We use this result in the following theorem.

Theorem 2.7 Let I1 = 〈ui1ui2 · · · uis 〉 and I2 = 〈ui1 , ui2 , . . . , uis 〉 be ideals of B0,k , where

i� 	= i�′ , when � 	= �′. Then |I1| = (pr)2
k−s

and |I2| = (pr)2
k−2k−s

.

Proof Elements of I1 are in the form of
∑

A⊆[k]
cAuA, cA ∈ Fpr ,

where u∅ = 1. It is clear that every uA must have {i1, i2, . . . , is} ⊆ A. Then there are 2k−s

such subsets of [k]. Hence |I1| = (pr)2
k−s

.
For the second statement, elements of I2 are in the same form. But this time, the subsets

of [k] differ. More precisely, subsets must have at least one of {i1, i2, . . . , is}. It can be easily
obtained that there are 2k − 2k−s such subsets. Hence |I2| = (pr)2

k−2k−s
.

Theorem 2.8 Let I1 = 〈ui1ui2 . . . uis 〉 and I2 = 〈ui1 , ui2 , . . . uis 〉 be ideals of B0,k . Then
I⊥
2 = I1.

Proof We have I⊥
2 ⊆ I1 by the fact that uij uA = 0 where A = {i1, i2, . . . , is} and uij ∈ A.

Equality follows from Theorem 2.7 by using the fact that B0,k is a Frobenius ring and
examining the cardinalities.

Corollary 2.9 The ideal 〈ui〉 is a self dual code of length 1 for 1 ≤ i ≤ k.
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Proof Follows from Theorem 2.7.

2.1 Graymaps

Gray maps have been one of the most important aspects of codes over rings. In essence, they
are a map from the n fold product of the ring to an ambient space where the finite field is
the alphabet. This map emanates from the map that sends elements of the ring to elements
in the the s fold product of the finite field, where s is determined by the ring. This map, in
general, preserves weight and its intention is to create interesting codes over the finite field
from codes over the ring.

In this section, we define a Gray map � : Bj,k → F
2j+k

pr . The map we give is a
generalization of the map given in [1] as well as those given in [2, 6–8], and [9].

We can view Bj,k as Bj,k−1 +ukBj,k−1 and write each element of Bj,k as a +buk . Then
we can define the map � : Bj,k → B2

j,k−1 as follows:

�(a + buk) = (b, a + b). (2.5)

We can view Bj,k as Bj−1,k +vjBj−1,k and write each element of Bj,k as a +bvj . Then
we can define the following map � : Bj,k → B2

j−1,k as follows:

�(a + bvj ) = (a, a + b). (2.6)

We now define the map � : Bj,k → F
2j+k

pr as follows:

�(a) = �j(�k(a)). (2.7)

Lemma 2.10 Let C be a linear code over Bj,k of length n. Then �(C) is a linear code of
length n(2j+k).

Proof First, we shall show that the map � is linear. We have that

�((a + buk) + (a′ + b′uk)) = �((a + a′) + (b + b′)uk)

= (b + b′, a + a′ + b + b′)
= (b, a + b) + (b′, a′ + b′)
= �(a + buk) + �(a′ + b′uk).

Then if c ∈ Bj,k−1 we have that

�(c(a + buk)) = �(ca + cbuk)

= (cb, ca + cb)

= c(b, a + b) = c�(a + buk).

This gives that � is linear.
Now, we show that the map � is also linear. We have

�((a + bvj ) + (a′ + b′vj )) = �((a + a′) + (b + b′)vj )

= (a + a′, a + a′ + b + b′)
= (a, a + b) + (a′, a′ + b′)
= �(a + bvj ) + �(a′ + b′vj ).
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If c ∈ Fj−1,k we have

�(c(a + bvj )) = �(ca + cbvj )

= (ca, ca + cb)

= c(a, a + b) = c�(a + bvj ).

This gives that � is linear.
Then the map � is the composition of j + k linear maps and therefore the map � is a

linear map.

Define the swap maps σ1, σ2, . . . , σk that act on F2j+k

pr as follows:

σk(c1, c2) = (c2, c1), ∀c1, c2 ∈ F
2j+k−1

pr ,

σk−1(c1, c2, c3, c4) = (c2, c1, c4, c3), ∀ci ∈ F
2j+k−2

pr

continuing to

σ1(c1, c2, . . . , c2j+k−1, c2j+k ) = (c2, c1, c4, c3, . . . , c2j+k , c2j+k−1), ∀ci ∈ F
2j

pr .

The next theorem shows that the map � gives some automorphisms in the image under
certain conditions.

Theorem 2.11 If the base field of Bj,k has characteristic 2 and C is a linear code over
Bj,k , then �(C) has k swap maps, σ1, σ2, . . . , σk in their automorphism group.

Proof Given an element a + buk , multiplication by 1 + uk gives (1 + uk)(a + buk) =
a+(a+b)uk . We see that �(a+buk) = (b, a+b) and �(a+(a+b)uk) = (a+b, 2a+b).
Therefore, if the characteristic of the finite field is 2, then �(a + (a + b)uk) = (a + b, b).
This gives that for characteristic 2, multiplication by the unit 1 + ui , for each i induces an
automorphism of order 2 in the image that corresponds to a swap map. Finally, let σi denote
the induced by multiplication by 1 + ui . This gives the result.

We now generalize two results from [2] and [6] respectively, where it is shown that for
the maps defined in (2.5) and (2.6), the following two

�(C⊥) = (�(C))⊥

and
�(C⊥) = (�(C))⊥

hold when the base field of the ring is F2. We now show that the two hold for the ring Bj,k

only when the base field is F2r .

Lemma 2.12 Let C be a code over Bj,k . Let � : Bj,k → B2
j,k−1 be defined as:

�(a + buk) = (b, a + b),

and let � : Bj,k → B2
j−1,k be defined as:

�(a + bvj ) = (a, a + b).

Then �(C⊥) = (�(C))⊥ and �(C⊥) = (�(C))⊥ if and only if the characteristic of the
ring Bj,k is 2.
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Proof We prove the result for �. The proof for � is similar.
Let v1+w1uk and v2+w2uk be two orthogonal vectors in Bj,k, where vi ,wi are vectors

in Bn
j,k−1. Then

[v1 + w1uk, v2 + w2uk] = [v1, v2] + ([v1,w2] + [v2,w1])uk = 0.

Moreover, we have that [v1, v2] = 0 and [v1,w2] + [v2,w1] = 0.
The images of the vectors have the following inner-product:

[�(v1 + w1uk),�(v2 + w2uk)] = [(w1, v1 + w1), (w2, v2 + w2)] =
= [v1, v2] + [v1,w2] + [v2,w1] + 2[w1,w2] = 2[w1,w2].

This will only be zero if the characteristic of the ring Bj,k is 2, i.e., the base field is F2r .
Assuming that the characteristic of the ring Bj,k is 2 gives that �(C⊥) ⊆ (�(C))⊥. Since
� is a bijection we have �(C⊥) = (�(C))⊥.

We now have the following result.

Theorem 2.13 Let C be a linear code over

Bj,k = F2r [v1, v2, . . . , vj , u1, u2, . . . , uk]/〈v2i − vi, u
2
i 〉.

Then �(C⊥) = �(C)⊥.

Proof Follows from Lemma 2.12.

Corollary 2.14 Let C be a self-dual code over

Bj,k = F2r [v1, v2, . . . , vj , u1, u2, . . . , uk]/〈v2i − vi, u
2
i 〉

of length n, then �(C) is a self-dual code over F2r of length n(2j+k).

Proof Follows from Theorem 2.13 and Lemma 2.10.

2.2 Characters

In this section, we show that the ring Bj,k is a Frobenius ring by showing that there is
a generating character for the associated character module. Recall that a character of the
module M is a homomorphism χ : M → C

∗. We note that some have the codomain
as the rationals and use the additive operation rather than the non-zero complex numbers
with multiplication. But we shall maintain the notation given in [3], where one can find a
complete description of the relationship between characters and codes.

Denote by M̂ the character module ofM . LetR be a Frobenius ring and let φ : R → R̂ be
the module isomorphism. Set χ = φ(1), giving φ(r) = χr for r ∈ R. We call this character
χ a generating character for R̂. Note that there is not a unique generating character. But by
providing a generating character for a commutative ring, we show that the ring is, in fact,
Frobenius. This is because a finite commutative ring R is Frobenius if and only if R̂ has a
generating character, see [3].

In the present situation, we have that the ring Bj,k is isomorphic to ⊕2j

i=1B0,k .
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We need only to find a generating character for B0,k then if χB0,k is the generating
character for B0,k , we have that the character χ for R defined by

χ(a) =
∏

χB0,k (ai) (2.8)

where a corresponds to (a1, a2, . . . , as) via the isomorphism, is a generating character for
Bj,k . To do this, we recall that any finite field of order pe can be written as Fp(ξ) where
ξ is a root of the irreducible polynomial q(x) of degree e. That is Fp(ξ) ∼= Fp[x]/〈q(x)〉.
Then each element in Fpe can be written as

∑
aiξ

i where ai ∈ Fp . This leads immediately
to the following lemma.

Lemma 2.15 The ring B0,k ∼= Fp[ξ, u1, u2, . . . , uk]/〈q(x), u2i 〉, where all of the indeter-
minates commute and q(x) is an irreducible polynomial of degree e. Each element in B0,k

can be written as
∑e−1

s=0
∑

A⊆[k] ξ s(ds)AuA, where dS ∈ Fp . Let η be a complex primitive

root of p-th root of unity. The generating character for B0,k is given by (η)
∑e−1

s=0
∑

A⊆[k](ds )A

showing that the ring is Frobenius.

Proof We have already explained why each element can be written in that form.
The unique minimal ideal of B0,k is the orthogonal of the unique maximal ideal. There-

fore, the minimal ideal is a = 〈u1u2 · · · uk〉. It follows that any ideal that is contained in
ker(χ) must contain the ideal a. But we have that χ(u1u2 · · · uk) = η which gives that
ker(χ) contains no non-trivial ideal. It follows that the map is a generating character and
then the ring B0,k is a Frobenius ring.

The next theorem follows from the fact that the ring decomposes by the Chinese
Remainder Theorem.

Theorem 2.16 Let

χi

⎛

⎝
e−1∑

s=0

∑

A⊆[k]
ξ s(ds)AuA

⎞

⎠ = (η)
∑e−1

s=0
∑

A⊆[k](ds )A .

The ring Bj,k
∼= ⊕2j

i=1B0,k has a generating character of the form:

χ =
2j∏

i=1

χi,

giving that the ring Bj,k is a Frobenius ring.

Proof We have that Bj,k is isomorphic to ⊕2j

i=1B0,k . It follows that the generating character
is χ from Lemma 2.15.

Then the ring is Frobenius since it has a generating character.

Let T be a square (pr)2
j+k

by (pr)2
j+k

matrix indexed by the elements of Bj,k and let

Ta,b = χa(b) = χ(ab), (2.9)

where χ is the generating character of B̂j,k .
Recall that the complete weight enumerator of a code C is defined as

cwec(xa0 , xa1 , . . . , xar−1) =
∑

c∈C

r−1∏

i=0

xni(c)
ai

, (2.10)
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where there are ni(c) occurrences of ai in the vector c.
It follows that if C is a linear code over Bj,k, then

cweC⊥ = 1

|C|cweC(T · (x0, x1, . . . , xr−1)). (2.11)

By collapsing T as in [15], we get that if C is a linear code over Bj,k, then

WC⊥(x, y) = 1

|C|Wc(x + (|Bj,k| − 1)y, x − y),

where WC(x, y) denotes the Hamming weight enumerator of C.
Now recall that the Lee weight enumerator of a code C is defined as:

LC(x, y) =
∑

c∈C

xN−wtL(c)ywtL(c) (2.12)

where N is the length of �(C).
From Section 2, we know that when the characteristic of the finite field is 2, then

�(C⊥) = �(C)⊥ which allows us to find the MacWilliams identities for the Lee weight
enumerators of codes over

Bj,k = F2r [v1, v2, . . . , vj , u1, u2, . . . , uk]/〈v2i − vi, u
2
i 〉

in the following way:

LeeC⊥(z) = W�(C⊥)(z) = W�(C)⊥(z)

where LeeC(z) is the Lee weight enumerator and W denotes the Hamming weight
enumerator. This leads to the following theorem.

Theorem 2.17 Let C be a code of length n over

Bj,k = F2r [v1, v2, . . . , vj , u1, u2, . . . , uk]/〈v2i − vi, u
2
i 〉

then

LeeC⊥(z) = 1

|C| (1 + z)2
j+knLeeC

(
1 − z

1 + z

)
. (2.13)

3 G-Codes overBj,k

In this section, we study group codes which we refer to as G-codes, over the ring Bj,k . The
point of group codes is to construct codes that are invariant canonically by the action of a
group G. This technique allows us to construct codes which other construction methods do
not find. Moreover, by applying the Gray map we are able to construct codes over a finite
field that are quasi-G codes, which mean they are held invariant by a different group and
are endowed with algebraic structure of the original ring.

3.1 Group rings

We begin by giving the standard definitions of group rings and their algebraic operations.
Let G be a finite group of order n and let R be a finite ring, then any element in RG is of the
form v = ∑n

i=1 αigi , αi ∈ R, gi ∈ G. We note that group rings in general do not require
the ring to be finite, but in our setting these are precisely the rings that we are interested in,
since we want to use them as alphabets of codes.
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Addition in the group ring is done by coordinate addition, namely
n∑

i=1

αigi +
n∑

i=1

βigi =
n∑

i=1

(αi + βi)gi .

The product of two elements in a group ring is given by
(

n∑

i=1

αigi

)⎛

⎝
n∑

j=1

βjgj

⎞

⎠ =
∑

i,j

αiβj gigj .

This gives that the coefficient of gk in the product is
∑

gigj =gk
αiβj .

We recall a construction of linear codes in Rn from the group ring RG, where G is a
finite group of order n. This construction was first given for codes over fields by Hurley in
[10] and this construction was extended to codes over finite commutative Frobenius rings in
[4]. Let R be a finite commutative Frobenius ring and let G = {g1, g2, . . . , gn} be a group
of order n. Let v = αg1g1 + αg2g2 + · · · + αgngn be an element in RG. Then define the
following matrix σ(v) ∈ M(R) to be:

σ(v) =

⎛

⎜⎜⎜⎜⎝

α
g−1
1 g1

α
g−1
1 g2

α
g−1
1 g3

. . . α
g−1
1 gn

α
g−1
2 g1

α
g−1
2 g2

α
g−1
2 g3

. . . α
g−1
2 gn

...
...

...
...

...
α

g−1
n g1

α
g−1
n g2

α
g−1
n g3

. . . α
g−1
n gn

⎞

⎟⎟⎟⎟⎠
. (3.1)

Note that the elements g−1
1 , . . . , g−1

n are simply the elements of the group G given in
some order. There is not a canonical reason for this, but rather this particular order aids in
certain proofs and computations.

For a given element v ∈ RG, we define the following code over the ring R:

C(v) = 〈σ(v)〉. (3.2)

Namely, the code C(v) is the code formed by taking the row space of the matrix σ(v) over
the finite ring R. It follows immediately that the code C(v) is a linear code, since it is
row space of a generator matrix. We stress that in no way are we assuming that the matrix
C(v) is in any way a minimal generating set for the code. In general it is not. We recall the
following definitions from [5] that we apply in our setting:

• Let Bj,k be a local Frobenius ring with unique maximal idealmi , and let w1, . . . ,ws be
vectors in Bn

j,k . Then w1, . . . ,ws are modular independent if and only if
∑

αjwj = 0
implies that αj ∈ mi for all j .

• Let w1, . . . ,ws be non-zero vectors in Bn
j,k . Then w1, . . . ,ws are independent if∑

αjwj = 0 implies that αjwj = 0 for all j .

In [5], it is shown that if the ring is local, then any modular independent set is a minimal
generating set and that if the ring is not local then any set that is both modular independent
and independent is a minimal generating set. We shall call such a set a basis for the code.

In [4], it is shown that G-codes are linear codes in Rn if and only if they are left ideals
in a group ring. Specifically, let v ∈ Bj,kG and let C(v) be the corresponding code in
Bn

j,k . Let I (v) be the set of elements of Bj,kG such that
∑

αigi ∈ I (v) if and only if
(α1, α2, . . . , αn) ∈ C(v). Then I (v) is a left ideal in Bj,kG.

The following is immediate from these results.
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Lemma 3.1 Let v ∈ RG, where R is a finite ring and G is a finite group. Then Aut(C(v))

contains G as a subgroup.

Proof This follows from the fact that the action of G on the coordinates of C(v) necessarily
holds the code invariant, since it corresponds to an ideal in the group ring.

It is also shown in [4] that for a commutative Frobenius ring R, if C is a G-code for some
G then its orthogonal C⊥ is also a G-code.

The following definition is given in [4].

Definition 3.2 Let G be a finite group of order n and R a finite Frobenius commutative
ring. Let D be a code in Rsn where the coordinates can be partitioned into n sets of size s

where each set is assigned an element of G. If the code D is held invariant by the action
of multiplying the coordinate set marker by every element of G then the code D is called a
quasi-group code of index s.

The following is immediate from the definition.

Lemma 3.3 Let C be a linear G-code over Bj,k , then �(C) is a quasi-G code of index

2j+k in F
n2j+k

pr .

Lemma 3.4 Let G be a finite group of order n and R a finite Frobenius commutative ring.
A quasi-G code of index s in Rsn is equivalent to a group code under the action of the finite
group Gs .

Proof Consider a quasi-G code of index s in Rns . Reorder the coordinates of Rns so that the
n coordinates in the orbit of a coordinate under the action of group G are grouped together.
Then the coordinates in Rns are arranged into s copies of n coordinates where the code is
held invariant by the action of the group G on each block of n coordinates. This gives the
result.

These two lemmas lead to the following important theorem.

Theorem 3.5 Let C be a linear G-code over Bj,k , then �(C) is a G2j+k
code over Fpr ,

which gives that Aut(C) necessarily contains G2j+k
as a subgroup.

Proof Lemma 3.3 gives that �(C) is a quasi-G code of index 2j+k , then Lemma 3.4 gives
that�(C) is aG2j+k

code. Finally Lemma 3.1 gives thatAut(C) necessarily containsG2j+k

as a subgroup.

This theorem can be extended even further in the case when the base field has even order.

Corollary 3.6 LetC be a linearG-code overBj,k , where the base field is F2r . ThenAut(C)

necessarily contains G2j+k
and k swap maps which generate an additional subgroup.

Proof Theorem 3.5 gives the first part and Corollary 2.14 gives the second part.
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4 Projections and lifts of self-dualG-codes overBj,k

Define πk,m : Bj,k → Bj,m by πk,m(ui) = 0 if i > m and the identity elsewhere. That is,
πk,m is the projection of Bj,k to Bj,m. Note that if k ≤ m, then πk,m is the identity map on
Bj,k . Also define πj,l : Bj,k → Bl,k by πj,l(vi) = 0 if i > l and the identity elsewhere.
That is, πj,l is the projection of Bj,k to Bl,k . Note that if j ≤ l, then πj,l is the identity map
on Bj,k . Now, let a ∈ Bj,k and define

�(j,k),(l,m) : Bj,k → Bl,m

by

�(j,k),(l,m)(a) = πj,l(πk,m(a)).

That is, �(j,k),(l,m) is the projection of Bj,k to Bl,m.

Example 4.1 Let B1,1 = F3[v1, u1]/〈v21 − v1, u
2
1〉. Consider the projection of a = 2+ v1 +

2u1 + 2v1u1 from B1,1 to B0,0 = F3. By the above definition we have that �(1,1),(0,0)(2 +
v1 + 2u1 + 2v1u1) = π1,0(π1,0(2 + v1 + 2u1 + 2v1u1)) = π1,0(2 + v1) = 2.

We allow j and k to be ∞ as well and denote this map as �(∞,∞),(l,m). In this case the
ring B∞,∞ is an infinite ring. If C = �(j,k),(l,m)(C

′) for some C′ and j > l, k > m, then
C′ is said to be a lift of C.

Theorem 4.2 Let C(v) be a self-dual G-code over Bj,k . Then �(j,k),(l,m)(C(v)) is a self-
orthogonal G-code over Bl,m.

Proof We first show that �(j,k),(l,m)(C(v)) is a self-orthogonal code over Bl,m. Let w =
(w1, w2, . . . , wn) and z = (z1, z2, . . . , zn) be vectors in C(v). We have that

�(j,k),(l,m)

(∑
wizi

)
=

∑
(�(j,k),(l,m)(wi)�(j,k),(l,m)(zi)).

If
∑

wizi = 0 in Bj,k then �(j,k),(l,m)(0) = 0 so

〈�(j,k),(l,m)(w),�(j,k),(l,m)(z)〉(l,m) = 0.

Therefore �(j,k),(l,m)(C(v)) is self-orthogonal.
To show that �(j,k),(l,m)(C(v)) is also a G-code, we notice that the pro-

jection �(j,k),(l,m)(C(v)) = �(j,k),(l,m)(〈σ(v)〉) corresponds to �(j,k),(l,m)(v) =
�(j,k),(l,m)(αg1)g1+�(j,k),(l,m)(αg2)g2+· · ·+�(j,k),(l,m)(αgn)gn, where αgi

∈ Bj,k . Thus
�(j,k),(l,m)(C(v)) is a G-code over Bj,k .

Theorem 4.3 Let w ∈ Bl,mG generate a self-dual G-code over Bl,m. Then w generates a
self-dual code over Bj,k for all j > l and k > m. Moreover, the self-dual code over Bj,k is
also a G-code.

Proof Let Cj,k be the code generated by w ∈ Bj,kG. We proceed by induction. We know
Cl,m is a self-dual G-code by assumption.

Assume Cj,k is a self-dual G-code. We have that Cj,k = 〈σ(w)〉, where w ∈ Bj,kG,
Cj+1,k = Cj,k ⊕ vj+1Cj,k , where Cj,k ∩ vj+1Cj,k = ∅ and Cj,k+1 = Cj,k + uk+1Cj,k ,
where Cj,k ∩ uk+1Cj,k = ∅. Then we have that Cj+1,k = 〈σ(w)〉 ⊕ vj+1〈σ(w)〉,
Cj,k+1 = 〈σ(w)〉 ⊕ uk+1〈σ(w)〉 and |Cj+1,k| = |Cj,k||Cj,k| =

√
(pr)2

j+k

√
(pr)2

j+k =
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√
(pr)2

j+k+1 = |Cj,k+1|. Then for vectors w, z,w′, z′ ∈ Cj,k we have (since Cj,k is
self-dual by assumption),

[w + vj+1w′, z + vj+1z′]j+1 = [w, z]j + vj+1[w, z′]j
+vj+1[w′, z]j + v2j+1[w′, z′]j = 0

and

[w + uk+1w′, z + uk+1z′]k+1 = [w, z]k + uk+1[w, z′]k
+uk+1[w′, z]k + u2k+1[w′, z′]k = 0.

Hence Cj+1,k and Cj,k+1 are self-dual codes since both are self-orthogonal and both have
the proper cardinality. Therefore by mathematical induction Cj,k is a self-dual code for all
finite j and k.

Next we prove that C∞,∞ is self-dual. If z,w ∈ C∞,∞ then there exist j and k with
z,w ∈ Cj,k and hence [z,w]j = [z,w]k = 0 which implies [z,w]∞ = 0. If w ∈ C⊥∞,∞
then w ∈ C⊥

j,k for some j and k which gives that w ∈ Cj,k and hence in C∞,∞. Therefore
C∞,∞ is self-dual.

To show that Cj,k is also a G-code, let w = αg1g1 + αg2g2 + · · · + αgngn, where
αgi

∈ Bl,m. Then we see that Cj+1,k = 〈σ(w)〉⊕vj+1〈σ(w)〉 corresponds to w+vj+1w =
(αg1 + vj+1αg1)g1 + (αg2 + vj+1αg2)g2 + · · · + (αgn + vj+1αgn)gn in Bj+1,kG. Similarly,
Cj,k+1 = 〈σ(w)〉⊕uk+1〈σ(w)〉 corresponds to w +uk+1w = (αg1 +uk+1αg1)g1 + (αg2 +
uk+1αg2)g2 + · · · + (αgn + uk+1αgn)gn in Bj,k+1G. Thus Cj,k is a G-code.

As a consequence of the above theorem, we have the following result.

Corollary 4.4 If C is a self-dual G-code over Bl,m then there exists a self-dual code C′
over Bj,k , for j > l and k > m with �(j,k),(l,m)(C

′) = C.

5 The gray image of G-codes overBj,k

In this section, we restrict our attention to the ring Bj,k = F2r [v1, v2, . . . , vj ,

u1, u2, . . . , uk]/〈v2i −vi, u
2
i 〉 and employ the Gray map defined in Section 2. We extend the

Gray map � linearly to all of Bj,k and define the Lee weight of an element in Bj,k to be the

Hamming weight of its image. We get a linear distance preserving map from Bn
j,k to F

2j+kn
2r .

From Theorem 2.13 we know that for any linear code over Bj,k we have �(C⊥) =
�(C)⊥. As a consequence of this, we get the following result.

Corollary 5.1 Let C be a G-code over Bj,k . Then �(C⊥) = �(C)⊥.

Proof From the definition of a G-code, we know that C is linear. The rest follows from
Theorem 2.13.

Theorem 5.2 If C is a self-dual G-code of length n over Bj,k , then �(C) is a self-dual
G-code of length n(2j+k) over F2r .

Proof If C = C⊥, then �(C) = �(C⊥) = �(C)⊥ and we have that �(C) is self-dual. To
show that �(C) is also a G-code, we see that �(C) = �(〈σ(v)〉) corresponds to �(v) =
�(αg1)g1 + �(αg2)g2 + · · · + �(αgn)gn in F2r G. Thus, �(C) is a G-code.
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Theorem 5.3 Let C be a self-dual G-code over Bj,k of length n, then �(C) is a self-dual
Gn-code of length n(2j+k) over F2r . If the base field is the binary field and the Lee weight
of every codeword is 0 (mod 4), then �(C) is a Type II binary code.

Proof If C = C⊥ then by Corollary 5.1, �(C⊥) = �(C)⊥.

Since � is distance preserving, the following corollary immediately follows from the
bounds given in [12]. Note that for j ≥ 1 and k ≥ 1, the length of the binary image of a code
over Bj,k will always be divisible by 4, hence the case n ≡ 22 (mod 24) is not possible for
the image of an Bj,k code.

Corollary 5.4 Let dL(n, I ) and dL(n, II ) denote the minimum distance of a Type I and
Type II G-code over Bj,k of length n, respectively, where the base field is F2. Then, for
j ≥ 1 and k ≥ 1, we have

dL(n, I ), dL(n, II ) ≥ 4

⌊
2(j−1)+(k−1)n

6

⌋
+ 4.

6 Reversible G-codes overBj,k

Lastly in this paper, we extend some results from [1] on reversible G-codes. We start with a
definition.

Definition 6.1 A code C is said to be reversible of index α if ai is a vector of length α and
cα = (a0, a1, . . . , as−1) ∈ C implies that (cα)r = (as−1, as−2, . . . , a1, a0) ∈ C.

For the remainder of this section, we fix the listing of the group elements as follows.
Let G be a finite group of order n = 2l and let H = {e, h1, h2, . . . , hl−1} be a subgroup
of index 2 in G. Let β /∈ H be an element in G, with β−1 = β. We list the elements of
G = {g1, g2, . . . , gn} as follows:

{e, h1, . . . , hl−1, βhl−1, βhl−2, . . . , βh2, βh1, β}. (6.1)

In [1], the following is proven.

Theorem 6.2 Let R be a finite ring. Let G be a finite group of order n = 2l and let
H = {e, h1, h2, . . . , hl−1} be a subgroup of index 2 in G. Let β /∈ H be an element in G

with β−1 = β. List the elements of G as in (6.1), then any linear G-code in Rn (a left ideal
in RG) is a reversible code of index 1.

We now employ the map defined in Section 2 and prove the following result.

Theorem 6.3 Let G be a finite group of order n = 2l and let H = {e, h1, h2, . . . , hl−1}
be a subgroup of index 2 in G. Let β /∈ H be an element in G with β−1 = β and list the
elements of G as in (6.1). If C is a linear G-code in Bj,k (a left ideal in Bj,kG), then �(C)

is a reversible G2j+k
-code over Fpr .

Proof By Theorem 6.2, we have that C is a reversible code. Therefore, if
(c0, c1, . . . , cn−1) ∈ C we have that (cn−1, cn−2, . . . , c1, c0) ∈ C, where ci ∈ Bj,k . Then
�(C) is a vector of length 2j+k . This gives that

(�(c0),�(c1), . . . , �(cn−1)) ∈ �(C)
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and then
(�(cn−1),�(cn−2), . . . , �(c1),�(c0)) ∈ �(C).

This gives the first part of the result.
The last statement comes from Theorem 3.5.

The following result can also be found in [1].

Theorem 6.4 Let R be a finite ring. Let G1,G2, . . . , Gn be finite groups, each of order
2� and let H1, H2, . . . , Hn, where Hi = {ei, hi1 , hi2 , . . . , hi�−1}, be subgroups of index 2

in G1,G2, . . . , Gn respectively. Let βi /∈ Hi be an element in Gi with β−1
i = βi . List the

elements of Gi as

ei, hi1 , hi2 , . . . , hi�−1 , βihi�−1 , βihi�−2 , . . . , βihi2 , βihi1 , βi . (6.2)

Then any linear code D generated by the matrix

M =
[
σ(v1) σ (v2) σ (v3) . . . σ (vn)

σ (vn) σ (vn−1) σ (vn−2) . . . σ (v1)

]
,

where vi ∈ RGi, is a reversible code of index 1.

With the above theorem, our ring Bj,k and the Gray map from Section 2, we have the
following result.

Theorem 6.5 Let R be a finite ring. Let G1,G2, . . . , Gn be finite groups, each of order
2� and let H1, H2, . . . , Hn, where Hi = {ei, hi1 , hi2 , . . . , hi�−1}, be subgroups of index 2

in G1,G2, . . . , Gn respectively. Let βi /∈ Hi be an element in Gi with β−1
i = βi . List the

elements of Gi as

ei, hi1 , hi2 , . . . , hi�−1 , βihi�−1 , βihi�−2 , . . . , βihi2 , βihi1 , βi . (6.3)

If D is a linear code in Bn
j,k generated by the matrix

M =
[
σ(v1) σ (v2) σ (v3) . . . σ (vn)

σ (vn) σ (vn−1) σ (vn−2) . . . σ (v1)

]
,

where vi ∈ Bj,kGi, then �(D) is a reversible code over Fpr of index 2j+k .

Proof By Theorem 6.4, we have that D is a reversible code of index 1. Therefore, if

((a10, a
1
1, . . . , a

1
2�−1), (a

2
0, a

2
1, . . . , a

2
2�−1), . . . , (a

n
0 , a

n
1 , . . . , an

2�−1)) ∈ D

we have that

((an
2�−1, a

n
2�−2, . . . , a

n
0 ), (an−1

2�−1, a
n−1
2�−2, . . . , a

n−1
0 ), . . . , (a12�−1, a

1
2�−2, . . . , a

1
0)) ∈ D,

where am
i ∈ Bj,k with i ∈ {0, 1, 2, . . . , 2� − 1} and m ∈ {1, 2, 3, . . . , n}. Then �(am

i ) is a
vector of length 2j+k . This gives that

((�(a10),�(a11), . . . , �(a12�−1)), (�(a20),�(a21), . . . , �(a22�−1)), . . . ,

(�(an
0 ),�(an

1 ), . . . , �(an
2�−1))) ∈ �(D)

then

((�(an
2�−1),�(an

2�−2), . . . ,�(an
0 )),�((an−1

2�−1),�(an−1
2�−2), . . . , �(an−1

0 )), . . . ,

(�(a12�−1),�(a12�−2), . . . , �(a10))) ∈ �(D).
This proves the result.
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7 Conclusion

In this work, we studied G-codes, self-dual G-codes and reversible G-codes over a new
family of rings Bj,k . In particular, we showed that the projection of a G-code over Bj,k to
a code over Bl,m is also a G-code, we defined a Gray map for the new family of rings and
showed that the image of a self-dual G-code under this Gray map is also a self-dual G-code.
We also proved that the image of a reversible G-code under the Gray map is a reversible
G2j+k

-code and that the images of G-codes under the Gray map are Gs-codes for some
s. A suggestion for future research is to search for self-dual G-codes or other families of
codes over our new family of rings. We believe that many interesting codes can be obtained
as Gray images of the codes over the ring Bj,k since as we showed in this work, the Gray
images of the codes over the ring Bj,k have rich automprphism groups.
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