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Abstract: An accelerating global energy demand, paired with the harmful environmental effects of 

fossil fuels, has triggered the search for alternative, renewable energy sources. Biofuels are arguably 

a potential renewable energy source in the transportation industry as they can be used within cur-

rent infrastructures and require less technological advances than other renewable alternatives, such 

as electric vehicles and nuclear power. The literature suggests biofuels can negatively impact food 

security and production; however, this is dependent on the type of feedstock used in biofuel pro-

duction. Advanced biofuels, derived from inedible biomass, are heavily favoured but require fur-

ther research and development to reach their full commercial potential. Replacing fossil fuels by 

biofuels can substantially reduce particulate matter (PM), carbon monoxide (CO) emissions, but 

simultaneously increase emissions of nitrogen oxides (NOx), acetaldehyde (CH3CHO) and peroxy-

acetyl nitrate (PAN), resulting in debates concerning the way biofuels should be implemented. The 

potential biofuel blends (FT-SPK, HEFA-SPK, ATJ-SPK and HFS-SIP) and their use as an alternative 

to kerosene-type fuels in the aviation industry have also been assessed. Although these fuels are 

currently more costly than conventional aviation fuels, possible reduction in production costs has 

been reported as a potential solution. A preliminary study shows that i-butanol emissions (1.8 

Tg/year) as a biofuel can increase ozone levels by up to 6% in the upper troposphere, highlighting 

a potential climate impact. However, a larger number of studies will be needed to assess the practi-

calities and associated cost of using the biofuel in existing vehicles, particularly in terms of identi-

fying any modifications to existing engine infrastructure, the impact of biofuel emissions, and their 

chemistry on the climate and human health, to fully determine their suitability as a potential renew-

able energy source. 
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1. Fossil Fuel and its Alternatives 

Fossil fuel combustion started at the beginning of the industrial revolution and has 

since played a crucial role in supplying global energy demands. The exponential increase 

in industrialisation, population and urbanisation over recent years has resulted in a global 

energy crisis and concern regarding the dependence on non-renewable sources of energy. 

Fossil fuels, including petrol, diesel, coal and natural gas, supplied 84% of the global, pri-
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mary energy consumption in 2019, making them the dominant source of energy world-

wide (Figure 1) [1], but at current consumption rates it is predicted that gas and oil re-

serves will run out in ~50 years [2]. 

 

Figure 1. Global energy consumption by source in 2019. Figure was created using the data taken 

from BP [1]. 

In terms of the environment, the burning of the fossil fuels could emit gaseous pol-

lutants (e.g., carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulphur 

oxides (SOx), volatile organic compounds (VOCs) and particulate matter (PM)), which can 

change the composition of the atmosphere and thus have harmful effects on climate and 

public health. In an effort to mitigate the damaging effects of climate change due to green-

house gas (GHG) emissions, the Paris Agreement, introduced in 2015, set a target to “limit 

global temperature rise to 2 °C above pre-industrial levels, whilst pursuing efforts to limit 

the increase to 1.5 °C” [3]. 

An estimated 58% of fossil fuels are consumed by the transportation of people and 

goods via road, rail, air and marine travel [4]. In 2016, the transport sector alone was re-

sponsible for 16% of the total, global GHG emissions, highlighting the pressing need for 

green alternatives to petrol and diesel [2]. 

A potential solution to reduce GHG emissions, stabilise the global climate, and im-

prove energy security is to transition away from use of conventional fossil fuels and to-

wards greener, renewable sources of energy. Key renewable energy sources include solar, 

wind, hydro, geothermal and biofuel, all of which have the ability to provide energy ser-

vices with reduced emissions of GHGs and air pollutants [5,6]. Sustainability Develop-

ment Goal (SDG) 7, one of the 17 SDGs established by the United Nations General Assem-

bly, aims to “ensure access to affordable, reliable, sustainable and modern energy for all” 

which highlights the importance of international cooperation with the increased use of 

renewable energy sources [7]. In addition, as countries try to reduce poverty, they in turn 

increase urbanisation and are becoming key contributors to the rising GHG emissions. At 

present, six of the top 10 emitting countries are developing countries [8]. Therefore, the 

research and development into renewable energy, and associated technologies, has fo-

cused on making these alternatives economically viable and sustainable for all countries. 

Other efforts to reduce emissions are to increase energy efficiency and electrify sec-

tors, for example, using electric vehicles and hybrid engines in the transport sector. Many 

countries have introduced policy measures to increase adoption of electric vehicles and 

announced electrification goals [9]. For instance, the UK plans “to end sales of new petrol 

and diesel cars and vans by 2030, with all vehicles required to have significant zero emis-

sion capability” [10]. 
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2. Suitability of Biofuel as a Potential Renewable Energy Source 

Considering the different renewable energies, biofuels are arguably a potential re-

newable energy source in the transportation industry. Almost all other renewable ener-

gies, particularly solar, wind, hydro and nuclear power sources, only generate electricity 

and hence cannot equally compete with oil [11]. There are multiple difficulties associated 

with electricity, which make these energy sources less appealing, such as transmission 

over long distances and conversion to different types of energy sources. In addition, bio-

fuels can be used within current infrastructures and require less technological advances 

compared with other energy sources. For this reason, both developed and developing 

countries have focused on expanding their bioenergy market and set up intergovernmen-

tal strategies for the use of biofuels. The introduction of such policies, particularly in Eu-

rope, the US and Brazil, has caused the biofuel industry to grow in the last decade with 

biofuels now representing around 3% of transport fuels in use globally [12,13]. 

Biofuels are combustible fuels produced from organic matter such as plant material 

and animal waste. They can exist in solid, liquid, and gaseous forms; however, consider-

able research focuses on liquid biofuels as they have the greatest potential to help decar-

bonise the transport sector due to easier integration with existing technology [14]. Ethanol 

is currently the most widely used biofuel globally, accounting for approximately 80% of 

all liquid biofuel production [15,16]. The use of global ethanol as a biofuel (so-called, “bi-

oethanol”) production has increased significantly in recent years, with the global produc-

tion predicted to be over 135 billion L by 2024 with the largest contributions from the USA 

(42%) and Brazil (31%) biofuel industries [17]. 

3. Types of Biofuels 

Four categories are used to group biofuels based on the type of feedstock used to 

produce them, their limitations as a renewable source, and their technological progress. 

First generation biofuels are produced from edible feedstocks, e.g., bioethanol from corn 

and sugar cane and biodiesel from oil seed crops (soybean, oil palm, rapeseed ad sun-

flower) using well understood, economically viable technologies and processes, such as 

fermentation, distillation and transesterification [18,19]. First generation biofuels only 

provide minimum benefit over fossil fuels in terms of greenhouse gas emissions as they 

require a large amount of energy (from fossil fuels) to grow, collect and process. 

Second generation biofuels are produced from agricultural by-products or cellulosic 

materials such as wood, leaves and grass and can be grown on marginal land [20–23]. 

They are produced by converting cellulose into sugar units, which can then be converted 

to ultimately produce alcohol. Cellulosic sources that grow alongside food crops could be 

used for biomass, but this process takes away so many nutrients from the soil and would 

need to be restored nutrients by applying fertilizer. This process is both costly (chemically 

and economically) and time-consuming, requiring sophisticated equipment and larger-

scale facilities. 

Third-generation biofuels are made from aquatic cultivated feedstock, i.e., algae 

[24,25]. Algae have been shown to have great potential as biofuel feedstocks, due to their 

capabilities of producing much higher yields with reduced resource inputs [26–28]. The 

use of algae also has other environmental advantages, as a result of their ability to fix CO2, 

which has been proposed as a method for removing CO2 from flue gases from power 

plants, thus reducing GHG emissions [29–31]. However, there has been little research on 

the economic and environmental feasibility of using algae as a biofuel feedstock, with 

concerns regarding its commercial-scale production. The growth of seaweed is highly sea-

sonal, meaning that preservation methods need to be developed to allow year-round stor-

age of the feedstock for fuel manufacturing processes [32]. The drying stage is the key part 

of the energy extraction method. The high water content of algae compared with terres-

trial crops [33], means that this process is highly energy intensive [34]. Sun-drying has 

been used as a low-energy alternative method [35]. However, this has its own limitations, 
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being highly weather dependent. These factors highlight the growing need for research 

into algae as biofuel feedstocks, with its future applicability being highly dependent on 

the development of biomass-to-fuel conversion technology which can work with wet 

feedstocks, or drying processes with much reduced energy requirements [32]. The fourth-

generation biofuels are found from the bioengineered microorganisms, e.g., bioengi-

neered algae, yeast, fungi and cyanobacteria [36,37]. Second, third and fourth generation 

biofuels are commonly referred to as ‘advanced biofuels’ and thought to hold many ad-

vantages over first generation fuels, but, they are still in the research and development 

phase and have not reached their full commercial potential. 

4. Advantages and Disadvantages of Biofuel Production and Consumption 

A considerable amount of research on biofuels as a renewable energy source is in-

conclusive and contradictory [38–41]. Reasons for these contradictions include the differ-

ent generations of biofuels and geographic regions that were studied. Countries have dif-

fering economies, climates and policies, which consequently impact the production and 

consumption of biofuels. In 2019, the US was the largest biofuel consumer in the world, 

followed by Brazil, Indonesia, China and France (Figure 2), where the commercial pro-

duction of first-generation feedstocks such as corn and sugar cane, is well established [42]. 

Global biofuel production and consumption in 2019 increased by ~3% and ~6%, respec-

tively, as displayed in Figure 3a,b. The growth in both cases was led by Brazil and Indo-

nesia where the majority of production and consumption involved ethanol in Brazil and 

biodiesel in Indonesia [1]. 

  

  

 

Figure 2. World map of total biofuel consumption in thousand barrels per day (Adapted from USEIA [42]).
 
The US, Brazil, 

Indonesia, China and France are colored dark green as they consume between 74–1200 thousand barrels of biofuel each 

day. 

Biofuels are often sold in the global market as blends with fossil fuels, in order to be 

compatible with conventional vehicle engines and reduce the need for additives [43]. Bra-

zil has successfully implemented public policies to increase biofuel consumption and in 
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turn improve air quality. The introduction of flex-fuel vehicles, biofuel subsidies, and gov-

ernment mandates have all contributed to Brazil’s current ranking as one of the cleanest 

energy countries in the world [44]. Indonesia has the potential to become the largest bio-

fuel manufacturer in the world [45]. Despite first generation biofuels being successfully 

implemented globally, recent studies highlighted negative consequences of expanding 

their production further and argue for a greater effort on the production of advanced bio-

fuels [46–48]. 

 
(a) 

 
(b) 

Figure 3. Global Biofuel (a) Production and (b) Consumption from 2009 to 2019. Figures were created using the data taken 

from BP [1]. 

Experts in ecology and global dynamics have long established that the removal of 

more than 1% of matter circulating in ecosystems leads to a violation of the stability and 

subsequent degradation of the biosphere. Humanity currently consumes almost 10% of 

the products as food, fodder and fuel from natural land ecosystem which is the main rea-

son for the degradation of biosphere [11]. Global annual fossil fuel consumption has al-

ready exceeded 15 billion metric tonnes and continues to grow rapidly [1]. Biofuel pro-

duction as an alternative of natural fossil fuel could destroy the natural ecosystem and 
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violate the equilibrium of global biosphere processes. If we consider one percent of the 

annual production of dry green biomass on Earth is about 2 billion metric tonnes, which, 

even without taking into account the difference in specific caloric content, is almost an 

order of magnitude lower than the current global energy consumption [11]. However, 

considering the other associated energy costs for converting fuel from the green mass (e.g., 

costs of cultivating the land, sowing, fertilizers, harvesting, transportation, drying, chem-

ical processing, etc.) give an accurate energy balance estimation which has high regional 

variability. The energy balance defined as EROEI (Energy Return On Energy Invested) for 

the production of bioethanol and biodiesel in the US is slightly higher than 1 [49]. Thus, 

in order to generate a certain amount of biofuel, it is necessary to spend almost the same 

amount of fossil fuel. However, EROEI for the production of ethanol from sugarcane in 

Brazil is 5 to 10, suggesting sugarcane ethanol production in Brazil costs less than that in 

US [50,51] and Brazil would benefit with using biofuel as energy source.  

Biofuels have both positive and negative effects on the economy, environment and 

public health [52]; many studies suggest it is crucial that governments across the globe 

rigorously consider these impacts prior to any future biofuel investments or implementa-

tion strategies [53,54]. Firstly, the economic security of a country can be improved with a 

larger biofuel industry, especially through the creation of jobs in rural and under-devel-

oped areas [55,56]. In addition, not all countries have large crude oil reserves so a shift 

towards biofuel production would allow countries to reduce both their dependence on 

fossil fuels and, consequently, their import costs. For instance, Brazilian biofuel produc-

tion between 2005 and 2014 was estimated at 17.4 billion L, saving 12.9 billon US dollars 

in fossil fuel import costs [39]. Biodiesel also has a better lubricity and is less toxic than 

conventional diesel, making it safer and easier to handle [57]. In spite of these benefits, 

several problems stand in the way of using biofuels as a replacement to fossil fuels, for 

example, comparing with diesel, biodiesel has a lower calorific value, higher NOx emis-

sions, higher copper strip corrosion and fuel pumping difficulty [58,59]. However, the 

influence of the lower calorific value of biofuel on the performance of the engine is re-

duced by more efficient combustion due to the presence of oxygen in biodiesel and/or 

ethanol. Biofuels also have higher production costs in the current market due to require-

ment of more intensive processing procedures and, as with increased agriculture of any 

form, the production and end use of biofuels comes with concerns of deforestation, biodi-

versity loss and increased fertilizer and pesticide use [60]. 

The biofuel industry today consists mainly of first-generation biofuels produced 

from edible feedstocks, therefore, a concern which dominates the biofuel debate is that 

they will negatively impact food production and security [11,61]. Although biofuels are 

renewably sourced, the production of biofuel crops can lead to competition for natural 

resources, particularly land, food, and water [61,62]. Alternatively, increased biofuel con-

sumption can cause existing food crops to move from food to biofuel markets [63]. Re-

duced food production is likely to trigger a subsequent rise in food prices, which could 

harm the economy and worsen food insecurity for those in poverty [11]. Studies in the US, 

Brazil, Japan and Europe suggest that the use of food crops in biofuel production has been 

important in explaining the steady increase in food prices since 2000 [64]. 

The agricultural crops (e.g., sugarcane, corn) for bioethanol production on an indus-

trial scale led to rapid and irreversible soil degradation, water scarcity, fertilizer use and 

pesticide application resulting in air and water pollution, and the loss of wild and agri-

cultural biodiversity [65]. This is one of the reasons for the transition to the production of 

biofuels of the subsequent generations. 

The increased biofuel production can simultaneously improve food production by 

reducing GHG emissions which could be a current threat to food security. Reduced GHG 

emissions would lead to a lower global temperature, which could both increase crop yield 

and the quality of crops grown [56]. A greater demand for biofuels could also encourage 

agricultural investment which would benefit both food and biofuel production, as well as 
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bring opportunities to under-developed areas [39]. Although debates concerning the im-

pact of increased biofuel demand have been ongoing since the 1970s, recent policies and 

technological developments have given these arguments a greater significance today. 

Advanced fuels share many advantages over first-generation biofuels, such as re-

duced land requirements and minimal fertilizer, pesticide, and fossil energy input [66]. 

Additional benefits have been recognized when using microalgae as a feedstock, such as 

faster biomass production, high oil content and a capability to grow throughout the year 

in both natural and artificial environments [67]. However, there are challenges to com-

mercialize the large-scale production of these advanced biofuels as the cost of production 

is high and the performance of current conversion technologies requires improvement 

[47,68]. Additionally, despite the strong agreement across the literature that a shift to ad-

vanced biofuels is needed, the reduced application of these fuels in industry makes pro-

jections of their future environmental impact difficult. Instead of solely relying on one 

generation of biofuel, the best approach may be a combination of resources to manage the 

increasing global demand [48]. 

Increasing use of biofuel across the world is likely to make up a significant proportion 

of global trace VOCs in the near future. The large-scale use of biofuel will result in direct 

emissions into the atmosphere via leakage, evaporation or incomplete combustion. There-

fore, we need to have a good understanding of their behaviour (e.g., chemistry, transport) 

under atmospheric conditions, as well as combustion conditions. 

5. Environmental Impact of Biofuel Use 

A key benefit associated with the replacement of fossil fuels for biofuels is the re-

duced air pollution from motor vehicles [11,69]. Explosions are reported with the extrac-

tion of crude oil for fossil fuels and many aquatic reserves can be polluted during extrac-

tion, posing a damaging effect to sea-life [70], thus extraction of biofuels is far less dam-

aging to the local environment. Biofuels tend to burn cleaner, the increased use of bio-

diesel and ethanol blends in vehicle engines, causes a reduction in PM, CO and unburned 

VOC emissions than traditional fuels [53,54,71,72]. The main explanation for these re-

duced emissions within literature is that the higher oxygen content of ethanol and bio-

diesel, compared with petrol and diesel [73,74], leads to a more complete combustion and 

hence a decrease in particulate content and exhaust gas [11]. Although biofuels are still 

producing CO2, the carbon footprint is smaller as biomass feedstocks act as a carbon sink 

by absorbing CO2 for photosynthesis during crop growth [40,75]. The application of bio-

fuels in Brazil demonstrates their potential to decrease CO2 emissions; a recent report re-

leased by the Brazilian Department of Agriculture Livestock Supply states that by “adding 

up all the biodiesel consumed in Brazil since 2008, the GHG avoided emissions have al-

ready reached 21.8 million tons of CO2, which is equivalent to nearly 158 million trees in 

an area corresponding to 144 thousand football fields” [39,76]. In addition, biofuels also 

have the potential to be ‘carbon negative’ through strategic choices of producers and the 

use of applications such as carbon capture and storage [77]. However, assuming carbon 

neutrality is problematic as biofuels produced in areas such as North America and Europe 

are often termed ‘carbon positive’ due to the large input of fossil fuel activities and ferti-

lizer in their production [77]. Adoption of biodiesel as a fractional component of diesel 

use was investigated using a global three-dimensional chemistry transport model, STO-

CHEM-CRI and found an overall improvement in air quality with reductions in ozone, 

PM, aromatic species and peroxy acetyl nitrate (PAN) [78]. Additionally, despite the fa-

vourable reduction in PM, CO and VOC emissions, the majority of the literature demon-

strates that there is an unfavourable increase in NOx emissions when using biofuels as 

opposed to fossil fuels [39,53,54]. The combustion and exhaust emissions of a single cyl-

inder diesel engine, with biodiesel blends, found that NOx emissions were significantly 

higher than diesel alone [79,80]. The general consensus across the literature is that the 

increased NOx emissions result from higher combustion temperatures produced by the 

slightly advanced injection of biofuels into the engine cycle, due to their different physical 
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properties compared with conventional fossil fuels. An alternative theory is that the 

higher levels of NOx are caused by a reduction in heat dissipation due to reduced soot 

production, which would also lead to increased flame temperatures [53]. The increased 

NOx emissions from biofuels could lead to adverse impacts on both the environment and 

public health because of formation of additional ozone, which is a component of photo-

chemical smog and powerful oxidant [81,82]. In recent decades, many epidemiological 

studies have investigated the link between O3 exposure and adverse health effects. Re-

search into the health impacts associated with O3 exposure has continued into the 1990s 

and 2000s. Studies have demonstrated significant and sustained links between short-term 

O3 exposure and hospital admissions [83–85], with many also reporting a strong associa-

tion with mortality across the world [86–88]. 

There are some cases where biofuel blends reduced NOx and CO emissions, as a re-

sult of a greater resistance against knocking [89]. This inconsistency between literature is 

understandable due to the complexity of combustion and the variation between different 

studies such as: engine type, vehicle age, fuel injection strategy and other conditions, 

which influence emissions [53,90]. However, as most investigations show a beneficial re-

duction in PM emissions with the increased use of biofuel blends, multiple suggestions 

have been made on how to mitigate the associated harmful NOx emissions. For instance, 

delaying fuel injection, addition of water in biofuel blends, and a medium engine speed 

are all potential ways to decrease NOx pollution [53,89,91]. 

As well as increased NOx emissions, the wider application of biofuels within trans-

portation could lead to an increase in the VOCs and aerosol particles released into the 

atmosphere [92]. The oxidation of ethanol and biodiesel, within an internal combustion 

engine, can form high concentrations of aldehydes compared with fossil fuels due to the 

presence of the hydroxyl group [93]. Regions with high levels of bioethanol use have ex-

hibited higher acetaldehyde concentrations, with urban levels estimated to increase by up 

to 650% when an 85% ethanol-petroleum blend is used [94]. Formaldehyde and acetalde-

hyde are the most abundant due to the use of biofuels [95], and are defined as toxic air 

pollutants by the US Clean Air Act as they can cause respiratory irritation and elevate 

ozone levels [53]. Formaldehyde in vehicle exhaust is mainly produced from the incom-

plete combustion of alcohols. The initial degradation of ethanol involves the direct break-

age of the C-C bond forming the hydroxymethyl radical, which either reacts with oxygen 

or decomposes in the atmosphere, to produce formaldehyde [95]. Acetaldehyde emissions 

from biofuels are mainly produced from vehicle exhaust, in the post flame oxidation of 

unburned ethanol with a hydroxyl radical (OH) [95]. Initially, this takes place via a H-

abstraction reaction which can occur at different reaction sites along ethanol [96]. Approx-

imately 85% of the abstraction occurs at the α-site of ethanol. The resultant hydroxy-ethyl 

radical then reacts further with oxygen to produce acetaldehyde [97]. Once formed, acet-

aldehyde is rapidly removed from the atmosphere by reaction with OH and importantly 

photolysis that enhances HOx levels. Reaction with OH involves H-abstraction from the 

carbonyl carbon to form a peroxyacetyl radical which can go on to react with NO2 and 

produce PAN [98,99]. Photolysis of acetaldehyde is also an important loss process, con-

tributing ~10% to the total loss rate for this compound [100–102]. Photolysis yields HCO 

and CH3 radicals, where HCO instantly forms HO2 radicals on reaction with O2. Therefore, 

photolysis contributes to the HOx budget and can be an important additional source of 

HOx, e.g., in the upper Troposphere [103]. The reaction scheme of the degradation of eth-

anol and acetaldehyde can be found in the Appendix . 

Studies in Brazil and New Mexico have shown increased concentrations of acetalde-

hyde and PAN in the atmosphere during periods of increased biofuel use [99]. A study 

undertaken by Jacobson [104] also showed that such a blend causes elevations in the levels 

of PAN, whilst also increasing ozone-related mortality. PAN is a key contributor to pho-

tochemical smog, typically in warm summer climates, which consequently causes eye ir-

ritation and respiratory issues [53]. PAN can also transport and release NOx to the remote 

troposphere which is a major concern when considering the global distribution of the two 
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main tropospheric oxidants: ozone and OH [105]. To a lesser extent, emissions from bio-

fuels can also occur at different stages of the supply chain such as transporting feedstock 

to the biorefinery, producing the liquid biofuel, and distributing biofuels to consumers 

[106]. 

In the 3-D chemical transport model, STOCHEM-CRI study [107,108], the ethanol 

field was generated using the emission inventory [109], the Common Representative In-

termediates (CRI) mechanism for accounting chemical production and losses and physical 

loss processes, e.g., dry deposition and wet deposition, a level of up to 250 ppt ethanol can 

be seen in Brazil (see Figure 4a) where there are high vegetation emissions as well as man-

ufacture and/or use of bioethanol [102]. Other areas of the globe with higher ethanol mix-

ing ratios include the south-eastern U.S.A., East Asia (areas of China) and South Asia 

(around India). These countries produce the greatest amounts of bioethanol worldwide, 

because of increasing dependence on alternative fuels. The zonal plot shows the highest 

levels up to 35 and 30 ppt at 0–20° S and 30° N–40° N, respectively (Figure 4b). These 

regions encompass countries such as the USA and Brazil, which are the two greatest pro-

ducers of bioethanol worldwide. 

  
(a) (b) 

Figure 4. (a) Surface mixing ratios of ethanol and (b) zonal average distribution of ethanol. The figures are adapted from 

Khan et al. [102]. 

The lifetime of ethanol is long enough (1–3 days) to be transported long distances 

before oxidation by OH radicals to give acetaldehyde and consequently form PAN. Khan 

et al. [102] showed that an increased emission flux (~11.5 Tg/year) of ethanol as a biofuel 

and from vegetation can cause an increment of acetaldehyde by up to 30% in areas such 

as Brazil, Australia and Indonesia (Figure 5a) which led to an increase in PAN (by up to 

3%) over the ocean near to acetaldehyde source regions (Figure 5b). 
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(a) (b) 

Figure 5. The annual average surface (a) acetaldehyde and (b) PAN change after adding an additional 11.5 Tg/year of 

ethanol as vegetation and biofuel. The figures are adapted from Khan et al. [102]. 

To mitigate these harmful emissions and (consequently their impact on the environ-

ment) and maximize biofuel sustainability, biofuel technology can be implemented in a 

different way. Some research [110,111] suggests that burning biofuels in one location, such 

as a power generation facility, is more efficient than burning in numerous sub-optimal 

vehicle engines. For example, the Drax power station in the U.K. has recently converted 

four of its six generating units from coal to wood pellets and operates carbon capture and 

storage (CCS) technologies alongside power generation [112]. Therefore, this application 

of biofuels is helping to remove harmful waste gases such as CO2, whilst simultaneously 

producing electricity which could later be used to power battery-driven vehicles in a non-

polluting way [113]. 

6. Gaps in the Understanding of Global Biofuel Use and Their Environmental Impact 

As global demand for biofuels is projected to increase, it is essential to understand 

the consequences of using these fuels. Thus, it is important to examine the environmental 

and economic feasibility of industrial-scale production of biofuels. An example of a po-

tential environmental barrier could be the implications of land-use changes which may be 

required to grow sufficient amounts of biofuel feedstock to meet the demand. Such an 

analysis should also include an assessment of the practicalities and associated cost of us-

ing the fuel in existing vehicles, particularly in terms of identifying any modifications to 

existing engine infrastructure. This could also have implications for the design of future 

vehicles, should any modifications be required. 

A trade-off arises from the replacement of fossil fuels with biofuels and increased 

biofuel usage results in a reduction of harmful PM, CO and VOC emissions compared 

with fossil fuels, but an unfavorable rise in NOx, aldehyde and PAN emissions. Therefore, 

it is important that the concentrations of these pollutants and their impact on the environ-

ment and public health, are carefully monitored before a greater application of biofuels is 

established worldwide. Most studies focus on the characteristics of biofuels and their ad-

vantages and disadvantages as an alternative, renewable energy source, as opposed to 

their atmospheric and environmental impacts throughout their lifecycle. The majority of 

literature surrounding biofuel emissions understandably focuses on first-generation bio-

fuels, as they are produced with well-established technologies, and currently dominate 

the global biofuel market. However, as there is a strong agreement amongst scholars that 

a shift towards advanced biofuels is needed, it seems necessary to compare the emission 
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properties and air quality impact of these different biofuel generations. This would deter-

mine whether a transition to advanced biofuels, whilst improving food security, would 

also help to decarbonise the transport sector and improve public health. 

Future research is required to explicitly determine the impact that a global transition 

to biofuels would have on air quality and climate. Out of the few impact assessments pub-

lished on the increased application of biofuels, there is no apparent evaluation of the 

global environmental impact as most investigations only consider one country without 

comparison to other regions of the world. As well as this, the transportation of biofuel 

emission products was not analysed, which is key to determining the impact this transi-

tion would have on global air quality and consequently, public health. These factors need 

to be investigated focusing on regions with a large, established biofuel market such as the 

US, Brazil and Indonesia. In addition, most studies concerning biofuel emissions assess 

multiple pollutants emitted from specific biofuel-petroleum blends, as opposed to focus-

ing on a dominant chemical typically produced from biofuel combustion, such as acetal-

dehyde or ethanol. This approach could allow a more holistic method of assessing biofuel 

emissions to be established and enable easier comparison between countries. 

7. Biofuel Use in Aviation Industry 

Biofuel use in road transportation alone is unlikely to reduce GHG emissions suffi-

ciently to achieve the Paris Agreement climate target, hence a wider application across the 

transport sector is necessary. The aviation industry emits approximately 700 million 

tonnes of CO2eq and is accountable for almost 12% of transportation emissions worldwide 

[114]. It is currently estimated that the demand for conventional aviation fuels (CAF), such 

as Jet A and Jet A-1 (comprise of 20% naphthalene, 20% paraffins, 40% iso-paraffins and 

20% aromatic compounds from the crude distillate), will continue to grow to 860 Mt/year 

by 2050, which is more than 4 times the demand observed in 2010 [115]. Consequently, 

aviation fuel consumption currently accounts for 3% of the total global fossil fuels used 

[116]. As environmental awareness increases, the demand for alternative fuel solutions 

became apparent. According to the Air Transport Action Group, a key part of the aviation 

sector’s carbon-neutral growth strategy is the use of low-carbon, sustainable aviation 

fuels, which have bio-based components [117]. 

Many airlines are currently involved in research efforts to enable the implementation 

of these biofuels and reduce the carbon footprint of aviation [118]. The first flight to use a 

biofuel blend was in 2008 and since then over 150,000 flights using biofuels, have taken 

place. In 2018, aviation biofuel production was around 15 million L, which accounted for 

under 0.1% of total aviation fuel consumption [119]. Therefore, faster market development 

is required to increase aviation biofuel production. However, to promote the use of biofu-

els within aviation, production methods require technological development, fuel stand-

ards need improvement, and a strong integrated policy needs to be adopted. Research 

into technological advancements could have a positive environmental effect, while look-

ing at the possibilities for fuel composition improvements could also prove promising. 

Currently, there are many alternative fuels suggested that could help decarbonise the 

aviation industry and thus reduce the environmental impact of the sector [120]. Due to 

the nature of jet fuels, alternative fuels currently employed in road transportation and 

biodiesel cannot be used within the aviation industry. Jet fuel alternatives (e.g., fuels de-

rived from biomass) must also be utilised at low temperatures and also display high en-

ergy density to supply the energetic demand of long-haul flights, properties which bio-

diesels do not display [120]. Biomass Alternative Fuels (BAF) are synthetic paraffinic ker-

osene’s (SPK) which can be blended with CAF [121]. However, BAF must be in line with 

ASTM D1655 specifications to be compatible with the existing air fleets [122]. To be sus-

tainable, BAF must be produced from sustainable feedstocks. Palm oil and many crops 

obtained from deforestation are not encouraged as these cause further environmental 

damage in different sectors [120]. Investigation into biomass feedstocks has presented is-

sues associated with preparation, as many feedstocks are highly oxygenated, while jet 
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fuels are required to be fully deoxygenated hydrocarbons. Biofuels must therefore involve 

chemical transformation to selectively remove oxygen and structural adjustments. The 

potential biofuels, known as Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK), Hy-

droprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene (HEFA-SPK), Alcohol 

To Jet Synthetic Paraffinic Kerosene (ATJ-SPK), and Hydroprocessed Fermented Sugars 

Synthesised Iso-Paraffins (HFS-SIP). Both FT-SPK and HEFA-SPK, have already been im-

plemented in 50:50 blends with kerosene-type fuels and used commercially in aircraft. 

7.1. FT-SPK 

Production of Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK), displayed in 

Scheme 1, shows the use of syngas (CO + H2) which can be converted to jet fuels [123]. The 

gasification process requires conversion of biomass feedstock lignocellulose into syngas 

under high-temperature conditions while controlling the oxidant species present [120]. 

Although this technique is well-developed, the specific composition of the gas stream is 

hard to control as impurities may be present in the feedstock, these include N2, chlorine 

(Cl) and tar. Before the Fischer-Tropsch synthesis, the syngas must be purified and ad-

justed to ensure the syngas ratios of CO and H2 are appropriate for FT. Many of these 

impurities would be destructive for FT catalysts. This increases the cost and time of this 

process, which poses a problem for commercial-scale implementation [120]. 

 

Scheme 1. Main methods available for converting biomass feedstock into Synthetic Paraffinic Kerosene (SPK). The main 

intermediates involved in the conversion processes are displayed. Figure has been adapted from Díaz-Pérez and Serrano-

Ruiz [120]. 

The FT reaction has been extensively studied, and it has been shown FT-SPK pro-

duced contains a high concentration of long chain paraffins, both branched and un-

branched, which are produced from syngas in the presence of iron or cobalt catalysts. 

Once synthesised, the crude product is processed, which involving both cracking and sep-

aration techniques [123]. Reports have shown that use of FT-SPK displayed emissions 

which contained negligible quantities of sulphur, soot and aromatic content [124]. Unfor-

tunately, FT-SPK fuels are required to be blended with traditional kerosene fuels (50%) 

before use in aircraft to meet standard aviation fuel specifications [122]. Development of 

a biomass feedstock that is suitable for this process still poses a problem [123]. 

7.2. HEFA-SPK 

In 2011, ASTM D7566 approved Hydroprocessed Esters and Fatty acids (HEFA) as 

an alternative biofuel suitable for blending with CAF, following the approval of the FT-
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SPK:CAF blend [123]. Vegetable oils are comprised of triglycerides typically possessing a 

carbon length between 14–22, which is outside the range used within the aviation indus-

try. Triglycerides must initially be hydrotreated to isolate the free fatty acid chains [125]. 

Hydrotreating involves the triglycerides reacting with hydrogen over a solid catalyst at 

high pressure and temperature. This reaction results in the extraction of three fatty acid 

chains, and also releases a propane molecule as the backbone of the triglyceride [126]. 

These free fatty acid chains must be catalytically deoxygenated through hydrodeox-

ygenation reactions or decarboxylation reactions resulting in long linear alkanes, as seen 

in Scheme 2 [127]. Due to the length of these chains hydrocracking must occur to reduce 

the carbon length to be compatible with the length traditionally seen in CAF [122]. Linear 

alkanes (analogous to paraffins) display excellent high-density properties which, due to 

increased combustion performance is a vital jet fuel property [120]. The carboxylation pro-

cess removes oxygen as either CO or CO2, thus a carbon is lost in this process [126]. The 

catalyst required for deoxygenation processes was Pd/SiO2 with the presence of H2 free-

flowing during the reaction [128]. 

 

Scheme 2. Proposed mechanism for conversion of vegetable oils into fuels via hydrotreating, figure 

adapted from work completed by Melero et al. [127]. 

The formation of aromatic paraffins is important for use in jet fuels as they contribute 

to ensuring valves in engine systems are sealed properly by promoting swelling of the 

valve [120]. Takemura et al. [129] reported Ni and Pd catalysts with aluminium supports 

were useful for forming aromatic paraffins, particularly through decarboxylation of ben-

zoic acid in a batch autoclave. This occurred in the presence of either N2 or H2 providing 

less stringent reactive components with a greater extent of carboxylation under N2 atmos-

phere. Snåre et al. [130] further investigated this catalytic reactivity, identifying a greater 

variety of catalysts that could be used for deoxygenation processes, including Pd/C. The 

abundance of catalysts available for this process give the potential for mass implementa-

tion of these routes within the biofuel aviation industry. 

Research conducted by Wang et al. [131] reported an efficient 4-step conversion 

method for synthesising HEFA-SPK. These steps include enzyme transesterification, cat-

alytic transfer hydrogenation, alkene cross-metathesis and catalytic hydrodeoxygenation. 

This employed the use of Grubb’s catalyst for the alkene cross-metathesis and Pt/ZSM-22 

catalyst for hydrodeoxygenation. This method was highly efficient and provided a more 

economically feasible solution compared with previously reported hydrotreatment pro-

cesses. 

Furthermore, a wide range of vegetable oil feedstocks have been reported, these in-

clude camelina, canola rapeseed, soybean and jatropha oils, although production of jet 

fuels utilising these oils is controversial as the production is not entirely sustainable [120]. 

As a non-edible crop, camelina possesses a high oil content, but, growing this crop purely 

for oil uses poses a question regarding feedstock availability and land use concerns [120]. 

Although often camelina crops are grown in rotation with wheat crops, where land would 
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otherwise be left to refresh itself, this still presents a problem as the feedstock would only 

be available seasonally [132]. 

As environmental conscience has increased, several reports have detailed the poten-

tial use of waste cooking oils in the formation of alternative jet fuels. Utilisation of waste 

cooking oils removes the concern over growing crops just for oil usage as these oils have 

already been used in another sector and are thus multi-purpose [133]. However, issues 

have been reported with using waste oils. Low-grade waste oils cannot be used as the 

concentration of free fatty acids is too high to produce biofuels [134]. Furthermore, waste 

oils possess a higher abundance of impurities which could interact with catalysts present 

and disrupt hydroprocessing [120]. Further research has been conducted recently in pro-

cessing fatty acids into aromatics and cycloalkanes, components also present in CAF. The 

use of non-edible jatropha oil coupled with Ni catalysts at high temperatures led to a pro-

duction of 8% aromatic content. Development into these conditions could increase the 

number of aromatic components produced this way [135]. 

The literature has reported promising results from the vegetable oils processed into 

jet fuels, with many reports indicating these fuels have been already blended with CAF to 

power commercial jets [120]. Additionally, reports have recommended that the cost of 

production could be reduced if propane, produced during the hydroprocessing stage, was 

sold back to for use in industry [136]. Alternatively, triglycerides extracted from algae oil 

could prove promising in the future. As algae are known to have a high yield production 

and function at low water and fertilizer concentrations, this could be a cost-effective solu-

tion [137]. 

7.3. HFS-SIP 

Sugar molecules have also been reported as potential feedstocks for production of 

alternative fuels. Typically, highly oxygenated sugar molecules, containing OH, CO and 

COOH groups, have a carbon number of 6. To effectively convert these to jet fuels many 

steps are required involving oxygen removal and C-C coupling reactions to increase the 

carbon length to 9–16 in line with kerosene fuels [120]. However, direct conversion of 

sugar to hydrocarbon molecules has been reported which avoids complexity issues with 

a number of synthetic steps involved. Microorganisms has been reported to be extremely 

effective in creating alternative aviation blending fuels. Genetically engineered yeast has 

been utilised as it consumes sugars and excretes long chain alkenes, predominantly β-

farnesene [138]. The structure of -farnesene and is displayed in Scheme 3 and typically 

is produced from sugarcane and lignocellulosic biomass. Hydrogenation of -farnesene 

produces farnesane which is an alkane which has displayed potential as a high energy 

density alternative fuel option [139]. HFS-SIP fuels, produced via hydroprocessing pro-

cesses of -farnesene, have been certified to be blended in 10 vol% with kerosene and used 

as aviation fuel [122]. 

 

Scheme 3. Structure of -farnesene, excreted by genetically engineered yeast, which can be hydro-

processed to produce HFS-SIP. 

Nevertheless, this process uses an expensive feedstock and the production of the fuel 

is a high energy process, implantation of HFS-SIP fuels on a commercial scale would be 

extremely costly [138]. 
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7.4. ATJ-SPK 

Conversion of alcohol to jet synthetic paraffinic kerosene involves three key steps 

involving dehydration to remove heteroatom oxygen to produce alkenes, oligomerisation 

to increase the carbon chain length of the alkenes and finally hydrogenation to produce 

the unsaturated long chain alkanes [125]. This is displayed in Scheme 4. 

 

Scheme 4. Conversion process of alcohol to SPK employing dehydration, oligomerisation and hydrogenation steps. Ex-

ample structures also present in the diagram. Scheme adapted from Díaz-Pérez and Serrano-Ruiz [120]. 

Currently, only iso-butanol and ethanol are used in ATJ-SPK processes, but, future 

development hopes to incorporate all C2-C5 alcohols in the production process [122]. Both 

ethanol and iso-butanol are easily dehydrated in the presence of acid catalysts such as 

silica-alumina and at moderate temperatures, e.g., 250 °C and 325 °C, respectively [140]. 

If similar methods could be employed when dehydrating C3 and C5 alcohols variability 

would be increased, thus, decreasing high demand for land for specific C2 and C4 crops. 

It is difficult to identify a microorganism suitable to produce C5 and other C4 substituted 

alcohols from sugar glucose while minimising the steps in the process and making it cost 

effective [141]. 

Presently, the iso-butanol/ethanol feedstock is generally obtained through sugar mi-

crobial fermentation commonly employed in both wine and beer production processes 

[120]. However, the method of extracting sugars initially provides some difficulty. With 

edible feedstocks, sugar cane and corn, extraction of sugar is relatively simple and re-

quires only hot water treatment. Extraction of sugars from non-edible feedstocks, namely 

lignocellulose, require several stages of processing and poses a problem as the structure 

of the lignin surrounding the cellulose must be weakened before extraction which is a 

costly process [125]. Unfortunately, ATJ-SPK would also be required to be blended with 

kerosene (approx. 15 vol%) to be used as aviation fuel [120]. Ethanol, in particular, cannot 

be used directly in aircraft engines due to its high volatility, high water absorption and a 

much lower energy density than CAF, but iso-butanol has a lower water absorption and 

higher energy density than ethanol, however, it is still much lower than CAF [142]. 

Although the implementation of iso-butanol would be promising, this ATJ-SPK 

could only be employed within short-haul flights as the energy density of the fuel would 

decrease the aircraft flight range if employing this fuel [120]. The implementation of ATJ-

SPK is at the beginning stage of development, particularly focusing on iso-butanol, as it 

can also be employed to produce aromatic paraffins which are also a required component 

of jet fuel. This presents an advantage over FT-SPK, as this process only produces satu-

rated linear hydrocarbons [120]. 

i-Butanol have gained a lot of interest in the aviation fuel, having many preferential 

physical and chemical properties compared with ethanol. The energy density and chemi-

cal structure of butanol is much closer to gasoline, thus overcoming miscibility issues as-

sociated with bioethanol. It also burns more cleanly (containing around 22% oxygen) and 
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is far less corrosive than ethanol, meaning that it can be shipped and distributed through 

existing infrastructure. 

The relatively short lifetime of i-butanol (a few days) [143] mean that its emission and 

its oxidation products are likely to impact local and regional air quality. However, the 

larger-scale, global implications should also be considered in order to fully assess their 

environmental impacts. Once released into the atmosphere, the photo-oxidation products 

of i-butanol can influence tropospheric ozone, as well as other secondary pollutants such 

as secondary organic aerosols (SOA) and PANs. Once emitted, i-butanol is predominantly 

removed from the atmosphere via reaction with the OH radical, which is a highly site-

specific process. There are a number of competing pathways by which this reaction can 

proceed, thus leading to the formation of different stable end product(s) (see Figure 6) and 

potentially, different impacts on atmospheric composition. Laboratory studies by McGil-

len et al. [143,144] investigated the removal of the i-butanol isomers under atmospheric 

conditions, deducing the branching ratios and dominant reaction pathways associated 

with the OH radical initiated degradation. Thus, the use of i-butanol as a global biofuel 

will result in significant emissions into the atmosphere, with its subsequent transport and 

degradation likely to impact atmospheric composition. 

 

Figure 6. The possible degradation mechanism of i-butanol oxidation by OH. The reactions are taken from Master Chem-

ical Mechanism (MCM) and then simplified for using in model, STOCHEM-CRI. 

The incorporation of 1.8 Tg/year of i-butanol emissions and associated oxidation 

products in the model, STOCHEM-CRI increase the level of ozone and PAN by up to 6 

and 4.5%, respectively, in the upper troposphere (see Figure 7). PAN enables the long-

range transport of NOx, away from primary sources and then thermally decomposes to 

release NOx into the remote troposphere. This NOx and RO2 radicals formed over the 

course of the multi-generation oxidation of i-butanol resulted in the catalysis of ozone 

formation, as they promote the production of NO2 in a closely coupled photochemical 

reaction cycle. The effects are significant in the upper troposphere, with sufficient time-

scales allowing the transport of RO2 and hence effects on ozone to be seen at these higher 

altitudes. 
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Figure 7. The annual average zonal (a) ozone and (b) PAN change after adding 1.8 Tg/year of i-butanol as biofuel. Note: 

η is the hybrid height coordinate, the relationship of η with the altitude levels can be found in Collins et al. [145]. 

 

The increase in ozone in the upper troposphere could have implications for the global 

climate. Numerous studies have reported its potency as a greenhouse gas at these alti-

tudes, due to its ability to absorb IR, UV and visible radiation [146–149]. This had led to 

growing concerns around anthropogenic sources of upper tropospheric ozone and their 

role in global climate change [150], with this study finding that anthropogenic emissions 

from biofuel usage could be a significant part of this. 

8. Problems with Biofuels in the Aviation Sector 

When considering the application of biofuels within aviation, most studies examine 

the consequence this has on GHG emissions. For example, research by Kousoulidou et al. 

[117] and Mohsin et al. [118] showed that a significant reduction in GHG emissions can be 

achieved by replacing aviation fossil fuels with biofuels. However, the impact of aviation 

biofuels on other environmental factors, such as biodiversity and air quality remains un-

certain and requires further investigation. 

There are many other challenges for the implementation of sustainable biofuels in 

aviation industry. First, there is still a significant price difference between BAF and CAF. 

Many processes discussed also require catalysts, the design and selection of catalysts to 

improve cost-effectiveness is in itself a costly process. Decarbonisation of the aviation in-

dustry relies heavily on biofuels; however, this increase in demand could lead to defor-

estation which affects soil fertility and can decrease biodiversity in forested regions [146]. 

Algae feedstocks provide a cost-effective solution to biofuel growth, due to minimal 

water and fertilizer requirements, but, problems emerge with producing the feedstock on 

a commercial scale [151]. Additionally, stringent temperature requirements are needed 

for algae growth which presents a problem. It is also important to consider the overall 

carbon footprint of the biofuel produced. Furthermore, fuel efficiencies of alternative fuels 

are still largely undefined, improving and optimising fuel efficiencies of BAF would re-

duce the emissions released into the atmosphere. It is vital to determine which alternative 

fuel would be the most efficient when combusted. Finally, BAF must be compatible with 

CAF as they are currently blended when used in aircraft. However, advancements in bio-

fuel implementation are promising, with clear emission reduction in CO2, CO, SOx and 

NOx, particularly when blending FT fuels [124]. Alas, these alterations in fuel composition 

could have a significant impact on atmospheric chemistry. Currently, there have been lim-

ited studies investigating the impact of biofuel emissions on altering O3 and SOA for-

mation [152]. Future investigations into these factors must be considered. 
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9. Conclusions 

As global energy demand increases exponentially and fossil fuels continue to harm 

the environment, it is imperative to find an alternative, renewable energy source to supply 

the world’s growing population and help countries to meet strict emission targets. The 

transportation sector is a major contributor to GHG emissions and urgently needs a re-

placement for petroleum and diesel fuels. Consequently, in recent years there has been a 

growing interest in biofuels, as they are a strong replacement for transportation fuels in 

comparison to other renewable energies. It is largely accepted that biofuels have a great 

potential to help decarbonise the transport sector, but there is significant controversy sur-

rounding how sustainable they are. 

The future of biofuels requires a shift from first-generation biofuels produced from 

food crops, to second and third generation biofuels derived from cellulosic material and 

algae, respectively. This is particularly important in developing countries as first-genera-

tion biofuels raise issues of food security and production which can increase poverty lev-

els and harm the economy. However, there are current challenges with commercialisation 

of advanced biofuels as their production costs are very high and conversion technologies 

need improvement. Therefore, governments should promote future development of these 

biofuels in an effort to improve global acceptance and increase production feasibility. Ad-

vanced biofuels, particularly those derived from algae, have a strong capability to replace 

fossil fuels without giving rise to negative effects such as food insecurity and biodiversity 

loss. A greater production of these fuels is likely to have a positive impact on the global 

economy and help to mitigate climate change. However, more research is required to as-

sess the impact that these fuels will have on global air quality and public health in order 

to make an accurate evaluation as to whether they are a sustainable alternative to fossil 

fuels. 

In general, PM, CO and VOC emissions from biofuels were lower than that of petrol 

and diesel, with the higher oxygen content of biofuels being the main reason for this find-

ing. However, unfavourable increases in NOx, aldehyde and PAN emissions were also 

seen when using biofuel. This demonstrates that the wider application of biofuels presents 

a trade-off between a reduction in PM pollution or an increase in harmful NOx and PAN 

emissions. 

The use of biofuels with analysis of potential fuel compositional changes in aviation 

industry has been discussed. FT-SPK alternatives are a promising alternative to reduce 

emissions, although developments of suitable cost-effective methods for purifying syngas 

are still up for debate. HEFA-SPK fuels also provide an effective solution and, like FT-

SPK, fuels are compatible with current air fleets if blended with current kerosene fuels. 

Mass production of HEFA-SPK with algae oil proposes a solution to reduce current pro-

duction costs due to the high yield production of these microorganisms. ATJ-SPK fuels 

are promising as the conversion processes are already well-known and executed within 

the fuel industry. Future developments are required to produce longer carbon chain 

lengths to reduce processing steps. Although, ATJ-SPK and HEFA-SPK fuels do provide 

a synthetic method for producing aromatic hydrocarbons, whereas other fuel alternatives 

mentioned currently cannot. HFS-SIP fuels provide a simple direct sugar-to-hydrocarbon 

process employing microorganisms and avoiding multi-step processing. However, this 

provides a costly route to producing biofuels and commercial implementation would 

come at a higher cost than continuing with CAF. Furthermore, all of these alternative fuels 

also have to be blended with CAF to be compatible with current air fleets. Although the 

solutions reduce emissions, they do not completely prevent them. 

A variety of factors can determine the success of biofuels as a renewable energy 

source, such as the geographical region and climate, economic infrastructure and the feed-

stock used in biofuel production. Therefore, countries should cultivate oil producing 

crops which are suitable to their climate and establish incentives which would be easily 

adopted in their current infrastructure. In addition, a stronger focus should be placed on 

the implementation of biofuels across different sectors, like aviation, to maximise the 



Atmosphere 2021, 12, 1289 19 of 25 
 

 

probability of achieving the global climate change target established in the Paris Agree-

ment. It is particularly important to determine how the transition from fossil fuels to bio-

fuels could in turn influence climate and human health. Further methodologies should be 

investigated to predict emission levels and atmospheric chemistry impacts when using 

biofuels. 

Appendix: 

Degradation of ethanol and acetaldehyde 

CH3CH2OH → CH3 + CH2OH      (1)  

CH2OH + O2 → HCHO + HO2          (2)  

CH2OH + M → HCHO + H + M           (3)  

CH3CH2OH + OH → CH3CHOH + H2O    (4)  

CH3CH2OH + OH → CH2CH2OH + H2O    (5)  

CH3CH2OH + OH → CH3CH2O + H2O          (6)  

CH3CHOH + O2 → CH3CHO + HO2      (7) 

CH3CHO + OH → CH3CO + H2O           (8)  

CH3CO + O2 → CH3CO3        (9)  

CH3CO3 + NO2 ⇄ CH3CO3NO2 (PAN)          (10) 

CH3CHO + h + 2O2 → CH3O2 + HO2 + CO         (11)  
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