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Abstract
This paper defines and characterizes the concept of an increase in inverse down-
side inequality and show that, when the Lorenz curves of two income distributions 
intersect, how the change from one distribution to the other is judged by an inequal-
ity index exhibiting inverse downside inequality aversion often depends on the rela-
tive strengths of its aversion to inverse downside inequality and inequality aversion. 
For the class of linear inequality indices, of which the Gini coefficient is a member, 
a measure characterizing the strength of an index’s aversion to inverse downside 
inequality against its own inequality aversion is shown to determine the ranking by 
the index of two distributions whose Lorenz curves cross once. The precise condi-
tion under which the same result generalizes to the case of multiple-crossing Lorenz 
curves is also identified.

1 Introduction

The Lorenz curve as an analytical tool has played a central role in the studies of 
income inequality as the Lorenz criterion (i.e., whether the Lorenz curve of one 
distribution lies above that of another) coincides precisely with the Pigou–Dalton 
“principle of transfers”, which says that an income transfer from a poorer to a richer 
person worsens inequality and captures our usual concept of inequality. It is how-
ever well-known that in empirical studies of real-world income distributions e.g., 
Atkinson (1973) and Davies and Hoy (1985) the Lorenz criterion can typically pro-
vide a ranking for only a small minority of all possible pairwise comparisons. This 
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led many authors to propose to strengthen it with the additional principle of “trans-
fer sensitivity” (Shorrocks and Foster 1987) or equivalently “aversion to downside 
inequality” (Davies and Hoy 1995).1 These authors argue that, for a fixed income 
gap, the same amount of income transfer from a poorer to a richer person should be 
considered more disequalizing the lower it occurs in the distribution. The concept 
parallels that of downside risk aversion proposed by Menezes et al. (1980) since an 
inequality index exhibiting such transfer sensitivity always assigns a higher value 
to a distribution that has “more downside inequality” than another in the sense that 
the former can be obtained from the latter by a sequence of what Menezes et  al. 
(1980) term “mean-variance preserving transformations”, each of which combines a 
“mean-preserving spread” (equivalently a regressive transfer) with a “mean-preserv-
ing contraction” (equivalently a progressive transfer) occurring at higher income 
levels in a way that the variance is preserved. Using empirical data, Shorrocks and 
Foster (1987) show that such a strengthening does significantly increase the ranking 
success rate.

These authors have thus treated downside inequality aversion as a secondary cri-
terion to strengthen the principle of transfers. Chiu (2007) highlights the conceptual 
distinction between inequality aversion and downside inequality aversion by show-
ing, first of all, that when the Lorenz curves of two distributions intersect, one dis-
tribution can often be obtained from the other by a combination of an increase in 
downside inequality and a decrease in Pigou–Dalton inequality (i.e., a sequence of 
progressive transfers) and secondly that the inequality aversion and the downside 
inequality aversion of a given inequality index can work against, as well as rein-
force, each other in determining the ranking of two distributions. In the case of 
additive inequality indices, it is shown that a measure characterizing the strength of 
an index’s downside inequality aversion against its own inequality aversion deter-
mines the ranking by the index of two income distributions whose difference can be 
decomposed into an increase downside inequality and a decrease in Pigou–Dalton 
inequality with the former “preceding” the latter. These results however do not apply 
to the arguably best known and most-widely used inequality index, namely the Gini 
coefficient, which is well-known not to exhibit transfer sensitivity.

This paper considers the class of linear inequality indices, of which the Gini coef-
ficient is a member, and the alternative concept of transfer sensitivity proposed by 
Mehran (1976), known as “positional transfer sensitivity” (Zoli 1999) or “the prin-
ciple of dual diminishing transfers” (Chateauneuf et  al. 2002). We first define the 
notion of “mean-Gini-preserving transformation” in a way analogous to how Men-
ezes et  al. (1980) define “mean-variance-preserving transformation” and that an 
income distribution is an increase in “inverse downside inequality” of another if the 
former can be obtained from the latter by a finite sequence of mean-Gini-preserving 
transformations. We show that a distribution is judged to be worse than another by 
all linear indices exhibiting positional transfer sensitivity, or equivalently aversion 

1 The concept is also referred to as “increasing absolute inequality aversion” (Atkinson 1973) and the 
“principle of diminishing transfers” (Kolm 1976). Earlier discussions of the concept can also be found in 
Atkinson (1970) and Sen (1973).
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to inverse downside inequality, if and only if the former is an increase in inverse 
downside inequality of the latter. Furthermore, in the case where the Lorenz curves 
of two distributions intersect, results analogous to those in Chiu (2007) obtain. Spe-
cifically, a measure characterizing the strength of a linear index’s aversion to inverse 
downside inequality against its own inequality aversion determines the ranking by 
the index of two income distributions whose Lorenz curves cross only once. In the 
case where the Lorenz curves of two distributions cross more than once, since the 
difference between the two distributions may or may not be decomposable into a 
change in inverse downside inequality and a change in Pigou–Dalton inequality, we 
identify the precise condition under which the measure can determine the ranking of 
two distributions by a linear inequality index.2

The rest of the paper is organized as follows. Section 2 introduces the basic con-
cepts and characterizes the concept of an increase in inverse downside inequality. 
Section 3 considers the empirically important case of single-crossing Lorenz curves. 
Section  4 establishes the characterizations in the general case where the Lorenz 
curves can cross more than once. Section 5 concludes.

2  Preliminaries and inverse downside inequality

Let X = [0, x̄] where x̄ < ∞ be an interval of real-valued income levels. Ω denotes the 
set of cumulative probability (or frequency) distributions over X and �(F) the mean 
of F ∈ Ω . For F ∈ Ω , the inverse distribution function F−1(p) ≡ inf{x ∶ F(x) ≥ p} 
gives the income of an individual at the 100pth percentile of the distribution. A 
(Pigou–Dalton) inequality index is a function I ∶ Ω → R such that for F,G ∈ Ω , 
I(F) < I(G) if G is obtained from F by a sequence of regressive transfers. The Lor-
enz curve of distribution F at p ∈ (0, 1) is given by

LF(p) =
∫ F−1(p)

0
ydF(y)

�(F)
=

∫ p

0
F−1(q)dq

�(F)
,

2 As with the results in Chiu (2007), these results are particularly relevant in the context of tax reforms 
since two tax schedules rarely intersect each other more than twice and (Dardanoni and Lambert 1988) 
show that, given the same pre-tax income distribution, if two tax schedules generating the same tax 
revenue cross twice, the Lorenz curves of the two after-tax income distributions cross each other once. 
Moreover, in analyzing the effect on inequality of moving from an income tax with a graduated rate tax 
schedule to one with a single marginal rate levied on the same base and a personal allowance adjusted to 
maintain an equal tax revenue, (Davies and Hoy 2002) show that, for any inequality index, there exists a 
critical value such that a reform of this kind is judged desirable by the index if and only if the marginal 
tax rate of the flat-rate tax is higher than the critical value. We can show that this critical marginal tax 
rate for a linear inequality index exhibiting aversion to inverse downside inequality is determined by the 
strength of the index’s aversion to inverse downside inequality against its own inequality aversion. The 
derivation of these results is not explicitly given in this paper as it is fairly analogous to that of the analo-
gous results in Chiu (2007). Readers who are nevertheless interested in the detailed derivation can find it 
in an earlier version of this paper (Chiu 2019).
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which, for p ∈ (0, 1) , gives the proportion of the total wealth held by the bottom 
100p% of the population. It is well-known that LF(p) ≥ LG(p) for all p ∈ (0, 1) and 
the inequality is strict for some subinterval(s) if and only if G is obtained from F by 
a sequence of regressive transfers.

In what follows, to streamline presentation, a weak inequality (i.e., ≥ or ≤ ) 
being true of a function (e.g., ∫ p

0
[G−1(q) − F−1(q)]dq ≤ 0 ) or two functions (e.g., 

LF(p) ≥ LG(p) ) for all p in an interval, say [0, 1], implicitly indicates that the ine-
quality is strict for p in some subinterval(s) of [0, 1].

Among the best known and most widely used inequality indices is the Gini 
coefficient. The Gini coefficient of a distribution F is given by

In this paper, we will focus primarily on the class of linear indices [axiomatized 
and characterized by Yaari (1988)], which are generalizations of the Gini coefficient, 
i.e., I, J ∶ Ω → R such that

It is well-known that these indices are inequality indices if and only if 𝜈�
I
( ) > 0 and 

𝜈�
J
( ) > 0 . Both Mehran (1976) “linear measure of inequality”

and (Donaldson and Weymark 1983) “single-parameter-Gini”, or “S-Gini”, indices

are clearly positive linear transformations of indices in this class and thus ordinally 
equivalent to them.

Many of our results that follow are stated in terms of the number of times a 
function crosses another. The formal definition is given as follows.

Definition 1 A function Ψ̄(p) crosses another Ψ̂(p) n times first from below 
if there exists a series of “crossings”, pi , i = 1, 2,… , n , p0 ≡ 0 , pn+1 ≡ 1 , and 
0 < p1 < p2 < ⋯ < pn < 1 such that for i even (odd): 

 (i) Ψ̄(p) ≥ ( ≤ )Ψ̂(p) for p ∈ [pi−1, pi] and there exists some 𝜖 > 0 such that 
Ψ̄(p) > ( < )Ψ̂(p) for p ∈ (pi − �, pi);

 (ii) Ψ̄(p) ≤ ( ≥ )Ψ̂(p) for p ∈ [pi, pi+1).

Γ(F) = 1 −
2 ∫ 1

0
[∫ p

0
F−1(q)dq]dp

�(F)
= 1 −

2 ∫ 1

0
(1 − p)F−1(p)dp

�(F)
.

I(F) = ∫
1

0

�I(p)F
−1(p)dp, J(F) = ∫

1

0

�J(p)F
−1(p)dp.

Ī(F) =
1

𝜇(F) ∫
1

0

𝜈I(p)[F
−1(p) − 𝜇(F)]dp

Γ�(F) = 1 −
1

�(F) ∫
1

0

�(1 − p)�−1F−1(p)dp
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Following Menezes et  al. (1980),3 we define the concept of a mean-preserving 
spread as follows.

Definition 2 Letting f(x) be any probability or density function, a function s(x) on 
[0, x̄] is a mean-preserving spread (MPS) if 

 (i) ∫ x

0
[f (x) + s(y)]dy ∈ Ω;

 (ii) ∫ x̄

0
xs(x)dx = 0;

 (iii) There exist 0 < a < b < x̄ such that

A function c(x) on [0, x̄] is a mean-preserving contraction (MPC) given 
g(x) ≡ f (x) − c(x) being a probability or density function if −c(x) is an MPS.

An MPS is thus a function that transforms a probability or density function into 
another [(i)] by shifting probability (or mass) from the center to the tails of a dis-
tribution [(iii)] while keeping the mean the same [(ii)]. A distribution G is defined 
to be a “mean-preserving increase in inequality” (MPII) of F and F a “mean-pre-
serving decrease in inequality” (MPDI) of G if G can be obtained from F by a 
finite sequence of MPSs. It has been shown by Rothschild and Stiglitz (1970) and 
Machina and Pratt (1997) that G is an MPII of F if and only if 

 (i) ∫ x̄

0
[G(y) − F(y)]dy = 0;

 (ii) ∫ x

0
[G(y) − F(y)]dy ≥ 0 for all x ∈ [0, x̄].

which imply and are implied by the following conditions in terms of the inverse dis-
tribution functions 

 (i’) ∫ 1

0
[G−1(q) − F−1(q)]dq = 0;

 (ii’) ∫ p

0
[G−1(q) − F−1(q)]dq ≤ 0 for all p ∈ [0, 1].

It is well-known that, for F and G being discrete income distributions, G being an 
MPII of F is equivalent to G being obtainable from F by a sequence of regressive 
transfers. An MPII is thus equivalent to an increase in Pigou–Dalton inequality and 
an MPDI a decrease in Pigou–Dalton inequality.

We now define the notion of a “mean-Gini-preserving transformation” in a way 
analogous to how Menezes et al. (1980) define a “mean-variance-preserving trans-
formation” (MVPT).

s(x)

{≤ 0 for x ∈ [a, b];

≥ 0 for x ∉ [a, b].

3 This is also essentially the more general definition of a mean-preserving spread put forward by 
Machina and Pratt (1997).



492 W. H. Chiu 

1 3

Definition 3 Letting f(x) be any probability or density function, a function t(x) is a 
mean-Gini-preserving transformation (MGPT) if 

 (i) t(x) =
∑

s(x) +
∑

c(x) where 
∑

s(x) is an MPII and 
∑

c(x) an MPDI;
 (ii) G(x) ≡ ∫ x

0
[f (y) + t(y)]dy = F(x) + ∫ x

0
t(y)dy ∈ Ω;

 (iii) ∫ 1

0
∫ q

0
[G−1(r) − F−1(r)]drdq = 0;

 (iv) ∫ p

0
G−1(q)dq crosses ∫ p

0
F−1(q)dq only once from below.

(i) says that an MGPT is a combination of an MPII and an MPDI and thus 
will leave the mean unchanged. (ii) stipulates that f (x) + t(x) is still a probability 
(or density) function and denotes the cumulative distribution functions of f(x) and 
f (x) + t(x) respectively by F and G. (iii) ensures that the Gini coefficients of F and G 
are the same. In view of (iii) and the properties of an MPII and an MPDI, (iv) means 
that the MPII occurs at lower income levels than the MPDI. That is, an MGPT, like 
an MVPT, shifts dispersion from higher to lower income levels but leaves the over-
all dispersion as measured by the Gini coefficient, not the variance, unchanged. We 
define one distribution to have more “inverse downside inequality” than another if it 
can be obtained from the other by a sequence of probability transfers which unam-
biguously shift dispersion from higher to lower income levels without changing the 
mean or the Gini coefficient.

Definition 4 G is an increase in inverse downside inequality (IDII) of F if G can be 
obtained from F by a sequence of MGPTs.

The following result sets out the necessary and sufficient distribution condition 
for an IDII.

Proposition 1 G is an IDII of  F if and only if   

 (i) ∫ 1

0
[G−1(q) − F−1(q)]dq = 0;

 (ii) ∫ 1

0
∫ q

0
[G−1(r) − F−1(r)]drdq = 0;

 (iii) ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 for all p ∈ [0, 1].

It is clear from this characterization of an IDII that G is an IDII of F if and only 
if the means and Gini coefficients of F and G are the same and F dominates G via 
“third-degree inverse stochastic dominance” as defined by Muliere and Scarsini 
(1989).

The “diminishing transfer principle” proposed by Mehran (1976), later named 
“positional transfer sensitivity” (Zoli 1999) or “the principle of dual diminish-
ing transfers” (Chateauneuf et  al. 2002)—to distinguish it from Shorrocks and 
Foster (1987) notion of transfer sensitivity, which is also known as “the princi-
ple of diminishing transfers”—stipulates that “a small positive transfer from 
a richer to a poorer individual, with a given proportion of the population in 
between them, decreases the inequality and the decrease is larger the poorer the 
recipient”. To state it formally, denote a generic discrete income distribution 
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by x̃ = (x1, x2,… , xN) ∈ RN
+

 where 0 ≡ x0 < x1 < x2 < ⋯ < xN < xN+1 ≡ x̄ . Its 
cumulative distribution F on X is then given by F(x) = i

N
 for x ∈ [xi, xi+1) for 

i = 0, 1, 2,… ,N and F(x̄) = 1 . Let ẽi denote the n-tuple (0,… , 0, 1,… , 0) whose 
only non-zero element occurs in the i-th position.

Definition 5 I exhibits positional transfer sensitivity if I(G) < I(F) where F(x) and 
G(x) are the distribution functions of x̃ + 𝜖(ẽi1 − ẽi2 ) and x̃ + 𝜖(ẽi3 − ẽi4 ) respectively, 
i1 < i3 , i3 − i4 = i1 − i2 < 0 and 𝜖 > 0 is such that xi1 + � ≤ xi1+1 , xi2−1 ≤ xi2 − � , 
xi3 + � ≤ xi3+1 , xi4−1 ≤ xi4 − �.

Letting H(x) be the distribution function of x̃ , both G(x) and F(x) are clearly 
MPCs of H(x) and

That is, [G−1(p) − H−1(p)] is an upward shift of [F−1(p) − H−1(p)] by i3−i1
N

 and G can 
be obtained from F by a combination of an MPS and an MPC occurring at higher 
income levels as illustrated graphically in Fig. 1 below. It can thus be easily verified 
that [G−1(p) − F−1(p)] satisfies the conditions for an MGPT.

Aversion to IDII thus implies positional transfer sensitivity. Mehran (1976) 
also shows that a linear index I exhibits positional transfer sensitivity if and only 

[G−1(p) − H−1(p)] =

{
[F−1(p −

i3−i1

N
) − H−1(p −

i3−i1

N
)] for p ∈ [

i3−i1

N
, 1];

0 for p ∈ [0,
i3−i1

N
).

p

[F−1(p)−H−1(p)]
1
N

i1 i3 i2 i4

p

[G−1(p)−H−1(p)]

i1 i3 i2 i4

p

[G−1(p)− F−1(p)]

i1 i3 i2 i4

p

p
0 [G

−1(q)− F−1(q)]dq

i1 i3 i2 i4

Fig. 1  A mean-Gini-preserving transformation
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if 𝜈′′
I
< 0 . We can show that a distribution is judged to be worse than another by 

all linear indices exhibiting positional transfer sensitivity if and only if the former 
is an increase in inverse downside inequality of the latter.

Proposition 2 ∫ 1

0
𝜈(p)F−1(p)dp < ∫ 1

0
𝜈(p)G−1(p)dp for all �( ) such that 𝜈′′ < 0 if 

and only if G is an IDII of F.

For linear inequality indices, positional transfer sensitivity is therefore equivalent 
to aversion to IDII in essentially the same way transfer sensitivity, as pointed out by 
Davies and Hoy (1995), is equivalent to aversion to downside inequality for additive 
inequality indices. In the case of discrete income distributions, Zoli (2002) defines 
a “favorable composite positional transfer” to be a combination of a rank-preserving 
progressive and a rank-preserving regressive transfer from the same donor that leave 
the Gini coefficient unchanged and show that F dominates G via third-degree inverse 
stochastic dominance if and only if F can be obtained from G by a finite sequence 
of progressive transfers and/or favorable composite positional transfers. In view of 
this and our preceding characterizations, it is clear that in the case of discrete dis-
tributions, if a distribution is an MGPT of another, then the latter can be obtained 
from the former by a finite sequence of favorable composite positional transfers. In 
this sense, a favorable composite positional transfer is a more elementary probability 
transformation than MGPT. However, the concept of a favorable composite posi-
tional transfer is well-defined only in the case of discrete distributions. As the con-
cepts and characterizations in this paper are meant to be applicable to all probability 
distributions, we elect to base the definition of an IDII on a probability transforma-
tion that is well-defined whether or not the distributions are discrete.4

In the reminder of this paper, to avoid unnecessary technical and notational com-
plications, we consider the subset Ωc of Ω containing only continuous probability 
(or frequency) distributions over X whose cumulative distribution functions are 
strictly increasing over their supports and hence the inverse function of a F ∈ Ωc is 
well-defined and coincides with F−1(p) . Following Shorrocks and Foster (1987) and 
(Davies and Hoy 1995), we will also focus on distributions with the same mean, i.e., 
Ωc

𝜇
≡ {F ∈ Ωc,𝜇(F) = 𝜇} ⊂ Ωc . In applied comparisons where the means of the 

distributions are not the same, the axiom of scale invariance can be imposed and the 
results thus apply to the distributions of relative incomes.

We next establish useful characterizations of two distributions whose difference 
can be decomposed into a change in inverse downside inequality and a change in 
Pigou–Dalton inequality.

Proposition 3 For F,G ∈ Ωc
�
 , 

4 An analogy can be drawn with the contrast between (Menezes et  al. 1980) notion of downside risk 
increase, which applies to all distribution, and Shorrocks and Foster (1987) “favorable composite trans-
fer”, which is well-defined only for discrete distributions.
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 (i) There exists H ∈ Ωc
�
 such that G(x) is an IDII of H(x) and H(x)  is 

an MPDI of F(x) if and only if ∫ 1

0
∫ q

0
[G−1(r) − F−1(r)]drdq > 0, and 

∫ 1

p
∫ q

0
[G−1(r) − F−1(r)]drdq ≥ 0 for all p ∈ [0, 1].

 (ii) There exists H ∈ Ωc
�
 such that G(x) is an IDII of H(x) and H(x)  is 

an MPII of F(x) if and only if ∫ 1

0
∫ q

0
[G−1(r) − F−1(r)]drdq < 0, and 

∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 for all p ∈ [0, 1].

The result thus allows for definitive identification of two distributions whose rela-
tive ranking by an inequality index is determined by the index’s inequality aversion 
and aversion to inverse downside inequality. Importantly, as will be shown in more 
detail in the next section, it implies as a corollary that in the empirically impor-
tant special case of single-crossing Lorenz curves, one distribution can always be 
obtained from the other by a combination of a change in inverse downside inequality 
and a change in Pigou–Dalton inequality.5

3  Single‑crossing Lorenz curves

Using Kuznets (1963) data, Atkinson (1973) shows that 24% of the 66 possible pair-
wise country comparisons can be ranked on the basis of Lorenz dominance, while 
a further 71% involve single-crossing Lorenz curves and mere 5% of them involve 
multiple-crossing Lorenz curves. A broadly similar pattern emerges from a similar 
analysis by Davies and Hoy (1985) of the data developed by Sawyer (1976) and 
those by Budd (1970). The simple special case of single-crossing Lorenz curves thus 
has a outsized significance in empirical studies. We show in this case very clearcut 
results can be obtained.

If the Gini coefficient of F is smaller than that of G, which is equivalent to 
∫ 1

0
∫ q

0
[G−1(r) − F−1(r)]drdq < 0 , then by Proposition  3 (ii), there exists H ∈ Ωc

�
 

such that G(x) is an IDII of H(x) and H(x) is an MPII of F(x). We therefore have, 
for I being a linear inequality index exhibiting inverse downside inequality aversion,

I(G) − I(F) =∫
1

0

𝜈I(p)[G
−1(p) − F−1(p)]dp

=∫
1

0

𝜈I(p)[G
−1(p) − H−1(p)]dp + ∫

1

0

𝜈I(p)[H
−1(p) − F−1(p)]dp > 0

5 To address the problem of intersecting Lorenz curves, Aaberge (2009) proposes the concept of higher-
degree Lorenz dominance. Readers familiar with the work will recognize from Proposition  3 (i) that, 
for F,G ∈ Ωc

�
 , there exists H ∈ Ωc

�
 such that G(x) is an IDII of H(x) and H(x) is an MPDI of F(x) if and 

only if the Lorenz curve of F “second-degree downward dominates” that of G. Proposition 3 (i) thus also 
serve to shed light on the result (Aaberge (2009, Theorem 2.2B)) that the Lorenz curve of F “second-
degree downward dominates” that of G if and only if I(F) < I(G) for I being any linear inequality index 
with 𝜈��

I
( ) > 0 . Aaberge (2009) notion of “second-degree upward dominance”, on the other hand, coin-

cides with third-degree inverse stochastic dominance in the case of distributions with the same mean.
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since (given 𝜈′
I
> 0 and 𝜈′′

I
< 0 ) both terms are clearly positive. (If Γ(F) = Γ(G) , 

then [G(x) − F(x)] is an IDII.) We thus have the following.

Proposition 4 (Zoli 1999) For F,G ∈ Ωc
�
, if LG(p) crosses LF(p) once from below 

and Γ(F) ≤ Γ(G), then I(F) < I(G) for any linear inequality index I( ) exhibiting 
aversion to inverse downside inequality.

If, on the other hand, the Gini coefficient of F is larger than that of G while the 
Lorenz curve of G still single-crosses that of F from below, then Proposition‘3 (i) 
implies the existence of H ∈ Ωc

�
 such that G(x) is an IDII of H(x) and H(x) is an 

MPDI of F(x). We can thus write, for I being a linear inequality index exhibiting 
aversion to inverse downside inequality,

Since the two terms are of opposite signs, whether the change from F to G reduces 
the value of I depends on the relative strengths of its inequality aversion and aver-
sion to inverse downside inequality. The next result shows that the function − ���

I
(p)

��
I
(p)

 
measures, in the special case of single-crossing Lorenz curves, the strength of I’s 
aversion to inverse downside inequality against its own inequality aversion and 
determines I’s ranking of F and G as a result.

Proposition 5 Suppose I and J are linear inequality indices and, for F,G ∈ Ωc
�
 , 

LG(p) crosses LF(p) once from below and Γ(F) > Γ(G). Then (i), (ii), and (iii) are 
equivalent.

The result says that in the special case of single-crossing Lorenz curves if G 
can be obtained from F by a combination of an inverse downside risk increase 
and a Pigou–Dalton inequality decrease and G is judged “equally unequal” by an 

inequality index I, then another index J with − ���
J
(p)

��
J
(p)

 uniformly larger than − ���
I
(p)

��
I
(p)

 

must judge G “more unequal” than F. The function − ���
I
(p)

��
I
(p)

 thus has the interpreta-
tion of measuring the strength of I’s aversion to inverse downside inequality 
against its own inequality aversion. Furthermore since the condition of − ���

J
(p)

��
J
(p)

 

being uniformly larger than − ���
I
(p)

��
I
(p)

 is equivalent to �J(p) being a concave transfor-
mation of �I(p) , we can also say that “the degree of concavity” of �I(p) determines 

I(G) − I(F) =∫
1

0

�I(p)[G
−1(p) − F−1(p)]dp

=∫
1

0

�I(p)[G
−1(p) − H−1(p)]dp + ∫

1

0

�I(p)[H
−1(p) − F−1(p)]dp

(i) I(G) ≥ I(F) implies J(G) ≥ J(F)

(ii) −
���
I
(p)

��
I
(p)

≤ −
���
J
(p)

��
J
(p)

for all p ∈ [0, 1]

(iii) There exists T( ) such that �J(p) = T(�I(p)) and T �( ) ≥ 0, T ��( ) ≤ 0.
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the strength of I’s aversion to inverse downside inequality against its own ine-
quality aversion.

4  Multiple‑crossing Lorenz curves

While multiple-crossing Lorez curves are rare in comparisons of empirical income 
distributions, this considerably more complex case is more important conceptually 
for its generality and for the insights it gives into the results in the special case of 
single-crossing Lorenz curves.

Suppose distributions F and G have the same mean and the Lorenz curve of F 
crosses that of G more than once first from above. If ∫ 1

0
∫ q

0
[G−1(r) − F−1(r)]drdq < 0 , 

and ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 for all p ∈ [0, 1] , then, by Proposition  3 (ii), 

we clearly still have, for I being a linear inequality index exhibiting inverse down-
side inequality aversion,

where G(x) is an IDII of H(x) and H(x) an MPII of F(x) and hence under our 
assumptions on �I( ) both terms are clearly positive.

Recall that in the simple case of single-crossing Lorenz curves where the differ-
ence between the two distributions is always a combination of a change in inverse 
downside inequality and a change in Pigou–Dalton inequality (i.e., an MPDI or an 
MPII). By contrast, if the Lorenz curves cross more than once and the difference 
between the two distributions cannot be decomposed into an IDII and an MPII, it 
may not, first of all, be a combination of an IDII and an MPDI and, secondly, even if 
the change is a combination of an IDII and an MPDI, the result in Proposition 5 may 
or may not generalize.

We show in Propositions 6 and 7 that the following condition is the precise condi-
tion under which the result in Proposition 5 does generalize.

Condition PI. ∫ 1

0
∫ q

0
[G−1(r) − F−1(r)]drdq > 0 and ∃z ∈ (0, 1) such that 

∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 for p ≤ z and ∫ p

0
[G−1(q) − F−1(q)]dq ≥ 0 for 

p ≥ z.

I(G) − I(F) =∫
1

0

𝜈I(p)[G
−1(p) − F−1(p)]dp

=∫
1

0

𝜈I(p)[G
−1(p) − H−1(p)]dp + ∫

1

0

𝜈I(p)[H
−1(p) − F−1(p)]dp > 0

0 1
p

z

Fig. 2  The graph of ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq satisfying Condition PI
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As illustrated below, the condition requires the function 
∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq to be non-positive up to z and non-decreasing from that 

point onwards (i.e., the graph of ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq never slopes down-

wards from z onwards) since ∫ p

0
[G−1(q) − F−1(q)]dq is required to be non-negative 

(Fig. 2).

Proposition 6 Suppose I and J are linear inequality indices. Then for F,G ∈ Ωc
�
 

satisfying Condition PI, (i), (ii), and (iii) are equivalent.

Proposition 7 Suppose I and J are linear inequality indices and

and for F,G ∈ Ωc
�
, it is not true that ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 for all 

p ∈ [0, 1]. Then

 if and only if F and G satisfy Condition PI.

Condition PI clearly implies, but is not implied by, the condition (in Proposi-
tion 3 (i)) for the change from one distribution to another to be a combination of 
an IDII and an MPDI. In other words, the change from F to G satisfying Condition 
PI is a special combination of an IDII and an MPDI. Such a special combination 
has the interpretation that the component IDII “precedes” the component MPDI.6 
The measure −���

I
∕��

I
 can thus be interpreted as measuring the index I’s strength of 

aversion to inverse downside inequality against its own inequality aversion in such a 
special case.

The results give a novel interpretation to the parameter � of Donaldson and Wey-
mark’s (1983) S-Gini indices. Since, for F ∈ Ω , the S-Gini indices

(i) I(G) ≥ I(F) implies J(G) ≥ J(F)

(ii) −
���
I
(p)

��
I
(p)

≤ −
���
J
(p)

��
J
(p)

for allp ∈ [0, 1]

(iii) There exists T( ) such that�J(p) = T(�I(p)) and T �( ) ≥ 0, T ��( ) ≤ 0.

−
���
I
(p)

��
I
(p)

≤ −
���
J
(p)

��
J
(p)

for allp ∈ [0, 1]

I(G) ≥ I(F) implies J(G) ≥ J(F)

6 That is, the IDII occurs at lower income levels than the MPDI. This can perhaps be seen intuitively in 
the fact that the change from F(x) to G(x) satisfies the condition for an IDII up to z and for p ≥ z it satis-
fies the condition for an MPDI. Chiu (2005) develops the notion of precedence relations on stochastic 
dominant changes, which generalizes the concept of an MPS “coming before” an MPC used by Menezes 
et al. (1980) in defining a mean-variance-preserving transformation. An analogous precedence relation 
for “inverse stochastic dominant changes” can formalize the relation between the component IDII and the 
component MPDI of a change in distribution satisfying Condition PI.
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are ordinally equivalent to

and

−� has the interpretation of measuring the strength of Γ� ’s aversion to inverse 
downside inequality against its own inequality aversion. Our results thus facilitate 
both the use of these indices in empirical or applied studies and the interpretation 
of results from such studies. Specifically, for two distributions F and G satisfying 
Condition PI (or whose Lorenz curves single-cross, as is most common in empirical 
studies), there is a critical value for the parameter � , �FG , such that Γ�(G) ≥ Γ�(F) 
for all � ≤ �FG and Γ�(G) ≤ Γ�(F) for all � ≥ �FG . This, among other things, obvi-
ates the need to perform exhaustive robustness exercises in applied work.

Supposing LG(p) crosses LF(p) n times first from below and p1, p2,… , pn are the 
crossings, we next consider an alternative characterization of Condition PI in terms 
of the Gini coefficients of distributions within subpopulation [0, pi] , i = 1, 2,… , n . 
Specifically, the distributions of F,G ∈ Ωc

�
 within the subpopulation [0, pi] are given 

by

and their Gini coefficients are denoted by Γi(F) and Γi(G).7 An alternative charac-
terization of Condition PI can be given as follows.

Proposition 8 Suppose F,G ∈ Ωc
�
 and LG(p) crosses LF(p) n times first from below 

and n is odd. Γi(F) ≤ Γi(G) for i = 2, 4, 6,… , n − 1 and Γ(F) > Γ(G) if and only if F 
and G satisfy Condition PI.

Γ�(F) = 1 −
1

�(F) ∫
1

0

�(1 − p)�−1F−1(p)dp

∫
1

0

��(p)F
−1(p)dp with ��(p) = −�(1 − p)�−1

−
���
�
(p)

��
�
(p)

=
2 − �

1 − p
,

F̂i(x) =

{
F(x)

pi
for x ≤ F−1(pi)

1 for x > F−1(pi)

Ĝi(x) =

{
G(x)

pi
for x ≤ G−1(pi)

1 for x > G−1(pi)

7 Such definitions immediately imply, by Proposition 3 (ii), that, assuming F,G ∈ Ωc
�
 and LG(p) crosses 

LF(p) n times first from below and n is even, Γi(F) ≤ Γi(G) for i = 2, 4, 6,… , n and Γ(F) ≤ Γ(G) if and 
only if I(F) < I(G) for any linear inequality index I( ) exhibiting positional transfer sensitivity, which is 
what obtains in Proposition 5 in Zoli (1999) in the case of distributions with the same mean.
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5  Conclusion

This paper shows that, defining an income distribution to be an increase in inverse 
downside inequality of another if the former can be obtained from the latter by a 
sequence of probability transfers which unambiguously shift dispersion from higher 
to lower income levels without changing the mean or the Gini coefficient, an ine-
quality index’s aversion to inverse downside inequality implies its positional trans-
fer sensitivity. It is further shown that when the Lorenz curves of two income distri-
butions intersect, how the change from one distribution to the other is judged by an 
inequality index exhibiting inverse downside inequality aversion often depends on 
the relative strengths of its aversion to inverse downside inequality and inequality 
aversion. For the class of linear inequality indices where positional transfer sensi-
tivity is shown to also imply aversion to inverse downside inequality, a useful meas-
ure is shown to characterize the strength of an index’s aversion to inverse downside 
inequality relative to its own inequality aversion and determine the ranking of two 
distributions by the index if one distribution can be obtained from the other by a 
special combination of an increase in inverse downside inequality and an inequality 
decrease. The conceptual clarity given by the analysis to the empirically most rel-
evant case of single-crossing Lorenz curves is particularly striking: in this case the 
change from one distribution to the other can always be decomposed into a change 
in inverse downside inequality and a change in Pigou–Dalton inequality and how a 
linear inequality index judges between two distributions is fully characterized by a 
single measure. Furthermore, an interpretation implied by our results of the param-
eter of Donaldson and Weymark (1983) “S-Gini” indices allows us to theoretically 
predict (and understand), from the ranking of two distributions by one member of 
the family, the rankings by many other members of the family, obviating the need to 
perform exhaustive robustness exercises in applied studies.
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not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
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ses/by/4.0/.

Appendix

Proofs.

Proof of Proposition 1 If G can be obtained from F by a sequence of MGPTs, (i)–(iii) 
follow immediately from the properties of an MGPT.

To prove the converse, define �(p) ≡ ∫ p

0
[G−1(q) − F−1(q)]dq . (ii) and (iii) imply 

that ∫ p

0
�(r)dr is negative on (0, 1). Hence �(p) must cross the p-axis at least once at 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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one point on (0, 1). Let 0 = p0 < p1 < ⋯ < pn = 1 be the finite number of crossings 
and let Ai denote the area between �(p) and the p-axis on interval Ii = [pi−1, pi] , for 
i = 1,… , n . (ii) and (iii) imply that �(p) is negative on the interval (p0, p1) and alter-
nates in sign thereafter on successive intervals and n is an even number. Furthermore

where the last equality is by (iii). Define

By (1), there exists an �1 ∈ (0, 1] such that �1A1 = A2 . Hence, �1(p) corresponds to 
an MGPT.

Define

By (2), (1 − �1)A1 + A3 ≥ A4 . Hence there exists an �2 ∈ (0, 1] such that 
�2[(1 − �1)A1 + A3] = A4 . Hence �2(p) corresponds to an MGPT.

The pattern of construction should now be obvious. We construct �1(p) to 
exhaust A2 , �2 to exhaust A4 . Similarly, �3(p),… ,�n∕2(p) can be constructed 
to exhaust A6,… ,An . The proof is completed by noting that (4) guarantees that ∑n∕2

i=1
�i(p) = �(p) for all p ∈ [0, 1] .   ◻

Proof of Proposition 2 Since repeated integration by parts yields

(1)A1 ≥ A2,

(2)A1 + A3 ≥ A2 + A4,

(3)
A1 + A3 + A5 ≥ A2 + A4 + A6,

⋯⋯

(4)A1 + A3 +⋯ + An−1 = A2 + A4 +⋯ + An,

�1(p) =

⎧
⎪⎨⎪⎩

�1�(p) for p ∈ I1;

�(p) for p ∈ I2
0 for p ∉ I1 ∪ I2.

�2(p) =

⎧⎪⎨⎪⎩

�2(1 − �1)�(p) for p ∈ I1;

�2�(p) for p ∈ I3;

�(p) for p ∈ I4
0 for p ∉ I1 ∪ I3 ∪ I4.

(5)

∫
1

0

�(p)[G−1(p) − F−1(p)]dp

= �(1)∫
1

0

[G−1(p) − F−1(p)]dp

− ��(1)∫
1

0
∫

p

0

[G−1(q) − F−1(q)]dqdp

+ ∫
1

0

{���(p)∫
p

0
∫

q

0

[G−1(r) − F−1(r)]drdq}dp,
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conditions (i), (ii) and (iii) in Proposition 1 clearly imply ∫ 1

0
𝜈(p)G−1(p)dp > ∫ 1

0
𝜈(p)F−1(p)dp.

To prove the converse, consider first the following pair of functions �̂� = 𝜃p2 + 1 
and �̆� = 𝜃p2 − 1 where 𝜃 < 0 . Since

and

letting � → 0 , we have ∫ 1

0
[G−1(p) − F−1(p)]dp ≥ 0 and − ∫ 1

0
[G−1(p) − F−1(p)]dp ≥ 0 , 

which implies condition (i) in Proposition  1. Consider secondly the functions 
�̄� = 𝜃p2 + p and �̌� = 𝜃p2 − p where 𝜃 < 0 . Since (by integration by parts)

and

letting � → 0 , we have − ∫ 1

0
∫ p

0
[G−1(q) − F−1(q)]dqdp ≥ 0 and ∫ 1

0
∫ p

0
[G−1(q) − F−1(q)]dqdp ≥ 0 , 

which implies condition (ii) in Proposition 1. Now suppose (iii) in Proposition  1 is 
false at p0 ∈ (0, 1) . By continuity, there exists an interval (p1, p2) containing p0 such 
that ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq > 0 for all p ∈ (p1, p2) . Letting

Applying conditions (i) and (ii) in Proposition 1 to (5), we have

That is, we have �̈���(p) < 0 but ∫ 1

0
�̈�(p)F−1(p)dp > ∫ 1

0
�̈�(p)G−1(p)dp .   ◻

Proof of Proposition 3 (i)
(⇒ ) Since ∫ 1

0
∫ q

0
[G−1(r) − H−1(r)]drdq = 0 and ∫ p

0
∫ q

0
[G−1(r) − H−1(r)]drdq ≤ 0 

for all p, we have ∫ 1

p
∫ q

0
[G−1(r) − H−1(r)]drdq ≥ 0 for all p, which together with 

∫ p

0
[H−1(q) − F−1(q)]dq ≥ 0 for all p, implies ∫ 1

0
∫ q

0
[G−1(r) − F−1(r)]drdq > 0 , and 

∫ 1

p
∫ q

0
[G−1(r) − F−1(r)]drdq ≥ 0 for all p ∈ [0, 1].

(⇐ ) Suppose ∫ p

0
G−1(q)dq crosses ∫ p

0
F−1(q)dq n times and p1, p2,… , pn are the 

crossings. ∫ 1

p
∫ q

0
[G−1(r) − F−1(r)]drdq ≥ 0 for all p ∈ [0, 1] clearly implies that 

∫ p

0
G−1(q)dq ≥ ∫ p

0
F−1(q)dq for p ∈ [pn, 1] and ∫ p

0
G−1(q)dq ≤ ∫ p

0
F−1(q)dq for 

p ∈ [pn−1, pn].

∫
1

0

�̂�(p)[G−1(p) − F−1(p)]dp = ∫
1

0

(𝜃p2 + 1)[G−1(p) − F−1(p)]dp

∫
1

0

�̆�(p)[G−1(p) − F−1(p)]dp = ∫
1

0

(𝜃p2 − 1)[G−1(p) − F−1(p)]dp,

∫
1

0

�̄�(p)[G−1(p) − F−1(p)]dp = −∫
1

0

(2𝜃p + 1)∫
p

0

[G−1(q) − F−1(q)]dqdp

∫
1

0

�̌�(p)[G−1(p) − F−1(p)]dp = −∫
1

0

(2𝜃p − 1)∫
p

0

[G−1(q) − F−1(q)]dqdp,

�̈�(p) =

{
−p2 for p ∈ [p1, p2];

𝜃p2 otherwise .

lim
𝜃→0∫

1

0

�̈�(p)[G−1(p) − F−1(p)]dp = −2∫
p2

p1
∫

p

0
∫

q

0

[G−1(r) − F−1(r)]drdqdp < 0
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Consider first the case where ∫ p

0
G−1(q)dq crosses ∫ p

0
F−1(q)dq first from below. 

H(x) is constructed as follows: (a) H−1(p) = F−1(p) for p ≤ p1 , (b) If 
∫ p1
0

∫ q

0
[G−1(r) − H−1(r)]drdq + ∫ p2

p1
∫ q

0
[G−1(r) − F−1(r)]drdq > 0 , then for 

p ∈ [p1, p2] , let H−1(p) be such that min{F−1(p),G−1(p)} ≤ H−1(p) ≤ max{F(p)−1,

G−1(p)} , ∫ p

0
G−1(q)dq ≥ ∫ p

0
H−1(q)dq ≥ ∫ p

0
F−1(q)dq , and ∫ p2

p1
∫ q

0
[H−1(r) − G−1(r)]

drdq = ∫ p1
0

∫ q

0
drdq[G−1(r) − H−1(r)]drdq ; otherwise, H−1(p) = F−1(p) . (c) for 

p ∈ [p2, p3] , H−1(p) = F−1(p) , (d) If ∫ p3
0

∫ q

0
[G−1(r) − H−1(r)]drdq + ∫ p4

p3
∫ q

0
[G−1

(r) − F−1(r)]drdq > 0 , then for p ∈ [p3, p4] , let H−1(p) be such that min{F−1(p),G−1(p)

} ≤ H−1(p) ≤ max{F−1(p),G−1(p)} , ∫ p

0
G−1(q)dq ≥ ∫ p

0
H−1(q)dq ≥ ∫ p

0
F−1(q)dq , and 

∫ p4
p3

∫ q

0
[H−1(r) − G−1(r)]drdq = ∫ p3

0
∫ q

0
[G−1(r) − H−1(r)]drdq ; otherwise, H−1(p) = F−1(p).... for 

p ∈ [pn−1, pn] , H−1(p) = F−1(p).
(Such construction and ∫ 1

p
∫ q

0
[G−1(r) − F−1(r)]drdq ≥ 0 for all p imply that 

∫ pn
0

∫ q

0
[G−1(r) − H−1(r)]drdq + ∫ 1

pn
∫ q

0
[G−1(r) − F−1(r)]drdq ≥ 0 since, by the con-

struction, there exists a crossing pm ≤ pn−1 of ∫ p

0
G−1(q)dq and ∫ p

0
F−1(q)dq such 

that ∫ pm
0

∫ q

0
[G−1(r) − H−1(r)]drdq = 0 and H−1(p) = F−1(p) for p ∈ [pm, pn] , which, 

together with ∫ 1

pm
∫ q

0
[G−1(r) − F−1(r)]drdq ≥ 0 , gives ∫ pn

0
∫ q

0
[G−1(r) − H−1(r)]drdq+

∫ 1

pn
∫ q

0
[G−1(r) − F−1(r)]drdq = ∫ pm

0
∫ q

0
[G−1(r)drdq + ∫ 1

pm
∫ q

0
[G−1(r) − F−1(r)]drdq ≥ 0.)

For p ∈ [pn, 1] , let H−1(p) be such that min{F−1(p),G−1(p)} ≤ H−1(p) ≤ max

{F−1(p),G−1(p)} , ∫ p

0
G−1(q)dq ≥ ∫ p

0
H−1(q)dq ≥ ∫ p

0
F−1(q)dq , and ∫ 1

pn
∫ q

0
[H−1(r)

−G−1(r)]drdq = ∫ pn
0

∫ q

0
[G−1(r) − H−1(r)]drdq . We thus have ∫ p

0
∫ q

0
[G−1(r)

−H−1(r)]drdq ≤ 0 for all p, ∫ 1

0
∫ q

0
[G−1(r) − H−1(r)]drdq = 0 , and ∫ 1

0
[G−1(q) − H−1(q)

dq = 0 (by our construction ∫ 1

0
H−1(q)dq = ∫ 1

0
G−1(q)dq = ∫ 1

0
F−1(q)dq given that 

G(x) and F(x) have the same mean), ∫ p

0
[H−1(q) − F−1(q)]dq ≥ 0 for all p and 

∫ 1

0
[H−1(q) − F−1(q)]dq = 0 . That is, G(x) is an IDII of H(x) and H(x) is an MPDI of 

F.
If ∫ p

0
G−1(q)dq crosses ∫ p

0
F−1(q)dq first from above, let p̂1 and p̂2 be two consec-

utive crossings of G−1(p) and F−1(p) such that p̂1 < p1 < p̂2 and G−1(p) − F−1(p) ≤ 0 
for p ∈ [p̂1, p̂2] . H(x) is constructed as follows: (a) for p ≤ p̂1,H

−1(p) = G−1(p) , (b) 
for p ∈ [p̂1, p̂2] , let H(x) be such that F−1(p) ≥ H−1(p) ≥ G−1(p) , and 
∫ p̂2
p̂1
[H−1(q) − F−1(q)]dq = − ∫ p̂1

0
[G−1(q) − F−1(q)]dq (c) for p ∈ [p̂2, p2],H

−1(p) = F−1(p) , 
(d) if ∫ p2

0
∫ q

0
[G−1(r) − H−1(r)]drdq + ∫ p3

p2
∫ q

0
[G−1(r) − F−1(r)]drdq > 0 , then for p ∈ [p2, p3] ,  

let H(x) be such that  min{F−1(p),G−1(p)} ≤ H−1(p) ≤ max{F−1(p),G−1(p)} , 
∫ p

0
G−1(q)dq ≥ ∫ p

0
H−1(q)dq ≥ ∫ p

0
F−1(q)dq , and ∫ p3

p2
∫ q

0
[H−1(r) − G−1(r)]drdq =

∫ p2
0

∫ q

0
[G−1(r) − H−1(r)]drdq , otherwise, H−1(p) = F−1(p) . The rest of the proof is 

the same as the case where ∫ p

0
G−1(q)dq crosses ∫ p

0
F−1(q)dq first from below. 



504 W. H. Chiu 

1 3

 (ii) is proved analogously.

  ◻

Proof of Proposition 5 A special case of Proposition 6 that follows.   ◻

Proof of  Propositions 6 and  7 First note that if F and G have the same mean, i.e., 
∫ 1

0
[G−1(p) − F−1(p)]dp = 0 , then integration by parts yields

The rest of the proofs is implied by Lemmas 4–6 that follow.   ◻

Lemma 1 Suppose 

(a) ∫ 1

0
[G−1(p) − F−1(p)]dp = 0,

(b) ∫ p

0
��
I
(q) ∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 for all p ∈ [0, 1].

Then the following are equivalent:

Proof 

 (ii) ⟺ (iii)

Since �I and �J are monotonic, T( ) ≡ �J(�
−1
I
( )) is well-defined. We then have 

�J(p) = T(�I(p)) and ��
J
(p) = T �(�I(p))�

�
I
(p).

gives

Hence given T �( ) ≥ 0 and 𝜈�
I
( ) > 0,

I(G) − I(F) =�
1

0

�I(p)[G
−1(p) − F−1(p)]dp

≥0 ⟺ �
1

0

��
I
(p)�

p

0

[G−1(q) − F−1(q)]dqdp ≤ 0

(i) I(G) ≥ I(F) implies J(G) ≥ J(F).

(ii) −
���
I
(p)

��
I
(p)

≤ −
���
J
(p)

��
J
(p)

forallp ∈ [0, 1].

(iii) There exists T( ) such that �J( ) = T(�I( )) and T �( ) ≥ 0, T ��( ) ≤ 0.

d

dp
[ln T �(�I(p))] =

d

dp

[
ln

��
J
(p)

��
I
(p)

]

T ��(�I(p))

T �(�I(p))
��
I
(p) =

���
J
(p)

��
J
(p)

−

[
���
I
(p)

��
I
(p)

]
= −

���
I
(p)

��
I
(p)

−

[
−
���
J
(p)

��
J
(p)

]
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(i) ⟺ (iii)

where the last inequality is true if I(G) ≥ I(F) or equivalently 
∫ 1

0
��
I
(p) ∫ p

0
[G−1(q) − F−1(q)]dqdp ≥ 0 . Clearly if T ��( ) ≤ 0 , given (b), 

J(G) − J(F) ≥ 0 . Conversely, since (b) allows ∫ p

0
��
I
(q) ∫ q

0
[G−1(r) − F−1(r)]drdq to 

take any non-positive value, positive values for T ��(�I) would permit a negative value 
for [J(G) − J(F)] (assuming [I(G) − I(F)] equals zero). That is, I(G) ≥ I(F) does not 
imply J(G) ≥ J(F) .   ◻

Lemma 2 Suppose ∫ 1

0
[G−1(p) − F−1(p)]dp = 0 and

Then I(G) ≥ I(F) implies J(G) ≥ J(F) if and only if ∫ p

0
��
I
(q) ∫ q

0
[G−1(r) − F−1(r)]

drdq ≤ 0 for all p ∈ [0, 1].

Proof Assuming [I(G) − I(F)] equals zero and using

T �� ≤ 0 ⟺ −
���
I
(p)

��
I
(p)

≤
[
−
���
J
(p)

��
J
(p)

]

J(G) − J(F) =�
1

0

�J(p)[G
−1(p) − F−1(p)]dp

=�
1

0

T(�I(p))[G
−1(p) − F−1(p)]dp

=T(�I(1))�
1

0

[G−1(p) − F−1(p)]dp

− �
1

0

T �(�I(p))�
�
I
(p)�

p

0

[G−1(q) − F−1(q)]dqdp

= − �
1

0

T �(�I(p))�
�
I
(p)�

p

0

[G−1(q) − F−1(q)]dqdp(by(a))

= − T �(�I(1))�
1

0

��
I
(p)�

p

0

[G−1(q) − F−1(q)]dqdp

+ �
1

0

{
T ��(�I(p))�

�
I
(p)�

p

0

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq

}
dp

≥�
1

0

{
T ��(�I(p))�

�
I
(p)�

p

0

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq

}
dp

−
���
I
(p)

��
I
(p)

≤ −
���
J
(p)

��
J
(p)

for allp ∈ [0, 1].

J(G) − J(F) = −∫
1

0

{
T ��(�I(p))�

�
I
(p)∫

p

0

��
I
(q)∫

q

0

[G−1(r) − F−1(r)]drdq

}
dp
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(from the proof of Lemma  1) where �J(p) = T(�I(p)) and T ��( ) ≤ 0 , since T ��(�I) 
can take any non-positive value, positive value for ∫ p

0
��
I
(q) ∫ q

0
[G−1(r) − F−1(r)]drdq 

would permit a negative value for [J(G) − J(F)].
The converse is proved in Lemma 1.   ◻

Lemma 3 Suppose ∫ 1

0
[G−1(p) − F−1(p)]dp = 0 and I(G) ≥ I(F) but it 

is not true that ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 for all p ∈ [0, 1]. Then  

∫ p

0
��
I
(q) ∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 for all p ∈ [0, 1] if and only if ∫ 1

0
∫ q

0
[G−1(r)

−F−1(r)]drdq > 0 and there exists z ∈ (0, 1) such that ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 

for p ≤ z and ∫ p

0
[G−1(q) − F−1(q)]dq ≥ 0 for p ≥ z.

Proof (⇐ ) For p ≤ z,

because both terms are clearly non-positive by the hypothesis, 𝜈′
I
> 0 and 𝜈′′

I
< 0 . 

For p ∈ (z, 1) , since ��
I
(p) ∫ p

0
[G−1(q) − F−1(q)]dq ≥ 0 , we have

Hence

(⇒ ) First note that (given ∫ 1

0
[G−1(p) − F−1(p)]dp = 0)

𝜈�
I
(p) > 0 and 𝜈��

I
(p) < 0 for all p thus imply that if ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≥ 0 

for all x ∈ [0, 1] , ∫ 1

0
𝜈I(p)[G

−1(p) − F−1(p)]dp < 0 (which contradicts the assump-
tion I(G) ≥ I(F) ). Since we also rule out ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 

�
p

0

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq =��
I
(p)�

p

0
�

q

0

[G−1(r) − F−1(r)]drdq

− �
p

0

���
I
(q)�

q

0
�

r

0

[G−1(s) − F−1(s)]dsdr ≤ 0

�
p

z

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq ≤ �
1

z

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq.

�
p

0

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq

= �
z

0

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq + �
p

z

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq

≤ �
z

0

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq + �
1

z

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq

= �
1

0

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq = −[I(G) − I(F)] ≤ 0.

∫
1

0

�I(p)[G
−1(p) − F−1(p)]dp = − ��

I
(1)∫

1

0
∫

p

0

[G−1(q) − F−1(q)]dqdp

+ ∫
1

0

{���
I
(p)∫

p

0
∫

q

0

[G−1(r) − F−1(r)]drdq}dp.
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for all p ∈ [0, 1] by assumption, there always exists ẑ ∈ (0, 1) such that 
∫ ẑ

0
∫ q

0
[G−1(r) − F−1(r)]drdq = 0 . For such a ẑ , since

and �′′
I
 can take any negative values, positive values for ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq 

for p ≤ ẑ would permit a negative value for ∫ ẑ

0
𝜈�
I
(q) ∫ q

0
[G−1(r) − F−1(r)]drdq and 

contradict the hypothesis.
Hence there exists z ∈ (0, 1) such that ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 for 

p ∈ [0, z] and ∫ p

0
∫ q

0
[G−1(r) − F−1(r)]drdq > 0 for p ∈ (z, z1] where z1 ∈ (z, 1] , 

which in turn implies ∫ p

0
[G−1(q) − F−1(q)]dq > 0 for p ∈ (z, z2) where z2 ∈ (z, z1] . 

Now if there exist z3 and z4 such that z2 ≤ z3 < z4 < 1 and ∫ p

0
[G−1(q) − F−1(q)]dq < 0 

for p ∈ (z3, z4) and ∫ p

0
[G−1(q) − F−1(q)]dq ≥ 0 for p ∈ (z, z3) , we can always choose 

the magnitude of ��
I
(p) appropriately so that ∫ 1

z3
𝜈�
I
(q) ∫ q

0
[G−1(r) − F−1(r)]drdq < 0 

without violating 𝜈��
I
(p) < 0 . At the same time, since ∫ z3

z
��
I
(q) ∫ q

0
[G−1(r) − F−1(r)]

drdq > 0 and ∫ z

0
��
I
(q) ∫ q

0
[G−1(r) − F−1(r)]drdq = − ∫ z

0
{���

I
(q) ∫ q

0
∫ r

0
[G−1(s) − F−1

(s)]dsdr}dq and ���
I
(p) can take any negative value (however close to 0), we can 

choose the value of ���
I
(p) for p ∈ [0, z] so that

and

(i.e., ∫ 1

0
��
I
(q) ∫ q

0
[G−1(r) − F−1(r)]drdq ≤ 0 or I(G) ≥ I(F) ). But ∫ z3

0
��
I
(q) ∫ q

0
[G−1(r)

−F−1(r)]drdq > 0 violates the hypothesis. That is, we must have ∫ p

0
[G−1(q) − F−1(q)]

dq ≥ 0 for p ≥ z and also ∫ 1

0
∫ q

0
[G−1(r) − F−1(r)]drdq > 0 as a result.   ◻

Proof of Proposition 8 The characterization follows immediately from the definitions 
of F̂i(x) and Ĝi(x) and the fact that LG(p) crosses LF(p) n times first from below and n 
is odd.   ◻

∫
ẑ

0

𝜈�
I
(q)∫

q

0

[G−1(r) − F−1(r)]drdq

= −∫
ẑ

0

{𝜈��
I
(q)∫

q

0
∫

r

0

[G−1(s) − F−1(s)]dsdr}dq

∫
z3

0

𝜈�
I
(q)∫

q

0

[G−1(r) − F−1(r)]drdq

= −∫
z

0

{𝜈��
I
(q)∫

q

0
∫

r

0

[G−1(s) − F−1(s)]dsdr}dq

+ ∫
z3

z

𝜈�
I
(q)∫

q

0

[G−1(r) − F−1(r)]drdq > 0

− �
z3

0

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq

≥ �
1

z3

��
I
(q)�

q

0

[G−1(r) − F−1(r)]drdq



508 W. H. Chiu 

1 3

References

Aaberge R (2009) Ranking intersecting Lorena curves. Soc Choice Welf 33:235–259
Atkinson AB (1970) On the measurement of inequality. J Econ Theory 2:244–263
Atkinson AB (1973) More on the measurement of inequality. mimeo
Budd EC (1970) Postwar changes in the size of distribution of income in the US. Am Econ Rev 

60:247–260
Chateauneuf A, Gajdos T, Wilthien P (2002) The principle of strong diminishing transfer. J Econ Theory 

103:311–333
Chiu WH (2005) Skewness preference, risk aversion, and the precedence relations on stochastic changes. 

Manag Sci 51:1812–1828
Chiu WH (2007) Intersecting Lorenz curves, the degree of downside inequality aversion, and tax reforms. 

Soc Choice Welf 28:375–399
Chiu WH (2019) Intersecting Lorenz curves, aversion to inverse downside inequality, and tax reforms, 

mimeo
Dardanoni V, Lambert P (1988) Welfare rankings of income distributions: a role for the variance and 

some insights for tax reform. Soc Choice Welf 5:1–17
Davies JB, Hoy M (1985) Comparing income distributions under aversion to downside inequality. mimeo
Davies JB, Hoy M (1995) Making inequality comparisons when Lorenz curves intersect. Am Econ Rev 

85:980–986
Davies JB, Hoy M (2002) Flat rate taxes and inequality measurement. J Publ Econ 84:33–46
Donaldson D, Weymark JA (1983) Ethically flexible gini indices for income distributions in the con-

tinuum. J Econ Theory 29:353–358
Kolm S (1976) Unequal inequalities: I. J Econ Theory 12:416–42
Kuznets S (1963) Quantitative aspects of economic growth of nations. Econ Dev Cult Change 11:1–80
Machina M, Pratt JW (1997) Increasing risk: some direct construction. J Risk Uncertainty 14:103–127
Mehran F (1976) Linear measures of income inequality. Econometrica 44:805–809
Menezes C, Geiss C, Tressler J (1980) Increasing downside risk. Am Econ Rev 70:921–932
Muliere, Scarsini (1989) A note on stochastic dominance and inequality measures. J Econ Theory 

49:314–323
Rothschild M, Stiglitz JE (1970) Increasing risk: I. A definition. J Econ Theory 2(3):225–243
Sawyer M (1976) Income distribution in OECD countries. OECD Economic Outlook, Occasional Stud-

ies, Paris
Sen A (1973) On economic inequality. Oxford University Press, Oxford
Shorrocks AF, Foster JE (1987) Transfer sensitive inequality measures. Rev Econ Stud 54:485–97
Yaari ME (1988) A controversial proposal concerning inequality measurement. J Econ Theory 

44:381–397
Zoli C (1999) Intersecting generalized Lorenz curves and the Gini index. Soc Choice Welf 16:183–196
Zoli C (2002) Inverse stochastic dominance, inequality measurement and Gini indices. J Econ 9:119–161

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Intersecting Lorenz curves and aversion to inverse downside inequality
	Abstract
	1 Introduction
	2 Preliminaries and inverse downside inequality
	3 Single-crossing Lorenz curves
	4 Multiple-crossing Lorenz curves
	5 Conclusion
	References




