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Abstract: Fanconi anaemia (FA) is an inherited chromosomal instability disorder characterised by
congenital and developmental abnormalities and a strong cancer predisposition. In less than 5% of
cases FA can be caused by bi-allelic pathogenic variants (PGVs) in BRCA2/FANCD1 and in very rare
cases by bi-allelic PGVs in BRCA1/FANCS. The rarity of FA-like presentation due to PGVs in BRCA2
and even more due to PGVs in BRCA1 supports a fundamental role of the encoded proteins for normal
development and prevention of malignant transformation. While FA caused by BRCA1/2 PGVs is
strongly associated with distinct spectra of embryonal childhood cancers and AML with BRCA2-
PGVs, and also early epithelial cancers with BRCA1 PGVs, germline variants in the BRCA1/2 genes
have also been identified in non-FA childhood malignancies, and thereby implying the possibility of
a role of BRCA PGVs also for non-syndromic cancer predisposition in children. We provide a concise
review of aspects of the clinical and genetic features of BRCA1/2-associated FA with a focus on
associated malignancies, and review novel aspects of the role of germline BRCA2 and BRCA1 PGVs
occurring in non-FA childhood cancer and discuss aspects of clinical and biological implications.
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1. Introduction

Fanconi anaemia (FA) is a complex inherited chromosomal instability disorder with
congenital and developmental abnormalities, and cancer predisposition [1,2]. The classical
clinical phenotype of FA presents with microcephaly, thumb and radial ray abnormalities,
short stature, and café au lait spots. Progressive bone marrow failure is in the majority of
cases observed in the first and second decade of life. However, affected individuals can also
present with a more subtle phenotype and haematological and neoplastic complications in
their third and fourth decades, or with a severe phenotype in need of complex interven-
tions for multiple congenital malformations and malignant complications early in life [2–5].
After its initial description in 1927 [6], FA has been recognised as the most common paedi-
atric bone marrow failure syndrome. FA-associated bone marrow failure can transform
to acute myeloid leukaemia (AML), which is often encountered in later childhood, the
second or even third decade. However, with better outcome of haematopoietic stem cell
transplantation, solid tumours have become more prevalent in FA, in particular squamous
cell carcinoma (SCC) affecting the aerodigestive and anogenital tract [1,5]. FA can be caused
by germline pathogenic gene variants (PGVs) in at least 22 FA genes, FANCA-FANCW, of
which all but the X-linked FANCB are autosomal, and all but FANCR/RAD51 inherited
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recessively [5,7–9]. On a cellular level, the FA-pathway is firmly positioned in the context
of DNA repair. The FA-genes encode proteins that form a network in the DNA damage
response and have a major role in stabilising replication forks and mitigating replication
stress, in particular from cross linker-induced, and aldehyde metabolism-generated geno-
toxic stress [8,10,11]. In this network multiple FA proteins (including FANCA, B, C, E,
F, G, L) form the FA-core complex, which facilitates the ubiquitination of the FANCD2
and FANCI proteins [8,12]. Downstream of the FANCD2/FANCI ubiquitination, the
other FA-proteins, including FANCD1/BRCA2 (herein referred to only as BRCA2) and
FANCS/BRCA1 (herein referred to as BRCA1) have a more direct DNA-interaction with
a role in homology-directed DNA repair [13]. The DNA damage response defect in FA
is exploited diagnostically by demonstration of increased cross linker sensitivity in FA
patient-derived cells [4]. The discovery of BRCA2 as the gene of which bi-allelic PGVs can
cause FA of the complementation group FA-D1 [14], and, more recently, PGVs in BRCA1
for the FA complementation group FA-S [15] has placed FA from a rare paediatric genetic
disease firmly in the context of familial cancer. In turn, recent large genetic studies of
individuals affected by apparently sporadic childhood cancer detected BRCA1/2 variants,
which point also towards a possible role for germline PGVs in particular of BRCA2 in
the development of some non-syndromic childhood cancers. Here we review aspects of
the clinical, genetic, and biological role of BRCA1 and BRCA2 in the context of FA and
childhood cancer and discuss clinical and biological implications.

2. FA Caused by FANCD1/BRCA2 Pathogenic Variants: Severe Phenotype with Early
Embryonal Malignancies

BRCA2 has an essential role in development, and homology-directed recombination
and repair, and interstrand cross link response [13,16]. Whilst women with germline PGVs
of BRCA2 are at increased risk of hereditary breast and ovarian cancer (HBOC) [17], bi-
allelic BRCA2-disruption was for a long time considered embryonically lethal. This was
supported by evidence from mouse models, in which total absence of BRCA2 function
appeared not compatible with foetal viability [18–20]. However, in 2002 BRCA2 germline
PGVs were identified in four children with FA of the complementation group FA-D1 [14].
Since then, more than 50 individuals with FA caused bi-allelic BRCA2 PGVs have been
reported in diverse ethnic groups [21–28], and BRCA2 PGVs are considered to cause around
3–5% of FA [1]. Clinically, FA caused by bi-allelic BRCA2 PGVs does not have an obvious
sex preference and is in most cases associated with a severe phenotype, often with clin-
ical features in the combination of the VACTER-L (vertebral, anal, oesophageal, cardiac
renal, and radial dysplasia) complex [5,29]. Importantly, most of these patients develop
aggressive malignancies and sometimes multiple cancers very early in life, with a cancer
incidence over 90% at the age of 5 years [30]. In contrast to the more common defects
in the FA-core complex genes including FANCA, FANCC or FANCG, the malignancies in
BRCA2-associated FA include in addition to early AML also Wilms’ Tumour, embryonal
brain tumours, (mostly medulloblastoma but also glioblastoma), hepatoblastoma, T-cell
acute lymphoblastic leukaemia (ALL), neuroblastoma, and two cases of individuals with
rhabdomyosarcoma have been reported [21–27,31–33]. One family had an index case
with early onset colorectal carcinoma but an otherwise milder phenotype, and also lym-
phoma, breast cancer and AML was diagnosed in the family [28]. In a single individual
of Turkish origin homozygosity for a hypomorphic missense BRCA2 variant and primary
ovarian insufficiency presented without clinical features of FA and an abrogated cellular
phenotype [34]. SCCs have not been reported associated with BRCA2-PGV- associated
FA. In FA the spectrum of pathogenic variants in BRCA2 comprises splice-site variants,
small deletions and insertions, and missense mutations. Several pathogenic variants were
identified in more than one pedigree in the published cohort of FA-D1 cases. These in-
clude IVS7 splice site pathogenic variants, the 886delGT, and the Ashkenazi Jewish (AJ)
founder mutation 6174delT. Additionally, the mutations 3492insT and 9424C>T have each
been identified in multiple pedigrees. However, only very few BRCA2 PGVs have been
found homozygous in FA-D1 patients. These include IVS7 splice site PGVs, IVS19-1 G>A,
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1548del4 and c.1538del4, c.1310del4 in exon 10, c.8524C>T and c.469A>T [21,24,26,34].
Importantly, the common AJ-founder mutation 6174delT [35], or the Icelandic founder
mutation 999del5 [36] have not been observed in the homozygous state, implying that not
all BRCA2 PGVs provide for foetal viability, and that at least one allele needs to provide
some essential BRCA2 function for survival. Despite the relatively small number of re-
ported cases of FA caused by BRCA2 PGVs, and multiple different cancers in individuals
with the same mutations, there appears to be some association of individual PGVs with
distinct cancer types in affected children; individuals with variants affecting the IVS7
splice site region appear to develop preferentially AML and not CNS malignancies, while
none of the 6174delT and 886delGT carriers have been reported to develop AML, but
rather, in most cases, brain tumours [21,33]. Detailed analysis of BRCA2 PGVs associated
with FA have provided insights into genetic and biological mechanisms of cellular and
organismal survival conveyed by alleles containing BRCA2 PGVs. This work suggests a
major role for alternative spliced BRCA2-transcripts, which splice out variant-harbouring
regions [28,37,38]. The alternatively spliced transcripts have been shown to encode variant
spliced BRCA2 proteins, which have been demonstrated to maintain BRCA2 functional
properties, some of which entirely proficient in DNA repair [37–40].

3. FA Caused by BRCA1/FANCS Pathogenic Variants: Distinct Clinical Phenotype and
Cancer Spectrum

After the identification of BRCA2 as the gene for which bi-allelic pathogenic variants
underlie the mostly severe FA-phenotype in the complementation group FA-D1, in 2015
also pathogenic variants in the other main HBOC gene, BRCA1, were identified to cause
an FA-like syndrome [15]. Individuals of this small but important subgroup of only 10
reported patients display in most cases cellular cross linker hypersensitivity and have
clinical features of developmental abnormalities, and severe cancer predisposition [15,41].
BRCA1 was therefore also termed FANCS [15]. Both BRCA1 and BRCA2 are essential in
the homologous recombination repair pathway of double-stranded DNA (ds-DNA) breaks
(reviewed in detail elsewhere [13,42]), with distinct but complementary roles, which for
both proteins include a specific function for the protection against aldehyde toxicity [43].
As such BRCA1 is recruited early in the process to facilitate assembly of the complexes
that signal the presence of DNA damage and promotes resection of DNA leading to the
formation of single stranded DNA at the end of ds-DNA break. BRCA1 then recruits the
PALB2 protein (Partner and Localisator of BRCA2) [44], which in turn recruits BRCA2
to facilitate assembly of RAD51 to provide a homologous template for DNA synthesis
and repair [13,42,45]. PALB2 is another gene of which bi-allelic germ line PGVs can cause
FA, also termed FANCN, with a similar clinical presentation and cancer spectrum as FA
caused by BRCA2 PGVs including childhood solid tumours [46,47]. Total absence of BRCA1
protein function does also not appear to be compatible with foetal viability, as also evident
by mouse studies [20,48,49]. This points to its essential role for normal early develop-
ment, which is also reflected in the extreme rarity of the condition. Individuals carrying
bi-allelic BRCA1 PGVs must therefore have residual BRCA1 protein function, which at
least in some cases is also provided by alternative splicing of the BRCA1 gene [47]. To
date there are 10 individuals of variable ethnic background with bi-allelic BRCA1 PGVs
reported [15,41,47,50–53], of which intriguingly only two are male [41,47]. The mutation
spectrum of PGVs BRCA1 is homozygous in six cases from three pedigrees, all of which
affect exon 11 [47,51]. The remaining individuals are compound heterozygous. While some,
but not all, of the reported individuals affected by bi-allelic BRCA1 PGVs have developmen-
tal abnormalities, such as microcephaly and intrauterine growth retardation (IUGR), which
are also commonly found associated with classical FA, other FA-typical clinical findings,
such as radial ray abnormalities, are not a frequent feature of the FA-like presentation of
bi-allelic BRCA1 PGVs (Figure 1). Developmental delay with mild to moderate learning
difficulties, which is not typical for classical FA, is frequently described associated with
bi-allelic BRCA1 PGVs [41]. Importantly, bone marrow failure and transformation to AML,
which is a classical clinical hallmark of FA, has not been reported with FA-like clinical
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features caused by bi-allelic BRCA1 PGVs. While the cancer spectrum encountered by
individuals affected by bi-allelic BRCA1 PGVs includes also two individual cases of T-cell
ALL and neuroblastoma [41,47], which are encountered in BRCA2-associated and also in
FANCN/PALPB2 -associated FA [46], the other reported individuals have developed more
characteristic HBOC-associated adult-type epithelial malignancies early in life, such as
breast and ovarian cancer [41,51]. The phenotype associated with BRCA1 deficiency does
therefore appear distinct from the more classic form of FA and also FA associated with
BRCA2-deficiency (Figure 1). In particular the absence of bone marrow failure and immun-
odeficiency might place BRCA1deficiency distinctly between FA and other chromosomal
instability syndromes [2,41].
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4. BRCA1 and BRCA2 PGVs in Non-FA Childhood Cancer

Initial studies investigating a potential role of germline BRCA1 and BRCA2 PGVs
also for predisposition for non-syndromic childhood cancer focussed on the incidence of
childhood cancers in the offspring of families presenting with HBOC, in which a germline
BRCA1/2 PGV had been detected. When compared with non-BRCA1/2 HBOC families no
excess of childhood cancer was demonstrated in the families with a germline BRCA1/2
PGV [54]. However, comparison with population controls detected an increased occur-
rence in childhood cancers in families with a BRCA2 PGV, but not BRCA1 [55]. Whilst
not demonstrating causality, as the germline BRCA2 status of affected children was not
known and the possibility that there may be linked variation in modifier genes in affected
families as demonstrated for HBOC BRCA2 families [56], this was the first suggestion of
an association of BRCA2 PGVs with childhood cancer predisposition. With the advent of
modern genomic technologies enabling large volume and high throughput sequencing, it
became feasible to screen large childhood cancer populations for PGVs affecting multiple
cancer predisposition genes. Two large scale studies identified germline BRCA2 PGVs
in a small number (13/2081 total across both studies) of childhood cancers and just one
germline BRCA1 PGV [57,58]. In the St Jude’s cohort of long-term survivors of childhood
cancer germline BRCA1/2 PGVs were detected in 34 (BRCA2 n = 20, BRCA1 n = 14)/4402
individuals [59]. Discovery studies of germ line sequence variants of individuals affected
by specific tumour types that are more frequent in the childhood and younger adult pop-
ulation have also detected a small number of individuals mostly with germline BRCA2
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PGVs in osteosarcoma [60], paediatric glioma [61] and rhabdomyosarcoma [62]. However,
given the population frequency of germline BRCA1/2 PGVs, which is now being considered
to be ~1 in 250 with an approximately 2:3 ratio of BRCA1/2 [63], supportive evidence
for a causative association in clinical and diagnostic settings not typical of the classical
HBOC cancer spectrum is important, for example through case-control studies. For this,
a relative risk of at least 4 was demonstrated for germline BRCA2 PGVs in a case-control
study of medulloblastoma [64], an odds ratio (OR) of 3.6 for rhabdomyosarcoma [65],
and an OR of 5.0 for paediatric and adolescent non-Hodgkin lymphoma, which intrigu-
ingly is not part of the cancer spectrum in classical HBOC and BRCA2-associated FA [66]
(Table 1). Thus, despite BRCA1 and BRCA2 PGVs being not uncommon in the general
population and therefore likely to be detected in large scale discovery studies like the
above, the reported data with respect to BRCA2 PGV frequency does suggest a possible link
of germline heterozygous BRCA2 PGVs with particular cancers occurring in the paediatric
and young adult population. However, to further prove causality additional studies would
be required to replicate these findings and investigate the mechanism of cancer causation
in these non-HBOC tumours. BRCA1 PGVs were identified in the germline of children
diagnosed with what appeared to be non-syndromic neuroblastoma, and also in treatment
related secondary malignancies [59]. However, the detected frequency of BRCA1 variants is
too small to support a causative relation. Importantly, the detected variants in the affected
children were not always associated with a significant family history indicative of HBOC.

Table 1. Frequency of BRCA1 and BRCA2 variants in large-scale germ line studies in childhood and
adolescent malignancies.

BRCA1 Variants BRCA2 Variants Ref

Long Term Survivor Study 14/4402 20/4402 Qin et al. 2020 [59]

Osteosarcoma 3/1440 8/1440 Mirabello et al. 2020 [60]

Paediatric Glioma 1/220 1/220 Muskens et al. 2020 [61]

Rhabdomyosarcoma 1/615 6/615 Li et al. 2021 [65]

Paed and adol.
non-Hodgkins Lymphoma not included 13/1380 Wang et al. 2019 [67]

Medulloblastoma - 11/1022 Waszak et al. 2018 [64]

5. BRCA1/2 PGVs in FA-Associated, and Non-Syndromic Cancer: Implications
for Management

The management of families affected with FA caused by BRCA1/2 mutations needs
a multidisciplinary approach and include genetic counselling. As affected families in
particular with BRCA2 PGVs do not always have a family history typical of HBOC, an
individual approach needs to be taken with respect to genetic carrier-testing and coun-
selling of the wider families of affected individuals [67,68]. Screening for FA-associated
organ involvement in affected individuals needs to include central nervous, renal, heart
and endocrine assessment as for other types of FA and was reviewed previously else-
where [1,69,70]. Cancer surveillance in children affected by bi-allelic BRCA1/2 variants
needs to recognise the association with embryonal tumours of childhood and include
imaging for brain and other solid malignancies. From the clinical data available, for the
BRCA2-, but probably not for the BRCA1-associated FA-like syndrome, frequent haemato-
logical surveillance is important. Given the underlying chromosomal instability, radiation
should be avoided where possible with imaging studies preferably undertaken by MRI
or USS as appropriate. Treatment of cancer in BRCA2-associated FA has been disappoint-
ing and the reported survival is poor [21,22,24,27,31,32]. However, it is of note that in
both BRCA1 and BRCA2-associated FA-like cases cytotoxic treatment does not always
clinically result in excessive toxicity [50,71], and also that malignancies associated with
biallelic BRCA2 PGVs do not always appear particularly chemo-sensitive [71]. For HBOC-
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associated adult tumours, in which commonly BRCA function is completely lost in tumour
development, poly-ADP-ribose-polymerase (PARP)-inhibition, which exploits the acquired
DNA repair defect in associated epithelial cancers, has been shown to confer improved
survival [72]. While in individuals with bi-allelic germline defects in the BRCA genes the
tumour-selectivity of these drugs is lost as every cell will be PARP-inhibition sensitive,
characteristics of “BRCAness” have been identified as potential therapeutic vulnerabilities,
and PARP-inhibition is explored as a therapeutic modality in apparently sporadic child-
hood and young persons’ cancers [73,74]. To what extent this feature is related to germline
variants is not fully determined.

6. Summary and Perspectives

The discovery of BRCA1/2 pathogenic variants underlying FA-like disorders puts
the efforts of understanding FA on a cellular level in the context of the DNA damage
response, and clinically in the context of inherited cancer predisposition. The spectrum
and patterns of developmental abnormalities in BRCA-associated FA and FA-like disease
provide unique insight into the role of BRCA2 and BRCA1 proteins and their essential
but distinct role in development and cancer prevention. The tumour spectrum in these
conditions point to the fundamental role of the BRCA genes for development of multiple
organ systems, with the intriguing difference with respect to haematopoiesis, which is
clinically affected in patients carrying bi-allelic PGVs in BRCA2, but not bi-allelic PGVs
BRCA1. The residual function of BRCA proteins in cases with bi-allelic PGVs is in many
cases conferred by protein products of alternatively splicing. Further studies with respect to
governance of expression of BRCA-splice variants and functional interaction dynamics of
these “spliced” BRCA proteins, which have been detected also in non-FA tissue [37,75,76],
will provide further mechanistic insight in the developmental roles and cancer prevention
mediated by the BRCA proteins. This could also inform better understanding of acquired
chemo-resistance in classical HBOC-associated BRCA-associated cancers. With respect to
BRCA-variants in non-syndromic childhood malignancies it will be important to further
characterise mutations associated with specific cancers, and determine to what extent
associated cancers lose the intact allele or if alternative pathways could be involved, as
suggested for some tissue-specific BRCA2-associated cancers [45,77]. This could be a
therapeutic vulnerability for a small and diverse group of sporadic childhood cancers. The
complexity of the management with BRCA2 PGVs with non-FA childhood malignancy
with respect genetic implications for the wider family of affected individuals with germ
line BRCA2 variants has been illustrated [78], and will need wider considerations. With
respect to cancers in FA irrespective of genetic subtype, there is an urgent clinical need for
effective cancer treatments that are tolerated with the inherited chromosomal instability,
yet effective targeting associated malignant disease.
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