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ABSTRACT

Designing and creating a Graphical User Interface (GUI) is a dif-
ficult and slow process. It requires a number of professions to all
contribute to its development and it can be heavily detrimental to
a product if implemented poorly. This research aims to investigate
a method of using Generative Adversarial Networks (GANSs) to
generate new and usable designs for GUIs. GANSs are a relatively
new architecture for adversarial learning and have been used to
good effect in replicating instances of a real dataset. The primary
aim is to develop a GAN that is capable of processing a collection of
existing GUIs and learn how to replicate these to allow for creation
of further designs. These GUI designs need to be formatted in a
manner that enables modification, allowing for them to be used
by a development team to enhance their production process. Com-
pleted work demonstrates numerous approaches at using GANs
to create text files that contain the component elements of a GUL
Their results and the release of a similar research paper (GUIGAN)
has led to a new approach focusing on more abstract data repre-
sentation, with a quality control system for ensuring the output
data is properly formatted. It is hypothesised that the approach will
develop a model capable of creating new, editable GUI designs.
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+ Computing methodologies — Neural networks; - Human-
centered computing — Systems and tools for interaction de-
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1 INTRODUCTION

Most applications developed on a computer commonly makes use
of Graphical User Interfaces (GUISs) to facilitate human-computer in-
teraction [8]. Video games are a prime example as they are designed
to be interactive, necessitating a consideration of user interface de-
sign, with a heavy majority being graphical in nature. The use of
GUIs in games is incredibly varied, with unique approaches taken
by almost each title available to allow the players to view informa-
tion about the games current state and to perform actions within
the games context.

The creation of these interfaces can be a very costly and time
consuming process, being far more than just a visual layer to the
user [14]. GUIs are the primary method that applications commu-
nicate to the user so it is necessary that it is clear and concise [21].
As such, designing an interface in a game requires the expertise
and knowledge of a number of professions; programmers, artists,
designers, quality assurance, etc. These interfaces are also subject to
a number of other external influences such as the style of the game,
guidelines by the company, or feedback from clients or publishers.

Due to the complexity of these systems and the large amount of
development that must go into their production, methods that can
streamline the process can be used to great effect. While assistance
tools are widely available to allow designers and developers to
retrieve templates to begin their work[1][2], none of these tools
have the capacity to create the interfaces on their own. A model
that could generate base designs that can be developed further
could prove incredibly advantageous, not only in speeding up the
process, but also giving smaller teams and companies access to
"good’ designs without the need for specific user interface design
expertise.

Within the field of Machine Learning, Generative Adversarial
Networks (GANs) are a particularly unique architecture that is
proficient at generating instances of unstructured patterned data;
such as images[4]. This example of a GAN model can be reliably
trained to mimic content of a training dataset, however the output
of these models itself is not subject to any rules. Values in the
output do not have to exactly match the training data for the model
to consider the instance satisfactory nor does the data have to
be presented in a specific order, such as individual values in pre-
defined sequences. This allows GANS to be creative and produce
new, unique output instances that are comparable to the original
training data.

The intent of the study is to investigate the different methods
and effectiveness of using GANs to produce GUI designs for use
in the medium of video games. The research will be investigating
how to encapsulate the components that constitute a GUI and train
a model to replicate that data based on initial conditions, such as
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core elements required of the interface. The expected output of the
model when properly trained will be a file format describing the
structure of the interface, such as a list of the necessary components,
or a file that can be directly loaded from the models output into
visualisation software to test the integrity of the design.

The success of the model would allow for development of a tool
where a designer or developer can input the specifics they require
and the model will provide them with a repository of designs that
can be developed further. The use of a machine learning model
constitutes a great benefit should it properly learn how to replicate
good design practices and heuristics [16] as it would further remove
additional work from the production team.

2 RESEARCH QUESTION

Can a Generative Adversarial Network be used to generate usable
Graphical User Interface Designs in Video Games?
The research question can be broken into three parts:

e Can a Generative Adversarial network be used to generate
Graphical User Interface Designs?

e Would the design generated be usable?

e What is the best data representation that facilitates the model
producing appealing and usable GUIs?

The initial and primary focus of the PhD is to establish that a
GAN can reliably be used in this context. Machine learning algo-
rithms have proven effective at learning how to operate with a large
number of different sources of data, even proving to be more effec-
tive than initially thought possible [20]. It would be straightforward
to assume that a GAN model should be able to work with creating
interface designs, however this is not proven yet and therefore a
focus of the study.

In terms of usability, the output of the model should ideally be
in a form that allows for further development of the design. This
will move the GAN away from processing the GUI like an image,
despite the heavy graphical content of the data. An image would
require additional steps for the design to be extracted for changes
to be made, whereas a design based on metadata of a user interface,
can be directly used to continue to build the design. The usability
of the output can also be considered in terms of the user of the
GUI The designs provided by the model need to allow the user
to access the individual elements; therefore the usability could be
negatively affected if interactable elements are outside of the screen
view, layered over one another, or cannot be selected due to their
size and position. Training the model to output data that handles
the limitations of being usable for both the designer and user needs
to be considered.

The models training also requires that the output data is mod-
ifiable in some form. The model needs to produce an output that
allows for further development of the design; this directly relates to
the success of the research and the model itself. Designs produced
that cannot be extended further limit practical applications of the
research. This focuses the approach on generating metadata for a
GUI as this format allows for further development once created. The
exact structure of this metadata can be varied, with it being usable
directly, or as meta-metadata with individual points representing
entire Ul elements. This output should be formatted in a way as to
be loaded into a visualisation tool so it can be assessed and edited.
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3 BACKGROUND

Generative Adversarial Networks GANs are a relatively new ar-
chitecture of machine learning, proposed in 2014 [9]. The theory
explained how two opposing networks could be used to train against
each other using game theory. These two networks were labelled
the Generator G and the Discriminator D. G would learn to repli-
cate the data distribution within a pre-defined dataset, and D would
attempt to determine if the sample it was processing was the output
of G or not. The predictions of D are then used to train both models
(See Figure 1). The study demonstrated the viability of the GANs
model, which was trained on three datasets (MNIST, TFD & CIFAR-
10). The results showed the GAN produced high log-likelihood
figures when compared against other models; DBN[12], Stacked
CAE[19], and Deep GSN[5].
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Figure 1: Basic structure of the GAN architecture

In its original form, both models are trained using the output of D,
this output is being used as the label data that is traditional in most
supervised model training. G’s loss is calculated by determining
how many of the models output successfully fooled D, whereas D’s
loss is based on how many out of both real and generated instances
it correctly guessed. This form of adversarial training was stated
to correspond with a minimax two-player game and follows the
following formula:

Ex[log(D(x))] + Ez[log(1 - D(G(2)))] (1)

The predictions of D are used to calculate the overall loss of the
model, with D(x) being the discriminators prediction of the real
data instances, and D(G(z)) being the discriminators prediction
of G’s output based on input data z. The expected output of the
real instance data Ey, all true, and the expected output of the G’s
input data E, all false, are compared against the predictions to
calculate the final loss value. D attempts to maximize this formula
as that would relate to its ability to accurately predict its input data.
G attempts to minimize this, which to the model is equivalent to
minimizing log(1—D(G(z))) as this is the only part which relies on
G’s output. This half of the equation, when minimized, represents
D’s inability to correctly guess that G’s output is fake.

The GAN itself can also be extended, with additional models
added to the overall architecture to improve training and perfor-
mance. Utilisation of these additional models can contribute to-
wards more stabilised training, a problem inherent to GANs [18],
or improve the quality of the models output [17].
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4 RELATED WORK

A paper titled ’GUIGAN: Learning to Generate GUI Designs Using
Generative Adversarial Networks’[22] focuses on the same problem
as this study. It attempts to use GANSs to create new GUI designs
on an Android phone system, with positive results.

The selected method for generating GUIs is done by classifying
a large dataset of images to create a repository of "subtree’ objects.
Each subtree represents an aspect of the overall interface and can
contain multiple UI widgets. The classification takes the overall GUI,
breaks it down into these subtree objects using app metadata and
adds them to a repository. The information in this repository can
be embedded in a similar manner to text processing within neural
networks, allowing each item to have a unique signature. Their
generator is constructed as a Long Short-Term Memory(LSTM)
model[13] and is trained to identify the pattern of subtrees that
occur and attempts to replicate these patterns into new designs. The
model breaks GUIs down into smaller building blocks and learns
how to use these blocks to construct output instances.

Utilising Frechet Inception Distance (FID) and 1-Nearest Neigh-
bor Accuracy (1-NNA) to evaluate the output of the model, they
compared the output of a GUIGAN with two other models to de-
termine performance; a modified version of a Wasserstein GAN([3]
with an improved training method called WGAN-GP[10] and a web
GUI designer FaceOff[23]. The results showed than the GUIGAN
model outperformed both WGAN-GP and FaceOff in terms of
FID and 1-NNA scores, proving that the approach was viable for
GUI design.

While the research conducted by this paper is very similar to
the PhD’s focus, the approach has several limitations which can be
addressed. Output from the model is currently limited to a vertically
scrolling layout, such as a news feed App, due to the way the model
sequences the subtrees. The model is also incapable of instantiating
individual UI widgets within a design, such as a single button or
image, as it can only create GUIs from the repository of building
blocks it has access to. This rigidity prevents it from creating per-
sonalised GUI designs, rather, it can only create different sequences
of existing designs.

5 RESEARCH PLAN

5.1 Generative Adversarial Network Design

The primary goal of the project is to develop a suitable GAN model
with which to test and authenticate the research question. As this
is a novel approach, there are no existing models that will handle
the requirements of the project. This necessitates experimentation
into several different approaches to determine a viable solution to
the problem. The structure of GANs enables the internal Generator
and Discriminator models to have any format, which gives this
approach a great deal of flexibility when processing, managing and
handling the input and output data.

Consideration is also required into how the data for the model,
both the input and output for the Generator are to be represented.
The data has to allow for the production of editable metadata of a
GUIL, either by the model directly creating the instance data itself,
or by creating more abstract information that can be used to create
this metadata. The structure of such a system could match the
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approach presented by GUIGAN[22] or formulate a new method to
compensate for the limitations of that approach.

5.2 Dataset

As the structure and data representation of the GAN requires inves-
tigation, the format of the dataset also requires further work. There
are collections of GUI data and images, such as the RICO dataset
[6], which can provide a basis for the research, but depending on
how the model requires the structure of its input and output may
necessitate heavy manual processing to properly prepare the data.

5.3 Evaluation

The models effectiveness is to be evaluated in two parts. Firstly, the
accuracy of the model needs to be determined, which is to be done
by comparing the Generators output and items from the training
dataset. The method of this comparison will be using FID[11] as it is
widely used for measuring the quality of a GANs image output[22].
By supplying the Generators output to a visualisation program, we
can create a representation of the generated GUIs allowing for this
image comparison method. Secondly, the usability of the GUIs needs
to be tested as the designs need to have created content in such
a manner that it is all accessible. All interactive elements that the
GUI design describes have to be positioned so they can be selected
by a hypothetical end-user. This is to limit the possibility of the
model producing designs that have overlapping elements, elements
outside the confines of the users view and other obstructions that
may reduce the ability of the GUI to function. The implementation
for this is to be achieved through an automated test system which
attempts to interact with each unique element.

6 COMPLETED WORK

Work conducted has included four experiments with different ap-
proaches to building and training the relevant GAN model.

(1) Direct-image synthesis. This aimed to create images of a GUI
for initial proof of concept.

(2) Text generation through Deep Feed-Forward networks. Us-
ing a deep feed-forward network, the model was aiming to
generate a text file that could be read by a JSON parser. The
output text file would represent the direct text of the design.

(3) Text-to-image Convolutional Network. The model converted
text files into images and trained a convolutional network to
replicate the images. These can be converted back into text.

(4) Gated Recurrent Unit (GRU)[7] text generation using GAN
as quality control. Text generation can be done with GRU’s.
Attempt to combine GRUs into the workflow of the GAN
architecture.

The first set of experiments replicated images of the mobile
video game Candy Crush Saga[15]. A standard GAN was tasked
with recreating sections of the game based on screenshots of the
levels. Focuses were on the top left hand corner, which contained a
concentrated cluster of Ul elements, a larger image of the screen,
and a coloured image of the screen. These experiments aided with
identifying and proving the necessity of creating the metadata for
designs, rather than simply replicating images.

Further experiments focused on the generation of these metadata
files, which were generally stored as Notepad text files. The images
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Figure 2: Outputs of experiments. Column 1: Direct Images
Synthesis. Column 2: Text-To-Image Conversion. Column 3:
GRU output, converted to image for visual representation.

shown in Figure 2 have the text files converted to images so the
distribution of text data can be visualised. Each character in the
text is converted to an ASCII value and embedded into the colour
channel of an image, either a 3-colour channel image or a single
colour channel grayscale image. This visual representation of the
text allowed for the GAN to handle the training data like an image,
a function that GANs are well suited for. Whilst initially promising,
the primary flaw in this method was that while the output could
achieve a very close similarity, converting the image back to text
revealed that minor changes in colour distorted the correct sequence
of text, rendering the output completely unreadable.

7 PLANNED WORK

Utilising the positive results of the GUIGAN paper and the knowl-
edge gained from the described experiments, a new approach was
devised and is to be conducted as the next stage of the research. A
mix of structured requirement input data, representing the desired
elements in the GUI, along with random noise will be input to
the Generator, and a two stage Discriminator system along with a
Quality Control module will be used.

Input to the model will consist of two series of data; a specifi-
cation on the core elements that constitute the GUI, and a vector
of random noise as seen in Figure 3. This aim is to train the GAN
to match specific inputs that correspond to specific elements, with
the random noise allowing for non-deterministic output. Input to
the model is passed to the Generator which instantiates a vector
representing the components of the overall design. The elements of
the vector are directly related to the metadata of the design, such as
an index to a Ul widget, its position on the screen or its dimensions.
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This vector has to pass through a quality control module to ensure
its validity as a design. The data in the vector has to be converted
into a readable file that can be loaded by an external visualisation
tool. This allows for two steps in the Discrimination process; an
evaluation of the text itself to determine the probability of it being
suitable to the Discriminator model, and by loading the created file
into a visualiser, an image of the intended design can be used as
input to a second Discriminator. This allows the GAN to evaluate
the design on the suitability of the text and the structure it creates
in a visual medium. Any error that occurs during the file generation
or image generation, means the GAN can skip the Discrimination
step entirely as the generated data would be unsuitable. The output
of the two Discriminators are to be combined into a probability
matrix that will determine if Generator was successful or not.
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Figure 3: Proposed structure of the GAN architecture
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