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Abstract
Riparian forests are known as hot spots of N cycling in landscapes and climate warming speeds up the
cycle. Here we present results from the first multi-annual high temporal-frequency study of soil, stem and
ecosystem (eddy covariance) fluxes of N2O from a typical riparian forest in Europe.

Hot moments (extreme events of N2O emission) last a quarter of the study period but contribute more
than a half of soil fluxes. For the first time we demonstrate that high soil emissions of N2O do not reach
the ecosystem level. During the drought onset, soil N2O emission peaks at intermediate soil water
content. Rapid water content change is the main determinant of the emissions. The freeze–thaw period is
another hot moment. However, according to the eddy covariance measurements the riparian forest is a
modest source of N2O. We propose photochemical reactions and dissolution in canopy-space water as
consumption mechanisms.

Introduction
Forests are important regulators of carbon dioxide (CO2) fluxes1 but their role in regulating other

greenhouse gas (GHG) budgets, in particular for nitrous oxide (N2O), is still largely unknown2. The
accelerated increase in atmospheric N2O concentrations (from a pre-industrial concentration of 270 ppbv

to 328 ppbv in 20163 is of concern not only because N2O is responsible for approximately 6% of global
radiative forcing from anthropogenic GHGs. Its ozone-depletion potential outweighs the sum of
emissions from all other ozone-depleting substances controlled by the Montreal Protocol4. Thus, N2O is

the most dangerous stratospheric ozone-layer depleting agent in the 21st century5, and the third most
important GHG having a global warming potential 296 times (100-yr lifetime adjustment, with feedbacks)
that of CO2

3.

Riparian forests provide important ecosystem services6. They regulate runoff flow, prevent nonpoint
source pollutants from entering water bodies, enhance the in-stream processing of both nonpoint and
point source pollutants, create habitats for many species, support landscape connectivity, and serve as
recreational and cultural-educational areas7. Their multifunctional role reinforces current policy in several
countries endorsing riparian forest buffers as best management practice subsidizing riparian
reforestation for stream restoration and water quality8. One of the main functions of riparian forests in
agricultural landscapes is removal of excess nitrate (NO3

−) via complete denitrification9, converting NO3
−

to N2 gas. However, incomplete denitrification can result in the production of N2O, a powerful greenhouse

gas. Generally, a variety of nitrogen cycle processes can produce N2O10 but in riparian zones,

denitrification has been found the most important source of N2O11,9. 

Grey alder (Alnus incana (L.) Moench) is a fast-growing tree species typically found in riparian zones,
with great potential for short-rotation bioenergy forestry12. Their symbiotic dinitrogen (N2) fixation ability
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makes alders important for the regulation of the nitrogen (N) cycle13,12. Grey alder forests are widely
distributed in Europe and North America14 (Supplementary Fig. S1) whereas in Europe they are often
dominating communities in riparian zones15. In Europe there are 15,000 km2 of Alnus incana subsp.
incana forests14. 

N2O fluxes measured in forest soils16-20 varied from 0.00054 mg N2O-N m-2 h-1 in a birch plantation in

China20 to 0.082 mg N2O-N m-2 h-1 in a spruce forest under high N deposition in Germany18. In general,

temperate forest soils emit 1.57 kg N2O ha−1 yr−1 whereas in boreal forests the net emission is four times

lower and in tropical forests three times higher than that in temperate forests21.

Remarkably high net average N2O fluxes from soil have been measured in riparian forests22, and most of

the studies were conducted in riparian alder stands23-28.

For most of soil N2O flux studies, manual chambers have been used, and few investigations are based on

automated chambers19,28 whereas Pihlatie et al16,29 compared fluxes measured by chambers and the
eddy covariance (EC) technique.

Hot spots and hot moments (extreme events of emissions) largely determine spatio-temporal variation of
N2O emissions from soils30, and soil water content (SWC) is a leading factor controlling all the hot
moments. A SWC value of 50–80% has been shown to be optimal for soil N2O emissions in forests on

both mineral soils31 and organic soils32. Therefore, depending on the initial moisture, both flooding and
drought can induce hot moments in tropical forests33,34. Drought has been observed to decrease soil N2O

emissions and account for soil N2O consumption35,36. The majority of these studies have been

conducted in relatively dry mineral soils and only few focused on wetter conditions of organic soils17,33 or
Gleysols28. Air and topsoil temperatures also play important role in determining hot moments of soil N2O
fluxes but mostly in colder climates37. Only few studies have considered the impact of hot moments on
N2O emissions from tree stems38,28.

Freeze–Thaw cycles are well-known to substantially increase N2O emission from soils whereas in

agricultural soils their impact is more remarkable than in forests39,40. In forests, the Freeze–Thaw periods
can significantly contribute to the annual N2O budgets39,41,42. Thinner snow cover in forests always
causes N2O soil emissions to increase. In northern deciduous forests it can be due to the increase in

Freeze–Thaw cycles43. Although there are several hypotheses explaining the impact of Freeze–Thaw
cycles on soil N2O emissions40,44,45, a generally acceptable theory of Freeze–Thaw impact on N2O fluxes
is still missing. 

Several investigations are available on N2O emissions from tree stems in laboratory46,47, using in situ

manual stem chambers48-52,38,28 and automated chambers53. The studies demonstrate that N2O can be
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emitted or consumed by stems whereas flooding significantly but only temporarily increases
emissions46,47,38,28, especially from the lower parts of stems38,28. Some studies have found evidence that
N2O emitted from tree stems may originate from the soil49. However, no study has quantified the
contribution of N2O fluxes from stems in the N2O budget of a forest ecosystem and moreover, factors

controlling N2O fluxes from stems remain unclear52. It seems that N2O exchange from boreal tree stems

might follow the tree physiological activity, especially the processes connected to CO2 exchange51. For
instance, it is unclear whether N2O exchange between stems and atmosphere is ruled by microbial or

fungal activity within the tree stem or by plant biophysical process54. 

Only few studies could be found on EC measurements of N2O fluxes55,56. Long-term N2O flux
measurements above tree canopies using eddy covariance technology are still missing. No previous
complex investigations on forest ecosystems’ N2O budgets (soil and tree stem flux studies with EC
measurements above the canopy) could be found. Nevertheless, estimation of the N2O balance in
different forest ecosystems under various environmental conditions is essential to understand their
impact on climate.

This paper is aimed to analyze long-term relationship of continuously measured N2O fluxes with key
environmental factors in a riparian deciduous forest of hemiboreal zone. The second objective is to
analyze the role of hot moments in temporal pattern of N2O fluxes. We hypothesize that: (1) the studied
riparian forest is a net N2O source; (2) soil water content- and temperature-related hot moments play
important role in long-term pattern of N2O fluxes, (3) EC-measured N2O fluxes are coherent to the sum of
soil and stem fluxes, (4) N2O fluxes from stems are positively correlated with soil N2O fluxes, and (5) there
is an optimal range of soil moisture for N2O fluxes from soils.

Results
2.1 Environmental characteristics of hot moments

Based on high emissions of N2O, dynamics of soil volumetric water content (further referred to as soil
water content, SWC) and near-ground air temperature we identified four hot moments and related them to
soil and environmental variables (see numbers in Fig. 1): Wet (1) , Dry (2) with Drought Onset (2a),
Freeze–thaw (3), and Dry-minor (4). The main criterion for the hot moments was rapid increase in N2O
emissions of any source. The hot moments were characterised according to environmental factors. For
instance, for Wet, Dry and Dry-minor periods, change in SWC was the main characteristic while for
Freeze–Thaw, near-floor air temperature was used as the second factor for distinguishing this hot
moment (Fig. 1). Since during the Freeze–Thaw the soil temperature at 0-10cm was almost constant,
near-ground air temperature was more significant determinant.

Anomalies from the mean of each hot moment period illustrate the pattern of fluxes during the hot
moments (Fig. 2). At the end of the Freeze–Thaw period, the rising SWC driven by snow melt became a
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leading determinant (Fig. 2). Except the Wet period, during all hot moments only soil N2O flux showed
significant peaks. During the Wet period remarkable increase was observed also in the stem fluxes and
EC-based ecosystem fluxes.

2.2 Soil N2O fluxes

N2O fluxes varied from -0.040 to 1.50 mg N2O-N m-2 h-1. The heatmap in Figure 3 presents spatial and
temporal variation of these values, showing that across the whole study period, no remarkable
differences between the values measured in individual chambers were observed. However, chambers 3, 8,
9 and 10 located in lower positions (10-20 cm from the average soil surface) showed somewhat higher
values, especially in spring and autumn (Fig. 3). Temporal variation in soil N2O fluxes align with the four
hot moments we identified which showed remarkably higher flux values. Except for the Freeze–Thaw
period in February-March 2019 negative N2O fluxes occurred primarily in the winter months, accounting
for 43% of monthly values in February 2018 and January 2019 (Fig. S2). The highest flux values (>0.10
mg N2O-N m-2 h-1) were observed in late spring, summer and autumn, accounting for a maximum of 38%
of the measurements at the Drought Onset in May 2018 (Fig. S2). During this short period, in all
individual chambers the daily average flux was >0.02 mg N2O-N m-2 h-1 (Fig. 3).

During the whole study period the cumulative N2O soil flux was 458.8 ± 7.7 mg N2O-N m-2 (mean ±
standard deviation) whereas hot moments contributed 55.9% of the whole flux (Table 1). During the
calendar years 2018 and 2019, 196.3 ± 7.1 and 221.0 ± 12.4 mg N2O-N m-2 y-1 was emitted
(Supplementary Table S1). When considering the two full years of the study (Sept. 2017 – Sept. 2018 and
Sept. 2018 – Sept. 2019), the corresponding cumulative flux values were 215.5 ± 7.7 and 221.4 ± 12.2
mg N2O-N m-2 y-1 (Fig. 4; Table S1)

Except for the Dry hot moments, no remarkable diurnal pattern of soil N2O fluxes were found. During the
both hot moments average day-time values were up to 100 higher than those in the night-time showing
also higher variability than in other months (Fig. S3). 

2.3. Stem N2O fluxes

Stem fluxes of N2O measured during 52 campaigns averaged over all measured heights and expressed

per m2 of forest ground varied between −0.00028 and 0.0228 mg N2O-N m-2 h-1. The highest emissions
were measured on the lowest position of tree stems whereas at higher positions (170 cm from ground)
slight consumption was observed. The average ± standard error values of N2O stem flux during the

measurement period from September 2017 to December 2018 were 0.00022 ± 0.00007 mg N2O-N m-2 h-1.
Although the absolute values of stem fluxes were low, both spatial and temporal variability of stem fluxes
were remarkable. Spatial variation arose from 3 tree stems among the 12 measured ones were
consuming N2O (−0.00002 ± 0.00001 mg N2O-N m-2 h-1) whereas the rest showed always showed low

emissions (0.00031 ± 0.00013 mg N2O-N m-2 h-1). No correlation between the stem fluxes and the spatial
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variation of measured environmental data were found. The hot moments Wet and Dry contributed
respectively 40.7% and 11,7% of total cumulative emissions during the whole stem measurement period
(3.53 mg N2O-N m-2; Table 1). During the period from September 2017 to September 2018, a slight
increase in cumulative values of stem fluxes appeared and at the end of the measurement period when
only consumption of N2O by stems was measured (Fig. 4).

2.4. Ecosystem level N2O fluxes (Eddy covariance)

The daily sums of ecosystem N2O fluxes varied in relatively small range, from −0.60 to 1.16 mg N2O-N m-

2 d-1. Gap-filled data covered 24% of the whole measurement period (Fig. 5). While the peaks of soil N2O
fluxes were not reflected at the ecosystem scale (Figs. 1, 2 and 4), ecosystem N2O fluxes showed a
seasonal pattern with the highest positive fluxes in spring (March–April) and autumn months (October–
November) and small close to zero values over the both summers (Figs. 5 and S4). Likewise, higher
values were observed during the ‘Wet’ hot moment with 19.8% of total cumulative EC flux of the whole
study period (87.3 mg N2O-N m-2; Figs. 4 and 5, Table 1). We observed a distinctive diurnal pattern with
small negative fluxes during the morning hours (8–12) in summer months of both years. We observed no
diurnal pattern neither in simultaneous soil fluxes nor in EC fluxes of autumn, winter or spring months.
The hourly average flux values ranged from −0.029 to 0.029 mg N2O-N m-2 h-1 (Fig. S3).

2.5. Relationships of N2O flux and environmental parameters

The main factors related to N2O soil fluxes in this ecosystem were SWC and soil temperature (Fig. 6a).
Based on the full data set measured during the study period, there was an optimal SWC value of about
0.5 m3 m-3 (50%) at which the soil flux was the highest (Fig. 6b). The relationship between the soil
surface temperature and soil N2O flux was more complex showing two peaks: one at 0-4oC and a second

one at 13-14oC (Fig. 6c). The first peak corresponds to the Freeze–Thaw period and the second one
represents the Dry and Dry-minor hot moments.

During the Dry hot moment, the correlation between the SWC and soil N2O emission was very strong
showing a clear peak at SWC values between 0.35 and 0.5 % (Fig. 7).

N2O stem fluxes were influenced by SWC, however, a positive relationship was found only during the Wet
period and it was not statistically significant. We did not find any significant relationships between
ecosystem N2O fluxes and environmental parameters (air and soil temperature, SWC, wind speed) or
gross primary production (GPP) on half-hourly scale. However, a general pattern of weekly average fluxes
followed that of SWC with the modifying influence of changes in air temperature (Fig. S4).

Discussion
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N2O emissions from terrestrial ecosystems are always irregular and highly variable at both temporal and

spatial scale10,19,57. Therefore, consideration of hot moments and hot spots is essential to obtain an
adequate long-term account of N2O fluxes30 and for inferring the mechanisms that drive these events
under field conditions.

Soil water content was the main factor associated with hot moments of N2O emission from soils, and it

has been argued that drought and rewetting trigger such events by different mechanisms58. Likewise, we
propose that hot moments in current study were caused by a variety of different mechanisms.
Specifically, we identified the Wet period associated with increasing SWC, Drought periods associated
with decreasing SWC and the Freeze–Thaw period based on fluctuating ground temperature around 0oC
and slight increases in SWC (Figs. 1 and 2). In all cases, SWC remained above 50%. We found that
warmer conditions (Drought in our case) had a greater influence on emissions than wetter conditions
(Wet), however, the combined effect of wetter and warmer conditions would be more offsetting than
synergetic (Fig. 6) Analogous results were observed by Shrestha & Wang37. Likewise, a climate
manipulation experiment in a post-harvest forest showed that wetting increased soil N2O flux but not

when combined with heating59.

In our study, hot moments Dry and Freeze–Thaw contributed correspondingly 9 and 8–10 times higher
soil N2O emission than the period average (Fig. 2). In tropics, where the temperature is constantly high,
soil N2O fluxes increased markedly after the start of the wet season, while tree stem bases emitted N2O

throughout both dry and wet periods38. Likewise, automated measurements during a lab experiment with
intact soil mesocosms from a temperate forest by Petrakis et al60 observed an increase of up to four
orders of magnitude in emissions following flooding pulses. In field conditions the effect of pulsing
groundwater table on N2O emissions from the soil was significantly lower26.

Our results demonstrate that the highest soil N2O fluxes were observed at the SWC value around 50%
(Fig. 6b) which was most remarkable during the “Drought Onset” (Fig. 7). Although several studies have
shown similar relationship31,32, many studies have found contrasting trends working either in dry mineral
soils (SWC <45%) or in the wet conditions (SWC >45%). Studies of the first group35,36 have found drought-
driven decrease of soil N2O emissions. The drought in these conditions can make the forest soil into a

sink of atmospheric N2O36 and if the dry period lasts several weeks, even rewetting will not increase the

N2O emission35. Studies focused on wetter conditions in organic soils with SWC >60% could observe a

reverse relationship in which drying of the wet soils caused a significant increase in N2O emissions17,32.
During our 2.5-yr study period of continuous automated measurements in riparian gleyic soil we observed
both trends: a substantial drought-driven increase of N2O emissions in wet conditions (SWC >70%;
Drought Onset episode) and a drought-driven decrease of N2O emissions in dry conditions (SWC <45%;
end of Dry period) with short–term emission peaks caused by precipitation (rewetting; Dry-minor; Fig. 2).
In all cases, the highest emissions occurred when the SWC level passed the optimum value around 50%.
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Lesser fluctuations of N2O were observed in the beginning of the Wet period and during the hot moment
Dry-minor, when the SWC fluctuated between 45 and 50% (Fig. 2).

During the Freeze–Thaw period a different complex of factors caused a substantial increase in N2O
emissions from soil. Several hypotheses have been posed to explain this phenomenon, the most
common of which are: i) freeze–thaw disrupts soil aggregates exposing physically protected organic
matter to be rapidly mineralized by microorganisms40; ii) large proportions of microorganisms, fine roots,
and mycorrhiza die during the freeze44, providing rapidly decomposable organic matter during the thaw;
iii) the death of fine roots decreases the roots' competitive absorption of nitrate, the main source of
N2O45.. However, the underlying mechanism involved in the pulse emissions of N2O remains uncertain

and further exploration is required61.

Recent investigation reveals that the freeze–thaw related soil N2O flux is high and could constitute a

major component in annual budgets of different ecosystems41. In two hemiboreal forests growing on
drained peat, one dominated by Norway spruce, and the other by downy birch, the wintertime freeze–thaw
related N2O release made up for 87% of the total annual emission42. Wagner-Riddle et al62 estimated that
neglecting freeze–thaw emissions can overlook 17 to 28% of global agricultural N2O emissions. For
forests, this has not been calculated. Likewise, in most models for calculating regional and/or global N2O

emissions, the wintertime freeze–thaw emissions are not accounted63..

The greatest increase in soil N2O emission from Freeze–Thaw cycles was always observed during and

shortly after the thawing39,64,65; however, the peaks lasted only for a short period (few days65). This was
also the case in our investigations (Fig. 2). In addition, we could see that the SWC plays an important role
in N2O fluxes, especially at the end of the Freeze–Thaw period (Fig. 2). The snow-melt water increased
the SWC close to 50% and initiated small pulsations of N2O. A similar phenomenon at the same SWC

values was described by Teepe et al39. Likewise, Teepe et al41 demonstrated that during thawing,
emissions of N2O increased with the decrease in water-filled pore space (WFPS) of soil from 76% to 55%
WFPS.

We observed the freeze–thaw effect only in February and March 2019 when the snow cover was sporadic
and thin, and several open patches were frozen in the nighttime causing slight fluctuations in diurnal
pattern of N2O soil fluxes (Fig. S3). In contrast, in February and March 2018, there was a continuous
snow cover of 20-30 cm under which the SWC was decreasing from 70% to 45% (Fig. S4), however, no
significant emission of N2O fluxes from the soil was observed (Fig. 2). Most likely, continuous thick snow

cover buffered the topsoil temperature and stabilized the fluxes. Likewise, Groffman et al43 demonstrated
that sporadic and dynamic snow-cover during spring enhances N2O pulses from soil and that the climate
warming-induced decreasing snow cover might increase soil-atmosphere N2O fluxes from northern
forests.
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The different hot moments were driven by different relationships with the environmental factors. During
the Drought Onset, there was a strong negative correlation between speed of SWC decrease and N2O flux
(Fig. 8a). This relationship is a novel finding. Accordingly, the speed of the SWC decrease could be
included in N2O flux models for the drought period. This interpretation is supported by Barrat et al58

review on drought and rewetting effects on soil N2O fluxes indicating that the larger the WFPS change,
the larger the N2O pulse with the the largest emissions occurred at 70% WFPS. In our Freeze–Thaw
period, a positive correlation between the near-floor air temperature and N2O flux was observed (Fig. 8b)
suggesting that temperature may play a dominant role in the initiation of the N2O flux hot moments.
Besides temperature, SWC and related oxygen (O2) supply are important factors as shown in a model by

Öquist et al64 where anomalies of O2 availability rather than temperature play the leading role in cold-
period N2O flux regulation.

Both droughts and freeze–thaw cycles change SWC and disturb the O2 balance in soils initiating

nitrifying microorganisms and retarding the full denitrification pathway ending with N2
66. The result is

always the same – pulses of N2O emission.

We did not observe meaningful diurnal patterns in soil N2O fluxes during most of the study period, except
for the Dry and Freeze–Thaw hot moments (Fig. S3). Likewise, in their meta-analysis of global terrestrial
N2O fluxes, Li et al67 found no difference between day- and night-time fluxes.

The fluxes of N2O from stems were relatively low compared to the soil fluxes and showed higher values
during the Wet and Dry periods (Figs. 2 and 4). A few measurements from stems at 5 m height of six
trees in the Dry period showed almost zero flux. The low stem flux was somewhat unexpected because in
some previous studies alders have shown higher tree stem emissions compared to other temperate tree
species46,47,50,28. However, in all previous studies flooding was the main factor initiating high N2O fluxes

from stems. For instance, Rusch & Rennenberg46 found that immediately after flooding of the soil, N2O

flux from Alnus glutinosa seedlings showed a peak of 350 μmol N2O m−2 h−1 (15.4 mg m−2 h−1) but after
more than 40 days of flooding it had decreased below the limit of detection. According to Machacova et
al47 flooding caused a dramatic transient increase of N2O emission from stems of young A. glutinosa by
a factor of 740. 

Unexpectedly, the ecosystem flux measured by the EC technique above the forest canopy was relatively
low and did not follow the variability in soil N2O fluxes (Figs. 1, 2 & 5). During the Wet period one
significant N2O peak occurred, while emissions remained low during the rest of the period. Other hot
moments did not lead to any increase in N2O EC flux (Figs. 2, 5 and S4). However, there was a
relationship between the EC flux and SWC (Fig. S4). During February and March 2018, the decreasing EC
N2O flux almost perfectly followed the decrease in SWC, and over the longer period from October 2018
until October 2020 the trends were similar (Fig. S4). Due to a lack of comparable studies on EC N2O
measurements in forest ecosystems, conventional comparison is impossible. However, comparison of
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fluxes from all compartments measured may provide valuable information. The cumulative emission
from ecosystem (87.3 mg N2O-N m-2) was 5.3 times smaller than the emission from the soil (458.8 mg

N2O-N m-2; Table 1), whereas the difference between these two sources was constantly increasing
throughout the whole study period (Fig. 4). During the 1.5-year period the cumulative flux from alder
stems was 3.53 mg N2O-N m-2, which constituted only 0.77% of cumulative soil fluxes (Table 1). This is

about the same level with the findings by Wen et al 201750 on A. glutinosa trees (1.1%). 

Since the measurement frequency was sufficient to capture all the fluxes it is difficult to explain such a
great difference between the soil and ecosystem level. During the Drought Onset episode in 2019, N2O
concentrations increased at wind-still nights (Fig. S5) and fluxes declined in the subsequent clear sunny
days (Fig. S3b). The consumption could be explained by photochemical reactions, which have been
observed in both boreal68 and tropical forests69. The monthly sum of sunshine hours during our Drought
Onset and Dry-minor hot moments was high (Fig. S6). Thus, during the hot moments photochemical
reactions may have decreased the ecosystem (EC) flux of N2O. In autumn, winter and spring the
consumption of N2O could be related to the high solubility of N2O gas in water (1.0 ml gas per ml water at

5°C) which is a reason why significant quantities are transported from the soil in drainage water70.
Likewise, Warneke et al71 reported that absorption of N2O by woodland soil water contributed up to a half
of the total N2O consumption in soil. Theoretically, it is possible that fog, which often appears in this

ecosystem, can absorb part of the N2O that was not measured by the EC system. Eugster et al55 in its
early EC study in a mixed forest also mentions that wetting of the canopy at fog can have strong
influence on N2O fluxes, but no clear evidence of absorption in fog has been reported yet. Likewise, Min et

al72 found that NOx fluxes from the forest canopy were smaller than measured soil NOx emissions and
referred to the phenomenon as a “canopy reduction factor” which they applied to soil NOx emissions in
large-scale models. The interpretation of these differences was a chemical conversion of NOx to other
nitrogen oxides within the forest canopy. Fulgham et al73 report that wet surfaces of leaves/needles and
branches in a mixed forest control the vertical exchange of gases (volatile organic acids). Since the
exchange velocity of these gases was well correlated with dew point depression (DPD) we compared the
monthly average soil and EC fluxes of N2O with DPD in our forest. We found that during the autumn and
winter (except the Freeze–Thaw period) differences between soil and EC fluxes were lowest (Fig. S6).

We also checked whether the trees’ photosynthetic activity could be related to N2O EC fluxes but the
correlation analysis with gross primary production (GPP; obtained from the EC tower by LiCor system) did
not show significant correlation neither throughout the whole study period nor at a monthly basis.

Almost all of previous upscaled annual rates of N2O exchange between the atmosphere and forest
ecosystem were based on soil emission values. Therefore, for the upscaling to annual and hectare level
we used both a soil- and canopy-based approach. Based on the soil values, this riparian alder forest
emitted on average 2.18 kg N2O-N ha-1 y-1. According to canopy-based calculations, the emission is only
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0.26 kg N2O-N ha-1 y-1. Thus, both calculations show that this type of riparian forest is emitting several

times less N2O than the agricultural areas4 or drained N-rich peatlands32. 

Upscaling these values to the whole Alnus incana subsp incana distribution area (15,000 km2)14, we
estimate the total annual emissions of 3,270 (soil-based) or 390 tons (canopy-based) of N2O-N a year.
Thus, in addition to several ecosystem services which riparian alder forests can provide, they are low
emitters of N2O which make them attractive for riparian zone management

Conclusions
The outcomes of our long-term study support our hypothesis that this alder forest is a net source of N2O.
The second hypothesis on the role of hot moments in long-term pattern of N2O fluxes was also supported
– hot moments contributed about 56% of soil emissions throughout the whole study period. The third
hypothesis was not supported – ecosystem (eddy covariance) flux was not coherent with the soil + stem
fluxes. The stem flux was almost close to zero showing only some increase during the Wet period. In
comparison to high soil N2O emission, the ecosystem level emission was about 5.3 times lower.
Photochemical reactions and dissolution in atmospheric water may be the consumption mechanisms
behind that.

As hypothesized, soil N2O flux peaked at 50% of SWC whereas during the Drought Onset the correlation
was strong and N2O flux mainly depended on speed of SWC change. During Freeze–Thaw, near-surface
air temperature was the main factor of N2O soil flux.

In the next decades we anticipate a global increase in frequency of disturbances causing hot moments of
greenhouse gas emissions in terrestrial ecosystems. Our study reveals the importance of high-frequency
field measurements across the year. Full understanding of nitrogen budgets of riparian forests cannot
rely on soil level measurements only but must be combined with tree-stem, canopy and ecosystem-level
EC fluxes. Identification of microorganisms and biogeochemical pathways associated with N2O
production and consumption is another future challenge.

Methods
5.1 Study site and set-up

The studied hemiboreal riparian forest is a 40-year old Filipendula type grey alder (Alnus incana (L.)
Moench) forest stand grown on a former agricultural agricultural land. It is situated in the Agali Village
(58o17’ N; 27o17’ E) in eastern Estonia within the Lake Peipsi Lowland74..

The area is characterized by a flat relief with an average elevation of 32m a.s.l., formed from the bottom
of former periglacial lake systems, it is slightly inclined (1%) towards a tributary of the Kalli River. The soil
is Gleyic Luvisol. The thickness of the humus layer was 15–20 cm. The content of total carbon (TC), total
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nitrogen (TN), nitrate (NO3
- -N), ammonia NH4

+-N, Ca and Mg per dry matter in 10cm topsoil was 3.8 and

0.33 %, and 2.42, 2.89, 1487 and 283 mg kg-1, respectively, which was correspondingly 6.3, 8.3, 4.4, 3.6,
2.3, and 2.0 times more than those in 20cm deep zone (Table S2).

The long-term average annual precipitation of the region is 650 mm, and the average temperature is 17.0
°C in July and –6.7 °C in January. The duration of the growing season is typically 175–180 days from
mid-April to October75.

The mean height of the forest stand is 17.5 m, the mean stem diameter at breast height 15.6 cm and the
growing stock 245 m3 ha−1 (based on Uri et al76 and Becker et al77). In the forest floor, the following herbs
dominate: Filipendula ulmaria (L.) Maxim., Aegopodium podagraria L., Cirsium oleraceum (L.) Scop.,
Geum rivale L., Crepis paludosa (L.) Moench,), shrubs (Rubus idaeus L., Frangula alnus L., Daphne
mezereum L.) and young trees (A. incana, Prunus padus (L.)) dominate. In moss-layer Climacium
dendroides (Hedw.) F. Weber & D. Mohr, Plagiomnium spp and Rhytidiadelphus triquetrus (Hedw.) Warnst.

5.2. Soil flux measurements

Soil fluxes were measured using 12 automatic dynamic chambers located close to each studied tree and
installed in June 2017. The chambers were made from polymethyl methacrylate (Plexiglas) covered with
non-transparent plastic film. Each soil chamber (volume of 0.032 m³) covered a 0.16 m² soil surface. To
avoid stratification of gas inside the chamber, air with a constant flow rate of 1.8 L min-1 was circulated
within a closed loop between the chamber and gas analyzer unit during the measurements by a
diaphragm pump. The air sample was taken from the top of the chamber headspace and pumped back
by distributing it to each side of the chamber. For the measurements, the soil chambers were closed
automatically for 9 minutes each. Flushing time of the whole system with ambient air between
measurement periods was 1 minute. Thus, there were approximately 12 measurements per chamber per
day. A Picarro G2508 (Picarro Inc., Santa Clara, CA, USA) gas analyzer using cavity ring-down
spectroscopy (CRDS) technology was used to monitor N2O gas concentrations in the frequency of
approximately 1.17 measurements per second. The chambers were connected to the gas analyzer using
a multiplexer.

Since the 9 minutes of closing each soil chamber for measurements consisted of two minutes for
stabilization the trend in the beginning and about two minutes unstable fluctuations at the end, for soil
flux calculations, only 5 minutes of the linear trend of N2O concentration change has been used for soil
flux calculations.

After the quality checking 105,830 flux values (98.7% of total possible) of soil N2O fluxes could be used
during the whole study period. 

5.3. Stem flux measurements
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The tree stem fluxes were measured manually with frequency 1-2 times per week from September 2017
until December 2018. Twelve representative mature grey alder trees were selected for stem flux
measurements and equipped with static closed tree stem chamber systems for stem flux
measurements49. Soil fluxes were investigated close to each selected tree. The tree chambers were
installed in June 2017 in following order: at the bottom part of the tree stem (approximately 10 cm above
the soil) and at 80 and 170 cm above the ground. The rectangular shape stem chambers were made of
transparent plastic containers, including removable airtight lids (Lock & Lock Co Ltd, Seoul, Republic of
Korea). For chamber preparation see Schindler et al28 .Two chambers per profile were set randomly
across 180° and interconnected with tubes into one system (total volume of 0.00119 m³) covering 0.0108
m² of stem surface. A pump (model 1410VD, 12 V; Thomas GmbH, Fürstenfeldbruck, Germany) was used
to homogenize the gas concentration prior to sampling. Chamber systems remained open between each
sampling campaign. During 60 measurement campaigns, four gas samples (each 25 ml) were collected
from each chamber system via septum in a 60 min interval: 0/60/120/180 min sequence (sampling time
between 12:00 and 16:00) and stored in pre-evacuated (0.3 bar) 12 ml coated gas-tight vials (LabCo
International, Ceregidion, UK). The gas samples were analysed in the laboratory at University of Tartu
within a week using gas chromatograph (GC-2014; Shimadzu, Kyoto, Japan) equipped with an electron
capture detector for detection of N2O and a flame ionization detector for CH4. The gas samples were
injected automatically using Loftfield autosampler (Loftfield Analytics, Göttingen, Germany). For gas-
chromatographical settings see Soosaar et al24.

5.4. Soil and stem flux calculation

Fluxes were quantified on a linear approach according to change of CH4 and N2O concentrations in the

chamber headspace over time, using the equation according to Livingston & Hutchison78.

Stem fluxes were quantified on a linear approach according to change of N2O concentrations in the

chamber headspace over time. A data quality control was applied based on R2 values of linear fit for CO2

measurements. When the R2 value for CO2 efflux was above 0.9, the conditions inside the chamber were

applicable, and the calculations for N2O gases were also accepted in spite of their R2 values.

To compare the contribution of soil and stems, the stem fluxes were upscaled to hectare of ground area
based on average stem diameter, tree height, stem surface area, tree density, and stand basal area
estimated for each period. A cylindric shape of tree stem was assumed. To estimate average stem
emissions per tree, fitted regression curves for different periods were made between the stem emissions
and height of the measurements as previously done by Schindler et al32. 

5.5. Eddy covariance instrumentation

Eddy-covariance system was installed on a 21 m height scaffolding tower. Fast 3-D sonic anemometer
Gill HS-50 (Gill Instruments Ltd., Lymington, Hampshire, UK) was used to obtain 3 wind components. CO2

fluxes were measured using the Li-Cor 7200 analyser (Li-Cor Inc., Lincoln, NE, USA). Air was sampled
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synchronously with the 30 m teflon inlet tube and analyzed by a quantum cascade laser absorption
spectrometer (QCLAS) (Aerodyne Research Inc., Billerica, MA, USA) for N2O concentrations. The Aerodyne
QCLAS was installed in the heated and ventilated cottage near the tower base. A high-capacity free scroll
vacuum pump (Agilent, Santa Clara, CA, USA) guaranteed air flow rate 15 L min-1 between the tower and
gas analyzer during the measurements. Air was filtered for dust and condense water. All measurements
were done at 10Hz and the gas-analyzer reported concentrations per dry air (mixing ratios). 

5.6. Eddy-covariance flux calculation and data quality control

The fluxes of N2O were calculated using the EddyPro software (v.6.0-7.0, Li-Cor) as a covariance of the
gas mixing ratio with the vertical wind component over 30-minute periods. Despiking of the raw data was
performed following Mauder79. Anemometer tilt was corrected with the double axis rotation. Linear
detrending was chosen over block averaging to minimize the influence of a possible fluctuations of a gas
analyser. Time lags were detected using covariance maximisation in a given time window (5±2s was
chosen based on the tube length and flow rate). While WPL-correction is typically performed for the
closed-path systems, we did not apply it as water correction was already performed by the Aerodyne and
the software reported mixing ratios. Both low and high frequency spectral corrections were applied using
fully analytic corrections80,81.

Calculated fluxes were filtered out in case they were coming from the half-hour averaging periods with at
least one of the following criteria: more than 1000 spikes, half-hourly averaged mixing ratio out of range
(300-350 ppb), quality control (QC) flags higher than 782.

Footprint area was estimated using Kljun et al83 implemented in TOVI software (Li-Cor Inc.). Footprint
allocation tool was implemented to flag the non-forested areas within the 90% cumulative footprint and
fluxes appointed to these areas were removed from the further analysis.

Storage fluxes were estimated using point concentration measurements from the eddy system, assuming
the uniform change within the air column under the tower during every 30 min period (calculated in
EddyPro software). In the absence of a better estimate or profile measurements, these estimates were
used to correct for storage change. Total flux values that were higher than eight times the standard
deviation were additionally filtered out (following Wang et al., 201384). Overall, the quality control
procedures resulted in 61% data coverage.

While friction velocity (u*) threshold is used to filter eddy fluxes of CO2
85, visual inspection of the friction

velocity influence on N2O fluxes demonstrated no effect. Thus, we decided not to apply it, taking into
account that 1-9 QC flag system already marks the times when the turbulence is not sufficient.

To obtain the continuous time-series and to enable the comparison to chamber estimates over hourly
time scales, gap-filling of N2O fluxes was performed using marginal distribution sampling method
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implemented in ReddyProcWeb online tool (https://www.bgc-
jena.mpg.de/bgi/index.php/Services/REddyProcWeb) (described in detail in Wutzler et al86.

MATLAB (ver. 2018a-b, Mathworks Inc., Natick, MA, USA) was used for all the eddy fluxes data analysis.

5.7. Ancillary measurements

Air temperature and relative humidity were measured within the canopy at 10m height using the HC2A-S3
– Standard Meteo Probe / RS24T (Rotronic AG, Bassersdorf, Switzerland) and Campbell CR100 data
logger (Campbell Scientific Inc., Logan, UT, USA). Based on these data, dew point depression was
calculated to characterise chance of fog formation within the canopy. The incoming solar radiation data
were obtained from the SMEAR Estonia station located at 2 km from the study site87 using the Delta-T-
SPN-1 sunshine pyranometer (Delta-T Devices Ltd., Cambridge, UK). The cloudiness ratio was calculated
based on radiation data.

Near-ground air temperature, soil temperature (Campbell Scientific Inc.) and soil water content sensors
(ML3 ThetaProbe, Delta-T Devices, Burwell, Cambridge, UK) were installed directly on the ground and 0–
10 cm soil depth close to the studied tree spots. During six campaigns from August to November 2017
composite topsoil samples were taken with a soil corer from a depth of 0–10 cm for physical and
chemical analysis using standard methods88.

5.8. Statistical analysis

R version 4.0.2 (R Development Core Team, 2020) was used to examine, analyse and visualise the data.
The significance level (alpha) considered for all the tests was 0.05. The “akima” package version 0.6-2.1
was used to create interpolated contour plots representing a three-dimensional surface89 by plotting soil
temperature and SWC against soil N2O emissions as the independent variable. Linear regression models
were fitted for change of SWC and soil N2O flux in period Drought onset and air temperature and soil N2O
flux in period Freeze–Thaw. Regarding all measurements of soil temperature, SWC and soil N2O flux,
relationships were better represented by nonlinear than linear models. In addition, Bragg equation with
four parameters90 was used for describing relationship between SWC and soil N2O flux in period Dry. A

workflow for the nonlinear regression analysis was used91 and regression models were fitted in R using
functions lm, nls or loess.
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Tables
Table 1. Fluxes of N2O from all the sources during the study period: September 2017 – December 2019
for the soil and ecosystem, September 2017 – December 2018 for stems. EC – eddy covariance. 
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Source Period N2O flux

    mg N m-2-period-1 %

Soil Wet 59.9 13.1

  Dry 104.9 22.9

  Freeze–Thaw 64.9 14.1

  Dry-minor 26.4 5.8

  Other 202.7 44.1

  Total 458.8 100.0

Stems Wet 1.44 40.7

  Dry 0.41 11.7

  Other 1.68 47.6

  Total 3.53 100.0

Ecosystem (EC) Wet 17.3 19.8

  Dry 2.26 2.6

  Freeze–Thaw 1.96 2.3

  Dry-minor 0.48 0.6

  Other 65.3 74.7

  Total 87.3 100.0
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Figure 1

Dynamics of ecosystem-level N2O fluxes in the Agali grey alder forest during the study period September
2017 – December 2019. Lines – 5-days median values, shaded area - 25th and 75th percentiles. Vertical
lines show start and end of hot moments: 1 – Wet (2017-09-01 … 2017-12-01), 2 – Dry (2018-05-01 …
2018-08-05) with 2a -Drought Onset (2018-05-02 … 2018-05-21), 3 – Freeze–Thaw (2019-02-01 … 2019-
03-15), and 4 – Dry-minor (2019-02-01 … 2019-03-15). Horizontal dashed lines mark the range of soil
water content during the hot moments and near-ground air temperature for Freeze–Thaw period. SWC –
soil water content).
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Figure 2

The Wet, Dry, Freeze–Thaw and Dry-minor hot moments of N2O emissions at ecosystem, tree stem and
soil level in the Agali grey alder forest. The Drought Onset phase of Dry period is marked with the peaking
N2O flux on 2018-05-20. The flux values are presented in relative units – percentage of change compared
to the mean flux of the full period.

Figure 3

Heatmap of N2O soil fluxes (mg N2O-N m-2 h-1) showing chamber-based spatial-temporal dynamics of
the whole study period (2017-01-09…2019-12-31). Value of each chamber (1-12 down–top in each year-
bar) is averaged from all measurements during a given day after quality check (max. 12 measurements
per day). (a) Daily average values of N2O soil flux per chamber. (b) Standard deviation values of N2O soil
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flux per chamber. Hot moments: 1 – Wet, 2 – Dry with Drought Onset (2a), 3 – Freeze–Thaw, 4 – Dry-
minor.

Figure 4

Cumulative fluxes of N2O from soil, stems and ecosystem (eddy covariance above the canopies) during
two full years (Sept. 2017 –Sept. 2019) and one half-year (Sept. – Dec. 2019). Due to significantly lower
values, the stem fluxes are zoomed in. Notice that the stem fluxes have been measured from Sept. 2017
to Dec. 2018.
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Figure 5

Seasonal cycle of ecosystem N2O flux measured with QCLAS in eddy tower. The markers denote daily
total values, the line is a 7-day running mean. The periods marked with red color represent time intervals
with gap-filled data (MDS-method) exceeding 50%. Hot moments: 1 – Wet, 2 – Drought (without showing
Drought Onset), 3 – Freeze–Thaw and 4 – Dry-minor.
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Figure 6

Relationships between the soil temperature, soil water content (SWC) and flux of N2O from soil over the
whole study period. (a) Contour plot showing relationships between soil temperature, SWC and N2O
emission (n = 755). (b) Regression curve of SWC vs N2O fluxes. Curve fitted regression of SWC and N2O
flux (R2 = 0.07, p < 0.01, n = 757). N2O = (15725.05 × SWC7.73) × exp(−15.38 × SWC). (c) Regression
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curve of soil temperature vs N2O. Local polynomial regression fitting of soil temperature and N2O flux (R2
= 0.13, p < 0.01, n = 756). The dashed red lines represent 95% confidence intervals for the regression line.

Figure 7

Dynamics of soil water content (SWC) vs soil N2O flux (hourly average values) during the hot moment
Dry (2018-05-01 … 2018-08-05). The curve is calculated after the Bragg equation with four parameters: Y
= c + (d − c) × exp(−b × (X − e)2, where b = 92.77, c = 0.0123, d = 0.1786, e = 0.4314 and X is SWC and Y
is N2O flux (R2 = 0.74, p < 0.001, n = 1065).
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Figure 8

Main determinants of N2O soil fluxes differ between the hot moments. (a) During the beginning of Dry
period (Drought Onset; 2018-05-02 to 2018-05-21) the speed of decrease in soil moisture determines the
N2O flux increase. The linear fitted regression of change of soil moisture (CSM) and N2O flux (R2 = 0.78,
p < 0.01, n = 20). N2O = −0.0517 + (−0.0134) × CSM. (b) During the Freeze–Thaw period (2019-02-01 to
2019-03-15) N2O flux is correlated with air temperature (Tair) (R2 = 0.30, p < 0.001, n = 41). N2O = 0.0819
+ (0.0173) × Tair. On both figures, the dashed red lines represent 95% confidence intervals for the
regression line.
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Figure 9

Location and research set-up of the riparian grey alder forest in Agali, Estonia. The automated soil
chambers, the studied trees with chambers and the eddy tower with its footprint area are shown. The blue
line indicates the stream (tributary of the Kalli River). For photos of set-up see Fig. S7.
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