
machine learning &

knowledge extraction

Article

Fully Homomorphically Encrypted Deep Learning as a Service

George Onoufriou 1 , Paul Mayfield 2 and Georgios Leontidis 3,*

����������
�������

Citation: Onoufriou, G.; Mayfield, P.;

Leontidis, G. Fully Homomorphically

Encrypted Deep Learning as a Service.

Mach. Learn. Knowl. Extr. 2021, 3,

819–834. https://doi.org/10.3390/

make3040041

Academic Editors: Andreas

Holzinger and Francesco Buccafurri

Received: 29 August 2021

Accepted: 9 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK; gonoufriou@lincoln.ac.uk
2 Scotland’s Rural College, Craibstone Estate, Ferguson Building, Aberdeen AB21 9YA, UK;

Paul.Mayfield@sac.co.uk
3 Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK
* Correspondence: georgios.leontidis@abdn.ac.uk

Abstract: Fully Homomorphic Encryption (FHE) is a relatively recent advancement in the field of
privacy-preserving technologies. FHE allows for the arbitrary depth computation of both addition
and multiplication, and thus the application of abelian/polynomial equations, like those found in
deep learning algorithms. This project investigates how FHE with deep learning can be used at scale
toward accurate sequence prediction, with a relatively low time complexity, the problems that such
a system incurs, and mitigations/solutions for such problems. In addition, we discuss how this
could have an impact on the future of data privacy and how it can enable data sharing across various
actors in the agri-food supply chain, hence allowing the development of machine learning-based
systems. Finally, we find that although FHE incurs a high spatial complexity cost, the run time is
within expected reasonable bounds, while allowing for absolutely private predictions to be made, in
our case for milk yield prediction with a Mean Absolute Percentage Error (MAPE) of 12.4% and an
accuracy of 87.6% on average.

Keywords: deep learning; fully homomorphic encryption; convolutional neural network; privacy-
preserving technologies; agri-food; data sharing

1. Introduction

Fully Homomorphic Encryption (FHE) is a structure-preserving encryption trans-
formation [1] first appearing in 2009 [2], and having several generational advancements
since to improve its efficiency, usability and speed. FHE promises to enable encrypted
computation of cyphertexts directly without needing the associated private keys required
for decryption. The ability to process cyphertexts directly makes it possible to provide
encrypted computations in particular with deep learning what we term Encrypted Deep
Learning as a Service (EDLaaS), and will be the subject matter we are interested in progress-
ing along with collaboration in agri-food. Deep learning lends itself particularly to FHE
since many neural networks are already formed of polynomials that are innately abelian
compatible. Abelian compatibility is important when using FHE as we are limited to only
abelian operations such as addition and multiplication, however, there are particular issues
with activation functions and loss functions that are frequently incompatible by default.
Take for instance the sigmoid activation function (1

1+e−x) which is not abelian compatible,
we would need to either use a different function or approximate this sigmoid activation.
One possible way to enable computation of the sigmoid function is to approximate using
a form of the Taylor expansion series. Other approximations have also been found for
other activation functions like Rectified Linuar Unit (ReLU), however, we still cannot fully
implement every neural network component in FHE compatible form. For further more
in-depth commutative algebra and rings related to the ring learning with errors (RLWE)
problem of which FHE is based [1], an in-depth breakdown is provided in Section 1.2.

FHE/RLWE has recently been paired with deep learning with success, which we will
term the encrypted deep learning field. In the encrypted deep learning field, the over-
whelming majority of implementations are primarily for convolutional neural networks

Mach. Learn. Knowl. Extr. 2021, 3, 819–834. https://doi.org/10.3390/make3040041 https://www.mdpi.com/journal/make

https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-9316-3196
https://orcid.org/0000-0001-6671-5568
https://doi.org/10.3390/make3040041
https://doi.org/10.3390/make3040041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/make3040041
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make3040041?type=check_update&version=1

Mach. Learn. Knowl. Extr. 2021, 3 820

(CNNs) on image data [3–6]. For instance Lee [5] uses a deep set of 2D convolutional neural
networks with the batch norm, and ReLU activation functions via a data-packing method
(multiple data single cyphertext) on the CIFAR-10 dataset [7] using the Cheon, Kim, Kim
and Song (CKKS) scheme over fixed-point numbers [8,9]. In Lee’s work they propose an
FHE compatible softmax layer however between the softmax and categorical cross-entropy
(CCE) layers in each iteration they still need to resort to plaintext for loss calculation,
which at some point all implementations will, due to not all necessary components in a
neural network being FHE compatible at this time. This means plaintext loss calculation
in each forward pass, and then plaintext backpropagation is the norm. this also helps
avoid cyphertext weights and optimisation functions which are also not FHE compatible
like the most popular optimisation function adam using decaying first and second-order
moments, and parameter updates both in incompatible forms [10]. This is not a problem
when considering encrypted inference/prediction, since largely the entire circuit with
the exception of argmax can be computed on behalf of a data owner using FHE once the
model is trained which could lead to interesting combinations with transfer learning in
future works.

Juvekar [6] showed encrypted deep learning applied to both MNIST [11] and CIFAR-
10 [7], using the PALISADE library. They use the Brakerski-Fan-Vercauteren (BFV) scheme
on integers, unlike the much later work by Lee which uses the CKKS scheme provided by
the Microsoft Simple Encrypted Arithmetic Library (MS-SEAL). Juvekar just like the much
later work by Lee [5] uses cyphertext packing to feed multiple data into a convolutional
neural network and was one of the first to propose this packing to optimise cyphertext
compatible CNNs, allowing them to operate between much fewer cyphertexts and thus
much less cyphertext overhead. However, both papers show how FHE is not possible in
the entire neural network graph due to incompatible operations in particular the softmax
and CCE in both classification cases. Both papers also show encrypted deep learning with
spacial/image data but not sequence data.

Ali [12] applies encrypted deep learning to both the CIFAR-10 and CIFAR-100 datasets,
using an improved ReLU, and min-max approximation. It is not apparent what or indeed
if Ali used any existing FHE scheme like CKKS, BFV, etc as they do not elaborate. Similarly
to all previous papers the problems they are solving are spatial problems, using 2D CNNs,
with partially FHE compatible networks.

From our brief summary, all of these works highlight how encrypted deep learning
has scarcely been applied towards sequence models, nor towards real-world problems,
or solving real client-server approaches to facilitate its use in practice. This is likely why
the Royal Society states that FHE is still a proof of concept technology [13] and why we
have seen little of encrypted deep learning providing practical use. All of these papers
highlight how there is a further need for approximations of neural network components, to
facilitate more and varied encrypted computations. All of these papers appear to compute
backpropagation along with loss calculation in plaintext. The levels of inference speed
vary drastically from paper to paper, due to both the scheme used, the data, and the neural
network complexity.

1.1. Motivation

Current encrypted deep learning as previously mentioned has multiple gaps, in par-
ticular of applications. We chose to focus on agri-food as a way to expand the coverage of
encrypted deep learning. Neural networks in the context of agri-food have already been
used across a number of settings, e.g., yield forecasting [14–16], crop and fruit detection [17],
pest detection [18], etc. In agri-food, as well as in other industries, there are large concerns
over potential data leaks over perceived or real sensitivity latent in their data such as ge-
netics/breeding, or feed composition in the case of the milk industry. In addition, concerns
around food traceability and safety, along with how information can be safeguarded against
malicious input are very important in the agri-food sector [19]. Moreover, considering that
data in such industries is a very valuable intellectual property, stakeholders are hesitant

Mach. Learn. Knowl. Extr. 2021, 3 821

to share their data, even when they are seeing some benefits in doing so. There is too
much at stake for them, therefore solutions that could enable data sharing or alternatively
sharing encrypted data that can be used to develop machine learning applications would
be a game-changer for the sector [20]. To test and evaluate our implementation we were
provided with the last 30 years of breeding, feeding, and milk yield data, by the Langhill
Dairy herd based at the SRUC Dairy Innovation Centre, Dumfries.

To train (deep) neural networks and exploit their full potential we require more and
more data. There are major concerns on behalf of the data owners, specifically on the
commercial sensitivity of their data, and its (mis)use if it were to be shared with others.
This issue creates a reluctance to share, especially if the collaboration is new, as there is a
lack of trust, along with issues around background and foreground IP. If we want to create
new collaborations to enable net-zero transition, enhance environmental sustainability and
improve productivity, it is necessary to build up this trust or create a system, where they
do not need to trust the data processor as it will work with encrypted data. This lends
itself to fully homomorphically encrypted data, as they no longer need to trust the data
processor, as their data cannot be decrypted, read, or leaked, but they can still be used for
computation to produce effective predictions for the data owners.

Stemming from all the above our motivation has been to investigate how FHE can be
used to enable the exchange of encrypted data in an agri-food setting and enable the use of
ML as part of the pipeline via the use of edge devices and virtual machines (VMs). FHE
as part of an ML pipeline is still in its infancy [13], which means that in contrast with ML
methods that work with non-encrypted data, no off-the-shelf approaches exist that can be
routinely used, making their adoption a hard process; hence still considered an emerging
and possibly disruptive technology.

Finally, the aim of this paper is thus:

• To test the feasibility of using FHE on a new application in agri-food, specifically dairy
milk data for milk yield forecasting.

• To evaluate the performance of using encrypted deep learning as a service towards
solving this agri-food milk yield forecasting problem/application.

• To show how sequence models can be built in an FHE compatible manner which is a
void in the current encrypted deep learning field.

1.2. Commutative Rings Formalisation

Commutative rings are sets in which it is possible to add, subtract (via the additive
inverse) and multiply, and still result in a member of the set. This includes the sets:

• Z; integers, e.g., (−1, 0, 1, 2, . . .) Formally: An integer is any number that has no
fractional part (not a decimal).

• Q; rational numbers, e.g., (5, 1.75, 0.001,−0.1, . . .) = (5
1 , 7

4 , 1
1000 , −1

10 , . . .) Formally; a
rational number is a number that can be in the fractional form a

b where a and b are
integers and b is non-zero.

• R; real numbers, e.g., (0,−1.5, 3/7, 0.32, π) Formally; a real number is any non-
imaginary, non-infinite number.

• C; complex numbers, e.g., (1 + i, 32 +−2.2i, 5,−6i) Formally: A number which is a
combination of real and imaginary numbers, where either part can be zero.

This does not include the sets:

• I; imaginary numbers, e.g., where: i =
√
−1, (i,−i, 39.8i, . . .) Formally: Imaginary

numbers are any numbers which are multiplied by the imaginary unit i.

R for (commutative) ring shall henceforth be one of the four sets Z,Q,R,C. In contrast,
a field (F) is any commutative ring (R), which may also perform division and still result in
elements from that ring. This includes only the sets Q,R,C as not all elements in the set
of integers (Z) can be divided by another integer and still result in an integer [21]. These
rings are used through polynomial expressions instead of discrete matrices in the learning

Mach. Learn. Knowl. Extr. 2021, 3 822

with errors (LWE) hence the ring learning with errors (RLWE). For formalization if all of
the following axioms are fulfilled then the resulting set is called a field:

addition axioms;
given: (x, y, z ∈ R), then:

(unity) 0 ∈ R

(closed) x + y ∈ R

(inverse) x,−x ∈ R

(commutative) x + y = y + x

(associative) (x + y) + z = x + (y + z)

(1)

multiplication axioms;
given: (x, y, z ∈ R), then:

(unity) 1 ∈ R

(closed) x · y ∈ R

(inverse) x, x−1 ∈ R

(commutative) x · y = y · x
(associative) (x · y) · z = x · (y · z)

(2)

multiplicative additive axioms;
given: (x, y, z ∈ R), then:

(distributivity) (x + y) · z = x · z + y · z (3)

2. Materials and Methods

To evaluate FHEs applicability as an EDLaaS we needed to create and mimic as
closely as possible what we expect to be a standard industrial use case for third-party data
processing, which we can evaluate the effect of FHE on, along with evaluating FHE’s time
and spatial performance itself. To this end, we devised a two-part client-server system
depicted in Figure 1. It should also be noted that we do still retain the use of HTTPS
as opposed to HTTP despite already encrypting our inputs because such a system that
relies on HTTP would still be vulnerable to the application level attacks such as man in the
middle—also lacking server validation could mean that data could be processed maliciously
while also exposing things such as credentials to all parties between the client and the
server. An example of possibly malicious data processing would involve purposefully
wrong predictions if the still encrypted cyphertexts were sent to an un-validated server
because there was no validation through certificates. In the case of milk yield, this could
take the form of purposefully over-predicting milk yields such that resources are wasted
in preparation for these yield events, or even worse that negotiated supply contracts that
expect much greater yields are not met since expectation far exceeded actuality. This could
also destroy the data processor’s reputation as a provider of accurate models to name but a
few possible malicious data processing possibilities.

Towards the end of creating this pipeline, we had to overcome a few shortfalls we
found at the time that prevented FHE to be integrated into an EDLaaS scenario/pipeline.

• Fully Homomorphic encryption itself, specifically CKKS [8,9], and adapting it to be
usable at some scale.

• Using FHE towards creating encrypted sequence models, which has only been periph-
erally explored at this point.

Mach. Learn. Knowl. Extr. 2021, 3 823

Nginx
Reverse

Proxy

Flask +
REST API

Docker Container 1

Flask +
REST API

Docker Container 2

Flask +
REST API

Docker Container 3

Docker Container 0

MongoDB

Docker Container 4

TLS

TLS

TLS

Server Side Overview

WSGI server

WSGI server

WSGI server

Client

Flask

Docker Container 0

WSGI server

Client Side Overview

TLSPlaintext

Lo
ad

 B
al

an
ci

ng

Client Flask server Outbound Flow

Plaintext
FHE

Encrypted
Ciphertext

Client Flask server Inbound Flow

FHE
Encrypted
Ciphertext

Plaintext
Result

ReSeal

ReSeal
f(x) relinearise(x) rescale(x)

Modulus
Switch

Server Computation

Figure 1. The pipeline demonstrates the key stages of our project, from the client and raw data (upper left) to the data
processing and analytics (lower right).

2.1. Data Pipeline

Broadly speaking, our data pipeline can be abstracted into a few different categories,
necessary to test and evaluate FHE at some scale, and in a practical manner to garner
real results. To this end we have the data source where data is wrangled and encrypted,
and also the data sink where the data is processed on much more powerful and fully
featured machines.

2.1.1. Data Wrangling

For our study, we used data on dairy herds over the last 30 years provided by the
Langhill Dairy herd based at the SRUC Dairy Innovation Centre Dumfries. The data
we used was comprised of milking yields, cow consumption/intakes, genetic varieties,
which when condensed and parsed became 7 numeric/derived features. These 7 features
represent a single time-point, and we used a rolling window comprised of 21 time-points
per-cow-per-example we would take the 21st time-point, strip it and use it as our historic
ground truth that the previous 20 time-points lead up to. Each cow is milked once a week,
rarely once every two weeks, so a sequence of 20 time-points represents roughly 20 weeks
of history, leading up to the next (21st) milk yield. These rolling windows stride from the
oldest to the newest time-points so the neural network has only seen part of the previous
sequence for this cow but not the outcome while training. For the testing set, however,
the neural network has neither seen the leading-up-to sequence nor the outcomes. This
approach allows us to maximise the amount of data we derive from our 93,283 time-points
to give us 57,698 complete sequences between all cows. We split our 57,698 sequences
in a 70–30 train-test split (40,389, 17,309) taking the 30% most recent examples so that
the testing set was also split temporally, so the network now has not seen the sequences
and has no future context with which to make past predictions, making the testing set a
representative but separate grouping by time. We further subdivided the training set using
another 70–30 split to form the training and validation sets respectively.

We use this data to encrypt and infer on using time series neural networks, in our case a
one-dimensional convolutional neural network (1D CNN). We normalised this data between

Mach. Learn. Knowl. Extr. 2021, 3 824

the range of 0–1 following a standard procedure (zi = (xi −min(x))/max(x)−min(x)) on
the client-side, and one hot encoded categorical features. This is fundamentally the same
as any other data wrangling where data is prepared for processing by neurons, with the
sole exception that the data is then encrypted, meaning this is the final form of the data,
and cannot be changed before training/inference, but can, of course, be iteratively adapted
if it does not provide the best results by simply feeding more but differently wrangled
encrypted data. As there is usually a significant number of empty slots in the encryption
vector, it may be possible to optimize further by merging multiple examples into a single
encrypted vector [5]. However, this emptiness allows for a lot of variances in wrangling
techniques without the need to create whole new neural network architectures.

2.1.2. Client/Data Source

The data that describes the milk yields are provided by the owner as an input to an
IoT device, usually, a small embedded device (in our case, NVIDIA jetson nano), which is
responsible for data wrangling and encryption, as once encrypted the data can no longer
be seen, and cannot be verified; thus the need to be transformed before the encryption
stage. The data source must be the encryptor so that they are the only entity with a private
key with which to decrypt the data again.

Normally, the data owner cannot be expected to be familiar with FHE, deep learning,
and thus the requirements of the data to be properly processable. Some form of interac-
tion/awareness of the data must occur such that appropriate auditable/open-source data
processors can be provided. In the ideal scenario, this would not be necessary and the data
owner would be capable of wrangling the data according to their needs, but it should be
noted this is an unlikely occurrence given there are more data sources than expertise, and
the existence of expertise reduces the likelihood in the need for an EDLaaS. However given
client expertise or at least proficiency in data cleaning, and the use of open-source helpers
and documentation, then no embedded device would be necessary, and the client can
instead submit their cyphertext directly for processing with the respective operational keys.

Data from the client is serialised by the embedded device after encryption ready for
transmission to the data processor, without the presence of the private key, ensuring the
transmitted serialised cyphertext is undecryptable during processing in the later stages.
These keys should instead remain indexed on the client machine/embedded device ready
to be re-merged for decryption.

2.1.3. Server/Data Processor

Data from the data source is serialised and transmitted using standard HTTPS requests,
to model how it would likely function in such an Internet service. The data sink then
proceeds to deserialise and apply the arbitrary computation, in our case a neural network,
and then serialises and transmits the still encrypted but now transformed data to the data
source for final decryption and use. An example encrypted output can be seen in the
following Figure 2 showing cyphertexts, the associated keys, the data set name that it is
associated with, who owns this data, and when it was submitted. In practice, we would
filter unnecessary information, like the plain parameters, to reduce space and time costs of
storing and transmitting this data, hence improving speed, and of course, we would not
handle the private key, which is shown here for experimental purposes only.

We can process data as in Figure 2 using our library described in Section 2.3 and with
our techniques outlined in Section 2.4. Once processed, to minimise space consumption,
we swap all the way down the remaining coefficient chain, to create the smallest possible,
and most quickly deciphered cyphertext, thus saving space and time while the data is
stored until the data owner decrypts/uses the results.

Mach. Learn. Knowl. Extr. 2021, 3 825

Figure 2. Serialised representation of encrypted data using CKKS scheme, and including all private,
relin, and public keys, where objects here are byte arrays.

2.2. Interface

For ease of use and testing we created a simple web interface to be used by the
data owner to simplify the process of submitting data to the embedded client device for
encryption and transformation, while also serving the purpose of user authentication, as a
main dashboard that prompts the user to upload the data to be encrypted (Figure 3), and
also an opportunity to view the encrypted data. The training process, given the complexity
involved, can run either on the Jetson device or a remote host, e.g., high-performance
computing. The user may also select what type of 1D CNN (or other models for good
measure) to use to provide them predictions. As far as our techniques are concerned, they
can run in both an edge and a non-edge device, depending on the scalability of the problem
and other constraints related to the amounts of data, training time, etc.

Figure 3. FHE dashboard, allowing simple upload, data view (of metadata since data is encrypted),
and processing of data.

Mach. Learn. Knowl. Extr. 2021, 3 826

2.3. Fully Homomorphic Encryption Library

Across the community, there has been little work available to easily use fully homo-
morphic encryption in conjunction with deep learning, and of what was available they
often did not support the more complicated Cheon, Kim, Kim and Song (CKKS) [8,9] FHE
scheme, and its serialisation, or harbour some hidden catches. The CKKS scheme can
operate on fixed precision numbers which is necessary as normalised neural networks
operate on floating point numbers usually, often in the range 0–1. The base library we
used after quite some deliberation was the Microsoft Simple Encrypted Arithmetic Library
(MS-SEAL) since it supports CKKS and some form of serialisation necessary to broadcast
over the internet, and is broadly a very popular FHE library. We chose to use our own
Python-Reseal [22] library that binds MS-SEAL directly as a base/low-level FHE library
which also implements our own abstraction layers because many other abstraction libraries
simply did not suit our needs. We required both FHE and some way to operate deep learn-
ing models with this FHE, many of which were too immature/newer than ours, or lacked
documentation/examples. Take for instance Microsoft’s own encrypted vector arithmetic
(MS-EVA) library that similarly uses a graphing approach to represent computation, and
also binds from MS-SEAL itself to python as PyEVA. PyEVA is and was at the time too new
(V1 released 23 April 2021) and lacked documentation to make it readily usable. Similarly,
other libraries like PySyft were originally created for other privacy-preserving machine
learning methods like federated computing, differential privacy, and multi-party compu-
tation, and have only very recently begun to implement homomorphic operations, but
again this still means they lacked the necessary documentation and thus are yet unusable
for FHE deep learning. In contrast, our library started implementing FHE in June 2020,
with first-class support for serialisation, FHE deep learning, and rich documentation with
examples of encrypted neural networks specifically. It should also be noted that many
of these libraries are just higher-level FHE libraries that do not include or naturally form
neural networks, whereas we needed specifically encrypted deep learning. MS-SEAL
however is neither GPU compatible and does not support bootstrapping yet, meaning
there is a limit to the number of computations we can process, but since we were intending
to stay within this limit for the sake of noise budgeting this should be relatively equivalent
to its bootstrapped counterpart, and can in future be swapped to its bootstrapped variant
without having to adapt any of the neural network components.

We chose Python as most deep learning applications and the associated plethora
of libraries primarily use the programming language Python. Our existing open-source
(OSLv3 Licensed) library Python-ReSeal [22] was well placed to allow us to take full
advantage of the high-level features of Python and included all the serialisation logic, and
abstractions necessary for use in deep learning.

2.4. Fully Homomorphic Encryption in Deep Learning

Deep learning can broadly be abstracted into three stages, namely forward pass,
backward pass, and the weight update; forward pass propagates some inputs (x, y in
Figure 4 and Table 1) against the weights and internal activation functions of the whole
network to produce some form of prediction (ŷ in Figure 4). Backward pass calculates
the effect of all weights and biases on the final result by differentiation and the chain rule.
The weight update takes these weights and adjusts them given the loss (a measure of
wrongness), and the gradient of the weight in question to approach a lower loss, usually
using a flavour of the gradient descent algorithm.

Fully homomorphic encryption requires that certain constraints be maintained, such
as the inability to compute division, thus we describe our process as well as how we
overcome these obstacles as follows.

Mach. Learn. Knowl. Extr. 2021, 3 827

Table 1. Tabular-summarised neural network architecture, outlining the neural network components
and how they are constructed using various constituent nodes, along with the parameters these
nodes received such as filter shapes to randomly initialise the weights.

Neural Network Component Constituent Nodes Parameters

Inputs x, y

One Dimensional Convolutional
Neural Network (1D CNN)

1D-CC,
CC-dequeue,
CC-enqueue,
CC-sop- *,
CNN-acti

filter shape: (5, 1, 7),
bias: 0

Fully Connected Artificial
Neural Network (ANN/Dense)

Dense,
Dense-acti

weight shape: (16),
bias: 0

Mean Squared Error (MSE) Loss MSE

Adaptive moment (Adam) Optimiser Not a Node *
alpha: 0.001,
beta_1: 0.9,
beta_2: 0.999

Outputs y_hat
* Adam is not a node but is instead embedded in the abstraction of nodes as the default optimiser. The default
optimiser can be overridden with parameters to use others.

Figure 4. FHE compatible neural network graph implemented by Python-ReSeal [22], visualised
using PyVis, deployed towards predicting time series milk yield data via 1D Convolutional Neural
Network (CNN)/biased cross-correlation (CC) with activation. Further in this diagram, blue repre-
sents input nodes, yellow represents CC/CNN nodes/components, pink represents the dense layer
to condense the feature vector from the CNN layer, green is all glue operations such as enqueue and
dequeue to merge and split inputs along varying edges respectively, orange is predictions, and red is
loss functions. Purple is a special/unique set of operations related to the encryption itself such as
decryption before moving on to the final circuit.

2.4.1. Forward Pass

As briefly described previously, the forward pass takes some input x, applies some
transformation according to the internal weights of the neural network and outputs some
prediction (Figure 4 and Table 1). However, depending on the neural network in question,
these transformations are usually not FHE compatible or are not performant under FHE.

Mach. Learn. Knowl. Extr. 2021, 3 828

An example of FHE incompatibility is most activation functions, e.g., ReLU, and sigmoid,
which require operations such as max and division that are impossible, requiring context
and a non-abelian operation, respectively. To overcome this, we found in literature approx-
imations for—in particular—sigmoid (Equation (4)), which uses polynomials to overcome
the barrier of the divisions in the standard sigmoid. For the sake of repetition sigmoid shall
hereby refer to the sigmoid approximation unless otherwise stated:

σ(x) ≈ 0.5 + 0.197x +−0.004x3 (4)

where:

σ = sigmoid
x = some input vector x

This approximation closely follows the standard sigmoid between the ranges of −5
and 5 (Figure 5), which is more than sufficient for our purposes since, when normalised,
most data, weights, and subsequently, activations will likely fall in the range 0–1; however
it is still possible throughout training to exceed this boundary and is a good candidate for
FHE compatible batch norm.

This approximation in question, proposed by Chen et al. [23] in Equation (4), is used
interchangeably with sigmoid in our equations, thus our neural network Equation (5) will
stay relatively normal aside from the use of time t as a 1D (time series) CNN.

The specific neural network we used for this forward pass was a 1D convolutional
neural network (1D CNN), where we substituted space for time, thus our activation
equation becomes what is depicted by Equation (5). We used a 1D CNN over traditional
time series neural networks despite having a time series dataset as not only have 1D CNNs
been shown to be good time-series predictors that are more parallelisable, but the nature
of a CNN means computations are wider rather than deeper. In practice, this means that
less expensive operations such as bootstrapping are necessary (and in our case impossible),
since after a few computations deep it is necessary to bootstrap and shrink the cyphertext,
thus improving the overall time efficiency of the resulting computational graph.

We initialise our 1D CNN, with a filter of shape (5, 1, 7) with random weights between
0–1 divided by the total number of elements in the filter 5× 1× 7 = 35 so that when
summed the sum-of-products (SOP) does not exceed 1 at least initially. We use a batch size
of 3 to keep the cyphertext size down since the forward pass requires significant caching in
training and a larger batch size would entail more data to cache in an already data-heavy
scenario with encrypted cyphertexts taking large amounts of space compared to their
plaintext counterparts. The bias for both the 1D-CNN and the dense-net are initialised to 0
since we never assume the input is biased and instead desire to let the neural network find
the bias itself. The dense-net similar to the 1D CNN has its weights randomly initialised
between 0–1 of shape (16) again such that the sum of products never exceeds 1 initially.
The reason we want to ensure we stay within this range where possible is to minimise
the chance of exceeding the golden range of our approximations, like the aforementioned
sigmoid approximation range of −5 to 5. Both the dense layer and the CNN layer depicted
in Figure 4 use Sigmoid as their activation node, although in future we will plug in a ReLU
approximation to improve on the polynomials computation time, ReLU being a lower
order polynomial.

a<t> = σ(w<t>
i x<t> + b<t>

i) (5)

where:

σ = sigmoid/sigmoid approximation
x = some input vector x
e = eulers number

Mach. Learn. Knowl. Extr. 2021, 3 829

Figure 5. Graphical comparison of the sigmoid (purple) and sigmoid approximation (green) functions, showing their
similarity between the range of −5 and 5.

2.4.2. Backward Pass

The backward pass, as touched on before, is the process of calculating the gradients of
the weights and biases with respect to the output. However, to do this you require some
cached input which is used to derive the differentials. An example of this dependency of
input could be sigmoid which to calculate the gradient requires x the encrypted input.

To calculate the sigmoids gradient, x is required, and this means that either this
gradient becomes encrypted in the process of using the currently encrypted x, or that this
can only be calculated in plaintext. For now, we choose to calculate gradients in plaintext,
as encrypting the gradients would inevitably mean encrypting the new weights, which
would mean every operation would become between two cyphertexts, adding substantial
time complexity (an order of magnitude), when unnecessary for our purposes, and would
function to limit the neural network to that one specific key from that one specific data
owner. While this may be desirable in certain bespoke situations, generally, as a data
processor, however, this is largely undesirable since it is necessary to serve multiple data
owners/sources simultaneously. It may be instead possible to have generic models that
can then be privately tailored to the specific data in question. For these bespoke models,
this could potentially be represented somewhat like a graph/digraph for each individual
weight with respect to the generic models, such that if in future the data owner allows these
weights to be decrypted, that they can be retroactively used to update other pre-existing
models stemming from the same generic model/node.

2.4.3. Weight Update

The weight update using gradient descent simply moves the weights in whichever
direction approaches a lower/minimum loss. They do this according to some optimisation
function. Since we do this in plaintext is it done normally without the need for special
considerations. In our FHE neural network, we use Adam [10] by default since it is the most
prevalent, and frequently used optimiser. We use Adam with the standard parameterisation
as outlined in the original paper; α = 0.001, β1 = 0.9, β2 = 0.999 ε = 1× 10−8.

3. Results and Discussion

In the work presented in this paper, we created a two-part client and server system
to facilitate EDLaaS at scale, just like any other platform as a service. We used our own
libraries which have consequences on the computational speed of the whole pipeline.
Table 2 represents the computational times we achieved against milk yield prediction using
a 1D convolutional neural network as outlined in Section 2.4. These results are averages of

Mach. Learn. Knowl. Extr. 2021, 3 830

testing set computations (17,309 examples) and the associated time of execution, including
in the case of the remote examples the transmission time. For the sake of consistency, all
results presented were obtained on the same local area network (LAN) to prevent the effect
of otherwise uncontrollable conditions and traffic over the wider area network (WAN).
While this is still a fairly small scale relative to production settings, our use of containers
can easily be expanded upon such as with Kubernetes, Apache Mesos, or Docker Swarm,
allowing for scaling up and down. As can be seen in Table 3, the absolute difference in
loss vs. the exact same network in plaintext is minimal, such that it could be mistaken for
a rounding error even at 3 significant figures. This means the only significant difference
between plaintext and cyphertext processing is the cost of processing it, I.E computational
and spacial cost. This table also shows how the network architecture despite being quite
shallow is still capable of learning this problem while achieving an MAE of 0.124 no less,
which means since the data is normalised between 0–1 that our Mean Absolute Percentage
Error (MAPE) is 12.4%, or put another way our neural network can accurately infer the
next milk yield while encrypted with an accuracy of 87.6% on average.

It may also be noted in Table 2 that some fields are left blank. These blank fields in
the remote column are remote operations left unimplemented as they are too low-level
operations to be worth the overhead cost of transmission, also considering that simple
operations alone, such as cyphertext + cyphertext, are not in of themselves deep learning
as deep learning is comprised of many of these atomic operations combined rather than as
singular API calls that need to be transmitted each time, and would not have been worthy
candidates to implement, taking time away from more critical research.

It can be seen in Table 2 that local time performance effectively represents the efficiency
of our rebinding and abstraction implementation of MS-SEAL, whereas the remote results
represent the time taken for the pipeline overall. That is to say remote encryption, remote
decryption, and remote inference.

Space taken as shown in Table 4 however shows how much larger an encrypted
cyphertext is relative to its unencrypted counterpart. in the case where the polynomial
modulus degree is 16,384 and thus the length of the array is half of the poly-mod-degree at
8192, the plaintext NumPy array is only 0.0656 MB, compared to 9.60 MB if it was to be
encrypted. However, this is the total size of the cyphertext, including all the other required
information necessary to store with it, namely its private key, and at the highest point in the
modulus switching chain, which is only necessary before computation begins. Thus there
will be some gains once unnecessary information to the data processor is stripped, and the
data has been computed thus approaching the end of its modulus switching chain, which
produces a smaller cyphertext as a side effect, while also being the result of several other
cyphertexts combined into a single prediction. This space taken is likely easily optimised as
this size is a result of some difficult serialisation logic necessary when going from MS-SEAL
in C++ to ReSeal in Python, and is likely an area where easy gains can be garnered in future.

Lastly a discussion on the privacy of models built with plaintext backpropagation.
As repeatedly stated thought that the training of the neural networks or more specifically
the backpropagation is done in plaintext which means that the model weights can begin
to approximate the distribution of the data. If these were generative models we could
likely recreate at least a form of the original data since the weights are still usable without
the data owner since they are in plaintext. However we can easily mitigate this through
transfer learning (something we do not cover here in-depth) and pre-trained models; If the
data privacy is paramount such that the dataset itself cannot be decrypted for the purposes
of training, then we can instead use FHE modified pre-trained models for the inference
that most closely match the data scenario, of which as depicted in Figure 3 the user would
be able to select. It is possible that the data owners data closely matches the scenarios
covered by these pre-trained networks (e.g., inceptionv3, resnet, alexnet, etc.) however
if not it would be further possible to tune these pre-trained networks locally on (in this
instance) the Jetson-Nano since tuning would require far fewer resources, then use the
model on the server-side after serialising the now tuned graph. That way the exposure of

Mach. Learn. Knowl. Extr. 2021, 3 831

the data is kept locally only. If even this is too much since the weights are still exposed then
encrypted weights could also be deployed for their specific model however this would
come at significant computation and conceptual complexity costs. All in all, while FHE is
not a panacea to all privacy problems it significantly reduces many concerns, and if used
in conjunction further with other forms of privacy-preserving machine learning that it
would become private to all but the most sensitive applications. At the very least while
the inference that uses transferred models would be inferior to bespoke models specially
tailored to those use cases, having more data owners (such as in agri-food) have access
to neural network predictions will possibly act as a gateway at least of awareness such
that once the data owners experience what sort of performance neural networks can give
them, that they may have more reason to share plaintext data to attain more and better
predictions, even faster, and more tailored to their needs.

Table 2. Time performance for different operations, both locally and remotely. It should be noted that
N/A (not applicable) is used to identify operations which are not implemented atomically as remote
API operations as they would not make sense since they are too atomic to warrant the transmission
overhead alone. These operations of course still exist on the server side but embedded into much
more complex operations such as part of inference in our neural network depicted in Figure 4.

Operation Locally
(Seconds 3 s.f)

Remotely
(Seconds 3 s.f)

Encryption 0.0136 0.454
Decryption 0.0330 1.14
Inference 0.966 3.13
Cyphertext + Cyphertext 0.287 N/A
Cyphertext + Plaintext 0.0480 N/A
Cyphertext*Cyphertext 0.277 N/A
Cyphertext*Plaintext 0.0500 N/A

Table 3. Output of loss functions for both validation and testing sets, using Mean Squared Error
(MSE), and Mean Absolute Error (MAE) when using our neural network from Figure 4.

Data Set MSE
Cyphertext (4 s.f.)

MSE
Plaintext (4 s.f.)

MAE
Cyphertext (4 s.f.)

MAE
Plaintext (4 s.f.)

validation 0.02226 0.02225 0.1240 0.1240
testing 0.02233 0.02233 0.1241 0.1241

Table 4. Space taken of different length vectors, unencrypted as NumPy arrays and encrypted as
ReSeal vectors, including private keys and all meta-data required for operation.

Length Polynomial
Modulus Degree

Numpy Plaintext
Size (bytes)

Encrypted Vector
Size (bytes)

4096 8192 32,880 4,800,310
8192 16,384 65,648 9,600,592

4. Future Work

Our future work will focus on expanding and improving our presented approaches
further. More specifically, areas of improvement include:

Neural network components: We are working on improving some of the approxima-
tions and components presented here, taking into account recent advancements made on
sigmoid approximation and ReLU, as proposed by Ali [12]. There have also been some
very recent techniques proposed, which are relevant to our work, such as Lee et al. batch
normalisation and kernel implementation [5]. Nevertheless, the purpose of this paper was

Mach. Learn. Knowl. Extr. 2021, 3 832

to consider FHE in conjunction with deep learning and show at least that it can be applied
and use in practical client-server settings.

FHE: In this paper, we treat FHE and leveled-FHE (LFHE) as if they are the same,
however, FHE includes the use of a bootstrapping function, which is an operation which
Microsoft-SEAL does not yet support, however, this is a road-mapped feature which
means in due course this initially LFHE implementation can be reused for FHE as it
becomes available.

Plaintext Backpropagration: Readers will note that we have in several places men-
tioned that backpropagation is calculated in plaintext. This is a prevalent limitation in all
FHE deep learning implementations that is often overlooked/attention is not drawn to.
This is primarily due to both the aforementioned lack of bootstrapping in many imple-
mentations which makes such long computations untenable (due to cyphertext size and
computation time), the lack of compatibility in loss functions (which we and the broader
community are working towards improving), and finally the inoperability of encrypted
weights. Here, by inoperability we mean the following:

• Cyphertext + Cyphertext operations take an order of magnitude longer to compute; if
we maintained encryption throughout the backward pass and kept the data absolutely
secret then we would also have to pay this computational cost.

• Cyphertext + Cyphertext operations can only be computed on identically parameterised
and borne of the same secret key, which means we would require all EDLaaS data own-
ers to encrypt their data using the same key, which would mean the point of encryption
would be lost since the secret key would then be effectively openly accessible.

• We could decrypt the finalised weights to overcome these previous limitations but then
we could still derive at least a generalised representation of the source data in which
case there is not much to be gained by computing backpropagation while encrypted.

• There is nothing stopping us from only using the forward pass for data owners while
having pre-trained or transferred models to various scenarios of which they can
choose. This would lose some accuracy but at this current time, it seems like the
optimal scenario if data privacy/sensitivity is of key importance but computation is
still required.

5. Conclusions

FHE and deep learning are an interesting pairing, together they allow data to be
inferred completely privately, and could also be used for training to improve privacy
significantly in client-server scenarios like ours. We have applied encrypted deep learning
to a whole new application, how it can be used for accurate (MAPE 12.4%) prediction of
milk yield forecasting in the agri-food sector, and have discussed to some length privacy
considerations, and the cost of cyphertext processing. We have shown how the relative
performance of cyphertext vs plaintext processing on the exact same neural networks is
negligible such that it could be mistaken for a rounding error even at 3 significant figures.
We have also shown how we can develop sequence models using FHE compatible methods,
thanks to the co-similar nature of space and time in 1D CNNs. We have found that while we
pay a high penalty for cyphertext processing it is more than reasonable towards encrypted
inference or EDLaaS. We have also found that FHE is not a panacea, and it does not solve
all of the privacy-preserving considerations that would be required in particular for the
training of neural networks, but it does offer a way, albeit a highly complex and expensive
way to if we so desired to use encrypted weight bespoke models for individual data owners
specific requirements, such as those in the highly competitive agri-food industry. There is
still much improvement that can be sought in particular with the efficiency of our MS-SEAL
bindings but despite all the difficulties we get timely, accurate predictions, in a reasonably
secure client-server model.

Mach. Learn. Knowl. Extr. 2021, 3 833

Author Contributions: Conceptualization, G.O. and G.L.; methodology, G.O.; software, G.O.; valida-
tion, G.O.; formal analysis, G.O.; investigation, G.O.; resources, G.O., G.L. and P.M.; data curation,
G.O.; writing—original draft preparation, G.O. and G.L.; writing—review and editing, G.O. and G.L.;
visualization, G.O.; supervision, G.L.; project administration, G.L. and P.M.; funding acquisition, G.L.
and P.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by UKRI-EPSRC grant “The Internet of Food Things” grant
number EP/R045127/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in this study are confidential and cannot be made public.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. Cryptonets: Applying neural networks to

encrypted data with high throughput and accuracy. In Proceedings of the International Conference on Machine Learning,
New York, NY, USA, 19–24 June 2016; pp. 201–210.

2. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.

3. Marcano, N.J.H.; Moller, M.; Hansen, S.; Jacobsen, R.H. On fully homomorphic encryption for privacy-preserving deep learning.
In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

4. Meftah, S.; Tan, B.H.M.; Mun, C.F.; Aung, K.M.M.; Veeravalli, B.; Chandrasekhar, V. DOReN: Towards Efficient Deep Con-
volutional Neural Networks with Fully Homomorphic Encryption. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3740–3752.
[CrossRef]

5. Lee, J.W.; Kang, H.; Lee, Y.; Choi, W.; Eom, J.; Deryabin, M.; Lee, E.; Lee, J.; Yoo, D.; Kim, Y.S.; et al. Privacy-Preserving Machine
Learning with Fully Homomorphic Encryption for Deep Neural Network. arXiv 2021, arXiv:2106.07229.

6. Juvekar, C.; Vaikuntanathan, V.; Chandrakasan, A. GAZELLE: A low latency framework for secure neural network inference.
In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018;
pp. 1651–1669.

7. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 28 August 2021).

8. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and Information Security; Springer: Hong Kong, China, 2017; pp. 409–437.

9. Cheon, J.H.; Han, K.; Kim, A.; Kim, M.; Song, Y. Bootstrapping for approximate homomorphic encryption. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques; Springer: Tel Aviv, Israel, 2018; pp. 360–384.

10. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
11. LeCun, Y.; Cortes, C. MNIST Handwritten Digit Database. 2010. Available online: https://deepai.org/dataset/mnist (accessed

on 28 August 2021).
12. Ali, R.E.; So, J.; Avestimehr, A.S. On polynomial approximations for privacy-preserving and verifiable relu networks. arXiv 2020,

arXiv:2011.05530.
13. Noble, A. Protecting Privacy in Practice; The Royal Society: London, UK, 2019.
14. Alhnaity, B.; Pearson, S.; Leontidis, G.; Kollias, S. Using deep learning to predict plant growth and yield in greenhouse

environments. Acta Hortic. 2020, 425–432. [CrossRef]
15. Alhnaity, B.; Kollias, S.; Leontidis, G.; Jiang, S.; Schamp, B.; Pearson, S. An autoencoder wavelet based deep neural network with

attention mechanism for multi-step prediction of plant growth. Inf. Sci. 2021, 560, 35–50. [CrossRef]
16. Durrant, A.; Markovic, M.; Matthews, D.; May, D.; Enright, J.; Leontidis, G. The Role of Cross-Silo Federated Learning in

Facilitating Data Sharing in the Agri-Food Sector. arXiv 2021, arXiv:2104.07468.
17. Hossain, M.S.; Al-Hammadi, M.; Muhammad, G. Automatic fruit classification using deep learning for industrial applications.

IEEE Trans. Ind. Inform. 2018, 15, 1027–1034. [CrossRef]
18. Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest identification via deep residual learning in complex background. Comput.

Electron. Agric. 2017, 141, 351–356. [CrossRef]
19. Pearson, S.; May, D.; Leontidis, G.; Swainson, M.; Brewer, S.; Bidaut, L.; Frey, J.G.; Parr, G.; Maull, R.; Zisman, A. Are Distributed

Ledger Technologies the panacea for food traceability? Glob. Food Secur. 2019, 20, 145–149. [CrossRef]
20. Durrant, A.; Markovic, M.; Matthews, D.; May, D.; Leontidis, G.; Enright, J. How might technology rise to the challenge of data

sharing in agri-food? Glob. Food Secur. 2021, 28, 100493. [CrossRef]
21. Ershov, M. Survey of Algebra. 2015. Available online: http://people.virginia.edu/~mve2x/3354_Spring2015/ (accessed on

10 November 2019).

http://doi.org/10.1109/TIFS.2021.3090959
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://deepai.org/dataset/mnist
http://dx.doi.org/10.17660/ActaHortic.2020.1296.55
http://dx.doi.org/10.1016/j.ins.2021.01.037
http://dx.doi.org/10.1109/TII.2018.2875149
http://dx.doi.org/10.1016/j.compag.2017.08.005
http://dx.doi.org/10.1016/j.gfs.2019.02.002
http://dx.doi.org/10.1016/j.gfs.2021.100493
http://people.virginia.edu/~mve2x/3354_Spring2015/

Mach. Learn. Knowl. Extr. 2021, 3 834

22. Onoufriou, G. Python Fully Homomorphically Encrypted Microsoft Seal Abstraction Libary, ReSeal Repository. 2020. Available
online: https://github.com/DreamingRaven/python-reseal (accessed on 25 November 2020).

23. Chen, H.; Gilad-Bachrach, R.; Han, K.; Huang, Z.; Jalali, A.; Laine, K.; Lauter, K. Logistic Regression over Encrypted Data from
Fully Homomorphic Encryption. Available online: https://eprint.iacr.org/2018/462 (accessed on 28 August 2021).

https://github.com/DreamingRaven/python-reseal
https://eprint.iacr.org/2018/462

	Introduction
	Motivation
	Commutative Rings Formalisation

	Materials and Methods
	Data Pipeline
	Data Wrangling
	Client/Data Source
	Server/Data Processor

	Interface
	Fully Homomorphic Encryption Library
	Fully Homomorphic Encryption in Deep Learning
	Forward Pass
	Backward Pass
	Weight Update

	Results and Discussion
	Future Work
	Conclusions
	References

