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Abstract: This paper addresses the problem of control design for a nonlinear 

maneuvering model of an autonomous underwater vehicle. The control 

algorithm is based on an iteration technique that approximates the original 

nonlinear model by a sequence of linear time-varying equations equivalent to the 

original nonlinear problem and a self-tuning control method so that the controller 

is designed at each time point on the interval for trajectory tracking and heading 

angle control. This work makes use of self-tuning minimum variance principles. 

The benefit of this approach is that the nonlinearities and couplings of the system 

are preserved, unlike in the cases of control design based on linearized systems, 

reducing in this manner the uncertainty in the model and increasing the 

robustness of the controller. The simulations here presented use a torpedo-shaped 

underwater vehicle model and show the good performance of the controller and 

accurate tracking for certain maneuvering cases. 

Keywords: nonlinear; self-tuning minimum variance control; autopilot; 

maneuvering model; recursive least squares 

 

1. Introduction 

The use of underwater vehicles has grown to a great extent over the 

last few decades [1]. The so-called unmanned underwater vehicles 
(UUVs) and the autonomous underwater vehicles (AUVs) are of 

paramount importance in applications and procedures for underwater 
exploration, inspection, and maintenance of offshore structures. One 
sector that has significantly contributed to the state of the art of 

unmanned systems is the defense sector. A new generation of UUVs has 
been incorporated into the security sector for hazardous or high-risk 

missions such as mine clearance pathways, anti-submarine warfare, 
perimeter defense, surface warfare, and support for special operations 
forces [2]. This variety of applications and missions usually includes a 

basic maneuver, the well-known course-keeping maneuver, which is 
implemented by means of an autopilot or heading control. 

In underwater vehicle autopilot design, the existing literature ranges 
from the application of PID and classical control [3] techniques to the 
application of modern techniques such as H-infinite [4], sliding model 

control [5–10], fuzzy control [11–14], neural networks [15], output 
feedback [16], linearization via state feedback [17], adaptive control [18], 



predictive control [19,20], and backstepping control [21,22]. These control 
methods provide good results in the cited references but are—in most 

cases—restricted to a certain operational condition. Furthermore, most of 
these contributions consider simplified models avoiding nonlinearities or 

variable couplings. In marine control applications, where the dynamics 
of the vehicle to be controlled are not sufficiently well-known and vary 
with the operating condition [23], self- tuning control may be used 

advantageously. Two of the most popular areas for the application of self-
tuning control are chemical and marine engineering; both are often 

characterized by unknown, nonlinear, and time-varying dynamics. On 
the other hand, there exist some contributions that apply self-tuning 
control theory to marine vehicles based on generalized minimum 

variance (GMV) principles. Goheen [24] presented a multivariable self-
tuning autopilot for autonomous and remotely operated underwater 

vehicles with satisfactory results but considers a linearization of the 
nonlinear maneuvering model for the application of the self-tuning 
control method. Similarly, in Idenawa [25,26], a linear model of a ship for 

the application a GMV control method is presented. In recent years, a 
nonlinear generalized minimum variance (NGMV) methodology has 

been used in order to achieve a reduction in roll dynamics and the course-
keeping motion in waves of ships [27,28], where a decoupled linear 
model for the application of the method was considered. 

The aim of this work is to design a control method for a nonlinear 
maneuvering model of an underwater vehicle without performing any 

simplification in the model’s nonlinearities or variable couplings 
differing from the contributions previously indicated or other recent ones 
related to ships that consider a simplified version of the model, such as 

Fan [29] and Zhang [30,31]. For this purpose, the authors propose the 
combination of an iteration technique used to accurately represent the 

original nonlinear system with a self-tuning minimum variance control 
method. The interesting aspect of this approach is that although, in 
general, linear control methods are not applicable in a successful manner 

to nonlinear systems, by applying this iteration method (Section 2), the 
nonlinear system is approached by a sequence of linear time-varying 

systems whose solutions converge to the nonlinear system. If the 
nonlinear system satisfies a mild Lipschitz condition, it is possible to 
apply a linear theory, such as self-tuning minimum variance (SMV). The 

iteration method was initially presented in Tomas-Rodriguez [32] and 
extended further in Tomas-Rodriguez [33]. 

It has been used in a broad spectrum of nonlinear systems 
applications, for example, observer design for nonlinear systems [34], 

optimal tracking control of super-tankers [35], range identification for 
perspective dynamic systems [36], the optimal attitude maneuver of 
nonlinear flexible spacecraft [37], spectrum reconstruction of nonlinearly 

distorted periodic signals [38], nonlinear optimal position control design 
for a two-link RR-robot manipulator [39], nonlinear passive system 

stability and convergence analysis [40], flight dynamics eigen structure 
assignment [41], nonlinear quadratic optimal control problems using 
Chebyshev polynomials [42], control of nonlinear distributed parameter 

systems [43], optimal control of nonlinear systems with input constraints 
[44], model reference adaptive control for nonlinear systems [45], and 

control of active suspension systems with a nonlinear actuator [46]. 
The main advantage of the cited iteration technique is that it 

maintains the inherent nonlinear characteristics of the system’s behavior, 



providing the grounds for a robust control implementation where 
modeling uncertainties are removed. Furthermore, the application of a 

SMV method enables the system to adapt to the operating condition of 
the underwater vehicle, as indicated above, in the presence of noise. 

The present article is organized as follows. Section 2 revises the 
theoretical background of the iteration technique to tackle a nonlinear 
system by means of a sequence of linear time-varying systems. Section 3 

describes the nonlinear torpedo-type maneuvering model for the 
underwater vehicle used in this work; the thruster model is described, 

and the control and propulsion force distribution are also presented. 
Section 4 contains the methodology used to design a self-tuning 
minimum variance controller. Section 5 describes the vehicle’s nonlinear 

dynamics control from the implementation point of view. Section 6 
contains the simulations, results, and guidance for further research. 

                                                    2. Nonlinear Systems Approximation by Iteration 

In this section, an iteration approach for nonlinear systems is 
revised. It contains a description of its implementation, and its 

convergence theorem is described although it can be found in Appendix 
A. 

This approach states that a general nonlinear problem can be 

substituted by a sequence of linear time-varying systems whose solutions 
converge (in the space of continuous functions) to the solution of the 

nonlinear system under a mild Lipschitz condition [32].  
Formally, a nonlinear system is given in the form: 

ξ��t� = f�ξ�t�	 =A[ξ(t)] ∙ ξ(t) + B[ξ(t)] ∙ u(t), (1a) 

whose initial conditions are 

ξ(0) = ξ� ∈ ℝ� (1b) 

Note that the nonlinear matrix A[ξ(t)] ∈ ℝ� × � is locally Lipschitz, 

and ξ(t) is the vector containing the system’s states, which can be 
approximated by a sequence of linear time-varying equations where the 

vector of states ξ(t) in A[ξ(t)] and B[ξ(t)] is substituted at each iteration ”i” 

by the states obtained in the previous iteration ξ(i−1)(t). u(t) is the control 
law.  

This is: 

    ξ�(1)(t) = A[ξ(0)] ξ(1)(t) + B[ξ(0)]u(1)(t), ξ(1)(0) = ξ(0) (2a) 

ξ� (i)(t) = A[ξ(i−1)(t)] ξ(i)(t) + B[ξ(i−1)(t)]u(i)(t), ξ(i)(0) = ξ(0) (2b) 

for any i ≥ 1 and t ∈ [0, τ]. The limit of this sequence of solutions, �ξ(i)(t)], 

converges to the solution of the nonlinear system ξ(t) given in (1): 

Lim�→��ξ����→ ξ(t) (3) 

The convergence of this sequence is stated in the following theorem 

and its convergence proof can be found in Tomas-Rodriguez [32] and 
Tomas-Rodriguez [33], where the global convergence is extended to time 
intervals t ∈ [0, ∞]. The reader is referred to these for a detailed 

mathematical proof of convergence and stability. See Appendix A for the 
theorem statement. 

After just a few iterations, an accurate representation of the 
nonlinear solution is reached. Nonlinear systems satisfying the local 
Lipschitz requirement (note this a mild assumption as it is an assumed 

condition for the uniqueness of solution [32])) can be now controlled by 



means of linear control methods and achieve stability. The exact number 
of iterations needed to achieve convergence to the nonlinear system 

depends on the choice of initial conditions, in other words: it depends on 
the initial states of the system to be controlled. For further details on the 

choice of the number of iterations and computational efficiency, the 
reader is referred to [33]. This technique represents a good alternative to 
most of the traditional linearization methods; the couplings and 

nonlinear characteristic behavior of the system are retained, being in this 
way a robust modeling method such that model uncertainties are 

reduced. 
Note that the set of Equations (2a) and (2b) use the same set of initial 

conditions, coinciding with the original nonlinear system’s initial 

conditions (1b). The iteration technique would work well with a different 
set of initial conditions, but convergence would take longer to achieve, 

which would imply a longer computing time. 

                                                   3. Nonlinear Maneuvering Model 

The underwater vehicle considered in this work is a torpedo-shaped 

type as shown in Figure 1 (the reader is referred to Appendix A for further 
details on the model). This vehicle has a maximum length of 1.65 m and 
a radius of 0.17 m. In this vehicle, three engines are mounted: two 

horizontal engines are fitted at the center of the vehicle to provide surge 

and yaw motions and a vertical engine is fitted for depth control. 

 

Figure 1. Torpedo-shaped vehicle and the thrusters’ configuration. 

In order to describe the underwater vehicle’s motion, a total of six 

degrees of freedom are needed: three translational (x, y, z) and three 
rotational (φ, θ, ψ). Two reference systems are used to represent the 

vehicle’s displacement. One of them is fixed to the vehicle (the b-frame) 
[47], and it defines the vehicle’s translational and rotational dynamics. 
The second one is located on the Earth (the n-frame), such that it describes 

the vehicle’s position and orientation. 
The nonlinear maneuvering model can be represented by the 

following differential equations [48]: 

η� = J(η)ν (4) 

Mν�  + C(ν)ν + D(ν)ν + G(η) = τ, (5) 

where η = [x, y, z, φ, θ, ψ]T is the generalized positions and Euler angles 

vector, ν = [u, v, w, p, q, r]T is the vector of linear and angular speeds, τ = 
[X, Y, Z, K, M, N ]T is the vector of forces and moments, M is the added 
mass matrix, C(ν)ν represents the Coriolis term, G(η) is the restoring 

coefficients’ matrix, J(η) is the rotation matrix, and D(ν)ν represents the 



hydrodynamic damping forces that are a combination of both linear and 
nonlinear terms. 

In this paper, the study is restricted to the horizontal plane for 
simplicity, only sway and yaw degrees of freedom are taken into account, 

and the mathematical model used is the one of [49] in which nonlinear 
damping terms were taken into account. The matrices defined in 
Equation (5) are as follows: 

C + D =  Y"  +  Y"|"||v| Y$  −  mU� 0N" N$  + N$|$||r| −  mx+U� ˙ 00 −1 1. 

M=/ m −  Y"� mx+ 0mx+  −  N"�  I1  − N$�  00 0 12, G(η) = 0 

(6) 

where m is the ship’s mass, I1 is the z-axis inertia moment, x+ is the 

distance in the x axis from the center of gravity to the b-frame, and U� is 
the nominal speed. The kinematics represented in Equation (4) cover the 
geometrical aspects of the vehicle’s displacement without considering 

mass and forces. According to the degrees of freedom considered in (6), 
the corresponding kinematic model is as follows [3]: 

x� � =U0 cos(ψ) − vsin(ψ), 

y� �= U� sin(ψ) + vcos(ψ) 

(7) 

3.1. Thruster Model 

The thrust of the propulsion system of the vehicle can be modeled 
as: 

T6= ρD78KT n|n|(1 − t) – ρD78 KT (1 − t) U�|n| (8) 

where ρ is the water density, Dh is the propeller’s diameter, n is the 

propeller’s angular speed expressed in revs per second (r.p.s), T6 is the 
thrust provided by the lth thruster, t is the thrust deduction factor (typical 

values range from 0.05 to 0.2), and KT is the dimensionless coefficient [48]. 
By considering the two central thrusters as in Figure 1, one at port, Tp, 
and another at starboard, Ts, the total yaw moment induced by them is: 

τ:,;7 = d=>T= − T?@ (9) 

where τ:,;7 is the yaw moment induced by the thrusters, this is the last 
component of vector τ in Equation (5), dp is the distance from the b-frame 

to the propeller, T? is the starboard thrust, and T= is the port thrust. 

3.2. Nonlinear State-Dependent Model Representation 

In order to apply the control methodology proposed in this paper, 
first it is necessary to rearrange Equations (4) and (5) such that they are in 

the nonlinear state-dependent form similar to Equation (1a) in which the 
system’s matrix depends on the system’s states. 

ξ��t� = A[ξ(t)] ∙ ξ(t) + B[ξ(t)] ∙ u(t) 

This work considers only horizontal displacements; therefore, the 
variable corresponding to the vertical displacement is not considered, the 

state vector is ξ�t�= [v r ψ xn yn]T, ξ ∈ ℝ5, and the control is u(t) = τ:,;7. 

The nonlinear matrices A[ξ(t)], B[ξ(t)] constitute the nonlinear 
dynamical model of the system under study: 



A�ξ	 = 1M
⎣⎢
⎢⎢
⎢⎢
⎢⎡Y"  +  Y"|"||v| Y$ –  mU� 0 0 0N" N$  +  N$|$||r| −  mx+U� 0 0 00 −1 0 0 00 0 U� cos�ψ�ψ 0 0

0 0 U� sin�ψ�ψ 0 0⎦⎥
⎥⎥
⎥⎥
⎥⎤
,

             B�ξ	 = 1M 

(10)

3.3. Propulsion and Control Forces Distribution 

The vehicle considered in this work has two horizontal thrusters, 

which provide the starboard thrust T? and the port thrust T= (see 

Appendix B). In this particular case, there are two control inputs (np = 
revolutions of the port thruster, ns = revolutions of the starboard thruster) 

and one controllable degree of freedom, τ:,;7 (the yaw moment). 

For underwater vehicles where the number of inputs is equal to or 

greater than the number of controllable degrees of freedom (DOF), as in 
the case of the vehicle that is the object of study in this work, it is possible 

to find an optimal distribution of the control energy for each degree of 
freedom as stated in Fossen [48].  

This is the so-called control allocation system that can be 

implemented by calculating the generalized inverse for the specific case 
when all the inputs are equality weighted: 

B† = BT(BBT)−1 (11) 

If the Moore–Penrose pseudo inverse is considered, the control 
signals can be computed by: 

uQ(t) = B†τ:,;7 (12) 

Finally, the control inputs for the starboard and the port thrusters 
are: 

n= = sign>uQS�t�@TuQS�t� (13)

n? = sign>uQU�t�@TuQU�t� (14)

where n= are the revolutions of the port propeller, n? are the revolutions 

of the starboard propeller, uQS is the first component of the uQ(t) vector, 

and uQU is the second component of the uQ(t) vector. 

3.4. Waves Model 

The model defined in Section 3.2 is going to be excited with first- and 

second-order wave effects. According to Fossen [48], a state-space model 
of linear wave spectra can be defined as for the first-order effects: 

VxWSxWUX = Y 0 1−w[U −2ζw�^ VxWSxWUX + V 0KwX wS 

yW = �0 1	 VxWSxWUX 

where w� is the wave dominant frequency, ζ is the wave damping 

coefficient, Kw is a parameter used to adjust the wave amplitude, and wS 
is a Gaussian white noise sequence. 



Moreover, the second-order wave drift forces `a are modeled as 
slowly varying bias terms (Wiener processes): 

dW� = wU 

where wU is a sequence of white noises. 
The model defined in Equation (1a) with matrices defined in (10) is 

corrupted with waves by adding first- and second-order wave effects to 
the following vectors: ξ�t� =  �v r  ψ + yW   x�  y�	b  

u(t) = τ:,;7 + dW. 

4. Self-Tuning Minimum Variance Controller Design 

In order to design the control system, the authors have made use of 
a self-tuning minimum variance (SMV) approach based on the matrix 

inversion lemma and recursive least squares (RLS) [50]. The standard 
minimum variance approach leads to a self-tuning algorithm in which 
the controller parameters are directly estimated by RLS (see Appendix C). 

First, recall the generalized system pseudo-output: 

Φ(t + k) = Py(t + k) + Qu(t) − Rrc (t) (15) 

This can be expressed as the sum of two uncorrelated terms, where 
only the first of them is influenced by the control action u(t): 

Φ(t + k) = 
Sd[Fu(t) + Gy(t) + Hrc(t)]+Ee(t+k) (16) 

The polynomials F, G, and H are obtained from 

PC = EA + z-kG (17) 

The generalized controller is of the form: 

Fu(t) + G(y(t) + Hrc(t) = 0 

so that φ(t) = Ee(t) in a closed loop and where 

F = BE+QC, H = -CR 

Now, a self-tuning algorithm for a system represented by a standard 

CARMA model can be derived: 

Ay(t)=z-kBu(t) + Ce(t) 

so that 

y(t + k) = 
efu(t) + 

dfe(t + k) 

In order to satisfy the polynomial equation C = AF + z−kG so that F 

represents the first k terms in the expansion of 
df, the polynomials F and 

G are defined as: 

F = 1 + fSziS + ⋯ + fkiSzkiS G = g� + gSziS + ⋯ + g�mzi�m 

nn = max�np − 1, nQ − 1� 

The parameters np and nQ are the dimensions of the polynomials A 
and C, respectively. 

 
 



5. Underwater Vehicle Nonlinear Dynamics Control 

The well-known term ‘autopilot’ refers to two important purposes: 
course-keeping and change of course [3]. In the first case, the vehicle 

tracks a desired trajectory by following a reference constant heading, rψ 
(t) = ψ(t). In the second case, the control objective is to achieve accurate 

heading changes without introducing large response oscillations and 
within the minimum time. In both cases, the control system’s performance 
must be satisfactory despite the presence of possible external 

factors/disturbances. Keeping these objectives in mind, this is achieved in 
this work by designing a controller that combines the iteration technique 

presented in Section 2 with a self-tuning minimum variance controller in 
the presence of noise (described in Section 4). The logical process is 
summarized in Figure 2. 

 

Figure 2. Diagram of the self-tuning MV algorithm combined with the iteration 
technique. 

5.1. Iteration Technique Approximation of the Nonlinear Vessel Model 

The equations of motion of the system are nonlinear and are written 
in the state-dependent form (1) where the state matrices are given in (10): 

ξ��t� = A[ξ(t)]∙  ξ(t) + B[ξ(t)]  u(t, Θr), ξ (0) = ξ0  ∈ ℝ� 

λ(t) = C∙  ξ(t) 
(18) 

where ξ(t) is the vector containing the vehicle states, λ(t) is the output 

vector, C ℝ1xn, and the control u(t, Θr) will be designed by using MV 
methods as presented in Section 3. Now, the system (18) is approximated 

by the following sequence of linear time-varying systems: 

ξ� (1)(t) = A[ξ(0)]∙  ξ(1)(t) + B[ξ(0)] ∙u(1)( t, Θr), ξ(1)(0) = ξ(0) 

λ�S��t� = C ∙ ξ�S�(t) (19) 

ξ� (i)(t) = A[ξ��iS��t� ]∙  ξ(i)(t) + B[ξ��iS��t�] ∙u(i)( t, Θr), ξ(i)(0) = ξ(0) 

λ����t�= C∙  ξ���(t) (20) 

For each of these ”i” linear time-varying equations, a control action 

signal u(i)(t, Θr (i)) is designed following a self-tuning minimum variance 



algorithm. Once the last iteration is obtained, as the sequence of solutions 

converges to the nonlinear solution, Limi→∞ [ξ(i)(t)] → ξ(t), the last 

designed control signal u(i)(t, Θr  (i)) can be applied to the original nonlinear 

model, achieving satisfactory trajectory control: ξ�(t) = A[ξ(t)] ∙ ξ(t) + B[ξ(t)] ∙u(i)( t, Θr), ξ(0) = ξ0 ∈ ℝ� 

λ(t) = C ξ(t) 
(21) 

For further details on this method and the mathematical proof, the 

reader is referred to Tomas-Rodriguez [32]. 

5.2. Algorithm Implementation 

The heading control algorithm is implemented as a loop that is 

repeated as many times as ”i” iterations are needed for convergence. 
A brief outline of the algorithm is described in the lines below. The 

notation used is as follows: ξ� are the initial states values, Θr� are the initial 

controller values, t0 is the initial time instant, tf is the final time instant, h 

is the sampling time, tolu are the tolerances of the states ξ, P0 is the initial 

covariance matrix, P, Q, and R are the self-tuning minimum variance 

constants (see Equation (16)), χ0 is the initial regression vector, d is the 
lag, and k0 is the initial time instant. 

It can be summarized according to the following steps: 

- Initialization: Define the initial values of constants and variables ξ�, Θr�, t0, tf, h, tolu , P0, P, Q, R, χ0, d, k0 

- Then, for each iteration, j = 1...i: 
- Define variable values for the ”ith” iteration represented by ”j”: 

k = k0, ξ�v�(0) = ξ�, χ(j)(0) = χ0, t = t0, Θr�v�(0) = Θr�,PQ�v�
(j) = P0 

- For each time step such that ts < tf: 

Discretize the maneuvering model and solve the differences system: 

ξ�v�(k + 1) = Ak[ξ�viS��k�] ξ�v�(k) + Bk[ξ�viS��k�] u(j)(k, Θr�v��k�) 

λ(j)(k) = Cξ�v�(k) 

with matrices Ak�viS�
 = exp(A[ξ�viS�(k)]h) and Bk�viS�

 = A[ξ�viS� (k)]−1• 

(A[ξ�viS�(k)] − I)B[ξ�viS�(k)] 

Transform the state space form to transfer function: 

fyey  = [Ck(I − Ak)−1Bk + Dk], Y(Z) = 
fyey U (Z) 

where Az = (1 + a1z−1  + . . . + an   z−na ) and Bz = (b0  + b1z−1  +. . . + bnz−nb) 

Output calculation: 
y(j)(k) = b0u(j)(k) + b1u(j)(k − 1) + . . . + bnu(j)(k − nb) − a1u(j)(k − 1) + . . . + anu(j)(k − na) 

y(j)(k + 1) = b0u(j)(k + 1) + b1u(j)(k)+ . . . +bnuu(j)(k + 1 − nb) −a1u(j)(k) + . . . + anu u(j)(k + 1 − na) 

Obtain polynomial dimensions, see Wellstead [50], d = abs(na − nb), 
nc= 1, ng = max{(na − 1, nc −d}, nf= d − 1, nh = 1  

Form χ(j)(k) and χ(j)(k+1) 

χ(j)(k) = [u(j)(k − d) y(j)(k − d) . . .  y(j)(k − d − ng)r(j)(k − d)],  

χ(j)(k+1) = [u(j)(k − d + 1)  y(j)(k − d + 1) . . .  y(j)(k − d − ng+ 1)r(j)(k − d)] 

Form e(k + 1) = y(j)(k + 1) − χT(j)(k), Θr�v�(k) 
Estimate the covariance matrix 



PQ�v��k + 1�) = PQ�v��k�)[I-
z�{��k|S�z}�{��k|S�~��{��k�

S|z�{��k|S�~��{��k�z}�{��k|S�	 
Estimate Θr�v�(k + 1) = Θr�v�(k) + Pc(k + 1)(j)χ(j)(k)e(j)(k + 1) 

Apply control uc(k, Θr�v�) such that, 

u(j)(k, Θr�v�) = −1/f0[−g0y(j)(k)−. . . gny(j)(k−ng)−h0rc(k)−f1u(j)(k−1)-… u(j)(k−nf) 

Distribute the control forces, 

B��v� = B�ξ�viS��k��b �B�ξ�viS��k��B�ξ�viS��k��b�iS
 

uQ�v�
(k, Θr�v�)= B��v�u�j�>k, Θr�v�@ 

n=�v��k� = sign �uQS�v��t�� �uQS�v��t� 

n?�v��k� = sign �uQU�v��t�� �uQU�v��t� 

Calculate the propulsion system thrust, 

T=�v�
= ρD78KT n=�v��k�| n=�v��k�|(1 − t) − ρD78 KT (1 − t) U�|n=�v��k�| 

T?�v�
= ρD78KT n?�v��k�| n?�v��k�|(1 − t) − ρD78 KT (1 − t) U�|n?�v��k�| 

τ:,;7 = d=>T= − T?@ 

Update counters, k = k + 1, ts = kh 

If �ξ�v� − ξ�viS�� < tolu, is true, the algorithm stops here, if not, go to 

step j + 1. 

6. Simulations and Results 

The control objective in this work is to design a control signal u(t) 
such that the underwater vehicle under consideration sustains a straight 

course-keeping trajectory. For this purpose, a step function reference 
signal is used, rψ (t), so that if adequately followed, it should lead to 
accurate course-tracking by the ship’s nonlinear model. The simulations 

here presented were run in Matlab and a time step of h = 0.03s was used. 
In order to verify the robustness of the controller, two different scenarios 

were considered: in the former, the simulated data were corrupted with 
noise levels of standard instrumentation; and, in the latter, simulations 
were run under the influence of the first- and second-order wave effects 

indicated in Section 3.4. 
The simulations followed the same logic and rationale as the theory 

previously presented in this article. First, the nonlinear system (Equations 
(4) and (5)) is written in the state-dependent form as in (1a), being A[�(t)] 

y B[ξ(t)] the matrices indicated in (10), with initial condition ξ(1)(0) = [0 
m/s, 0, 0 rad, 0 m, 0 m] except for the surge speed, U0, which remained 

constant and equal to 1m/s during the heading control maneuver; this 

appears in the system’s matrix as a constant. The state vector ξ(t) contains 

the vehicle’s variables concerning the dynamics under study, ξ(t) = [v, r, 
ψ, xn, yn]T. The GMV constants were chosen to be P = Q = R = 1 and the 

RLS covariance matrix was initialized as P0 = 2I5. 
Secondly, the iteration method in Section 2 was applied to the 

nonlinear system and several linear time-varying (LTV) systems were 
generated. A minimum variance method based on a RLS algorithm was 
implemented in Matlab so that for each iterated LTV system, it estimates 



the required control parameters, Θ(i) = [f0, g0, g1, g2, h0](i). Finally, in the 
case here studied for the nonlinear model in (5), after a few iterations, 

there was an evident convergence of the states’ vector towards the 
prescribed head angle trajectory (step function). Therefore, the last 

iterated control law u(i)(t, Θr) was applied to the original nonlinear system 
and it is shown how this approach is effective in controlling the heading 
angle to achieve the desired course-keeping trajectory. 

The following figures show these results for a typical course-keeping 
or heading control maneuver to test the performance of the proposed 

controller for the first scenario. Figure 3 shows the heading angle time 
response for various iterations, ψ(i)(t), i = (1 . . . 9), when for each of these 

iterations the corresponding control law u(i)(t, Θr) is designed by 

estimating the RLS parameters Θr (i). It must be noted that the controller’s 
performance for a sustained zig-zag trajectory would be similar to the one 

shown in Figure 3. We include one change in the step input from a 
positive to a negative value, which is enough to show the change of 

course characteristics provided by the controller. 

 

Figure 3. Heading-angle-controlled responses, ψ(i)(t), for various iterations. Step 
trajectory reference (dashed black). 

Moreover, Figure 4b shows a zoomed-in view of the final seconds of 
the time interval in which the convergence can be observed. In fact, from 

the fifth iteration onwards, the convergence is clear. In this case, in order 
to ensure stability, the authors decided to choose the ninth iteration as the 

one to provide the controller’s parameters to control the nonlinear 
system. 

The time history of each of the control parameters estimated for the 
ninth iteration is shown in Figure 5. Additionally, Figure 6 shows the 
control law designed in the ninth iteration. This signal was later applied 

to the original nonlinear system (11). 
Finally, Figure 7 shows the nonlinear system’s heading angle 

following an alternating step input reference signal once it has been 
controlled by the final iterated control. Clearly, this is a valid approach to 
control the vehicle’s trajectory as is shown in Figure 8, where two 

maneuvers of straight course-keeping are shown. 
Figures 9 and 10 show the results for the second scenario considered 

in this work under the influence of first- and second-order wave effects. 
The parameters of the wave model defined in Section 3.4 were tuned 



considering low wave effects for the operational conditions of the 
underwater vehicle indicated in Appendix A, in which the effects 

induced by waves are expected to be low. This was done by tuning the 
cited parameters until a magnitude of 2 degrees in yaw was obtained (see 

[48]). Figure 9 shows how the controller is capable of compensating for 
first- and second-order wave effects, since the oscillations are low and the 
system is able to follow the step reference, respectively. The zoomed view 

of Figure 10b exhibits the convergence with similar results to the first 
scenario. A clear convergence is seen from the fifth iteration, although the 

ninth was chosen in order to have a small enough error with respect to 
the reference signal. The results given in the first and second scenario 
indicate that the nonlinear adaptative control methodology with the 

iteration technique is robust. 

 

(a) (b) 

Figure 4. Zoomed-in view of the iterations convergence (a). Details showing final iterations ψ(5)(t), 
ψ(7)(t), and ψ(9)(t) (b). 

 

Figure 5. Control parameters estimated for the last iteration, Θ(9) = [f0, g0, g1, g2, 
h0](9). 



 

Figure 6. Control signal for the last iteration, u(9)(t). 

 

Figure 7. Controlled nonlinear system heading angle ψ(t). 

 

Figure 8. Nonlinear system’s straight course-keeping maneuvering. 
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Figure 9. Heading-angle-controlled responses under first- and second-order 
wave effects, ψ(i)(t), for various iterations. Step trajectory reference (dashed black). 

 

 

(a) (b) 

Figure 10. Zoomed-in view of the iterations convergence under first- and second-order wave effects (a). 
Details showing the final iterations ψ(5)(t), ψ(7)(t), and ψ(9)(t) (b). 

7. Conclusions 

This article introduces a nonlinear adaptative control methodology 
for an underwater vehicle’s trajectory tracking. The method here proposed 

is based on approaching the nonlinear vehicle’s dynamics by using an 
iteration technique such that the control is designed by using adaptive 

methods for the last iteration. This control will then be applied to the 
original nonlinear problem. The iteration technique, by generating a 
sequence of linear time-varying equations that approximate the original 

nonlinear dynamics, allows for the possibility of applying linear control 
techniques. This is a good advantage since linear control methods are 

usually simpler and computationally cheaper to implement. The 
simulation results for a course-keeping maneuver show a good 
performance considering two different scenarios under the presence of 

noise in the measurement and wave effects. 
The authors are currently working on adapting the iteration 

technique for real-time controller implementation. This requires 
transforming the iteration technique into a recursive method. Then, it 
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could be tested in sea trials under different operational conditions. 
Findings using experimental data are expected to be obtained as a second 

phase of this work and developed in further research. 
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Appendix A. Theorem I 

Theorem I. (reader is refered to [32] for further details). Suppose that the 
nonlinear Equation (1a) has a unique solution on the time interval t ∈ [0, τ] 

denoted by ξ(t) and assume that the system’s nonlinear matrix A[ξ(t)]: Rn → 
Rn is locally Lipschitz. Then, the sequence of solutions defined in (3) converges 

uniformly on t ∈ [0, τ] to the solution ξ(t). 

Appendix B. Underwater Vehicle 

The vehicle has a maximum length of 1.65 m and a radius of 0.17 m. 
The moments of inertia, the center of gravity, and the center of buoyancy 

of the vehicle can be found in [51] and were obtained by performing some 
tests in an internal table. 

In this vehicle, three engines are mounted: two horizontal ones 
located at the center of the vehicle for the surge and yaw motion and a 
vertical one for depth control. For more details related to the vehicle’s 

characteristics and the obtention of model parameters, the reader is 
referred to Revestido Herrero [51,52]. 

Appendix C. Recursive Least Squares Algorithm 

The Matrix Inversion Lemma RLS [50] is implemented by following 
the steps:  

At time step k + 1: 

1. Build the regression vector χ(k + 1) using new data. 
2. Calculate e(k + 1) = y(k + 1) − χ (k + 1)Θr(k) 
3. Calculate PQ(k + 1) = PQ (k)[I − 1+χ(k+1) PQ (k)χ(k+1) ] 
4. Estimate Θr(k + 1) = Θr(k) + PQ(k + 1)χ(k)e(k + 1) 

5. Wait for the next time step to elapse and loop back to Step 1. 

where Θr contains the estimated parameters, PQ is the covariance matrix, y 
is the output, and e is the error. In this recursive estimator, it is necessary 

to initialize Θr and PQ at the first step. The data vector χ is also initially built 
by sampling a few time steps before the recursive estimator is started. The 

covariance matrix PQ gives an idea of the uncertainty related to the 



unknown parameters Θr. That is, if there is no previous knowledge of Θr(0), 
then a large covariance matrix should be chosen. However, if Θr(0) is 

known to be close to the true values, then a small covariance matrix 
should be chosen. 
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