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1 Introduction and discussion

In the one-dimensional case, the conformal invariance of a local field theory is enhanced to
an infinite dimensional reparametrization symmetry, resulting in a system with vanishing
hamiltonian [1–4]. Relaxing the assumption of locality, i.e. not requiring the presence of
a conserved stress tensor, leads to one-dimensional conformal field theories (CFTs) that
are invariant under the global conformal group SL(2,R). The resulting non-local CFTs
have a discrete spectrum, making them more similar, in many ways, to their higher dimen-
sional relatives. These theories have explicit realizations in systems such as conformal line
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defects in higher-dimensional CFTs [5–21], lines of fixed points in SYK models [22, 23],
and in general models defined by the set of boundary correlators of quantum field the-
ories in AdS2 [24–30]. These various settings have been recently studied via conformal
bootstrap methods, in some cases combined with superspace techniques, or via direct Wit-
ten diagrammatics. Furthermore, restricting the kinematics of higher-dimensional CFT
correlators leads to a consistent (non-local) 1d CFT, so that constraints obtained for one-
dimensional systems naturally provide constraints for generic CFTs [30–36].

Among all the examples of non-local one-dimensional CFTs, a particularly interesting
one for our setting is the defect theory provided by superconformal Wilson lines in N = 4
SYM and ABJM theory. In those cases, the set of operator insertions on the line defines
the discrete spectrum of a non-local one-dimensional CFT that is believed to be integrable.
Indeed, from the seminal work of [37] and the further developments in [38, 39], we know
that the spectrum of the defect theory can be extracted exactly using fairly standard
integrability techniques. Furthermore, on the strong coupling side, we know that this
defect theory corresponds to a particular gauge fixing of the classically integrable non-
linear sigma model describing the motion of a string in AdS5 × S5 (or AdS4 × CP3 for
ABJM). In this context, however, the gauge fixing provides a worldsheet effective field
theory in AdS2 background and it is still an interesting open question how the power of
integrability can be exploited in this setting. More generally, the study of integrable field
theories in curved backgrounds is an active and largely unexplored research subject, which
has recently witnessed some interesting developments [26–29]. It has been pointed out in
many places, see for instance [7, 40], that a crucial ingredient for our understanding of
integrability in curved space would be the analogue of flat space S-matrix factorization
and we believe Mellin space may provide the correct setting to look for such a feature.
The first requirement, however, is a Mellin amplitude which resembles a two-dimensional
S-matrix. In this paper, we move the first step in this direction by defining an inherently
one-dimensional Mellin transform.

In the higher-dimensional case, the Mellin representation of conformal correlators [41,
42] has proven to be an excellent tool, especially for the study of holographic CFTs [43–
45]. The counting of independent cross-ratios for a n-point correlation function of local
operators in a d-dimensional CFT is identical to that of independent variables for a d+ 1-
dimensional scattering amplitude. The Mellin representation, or Mellin amplitude, makes
this correspondence manifest, expressing the correlators in a form that is the natural AdS
counterpart of flat-space scattering amplitudes. This construction has several nice features.
First, the Mellin amplitude has simple poles located at the values of the twist of exchanged
operators (there are, however, infinitely many accumulation points of such poles). Secondly,
crossing symmetry of the correlator maps to the amplitude crossing symmetry. Finally,
the language of Mellin amplitudes is particularly suitable for large N gauge theories, where
perturbation theory is described in terms of Witten diagrams. In this paper we will use
these properties as guiding principles for the definition of a Mellin amplitude for 1d CFTs.

A four-point correlation function in dimension d > 1 is a function of two cross-ratios,
(z, z̄), and the associated Mellin amplitude is determined by the usual Mandelstam vari-
ables s,t and u, constrained by the equation s+t+u = ∑

im
2
i . For d = 1, instead, the
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correlator depends on a single cross-ratio, z. Correspondingly, two-dimensional S-matrices
are fully determined in terms of a single Mandelstam variable due to additional kinemati-
cal constraints1. One would then naturally expect, for CFT1 correlators, a corresponding
Mellin amplitude with the typical features of a two-dimensional S-matrix. One option to
proceed in the definition of such a Mellin amplitude would be to start from the higher-
dimensional definition and enforce the relation z = z̄ (so-called diagonal limit) among
cross-ratios. This constraint does not entail a relation in the Mellin variables and thus
does not provide an inherently one dimensional Mellin definition. Nevertheless, given a
certain Mellin representation of the correlator one can integrate out one of the Mandel-
stam variables thus obtaining a one-dimensional Mellin transform. A similar approach was
followed in [30], leading to a successful, though technically involved, implementation of the
Mellin-Polyakov bootstrap [46–48].

In this paper we will follow a different route and propose a new definition of the
Mellin transform, inherently one-dimensional and inspired by the guiding principles out-
lined above. The general strategy is to infer the analytic properties of the Mellin amplitude
M(s) (where s is the complex Mellin variable) from physical, nonperturbative requirements
on the correlator, which we take to be the one of four identical scalar operators. As we
explain in section 3, more than one choice is possible and throughout most of our analysis
we use the one which displays a transparent correspondence between the dimensions of the
operators exchanged in the correlator OPE and the simple poles of the Mellin amplitude.

Crucially, the nonperturbative definition requires a finite number of subtractions and
analytic continuations, which we perform along the lines of [49]. The Mellin counterpart of
the conformal block expansion will provide a clear picture of how to extract the CFT data
in Mellin space, while the Regge behaviour of the correlator will impose some powerful
bounds on the growth of the Mellin amplitude at large s. Indeed, while the restricted
kinematics of the 1d setup does not allow to make contact to several regimes exploited
in the higher-dimensional case (e.g. double-light cone limit, Lorentzian OPE limit), one
exception is the u-channel Regge limit which can be accessed by taking z, z̄ → i∞ and
therefore it is compatible with the diagonal limit z = z̄ [33]. In this limit the correlator
should be bounded [33, 50, 51], resulting in the boundedness of our Mellin representation
at large s.

The procedure outlined above and carried out in details in section 3 leaves us with
a bounded, meromorphic function M(s) in the complex s plane. It satisfies a number
of properties, listed in section 4.1 below, that we can efficiently use to derive a set of
nonperturbative sum rules for the CFT data of operators that are exchanged in a specific
correlation function. Starting from the pioneering work of [52], constraints on the CFT
data in the form of sum rules have been derived by the action of specific functionals on
the crossing equation. After an impressive numerical effort to exploit them, the one-
dimensional analysis of [31] provided a first analytical understanding of these functionals,
which, after some refinement [32–34], led to a complete set of analytic functionals for 1d

1Conservation of energy and momentum for the 2 → 2 scattering process in 2 dimensions leads to the
Mandelstam variables s = (p1 + p2)2, t = (p2 − p3)2 = 4m2 − s, u = (p3 − p1)2 = 0, and the crossing
symmetry is written as S(s) = S(4m2 − s) .
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CFTs. The non-trivial extension to higher dimensions [53] paved the way to the beautiful
work of [54], where the sum rules obtained using the analytic functionals were shown
to be equivalent to those that were derived using the Mellin formalism [49, 55] or the
consistency of the dispersion relation of [56]. The distinctive feature of these sum rules,
dubbed dispersive sum rules in [54], is that they have double zeros at twist τn = 2∆φ+ 2n,
where ∆φ is the dimension of the external scalar operator. Also for 1d CFT dispersive
sum rules can be derived, using the dispersion relation [36] or using the higher-dimensional
definition of the Mellin amplitude [30].

In section 4 we will start from our definition of Mellin amplitude and derive an infinite
set of nonperturbative sum rules. These are not dispersive sum rules, because they have
only single zeros at ∆n = 2∆φ + n. Such single zeros prevent the presence of positivity
properties that are typical of dispersive sum rules. While such an absence of positivity
limits their powerfulness and makes them harder to use within the standard toolkit of the
modern conformal bootstrap, we test these sum rules on some known examples and discuss
their applicability in a perturbative setting.

The efficiency of the 1d Mellin formalism that we propose is manifest in the pertur-
bative setup. Below, in section 5, we consider first-order deformations from generalized
free-field (GFF) theory2 produced by quartic interactions, with any number L of deriva-
tives, in a bulk AdS2 field theory. We limit our analysis to tree-level contact diagrams,
whose building blocks are the D-functions defined in [57–59]. Our strategy is to identify a
particularly convenient basis for interactions, in terms of which a correlator corresponding
to an arbitrary contact interaction with up to L derivatives is written as a linear combina-
tion of reduced D̄-functions of equal weights, see (5.3). Mellin transforming the associated
basis of correlators we are able to obtain the perturbative Mellin amplitude in closed form,
equations (5.5)–(5.9). This Mellin representation of tree-level contact interactions does not
appear to be as simple as in the higher-dimensional case (where it consists of a product
of Gamma functions). However, it still allows us to find a closed-form expression for the
Mellin transform of the D̄-functions, confirming the power of the formalism.

This result can be then efficiently used to extract CFT data. The AdS contact in-
teraction, at this order in perturbation theory, only modifies the CFT data associated to
“two-particle” operators3 of the symbolic form φ�nφ . This assumption leads, rather non-
trivially, to a closed-form expression for the first correction γ(1)

L,n to their classical dimension
in terms of n and the number of derivatives L in the interactions, see equations (5.41)–
(5.43) below. This reproduces existing bootstrap results (L ≤ 3 [30]), and we present a
short Mathematica code to easily obtain the explicit expressions for higher values of L. We

2Generalized free-field theory, often called mean field theory, is a non-local theory of operators with
generic dimension ∆ and whose correlators are computed by Wick contractions. Since there is no conserved
stress tensor, GFF constitutes the simplest possible example of the class of theories we described at the
beginning of the Introduction. Its AdS2 dual is the theory of a free massive scalar.

3In the literature these operators are also known as double-twist operators or double-trace operators.
Since here there is no trace and no twist we opted for the label “two-particle” operators. To avoid any
confusion, they are unambiguously defined as the conformal primary operators that are exchanged in the
GFF correlator. Their scaling dimensions and OPE coefficients are corrected by the perturbation we are
considering.
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also present an alternative definition of Mellin transform for which even simpler results for
Mellin amplitudes of contact interactions may be obtained, see section 5.3. As interesting
by-product of this perturbative analysis, some non-trivial identities among D-functions may
be obtained - as for example (5.33). They emerge from noticing that correlators associated
to specific derivative interactions must be linear combinations of the ones in the basis that
we identified.

The formalism that we propose, once extended to the case of correlators of non-identical
operators, finds several natural applications in the context of 1d CFTs and AdS2 physics. At
the perturbative level, it would be interesting to push our analysis to the case of exchange
diagrams and higher-loop corrections. In particular, given the progress in understanding
the analytic structure in cross-ratio space [20, 30, 60], it would be interesting to map this
knowledge into Mellin space and see whether, as in the higher-dimensional counterpart,
implementing the bootstrap directly in Mellin space leads to significant simplifications.

More generally, it is worth analysing the connections of our formalism with the am-
bitious program of the S-matrix bootstrap [24] by carefully studying a proper flat space
limit. In this context, it is interesting to notice that, unlike higher-dimensional examples,
accumulation points of poles do not seem to appear in this picture. It is therefore impor-
tant to understand how the singularities of 2d S-matrices appear in the flat space limit of
our Mellin amplitude.

Finally, one important application which strongly motivated our work is the 1d CFT
defined by supersymmetric Wilson lines in N = 4 SYM and ABJM theory. In that case,
the dual AdS2 space coincides with the string worldsheet and the effective action is known
explicitly. Since the scattering matrix of worldsheet excitations is the standard object which
can be computed exactly in the context of AdS/CFT integrability, it would be interesting
to analyse how integrability shows up when the worldsheet is AdS2 and whether there is
any chance to compute the Mellin amplitude exactly. Notice that, unlike the S-matrix for
worldsheet excitations around BMN or GKP backgrounds, in this case the Mellin amplitude
does not compute the scattering of magnons, but it effectively computes a full four-point
function of operators inserted on the Wilson line.

The paper proceeds as follows. After having shortly reviewed kinematical aspects of
1d CFTs in section 2, we present in section 3 our definition of Mellin amplitude discussing
its definiteness for nonperturbative correlators in 1d CFT. In section 4 we derive nonper-
turbative sum rules for the CFT data of exchanged operators, while in section 5 we discuss
the perturbative setting. We conclude with several appendices where we have relegated
the technical details.

2 Correlation functions in 1d CFT

The global conformal group SL(2,R) is generated by translations P , dilations D and special
conformal transformations K satisfying the commutation relations

[D,P ] = iP, [D,K] = −iK, [K,P ] = −2iD. (2.1)

The physically relevant irreducible representations are the (unitary) highest-weight repre-
sentations, corresponding to primary operators labelled by their scaling dimension ∆φ ≥ 0.
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In d = 1 there are no rotations and therefore no spin quantum numbers are associated to
the primary field.4

We consider a four-point correlation function of identical scalar operators of dimension
∆φ. Conformal symmetry imposes5

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 1
(x12 x34)2∆φ

f̃(z) , (2.2)

where z is the sl(2,R) invariant cross-ratio

z = x12 x34
x13 x24

, xij = xi − xj . (2.3)

In 1d, the order of the operators in the correlation function matters. Considering the
ordering x1 < x2 < x3 < x4, one can use conformal symmetry to fix x1 = 0, x3 = 1,
x4 = ∞, finding that x2 ≡ z ∈ (0, 1). Different orderings would generate different ranges
for z. Unlike the higher dimensional case, the correlators obtained by exchanging x1 ↔ x2
and x1 ↔ x4 are not related to (2.2) by crossing. For the case of identical operators,
one can resort to Bose symmetry and show that the function f̃(z) still determines the
correlators obtained by those exchanges, but these correlators do not coincide with the
analytic continuation of f̃(z) to z > 1 or to z < 0. A detailed discussion on this is available
in [34]. In this work, we will keep the ordering of the operators fixed, so that we will only
be interested in the function f̃(z), but we will consider its analytic continuation to complex
values. This may seem unphysical thinking of line correlators, but from the perspective
of the diagonal limit of higher dimensional correlators it would correspond to Lorentzian
regimes for which z̄ 6= z∗, but z = z̄. To understand the analytical structure of the function
f̃(z), we can consider the s-channel conformal block expansion

f̃(z) =
∑
∆

c2
∆φ∆φ∆ G̃∆(z) , G̃∆(z) = z∆

2F1(∆,∆; 2∆; z) , (2.4)

where ∆ is the dimension of the primary operators exchanged in the φ × φ OPE and
c∆φ∆φ∆ are the corresponding OPE coefficients. G̃∆ are standard sl(2) blocks resumming
the contribution of conformal descendants [61]. This expansion, accordingly to physical
expectations, shows the presence of three branch points at z = 0, 1,∞. Furthermore, it
can be shown that the OPE (2.4), valid around z = 0 converges everywhere but on the
branch cuts (−∞, 0] and [1,∞) [62–64]. The t-channel (z → 1) OPE expansion for f̃(z)
can be conveniently obtained from the crossing relation

f̃(z) =
(

z

1− z

)2∆φ

f̃(1− z) , (2.5)

4If the CFT1 is invariant under some internal symmetry group, its local operators are also labeled by
the corresponding representations. We will not consider this possibility here.

5While we will consider fields with bosonic statistics, we notice that in one dimension fermions are just
scalar anticommuting fields, and in absence of spin no additional information has to be taken into account
beyond their Graßmann nature. In particular, fermionic conformal blocks coincide with the bosonic ones.
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which is obtained from the symmetry of the correlator under the exchange x1 ↔ x3,
corresponding to z → 1− z.6

In this paper we will conveniently use also an alternative cross-ratio

t = z

1− z = x12 x34
x14 x23

> 0 , (2.6)

for which crossing maps t → 1/t. The correlator is determined by the function f(t)
defined by

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 1
(x12 x34)2∆φ

f(t) , (2.7)

such that f(t) = f̃( t
1+t). In this case the s-channel block expansion for f(t) reads

f(t) =
∑
∆

c2
∆φ∆φ∆G∆(t) , G∆(t) = t∆ 2F1(∆,∆; 2∆;−t) (2.8)

and crossing reads

f(t) = t2∆φ f

(1
t

)
. (2.9)

For some applications it will be useful to introduce the crossing symmetric function

g̃(z) = z−2∆φ f̃(z) , g̃(z) = g̃(1− z). (2.10)

or, equivalently, in terms of the cross-ratio t

g(t) = g̃

(
t

1 + t

)
, g(t) = g

(1
t

)
. (2.11)

There is another interesting limit we will consider in the following, i.e. the z → 1
2 + i∞

limit (we could take this limit along any direction excluding the real line to avoid the
branch cuts, but for definiteness we take it along the imaginary axis). This limit can be
understood in terms of the higher-dimensional correlator in the diagonal limit, where it
corresponds to the u-channel Regge limit.7 In particular, four-point functions of a unitary
CFT are bounded in the Regge limit [50, 51] and we have [33]∣∣∣∣g̃ (1

2 + iT

)∣∣∣∣ is bounded as T →∞. (2.12)

Translating into the t cross-ratio (2.6), the line parametrized by z = 1
2 + i ξ is mapped into

the unit circle t = eiθ for θ ∈ (−π, π) and the Regge limit occurs when θ → π. The Regge
boundedness condition (2.12) for the function f(t) in (2.7) then reads

f(eiθ) = O
(
(π − θ)−2∆φ

)
θ → π. (2.13)

Further details on the implication of the Regge boundedness condition on the Mellin am-
plitude can be found in section 3.2.

6Unlike the x1 ↔ x2 and x1 ↔ x4 exchanges, the x1 ↔ x3 is an actual symmetry of the correlator as
one can easily see by picturing the four points on a circle. Consistently, this exchange maps the interval
(0, 1) for z to itself, thus giving a meaning to the relation (2.5).

7In 1d there is no u-channel OPE expansion as it is impossible to bring x1 close to x3 without x2 in
between. However, one can resort on the higher dimensional picture to understand that while the u-channel
OPE would correspond to z → i∞ and z̄ → −i∞, the u-channel Regge limit is z, z̄ → i∞.
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3 A Mellin transform for correlators in 1d CFT

Since the 1d correlator depends on a single cross-ratio, it is useful to start by looking at
the textbook Mellin transform for a function F (t) defined on the positive real axis

M[F ](s) =
ˆ ∞

0
dt F (t) t−1−s . (3.1)

Given this definition, it is natural to consider for t the cross-ratio in (2.6), which is defined
in the correct range. Furthermore, one has to choose which function of the cross-ratio
should be identified with F in the definition (3.1). As we described in section 2 different
choices of the prefactor in (2.2) lead to different functions of the cross-ratio, related to
each other by powers of t and (1 + t). In contrast to the higher dimensional case, where a
rescaling by powers of the cross-ratios has the effect of shifting the corresponding Mellin
variables, in one dimension, a rescaling by powers of t leads to a shift in s, whereas a
rescaling by powers of (1 + t) leads to different Mellin amplitudes. This presents us with
the question of which criterium one should use to define the Mellin amplitude. Up to shifts
in the s variable, we define a one-parameter family of Mellin amplitudes given by

Ma(s) =
ˆ ∞

0
dt f(t)

(
t

1 + t

)a
t−1−s , (3.2)

where the function f(t) is given in (2.7). Using the crossing relation (2.9), one immediately
finds the functional relation for the Mellin amplitude

Ma(s) =Ma(2∆φ + a− s) . (3.3)

Clearly, (3.3) is reminiscent of the crossing for S-matrix elements in two dimensions, see
footnote 1. However, the precise relation between s and the ordinary flat space Mandel-
stam variable s requires a careful analysis of the flat space limit, which we do not address
in this work.8 Up to shifts in the s variable, the definition (3.2) allows for different choices
of prefactors in the correlator (2.7). For instance, the choice a = 0 clearly corresponds to
taking the Mellin transform of f(t), while the choice a = −2∆φ effectively corresponds to
taking the Mellin transform of the function g(t) in (2.11). In the following, we will mostly
focus on the choice a = 0, which emerges naturally when considering the s-channel confor-
mal block expansion. In section 5.3, we introduce the possible alternative a = −2∆φ + 1
which leads to simple results in a perturbative expansion around GFF.

Let us briefly comment on the relation between the definition (3.2) and the diagonal
limit of the higher-dimensional Mellin transform. In higher dimensions, the Mellin trans-
form involves a double integration over the two cross-ratios u and v for 0 < u, v <∞. One
could naively impose by hand the diagonal limit condition

√
u +
√
v = 1 on the integral

8Here we just notice that the large s regime is the relevant one for the flat space limit considered in [42],
where AdS scattering reduces to the scattering of massless excitations for large AdS radius. In that case,
one would have the flat space relation Ma(s) =Ma(−s) for any finite value of a. This relation would be
consistent with 2d massless scattering, where s = −t. There is however more than one approach to the flat
space limit, see [24].
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and correspondingly identify the Mellin variables with a relation of the kind s + t = 4∆φ.
The form of the integrand would then fall in the class described by (3.2), but the range
of the integration would include negative values of t (this is because the diagonal limit
condition identifies a curve in the u, v plane which is parametrized by real values of t).
As we discussed in section 2, the kinematics of one-dimensional correlators is subtle and
the correlator is well defined only for a specific region of the cross ratio.9 We then de-
cided to restrict the integration contour to the part of the real axis where the correlator is
well defined.

3.1 Nonperturbative Mellin amplitude

We start with the Mellin amplitudeM0(s) defined in (3.2), which we multiply by an overall
factor for future convenience

M(s) = 1
Γ(s)Γ(2∆φ − s)

ˆ ∞
0

dt f(t) t−1−s . (3.4)

In this case the crossing relation (3.3) reads

M(s) = M(2∆φ − s) . (3.5)

The goal of our discussion is to infer the analytic properties of the Mellin amplitude M(s)
from the physical requirements on the correlator f(t). First, following [49], we remind a
general result for the one-dimensional Mellin transform (3.4).

3.1.1 A theorem

Consider a function F (t) in the vector space FΘ
H of complex valued functions that are

holomorphic for arg(t) ∈ Θ and obey

|F (t)| ≤ C(h)
|t|h

h ∈ H , (3.6)

where H is a subset of R, typically of the form H = (hmin, hmax). Consider also the
function M̂(s) in the vector spaceMΘ

H of complex valued functions that are holomorphic
for Re(s) ∈ H and exponentially suppressed in the limit |Im(s)| → ∞

|M̂(s)| ≤ K(Re(s))e−|Im(s) supΘ arg(t)| |Im(s)| → ∞ . (3.7)

These two vector spaces exists independently, but the following theorem holds

Theorem 1. Given a function F (t) ∈ FΘ
H , its Mellin transform M[F ](s) exists and

M[F ](s) ∈ MΘ
H . Furthermore, M−1M[F ](t) = F (t) for any arg(t) ∈ Θ. Conversely,

given M̂(s) ∈ MΘ
H its inverse Mellin transform exists and M−1[M̂ ](s) ∈ FΘ

H . Further-
more,MM−1[M̂ ](s) = M̂(s) for any s ∈ H + iR.

9For the case of identical operators one can resort to Bose symmetry and give a meaning to the correlator
on the whole t-real axis, but since we are after a more general definition we did not follow this route here.
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This is a classical result for the one-dimensional Mellin transform so we are not going to
prove it here. Instead, we will discuss how the physical 1d correlator violates the hypothesis
of the theorem and how we can overcome this issue. The convergence of the s-channel OPE
for | arg(t)| < π ensures that the function f(t) is indeed analytic in a sectorial domain Θ.
Nevertheless, the condition (3.6) is violated in two ways

• When light operators (∆ < ∆φ) are exchanged in the OPE, the region H is not
well defined and the Mellin transform does not exist. This issue is analogous to the
higher dimensional case of [49] and we will solve it by implementing a finite number
of subtractions in section 3.1.2.

• The correlator f(t) is not bounded for t→ eiπ where it has a singularity controlled by
the Regge limit (2.13). This issue does not spoil the existence of the Mellin transform,
but it gives a result that is not bounded by (3.7).

To understand this second point let us present a simple example which will be useful to
explain the issue. Consider the function F (t) = ( t

1+t)2∆φ . This function is analytic for
| arg(t)| < π and gives a convergent integral (3.4) for 0 < Re(s) < 2∆φ. However, despite
the bound (3.6) holds along the real axis, it is violated for t→ eiπ. The Mellin transform
of this function reads ˆ ∞

0
dt

(
t

1 + t

)2∆φ

t−1−s = Γ(s)Γ(2∆φ − s)
Γ(2∆φ) . (3.8)

From this explicit expression we see immediately that for |Im(s)| → ∞ the r.h.s. is not
bounded by e−π|Im(s)|. Rather, it is bounded by

Γ(s)Γ(2∆φ − s)
Γ(2∆φ) ≤ K(Re(s))|Im(s)|2∆φ−1e−π|Im(s)| |Im(s)| → ∞ . (3.9)

As we see, the exponential decay is correctly predicted by the theorem, while the additional
polynomial divergence can be related to the behaviour of the function F (t) for t→ eiπ. In
section 3.2, we will show that this is a specific instance of a general relation between the
large s asymptotics of M(s) to the Regge limit of f(t).

3.1.2 Convergence and subtractions

Let us now discuss the convergence of the integral (3.4). Let f(t) be well behaved for
t ∈ R+, that is, we do not want divergences in t other than at t = 0 and t → ∞. This
behaviour coincides with that of the CFT1 correlators we will be interested in. Consider the
behaviour of f(t) close to t = 0. Using (2.8), we find that the leading power is f(t) ∼ t∆0

with ∆0 the dimension of the lightest exchanged operator. Analogously, using the crossing
symmetry relation (2.9), we find that the large t behaviour of f(t) is f(t) ∼ t2∆φ−∆0 .
Therefore the integral converges in the strip

2∆φ −∆0 < Re(s) < ∆0 , (3.10)

which is a well-defined interval only for ∆0 > ∆φ. In order to give a nonperturbative
definition of the Mellin transform, which allows for lighter operators to be exchanged,
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we need to perform some subtractions along the lines of [49].10 One obvious example is
GFF, where the identity operator is exchanged. We will consider this case explicitly in
section 3.1.3. For the moment, we consider the Mellin transform of the connected part of
the correlator. Let us consider the following subtractions

f0(t) = fconn(t)−
∑

∆0≤∆≤∆φ

[∆φ−∆]∑
k=0

c∆
(−1)k
k!

Γ(∆ + k)2Γ(2∆)
Γ(∆)2Γ(2∆ + k) t

∆+k , (3.11)

f∞(t) = fconn(t)−
∑

∆0≤∆≤∆φ

[∆φ−∆]∑
k=0

c∆
(−1)k
k!

Γ(∆ + k)2Γ(2∆)
Γ(∆)2Γ(2∆ + k) t

2∆φ−∆−k , (3.12)

where, for convenience, we write c2
∆φ∆φ∆ ≡ c∆. For the function f0(t) we subtracted the

s-channel contribution of all the operators (primaries and descendants) with scaling dimen-
sion below the threshold ∆ = ∆φ, making use of the series expansion of the hypergeometric
function in (2.8). This improves the behaviour of the function at t = 0. On the other hand,
for f∞(t) we subtracted all the t-channel operators below threshold, thus improving the
behaviour at t =∞. The idea is to split the integral (3.4) in two parts, which are defined
on (possibly non-overlapping) semi-infinite regions of the complex s plane

ψ0(s) =
ˆ 1

0
dt fconn(t) t−1−s Re(s) < ∆0 , (3.13)

ψ∞(s) =
ˆ ∞

1
dt fconn(t) t−1−s Re(s) > 2∆φ −∆0 (3.14)

When the two regions do not overlap, we analytically continue ψ0(s) and ψ∞(s) by consid-
ering the integrals of the functions (3.11) and (3.12) and adding a finite number of poles

ψ0(s) =
ˆ 1

0
dt f0(t) t−1−s Re(s) < ∆̃0

+
∑

∆0≤∆≤∆φ

[∆φ−∆]∑
k=0

c∆
(−1)k
k!

Γ(∆ + k)2Γ(2∆)
Γ(∆)2Γ(2∆ + k)

1
s−∆− k , (3.15)

ψ∞(s) =
ˆ ∞

1
dt f∞(t) t−1−s Re(s) > 2∆φ − ∆̃0

+
∑

∆0≤∆≤∆φ

[∆φ−∆]∑
k=0

c∆
(−1)k
k!

Γ(∆ + k)2Γ(2∆)
Γ(∆)2Γ(2∆ + k)

1
s− 2∆φ + ∆ + k

, , (3.16)

where ∆̃0 > ∆φ is the lightest exchanged operator above threshold (notice that this opera-
tor could be either a primary or a descendant). Both these functions are now well defined
on the non-vanishing strip 2∆φ − ∆̃0 < Re(s) < ∆̃0 and therefore their sum yields a well
defined Mellin transform

M(s) = ψ0(s) + ψ∞(s)
Γ(s)Γ(2∆φ − s)

, 2∆φ − ∆̃0 < Re(s) < ∆̃0 . (3.17)

10See in particular appendix B in [49] for the one-dimensional case.
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The price to pay is a deformation of the integration contour in the inverse Mellin transform,
which reads

f(t) =
ˆ
C

ds

2πi Γ(s)Γ(2∆φ − s)M(s) ts . (3.18)

To understand the form of the contour C, we need to discuss the analytic structure of
M(s). In order to do this, one can follow the strategy described above to extend the
definition (3.17) to the whole complex s plane. To analytically continue ψ0(s) from the
region Re(s) < ∆0 to the region Re(s) < ∆̃0 we subtracted a few exchanged operators in
f(t) and added a finite number of poles in (3.15). By adding more and more poles, we can
further extend the area of analyticity. We then conclude that the Mellin block expansion
defined by

M(s) = ψ0(s) + ψ∞(s)
Γ(s)Γ(2∆φ − s)

(3.19)

with

ψ0(s) =
∑
∆

∞∑
k=0

c∆
(−1)k+1Γ(∆ + k)2Γ(2∆)

k!Γ(∆)2Γ(2∆ + k)
1

s−∆− k , (3.20)

ψ∞(s) =
∑
∆

∞∑
k=0

c∆
(−1)kΓ(∆ + k)2Γ(2∆)
k!Γ(∆)2Γ(2∆ + k)

1
s− 2∆φ + ∆ + k

(3.21)

provides a representation of M(s) which is valid on the whole complex s plane (excluding
the point at infinity which will be discussed in details in section 3.2). In particular, the
representation (3.19) immediately allows us to read off the position of the poles of M(s).11

For any exchanged primary operator of dimension ∆ there are two infinite sequence of
poles running to the right of s = ∆ and to the left of s = 2∆φ−∆. Following the common
nomenclature we denote them as

right poles : sR = ∆ + k , k = 0, 1, 2, . . . (3.22)

left poles : sL = 2∆φ −∆− k , k = 0, 1, 2, . . . (3.23)

Res[M(s)]|sL ≡ −Res[M(s)]|sR = (−1)kΓ(2∆)Γ(∆ + k)
k! Γ(∆)2Γ(2∆ + k)Γ(2∆φ −∆− k) . (3.24)

Notice that the precise identification of the sum over k in (3.20) with the sum over descen-
dants in the block expansion is a consequence of the choice a = 0 in (3.2). Different choices
of a in (3.2) would lead to a less transparent correspondence between poles and conformal
descendants.

Given this structure of poles, we can now give a precise definition of the contour C
in (3.18). The contour C is chosen in such a way to leave all the right poles of M(s) on
its right and all the left poles on its left. If the lightest exchanged operator has dimension
∆0 > ∆φ, no analytic continuation is required in (3.13) and (3.14) (in other words the

11In principle there could be an additional singularity at∞, but we postpone this discussion to section 4.1.
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s

C

∆02∆φ−∆0

s

C

∆0

2∆φ−∆0

∆̃0

2∆φ−∆̃0

Figure 1. Left: the contour for the inverse Mellin transform when ∆0 > ∆φ. Left poles are marked
in red and right poles are green. Right: when ∆0 < ∆φ left and right poles intersect and the contour
needs to be deformed.

set of left and right poles do not overlap) and any contour within the interval (3.10) will
suffice, see for example the straight one on the left in figure 1.

When lighter operators are exchanged, the contour needs to be deformed because the
set of right poles intersects with the set of left poles. In figure 1 we show an example with
a single operator below threshold. It is clear from the picture that a more complicated
situation arises when a left and a right pole coincide. This happens, for instance, for the
GFF case, which we address in section 3.1.3. More generally, this happens whenever there
is an exchanged operator with dimension ∆ = ∆φ + Z

2 . In a generic spectrum we do not
expect this to be the case.

We conclude this section by noticing that we can perform the sum over k in (3.19),
resumming all the conformal descendants in a crossing symmetric Mellin block expansion

M(s) = 1
Γ(s)Γ(2∆φ − s)

∑
∆

c∆[F∆(s) + F∆(2∆φ − s)] , (3.25)

F∆(s) = 3F2(∆,∆,∆− s; 2∆, 1 + ∆− s;−1)
∆− s . (3.26)

Before analysing the behaviour ofM(s) for s→∞, we consider a simple yet subtle example,
that of generalized free field theory.

3.1.3 A degenerate example: generalized free field theory

Let us consider the simplest possible example of 1d CFT. The GFF correlator for four
identical scalars of dimension ∆φ reads

fGFF(t) = 1 + t2∆φ +
(

t

1 + t

)2∆φ

. (3.27)

Of course in this case we know very well the spectrum of exchanged operators, which
includes the identity, “two-particle” operators of the schematic form

[φφ]n ∼ φ�nφ, (3.28)

and their conformal descendants. The conformal primary operators have dimension ∆n =
2∆φ + 2n for n ≥ 0. As usual, the fact that the dimensions of these operators are sep-
arated by integers creates huge degeneracies. In particular, we should be worried by the
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s

2∆φ

s

C

ε

2∆φ

2∆φ+ε

Figure 2. Left: the configuration of the poles for GFF. The left and right poles coincide in s = 0
and s = 2∆φ. Right: the right poles are slightly shifted to the right so that the contour C can run
in the middle.

coincidence of left and right poles in (3.22) and (3.23). This happens for s = 0, where the
first right pole, associated to the exchange of the identity in the s-channel, coincides with
the second left pole, associated to the exchange of φ2 in the t-channel, and at s = 2∆φ for
the crossing symmetric case. The situation is depicted in figure 2.

Coincident poles generate a problem in the realization of the contour C, which was
defined precisely in such a way to separate left and right poles. To avoid this issue one can
slightly split the poles by shifting the right (or left) poles by a small amount, as shown in
figure 2. The result of the procedure outlined in section 3.1 leads to a Mellin transform
which depends on the shift ε

MGFF
ε (s) = 1

Γ(s)Γ(2∆φ − s)

(Γ(s)Γ(2∆φ + ε− s)
Γ(2∆φ) + 1

s− ε

+ 1
s− 2∆φ − ε

− 1
s
− 1
s− 2∆φ

)
. (3.29)

Taking the inverse Mellin transform (3.18) with the contour C depicted in figure 2 and then
taking the limit ε→ 0, one recovers (3.27). Taking the limit ε→ 0 before integrating leads
to the very simple result M0(s) = 1

Γ(2∆φ) , however the contour C is not well defined and
one cannot consistently take the inverse Mellin transform.12 Notice that this procedure is
simply the limit in the weak sense that is normally considered in distribution theory. In
particular, the identity

lim
ε→0

ˆ p+i∞

p−i∞

ds

2πi

( 1
s− p− ε

− 1
s− p+ ε

)
ts = tp (3.30)

tells us that the function 1
s−p−ε −

1
s−p+ε in the limit ε→ 0 defines a delta function δ(s− p)

for Mellin integration.13 In this sense, we can say that the Mellin transform for GFF is
12However, the correction to this is of orderMε(s)−M0(s) = ε

s2 + ε
(s−2∆φ)2 which is only non-negligible in

the s→ 0 and s→ 2∆φ limit. Therefore, for all other purposes (for example for comparisons at perturbative
level, or sum rule results), we can effectively take the MGFF

0 (s) result.
13Attentive readers will probably have noticed that the individual terms in limε→0

´ p+i∞
p−i∞

ds
2πi (

1
s−p−ε )

diverge and one cannot use the residue theorem . However, the combination does not have this problem
since

(
1

s−p−ε −
1

s−p+ε

)
= 2ε

(s−p)2−ε2 which insures convergence at large s.
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a distribution rather than a function. This issue is clearly caused by the exchange of the
identity operator and by the degeneracy typical of GFF. An alternative route for obtaining
the Mellin transform of the GFF correlator would be to use equations (3.20) and (3.21)
with the well-known expressions of the GFF OPE coefficients

c(0)
n = 2Γ(2n+ 2∆φ)2Γ(2n+ 4∆φ − 1)

Γ(2∆φ)2Γ(2n+ 1)Γ(4n+ 4∆φ − 1) (3.31)

and summing over ∆n = 2∆φ + 2n. Doing this one finds again the result M(s) = 1
Γ(2∆φ)

consistently with the fact that equations (3.20) and (3.21) were obtained under the as-
sumption of non-coincident poles. Also in this case, one could slightly shift the position of
the poles in ψ0(s) (or ψ∞(s)) and recover an expression which coincides with MGFF

ε in the
weak limit ε→ 0.

3.2 Regge limit and Mellin boundedness

In this section we will derive a bound on the large s behaviour of the Mellin amplitude
M(s) using the Regge behaviour of the function f(t), i.e. the limit t → eiπ described
in (2.13). Looking at the direct definition of the Mellin transform (3.4) it may seem
surprising that the large s behaviour is controlled by a region (t ∼ −1) which is far away
from the integration contour. To argue that this is the case, we start by considering the
inverse Mellin transform (3.18) where the contour C is a straight line parametrized by
s = c + iη for some constant 2∆ − ∆̃0 < c < ∆̃0 (the additional poles that are included
in (3.15) and (3.16) for the analytic continuation will not affect this argument) and η ∈ R.
We take t = eiθ and we integrate over η

f(eiθ) = eicθ
ˆ ∞
−∞

dη Γ(c+ iη)Γ(2∆φ − c− iη)M(c+ iη) e−θη . (3.32)

We are interested in the behaviour of the integrand for |η| → ∞. In this limit

Γ(c+ iη)Γ(2∆φ − c− iη) ∼ e−π|η| η2∆φ−1 |η| → ∞ . (3.33)

This means that the Gamma function prefactor accounts for the exponential behaviour (3.7)
of M̂(s) for |Im(s)| → ∞ predicted by the theorem in section 3.1.1. This essentially
motivates our choice of prefactor in (3.4). In particular, the exponential in (3.33) combined
with that in (3.32) shows that the regime θ → ±π is controlled by the region η ∼ ∓∞. Let
us make this more precise by defining

H(η) ≡ Γ(c+ iη)Γ(2∆φ − c− iη)M(c+ iη) eπ|η| (3.34)

so that the integral (3.32) can be rewritten as

f(eiθ) = eicθ
ˆ ∞

0
dη H(−η) e−η(π−θ) + eicθ

ˆ ∞
0

dη H(η) e−η(π+θ) . (3.35)

where we recognize two Laplace transforms of the functions H(±η). A singular behaviour
for θ = π originates from the first term in the sum (3.35), while the singularity at θ =
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−π arises from the second term. More specifically, Tauberian theorems for the Laplace
transform imply that for a function H(η) ∼ k ηα as η →∞ then

ˆ ∞
0

dη H(η) e−η(π+θ) ∼ k Γ(α+ 1)(θ + π)−α−1 θ → −π (3.36)

and similarly for the case θ → π. We are then led to the conclusion that the Regge
behaviour (2.13) is reproduced by asking that

H(η) ∼ |η|2∆φ−1 |η| → ∞ . (3.37)

Combining this with (3.34) and (3.33) we conclude that

M(c+ iη) = O(|η|0) |η| → ∞ . (3.38)

Assuming that no Stokes phenomenon occurs for physical correlators we can extend this
behaviour for any arg(s) such that

M(s) = O(|s|0) |s| → ∞ . (3.39)

The absence of Stokes phenomenon is an assumption for which we do not have a proof.
This assumption however is verified in all our examples and it was made also in the higher-
dimensional case [49].

We conclude this section with an important remark about the perturbative regime,
which we will consider in section 5. The result (3.39) is valid for the full nonperturbative
Mellin amplitude. If the correlator contains a small parameter, it is often the case that
order by order in the perturbative expansion the Regge behaviour is worse than in the full
nonperturbative correlator.14 In appendix A we illustrate this in details in the context of
the analytic sum rules discussed in the next section. In view of this aspect, it is then useful
to formulate our result in a more general form. Let us consider a correlator f̃(z) with a
Regge behaviour

f̃(z) = O(z2∆φ+n) z → 1
2 + i∞ (3.40)

for some positive integer n, then the associated Mellin amplitude will have a large s

asymptotics
M(s) = O(|s|n) |s| → ∞ . (3.41)

4 Sum rules

A common way to express the well-known fact that an arbitrary set of CFT data does not
necessarily lead to a consistent CFT is through a set of sum rules for the CFT data. In
the following, we will start from our definition of Mellin amplitude and derive an infinite
set of sum rules. As we mentioned in the Introduction, these sum rules are not dispersive,
according to the definition of [54]. This is essentially related to the behaviour at infinity

14A typical example of this phenomenon is the function 1
1−gz , which is regular for z →∞ but its expansion

at small g is more and more divergent.
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obtained using our one-dimensional definition. In section 3.2 we described how the prod-
uct of Gamma functions in our definition (3.4) leads to a nice behaviour for the Mellin
amplitude M(s) at s = ∞. However, the introduction of that prefactor leads also to the
appearance of spurious poles in the integral (3.18). In a generic CFT, it is not expected
that operators with the exact dimension s = 2∆φ + n are present in the spectrum. Thus,
the poles of the Gamma functions must be compensated by zeros in the Mellin amplitude.
This strategy was used in [49, 55] to derive dispersive sum rules for the higher dimensional
case, where the Mellin amplitude needs to have double zeros. Here, we will use the same
idea to derive a new set of sum rules, which are characterized by single zeros of the Mellin
amplitude. This makes these sum rules different and less powerful than the dispersive
ones, but we believe that their derivation and the check of their validity on a set of known
example provides an important consistency check of our results.

One may be concerned because the presence of single or double zeroes for the Mellin
amplitude seems to be related to the choice of the prefactor in (3.4). This is actually not
the case. The choice to factor out a prefactor in (3.4) is related to having a nice polynomial
behaviour for the function M(s) at s → ∞. If we were to pick a different prefactor (for
instance using Gamma function squared, leading to double poles for the Mellin amplitude),
the Mellin amplitude would contain an essential singularity at s =∞ and this divergence
would have to be compensated by the function Fp(s), which we will use in (4.4) to derive
our sum rules. We can then safely conclude that the choice a prefactor is just a convenient
trick, but it does not affect the resulting sum rules.

Finally, let us emphasize some important differences compared to the higher-
dimensional strategy of the Mellin Polyakov bootstrap [46–48]. The derivation of the
non-perturbative Polyakov consistency conditions used in [49, 55] is quite subtle due to the
presence of accumulation points in the twist spectrum of higher-dimensional CFTs. In our
case, however, the situation is simpler. The twist accumulation points are related to the
presence of a spin or, equivalently, to the need of introducing two Mandelstam variables.
For us there is no spin and the only quantum number is the scaling dimension of the op-
erators. Therefore, we do not expect any accumulation point in the spectrum and we will
be able to impose the conditions (4.2) without recurring to any analytic continuations.

4.1 Properties of M(s) and derivation of the sum rules

We start by summarizing the main properties of the Mellin amplitude M(s) in (3.4):

• M is crossing symmetric
M(s) = M(2∆φ − s) . (4.1)

• M has poles at the location of the physical exchanged operators in the two channels,
i.e. s = ∆ + k and s = 2∆φ −∆− k for k ∈ N .

• Generically, M has single zeros compensating the poles of the prefactor

M(2∆φ + k) = 0 and M(−k) = 0 for k ∈ N . (4.2)

If the spectrum contains protected operators, some of these zeros might be absent.
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• M is bounded for |s| → ∞, see (3.39) .

• M admits a crossing-symmetric Mellin block expansion

M(s) =
∑
∆

c∆M∆(s) (4.3)

with M∆(s) given by the comparison with (3.25).

The properties above will allow us to define a set of sum rules along the lines of [49, 55].
Let ωp be the functional

ωpi =
˛

C|∞

ds

2πiM(s)Fpi(s) , (4.4)

where the contour here is a very large circle around infinity. When Fpi(s) is a sufficiently
suppressed function at s → ∞, we can take the limit of infinite radius for the circle and
we get

ωpi [M ] = 0 . (4.5)

For a nonperturbative Mellin amplitude characterized by the asymptotic behaviour (3.39) it
is sufficient to ask that Fpi(s) ∼ s−1−ε for ε > 0 as |s| → ∞. As we mentioned at the end of
section 3.2, when considering a perturbative expansion around GFF, the Regge behaviour
may worsen and a sufficiently suppressed function F would be required as detailed in
appendix A.

The strategy to derive the sum rules simply consists in deforming the integration
contour in (4.4) to include all the poles of the integrand such that

ωpi =
∑
s∗

Ress=s∗ [M(s)]Fpi(s∗) +
∑
s∗∗

M(s∗∗)Ress=s∗∗ [Fpi(s)] = 0 . (4.6)

This equation already looks like a sum rule, but it depends on the value M(s∗∗) of the
Mellin amplitude at the poles of Fpi(s). To avoid this issue one can simply choose Fpi(s)
to have simple poles at the position of the zeros of M(s). Therefore, we need a function
Fpi(s) with poles at s = −k or at s = 2∆φ + k. Furthermore, the function Fpi(s) must
not be crossing symmetric. Indeed, using the position of the poles in (3.22) and (3.23) and
crossing symmetry for the residues (3.24) we get

ωpi =
∑
sR

Ress=sR(M(s))(Fpi(sR)− Fpi(2∆φ − sR)) , (4.7)

so that any crossing symmetric function F would lead to a trivial vanishing of ωpi . Using
the explicit expression for the residues (3.24) we find the set of sum rules

∑
∆,k

c∆
(−1)k+1Γ(2∆)Γ(∆ + k)

Γ(∆)2Γ(2∆ + k)Γ(2∆φ −∆− k)Γ(k + 1)(Fpi(∆ + k)− Fpi(2∆φ −∆− k)) = 0 .

(4.8)
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A natural choice for the function F is

Fp1,p2(s) = 1
(s+ p1)(s+ p2) , p1, p2 ∈ N . (4.9)

Notice that, despite the function Fp1,p2(s) ∼ 1
s2 for s→∞, thanks to (4.7) only the crossing

antisymmetric part of it matters, i.e. Fp1,p2(s) − Fp1,p2(2∆ − s) and one can easily check
that this combination decays as 1

s3 for s → ∞. Using this function we can derive the
nonperturbative sum rules

∑
∆,k

c∆
(−1)k+1Γ(2∆)Γ(∆ + k)

Γ(∆)2Γ(2∆ + k)Γ(2∆φ −∆− k)Γ(k + 1) (4.10)

× 2(∆ + k −∆φ)(p1 + p2 + 2∆φ)
(∆ + k + p1)(∆ + k + p2)(2∆φ −∆− k + p1)(2∆φ −∆− k + p2) = 0 .

Performing the sum over k one obtains sum rules of the form∑
∆
c∆α∆ = 0 (4.11)

with

α∆ = Γ(∆)
Γ(2∆)Γ(2∆φ −∆)

(
Fp1,p2(∆) + F−2∆φ−p1,−2∆−p2(∆)

)
, (4.12)

Fp1,p2(∆) = 1
p1 − p2

(
3F2(∆, p1 + ∆, 1 + ∆− 2∆φ; 2∆, 1 + p1 + ∆; 1)

(p1 + ∆)

− 3F2(∆, p2 + ∆, 1 + ∆− 2∆φ; 2∆, 1 + p2 + ∆; 1)
(p2 + ∆)

)
. (4.13)

As already mentioned in the Introduction, these sum rules differ from those found in [30,
33, 49, 55], which are dispersive sum rules having double zeros at the dimension (or twist in
higher d) of double twist operators. Our functionals α∆ have single zeros at ∆ = 2∆φ+k for
k ∈ N and k 6= p1, p2, implying that the functional changes sign at any of these zeros. The
absence of any positivity property makes these sum rules less powerful and harder to use
with the standard method of the modern conformal bootstrap. Despite this, we will now
test them on some known examples and discuss their applicability in a perturbative setting.

4.2 Checks and applications

Testing the sum rules (4.10) or (4.8) on a fully nonperturbative spectrum is a task which
is momentarily out of reach. Therefore, we start by testing it on the simplest possible 1d
CFT, i.e. generalized free field theory, and perturbations thereof.

4.2.1 Generalized free theories

One may immediately raise several objections to our attempt of applying the sum rules (4.8)
to GFF theories. First of all, as we discussed in section 3.1.3 the definition of the Mellin
amplitude for GFF requires the inclusion of a cut-off to regulate the exchange of the identity
operator. Furthermore, a crucial assumption in the derivation of the sum rules was that
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M(s) must have zeros for s = −k and s = 2∆φ+k, but GFF is precisely the example where
two-particle operators with dimension 2∆φ+2n+k are exchanged and therefore those zero
are absent. We will see that these issues can be avoided by considering the function

Fp(s) = 1
(2∆φ + 2p− s)(2∆φ + 2p− s+ 1) . (4.14)

Since this function has two poles and no residue at infinity we have the property

Ress=2∆φ+2p(Fp(s)) + Ress=2∆φ+2p+1(Fp(s)) = 0 . (4.15)

Furthermore, one can easily check from (3.29) thatMGFF
ε (2∆φ+2p) = MGFF

ε (2∆φ+2p+1)
for p ∈ N. Combining these two properties, it is clear that the last term in (4.6) vanishes
even though M(s) has no zeros at the positions of the poles of Fp(s). We are then left with
a sum over the residues of M(s). For GFF, the position of the poles in principle depends
on the regulator ε, but the role of the regulator in (3.29) is to separate left and right poles.
This is precisely what we have done to go from (4.6) to (4.7). Therefore, equation (4.10)
can be used with ε → 0 and, inserting the GFF spectrum ∆ = 2∆φ + 2n we end up with
the following sum rule

∑
n,k

c(0)
n

(−1)k+1Γ(4(∆φ + n))Γ(2∆φ + 2n+ k)
Γ(2∆φ + 2n)2Γ(4(∆φ + n) + k)Γ(−2n− k)Γ(k + 1)

× 2(2∆φ + 4p+ 1)(∆φ + k + 2n)
(k + 2n− 2p− 1)(k + 2n− 2p)(2∆φ + k + 2n+ 2p+ 1)(k + 2(∆φ + n+ p)) = 0 .

(4.16)

Notice that the Γ(−2n− k) factor in the denominator kills all the terms in this sum that
are not compensated by a pole in the second ratio. The sum over k then receives only two
contributions at k = 2p − 2n and k = 2p − 2n − 1 which are present only for p ≥ n. We
are then left with a finite sum over n

p∑
n=0

c(0)
n

Γ(2p+ 1)Γ(4(n+ ∆φ))Γ(2(p+ ∆φ))
(
∆φ − 2n2 − 4∆φn+ n+ 2∆φp

)
Γ(2(n+ ∆φ))2Γ(2(p− n+ 1))Γ(2(n+ p+ 2∆φ + 1)) = 0 . (4.17)

Clearly, each value of p leads to an equation for c(1)
p in terms of all the other OPE coefficients

with lower index. In other words, this sum rule can be solved recursively for c(0)
n determining

everything in terms of c(0)
0 , which sets the overall normalization. Doing so, one easily finds

that the unique solution to this sum rule is provided by (3.31). The same strategy can be
used to determine the OPE coefficients for a fermionic GFF and for a GFF with O(N)
symmetry. We do this in appendix B.

4.2.2 Perturbative sum rules

In this section we further test our sum rules by using known CFT data for a class of
perturbations around GFF. These perturbations, which will be treated in great details
in section 5, are constructed by introducing an effective field theory in AdS2 background
and considering the 1d boundary conformal field theory through the usual holographic
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dictionary. In particular, we will be interested in quartic contact interaction with deriva-
tives. A classification of these independent contact interactions is given e.g. in [33], where
the authors find there is a one-parameter family labelled by L, where 4L is the number
of derivatives in the schematic interaction (∂LΦ)4. As we mentioned at the end of sec-
tion 3.2, single terms in the perturbative expansion of the correlator may have a worse
Regge behaviour than the general bound (2.12). In particular, let us consider a perturbed
correlator

f(t) = fGFF(t) + gLf
(1)
L (t) +O(g2

L), (4.18)

where L labels the maximum number of derivatives in the quartic interaction (i.e. the
interaction term may involve a combination of terms with ` ≤ L derivatives) and gL is
the associated coupling. The Regge behaviour of this correlator is determined by the term
with the maximum number of derivatives and it reads [33]

f
(1)
L (z) ∼ z2∆+2L−1 z → 1

2 + i∞. (4.19)

According to our discussion in section 4.1, the associated Mellin amplitude will behave as

M
(1)
L (s) ∼ |s|2L−1 |s| → ∞, (4.20)

and we need to choose a function Fp(s) which vanishes at infinity faster than |s|−2L. Here
we will derive and check the sum rules for the cases L = 0 and L = 1. The strategy is the
following. We use equation (4.8) to write down nonperturbative sum rules with a specific
function Fp(s) which will be chosen to decay sufficiently fast at |s| → ∞ at a given value
of L. We then expand the CFT data as

∆ = 2∆φ + 2n+ gLγ
(1)
L,n +O(g2

L) , (4.21)

c∆ = c(0)
n + gLc

(1)
L,n +O(g2

L) (4.22)

and derive perturbative sum rules for γ(1)
L,n and c(1)

L,n. We then check that these sum rules
are satisfied by the L = 0, 1 results obtained in [33], which read

γ
(1)
0,n =

(
1
2

)
n

((∆φ)n) 2
(
2∆φ − 1

2

)
n

(1)n (2∆φ)n
((

∆φ + 1
2

)
n

)
2
, (4.23)

γ
(1)
1,n =A−1

∆φ
γ

(1)
0,n

2n(4∆φ + 2n− 1)
(∆φ + n− 1)(2∆φ + 2n+ 1)(16∆5

φ − 13∆3
φ − 3∆2

φ + 16∆φn
4

+ 8n4 + 64∆2
φn

3 + 16∆φn
3 − 8n3 + 96∆3

φn
2 + 8∆2

φn
2 − 24∆φn

2

− 2n2 + 64∆4
φn− 28∆2

φn− 2∆φn+ 2n) (4.24)

where the result for γ(1)
1,n differs from [33] by an overall factor

A∆φ
≡ ∆φ(∆φ + 1)(∆φ + 2)(4∆φ − 1)(4∆φ + 1)2(4∆φ + 3)

(2∆φ + 1)2(2∆φ + 3) , (4.25)
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which we introduced to normalize the anomalous dimension as γ(1)
1,1 = 1. Notice that

γ
(1)
1,0 = 0. This is equivalent to a choice of basis for the set of independent interactions that

can be built with up to one derivative. We will discuss this issue in details in section 5.
The OPE coefficients c(1)

n are given by the relation

c
(1)
L,n = ∂n(γ(1)

L,nc
(0)
n ) . (4.26)

Let us start by the case L = 0. In that case, the Regge behaviour is actually better
than the GFF case, so we could even choose the function

Fp(s) = 1
s+ p

, (4.27)

which gives the sum rules

∑
∆,k

c∆
(−1)k+1Γ(2∆)Γ(∆ + k)

Γ(∆)2Γ(2∆ + k)Γ(2∆φ −∆− k)Γ(k + 1)(∆ + k + p)(−2∆ + ∆ + k − p) = 0 .

(4.28)

Notice that we can also use the function (4.27) as a building block from which we can
construct more suppressed functions of the class (4.9), for example

Fp,p+1(s) = Fp(s)− Fp+1(s) = 1
(s+ p)(s+ p+ 1) . (4.29)

As we discussed below (4.9), the crossing antisymmetric part of this function decays as
1
s3 at large s and for this reason we will also use it for the case L = 1. Inserting the
expansions (4.21) and (4.22) into the sum rule (4.28) we get two contributions: a finite
sum from the terms where k = p− 2n

ω̃p =
[ p2 ]∑
n=0

c(1)
n

Γ(p+ 1)Γ(4(n+ ∆φ))Γ(p+ 2∆φ)
(p− 2n)! Γ(2(n+ ∆φ))2Γ(2n+ p+ 4∆φ)

+ c(0)
n γ(1)

n

Γ(p+ 1)Γ(4(n+ ∆φ))Γ(p+ 2∆φ)
2(∆φ + p)(p− 2n)! Γ(2(n+ ∆φ))2Γ(2n+ p+ 4∆φ)η(∆φ, n, p) , (4.30)

where

η(∆φ, n, p) = 1 + 2(∆φ + p)(−2ψ2n+2∆φ
+ 2ψ4n+4∆φ

− 2ψ2n+p+4∆φ
+ ψp+2∆φ

+ ψp+1)
(4.31)

with ψn = Γ′(n)
Γ(n) , and an infinite sum

ω̃′p =
∑

n,k 6=p−2n
c(0)
n γ(1)

n

2(k + 2n)!(∆φ + k + 2n)Γ(4(n+ ∆φ))Γ(k + 2n+ 2∆φ)
k!(k + 2n− p)Γ(2(n+ ∆φ))2Γ(k + 4(n+ ∆φ))(2∆φ + k + 2n+ p) .

(4.32)
This last term does not allow us to follow the same strategy we used for GFF to extract the
value of γ(1)

L,n. This is consistent with the fact that these sum rules are not as constraining
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Figure 3. L = 0 sum rules for external dimensions ∆φ = 1,∆φ = 2 and different functionals ω0
and ω0 − ω1. The plot shows the value of the finite sum truncated after N terms in a logarithmic
scale. The better convergence is seen for the ω0 − ω1 functional, due to a better large s behaviour.

as in the GFF case and we may expect more than one solution. Therefore, instead of using
the sum rules to derive the CFT data, we limit ourselves to numerically check the validity
of the equation

ωp = ω̃p + ω̃′p = 0 (4.33)

by inserting the data (4.23), (4.24) and (4.26). In figure 3 we show our results for the case
p = 0 both for the functional ω0 and for the combination (4.29), i.e. the functional ω0−ω1.
It is very clear from the plot that the latter shows a faster convergence reflecting the better
asymptotic behaviour at |s| → ∞. In figure 4 we show the analogous plot for the L = 1
case, where we used the function (4.29) since we needed a large s behaviour at least 1

s3 .
We conclude with a couple of remarks. Since the finite sum in (4.30) always ranges

up to [p2 ], we can always find a combination of functionals ωk such that the contributions
proportional to c(1)

L,n are all cancelled and we can write down a sum rule which only involves
the anomalous dimensions γ(1)

L,n

2p+1∑
k=0

(−1)1+k Γ(2p+ 2)
Γ(k + 1) Γ(2p+ 3− k) ωk = 0 . (4.34)

The simplest case is p = 0 where (4.34) simply gives ω0 − 2ω1 = 0. Even after doing that,
however, we are left with an infinite sum with alternating sign, which we did not manage
to use constructively to extract a solution. Nevertheless, notice that, once the anomalous
dimensions are known we can use our sum rules at fixed p to determine recursively the
value of the OPE coefficients c(1)

L,n following the same strategy as in the GFF case. This
provides a very convoluted way to rederive the relation (4.26).
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Figure 4. Sum rule applied for the L = 1 case for ∆φ = 1, 2, 3, truncated after summing over N
terms seen on a logarithmic scale. The slower convergence compared to L = 0 is to be expected
from the worse Regge behaviour.

5 Perturbative results

In this section we consider deformations from generalized free-field theory produced by
effective interactions in a bulk AdS2 field theory. In this holographic AdS2/CFT1 setup
the background AdS2 metric is not dynamical, corresponding to the absence of a stress
tensor in the boundary CFT1. According to the usual dictionary, a massive free scalar field
Φ in AdS2 is dual to a boundary 1d generalised free field φ. We deform this theory by a
quartic self-interactions with an arbitrary number L of derivatives

S =
ˆ
dxdz

√
g
[
gµν ∂µΦ ∂νΦ +m2

∆φ
Φ2 + gL (∂LΦ)4 ] , L = 0, 1, . . . (5.1)

where we use the AdS2 metric in Poincaré coordinates ds2 = 1
z2 (dx2 + dz2). The mass

m2
∆φ

= ∆φ(∆φ − 1) is fixed in units of the AdS radius so that ∆φ is the dimension,
independent of gL, of the field Φ evaluated at the boundary, φ(x).15 We will limit our
analysis to tree-level correlators, and thus consider only contact diagrams, whose building
blocks are the D-functions [57–59] reviewed in appendix C. The writing (∂LΦ)4 above is
symbolic, denoting a complete and independent set of quartic vertices with four fields and
up to 4L derivatives.16 In the following, we will present a particularly convenient basis for

15When we introduce an interaction, such as (5.1), there will be Witten diagrams contributing to the mass
renormalization of Φ. We can always choose the bare mass in such a way that the dictionary is preserved
and ∆φ is not modified.

16The fact that a complete and independent basis of vertices is labelled by 1/4 the number of derivatives
can be seen using integration by parts and the equations of motion, or noticing that the counting of
physically distinct four-point interactions is equivalent to the counting of crossing-symmetric polynomial
S-matrices in 2D Minkowski space, see discussion in [30, 33].
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these interactions, which will allow us to derive a closed-form expression for the tree-level
correlator in Mellin space. Consider the interaction Lagrangian

LL = gL

[
L−1∏
k=0

(1
2∂µ∂

µ − (∆φ + k)(2(∆φ + k)− 1)
)

Φ2
]2

. (5.2)

This looks like a very complicated term, but it contains four fields Φ and 4L derivatives, so
by the argument above it must be effectively a linear combination of operators like (∂`Φ)4

for ` ≤ L. The advantage of this interaction is that the corresponding correlator computed
via Witten diagrams reads

f
(1)
L (z) =

4L−1π−
3
2 Γ(2∆φ − 1

2 + 2L)
Γ(∆φ + 1

2)4

× z2∆φ (1 + z2L + (1− z)2L)D̄∆φ+L,∆φ+L,∆φ+L,∆φ+L(z) , (5.3)

where the D̄-functions are introduced in appendix C. If one starts with some specific 4L-
derivative interaction, such as (∂LΦ)4, the explicit computation through Witten diagrams
shows the appearance of several other combinations of D-functions with different weights
(we will perform some of these computations explicitly in section 5.1). Nevertheless, by
the argument above these results cannot be independent of those obtained using LL and
therefore the result must be expressible as a linear combination ∑` a`f

(1)
` (z). This requires

a series of non-trivial identities among D̄ functions, some of which we derive in section 5.1.
Using (5.3) as a basis for 4L-derivative results, we can take its Mellin transform. The

first step is to compute the Mellin transform of the function D̄∆φ∆φ∆φ∆φ
(t). In this section

we consider the reduced Mellin amplitude M̂(s) ≡ M(s)Γ(s)Γ(2∆φ − s) and we need
to compute

M̂∆φ
(s) =

ˆ ∞
0

dt D̄∆φ∆φ∆φ∆φ
(t)
(

t

1 + t

)2∆φ

t−1−s . (5.4)

A closed-form expression for the D̄ functions is not available and dealing with integral
representations is quite hard. Therefore, we considered the case of integer ∆φ, where simple
explicit expressions for the D̄ functions are known (see (C.7)–(C.9)) and we inferred the
general form

M̂∆φ
(s) = π csc(πs)

(
π cot(πs)P∆φ

(s)−
2∆φ−1∑
k=1

P∆φ
(k)

s− k

)
, (5.5)

P∆φ
(s) = 2

∆φ−1∑
n=0

(−1)n Γ(2n+ 1)Γ4(∆φ)Γ(∆φ + n)
Γ4(n+ 1)Γ(∆φ − n)Γ(2(∆φ + n))(2∆φ − s)n(s)n , (5.6)

The functions P∆φ
(s) are effectively just polynomials of order 2∆φ − 2. Defining

Q∆φ
(s(s− 2∆φ)) ≡ P∆φ

(s) , (5.7)

– 25 –



J
H
E
P
1
0
(
2
0
2
1
)
0
9
5

we have, for the first few cases

∆φ Q∆φ
(x)

1 2

2 1
15(5 + x)

3 1
315(84 + 17x+ x2)

4 1
30030(15444 + 2889x+ 206x2 + 5x3)

5 1
765765(1400256 + 239640x+ 17387x2 + 570x3 + 7x4)

(5.8)

The functions P∆φ
(s) can also be rewritten as

P∆φ
(s) = 2 Γ(∆φ)4

Γ(2∆φ)4F3

({1
2 , s, 1−∆φ, 2∆φ − s

}
;
{

1, 1,∆φ + 1
2

}
; 1
)
, (5.9)

Notice the important fact that in cross-ratio space a closed-form expression for the D̄

functions is not known, while in Mellin space it looks reasonably simple, at least for integer
∆φ. This is similar to what happens in the higher dimensional case, where this occurrence
is even more striking as the reduced Mellin transform of the D̄ functions is simply a
product of Gamma functions.17 In the one-dimensional case, we could not find such a
simple representation for the contact interactions, but the fact we could write the result in
a closed form is already a notable improvement compared to cross-ratio space and as we
will see, it will allow us to successfully extract new CFT data. Furthermore, in section 5.3
we will present an alternative definition of Mellin transform which leads to simpler results
for the contact interaction.

Knowing the Mellin transform for the D̄ functions, it is simple to compute the Mellin
transform of (5.3)

M̂
(1)
L (s) =

ˆ ∞
0

dt f
(1)
L (t)

(
t

1 + t

)2∆φ

t−1−s =
2L∑
k=0

ck,L M̂∆φ+L(s+ k) , (5.10)

2ck,L = Γ(2L+ 1)
Γ(k + 1)Γ(2L− k + 1) + δk,0 + δk,2L . (5.11)

Notice that the presence of double poles for integer values of s in (5.5) is not in contradiction
with the general single-pole structure of the nonperturbative Mellin amplitude (3.19)–
(3.21), but just a consequence of the perturbative expansion of those single poles at this first
order of perturbation theory as detailed in appendix A. Moreover, the structure of (5.5)
is such that both single and double poles cancel (as they should) within the region of
convergence (3.10) of the integral (5.4), which in this case (∆0 = 2∆φ) is 0 < Re(s) < 2∆φ.
The cancellation of the double poles is evident, given the poles of cot(πs) and the explicit
poles in the sum. The cancelling of the single poles stems from a property of the polynomial
P∆φ

(s), which ensures the cancellation of the finite part in the expression multiplying
17It is often said that the Mellin transform of contact interactions is one, but this assumes that the correct

product of Gamma function has been factored out [41, 42].
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csc(πs) when expanded around integer values of s, 0 < s < 2∆φ. As we will see, this
structure is consistent with the OPE expansion.

We stress that equation (5.10) is a closed-form expression for the first-order perturba-
tion around GFF generated by a quartic interaction with any number of derivatives. Under
the assumption that the deformation from GFF described by these interactions only modi-
fies two-particle data, see (5.35)–(5.36) below, one can extract these data. In particular, in
section 5.2 we will show that the anomalous dimension of two-particle operators receives
the following correction

∆ = 2∆φ + 2n+ gLγ̂L,n(∆φ) (5.12)

with

γ̂
(1)
L,n(∆φ) = Γ(L+ ∆φ)4

Γ(2L+ 2∆φ)

2n∑
p=0

2L∑
k=2L−p

k+p−2L∑
l=0

(−1)kck,L (5.13)

×
(4∆φ + 2n− 1)p(−2n)p(2L− k − p)l(1−∆φ − L)l(2∆φ + k + p)l(1

2)l
(l!)3(2∆φ)p(1

2 + ∆ + L)l
.

In order to compare these results with those computed with bootstrap methods in [30, 33]
for L = 0, 1, 2, 3, we have to change basis in the space of couplings. Since the bootstrap
approach is blind to the specific values of the couplings gL in (5.12), one needs to establish
a criterium to organize the set of independent data. The criterium that is used in [30, 33]
consists in setting

γL,n(∆φ) = 0 n < L . (5.14)

In our approach this is implemented by taking a linear combination

γL,n =
L∑
`=0

a`γ̂`,n (5.15)

and fixing the L+ 1 a` coefficients in (5.15), using the L conditions (5.14) and the normal-
ization γL,L(∆φ) = 1. Following this strategy in section 5.2, we will reproduce the known
results for L ≤ 3 and present new results for L ≤ 8 at any ∆ and n. We stress however
that equation (5.13) is valid for any L, so, up to the algorithmic procedure of fixing the a`
coefficients, one can easily extract the result for any given L.

Below we will show how the interaction (5.2) leads to the correlator (5.3) through
explicit Witten diagrammatics. We will also see, for the cases L = 0, 1, 2, how other in-
teraction terms lead to results that can be rearranged as linear combinations of the eigen-
functions (5.3). We will then proceed to extract CFT data in the bootstrap normalization.

5.1 Diagrammatics

Here we consider the interaction Lagrangian (5.2) and we show that it leads to the corre-
lator (5.3) using Witten diagrams. The result of the Wick contractions is

〈φ(x1)φ(x2)φ(x3)φ(x4)〉(1) (5.16)

=
∑

perms
gL

ˆ
dxdz

z2 D
(
K∆φ

(x, z;x1)K∆φ
(x, z;x2)

)
D
(
K∆φ

(x, z;x3)K∆φ
(x, z;x4)

)
,
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where we defined

D =
L−1∏
k=0

(1
2∂µ∂

µ − (∆φ + k)(2(∆φ + k)− 1)
)

(5.17)

acting on the bulk point and we used the bulk-to-boundary propagator with the conventions
of (C.2). Using recursively the identity

− 2x2
ij∆2K̃∆+1(x, z;xi)K̃∆+1(x, z;xj)

=
(1

2∂µ∂
µ −∆(2∆− 1)

)
(K̃∆(x, z;xi)K̃∆(x, z;xj)) , (5.18)

which can be derived from (C.3), we obtain

D
(
K̃∆φ

(x, z;x1)K̃∆φ
(x, z;x2)

)
= (−2x2

12)L
(

Γ(∆φ + L)
Γ(∆φ)

)2

K̃∆φ+L(x, z;x1)K̃∆φ+L(x, z;x2) . (5.19)

Inserting this into equation (5.16), summing over the permutations and remembering the
definition of C∆ in (C.2), we get

〈φ(x1)φ(x2)φ(x3)φ(x4)〉(1)
L

= gL[(x2
13x

2
24)L + (x2

12x
2
34)L + (x2

14x
2
23)L]

× 22L−1π−2
(

Γ(∆φ + L)
Γ(∆φ + 1

2)

)4

D∆φ+L,∆φ+L,∆φ+L,∆φ+L(x1, x2, x3, x4) . (5.20)

Using (C.4) we immediately get

〈φ(x1)φ(x2)φ(x3)φ(x4)〉(1)
L = gL(1 + z2L + (1− z)2L) (5.21)

×
4L−1π−

3
2 Γ(2∆φ − 1

2 + 2L)
Γ(∆φ + 1

2)4 (x2
13 x

2
24)∆φ

D̄∆φ+L,∆φ+L,∆φ+L,∆φ+L(z)

in perfect agreement with (5.3). In the following, we will perform some diagrammatic
checks on the claim that, starting for an arbitrary interaction with up to L derivatives, the
result can be recast as a linear combination of f (1)

` (z) with ` ≤ L.

5.1.1 Checks

The case with no derivatives is trivial since the D-function are defined precisely as the
first-order correlator with a quartic contact interaction with no derivatives

〈φ∆φ
(x1)φ∆φ

(x2)φ∆φ
(x3)φ∆φ

(x4)〉(1)
L=0 = g0 4! C4

∆φ
D∆φ∆φ∆φ∆φ

(x1, x2, x3, x4) (5.22)

= g0
3π− 3

2 Γ(2∆φ − 1
2)

4 Γ(∆φ + 1
2)4(x2

13 x
2
24)∆φ

D̄∆φ∆φ∆φ∆φ
(z) ,

in agreement with (5.21) for L = 0.
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Let us consider now the interaction term

Lint = −(gµν∂µφ∂νφ) . (5.23)

Using the identity (C.3), the result of the Wick contractions can be written explicitly in
terms of D̄-functions as

〈φ∆φ
(x1)φ∆φ

(x2)φ∆φ
(x3)φ∆φ

(x4)〉(1)
L=1

=
C4

∆φ

(x13x24)2∆φ

√
πΓ(2∆φ − 1

2)
Γ(∆φ)4

(
3∆4

φD̄∆φ∆φ∆φ∆φ

− 4∆2
φ

(
2∆φ −

1
2

)
(D̄∆φ∆φ∆φ+1∆φ+1 + D̄∆φ∆φ+1∆φ∆φ+1 + D̄∆φ+1∆φ∆φ∆φ+1)

+ 4
(

2∆φ −
1
2

)(
2∆φ + 1

2

)(
1 + z2 + (1− z)2

)
D̄∆φ+1∆φ+1∆φ+1∆φ+1

)
. (5.24)

Using (C.10) we can then rewrite this as

〈φ∆φ
(x1)φ∆φ

(x2)φ∆φ
(x3)φ∆φ

(x4)〉(1)
L=1 = 1

(x12 x34)2∆φ

(
a0 f

(1)
0 (z) + a1 f

(1)
1 (z)

)
(5.25)

with

a0 = −1
4∆3

φ (5∆φ − 2) , a1 = 1
4 . (5.26)

The corresponding Mellin amplitude simply reads

M̂
(1)
L=1(s) = a0 M̂∆φ

(s) + a1
[
M̂∆φ+1(s) + M̂∆φ+1(s+ 1) + M̂∆φ+1(s+ 2)

]
, (5.27)

where M̂∆φ
(s) is given in (5.5).

In the case L = 2, we consider the explicit interaction term

Lint = −g (gµν∂µφ∂νφ)2 . (5.28)

Once again, the result of the Wick contractions can be expressed in terms of D̄ functions
(some details on this procedure are outlined in appendix D) and we can rewrite it as

〈φ∆φ
(x1)φ∆φ

(x2)φ∆φ
(x3)φ∆φ

(x4)〉(1)
L=2

= 1
(x13 x24)2∆φ

(
a0 f

(1)
0 (z) + a1 f

(1)
1 (z) + a2 f

(1)
2 (z)

)
(5.29)

with

a0 = −7
2∆φ + 2∆2

φ + 55∆3
φ − 22∆4

φ − 21∆5
φ , (5.30)

a1 = 3
2 + 7∆φ + 14∆2

φ + 14∆3
φ + 8∆4

φ , (5.31)

a2 = 1 . (5.32)
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Notice that, unlike the L = 1 case, we found that the identities listed in appendix C are
not enough to recombine the result in the form (5.29), but we need to use a new relation

z2D̄∆φ+1∆φ+1∆φ+2∆φ+2 + D̄∆φ+1∆φ+2∆φ+1∆φ+2 + (1− z)2D̄∆φ+2∆φ+1∆φ+1∆φ+2

=
∆4
φ

2(3 + 4∆φ)D̄∆φ∆φ∆φ∆φ

+
3 + 8∆φ + 6∆2

φ

2(3 + 4∆φ)
(
1 + z2 + (1− z)2

)
D̄∆φ+1∆φ+1∆φ+1∆φ+1 , (5.33)

which we tested numerically and for integer values of ∆φ. This identity is not a consequence
of the higher-dimensional ones given in [65] and we believe it is a new, inherently one-
dimensional relation among D functions. Studying other interactions would lead to new
identities of this kind.

The Mellin amplitude associated to (5.29) can be again put in the form (5.10), and
reads explicitly

M̂
(1)
L=2(s) = a0M̂∆φ

(s) + 2a1(M̂∆φ+1(s) + M̂∆φ+1(s+ 1) + M̂∆φ+1(s+ 2))

+ 2a3
(
M̂∆φ+2(s) + 2M̂∆φ+2(s+ 1) + 3M̂∆φ+2(s+ 2)

+ 2M̂∆φ+2(s+ 3) + M̂∆φ+2(s+ 4)
)
. (5.34)

5.2 CFT data

Given the closed-form expression (5.10) for the perturbative Mellin amplitude, we can use
it to extract the CFT data

∆ ≡ ∆n,L = 2∆φ + 2n+ gL γ̂
(1)
L,n(∆φ) + . . . , (5.35)

c∆ ≡ cn,L = c(0)
n (∆φ) + gL c

(1)
L,n(∆φ) + . . . , (5.36)

where n ∈ N and c
(0)
n is given in (3.31). In (5.35)–(5.36) we are assuming that the AdS

interaction only modifies the CFT data of the two-particle operators exchanged in GFF.
If we insert (5.35)–(5.36) in the general Mellin OPE expansion (3.19), at first order in
gL one obtains double and single poles at s = 2∆φ + p, p ∈ N. One can then compare
the corresponding residues with the ones in the tree-level Mellin amplitude (5.10), which
amounts to solve the equations formally written as

∑
n

c(0)
n (∆φ)γ̂(1)

L,n(∆φ) (−1)pΓ(4∆φ + 4n)Γ(2∆φ + p)2

Γ(2∆φ + 2n)2Γ(4∆φ + 2n+ p)Γ(p− 2n+ 1)

= lim
s→2∆φ+p

(s− 2∆φ − p)2M̂
(1)
L (s) , (5.37)

∑
n

(c(1)
L,n(∆φ)+ c(0)

n (∆φ)γ̂(1)
L,n(∆φ)∂n) (−1)pΓ(4∆φ + 4n)Γ(2∆φ + p)2

Γ(2∆φ + 2n)2Γ(4∆φ + 2n+ p)Γ(p− 2n+ 1)

= Ress=2∆φ+pM̂
(1)
L (s) (5.38)
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for the leading-order corrections γ̂(1)
L,n(∆φ) and c

(1)
L,n(∆φ). Since the function M̂

(1)
L (s) is

known explicitly, it is possible to write down a linear system for the anomalous dimensions
γ̂

(1)
L,n(∆φ). To do this, let us use the form (5.5) for M̂ (1)

∆φ
(s) to rewrite (5.37) as

∑
n

c(0)
n (∆φ)γ̂(1)

L,n(∆φ) Γ(4∆φ + 4n)Γ(2∆φ + p)2

Γ(2∆φ + 2n)2Γ(4∆φ + 2n+ p)Γ(p− 2n+ 1) (5.39)

=
2L∑
k=0

(−1)kck,LP∆φ+L(2∆φ + p+ k) .

Notice that the sum on the l.h.s. of (5.39) is truncated by the Γ(p− 2n+ 1) in the denom-
inator. This means that, at fixed value of p, equation (5.39) provides an invertible linear
system which can be solved for γ. The system can also be inverted explicitly using the
identity

2n∑
p=0

(4m+ 4∆φ − 1) Γ(p+ 4∆φ + 2m− 1)(−1)p
Γ(2m− p+ 1) Γ(2∆ + p)2

Γ(2∆φ + p)2

Γ(4∆φ + 2n+ p)Γ(p− 2n+ 1) = δm,n

(5.40)

yielding (5.13), which we rewrite here

γ̂
(1)
L,n(∆φ) = Γ(L+ ∆φ)4

Γ(2L+ 2∆φ)

2n∑
p=0

2L∑
k=2L−p

k+p−2L∑
l=0

(−1)kck,L (5.41)

×
(4∆φ + 2n− 1)p(−2n)p(2L− k − p)l(1−∆φ − L)l(2∆φ + k + p)l(1

2)l
(l!)3(2∆φ)p(1

2 + ∆ + L)l
.

Equation (5.41) has been derived under the assumption that ∆φ takes integer values.
However one can argue that it holds for any ∆φ by noticing that the result for L = 0 agrees
with that of [33], which has been obtained without assuming integer ∆φ. Furthermore,
equation (5.10) implies that the CFT data at L = 0 fully determine those at higher L or,
in other words, equation (5.41) could be rewritten as a combination of anomalous dimension
for L = 0. This is enough to show that (5.41) holds for any ∆φ.

Notice that all the sums in (5.41) are finite, so for a given value of L and n it is
straightforward to extract the value of the anomalous dimension γ̂

(1)
L,n(∆φ). It turns out

expression (5.41) can be rewritten as

γ̂
(1)
L,n(∆φ) = ĜL,n(∆φ)P̂L,n(∆φ) , (5.42)

where

ĜL,n(∆φ) =
√
π4−2∆−L+1Γ(2∆)2Γ(L+ 1

2)Γ(L+ ∆)4Γ(L+ 2∆− 1
2)Γ(n+ ∆ + 1

2)Γ(L− n+ ∆)
Γ(L+ 1)Γ(L+ ∆ + 1

2)2Γ(L+ 2∆)Γ(n+ ∆)3Γ(2n+ 2∆− 1
2)Γ(L+ n+ ∆ + 1

2)
,

(5.43)

while P̂L,n(∆φ) is a polynomial in n and in ∆φ of degree 6L. It is easy to extract these
polynomials from (5.13), but since they are very long we attach to the paper a short
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Mathematica notebook where the function FindPolynomial[L,∆,n] allows to extract P̂L,n
for many values of L (the function gets slower and slower at higher L, but in principle it
works for any L).

To make contact with the bootstrap results, the coefficients a` in the definition (5.10)
of ML(s) should be chosen so as to have the bootstrap normalization, namely γ(1)

`,L = 0 for
0 ≤ ` < L, and γ(1)

L,L = 1. In this case we have

γ
(1)
L,n(∆φ) = GL,n(∆φ)PL,n(∆φ) , (5.44)

where

GL,n(∆φ) =
4−L

(
L+ 1

2

)
∆φ

(L+ ∆φ)∆φ
(−L+ n+ 1)∆φ−1

(
L+ n+ ∆φ + 1

2

)
∆φ−1

Γ (∆φ) (∆φ)3L

(
2L+ ∆φ + 1

2

)
∆φ−1

(
L+ 2∆φ − 1

2

)
2L

(
n+ 1

2

)
∆φ

(n+ ∆φ)∆φ

, (5.45)

while PL,n(∆φ) is a polynomial of degree 4L in n and 5L in ∆φ. The explicit poly-
nomials for the first few values of L are detailed in appendix E and, up to L = 3,
they perfectly agree with the result of [30]. The Mathematica notebook in the sup-
plementary material has values of L ranging from L = 0 to L = 8 as well as a func-
tion FindBootstrapPolynomial[L,∆,n] to compute PL,n(∆φ) for arbitrary L.

5.3 Alternative formulation of Mellin amplitude

We conclude this section by pointing out that there is another noteworthy definition of
Mellin transform, identified by taking a = −2∆φ + 1 in equation (3.2):

M−2∆φ+1(s) ≡ M̃∆φ
(s) =

ˆ ∞
0

dt f(t)
(

t

1 + t

)−2∆φ+1
t−1−s. (5.46)

The interesting feature of this particular choice is to provide the simplest representation
for Mellin amplitudes of D̄-functions. We can motivate this claim by looking at the more
general expression (3.2), where a is a free parameter. We rewrite this in terms of the
D̄-functions using the identity (2.10)

Ma(s) =
ˆ ∞

0
dt D̄∆φ∆φ∆φ∆φ

(t)
(

t

1 + t

)2∆φ
(

t

1 + t

)a
t−1−s. (5.47)

In particular, if we consider for example D̄1111, we obtain

Ma(s) = 2Γ(s− 1)Γ(a+ 2∆φ − s)(ψ(s− 1)− ψ(a+ 2∆φ − s))
Γ(a+ 2∆φ − 1)

+ 2Γ(s− 1)Γ(a+ 2∆φ − s− 1)(ψ(a+ 2∆φ − 2)− ψ(s− 1))
Γ(a+ 2∆φ − 2)

. (5.48)

This expression simplifies for an integer value of the parameter a below a certain threshold,
namely a ≤ −2∆φ + 1. Considering the region of convergence of (5.47), we need

∆0 > ∆φ −
a

2 , (5.49)
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and given that ∆0 = 2∆φ, the only simple convergent integral has a = 2∆φ + 1, yield-
ing (5.46) and the simple Mellin amplitude for D̄1111

M̃1(s) = 2 Γ(−s)Γ(s− 1). (5.50)

See equations (5.5) and (5.55) to appreciate the difference between the two representations
of the D̄-functions, obtained respectively with (5.4) and (5.46).
Apart from this property, (5.46) satisfies (3.3), which reads

M̃(s) = M̃(1− s) . (5.51)

Using (2.8) and (2.9), we can then derive the strip of convergence of this Mellin definition

2∆φ −∆0 < Re(s) < 1 + ∆0 − 2∆φ , (5.52)

which translates, perturbatively (∆0 = 2∆φ), in

0 < Re(s) < 1 . (5.53)

The inverse Mellin transform reads

f(t) =
ˆ c+i∞

c−i∞

ds

2πi M̃(s)
(

t

1 + t

)2∆φ−1
ts (5.54)

where the range of the real constant c is the same of Re(s) in (5.52), and therefore in
perturbation theory the contour of the integral in the complex s-plane is any straight line
within the interval (5.53).
We can finally report a general structure for the Mellin transform of the D̄-functions

M̃∆φ
(s) = P∆φ

(s) Γ(−s− 2∆φ + 2)Γ(s− 2∆φ + 1) , (5.55)

where

P∆φ
(s) = 2 Γ(2∆φ − 1)4F3

(
{−s− 2∆φ + 2, s− 2∆φ + 1, 1−∆φ, 1−∆φ};

{2− 2∆φ, 2− 2∆φ, 2− 2∆φ}; 1
)
. (5.56)

Note that P∆φ
is a polynomial for integer ∆φ, that we now tabulate for the first few cases,

using a more convenient rewriting, Q∆φ
(s(s− 1)) = P∆φ

(s)

∆φ Q∆φ
(x)

1 2

2 2 (2 + x)

3 32 (24 + 22x+ x2)

4 2592 (720 + 876x+ 100x2 + x3)

5 663552 (40320 + 58416x+ 10508x2 + 300x3 + x4)

(5.57)
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To conclude, we report an alternative closed-form expression valid for integer value of ∆φ

M̃∆φ
(s) =

∆φ−1∑
n=0

2 (−1)n Γ(∆φ)2Γ(2∆φ − 1− n)3

Γ(n+ 1)Γ(∆φ − n)2

× Γ(−s− 2∆φ + 2 + n) Γ(s− 2∆φ + 1 + n) , (5.58)

which is a linear combination of squared Gamma functions.
Despite this nice representation of the D̄-functions, the correspondence between the

poles and the physical exchanged operators is more obscure, in contrast with (3.22)
and (3.23) for the Mellin transform (3.4). We therefore reckoned that the Mellin transform
defined in (3.4) is the most suitable for the applications we presented in this paper, which
have as a main goal the extraction of CFT data.
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A Poles and series

In this appendix we address some subtleties in the perturbative expansion of the Mellin
amplitudes in the context of the analytic sum rules. In all the following, we will consider a
function F̂ (s) defined nonperturbatively and its expansion in a small parameter λ, as well
as the functional

ωK [F̂ ] =
˛

C|∞

ds

2πiF̂ (s)K(s), (A.1)

defined as the contour integral of F̂ (s) over the circle at ∞ in the complex plane with an
integration kernel K(s). This functional is well defined and vanishing for meromorphic
functions F̂ (s) and K(s) such that

F̂ (s)K(s) ∼
|s|→∞

s−1−α α > 0. (A.2)

A.1 Nonperturbative zeros and perturbative poles

The nonperturbative Mellin function M̂(s) has zeros at positions s = 2∆ + n, while the
perturbative expansion has poles in those positions. The reason for this and the subtleties
of evaluating the sum rule will be illustrated with an example.
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Let f(s) be a well-behaved function.18 We define the λ-dependent function

F̂ (s) = (s− 1)f(s)
s− 1− λ . (A.3)

Upon expanding F (s) in the parameter λ, we obtain the geometric series

F̂ (s) =
∞∑
k=0

(
λ

s− 1

)k
f(s), (A.4)

whose radius of convergence is λ < |s − 1|. This perturbative series cannot be evaluated
at finite λ in s = 1, however several features are noteworthy. At s = 1, we have poles of
increasing degree at each order in the λ expansion while the nonperturbative expression
has a simple zero at that point. Let us evaluate the contour integral

ω1[F̂ ] =
˛

ds

2πi
F̂ (s)
s− 1 (A.5)

in three different ways. Firstly, by inserting the nonperturbative F̂
˛

ds

2πi
F̂ (s)
s− 1 =

˛
ds

2πi
f(s)

s− 1− λ = f(1 + λ). (A.6)

This method is the most intuitive way of evaluating (A.5) and is perfectly well defined.
However, it requires the knowledge of the full nonperturbative function, which is generally
unknown.

Secondly, we can consider separately the poles of the integration kernel 1
s−1 from those

of the function F̂ :˛
ds

2πi
F̂ (s)
s− 1 = Res( 1

s− 1)F̂ (1) +
∑
s∗

Res(F̂ )(s∗)
s∗ − 1 = f(1 + λ). (A.7)

This is not identical to the previous method, since it assumes more (notably that the
poles of K(s) and those of F̂ , s∗ above, are distinct) and requires less information from
the nonperturbative function; only the residues of F̂ (s) and the value of F̂ (si) at a finite
number of points are required to evaluate (A.5).

Finally, one can use the series expansion of F̂ (s)

ω1[F̂ ] =
˛

ds

2πi

( ∞∑
k=0

λk

(s− 1)k+1 f(s)
)

=
∞∑
k=0

λkf (k)(1)
k! , (A.8)

which gives the λ-expansion of f(1 + λ). Under the assumption that f is analytic near 1,
we can then resum the Taylor series to obtain f(1 + λ) and obtain the same result as
with the previous two methods. In this specific example, the only operation which is not
allowed is to evaluate F̂ (1) using the nonperturbative series, since the latter has a vanishing
radius of convergence for s = 1. In the next subsection we will explore a setting where the
perturbative evaluation of the functional is problematic and requires the truncation of the
series at a fixed order.

18By this, we mean that f is meromorphic, has no essential singularities and behaves as s−α at large s,
where α is a positive parameter. For simplicity, we take f(s) to be regular, so without poles. However,
including these poles (different to those of F̂ ) is straightforward and does not change the conclusions.
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A.2 Bad Regge behaviour

We now consider another pathological case where the perturbative expansion of the corre-
lator makes the large s behaviour worse than that of the nonperturbative expression. To
illustrate this we take the example

F̂ (s) = f(s)
1− λs2 , (A.9)

and evaluate the functional

ω3[F̂ ] =
˛

C|∞

ds

2πi
F̂ (s)

s(s2 − 1) . (A.10)

The convergence of the integral (A.10) imposes a bound on the large s behaviour of f(s)
in (A.9)19

f(s) ∼
s→∞

s4−α α > 0. (A.11)

The functional (A.10) can then be evaluated explicitly as

ω3[F̂ ] = −f(0) + f(1) + f(−1)
2(1− λ) − λ

2(1− λ)

(
f

( 1√
λ

)
+ f

(
− 1√

λ

))
. (A.12)

The perturbative expansion of F̂ (s) is

F̂ (s) = f(s) + λs2f(s) + λ2s4f(s) +O(λ3). (A.13)

In this perturbative setting, even with a stricter condition on the large s behaviour of f(s)

f(s) ∼
s→∞

s−α α > 0, (A.14)

we must truncate the series at order λ in order to evaluate the functional

ω3[f(s) + λs2f(s)] = −f(0) + f(1) + f(−1)
2 + λ

f(1) + f(−1)
2 . (A.15)

Comparing (A.15) to the small-λ expansion of (A.12)

ω3[F̂ ] = −f(0) + f(1) + f(−1)
2 + λ

f(1) + f(−1)
2 − λ

2

(
f

( 1√
λ

)
+ f

(
− 1√

λ

))
+ o(λ),

(A.16)
we see that the condition of convergence (A.14) is exactly what is needed to get rid of the
final terms and find agreement between the results

−λ2

(
f

( 1√
λ

)
+ f

(
− 1√

λ

))
∼
λ→0

λ1+α
2 =
λ→0

o(λ). (A.17)

We therefore have agreement between the functional of the truncated λ-expansion of F̂ (s)
and the truncated λ-expansion of the functional of F̂ (s)

ω3[F̂ |λ] =
(
ω3[F̂ ]

)
|λ, (A.18)

where the order at which we are required to truncate is controlled by the large s behaviour
of K (which can always be chosen to satisfy the convergence condition (A.2) at a given
order of expansion).

19As in the previous case, we consider that f(s) is meromorphic in s and ignore its poles, since they act
as spectators in the comparison between the perturbative and nonperturbative case.
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B Sum rules for other generalized free field theories

In this appendix we apply the sum rules discussed in section 4 to other examples of gen-
eralised free theories (GFF) in which the spectrum of exchanged operators is known. For
these theories, sum rules are obtained inserting (4.14) into (4.4) and using the GFF spec-
trum, and read∑

∆,k
c∆

(−1)k+1Γ(2∆)Γ(∆ + k)
Γ(∆)2Γ(2∆ + k)Γ(2∆φ −∆− k)Γ(k + 1)

( 1
∆ + k + p

− 1
2∆φ −∆− k + p

)
= 0 .

(B.1)

The GFF spectrum ∆ = 2∆φ + n for exchanged operators has the effect of truncating the
sum above, because of the factor of Γ(2∆φ −∆− k) in the denominator. The example of
bosonic GFF in section 4.2.1 illustrates the case of even n, namely ∆ = 2∆φ + 2n. Here
we extend this to odd integers, namely ∆ = 2∆φ + 2n + 1, in covering the free fermionic
model. We also consider the free bosonic and fermionic models with O(N) symmetry.

In the case of a free fermion theory, the spectrum ∆ = 2∆φ + 2n + 1 of exchanged
operators leads to the sum rule

p∑
n=0

cn
2Γ(2p+ 1)Γ(2(p+ ∆φ))

(
∆φ − 2∆φp+ 2n2 + 4∆φn+ n

)
Γ(4n+ 4∆φ + 2)

Γ(2p− 2n+ 1)Γ(2n+ 2∆φ + 1)2Γ(2(p+ n+ 2∆φ + 1)) = 0.

(B.2)

Just like in the bosonic case, see (4.17), this is a recursive relation for the OPE coefficients,
whose general solution is

c(0)
n = 2Γ(2n+ 2∆φ + 1)2Γ(2n+ 4∆φ)

Γ(2∆φ)Γ(2∆φ + 1)Γ(2n+ 2)Γ(4n+ 4∆φ + 1) . (B.3)

This is confirmed by the vanishing of (B.2). As usual, this is true up to an overall scaling,
and the choice in (B.3) is set by requiring c(0)

0 = 1.
Let us consider a bosonic four-point function with O(N) symmetry. We write

the Mellin amplitude as a sum of the singlet, antisymmetric and traceless symmetric
contributions

M̂1234(s) = M̂Sδ12δ34 + M̂A(δ13δ24 − δ14δ23) + M̂T
(
δ13δ24 + δ14δ23

2 − δ12δ34

N

)
, (B.4)

with scalar coefficient functions M̂S(s), M̂A(s) and M̂T (s). In these channels, exchanged
operators will be of the form φi∂

2n
x φi,φ[i∂2n+1

x φj],φ(i∂2n
x φj) respectively, with same spectra

of exchanged operators previously seen (∆ = 2∆φ + 2n, ∆ = 2∆φ + 2n+ 1, ∆ = 2∆φ + 2n
respectively). Therefore we get the corresponding OPE coefficients

cSn = cS0
2Γ(2n+ 2∆φ)2Γ(2n+ 4∆φ − 1)

Γ(2∆φ)2Γ(2n+ 1)Γ(4n+ 4∆φ − 1) , (B.5)

cAn = cA0
2Γ(2n+ 2∆φ + 1)2Γ(2n+ 4∆φ)

Γ(2∆φ)Γ(2∆φ + 1)Γ(2n+ 2)Γ(4n+ 4∆φ + 1) , (B.6)

cTn = cT0
2Γ(2n+ 2∆φ)2Γ(2n+ 4∆φ − 1)

Γ(2∆φ)2Γ(2n+ 1)Γ(4n+ 4∆φ − 1) , (B.7)
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up to a normalisation factor which can be easily found by looking at the first identity
contribution in the different channels. This gives the known result (see for example [30])

cSn = 1
N

2Γ(2n+ 2∆φ)2Γ(2n+ 4∆φ − 1)
Γ(2∆φ)2Γ(2n+ 1)Γ(4n+ 4∆φ − 1) , (B.8)

cTn = 2Γ(2n+ 2∆φ)2Γ(2n+ 4∆φ − 1)
Γ(2∆φ)2Γ(2n+ 1)Γ(4n+ 4∆φ − 1) , (B.9)

cAn = − 2Γ(2n+ 2∆φ + 1)2Γ(2n+ 4∆φ)
Γ(2∆φ)2Γ(2n+ 2)Γ(4n+ 4∆φ + 1) . (B.10)

The same procedure for free fermions with O(N) symmetry leads to

cSn = 1
N

2Γ(2n+ 2∆φ + 1)2Γ(2n+ 4∆φ)
Γ(2∆φ)Γ(2∆φ + 1)Γ(2n+ 2)Γ(4n+ 4∆φ + 1) , (B.11)

cTn = 2Γ(2n+ 2∆φ + 1)2Γ(2n+ 4∆φ)
Γ(2∆φ)Γ(2∆φ + 1)Γ(2n+ 2)Γ(4n+ 4∆φ + 1) , (B.12)

cAn = −2∆φΓ(2n+ 2∆φ)2Γ(2n+ 4∆φ − 1)
Γ(2∆φ)2Γ(2n+ 1)Γ(4n+ 4∆φ − 1) . (B.13)

C D-functions

The quartic contact diagrams with external conformal dimensions ∆i are expressed in terms
of D-functions [57–59], defined for the general case of AdSd+1 as

D∆1∆2∆3∆4(x1, x2, x3, x4) =
ˆ
dzddx

zd+1 K̃∆1(z, x;x1)K̃∆2(z, x;x2)K̃∆3(z, x;x3)K̃∆4(z, x;x4)
(C.1)

via the bulk-to-boundary propagator in d dimensions

K∆(z, x;x′) = C∆

[
z

z2 + (x− x′)2

]∆
≡ C∆ K̃∆(z, x;x′) , C∆φ

= Γ (∆φ)
2
√
π Γ

(
∆φ + 1

2

) .
(C.2)

For vertices with derivatives, the following identity is useful

gµν∂µK̃∆1(z, x;x1) ∂νK̃∆2(z, x;x2)

= ∆1∆2
[
K̃∆1(z, x;x1)K̃∆2(z, x;x2)− 2x2

12K̃∆1+1(z, x;x1)K̃∆2+1(z, x;x2)
]
,
(C.3)

where gµν = z2δµν and ∂µ = (∂z, ∂r), r = 0, 1, 2, . . . , d− 1.
To make explicit the covariant form of the correlator it is useful to introduced the

“reduced” functions D̄ [59], defined as (Σ ≡ 1
2
∑
i ∆i)

D∆1∆2∆3∆4 =
π
d
2 Γ
(
Σ− d

2

)
2 Γ (∆1) Γ (∆2) Γ (∆3) Γ (∆4)

x
2(Σ−∆1−∆4)
14 x

2(Σ−∆3−∆4)
34

x
2(Σ−∆4)
13 x2∆2

24
D̄∆1∆2∆3∆4(u, v)

(C.4)
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and depending only on the cross-ratios u = x12x34
x13x24

, v = x14x23
x13x24

. Their explicit expression in
terms a Feynman parameter integral reads in the general case

D̄∆1∆2∆3∆4(u, v)=
ˆ
dαdβdγ δ(α+ β + γ − 1)α∆1−1β∆2−1γ∆3−1 Γ (Σ−∆4) Γ (∆4)(

αγ+αβ u+βγ v
)Σ−∆4

.

(C.5)
In d = 1 as usual they only depend on the single variable z (u = z2, v = (1− z)2),

D̄∆∆∆∆(z) = Γ(∆)4

Γ(2∆)(1− z)−2∆
ˆ +∞

−∞
dτ e−τ 2F1

(
∆,∆, 2∆,− 4z

(1− z2) cosh2 τ

2

)
. (C.6)

Some explicit expression for D̄-functions read

D̄1111 = −2 log(1− z)
z

− 2 log(z)
1− z , (C.7)

D̄2222 = −2
(
z2 − z + 1

)
15(1− z)2z2 +

(
2z2 − 5z + 5

)
log(z)

15(z − 1)3 −
(
2z2 + z + 2

)
log(1− z)

15z3 , (C.8)

D̄3333 =
(
8z4 − 36z3 + 64z2 − 56z + 28

)
log(z)

105(z − 1)5

+
(
−8z4 − 4z3 − 4z2 − 4z − 8

)
log(1− z)

105z5

+−24z6 + 72z5 − 74z4 + 28z3 − 74z2 + 72z − 24
315(z − 1)4z4 . (C.9)

Further expressions can be found through the identities in [59]. Useful relations be-
tween D̄-function of consequent weight are

∆ D̄∆∆∆∆ = D̄∆∆∆+1∆+1 + D̄∆∆+1∆∆+1 + D̄∆+1∆∆∆+1 , (C.10)

(∆2 + ∆4 − Σ) D̄∆1∆2∆3∆4 = D̄∆1∆2+1∆3∆4+1 − D̄∆1+1∆2∆3+1∆4 , (C.11)

(∆1 + ∆4 − Σ) D̄∆1∆2∆3∆4 = D̄∆1+1∆2∆3∆4+1 − (1− z)2D̄∆1∆2+1∆3+1∆4 , (C.12)

(∆3 + ∆4 − Σ) D̄∆1∆2∆3∆4 = D̄∆1∆2∆3+1∆4+1 − z2D̄∆1+1∆2+1∆3∆4 , (C.13)

D̄∆1∆2∆3∆4 = (1− z)2(∆1+∆4−Σ)D̄∆2∆1∆4∆3 , (C.14)

= D̄Σ−∆3Σ−∆4Σ−∆1Σ−∆2 , (C.15)

= z2(∆3+∆4−Σ)D̄∆4∆3∆2∆1 . (C.16)

D Details on diagrammatic checks

In this section we give some details on the diagrammatics checks performed in section 5.1.
We compute the four-point function resulting from the L = 2 interaction term

Lint = −g(∂µ∂νφ∂µ∂νφ)2, (D.1)

to illustrate the convenience of the basis of interaction terms (5.2) described in the main
text and write the correlator in term of f (1)

L (z) defined in (5.3). This interaction leads to
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the connected part of the four-point correlator

〈φ(x1)φ(x2)φ(x3)φ(x4)〉|conn =
∑

σ({x1,x2,x3,x4})
I(x1, x2, x3, x4), (D.2)

where the integral

I(x1, x2, x3, x4) = g

ˆ
dxdy

y2

(
AK4

∆φ
− 4Bx2

34K
2
∆φ
K2

∆φ+1 + 4Cx2
12x

2
34K

4
∆φ+1

+ 8Dx4
34K

2
∆φ
K2

∆φ+2 − 8Ex2
12x

4
34K

2
∆φ+1K

2
∆φ+2 + 16Fx4

12x
4
34K

4
∆φ+2

)
.

(D.3)

corresponds to one specific choice of Wick contractions. Above, we used the identity (C.3)
to rewrite the derivatives of propagators, and used the shorthand notation

K2
∆φ+1K

2
∆φ+2 = K∆φ+1(x, y;x1)K∆φ+1(x, y;x2)K∆φ+2(x, y;x3)K∆φ+2(x, y;x4). (D.4)

The constants in (D.3) are given explicitly by

A = ∆8
φ , B = (∆4

φ + ∆2
φ(∆φ + 1)2)∆4

φ , C = (∆4
φ+∆2

φ(∆φ+1)2)2 ,

D = ∆6
φ(∆φ + 1)2 , E = ∆2

φ(∆φ+1)2(∆4
φ+∆2

φ(∆φ+1)2) , F = ∆4
φ(1 + ∆4

φ). (D.5)

Performing the integrals and permutations, we find from the first three terms in (D.3) the
contribution∑

σ({x1,x2,x3,x4})

ˆ
dxdy

y2 AK4
∆φ

= 4!gAkD̄∆φ∆φ∆φ∆φ
, (D.6)

− 4B
∑

σ({xi=1...4})

ˆ
dxdy

y2 x2
34K

2
∆φ
K2

∆φ+1

= −16kB
(2∆φ − 1

2)
∆φ

D̄∆φ∆φ∆φ∆φ
, (D.7)

4C
∑

σ({...})

ˆ
dxdy

y2 x2
12x

2
34K

4
∆φ+1

= 32kC
(2∆φ + 1

2)(2∆φ − 1
2)

∆4
φ

(1 + z2 + (1− z)2)D̄∆φ+1∆φ+1∆φ+1∆φ+1, (D.8)

where we have use the identity (C.10) from [65]. The next two terms give

8D
∑

σ({...})

ˆ
dxdy

y2 x4
ijK

2
∆φ
K2

∆φ+2

= 64kD
(2∆φ + 1

2)(2∆φ − 1
2)

∆2
φ(∆φ + 1)2

× (2D̄∆φ∆φ∆φ∆φ
+ (1 + z2 + (1− z2))D̄∆φ+1∆φ+1∆φ+1∆φ+1) (D.9)
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and

− 8E
∑

σ({...})

ˆ
dxdy

y2 x2
12x

4
34K

2
∆φ+1K

2
∆φ+2

= − 64kE
Γ(2∆φ − 1

2 + 3)
Γ(2∆φ − 1

2)∆4
φ(∆φ + 1)2

( ∆4
φ

2(3 + 4∆φ)D̄∆φ∆φ∆φ∆φ

+
3 + 8∆φ + 6∆2

φ

2(3 + 4∆φ) (1 + z2 + (1− z)2)D̄∆φ+1∆φ+1∆φ+1∆φ+1

)
, (D.10)

where we have used the identities (C.11) and (C.14) also from [65] as well as the new
identity (5.33). Finally the last term in (D.3) gives

16F
∑

σ({...})

ˆ
dxdy

y2 x4
12x

4
34K

4
∆φ+2 = 128kF

Γ(2∆φ − 1
2 + 4)

Γ(2∆φ − 1
2)∆4

φ(∆φ + 1)4

× (1 + z4 + (1− z)4)D̄∆φ+2∆φ+2∆φ+2∆φ+2. (D.11)

In all the previous computations, it was useful to factor out the φ4 normalisation

k =
√
πΓ(2∆φ − 1

2)
2Γ(∆φ)4(x13x24)2∆φ

. (D.12)

Combining these contributions, we obtain

〈φ(x1)φ(x2)φ(x3)φ(x4)〉|conn =
√
πΓ(2∆φ − 1

2)
2Γ(∆φ)4(x13x24)2∆φ

(
a0D̄∆φ∆φ∆φ∆φ

(D.13)

+ a1(1 + z2 + (1− z)2)D̄∆φ+1∆φ+1∆φ+1∆φ+1

+ a2(1 + z4 + (1− z)4)D̄∆φ+2∆φ+2∆φ+2∆φ+2
)

with coefficients

a0 = −4∆4
φ(2∆φ(∆φ(∆φ(21∆φ + 22)− 55)− 2) + 7) , (D.14)

a1 = 4(4∆φ − 1)(4∆φ + 1)(2∆φ(2∆φ(∆φ(4∆φ + 7) + 7) + 7) + 3) , (D.15)
a2 = 8(4∆φ − 1)(4∆φ + 1)(4∆φ + 3)(4∆φ + 5) , (D.16)

which gives the expansion in terms of the f (1)
L (z) basis stated in equation (5.29).

E Anomalous dimensions for higher derivative interactions

In this section, we list the various results for the polynomial part of the anoma-
lous dimension in equation (5.44). The Mathematica notebook in the supplemen-
tary material has values of L ranging from L = 0 to L = 8 as well as a func-
tion FindBootstrapPolynomial[L,∆,n] to compute PL,n(∆φ) for arbitrary L (the func-
tion gets slower and slower at higher L, but in principle it works for any L).

P0,n(∆) = 1 (E.1)

P1,n(∆) = 8(2∆ + 1)n4 + 8(8∆2 + 2∆− 1)n3 + 2(2∆− 1)(2∆ + 1)(12∆ + 1)n2

+ (64∆4 − 28∆2 − 2∆ + 2)n+ ∆2(16∆3 − 13∆− 3) (E.2)
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P2,n(∆) = 64(2∆ + 3)(2∆ + 5)n8 + 128(2∆ + 3)(2∆ + 5)(4∆− 1)n7

+ 32(2∆ + 3)(2∆ + 5)(56∆2 − 22∆− 1)n6

+ 32(2∆ + 3)(2∆ + 5)(4∆− 1)(28∆2 − 5∆− 5)n5

+ 4(2∆ + 3)(2240∆5 + 4800∆4 − 2924∆3 − 2156∆2 + 246∆− 415)n4

+ 8(2∆ + 3)(4∆− 1)(224∆5 + 576∆4 − 158∆3 − 572∆2 − 243∆− 160)n3

+ 4(2∆− 1)(2∆ + 3)(448∆6 + 1392∆5 + 84∆4

− 2183∆3 − 2091∆2 − 1134∆− 105)n2

+ 4(2∆ + 3)(4∆− 1)(64∆7 + 208∆6 − 36∆5 − 605∆4

− 554∆3 − 30∆2 + 243∆ + 90)n
+ (∆− 2)(∆− 1)∆2(∆ + 1)2(4∆ + 3)(4∆ + 5)(4∆ + 7)(4∆ + 9) (E.3)

P3,n(∆) = 512(2∆ + 5)(2∆ + 7)(2∆ + 9)n12

+ 1536(2∆ + 5)(2∆ + 7)(2∆ + 9)(4∆− 1)n11

+ 128(2∆ + 5)(2∆ + 7)(2∆ + 9)(264∆2 − 102∆ + 5)n10

+ 640(2∆ + 5)(2∆ + 7)(2∆ + 9)(4∆− 1)(44∆2 − 7∆− 3)n9

+ 96(2∆ + 5)(2∆ + 7)(5280∆5 + 22080∆4 − 8610∆3

− 4790∆2 − 798∆− 2931)n8

+ 96(2∆ + 5)(2∆ + 7)(4∆− 1)(2112∆5 + 9792∆4 + 268∆3

− 5448∆2 − 4628∆− 5493)n7

+ 8(2∆ + 5)(2∆ + 7)(118272∆7 + 556416∆6 − 8736∆5 − 656280∆4

− 661308∆3 − 560400∆2 + 371392∆ + 17415)n6

+ 24(2∆ + 5)(2∆ + 7)(4∆− 1)(8448∆7 + 45504∆6 + 22128∆5 − 79708∆4

− 143680∆3 − 114082∆2 + 52985∆ + 27645)n5

+ 4(2∆ + 5)(253440∆10 + 2327040∆9 + 5816640∆8 − 1506240∆7

− 22985970∆6 − 33151830∆5 − 9079800∆4

+ 25792815∆3 + 10370477∆2 − 446534∆ + 2131794)n4

+ 8(2∆ + 5)(4∆− 1)(14080∆10 + 142080∆9 + 423840∆8 + 8160∆7

− 2172753∆6 − 4187481∆5 − 1812050∆4 + 3606930∆3

+ 3965596∆2 + 1661325∆ + 791091)n3

+ 6(2∆− 1)(2∆ + 5)(11264∆11 + 125184∆10 + 437120∆9 + 118880∆8

− 2771604∆7 − 6808095∆6 − 4248981∆5 + 6860955∆4

+ 13140919∆3 + 9496058∆2 + 4002384∆ + 360360)n2

+ 2(2∆ + 5)(4∆− 1)(3072∆12 + 36096∆11 + 132224∆10 − 3360∆9

− 1214676∆8 − 2926395∆7 − 970776∆6 + 6196080∆5

+ 10143424∆4 + 5128059∆3 − 1542528∆2

− 3028860∆− 907200)n
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+ (∆− 3)(∆− 2)(∆− 1)∆2(∆ + 1)2(∆ + 2)2(4∆ + 5)(4∆ + 7)
× (4∆ + 9)(4∆ + 11)(4∆ + 13)(4∆ + 15) (E.4)

P4,n(∆) = 4096(2∆ + 7)(2∆ + 9)(2∆ + 11)(2∆ + 13)n16

+ 16384(2∆ + 7)(2∆ + 9)(2∆ + 11)(2∆ + 13)(4∆ − 1)n15

+ 4096(2∆ + 7)(2∆ + 9)(2∆ + 11)(2∆ + 13)(120∆2 − 46∆ + 7)n14

+ 28672(2∆ + 7)(2∆ + 9)(2∆ + 11)(2∆ + 13)(4∆ − 1)(20∆2 − 3∆ + 1)n13

+ 3584(2∆ + 7)(2∆ + 9)(2∆ + 11)(4160∆5 + 25792∆4 − 7972∆3

+ 492∆2 − 3226∆− 4411)n12

+ 7168(2∆ + 7)(2∆ + 9)(2∆ + 11)(4∆− 1)(1248∆5 + 8320∆4 + 1250∆3

− 1212∆2 − 4345∆− 6701)n11

+ 256(2∆ + 7)(2∆ + 9)(2∆ + 11)(256256∆7 + 1729728∆6 + 321552∆5

− 936460∆4 − 2427586∆3 − 3105914∆2

+ 1545816∆− 79747)n10

+ 256(2∆ + 7)(2∆ + 9)(2∆ + 11)(4∆ − 1)(91520∆7 + 681824∆6

+ 526504∆5 − 536006∆4 − 2203884∆3 − 3054486∆2

+ 699565∆ + 231233)n9

+ 16(2∆ + 7)(2∆ + 9)(13178880∆10 + 174839808∆9 + 659459328∆8

+ 370120704∆7 − 1507101288∆6 − 4185296472∆5

− 3717767352∆4 + 2594242000∆3 + 1067629196∆2

+ 296694632∆ + 503911639)n8

+ 64(2∆ + 7)(2∆ + 9)(4∆− 1)(732160∆10 + 10396672∆9 + 45167232∆8

+ 44861184∆7 − 128566164∆6 − 480365940∆5

− 542486796∆4 + 170661206∆3 + 403434322∆2

+ 307711299∆ + 231008470)n7

+ 224(2∆ + 7)(2∆ + 9)(585728∆12 + 8639488∆11 + 39795712∆10

+ 40021376∆9 − 176304336∆8 − 651152844∆7

− 674083806∆6 + 532826594∆5 + 1165237298∆4

+ 880352685∆3 + 360698099∆2 − 378955568∆
− 17760721)n6

+ 224(2∆ + 7)(2∆ + 9)(4∆− 1)(79872∆12 + 1271296∆11 + 6677760∆10

+ 9396800∆9 − 34061064∆8 − 162523434∆7

− 218423448∆6 + 107652922∆5 + 541890573∆4

+ 598609766∆3 + 245408674∆2 − 202513461∆
− 83223976)n5
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+ 8(2∆ + 7)(7454720∆15 + 158040064∆14 + 1256557568∆13

+ 4122560512∆12 − 544261312∆11 − 46507083392∆10

− 139137963132∆9 − 105682423784∆8 + 287513169874∆7

+ 747774586741∆6 + 634799597831∆5 − 73494607795∆4

− 540330812601∆3 − 176220396094∆2 − 4065249156∆
− 37155662874)n4

+ 16(2∆ + 7)(4∆− 1)(286720∆15 + 6479872∆14 + 56057344∆13

+ 206398976∆12 + 5481504∆11 − 2738567776∆10

− 9579643446∆9 − 9234813086∆8 + 23720894549∆7

+ 80775271163∆6 + 87715690571∆5 − 1953092747∆4

− 96443198730∆3 − 81493394712∆2 − 33710278446∆
− 13620018456)n3

+ 8(2∆ + 7)(2∆− 1)(245760∆16 + 5926912∆15 + 55634944∆14

+ 227535616∆13 + 40873280∆12 − 3507911344∆11

− 14104347484∆10 − 16399401415∆9 + 41696678246∆8

+ 175336044542∆7 + 232465979473∆6 + 14198330860∆5

− 344274915821∆4 − 451122478755∆3

− 288164187918∆2 − 107494932816∆− 9428098680)n2

+ 8(2∆ + 7)(4∆− 1)(16384∆17 + 413696∆16 + 4072448∆15 + 17113344∆14

− 3852352∆13 − 348478480∆12 − 1390768244∆11

− 1287252149∆10 + 6772064077∆9 + 24985583487∆8

+ 28270657594∆7 − 20460756119∆6 − 94962146759∆5

− 105214119603∆4 − 36550274148∆3 + 24596517024∆2

+ 29350981800∆ + 7858620000)n
+ (∆− 4)(∆− 3)(∆− 2)(∆− 1)∆2(∆ + 1)2(∆ + 2)2(∆ + 3)2(4∆ + 7)
× (4∆ + 9)(4∆ + 11)(4∆ + 13)(4∆ + 15)(4∆ + 17)(4∆ + 19)(4∆ + 21) (E.5)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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