

City Research Online

City, University of London Institutional Repository

Citation: Ahmed, I. M. and Tsavdaridis, K. D. ORCID: 0000-0001-8349-3979 (2018). Life cycle assessment (LCA) and cost (LCC) studies of lightweight composite flooring systems. Journal of Building Engineering, 20, pp. 624-633. doi: 10.1016/j.jobe.2018.09.013

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27016/

Link to published version: http://dx.doi.org/10.1016/j.jobe.2018.09.013

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

 City Research Online:
 http://openaccess.city.ac.uk/
 publications@city.ac.uk

City Research Online

City, University of London Institutional Repository

Citation: Ahmed, IM and Tsavdaridis, KD ORCID: 0000-0001-8349-3979 (2018). Life cycle assessment (LCA) and cost (LCC) studies of lightweight composite flooring systems. Journal of Building Engineering, 20, doi: 10.1016/j.jobe.2018.09.013

This is the draft version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27016/

Link to published version: http://dx.doi.org/10.1016/j.jobe.2018.09.013

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

 City Research Online:
 http://openaccess.city.ac.uk/
 publications@city.ac.uk

This is a repository copy of Life cycle assessment (LCA) and cost (LCC) studies of lightweight composite flooring systems.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/135979/

Version: Accepted Version

Article:

Ahmed, IM orcid.org/0000-0002-8979-1261 and Tsavdaridis, KD orcid.org/0000-0001-8349-3979 (2018) Life cycle assessment (LCA) and cost (LCC) studies of lightweight composite flooring systems. Journal of Building Engineering, 20. pp. 624-633. ISSN 2352-7102

https://doi.org/10.1016/j.jobe.2018.09.013

Crown Copyright © 2018 Published by Elsevier Ltd. Licensed under the Creative Commons Attribution-Non Commercial No Derivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ 1 2

LIFE CYCLE ASSESSMENT (LCA) AND COST (LCC) STUDIES OF LIGHTWEIGHT COMPOSITE FLOORING SYSTEMS

3	Inas Mahmood Ahmed ¹ and Konstantinos Daniel Tsavdaridis ^{2*}
4 5	¹ PhD Candidate, School of Civil Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, UK
6 7	² Associate Professor of Structural Engineering, School of Civil Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, UK (k.tsavdaridis@leeds.ac.uk)
8	*Corresponding author
9	

10 Abstract

11 The growing need to save material and energy resources, together with the increasing concern over the material impact on the built environment economy has led the need for 12 redesigning critical structural elements and systems. Flooring systems are the top amongst the 13 list of the highest impact after the partition walls when comparing to other non-load bearing 14 construction elements. This paper focuses on the advantages of lightweight flooring systems 15 and contributes towards the development of a novel prefabricated ultra-shallow and lightweight 16 flooring system. The used methodology comprises the environmental (by applying the TRACI 17 method) and economic life cycle analysis (LCA). The environmental and economic impacts of 18 three types of flooring systems are studied and compared. The first type is a prefabricated floor 19 20 (Cofradal 260mm), is a common solution in residential buildings in France, the second type is a hollow core precast floor with an in-site concrete finishing layer, and the third type is the 21 proposed system. The assessment showed that the embodied energy and embodied GHG 22 emissions of the proposed flooring system are 28.89% and 37.67% lower than the one using 23 24 Cofradal floor, and 20.18% and 35.09% lower the one using hollow core precast floor units. LCA showed that the proposed flooring system reduced 13.08% of construction cost and 25 41.83% of end of life cost in comparison with the Cofradal260 slab, and 1.87% of construction 26 cost and 18.95% of end of life cost in comparison with the hollow composite precast slab. 27

28

Key words: Life Cycle Analysis (LCA); Composite Flooring Systems; Embodied Energy;Embodied Emissions; GHG Emissions

31

32 **1. Introduction**

The rapid economic development consumes a lot of resources and degrades the environment. One of the primary concerns of environmental impacts is the climate change and it is attributed to the emissions of greenhouse gases (GHGs). The temperature growth is connected with an increased atmospheric concentration of GHGs, while carbon dioxide is the most important anthropogenic GHG [1].

38

In recent years, assessing and controlling carbon emissions have become a basic strategy to
achieve sustainable developments. The European Community and 37 industrialised countries
through Kyoto Protocol committed to reducing greenhouse gases (GHG) emissions by 18%
lower than the 1990's level from 2013 to 2020 [2]. The UK has a legally compulsory target

under the Kyoto Protocol to reduce its emissions of the basket of six major greenhouse gases
[3] and has declared its intention to put itself on a path towards a reduction in CO₂ emissions
of 80% by about 2050 [4]. GHG emissions have attracted the most attention from researchers
and policy makers possibly because they can be more readily quantified than other impacts,
however, GHG emissions are just one of a range of parameters that should be considered in
assessing environmental impacts. Others are ozone depletion, water consumption, toxicity,
eutrophication of lakes and rivers, and resource depletion [5, 6 and 7].

50

The current practices in architecture and construction sectors are responsible for a high percentage of the environmental impacts produced by the developed countries [8]. In the European Union, the construction and building sectors are responsible for about 40% of the overall environmental burden. The construction and occupation of homes in the UK are responsible for the consumption of 40% of primary energy in the country [9]. In case the other 30% of the building stock (non-residential) is considered, the impact of buildings is greater [10].

58

59 Using large quantities of raw materials by the construction industry also involves high energy consumption. Choosing materials with a high content of embodied energy requires an initial 60 high level of energy consumption in the building production stage but also determines future 61 energy consumption in order to fulfil heating, ventilation and air conditioning demands [11]. 62 Concrete is an essential reported construction material with the global annual consumption of 63 1 ton per capita [12]. It has been identified as a carbon intensive material, while cement being 64 the key component of concrete as it is responsible for 5–7% of the world's carbon emissions 65 [11]. The on-site construction process is another source of carbon emission, mostly contributed 66 from fuel consumption in material transportation and heavy equipment, waste treatment 67 68 management and embodied carbon in temporary materials [13].

69

There are various factors that influence the impact of the building construction on the environment and the responsibility is shared by owners, developers, architects and engineers, finance institutions, government authorities, contractors, material suppliers, labourers, tenants, building managers, operation and maintenance personnel, recyclers salvagers, and landfill/incinerator managers [14]. Designers (architects and engineers) have an important role; the selection of materials and construction systems.

76

When it comes to flooring systems, Lopez-Mesa et al. [15] claimed that for the case of 77 residential buildings, the environmental impact of a structure with precast hollow core concrete 78 floors is 12.2% lower than that with cast-in-situ floors for the defined functional unit using the 79 life cycle analysis (LCA) methodology. Dong et al. [14] compared the carbon emissions of 80 precast and traditional cast-in-situ construction methods based on a case study of a private 81 residential building in Hong Kong and performed an LCA study to consider the system 82 processes from cradle to end of construction. The comparison was conducted based on eight 83 scenarios at four levels, for example, cubic meter concrete, precast facade, a group of facade 84 elements, and an entire apartment. It was found that the precast construction method can lead 85 to 10% carbon reduction for one cubic meter concrete. Jaillon et al. [16] stated that the use of 86 precast method could lead to 52% of waste reduction and 70% of timber formwork reduction. 87 Wong and Tang [17] compared the precast and cast-in-situ concrete with the system boundary 88 from 'cradle to site' and concluded that the precast method can reduce carbon emissions. 89 90 Dobbelsteen et al. [18] found that for the case of office buildings, energy consumption during building operation accounts, on average, for 77.5% of the environmental impact, whereas the 91 use of building materials is responsible for 19.5%. It was also found that the supporting 92

93 structure is responsible for almost 60% of the environmental impact caused by building 94 materials. Therefore, the supporting structure is responsible for about 11.7% of the whole environmental impact. Reza et al. [19] investigated three types of block joisted flooring 95 96 systems (concrete, clay, and expanded polystyrene (EPS) blocks) using life cycle analysis (LCA). The selection of three sustainable flooring systems in Tehran (Iran) was based on the 97 triple-bottom-line (TBL) sustainability criteria. Analytical hierarchy process (AHP) is used as 98 99 a multi-criteria decision making technique that helps to aggregate the impacts of proposed (sub) criteria into a sustainability index (SI) through a five-level hierarchical structure. The detailed 100 analysis shows that the EPS block is the most sustainable solution for block joisted flooring 101 102 system in Tehran.

103

Moreover, the use of lightweight materials in various applications adds great advantages when 104 compared to heavyweight construction, such as in partition walls as it has been proven that 105 they constitute to the higher contribution of the overall material inputs in the built environment 106 [20]. A new lightweight sandwich membrane (new lightweight partition wall) was recently 107 developed and evaluated using the LCA methodology, which comprises the environmental, 108 functional and economic life cycle analysis. Two reference partition walls were used to 109 compare with new lightweight partition wall to identify the advantages of the new lightweight 110 partition wall: (i) the traditional heavyweight partition wall (hollow brick wall); and (ii) the 111 lightweight gypsum panels wall (plasterboard wall). From the comparison, it was found that 112 the new lightweight solution could be more sustainable than both standard solutions of hollow 113 brick partition walls (HCM), and plasterboard partition walls (LRP). 114

115

In conclusion, the environmental impact of construction materials does not only depend on the 116 material itself but also the way the components are put in place, its maintenance requirements 117 118 and system's longevity, the travel distance from purchasing to the site, etc. [21]. This means that the selection of materials and the design of the structural system requires a rigorous LCA 119 study. As Malin illustrates [22], this type of evaluation is a task for expert scientists and 120 consulting companies specialised in the environmental impact. The calculation of the 121 environmental indicators (Life Cycle Impact Assessment - LCIA) requires the detailed 122 appreciation of the life cycle inventory databases, especially, their composition and the critical 123 inclusion of the system boundary and allocation rules [23]. 124

125

When LCA is applied to study a building, the product studied is the building itself, and the 126 assessment is defined according to a certain level while it contains all material processes. This 127 level is called "whole process of building" and there is a plethora of available tools to work 128 at this level, such as BREEAM, (UK) [24]. When the LCA is applied to study a part of the 129 building, a building component or a material, the level is called "building material and 130 131 component combination" (BMCC), and at this case, it is important to recognize the component impact equivalent according to the functional unit of the building. The functional unit could be 132 one of many (e.g., m², m² internal space, m³, each, number of occupants, etc.) in the case of 133 whole building LCAs. The most commonly used functional unit in the life cycle assessment of 134 buildings is square meter floor area [24]. It is important to note that all the environmental 135 impacts calculated within one LCA study should refer to the chosen functional unit. 136

137

There are a few available life cycle inventory (LCI) databases such as ATHENA, Ecoinvent version 3.4, and AusLCI [25]. The most recognised databases for material embodied energy

version 3.4, and AusLCI [25]. The most recognised databases for material embodied energy
 and carbon dioxide in the UK is the Inventory of Carbon and Energy (ICE) Beta 2, developed

by University of Bath [26]. ATHENA is the most suitable for use in the USA and Canada, as

142 it contains the most comprehensive database of American products and processes. Ecoinvent

143 contains Swiss and European product and process data. Data quality in LCA studies on 144 buildings is a major concern due to the high rate of change and high technical improvements 145 in the building industry. Therefore, the age, regional origin, and accuracy of the inventory data 146 influence the accuracy and validity of the studies. A major focus over the last two decades in 147 Europe Canada and the USA has been to produce region specific LCI databases

- Europe, Canada, and the USA has been to produce region-specific LCI databases.
- 148

149 2. Objectives

This paper studies the ecological impacts of three types of flooring systems used for internal 150 floors in buildings and they are evaluated using TRACI method. The first type of the flooring 151 system, Cofradal 260mm floor, is a solution used with the Composite Slim Floor Beam (CoSFB) 152 in residential buildings. The second type, hollow core precast floor, is used with slimflor beams 153 and ultra-shallow floor beams in residential buildings. The third type is a proposed 154 prefabricated flooring system, which is developed along with the LCA methodology in terms 155 of the materials selection (i.e., lightweight concrete and thin-walled steel). Figs. 1, 2 and 3 156 depict the sections of the examined flooring systems [27, 28, 29, and 30]. The recently proposed 157 flooring system [29, 30] is also designed in a way to have an efficient transportation and 158 159 installation capacity.

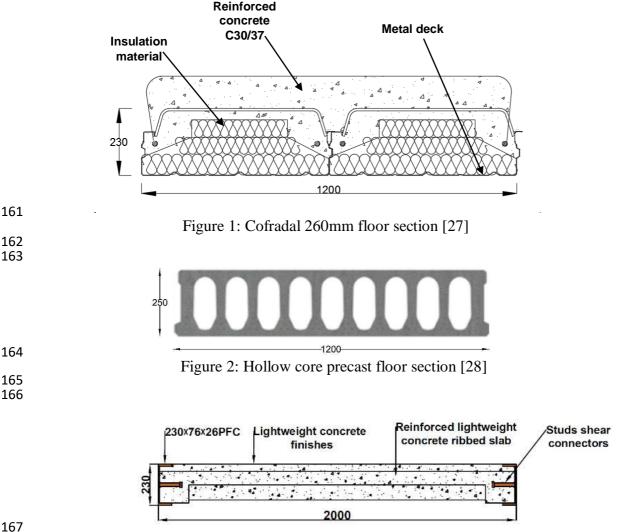


Figure 3: Prefabricated ultra-shallow flooring system (PUSS) [29, 30]

168 **3. Integrated environmental-economic performance**

169 3.1. Environmental performance (LCA)

A cradle-to-grave approach was adopted for the LCA study to determine the environmental impact of the three aforementioned distinctive types of flooring systems considering the following stages; raw materials acquisition, product manufacture, transportation, installation, and eventually recycling and/or waste management. The use and maintenance stage (operation stage) is not included in this study due to lack of information about this stage. The framework of the LCA study is shown in Figure 4, and is consisted of four major steps:

- **Step 1**: Identify scope, define the boundaries and the functional unit.
- Step 2: Model the processes and resources involved in the product system, collate the Life Cycle Inventories of these processes and resources and generate any new inventories required.
- **Step 3**: Analyse the life cycle impacts in terms of mid-points (impact categories) and end-points (system categories).
 - **Step 4**: Evaluate and interpret results as well as generate a report for decision making.
- Most LCA methods employ the principles of the International Standards Organization (ISO) series, which are known as the series 14040 within the more general ISO 14000 series on environmental management systems [9]. These documents describe four general steps that have to be carried out in any LCA:
- 189

176

177

178

179

180

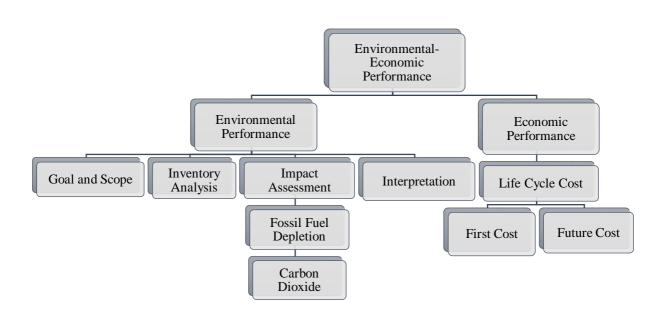
181

182

183 184

(a) Initially, the researcher composes the aims, boundaries, and limitations of the study, and
sets significant assumptions - generally definitions of system boundaries, such as the full
lifetime of the product or one phase of its manufacturing; functional units such as m² of floor
area; quality of the data, etc. All these assumptions should be specified at this early stage, as
they determine the direction of the study. The study will be assessed in the interpretation stage.

(b) Life cycle inventory is the second step of the LCA. It includes the collection of the data and
calculation methods, and it is considered as the most important and time-consuming stage since
this data will be the basis for the study. It has been also connected with the scoping exercise as
the data collection, and other cases may lead to redefinition or refinement of the system
limitations. For instance, the lack of data may result in changing the objectives or the scope of
the study. Therefore, data completeness is pivotal. Life cycle inventory phase (LCI) usually
uses databases of building materials and component combinations.


203

(c) The impact assessment evaluates potential environmental impacts. The purpose of this
 phase is to estimate the importance of all environmental burdens obtained in the LCI by
 analysing their influence on selected environmental loads.

207

Impact assessment is used by the ISO series 14040 [31-33] to characterize and normalize the 208 environmental impacts. The first stage of the life cycle impact assessment is to select the impact 209 categories, category indicators, and characterization. The next stage is to assign the LCI results 210 211 to the selected impact categories and the last stage multiplies the inventory results by the characterization factors. Impact categories are divided into two types; the midpoint categories 212 and the endpoint categories. Midpoints are concerned with environmental problems whereas 213 214 endpoints are concerned with the damage that these environmental problems can cause. In ISO 14042 standard, a distinction is made between obligatory elements, such as the classification 215

- and characterization, and optional elements, such as normalisation, ranking, grouping, and
 weighting. According to ISO 14042, the general framework of a life cycle impact assessment
 (LCIA) method is composed with obligatory elements (classification and characterization) that
 convert LCI results into an indicator for each impact category that leads to a unique indicator
 using numerical factors based on value-choices.
- 221
- (d) The final stage in the LCA is the interpretation, which aims to analyse the results and reach
 the conclusions through explaining the boundaries and providing recommendations. These
 recommendations are based on the outcomes of the previous phase of the LCA or LCI study.
 Life cycle interpretation also intends to provide an easily understandable, complete, and
- harmonious presentation of the results of an LCA or an LCI study, in agreement with the scope
- 227 definition of the study.
- 228

- 229
- 230

Figure 4: Overall performance steps

- 231232 2.1.1. Existing Standards for LCA
- Life cycle assessment is standardised through a range of ISO documents which include:
- ISO 14040: 2006 [31] Environmental management-life cycle assessment Principles and framework. This standard outlines the major steps in the LCA process but does not describe the LCA technique in detail.
- ISO 14044: 2006 [32] Environmental management-life cycle assessment-Requirements and guidelines. This standard supports ISO 14040 with more details about each step of the LCA.
- ISO/TR 14049: 2012 [33] Environmental management Life cycle assessment-Illustrative examples on how to apply ISO 14044 to goal and scope definition and inventory analysis. This standard particularly shows the key elements of the inventory analysis phase of LCA.
- 244

245 2.1.2. Scope

The scope of this research is to evaluate a new fully prefabricated proposed flooring system and compare it with the current state-of-the-art sustainable flooring systems.

248 2.1.2.1 Functional Unit

The functional unit is the unit of comparison in the LCI. In this study, one square meter (m^2) of flooring system fulfilling similar requirements regarding a live load of $2kN/m^2$ and a span of 7.8m is chosen. This is chosen according to the maximum span of Cofradal slab which is 7.8m and can take a live load of $2kN/m^2$. Therefore, the same live load was applied for all studied flooring systems and with the same span regardless their capacity. All emissions, energy consumption and materials are based on this functional unit, e.g. MJ/m², kg CO₂e/m² etc.

256 2.1.2.2. System Boundaries

The system studied includes the entire life cycle of the flooring systems listed above, including manufacturing of building materials, construction, operation, and demolition. Transportation for each life cycle phase is also included. The impact categories studied are Embodied Energy and Global Warming Potential (GWP).

261 2.1.2.3. Definition of Impact Categories and Calculations Methodology

The scope step also includes the specification for which impact categories are to be covered in the impact assessment step. This is typically done by selecting one of the available calculation methodologies. Each methodology defines the impact categories that are used to generate results. Some methodologies also define a weighting scheme by which different impact categories are combined into more generic results. The calculation methods are classified according to the regions such as European and North American [34].

268

This study is focused on the environmental problems that these flooring systems will cause during their entire life. Therefore, the LCIA results are calculated at midpoint level using the TRACI method [35].

272 2.1.2.4. Characteristics of studied flooring systems

Shallow-floor construction is characterized by integrating the steel beam into the slab's 273 thickness. The steel section consists of a hot rolled beam with a welded plate underneath it to 274 provide the bearing for incoming slabs. The width of the welded plate is larger than the bottom 275 flange of the hot rolled section, hence the slab elements can be easily placed. The shallow-floor 276 beam (SFB) can be incorporated into any type of slab. Prefabricated or partially prefabricated 277 concrete slabs can fit perfectly with the SFB; a quick and safe erection is assured. By using this 278 type of construction systems the structural depth of the floor is reduced and thus the overall 279 height of the building is effectively reduced while the total number of floors can be increased 280 within the predefined allowed building envelope. Mechanical and Electrical (M&E) services 281 such as cooling and heating devices are quickly installed due to the absence of down stand steel 282 beams. However, due to the small beam height, the design of the SFB is governed by the 283 stiffness of the system and hence spans are limited. 284

285

A good example of slim-floor construction is the Composite Slim Floor Beam (CoSFB) which has been based on the development of an advanced composite connection by using concrete

dowels. This flooring system has been used with the Cofradal260 slab (composite floor slab)

- which consists of a cold-rolled metal deck, a thermal insulation layer and a concrete layer which reduces the overall weight of the flooring system. This flooring system is fully prefabricated, hence it reduces the energy consumption, CO₂ emissions, construction cost and potential site repair and maintenance costs are still high.
- 293

Another type of flooring systems which is used with the slimflor beams is the hollow core precast units. This flooring system contains voids that run continuously along their length, which helps reduce dead weight and material cost. The construction of the hollow composite precast slab in the site involves further work to complete the construction, such as placing the concrete topping layer on site, because it is not a fully prefabricated flooring system, thus the energy consumption, CO_2 emissions, construction cost and potential site repair and maintenance costs are still high.

301

A new flooring system was recently proposed and it is developed at the University of Leeds along with the methodology of Life Cycle Assessment (LCA) in terms of the selection of its materials (i.e., lightweight concrete and lightweight steel) while the benefits of full prefabrication are exploited [17, 18].

- 306
- 307 The selected flooring systems include:
- **308** Cofradal 260mm slab

309 It is constructed using galvanized profiled steel sheeting with a tensile strength of 320 N/mm² fitted with a mineral wool insulation layer and reinforced concrete top layer with C30/37 and 310 reinforcing bars welded on the steel sheeting. This welding provides a connection point 311 between the tensioned steel and the compressed concrete creating a composite behaviour 312 between the steel sheeting and the top concrete. The Mineral wool layer with a density of 50 313 kg/m^3 is an effective shuttering bed for the concreting of the top of the slab. This layer is 314 provided for thermal insulation between levels if needed, acoustic resistance. The overall depth 315 of slab is 260mm with a width of 1200mm and maximum span of 7.8m. This system is a fully 316

- 317 prefabricated steel-concrete composite slab produced in-house and ready to be fixed on site.
- Hollow composite precast slab

This is constructed from normal concrete C40/50 with voids that run continuously along its length. The overall depth of the slab is 300mm including the concrete topping layer (50mm) with a width of 1200mm and maximum span of 10.5m. The slab is fabricated under controlled factory conditions. The concrete topping layer is placed on site, on the top surface of hollow core slabs to create a continuous level finished surface. Therefore, this system is a semi prefabricated slab and ready to be fixed on site.

• Prefabricated Ultra-Shallow flooring System (PUSS)

The recently proposed flooring system is constructed from the concrete floor, which is in the form of T ribbed slab sections using reinforced lightweight aggregate concrete C25/30. The actual floor system supports finishes layer and thermal insulation pads connected with each other [17, 18]. The steel edge beams encapsulate the floor slab in the middle and connected with concrete slab using shear connections (studs and dowels). The overall depth of the floor is 300mm with a width of 2000mm and a maximum span of 12m. This system is a fully prefabricated steel-concrete composite slab produced in-house and ready to be fixed on site.

The proposed flooring system exercises the sustainability approach in the selection of its components using sustainable materials such as lightweight aggregate concrete (Lytag 335 aggregate or Leca aggregate) and lightweight steel members. An analytical Life cycle assessment of materials for the proposed flooring system was developed and compared with 336 the Cofradal slab [17]. From the study it was found that the proposed flooring system reduces 337 the embodied energy and embodied carbon by about 17.94% and 9.33%, respectively 338 compared with the Cofradal slab. The structural performance of the proposed flooring system 339 has been proven analytically using the stress block method. An experimental campaign 340 regarding the push-out tests were carried out in the Heavy Structures Laboratory of the 341 University of Leeds [18]. 342

- 343
- 344

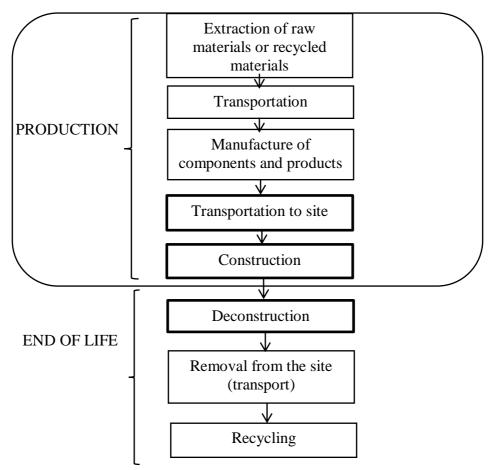
The depth for the three flooring systems for a 7.8 m span (max. for Cofradal slab) and an imposed load of 2 kN/m² presented in table 1. Figure 5 shows flow chart of production boundary for the case study.

348

24	
.34	-9

Table 1: The characteristics of material inputs for the flooring systems

Flooring systems Description		Thickness, width, span, Dimensions	Overall floor weight kN/m ²	Live load kN/m ²
Cofradal 260mm slab	Cofradal260 slab (composite floor slab)	260mm _x 1.2m _x 7.80m	2.8	2.5
Hollow composite slab	Reinforced concrete floor slab with finishing	200mm _x 1.2m _x 7.8m	5.1	2.5
PUSS	Composite flooring system with lightweight reinforced concrete T ribbed slab		2.61	2.5


350

351

352

353

354

356

Figure 5: A simplified lifecycle process flow chart showing production boundary for the case study

357

358 2.1.3. Life cycle inventory analysis

Inventory analysis is accurately quantifying the inventory flows with inputs such as the raw materials, water, and energy, as well as outputs, including the air emissions, releases to land and water effluents for a product system. In this study, carbon emissions coefficients and embodied energy coefficients for materials, processes, and fuels were derived where possible from the UK or relating to the country of production as shown in Table 2, 3 and 4. A number of sources and databases were used including:

- The Inventory of Carbon and Energy [30].
- Life cycle assessment of concrete, master thesis [36].
- CO₂ Emissions and energy consumption during the construction of Concrete structures [37]. 368

The last two references has been used due to provide a detailed information about the embodied
energy and embodied carbon data for concrete demolition and operation of construction
equipment from the European counties.

- 372
- 373 2.1.3.1. Pre-use phase

The embodied energy and air emissions associated with construction materials during their extraction, processing, and manufacture represent the largest portion of total embodied energy and air emissions in buildings. Yohanis et al. [38] demonstrated that this is about 78% in a residential building and about 92% in an office building. These figures have nearly a 15%

- discrepancy, mostly arising from a wide variety of building materials used, different buildingsize, and their different functions [39, 40, 41, and 42].
- 380 2.1.3.2. Use and maintenance phase

Embodied energy and air emissions associated with the maintenance of flooring system activities (e.g., refurbishment) were ignored due to lack of information about this particular stage.

384 2.1.3.3. End of life phase

The last phase of the flooring system life involves energy and emissions related to demolition, recycling processes, and transportation. The emissions from this stage are mainly owing to the energy consumption of the mechanical demolition equipment. All data on energy consumption of demotion equipment was derived from source [36, 37].

- 389
- 390 391

Table 2: Embodied carbon and embodied energy coefficients for the production of materials [30]

	Embodied Energy	Embodied Carbon		
Material	Coefficient	Coefficient		
	(MJ/kg)	(kg CO ₂ e/kg)		
Cement	5.5	0.93		
Sand	0.081	0.0048		
Gravel	0.083	0.0052		
Water	0.01	0.001		
Reinforcing concrete (25/30 MPa)	0.86	0.132		
Precast concrete (40/50 MPa)	0.45	0.029		
Concrete (40/50 MPa)	1.0	0.151		
Reinforcing steel bar	17.4	1.4		
Stud/dowel	17.4	1.4		
Metal Deck	22.6	1.54		
Steel Section	21.50	1.42		
Rock wool Insulation	16.8	1.12		

401 402	Table 3: Embodied carbon and embodied energy coefficients for operation of construction equipment [37]						
403 404 405	Equipment	Embodied Energy Coefficient (MJ/hr)	Embodied Carbon Coefficient (kg CO ₂ e/hr)				
406 407 408	Tower crane of 100 ton	720	53.23				
409	Pumps	540	46.12				
410	Equipment	Embodied Energy Coefficient	Embodied Carbon Coefficient				
411		(MJ/m^3)	$(\text{kg CO}_2\text{e/m}^3)$				
412	Concrete compactor	1.18	0.2				
413	-						
414 415		carbon and embodied and of life of materials					
416 417 418	Material	Embodied Energy Coefficient (MJ/kg)	Embodied Carbon Coefficient (kg CO ₂ e/kg)				
418 419	Steel recycling	13.1	0.75				
420 421 422	Reinforcing steel bar recycling	11	0.74				
423 424 425	Concrete demolition	0.007	0.00054				
425 426							

427 2.1.3.4. Life cycle impact assessment

The LCIA results are calculated at midpoint level using the TRACI method [35]. The LCIA 428 phase was initially focused on the characterization step and thus the following indicators were 429 considered: 430

• EE: (Embodied Energy) as an indicator relevant to the total primary Energy resource 431 432 consumption;

• GWP: (Global Warming Potential) as an indicator relevant to the greenhouse effect; 433 Characterization factors for the embodied energy and global warming potential from TRACI 434 method are used in this study.

- 435 2.1.4. Impact assessment of the LCA results 436
- 437 2.1.4.1. Pre-use Phase
- Manufacturing: 438

Material embodied energy is related to the acquisition of raw materials, their processing, and 439 manufacturing. Paradoxically, Figure 6 demonstrates that the three flooring systems have 440 completely different embodied energy global warming potential during this stage; the proposed 441

442 flooring system has 817.49 MJ/m^2 lower than the precast flooring system which has 976.96 MJ/m^2 and lower than the Cofradal flooring system which has 1142.68 MJ/m^2 .

444	Table 5 presented the embodied energy and global warming potential of the studied flooring
445	systems at each life cycle stage.

446	Table 5: Embodied energy, global warming potential at each life cycle stage						
447			Embodied	Global			
448	Life cycle phase	Flooring systems	Energy (MJ/m ²)	Warming Potential			
449				$(kg CO_2 Eq/m^2)$			
450		Cofradal260 slab	1142.68	125.11			
451	Manufacture	Hollow composite precast slab	976.96 817.49	120.56 70.40			
452		Proposed flooring system					
453		Cofradal260 slab	164.11	10.25			
454	The second	Hollow composite	296.96	18.56			
455	Transportation	precast slab Proposed flooring	138.07	8.7			
456		system					
457		Cofradal260 slab Hollow composite	1152 1238.06	73.79 81.20			
458 459	Onsite construction	precast slab Proposed flooring	720	46.12			
459		system					
460		Cofradal260 slab Hollow composite	3.67	0.28			
461	Demolition	precast slab Proposed flooring system	4.07 3.94	0.31 0.304			
462		Cofradal260 slab					
463	Reusability	Hollow composite precast slab	-363.60 -33.66	-22.68 -2.26			
		Proposed flooring system	-329.96	-19.15			

Table 5: Embodied energy, global warming potential at each life cycle stage

• Transportation:

Embodied energy and global warming potential of material transportation includes herein the fuel combustion arising from the transportation of materials by diesel fuel truck 20 ton from manufacturing plant to the construction site. The transportation distance considered for the flooring systems was 100 km according to (ICE) Beta 2 [30]. The values for Cofradal slab transportation impacts are 164.11 MJ/m², 296.96 MJ/m² for the hollow composite precast slab values and 138.07 MJ/m² for the proposed flooring system - representing approximately 7% of total embodied energy.

472

116

Vukotic et al. [43], reported that the value for transportation of materials to the construction
site may vary between 7% and 10% of total embodied energy. Zabalza [44], demonstrated that
this value is approximately 6% of the total embodied energy. In this paper, the values for
material transportation is 7% of total embodied energy.

• Onsite construction equipment:

The construction and erection of building assemblies require the use of a range of manual and power operated tools and equipment such as compressors, saws, welders, and drills [45]. The values of embodied energy and air emissions of related equipment are derived from source [37].

- Figures 6-9 depict the Embodied Energy, Global Warming Potential of the studied flooring systems.

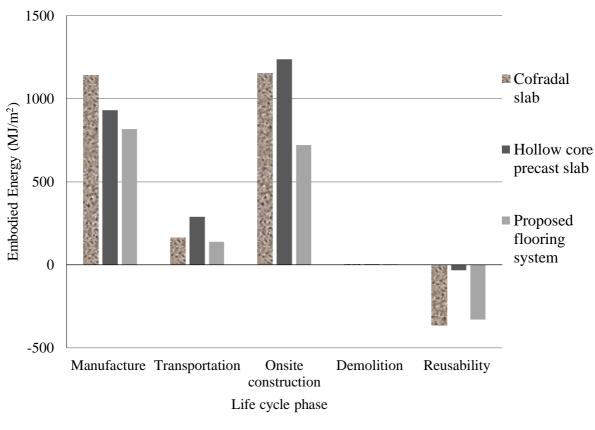
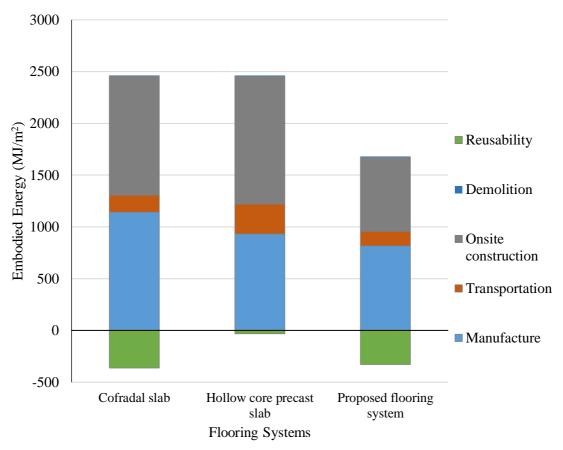



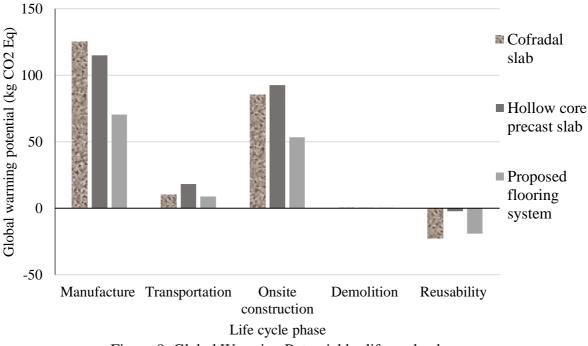
Figure 6: Embodied Energy by life cycle phase

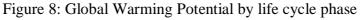
489 490

Figure 7: Embodied Energy by flooring systems

491 2.1.4.2. End-of-life

End-of-life embodied energy accounts for impacts associated with building demolition, including waste transportation and reusability potential. For this paper, the ICE inventory provides information about the reusability values of building materials. For steel beam and metal deck, approximately the 95% can be reused for full benefits while the 5% is lost and goes to landfill. Regarding the reinforcement bars, the 75% is reusable. Concrete has been only considered at the demolition stage [37], as no information has been provided by the ICE inventory [30] with regards to its demolition and recycling method.


500 Energy consumed during demolition stage proved to be the least important parameter of the 501 building's life cycle. Any change in demolition practices does not have a direct impact on the 502 reduction of air emissions associated with it due to the marginal value of energy consumed 503 during the demolition of flooring systems.


504

499

As it was aforementioned, the recycling process is considered for the steel components only due to uncertainties associated with the prediction of concrete recycling. The embodied energy was 363.60 MJ/m², 33.66 MJ/m², and 329.96 MJ/Mm² for Cofradal260 slab, hollow composite precast slab, and proposed flooring system, respectively. This highlights that the end-of-life reusability can play a significant role in the embodied energy analysis and the reduction of air emission. However, it is worth to note that the prediction of future demolition seems to be one of the major difficulties in the selection of the best method for waste management.

Figures 8 and 9 show a breakdown of Global Warming Potential by each phase of the life cycle of flooring systems. Proposed flooring system emits less than 60% of the emission of the Cofradal260 slab, and less than 65% of the hollow composite precast slab. This is due to the energy intensity of reinforced concrete with high cement content.

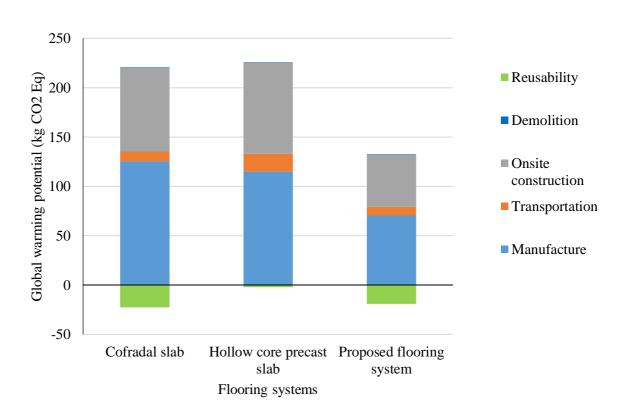


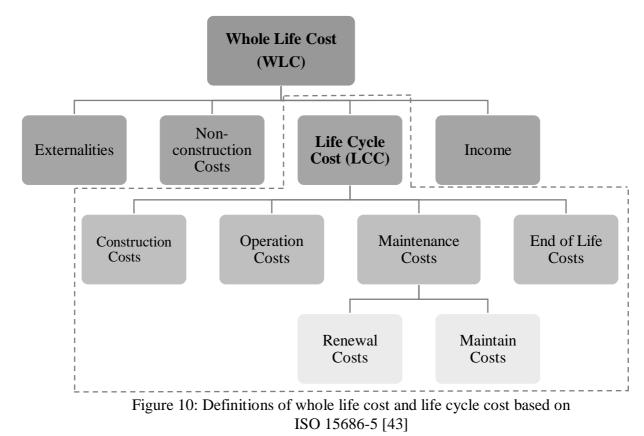
Figure 9: Global Warming Potential by flooring systems

522 **2.2.** Economic performance (LCC)

523 2.2.1. Importance of LCC

It is important that the fundamental arguments supporting life cycle costing, its core principles 524 and the restrictions on how it can be used, are understood by everyone involved in scoping, 525 526 designing, and delivering the project. For public sector procurement, the government has set out a policy of making decisions on the basis of best value rather than lowest initial cost, which 527 is the essence of life cycle costing. This is emphasised in the UK Construction 2025 strategy 528 document dated July 2013. By working in partnership, the construction industry and 529 Government jointly aspire to achieve, by 2025, a 33% reduction in both the initial cost of 530 construction and the life cycle cost of assets [46]. 531

532


The economic analysis of building design solutions can be used in two different ways. When a range of possible designs is still being considered, then life cycle costing can be used as a comparison tool to work out the life cycle costs of each design as a part of the decision-making process and select the best alternative. LCC can also be used for predicting and assessing the cost performance of constructed assets (ISO 15686-5:2008) [47].

- 538
- 539 2.2.2. Existing standards for LCC

An international code of practice for life cycle costing is provided by ISO 15686-5 [48] in relation to the built environment. This code is part of a series of standards covering service life planning, the long-term understanding of building elements, components, and equipment. ISO 15686-5 makes the distinction between life cycle costing and whole life costing, here explained in Figure 10.

545

According to the ISO definition, life cycle costing includes the initial construction and throughlife activities associated with a built asset while whole life costing also includes nonconstruction activities and income generation such as receiving rent from tenants. The implication is that life cycle costing will be more relevant to designers, contractors, and facility or asset managers, whereas whole life costing will be more appropriate to owner-occupiers, developers, and landlords.

- 552 553
- 554 2.2.3. Discount Rate selection

The discount rate is a fundamental characteristic of the analysis. The same discount rate must be applied to all the models within the analysis so that the comparison is valid. This rate reflects the time value of money, which is used to evaluate future costs in relation to present costs, accounting for the prevailing interest rate and (indirectly) the inflation rate.

559

Therefore, the discount rate is variable in time. In the UK, the Treasury (UK government practice) rules specified a discount rate to be used for a given year; similar rates are established in other countries [48]. For the life cycle costing on public sector projects, a discount rate of 3.5% per annum is stipulated by Treasury rules for all projects up to 30 years. For longer timescale and public sector projects typically infrastructure buildings, a series of lower discounts rates are applied to different project years. This study used a 3.5% discount rate for 0–30 years, in line with the UK government practice.

567 2.2.4. Study period selection

The study period is another fundamental factor in the life cycle cost analysis. The usual 568 situation is that a single study period is applied to all the alternatives being assessed. There are 569 special circumstances when different study periods are applied to different alternatives, but in 570 this study, the calculated results must be presented as equivalent annual costs. The study period 571 may be defined by the client or may be proposed by the project team. As shall be seen, the 572 outcomes of life cycle costing can be extremely sensitive to the study period, and the choice 573 should always be backed up with a strong argument. For new build or refurbishment projects, 574 study periods of between 15 and 25 years are commonly used, but longer or shorter periods 575 can be used. Shorter periods may be used for projects concerned with building services systems 576

- 577 or interior fit-out. For the life cycle costing of building services installation, the life expectancy 578 of the equipment is often used as the study period. Longer periods may be used for 579 infrastructure works. In all cases, the study period should be informed by the client's business 580 plan.
- 581 2.2.5. Costs data collection
- 582 The construction costs have been derived from a common industry reference which is the 583 SPON's price books [49].
- 584
- 585 2.2.6. Calculations of LCC

Similar to the environmental (LCA) studies, LCC studies the life cycle of a product to evaluate 586 its economic influence. It estimates all relevant costs including construction, use (i.e., 587 operation, maintenance, repair, and replacement) and end-of-life waste management (disposal) 588 throughout the life period at their present value (PV) as in Eq. (1). Future costs (i.e., operation, 589 maintenance, and disposal) are calculated using Eq. (2) for present values at an estimate of 590 591 future inflation, and are then discounted using Eq. (3) to present value at a suitable discount rate. In this paper, the construction cost and end-of-life costs were considered, the operation 592 cost was not considered due to the lack of information for the operation stage. 593

$$594 \quad LCC = C_C + C_{EOL} \tag{1}$$

595 Where LCC is the total life cycle costs of a flooring system, Cc is the construction costs, Cu is 596 the usage costs, C_{EOL} is the end of life costs.

597	$FC = PV \times (1+f)^n$	(2)
598	$DPV = FC/(1+d)^n$	(3)
599		

600 Where FC = future cost, PV = present value, DPV = discounted present value, 601 f= inflation rate, d = discount rate, and n = number of years.

 $\begin{array}{ll} \textbf{602} & \text{The construction costs } C_C \text{ include the costs of the production and transport of construction} \\ \textbf{603} & \text{materials as well as the labour and energy costs for the construction of the flooring system and} \\ \textbf{604} & \text{developer's profits:} \end{array}$

605

607

 $606 \quad C_{\rm C} = C_{\rm CM\&T} + C_{\rm L\&OH} + C_{\rm MF} \tag{4}$

608 Where $C_{CM\&T}$ costs of extraction, production, and transport of construction materials $C_{L\&OH}$ 609 labour and overhead costs C_{MF} fuel costs for the machinery used in the construction of the 610 flooring systems.

- 611
- 612 2.2.7. Impact assessment of the LCC results

The economic performance was evaluated with the beginning of a product purchase and 613 installation. The study period ends at a fixed date in the future when is the end-of-life time for 614 flooring systems. The time value of money was accounted in LCC method by considering a 615 real discount rate. This discount rate converted the future costs to their equivalent present value. 616 The unit costs for flooring system, including installation costs, were extracted from SPON's 617 price books [50]. The end-of-life costs were derived from sources [49, 50, and 51]. A 3.5% real 618 619 discount rate was used to adjust cash flows to present values with a projection lifetime of 30 years [48]. Table 6 shows the first and future costs for the analysed flooring systems. The 620 construction cost and end-of-life cost of proposed flooring system are less than the Cofradal260 621

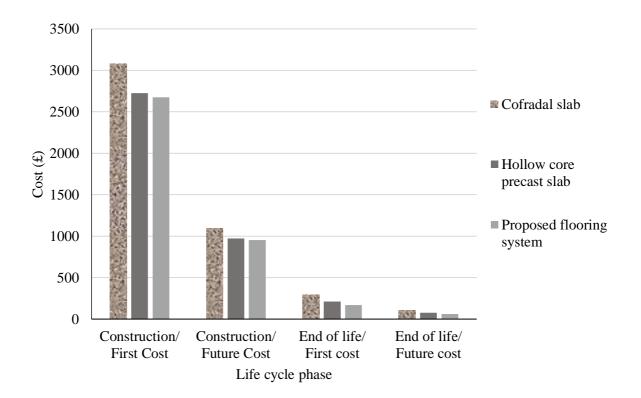
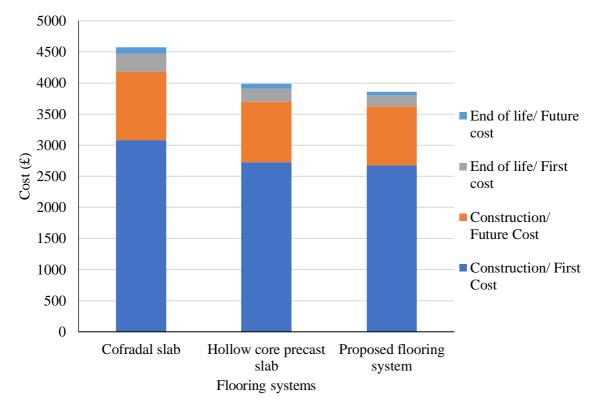

- slab costs by about 11% and 42%, and less than the construction and end-of-life costs of hollow
- composite precast slab by about 13% and 19%, respectively. Figures 11 and 12 show the first
- and future costs of the studied flooring systems.

Table 6: First and future costs of flooring systems

Cofradal slab			Hollow composite precast slab with finishing			Proposed flooring system					
Construction End of life		Construction End of life		Construction		End of life					
phase		pł	nase	pł	nase	pl	nase	ph	ase	pł	nase
First (£)	Future (£)	First (£)	Future (£)	First (£)	Future (£)	First (£)	Future (£)	First (£)	Future (£)	First (£)	Future (£)
3079	1097	294	104	2727	972	211	75	2676	953	171	61

626


627

628

629

- 630
- 631

Figure 11: First and Future costs of life cycle phase

633

Figure 12: First and Future costs by flooring systems

634 **3. Discussion and concluding remarks**

The building construction process emits substantial quantities of GHG emissions. Various 635 construction methods generate different amounts of GHG emissions in the construction stage. 636 Prefabrication is an environmentally friendly alternative to traditional construction methods 637 (cast in situ construction methods). Its construction technologies and processes are different 638 639 from those of the conventional one, as well as its GHG emissions. This study focuses on semi and fully prefabrication methods for flooring systems. The semi-prefabrication method is 640 represented by a hollow core precast flooring system with casting in place finishing layer, 641 whereas the full prefabrication method is represented by the Cofradal flooring system and the 642 proposed prefabricated flooring system (PUSS). Specifically, this study identifies a calculation 643 boundary and five energy consumptions and GHG emission sources for semi and full 644 645 prefabrication. These include embodied energy and embodied GHG emission of manufacturing, transportation of building materials, transportation of construction waste, transportation of 646 prefabricated components, and the operation of equipment and construction techniques, 647 demolition and reusability. In addition, this study also investigates the life cycle cost of these 648 flooring systems including both the construction and end-of-life phases. A comparison of these 649 flooring systems that adopt semi and fully prefabrications is employed to illustrate the 650 differences and characteristics of energy consumptions, GHG emissions, and cost. 651

652

The main contributors of embodied energy and embodied GHG emission are the manufacturing and onsite construction of flooring systems, which accounts for 40.4%. The following contributors are the transportation of building materials and transportation of prefabricated elements, accounting for 5.8%. Results indicate that the proposed fully prefabricated flooring system reduced 28.45% of embodied energy and 43.73% of embodied GHG emissions compared with the Cofradal260 slab, 16.32% of embodied energy and 41.60% of embodied 659 GHG emissions compared with the hollow composite precast slab for the manufacturing phase. For the onsite construction, the proposed fully prefabricated flooring system reduced 37.5% 660 for both embodied energy and embodied GHG emissions compared with the Cofradal slab, and 661 53.50% for embodied energy and 53.12% for embodied GHG emissions compared with the 662 hollow composite precast slab. For the transportation, the proposed fully prefabricated flooring 663 system reduced 15.86% for embodied energy and 15.12% embodied GHG emissions compared 664 665 with the Cofradal slab, and 52.28% for embodied energy and 51.9% for embodied GHG emissions compared with the hollow composite precast slab. Regarding the reusability, the 666 proposed fully prefabricated flooring system has a reduced 9.25% of embodied energy and 667 668 15.56% of embodied GHG emissions compared with the Cofradal260 slab. The reduction percentage in embodied energy and embodied GHG emissions for the proposed flooring system 669 compared with the hollow composite precast slab was higher than the Cofradal slab for both 670 transportation and onsite construction phases based on this data analysis. This is related to the 671 fact that hollow composite precast slab is a semi prefabricated slab with a cast in-situ finishing 672 layer while the proposed flooring and Cofradal slabs are fully prefabricated flooring systems 673 including the finishing layer; this raises the amounts of embodied energy and embodied GHG 674 emissions. In contrast, the reduction percentage in embodied energy and embodied GHG 675 emissions for proposed flooring system compared with the Cofradal slab was higher that the 676 hollow composite precast slab for both manufacture and reusability phases. The reason is 677 based on the use of materials with high intensity of embodied energy and embodied GHG 678 679 emissions such as rock wool insulation material and concrete with high cement content. 680

- 681 The key approach to enhance embodied energy and embodied GHG emissions reduction in semi-prefabrication are reducing the amount of offsite casting work, making reasonable and 682 economically efficient proportions of concrete, and selecting off-site factories that are near the 683 684 projects or material distribution centres. In the full prefabrication, the main methods to enhance the reduction in embodied energy and embodied GHG emissions reduction are by reducing the 685 amount of used concrete by optimising the design of reinforced concrete through changing the 686 shape such as using ribbed slab in the proposed flooring system, reducing the use of high 687 intensity embodied energy, and embodied GHG emissions' materials - for instance using 688 lightweight aggregate concrete with lower amounts of cement content and recycled aggregate 689 as used in the proposed flooring system, increasing the width of the prefabricated elements this 690 will reduce the amounts of embodied energy and embodied GHG emissions of onsite 691 construction as in increase in the width of the proposed flooring from 1.2m to 2.0m. These 692 aspects will gain increased recognition by more governments and clients as the competition in 693 the prefabrication market increases. 694
- 695

The life cycle cost of these three flooring systems was also investigated in this study. Outcomes 696 show that the proposed flooring system reduced 13.08% of the construction cost and 41.83% 697 of the end-of-life cost in comparison with the Cofradal260 slab, 1.87% of construction cost and 698 18.95% of end-of-life cost in comparison with the hollow composite precast slab. The 699 reduction percentage of the cost is not too high; this is related to the fact that the life cycle cost 700 study only covers two phases. Therefore, as a further work, it is recommended to extend the 701 702 life cycle cost of this study to cover the whole phases, which represents a challenging task in finding the necessary data for the whole life cycle cost phases from the industry. 703

704

In conclusion, this study has examined the embodied energy and embodied GHG emissions in
 the semi and fully prefabrication flooring systems in five stages, the life cycle cost in two
 phases. Analysis of the characteristics and differences of embodied energy and embodied GHG
 emissions between semi and full prefabrication practice shows the different sources and factors

- related to emissions. Full prefabrication practice, such as the PUSS system, induces lower
- energy consumptions, lower emissions, and lower costs compared with the semi and fully
- prefabrication construction of other currently used systems and makes it a good suggestion for
- 712 the European building market.

713 **References**

- 1. IPCC, Climate change 2014 Mitigation of Climate Change Working Group III
- Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate
 Change, Cambridge University Press, 2014.
- 717 2. UN, Kyoto Protocol, 2013 (cited 2013 31 Dec). Available from: http://unfccc.
 718 int/kyoto_protocol/items/2830.php>.
- 3. The Stationary Office TSO. Climate Change: The UK Programme; The Stationery Office:London, UK, 2006.
- 4. The Stationary Office TSO. Our Energy Futur—Creating a Low Carbon Economy; The
 Stationery Office: London, UK, 2003.
- 5. Mateus, R. and Bragança, L., 2011. Sustainability assessment and rating of buildings:
- Developing the methodology SBToolPT–H. Building and environment, 46(10), pp.1962-1971.
- 6. Silva, S.M., Mateus, R., Marques, L., Ramos, M. and Almeida, M., 2016. Contribution of the solar systems to the nZEB and ZEB design concept in Portugal–Energy, economics and anyironmental life availage analysis. Solar Energy Materials and Salar Cells, 156, and 50, 74
- environmental life cycle analysis. Solar Energy Materials and Solar Cells, 156, pp.59-74.
- 728 7. CEN/TC 350 Sustainability of construction works. European Committee for
 729 Standardization.http://standards.cen.eu/dyn/www/f?p=204:32:0::::FSP_ORG_ID,FSP_LANG
 730 _ID:481830,25&cs=117375B165644AAC954DDC63B921F43EF.
- 8. United Nations Environment Programme UNEP. Sustainable Building and Construction;
 Division of Technology, Industry, and Economics: Paris, France, 2003.
- 9. Department for Environment Food and Rural Affairs Defra. Notes on Scenarios of
 Environmental Impacts Associated with Construction and Occupation of Homes. Defra
 Economics and Statistics. Available online: http://www.statist
 ics.defra.gov.uk/esg/reports/housing/appendh.pdf (accessed on 15 December 2008).
- Petersdorff Boermans. Mitigation of CO2-Emissions from the Building Stock; European
 alliance of companies for energy efficiency in buildings: Munich, Germany, 2004.
- 11. Bribián, I.Z., Capilla, A.V. and Usón, A.A., 2011. Life cycle assessment of building
 materials: Comparative analysis of energy and environmental impacts and evaluation of the
 eco-efficiency improvement potential. Building and Environment, 46(5), pp.1133-1140.
- Flower, D.J. and Sanjayan, J.G., 2007. Greenhouse gas emissions due to concrete
 manufacture. The international Journal of life cycle assessment, 12(5), p.282.
- Meyer, C. 2009. The greening of the concrete industry. Cement and concretecomposites, 31(8), pp.601-605.
- 14. Dong, Y.H., Jaillon, L., Chu, P. and Poon, C.S. 2015. Comparing carbon emissions of
 precast and cast-in-situ construction methods–A case study of high-rise private building.
 Construction and Building Materials, 99, pp.39-53.
- 15. Lopez-Mesa, B., Pitarch, A., Tomas, A. and Gallego, T. 2009. Comparison of
 environmental impacts of building structures with in situ cast floors and with precast concrete
 floors. Building and Environment, 44(4), pp.699-712.
- Jaillon, L., Poon, C.S. and Chiang, Y.H. 2009. Quantifying the waste reduction potential
 of using prefabrication in building construction in Hong Kong. Waste management, 29(1),
 pp.309-320.
- 755 17. Wong, F. and Tang, Y. Comparative embodied carbon analysis of the prefabrication 756 elements compared with in-situ elements in residential building development of Hong Kong,

- 757 World Acad. Sci. 62 (1) (2012) 161–166.
- 18. van den Dobbelsteen, A., Arets, M. and Nunes, R., 2007. Sustainable design of supporting 758 structures: Optimal structural spans and component combinations for effective improvement 759 of environmental performance. Construction Innovation, 7(1), pp.54-71. 760
- 19. Reza, B., Sadiq, R. and Hewage, K., 2011. Sustainability assessment of flooring systems 761
- in the city of Tehran: An AHP-based life cycle analysis. Construction and Building Materials, 762

763 25(4), pp.2053-2066.

- 20. Mateus, R., Neiva, S., Bragança, L., Mendonça, P. and Macieira, M., 2013. Sustainability 764 assessment of an innovative lightweight building technology for partition walls-comparison 765 766 with conventional technologies. Building and Environment, 67, pp.147-159.
- 21. González, M.J., and Navarro, J.G., 2006. Assessment of the decrease of CO₂ emissions in 767 the construction field through the selection of materials: Practical case study of three houses of 768
- low environmental impact. Building and Environment, 41(7), pp.902-909. 769
- 22. Malin N. Life cycle assessment for whole buildings: seeking the holy grail. Building 770 Design and Construction 2005; November: 6–11. 771
- 23. Assefa, G.L.A.U.M.A.N.N.B., Glaumann, M., Malmqvist, T., Kindembe, B., Hult, M., 772
- 773 Myhr, U. and Eriksson, O., 2007. Environmental assessment of building properties-Where
- natural and social sciences meet: The case of EcoEffect. Building and Environment, 42(3), 774 pp.1458-1464. 775
- 24. Khasreen, M.M., Banfill, P.F. and Menzies, G.F., 2009. Life-cycle assessment and the 776 environmental impact of buildings: a review. Sustainability, 1(3), pp.674-701. 777
- 25. Islam, H., Jollands, M., and Setunge, S., 2015. Life cycle assessment and life cycle cost 778
- 779 implication of residential buildings-a review. Renewable and Sustainable Energy Reviews, 42, pp.129-140. 780
- 26. Hammond, G., Jones, C., Lowrie, F. and Tse, P. 2008. Inventory of carbon & energy: ICE. 781
- 782 Bath: Sustainable Energy Research Team, Department of Mechanical Engineering, University of Bath. 783
- 27. ArcelorMittal Construction Benelux: Arval COFRADAL200®. 784
- 785 28. Precast Concrete Flooring, BISON Precast Ltd., August 2007.
- 29. Ahmed, I., Tsavdaridis, K.D. and Neysari, F. A New Breed of Sustainable Ultra-786 lightweight and Ultra-Shallow Steel-Concrete Composite Flooring System: Life Cycle 787 Assessment (LCA) of Materials. International Conference Coordinating Engineering for 788 Sustainability and Resilience (CESARE 2017). 3-8 May, 2017, Dead Sea, Jordan. 789
- 30. Ahmed, I., Tsavdaridis, K.D. and Neysari, F. Push-Out Shear Tests for a Novel Pre-790 fabricated Shallow Steel-Concrete Composite Flooring System. The 12th International 791 792 Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018). 27-29 793 June, 2018, Valencia, Spain.
- 31. ISO, E., 2006. 14040: 2006. Environmental management-Life cycle assessment -794 795 Principles and framework. European Committee for Standardization.
- 32. ISO, I., 2006. 14044. Environmental management. Life cycle assessment. Requirements 796 and guidelines Managements environmental. Analyse du cycle de vie. 797
- 33. ISO, T., 2012. 14049: 2012 Environmental management Life cycle assessment -798 Illustrative examples on how to apply ISO 14044 to goal and scope definition and inventory 799 analysis. International Organization for Standardization (ISO): Geneva. 800
- 34. Goedkoop M, Schryver AD, Oele M. Introduction to LCA with SimaPro. Amersforst: 801 PRe' Consultants; 2006. 802
- 35. Bare, J.C., 2002. TRACI: The tool for the reduction and assessment of chemical and other 803 804 environmental impacts. Journal of industrial ecology, 6(3-4), pp.49-78.
- 805 36. Sjunnesson, J., (2005). Life cycle assessment of concrete. Master thesis. Lund University;
- September 2005. 806

- 37. Coen Van Gorkum, CO₂ emissions and Energy Consumption during the Construction of
 Concrete Structures, 2010. Netherlands.
- 38. Yohanis, Y.G. and Norton B. Life-cycle operational and embodied energy for a generic
 single-storey office building in the UK. Energy 2002; 27:77–92.
- 39. Vukotic L, Fenner R, Symons K. Assessing embodied energy of building structural
 elements. Engineering sustainability 2010; 163(3):147.
- 40. Blengini GA. Life cycle of buildings, demolition, and recycling potential: A case study in
 Turin, Italy. Building and Environment 2009; 44: 319– 330.
- 41. Asif, M., Muneer, T. and Kelley, R. Life cycle assessment: a case study of a dwelling
 house in Scotland. Building and Environment 2007; 42:1391-1394.
- 42. Huberman N, Pearlmutter D. A life-cycle energy analysis of building materials in the
 Negev desert. Energy and Buildings 2008; 40:837–848.
- 43. Vukotic L, Fenner R, and Symons K. Assessing embodied energy of building structural
 elements. Engineering sustainability 2010; 163(3):147.
- 44. Zabalza Bribán I et al. Life cycle assessment of building materials: comparative analysis
- of energy and environmental impacts and evaluation of the eco-efficiency improvement
 potential. Building and Environment 2010, doi:10.1016/j.buildenv.2010.12.002.
- 45. Cole RJ. Energy and greenhouse gas emissions associated with the construction of alternative structural systems. Building and Environment 1999; 34:335-348.
- 46. David Churcher and Peter Tse, A BERIA Guide: Life cycle costing. BG67/2016.
- 47. ISO 15686-5:2008 Buildings and constructed assets Service life planning Part 5: Life
 cycle costing Available from www.iso.org.
- 48. Treasury, H.M.S., 2003. The Green Book-Appraisal and Evaluation in Central
 Government, 2003. TSO: London.
- 49. SPON, Architects and builders price book, Mechanical and electrical services price book,
- 832 External works and landscape price book, Civil engineering and highway works price book.
- 50. HMRC (2011) A general guide to landfill tax. HM Revenue & Customs, London.
- 834 51. SilverCrest (2010) Disposal of construction waste. Franco RC (ed).
- 835
- 836
- 837