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Abstract—The sliding mode control (SMC) problem is studied
in this paper for state-saturated systems over a class of time-
varying fading channels. The underlying fading channels, whose
channel fading amplitudes (characterized by the expectation and
variance) are allowed to be different, are modeled as a finite-
state Markov process. A key feature of the problem addressed
is to use a hidden Markov mode detector to estimate the actual
network mode. The novel model of hidden Markov fading channels
is shown to be more general yet practical than the existing fading
channel models. Based on a linear sliding surface, a switching-
type SMC law is dedicatedly constructed by just using the
estimated network mode. By exploiting the concept of stochastic
Lyapunov stability and the approach of hidden Markov models,
sufficient conditions are obtained for the resultant SMC systems
that ensure both the mean-square stability and the reachability
with a sliding region. With the aid of the Hadamard product, a
binary genetic algorithm (GA) is developed to solve the proposed
SMC design problem subject to some nonconvex constraints
induced by the state saturations and the fading channels, where
the proposed GA is based on the objective function for optimal
reachability. Finally, a numerical example is employed to verify
the proposed GA-assisted SMC scheme over the hidden Markov
fading channels.

Index Terms—Sliding Mode Control; Hidden Markov Model;
State Saturation; Finite-State Fading Channels; Genetic Algo-
rithm.

I. INTRODUCTION

Sliding mode control (SMC) has been recognized as one

of the most effective robust control approaches to tackling

nonlinearities and external disturbances. Various SMC tech-

niques have been successfully applied to a wide range of
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engineering systems such as power electronics, mechanical

systems, and chemical processes. Over the past three decades,

a large number of research results have been developed for

SMC problems of continuous-time systems [1], [2], [17] and

discrete-time systems [13], [14], [23].

As a typical kind of nonlinear systems, state-saturated

systems possess the distinctive characteristics that the states

are constrained into a prescribed bounded area quantified

by saturation level. The state saturation phenomenon occurs

frequently in engineering practice owing to physical limita-

tions of the devices and/or protection equipment’s [28], [29],

[43]. By introducing a polytopic representation of saturation

nonlinearities, some representative results have been acquired

in [8], [16] on various dynamics analysis issues (e.g. stability,

robustness, filtering and control) for state-saturated systems.

Nonetheless, the SMC problem for state-saturated systems

remains an open yet interesting research problems.

For decades, networked control systems (NCSs) have been

gaining considerable research interest in response to the rapid

spread of communication network. The main feature of NCSs

is that the data transmission between different system com-

ponents is executed via communication networks, and this

renders the advantages of low cost, simple installation and

high reliability [18], [30], [31], [42], [44], [46]. Unfortunately,

the limited bandwidth of the network channels may give rise

to various networked-induced complexities that could cause

performance degradation or even instability of the NCSs. Till

now, the SMC issues have been under intensive investigation

for NCSs subject to various network-induced phenomena

including packet dropout [23], [32], signal quantization [15],

[21], randomly occurring incomplete information [20], [36],

and communication protocols [33], [35].

As an inevitable network-induced phenomenon in wireless

communication networks, the channel fading problem has

stirred much research attention, see e.g. [4], [11], [27] and the

references therein. Reflection, refraction and diffraction may

physically cause the fluctuation of wireless signals that leads

to the channel fading. In general, a signal can be delivered

through analog or digital pathways. In analog fading channel,

the signal fluctuation can be characterized by a multiplicative

noise model and, in digital fading channel, the packet-loss

rate is usually dependent on the channel power gain, power

level and packet length. So far, the control/filtering issues have

been discussed in [9], [11], [39] for analog fading channel and

in [6], [26] for digital fading channel. Nevertheless, the SMC

problem subject to fading channels has not received adequately
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research attention yet, which is still an ongoing research issue.

In the real world, the channel fading phenomenon occurs

typically in a time-varying fashion. In other words, the am-

plitude and/or phase of the transmitted signal may experience

fadings caused by the changing communication environment.

It has been shown that the wireless flat-fading channels can

be well described by the model of finite-state Markov fading

channels (FSMFCs), where the stochastic time-varying feature

is captured by a finite-state Markov process [27]. Up to

now, the filtering and stabilization problems over FSMFCs

have been addressed in some pioneering work, see e.g. [26],

[38], [40]. From the viewpoint of practical applications, a

key problem in employing the FSMFCs model is how to

estimate the actual network mode based on the measured

network information. In [38], an estimation/observation model

has been proposed for the actual network mode that covers

three special cases, namely, the current network mode obser-

vation, one-step delayed network mode observation and no

observation/estimation of network mode. Motivated by the

work in [38], a seemingly interesting question is whether it

is possible to develop a more general yet simple estimation

model to not only cover the above three special cases but

also observe the multi-step delayed network mode, and one

of the motivations of this paper is therefore to answer such a

question.

According to the above discussion, it makes both theoretical

and practical sense to study the SMC design for networked

state-saturated systems over FSMFCs. Very recently, the mode

detector approach has been put forward to describe the asyn-

chronous phenomena between the Markovian jump system

modes and the controller/filtering modes [5], [7], [24], [37].

Inspired by such an approach, in this paper, we focus our

attention on the design task of the SMC scheme for state-

saturated systems over hidden Markov fading channels (HM-

FCs), in which the jumping network mode of the FSMFCs is

estimated/observed by a mode detector via a hidden Markov

model (HMM). It is worth pointing out that the addressed

task is not easily accomplishable due to the following three

essential obstacles: 1) how to estimate the actual network

mode based on the hidden Markov detection mode? 2) how

to construct the sliding surface and the desired SMC law

by just using the estimated network mode information? 3)

how to analyze the stability and the reachability under the

state saturation and the HMFCs? The aim of this paper is to

provide satisfactory responses to these three questions through

launching a systematic investigation.

This paper endeavors to design the sliding mode controller

for a class of state-saturated NCSs over the HMFCs, where

the actual network mode over the fading channels is estimated

by a mode detector via a HMM. The novelties of this paper

lie in the following four aspects:

1) Based on a novel fading channels model of HMFCs,

the SMC problem is, for the first time, investigated

for the networked state-saturated systems over the

fading channels.

2) Based on a linear sliding surface, a switching SMC

strategy is proposed by using the estimated network

mode only.

3) By exploiting the polytopic representation of the state

saturation and the HMM approach, both the mean-

square stability and the reachability are studied for

the SMC system.

4) With the aid of the Hadamard product, a genetic

algorithm (GA) is formulated to solve the proposed

SMC design problem subject to some nonconvex

constraint conditions resulting from the state satu-

ration and the fading channels.

Notations. R
n represents the set of n-dimensional real

numbers. N0 represents the set including zero and all positive

integers, i.e., {0, 1, 2, . . .}. The expectation operator is denoted

as E{·}. Pr{A | B} represents the conditional probability of

the event A under the the event B. The block diagonal matrix

is denoted by “diag{·}”. For the real matrices A = [aij ]m×n

and B = [bij ]m×n, the Hadamard product A ◦ B is defined

as A ◦ B , [aijbij ]m×n
. sgn(·) denotes the standard sign

function.

II. PROBLEM FORMULATION

A. State-saturated systems

This paper is concerned with the problem of sliding mode

stabilization over HMFCs for the following state-saturated

systems:

x(k + 1) = σ
(

(A+∆A(k)) x(k) + B (u(k) + φ(x(k), k))
)

,

(1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the

actuator input vector, and φ(x(k), k) ∈ R
m is the matched

input disturbance satisfying ‖φ(x(k), k)‖ ≤ ϕ‖x(k)‖ with a

known scalar ϕ ≥ 0. The norm-bounded parameter uncertainty

∆A(k) satisfies ∆A(k) = MF (k)H with FT(k)F (k) ≤ I .

Here, A, B, M and H are known constant matrices, and the

input matrix B satisfies rank(B) = m.

iv

iv

( )i ivs

0

iv-

iv

iv-

Fig. 1. The saturation function σi(vi)

The state-saturated function σ(·) : R
n → R

n in (1) is

defined as follows:

σ(v) ,
[

σ1(v1) σ2(v2) · · · σn(vn)
]T

, ∀v ∈ R
n,

(2)

where the scalar-valued saturation function σi(vi) (shown in

Fig. 1) is defined by

σi(vi) , sgn(vi)min { ¯̟ i, |vi|} , (3)
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with vi representing the ith element of the vector v and ¯̟ i

standing for the saturation level. To help with the analysis

later, we denote

Λ , diag { ¯̟ 1, ¯̟ 2, . . . , ¯̟ n} . (4)

B. Hidden Markov fading channels

In this paper, the unreliable network consists of a set of

FSMFCs. Let the network mode ς(k) ∈ Θ , {1, 2, . . . , N}
obey a discrete-time Markov process with the following tran-

sition probabilities:

πij , Pr {ς(k + 1) = j | ς(k) = i} , k ∈ N0, ∀i, j ∈ Θ (5)

where πij ∈ [0, 1] and
∑N

j=1 πij = 1. The transition probabil-

ity matrix is defined as Π , [πij ]i,j∈Θ. In practical application,

the network modes ς(k) correspond to different channel fading

amplitudes or different configurations of the overall physical

environment (e.g., positions of mobile agents) [26], [27], [38].

Now, at the network mode ς(k), the network input-output

behavior can be characterized by

u(k) = ϑς(k)(k)v(k), (6)

where the channel fading phenomenon is reflected in

ϑς(k)(k) ∈ R
m×m that has the diagonal structure

ϑς(k)(k) = diag
{

ϑ1,ς(k)(k), ϑ2,ς(k)(k), . . . , ϑm,ς(k)(k)
}

(7)

and, for any b = 1, 2, . . . ,m, ϑb,ς(k)(k) is scalar-valued

random process with

µb,ς(k) , E
{

ϑb,ς(k)(k)
}

,

ξbl,ς(k) , E
{(

ϑb,ς(k) − µb,ς(k)

) (

ϑl,ς(k) − µl,ς(k)

)}

(8)

which satisfy µb,ς(k) > 0, ξbb,ς(k) > 0, and ξbl,ς(k) = ξlb,ς(k)
for all ς(k) ∈ Θ and b, l = 1, 2, . . . ,m.

We further write

Γς(k) ,diag
{

µ1,ς(k), µ2,ς(k), . . . , µm,ς(k)

}

,

Φς(k) ,
[

ξbl,ς(k)
]

b,l=1,2,...,m
,

Ψς(k) ,diag
{

ξ11,ς(k), ξ22,ς(k), . . . , ξmm,ς(k)

}

.

It is easily seen that Φς(k) is positive semidefinite.

Remark 1: It is worth mentioning that the model (6) with

the Markov process (5) can also be employed to describe

the jumping actuator failures [25], the quantizer with the

Markovian jump quantization density [22] and the Markovian

packet losses [32]. Specifically,

• for the jumping actuator failures [25], ϑb,ς(k)(k) = 0,

0 < ϑb,ς(k)(k) < 1, and ϑb,ς(k)(k) = 1 correspond to the

complete failure, partial failure, and failure-free cases of

the rth actuator, respectively;

• for the quantizer with the Markovian jump quantization

density [22], the model (6) is specified as

u(k) =
(

Im +∆ς(k)(k)
)

v(k),

where ∆ς(k)(k) , diag
{

∆1,ς(k)(k), . . . ,∆m,ς(k)(k)
}

,

∆l,ς(k)(k) ∈
[

−ζl,ς(k), ζl,ς(k)
]

, ζl,ς(k) ,
1−ρl,ς(k)

1+ρl,ς(k)
, and

ρl,ς(k) , e
−

2
̺l,ς(k) (l = 1, 2, . . . ,m) with the Markovian

jump quantization density ̺l,ς(k);

• for the Markovian packet losses [32], the model (6) is

set as ς(k) ∈ {1, 2}, where the mode ς(k) = 1 means

that the packet is received, i.e., Γ1 = Im, Φ1 = 0m, and

the mode ς(k) = 2 implies that the packet is lost, i.e.,

Γ2 = 0m, Φ2 = 0m.

Remark 2: Over the past decade, the SMC problem subject

to actuator degradation has been addressed well as in [3], [45].

Unfortunately, in order to ensure the full column rank condi-

tion of control gain matrix under the actuator degradation,

the actuator outage case is always excluded in the existing

literature [3], [45]. In this paper, the fading model (6) covers

the actuator outage as a special case in a stochastic setting,

that is, the stochastic variable ϑς(k)(k) may be equal to zero

at some sampling instants as shown in the simulation example

later. This fact just shows a key contribution of this paper.

Markov 

Fading Channels 

Plant Controller 

Actuator 
Mode 

detector

u(k) 

v(k) 

x(k) 

Fig. 2. Reliable SMC over hidden Markov fading channels

As depicted in Fig. 2, the mode detector is utilized to

estimate the actual network mode ς(k) and also emit an

estimated mode signal θ(k) ∈ Ξ , {1, 2, . . . , L} to the

controller with the mode detection probability δiq given by

δiq , Pr {θ(k) = q | ς(k) = i} , (9)

where δiq ∈ [0, 1] and
∑L

q=1 δiq = 1. We denote the mode

detection probability matrix as Ω , [δiq]i∈Θ,q∈Ξ. It is easy

to see that the detector (9) covers the following three special

cases:

• Synchronous observation of network mode: Θ = Ξ, and

δii = 1 (θ(k) = ς(k) in probability 1);

• Asynchronous observation of network mode: Ξ 6= I

(θ(k) = ς(k) with some probabilities 0 < δii < 1);

• No observation/estimation of network mode: L = 1
(θ(k) = 1 in probability 1).

Remark 3: In fact, the asynchronous network mode observa-

tion can be interpreted as the multi-step delayed network mode

observation in the sense of probability, where the mode de-

tection probabilities {δiq} are obtained through the following

statistical method via the channel field measurements [27]:

δiq = lim
ni→∞

liq

ni

, i ∈ Θ, q ∈ Ξ,

where ni ∈ N is the times of network mode ς(k) = i, and

liq ∈ N is the times of detector mode θ(k) = q under the
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case of system mode ς(k) = i. The utilization of the hidden

Markov mode detector (9) to the FSMFCs is motivated by

[7], [7], [24], [37]. For presentation convenience, the novel

FSMFCs (5)–(9) is named as the HMFCs hereafter.

In this paper, we are interested in developing a SMC input

v(k) by just using the estimated network mode signal θ(k)
such that the resultant closed-loop system is mean-square

stable subject to the HMFCs (5)–(9).

III. MAIN RESULTS

A. Sliding function and sliding mode controller

In this paper, the following linear sliding function is utilized:

s(k) = Tx(k) (10)

where T ∈ R
m×n is a sliding gain matrix to be determined

later such that

det(TB) 6= 0. (11)

Remark 4: It is worth mentioning that the mode-dependent

sliding surfaces as in [2], [17], [20], [21] may provide more

freedom to design the mode-dependent controller. However,

due to the switching frequently from one mode to another,

the reachability of mode-dependent sliding surfaces may not

always be attained actually. To this end, this paper utilizes the

common sliding function (10).

By only employing the estimated mode signal θ(k) ∈ Ξ to

the network mode ς(k), we construct the following SMC law

for the state-saturated system (1):

v(k) = Kθ(k)x(k) − ϕ‖x(k)‖ · sgn(s(k)) (12)

where the matrices Kθ(k) ∈ R
m×n will be designed later.

Remark 5: It is well recognized that the chattering is the

main drawback of the SMC approach. Notice that the matched

external disturbance φ(x(k), k) in the system (1) is supposed

to satisfy Lipchitz condition so that the discontinuous term

can have an adaptive gain. This feature is actually benefit for

chattering alleviation.

Combining (1), (6) and (12), we have the following closed-

loop system:

x(k + 1) = σ
(

(A+∆A(k) +Bϑi(k)Kq)x(k) +Bεi(k)
)

,

(13)

where i ∈ Θ, q ∈ Ξ and

εi(k) , φ(x(k), k) − ϕ‖x(k)‖ · ϑi(k)sgn(s(k)). (14)

Definition 1: [5] The closed-loop system (13) is said to be

mean-square stable if, for any initial condition x(0) 6= 0, the

condition limk→∞ E
{

‖x(k)‖2
}

|x(0)= 0 holds.

The following three technical lemmas will be useful in the

subsequent investigation on the mean-square stability of the

closed-loop system (13) and the reachability for the specified

sliding surface (10).

Lemma 1: [8], [16] Let Zn be the set of n × n diagonal

matrices whose diagonal elements are either 1 or 0. i) There

are 2n elements in Zn where its rth element is denoted as Zr,

r ∈ Mn , {1, 2 . . . , 2n}. ii) By defining Z−

r , I − Zr and

letting G ∈ R
n×n satisfy ‖G‖∞ ≤ 1, for any vector w ∈ R

n,

we have

Λ−1σ
(

Ax(k) + w
)

∈ co
{

ZrΛ
−1

(

Ax(k) + w
)

+ Z−

r GΛ−1x(k)
}

, r ∈ Mn

where the matrix Λ is defined in (4), and co{·} denotes the

convex hull of a set.

Lemma 2: For any ς(k) = i ∈ Θ, the stochastic variable

εi(k) in (14) satisfies

E
{

εTi (k)εi(k) | x(k)
}

≤
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2xT(k)x(k).

Proof: For any i ∈ Θ, it yields from (14) that

E
{

εTi (k)εi(k) | x(k)
}

=‖φ(x(k), k)− ϕ‖x(k)‖ · Γisgn(s(k))‖2

+ ϕ2‖x(k)‖2sgnT(s(k))Ψisgn(s(k))

≤
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2xT(k)x(k),

which completes the proof.

Lemma 3: Let X , Y and Z be positive semidefinite matrices.

If X ≤ Y , then the inequality Z ◦X ≤ Z ◦ Y holds.

Proof: Clearly, Y −X ≥ 0. Then, according to Theorem

7.5.3 in [12], we have Z ◦ (Y −X) ≥ 0, which is equivalent

to Z ◦X ≤ Z ◦ Y . The proof is complete.

B. Analysis of sliding mode dynamics

In the following theorem, we analyze the mean-square

stability of the closed-loop system (13) by utilizing a fading-

related state-dependent Lyapunov function.

Theorem 1: Consider the networked state-saturated system

(1) and the SMC law (12). The closed-loop system (13) is

mean-square stable if, for any i ∈ Θ, q ∈ Ξ and r ∈ Mn,

there exist matrices Pi > 0, Kq ∈ R
m×n, G ∈ R

n×n, and

scalars γir > 0 such that the following matrix inequalities

hold:

‖G‖∞ ≤ 1, (15)

BTΛ−1ZrΛPiΛZrΛ
−1B ≤ γirI, (16)

− Pi + 2γir
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2I

+ 2
L
∑

q=1

δiq

{

Z
T
irqΛPiΛZirq

+KT
q

(

Φi ◦BTΛ−1ZrΛPiΛZrΛ
−1B

)

Kq

}

< 0, (17)

where Pi ,
∑N

j=1 πijPj , and Zirq , ZrΛ
−1

(

A+∆A(k)
)

+
Z−

r GΛ−1 + ZrΛ
−1BΓiKq.

Proof: For the network mode ς(k) = i ∈ Θ, we consider

the following Lyapunov function:

V (x(k), ς(k)) , xT(k)Pς(k)x(k). (18)

Exploiting the conditional expectation [41] and Lemma 1,

we have the following relationships for ς(k) = i:

E
{

∆V (x(k), ς(k)) | x(k)
}

,E
{

xT(k + 1)Pς(k+1)x(k + 1) | x(k)
}
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− xT(k)Pix(k)

=E
{

xT(k + 1)Pix(k + 1) | x(k)
}

− xT(k)Pix(k)

=
L
∑

q=1

δiqE

{

σT
(

(A+∆A(k) +Bϑi(k)Kq) x(k) +Bεi(k)
)

× Piσ
(

(A+∆A(k) +Bϑi(k)Kq)x(k) +Bεi(k)
)

| x(k)
}

− xT(k)Pix(k)

=

L
∑

q=1

δiqE

{

{ 2n
∑

r=1

αr

[

ZrΛ
−1

(

(A+∆A(k)

+Bϑi(k)Kq) x(k) +Bεi(k)
)

+ Z−

r GΛ−1x(k)

]T}

× ΛPiΛ

{ 2n
∑

r=1

αr

[

ZrΛ
−1

(

(A+∆A(k)

+Bϑi(k)Kq) x(k) +Bεi(k)
)

+ Z−

r GΛ−1x(k)

]}

| x(k)
}

− xT(k)Pix(k)

≤ max
r∈Mn

{

L
∑

q=1

δiqE

{[

ZrΛ
−1

(

(A+∆A(k)

+Bϑi(k)Kq) x(k) +Bεi(k)
)

+ Z−

r GΛ−1x(k)

]T

× ΛPiΛ

[

ZrΛ
−1

(

(A+∆A(k)

+Bϑi(k)Kq) x(k) +Bεi(k)
)

+ Z−

r GΛ−1x(k)

]

| x(k)
}

}

− xT(k)Pix(k)

≤ max
r∈Mn

{

L
∑

q=1

δiq

{

2E

{

xT(k)
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1 + ZrΛ
−1Bϑi(k)Kq

]T

× ΛPiΛ
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1

+ ZrΛ
−1Bϑi(k)Kq

]

x(k) | x(k)
}

+ 2E
{

εTi (k)B
TΛ−1ZrΛPiΛZrΛ

−1Bεi(k) | x(k)
}

}

− xT(k)Pix(k)

}

, (19)

where αr ≥ 0 and
∑2n

r=1 αr = 1.

It follows from (16) and Lemma 2 that

E

{

εTi (k)B
TΛ−1ZrΛPiΛZrΛ

−1Bεi(k) | x(k)
}

≤γir
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2xT(k)x(k). (20)

Then, for ς(k) = i, substituting (20) into (19) gives

E
{

∆V (x(k), ς(k)) | x(k)
}

≤ max
r∈Mn

{

L
∑

q=1

δiq

{

2

{

xT(k)
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1 + ZrΛ
−1BΓiKq

]T

× ΛPiΛ
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1

+ ZrΛ
−1BΓiKq

]

x(k)

+ xT(k)KT
q

(

Φi ◦BTΛ−1ZrΛPiΛZrΛ
−1B

)

Kqx(k)

}

+ 2γir
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2xT(k)x(k)

}

− xT(k)Pix(k)

}

. (21)

It is easily shown that, for any ς(k) = i ∈ Θ,

E
{

∆V (x(k), i) | x(k)
}

< 0 if the condition (17) holds, and

this completes the proof.

Remark 6: In the discrete-time setting of the SMC theory,

the equivalent control law has been widely employed to

analyze the stability of the sliding mode dynamics, see [23],

[32], [33] for example. Unfortunately, it follows from (1), (6)

and (10) that

s(k + 1) =Tσ
(

(A+∆A(k)) x(k)

+B
(

ϑς(k)(k)v(k) + φ(x(k), k)
)

)

,

from which one can see that the equivalent control law

approach cannot be employed in this paper due to the co-

existence of the state-saturation function σ(·) and the channel

fading variable ϑς(k)(k), and this gives rise to substantial

challenges regarding the stability analysis of the SMC systems

subject to state saturation and HMFCs. With the aid of

Lemmas 1 and 2 as well as the HMM approach, sufficient

conditions are established such that the closed-loop system

(13) is mean-square stable under the SMC law (12).

C. Analysis of reachability

This subsection is devoted to the analysis of the reachability

for the specified sliding surface (10). First, it follows from (10)

and (13) that

s(k + 1) = Tσ
(

(A+∆A(k) +Bϑi(k)Kq)x(k) +Bεi(k)
)

.

(22)

Next, define the following time-varying sliding domain:

O ,
{

s(k)
∣

∣ ‖s(k)‖ ≤ ǫ̃(k)
}

(23)

where

ǫ̃(k) , max
i∈Θ,r∈Mn

{
√

ǫir(k)

λmin(Wi)

}

,

ǫir(k) ,2
[

λmax

(

BTΛ−1ZrΛPiΛZrΛ
−1B

)

+ λmax

(

BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B
)

]

×
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2‖x(k)‖2
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with the matrix Pi being defined in Theorem 1, and the

matrices Wi and Wi being defined in Theorem 2.

Clearly, O is just a vicinity of the sliding surface (10),

i.e., the quasi-sliding mode (QSM) around the sliding surface

s(k) = 0. In the following theorem, we will propose a

sufficient condition to ensure the above QSM motion for the

state-saturated system (1) subject to the HMFCs (5)–(9).

Theorem 2: Consider the networked state-saturated system

(1) and the SMC law (12). For any i ∈ Θ, q ∈ Ξ and r ∈ Mn,

assume that there exist matrices Pi > 0, Wi > 0, Kq ∈ R
m×n,

T ∈ R
m×n and G ∈ R

n×n satisfying the condition (15) and

the following matrix inequalities:

− Pi + 2

L
∑

q=1

δiq

{

Z
T
irqΛPiΛZirq + Z

T
irqΛT

T
WiTΛZirq

+KT
q

(

Φi ◦BTΛ−1ZrΛPiΛZrΛ
−1B

)

Kq

+KT
q

(

Φi ◦BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B
)

Kq

}

< 0 (24)

where Wi ,
∑N

j=1 πijWj , and Pi, Zirq are defined in

Theorem 1. Then, the SMC law (12) can force the state

trajectories of the closed-loop system (13) into the sliding

region O in mean-square sense.

Proof: Consider the following extended Lyapunov func-

tional:

Ṽ (x(k), ς(k)) , xT(k)Pς(k)x(k) + sT(k)Wς(k)s(k). (25)

Along with the solution of the sliding function (22), for any

ς(k) = i ∈ Θ, one has from Lemma 1 that

E
{

sT(k + 1)W (ς(k + 1))s(k + 1) | x(k)
}

=
L
∑

q=1

δiqE

{

{ 2n
∑

r=1

αr

[

ZrΛ
−1

(

(A+∆A(k)

+Bϑi(k)Kq) x(k) +Bεi(k)
)

+ Z−

r GΛ−1x(k)

]T}

× ΛTT
WiTΛ

{ 2n
∑

r=1

αr

[

ZrΛ
−1

(

(A+∆A(k)

+Bϑi(k)Kq) x(k) +Bεi(k)
)

+ Z−

r GΛ−1x(k)

]}

| x(k)
}

≤ max
r∈Mn

{

L
∑

q=1

δiq

{

2E

{

xT(k)
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1 + ZrΛ
−1Bϑi(k)Kq

]T

× ΛTT
WiTΛ

[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1

+ ZrΛ
−1Bϑi(k)Kq

]

x(k) | x(k)
}

+ 2E

{

εTi (k)B
TΛ−1ZrΛT

T
WiTΛZrΛ

−1Bεi(k) | x(k)
}

}}

≤ max
r∈Mn

{

L
∑

q=1

δiq

{

2

{

xT(k)
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1 + ZrΛ
−1BΓiKq

]T

× ΛTT
WiTΛ

[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1

+ ZrΛ
−1BΓiKq

]

x(k) + xT(k)KT
q

×
(

Φi ◦BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B
)

Kqx(k)

}

+ 2λmax

(

BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B
)

×
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2‖x(k)‖2
}}

, (26)

where αr ≥ 0 and
∑2n

r=1 αr = 1.

Bearing (19) and (26) in mind, we obtain the following

relationships for any ς(k) = i ∈ Θ:

E

{

∆Ṽ (x(k), ς(k)) | x(k)
}

,E
{

∆V (x(k), ς(k)) | x(k)
}

+E
{

sT(k + 1)W (ς(k + 1))s(k + 1) | x(k)
}

− sT(k)Wς(k)s(k)

≤ max
r∈Mn

{

L
∑

q=1

δiq

{

2

{

xT(k)
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1 + ZrΛ
−1BΓiKq

]T

× ΛPiΛ
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1

+ ZrΛ
−1BΓiKq

]

x(k)

+ xT(k)KT
q

(

Φi ◦BTΛ−1ZrΛPiΛZrΛ
−1B

)

Kqx(k)

}

+ 2

{

xT(k)
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1 + ZrΛ
−1BΓiKq

]T

× ΛTT
WiTΛ

[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1

+ ZrΛ
−1BΓiKq

]

x(k) + xT(k)KT
q

×
(

Φi ◦BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B
)

Kqx(k)

}

}

− xT(k)Pix(k)− λmin (Wi) ‖s(k)‖2 + ǫir(k)

}

. (27)

If the following is true:

‖s(k)‖ > ǫ̃(k) ≥
√

ǫir(k)

λmin(Wi)
, ∀i ∈ Θ, r ∈ Mn,

that is, the state trajectories escape the region O, then we can

have from (24) and (27) that

E

{

∆Ṽ (x(k), ς(k)) | x(k)
}

≤ max
r∈Mn

{

L
∑

q=1

δiq

{

2

{

xT(k)
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1 + ZrΛ
−1BΓiKq

]T

× ΛPiΛ
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1
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+ ZrΛ
−1BΓiKq

]

x(k)

+ xT(k)KT
q

(

Φi ◦BTΛ−1ZrΛPiΛZrΛ
−1B

)

Kqx(k)

}

+ 2

{

xT(k)
[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1 + ZrΛ
−1BΓiKq

]T

× ΛTT
WiTΛ

[

ZrΛ
−1

(

A+∆A(k)
)

+ Z−

r GΛ−1

+ ZrΛ
−1BΓiKq

]

x(k) + xT(k)KT
q

×
(

Φi ◦BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B
)

Kqx(k)

}

}

− xT(k)Pix(k)

}

<0, ∀i ∈ Θ, (28)

which means that, outside the region O defined in (23), the

state trajectories of the closed-loop system (13) are strictly

deceasing in mean-square sense. The proof is now complete.

D. Synthesis of SMC law

Actually, it is quite difficult to directly solve the inequalities

in Theorems 1 and 2 due to the coupling terms and the

Hadamard product terms in (17) and (24). In the following

theorem, by means of the property of the Hadamard product

in Lemma 3, we establish a sufficient condition to guarantee

the mean-square stability of the closed-loop system (13) and

the reachability of the specified sliding surface (10) simulta-

neously.

Theorem 3: For any i ∈ Θ, q ∈ Ξ and r ∈ Mn, assume that

there exist P̄i > 0, W̄i > 0, Q̄irq > 0, Kq ∈ R
m×n, Jq ∈

R
n×n, T ∈ R

m×n, G ∈ R
n×n, and scalars γ̄ir > 0, ζ̄ir > 0,

χ > 0 such that the following coupled matrix inequalities

hold:

‖G‖∞ ≤ 1, (29)
[

−γ̄irI Bir

BT
ir −P

]

≤ 0, (30)

[

−ζ̄irI Tir
T T
ir −W

]

≤ 0, (31)

[

Q̃irq Σirq

ΣT
irq −Iir

]

≤ 0, (32)





−P̄i ϕ̃iP̄i P̃i

ϕ̃iP̄i −γ̄irI 0

P̃i 0 −Qir



 < 0, (33)

where

P , diag
{

P̄1, P̄2, . . . , P̄N

}

,W , diag
{

W̄1, W̄2, . . . , W̄N

}

,

Bir ,
[

γ̄ir
√
πi1B

TΛ−1ZrΛ · · · γ̄ir
√
πiNBTΛ−1ZrΛ

]

,

Tir ,
[

ζ̄ir
√
πi1B

TΛ−1ZrΛT
T · · ·

ζ̄ir
√
πiNBTΛ−1ZrΛT

T
]

,

ϕ̃i , ϕ
√

2 (2 + 2‖Γi‖2 + tr(Ψi)),

P̃i ,
[ √

2δi1P̄i

√
2δi2P̄i · · ·

√
2δiLP̄i

]

,

Qir , diag
{

Q̄ir1, Q̄ir2, . . . , Q̄irL

}

,

Q̃irq ,





Q̄irq − JT
q − Jq Zirq Z̃irq

ZT
irq −P 0

Z̃T
irq 0 −W



 ,

Σirq ,





KT
q Ψi KT

q Ψi JT
q N

T 0
0 0 0 χMir

0 0 0 χM̃ir



 ,

Iir , diag
{

γ̄irΨi, ζ̄irΨi, χI, χI
}

,

Zirq ,
[ √

πi1Z̃irq
√
πi2Z̃irq · · · √

πiN Z̃irq

]

,

Z̃irq ,
(

ZrΛ
−1AJq + Z−

r GΛ−1Jq + ZrΛ
−1BΓiKq

)T
Λ,

Z̃irq ,
[ √

πi1
~Zirq

√
πi2

~Zirq · · · √
πiN

~Zirq

]

,

~Zirq ,
(

ZrΛ
−1AJq + Z−

r GΛ−1Jq + ZrΛ
−1BΓiKq

)T
ΛTT,

Mir ,
[ √

πi1M
TΛ−1ZrΛ · · · √

πiNMTΛ−1ZrΛ
]T

,

M̃ir ,
[ √

πi1M
TΛ−1ZrΛT

T · · ·
√
πiNMTΛ−1ZrΛT

T
]T

.

Then, the SMC law (12) with Kq = KqJ
−1
q can guarantee

both the mean-square stability of the closed-loop system (13)

and the QSM with the sliding region O define in (23).

Proof: For any i ∈ Θ and r ∈ Mn, we consider the

following inequalities:

‖G‖∞ ≤ 1, (34)

BTΛ−1ZrΛPiΛZrΛ
−1B ≤ γirI, (35)

BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B ≤ ζirI, (36)

− Pi + 2γir
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2I

+ 2
L
∑

q=1

δiq

{

Z
T
irqΛPiΛZirq + Z

T
irqΛT

T
WiTΛZirq

+KT
q

(

Φi ◦BTΛ−1ZrΛPiΛZrΛ
−1B

)

Kq

+KT
q

(

Φi ◦BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B
)

Kq

}

< 0.

(37)

It is straightforward to find that the conditions (17) and

(24) are guaranteed by the inequality (37), which implies that

Theorems 1 and 2 are ensured by the inequalities (34), (35)

and (37).

By using Lemma 3 and the definition of the Hadamard

product, it follows from the inequalities (35) and (36) that

Φi ◦BTΛ−1ZrΛPiΛZrΛ
−1B ≤ Φi ◦ γirI = γirΨi,

Φi ◦BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B ≤ Φi ◦ ζirI = ζirΨi.

Thus, the inequality (37) is ensured by

− Pi + 2γir
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2I

+ 2

L
∑

q=1

δiq

{

Z
T
irqΛPiΛZirq + Z

T
irqΛT

T
WiTΛZirq

+ γirK
T
q ΨiKq + ζirK

T
q ΨiKq

}

< 0. (38)

Clearly, the following inequalities are sufficient conditions

for the inequality (38) to hold:

Z
T
irqΛPiΛZirq + Z

T
irqΛT

T
WiTΛZirq + γirK

T
q ΨiKq
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+ ζirK
T
q ΨiKq ≤ Qirq, (39)

− Pi + 2γir
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2I + 2

L
∑

q=1

δiqQirq < 0.

(40)

Next, we denote P̄i , P−1
i , W̄i , W−1

i , Q̄irq , Q−1
irq,

γ̄ir , γ−1
ir , ζ̄ir , ζ−1

ir , and Kq , KqJq. By resorting to the

Schur complement and the following matrix inequality:
(

JT
q −Q−1

irq

)

Qirq

(

Jq −Q−1
irq

)

≥ 0, i ∈ Θ, r ∈ Mn, q ∈ Ξ,

it is concluded that the inequalities (34)–(36) hold because

of the conditions (29)–(31), and the inequalities (39)–(40) are

guaranteed by the conditions (32)–(33), respectively. The proof

is now complete.

E. Genetic-algorithm-assisted design algorithm

Notice that it is difficult to solve the proposed SMC design

problem by directly exploiting Theorem 3 due to the nonlinear

constraint conditions (11) and (29) as well as the nonconvex

coupling terms in the condition (32), e.g., JT
q Λ−1GTZ−

r Λ,

JT
q Λ−1GTZ−

r ΛTT.

Fortunately, the coupled matrix inequalities (30)–(33) re-

duce to be coupled LMIs if the sliding mode matrix T ∈
R

m×n and the matrix G ∈ R
n×n are specified a priori, and the

corresponding numerical difficulty scales down to the feasible

solution to certain coupled LMIs. On the other hand, it is

widely known that many existing evolutionary algorithms are

able to effectively deal with various optimization problems

subject to nonlinear constraints. Some popular evolutionary

algorithms include genetic algorithms (GAs) [10], [34] and

particle swarm optimization (PSO) algorithms [19]. As such,

it is quite natural to combine GAs and LMIs to solve the

proposed SMC design problem under the nonlinear constraint

conditions (11) and (29).

In order to take advantage of the GAs, an adequate objective

function should be given for a certain formulated optimization

problem. Notice that the reachability of the sliding region

O in (23) just reflects the SMC performance. Therefore, we

consider the following minimization problem for the proposed

SMC design:

min
T,G

ǫ̌

subject to: LMIs (30)–(33),

and constraints (11), (29), (41)

where

ǫ̌ , max
i∈Θ,r∈Mn

{√

ǭir

λmin(Wi)

}

,

ǭir ,2
[

λmax

(

BTΛ−1ZrΛPiΛZrΛ
−1B

)

+ λmax

(

BTΛ−1ZrΛT
T
WiTΛZrΛ

−1B
)

]

×
(

2 + 2‖Γi‖2 + tr(Ψi)
)

ϕ2.

Remark 7: It is worth mentioning that the nonconvex

conditions (11) and (29) are actually difficulty to be solved

directly. In the existing literature, the nonconvex condition (11)

is always addressed via trial-and-error way or some specific

structures, e.g., L = BTP with Lyapunov matrix P to be

determined [23], [32] or L = BTX with a given matrix X > 0
[33], [35]. Besides, the nonconvex condition (29) is overcome

in the existing literature by trial-and-error way or iterative

LMI approach [8], [16]. However, these existing methods may

be conservative to the controller design. Compared with the

aforementioned results, the present method of introducing GA

to the design in this paper can not only reduce the conservative

but also produce an optimized sliding mode controller in the

sense of the optimization problem (41). This fact actually

shows that the proposed GA-assisted SMC design approach

is more “smarter” than the ones in the existing literature [23],

[32]–[35].

Based upon the above objective function, the binary-based

GA is formulated in Algorithm 1 to solve the proposed SMC

design problem with coupled LMIs.

Remark 8: In this paper, the SMC problem is investigated

for state-saturated systems over the HMFCs. Actually, there

are two technical obstacles to solve the specified SMC prob-

lem, that is, the state saturation reflecting in the non-convex

condition (29) and the HMFCs leading to the asynchronous

SMC law (12). The main results proposed in Theorems 1–

3 exhibit the following distinctive merits: 1) the designed

SMC law is dependent on the estimated network mode, which

is a kind of non-synchronization with the actual network

mode via a HMM; 2) the reachability of a sliding domain

around the specified sliding surface is analyzed by a stochastic

Lyapunov function; 3) the HMFCs and the state saturation

nonlinearities are tackled by using the HMM approach and

some properties of the Hadamard product; and 4) the proposed

SMC problem subject to nonconvex constraint conditions can

be solved effectively by the developed GA in combination with

the coupled LMIs.
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Fig. 3. Fitness value of each generation in solving Algorithm 1.
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Fig. 4. State trajectories x(k) in open- and closed-loop cases

IV. AN NUMERICAL EXAMPLE

Consider a state-saturated system in form of (1) with

A =

[

−1.5 1
−0.3 1.3

]

, B =

[

1
1

]

,

M =
[

0.2 −0.3
]T

, H =
[

−0.1 0.09
]

,

F (k) = cos(k), φ(x(k), k) = 0.2
√

x2
1 + x2

2.

The saturation levels are taken as ¯̟ 1 = ¯̟ 2 = 1 and the

bound coefficient of nonlinear function φ(x(k), k) is set to be

ϕ = 0.2. In this example, we utilize a two-mode (“good” and

“bad”) Markov fading channel with the transition probability

matrix:

Π =

[

0.6 0.4
0.4 0.6

]

.

When the network channel is in the “good” mode (ς(k) = 1),

the channel fading variable ϑ1(k) has the mathematical expec-

tation Γ1 = µ1,1 = 0.8 and variance Φ1 = Ψ1 = ξ11,1 = 0.09
while, if the network channel is in the “bad” mode (ς(k) = 2),

the channel fading variable ϑ2(k) has the mathematical expec-

tation Γ2 = µ1,2 = 0.2 and variance Φ2 = Ψ2 = ξ11,2 = 0.1.

Now, we utilize a mode detector to estimate the states of the

Markov fading channel, where the mode detection probability

matrix is given as follows:

Ω =

[

0.5 0.5
0.3 0.7

]

.

Specifically, when the network channel is in the “good” mode

(ς(k) = 1), the mode detector has 0.5 probability to emit the

“good” mode (θ(k) = 1) or the “bad” mode (θ(k) = 2) to the

controller. This is similar to the case that the network channel

is in the “bad” mode (ς(k) = 2).

The objective of this example is to synthesize an SMC

law (12) to stabilize the networked state-saturated system

subject to the above HMFC. GA is recalled to solve the

proposed SMC design problem. In GA, the parameters are set

as follows: population size Nc = 50; maximum of generations

Tmax = 100; crossover probability pc = 0.8; mutation prob-

ability pm = 0.1; bounds of the elements t11 = t12 = 5 and

t11 = t12 = −5; and lengths of binary strings ℓt11 = ℓt12 = 12
and ℓg11 = ℓg12 = ℓg21 = ℓg22 = 10. By executing Algorithm

1, we obtain the following optimized solutions:

T =
[

3.8938 4.5092
]

,

G =

[

−0.3568 0.2356
0.6872 0.1711

]

,

v(k) =















[

1.4847 −1.5954
]

x(k)
−0.2‖x(k)‖ · sgn(s(k)), θ(k) = 1;
[

1.6680 −1.8379
]

x(k)
−0.2‖x(k)‖ · sgn(s(k)), θ(k) = 2.

(42)

Fig. 3 depicts the best and average fitness values of each

generation in the computation process of GA.

The simulation results for the initial condition x(0) =
[

1 −1
]T

are given in Figs. 4–8. It is clear from the

Fig. 4(a) that the state-saturated system in open-loop case is

unstable. As expected, as shown in Fig. 4(b), the designed

SMC law (42) stabilizes the state-saturated system under a

possible fading state and detection mode sequence in Fig. 5

and the channel fading variable ϑς(k)(k) in Fig. 6. The reach-

ability of the sliding region O in (23) is clearly illustrated in

Fig. 7. Fig. 8 shows the SMC signal v(k) and the actual control

signal u(k) simultaneously. To this end, the effectiveness of

the proposed GA-based state-saturated SMC scheme subject to

the HMFCs is validated from all obtained simulation results.

V. CONCLUSIONS

This paper has dealt with the SMC problem for networked

state-saturated systems over the finite-state HMFCs. The mode

detector has been employed to estimate the actual network

mode via a HMM. Based on the estimated network modes, a

suitable SMC scheme has been proposed with a linear sliding
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Algorithm 1 GA-Assisted State-Saturated SMC Design

◮ Step 1: Parameter encoding. Denote the sliding gain

matrix T = [tij ]m×n and the matrix G = [gij ]n×n, so

there are mn+n2 independent variables. To this end, the

phenotype in the search space is expressed as a row vector

w ∈ R
1×(mn+n2):

[T,G] → w ,
[

t11 . . . t1n t21 . . . tmn

g11 . . . g1n g21 . . . gnn
]

.

In w, each element tij is coded as a binary string with the

length ℓtij over the range of tij ∈ [tij , tij ]. The precision

qtij under the linearly-mapped coding can be obtained by

qtij =
tij−tij

2
ℓtij −1

. Furthermore, it is noted that the nonlinear

constraint condition (29) implies that gij ∈ [−1, 1]. Hence,

for each element gij in w is coded as a binary string of

length ℓgij , the precision qgij can be computed as qgij =
2

2
ℓgij −1

.

◮ Step 2: Population initialization. Initial population of Nc

chromosomes wl, l = 1, 2, . . . , Nc, is generated randomly.

◮ Step 3: Fitness function and assignment. Decode the

initial population produced in Step 2 into a real val-

ues for every phenotype, and then the fitness function

Fitness(Tl, Gl) , 1
ǫ̌

is computed for every Tl and

Gl via solving coupled LMIs (30)–(33). If either the

coupled LMIs (30)–(33) are infeasible or the constraint

conditions (11), (29) are not hold, then the fitness function

Fitness(Tl, Gl) will be artificially assigned a sufficiently

small value (10−6 in this paper) for reducing its opportu-

nity to survive in the next generation.

◮ Step 4: Performing genetic operations. According to the

assigned fitness in Step 3, we obtain the next population

by executing the sequence of genetic operations Selection,

Crossover and Mutation, respectively (more details can

be found in [10], [34]). Here, we denote the single-point

crossover probability as pc, and a single bit mutation

probability as pm.

◮ Step 5: Stop criterion. The evolution process will be

repeated from Step 3 to 4 in each generation until the

maximum generations Nmax is reached. And then, decode

the best chromosome wl into real values with producing

the sliding gain matrix T and the matrix G.

◮ Step 6: Design of SMC laws. Produce the SMC law (12)

by using the sliding gain matrix T and the gain matrices

Kq = KqJ
−1
q obtained from Step 5, and then apply it

to stabilize the state-saturated system (1) subject to the

HMFCs (5)–(9).

surface. By resorting to the stochastic Lyapunov function

and the HMM approach, the sufficient conditions have been

derived to ensure both the mean-square stability of the sliding

mode dynamics and the reachability of the specified sliding

surface. Furthermore, with the aid of the polytopic represen-

tation of the saturation nonlinearities and some properties of

the Hadamard product, a GA combining with LMIs has been

proposed to solve the SMC design problem subject to some
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nonconvex constraint conditions. In the near future, we may

extend the proposed results to the state-saturated SMC issues

under the fading measurements [6], [26] and employ some

improved evolutionary algorithms [19] to solve the proposed

non-convex optimization problem more effectively.
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