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Probability-Guaranteed Envelope-Constrained Filtering for
Nonlinear Systems Subject to Measurement Outliers

Lifeng Ma, Zidong Wang, Jun Hu, and Qing-Long Han

Abstract—This paper deals with the recursive filtering problem for
nonlinear time-varying stochastic systems subject to possible measure-
ment outliers. In order to mitigate the effects from possible abnormal
measurements, we construct a filter with a saturation constraint imposed
on the innovations where the saturation level is adaptively determined
according to the estimation errors. Two performance indices, namely,
the finite-horizon H∞ specification and the envelope-constraint criterion
with a prescribed probability, are put forward to describe the transient
characteristics of the filtering error dynamics over a specified time
interval. The purpose of the addressed problem is to design a filter
capable of guaranteeing both the finite-horizonH∞ performance index
and the probability-guaranteed envelope-constraint. Sufficient conditions
are derived for the existence of the desired filter via certain convex
optimization algorithms. Finally, an illustrative numerical example is
proposed to demonstrate the effectiveness of the developed algorithm.

Index Terms—Nonlinear systems, measurement outliers,H∞ filtering,
envelope-constraint in probability, finite-horizon filtering

I. I NTRODUCTION

The past several decades have seen a surge of research interest
on the filtering problems for stochastic systems and a multitude of
filtering techniques have been reported in the literature, see e.g. [3],
[5], among which the celebrated Kalman filtering (KF) algorithm has
been playing a crucial role in the research areas of signal processing
and stochastic control [12], [23], [31]. The KF algorithm serves as an
optimal filtering technique in the sense of least mean square forlinear
models withGaussiannoises. Note that the performance of the stan-
dard KF algorithm would be significantly degraded when the system
parameters are not perfectly known and/or the statistical information
of the external noises is unavailable. Accordingly, alternative filtering
approaches have been proposed to cope with the systems subject
to uncertainty, nonlinearity and/or non-Gaussian noises. Examples
include, but are not limited to, the robust KF algorithm [27], the
extended KF (EKF) method [16], the set-valued filtering strategy [6]
and theH∞ filtering scheme [22].

It is worth mentioning that, different from the KF algorithm which
provides the optimal estimation in the sense of the least mean square,
theH∞ approach aims to minimize theH∞ criterion quantizing the
effects from the external disturbances to the estimation errors. Due
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to its robustness against parameter uncertainties as well as external
disturbances, theH∞ filtering has captured an ever-increasing interest
in both theoretical research and engineering applications, especially
in the occasions when the statistical information of the disturbances
is not available. So far, a rich body of literature has been available
on theH∞ filtering problems and a number of techniques have been
exploited that include the linear matrix inequality (LMI) approach,
the Riccati equation method and the game theory strategy. Note that,
in practical engineering, most systems are inevitably subject to time-
varying parameters. Consequently, theH∞ filtering problems for
time-varying systems over a finite horizon have drawn much research
attention, see e.g. [10] for some recent results.

As far as the nonlinear systems are concerned, the corresponding
H∞ filtering problem has been garnering a growing interest in recent
years [11], [21], [22]. For instance, theH∞ filtering problem has
been investigated in [22], where the underlying complex network is
modeled by nonlinear functions constrained by known sector bounds.
In particular, for general nonlinear systems, the existence of the
correspondingH∞ filter can be cast into the solvability to certain
Hamilton-Jacobi equation (HJE) or Hamilton-Jacobi inequality (HJI)
[21]. Unfortunately, the technical difficulty in solving the HJE or HJI
largely hinders the obtained results from being extended or applied.
As such, some attention has recently been drawn to nonlinear filtering
problems based on the traditionalH∞ framework. A quintessential
example is that, by borrowing the idea from EKF, the extended
H∞ filter has been designed in [11] with its structure similar to
the extended Kalman filter. Nevertheless, to the best of the authors’
knowledge, the finite-horizonH∞ filtering problem for general
nonlinear systems has not been sufficiently examined yet, which still
remains as a challenging research issue.

On another research frontier, the envelope-constrained filtering
(ECF) algorithm has recently stirred some research interest. The ECF
algorithm aims to confine the output of filtering error (stimulated by
a specified input) into a prescribed envelope that is determined by
the desired output and the tolerance band. The ECF technique can
find wide applications in a variety of engineering areas ranging from
signal processing to digital communications [8], [10]. Up to now,
several methodologies have been utilized in the literature to deal with
the envelope-constrained filtering problems and some representative
work can be summarized as follows. In anH∞ framework, the
envelope-constrained filtering problem has been formulated in [30]
and the solvability has been presented in terms of the feasibility
of a finite dimensional minimax problem with linear inequality
constraints. By resorting to the LMI approach, an infinite impulse
response (IIR) filter has been designed in [24] that ensures that the
system dynamics is bounded in a prespecified envelope. It should
be pointed out that almost all the ECF-related results have been
concerned with thelinear time-invariant (LTI) systems, and very
few results have been obtained with regard to thegeneral nonlinear
time-varyingsystems, which motivates us to shorten such a gap by
conducting the current investigation.

It is widely recognized that the measurement outliers has now
become a rather unavoidable phenomenon that might lead to de-
terioration of the estimation performance. Therefore, much effort
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has been devoted to the investigations of filtering/estimation issues
subject to outliers, and several approaches have been proposed that
can be categorized as follows. Within the Kalman filtering framework,
the state estimation problems have been solved in [14] where the
proposed algorithms are robust against the outliers. Recently, the
moving horizon technique has been adopted in [1] with the purpose of
estimating the states of LTI systems in the presence of measurement
outliers. An observer has been designed in [2] for LTI system with
measurements subjected to outliers whose effects are mitigated by
introducing a saturated output injection. It is worth mentioning that,
however, when thenonlinear time-varyingsystems are concerned, the
corresponding results have been very much scattered, not to mention
the case where themultiple performance requirements (i.e.,H∞-
specification and envelope-constraint) are simultaneously considered
in a unified framework. It is, therefore, our aim in this paper to deal
with the identified challenges by launching a major study on the so-
called envelope-constrainedH∞ filtering problem.

The main contributions of this paper can be highlighted as follows.
i) The model of the system under investigation is comprehensive
which is described by general nonlinear stochastic time-varying dif-
ference equation. ii) In order to mitigate the effects of possible mea-
surement outliers, a mechanism of saturating innovations is adopted
where the adaptive saturation level is recursively determined at each
time step according to previous filtering errors. In comparison to
those saturation mechanism with fixed levels, the proposed dynamical
level can be adjusted adaptively along with the filtering accuracy
and provide better performance. iii) To characterize the transient
performances, two indices (i.e.,H∞ specification and envelope-
constraint in probability) are defined over a finite horizon to depict
dynamical behaviors from different perspectives. iv) The proposed
algorithm is capable of guaranteeing the envelope-constraint with a
predetermined probability (rather than the usual 100% confidence).
Such a probabilistically design method could provide much extra
flexibility by relaxing certain stringent yet unnecessary performance
constraints in real-world applications.

The rest of this paper is organized as follows. Section II formu-
lates the probability-guaranteed envelope-constrainedH∞ filtering
problem for discrete-time nonlinear system subject to measurement
outliers. The main results are presented in Section III where sufficient
conditions for solvability of the addressed filtering problem are given
in terms of recursive linear matrix inequalities (RLMIs). Section IV
gives a numerical example and Section V outlines our conclusion.

Notation The notation used here is fairly standard except where
otherwise stated.Rn denotes then-dimensional Euclidean space,
1n denotes ann-dimensional column vector with all ones,In and
0n denote the identity matrix and zero matrix ofn dimensions,
respectively. The notationX ≥ Y (respectivelyX > Y ), where
X and Y are symmetric matrices, means thatX − Y is positive
semi-definite (respectively positive definite). The superscript “ T ”
denotes the transpose. For a vectora, ‖a‖2 = aTa and for a
scalarb, |b| denotes the absolute value ofb. diag{F1, F2, . . . , Fn}
denotes a block diagonal matrix whose diagonal blocks are given
by F1, F2, . . . , Fn. The notationdiagn{Ai} represents the block
diagonal matrixdiag{A1, A2, . . . , An} and coln{xi} denotes the
column vector[xT

1 xT
2 . . . xT

n ]
T.

II. PROBLEM FORMULATION

Consider the following nonlinear system defined on the horizon
[0, N ]:











xk+1 =f(xk) +Bkµk + (h(xk) +Ekµk)ωk

yk =g(xk) +Dkνk

zk =Lkxk

(1)

wherexk ∈ R
nx , yk ∈ R

ny and zk ∈ R represent, respectively, the
system state, the measurement output and the signal to be estimated;
µk ∈ l2([0, N ];Rnµ) and νk ∈ l2([0, N ];Rnν ) are the disturbance
inputs;ωk ∈ R is a white Gaussian sequence withE{ωk} = 0 and
E{ω2

k} = α2; Bk, Dk, Ek andLk are known time-varying matrices
with appropriate dimensions; and the nonlinear functionsf(xk),
g(xk) andh(xk) in system (1) are known and analytic everywhere
over the finite horizon[0, N ]. Without loss of generality, we assume
that the outputzk is a scalar so as to avoid unnecessarily complicated
presentations, and the case whenzk is a vector can be easily handled
by applying the developed scheme.

Denoting ŷk , g(x̂k) andrk , yk − ŷk, the filter to be designed
in this paper is of the following form:

x̂k+1 = Fkx̂k +HkSatσk
(yk − ŷk)

= Fkx̂k +HkSatσk
(rk), x̂0 = 0 (2)

where the nonlinear mappingSatσk
(·) : Rny 7→ R

ny in filter (2) is
a saturation function defined as follows:

Satσk
(rk) ,













Sat
(1)
σk

(

rk
)

Sat
(2)
σk

(

rk
)

...

Sat
(ny)
σk

(

rk
)













whereSat(l)σk

(

rk
)

, sign
(

r
(l)
k

)

·min
{

|r
(l)
k |, σk

}

with r(l)k denoting
the l-th entry of the vectorrk. Note that the saturation levelσk is
time-varying which is determinedadaptivelyat each time step by the
following difference equation:

σk+1 = λσk + (yk − ŷk)
TRk(yk − ŷk) (3)

whereλ ∈ [0, 1) andRk is a predetermined positive definite matrix.
Remark 1: In filter (2), a purposely designed saturation function

is adopted to mitigate the effects from possible measurement outliers
by constraining the innovations (i.e., the differences between the
measurement and estimated outputs) fed to the filter. It is worth
mentioning that, different from those existing literature concerning
saturation phenomenon where the saturation level is always assumed
to be fixed [7], in this paper, we employ the iterative function
(3) to determine the saturation levelσk by making use of the
innovation information at corresponding time step. In specific, it is
seen from (3) that when the innovation becomes smaller at time
step k (i.e., the estimation error becomes smaller), the saturation
level σk+1 will become lower which indicates that the corresponding
constraint imposed on innovation at time stepk + 1 will be more
stringent. By introducing such a mechanism, the saturation level can
be adjusted adaptively along with the filtering performances and the
corresponding superiority will also be shown later in the simulation
example.

For brevity of presentation, we denoteφk(·) , Satσk
(·). Then,

according to [26], there exists a diagonal matrixΛk satisfying0 ≤
Λk ≤ I such that

(

φk(rk)− Λkrk
)T(

φk(rk)− rk
)

≤ 0 (4)

whereΛk , diag{̺1k, ̺2k, . . . , ̺nyk} with 0 ≤ ̺ik ≤ 1.
Remark 2: It should be mentioned that in most existing literature

using the similar techniques to deal with saturation phenomenon, the
matrix Λk has been assumed to be fixed since the saturation level
is fixed. In this paper, however, it can be known from (3) and (4)
thatΛk should be appropriately selected to be a time-varying matrix
as the saturation levelσk is time-varying. Actually, the value of the
time-varyingΛk should be determined according to both values of
σk andrk at the corresponding time step.
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By using Taylor’s expansion formula, we have

f(xk) = f(x̂k) + Φk(xk − x̂k) + Σfk∆fk(xk − x̂k)

g(xk) = g(x̂k) + Ψk(xk − x̂k) + Σgk∆gk(xk − x̂k)

h(xk) = h(x̂k) + Πk(xk − x̂k) + Σhk∆hk(xk − x̂k) (5)

whereΣfk, Σgk and Σhk are known scaling matrices,∆fk, ∆gk

and∆hk are unknown matrices satisfying‖∆fk‖ ≤ 1, ‖∆gk‖ ≤ 1
and‖∆hk‖ ≤ 1, andΦk, Ψk andΠk are computed as follows:

Φk =
∂f

∂x

∣

∣

∣

x=x̂k

, Ψk =
∂g

∂x

∣

∣

∣

x=x̂k

, Πk =
∂h

∂x

∣

∣

∣

x=x̂k

.

Remark 3: In (5), the termsΣfk∆fk(xk − x̂k), Σgk∆gk(xk −
x̂k) andΣhk∆hk(xk − x̂k) account for the truncation errors due to
the neglected higher order terms in the Taylor series expansion of
the corresponding nonlinear functions. Alternatively,∆fk, ∆gk and
∆hk can also be illustrated as uncertain terms that are employed
to describe the modeling errors in the matricesΦk, Ψk and Πk,
respectively. Moreover, it should be pointed out that the adoption of
∆fk, ∆gk and∆hk will inevitably induces certain conservatism since
the original nonlinear system is replaced by an approximated one in
the filter design. Nevertheless, by appropriately choosing the scaling
matricesΣfk, Σgk andΣhk, we can largely reduce the conservatism
of the proposed linearized model as well as the corresponding filtering
approach. The readers are referred to [6] for a rigorous justification
of the validity of such a representation for the linearization error.

By denotingek , xk− x̂k, we acquire the following filtering error
system:







































ek+1 =f(xk) +Bkµk + (h(xk) + Ekµk)ωk

− Fkx̂k −Hkφk(rk)

=f(x̂k) + Φkek + Σfk∆fkek +Bkµk

+
(

h(x̂k) + Πkek + Σhk∆hkek +Ekµk

)

ωk

− Fkx̂k −Hkφk(rk)

z̃k =Lkek

(6)

We are now ready to give the main objectives of this paper. It is
our aim to design the filter parametersFk andHk in (2) such that
the following two requirements are met simultaneously:

R1 : (H∞ specification) Given γ > 0 and Γ > 0, the outputz̃k of
the filtering error system (6) satisfies

N
∑

k=1

E
{

‖z̃k‖
2} ≤ γ2

N
∑

k=1

‖ξk‖
2 + γ2eT0 Γe0 (7)

for any nonzeroξk ,
[

µT
k νTk

]T
6= 0.

R2 : (Envelope-constraint in probabilityp) Under zero-initial condi-
tion, with the following input

ξ◦k =

{

1, k = 0

0, 1 ≤ k ≤ N
(8)

the corresponding output̃z◦k of filtering error system (6) achieves

P{|z̃◦k − ϕk| ≤ χk} ≥ p (9)

where0 < p < 1 is a prespecified constant, andϕk andχk stand
for, respectively, the desired output and the tolerance band of the
output estimation error̃z◦k.

Remark 4:For the time-varying nonlinear filtering error system
(6), we are naturally interested in the transient behavior over a
specified time interval. As a result, in this paper, two performance
indices (i.e., theH∞ criterion and the envelope-constraint) are de-
fined over the finite horizon[0 N ] to reflect the time-varying manner
and characterize the transient dynamics of the addressed nonlinear

system. Specifically, on one hand, theH∞ requirement in (7) is put
forward to depict the robustness against the disturbances over the
time interval [0, N ]. On the other hand, the envelope-constraint in
(9) is proposed to confine, at each time stepk, the output estimation
error within certain prespecified band (described by the desired output
and tolerance band). It is worth mentioning that, although both
requirements are proposed to describe the transient characteristics,
they actually reflect the filtering error dynamics from different facets.
TheH∞ criterion concerns the disturbance attenuation level overthe
whole time interval[0, N ], whereas the envelope-constraint regards
the dynamical behavior of the filtering errorat each time instantk.

Remark 5: In real-world applications, it is usually impractical,
if not impossible, to achieve the desired objectives with 100%
confidence. Moreover, in engineering practice, it is unnecessary in
many situations to require the performance indices to be satisfied with
probability 1. For example, the missile navigation/control specifica-
tion might require that the standard deviation of the missile’s altitude
error should be less than 10 meters with an 80% probability. This
gives rise to the so-called probability-guaranteed design issue whose
objective is to attain the performance with a satisfactory chance [28].
Accordingly, instead of proposing the performance index with a hard
bound [10], [18], in this paper, we aim to design the filter ensuring
that the specified output̃z◦k is confined in the envelope band with
certain pre-determined probabilityp.

III. M AIN RESULTS

The following lemmas are useful in the establishment of our main
results.

Lemma 1: (S-procedure [4]) Letψ0(·),ψ1(·),. . .,ψp(·) be quadrat-
ic functions of the variableς ∈ R

n: ψj(ς) , ςTXjς (j = 0, . . . , p),
whereXT

j = Xj . If there exist ǫ1 ≥ 0, . . ., ǫp ≥ 0 such that
X0 −

∑p

j=1 ǫjXj ≤ 0, then the following is true:

ψ1(ς) ≤ 0, . . . , ψp(ς) ≤ 0 → ψ0(ς) ≤ 0.

Lemma 2: (Schur Complement Equivalence) Given constant ma-
trices S1,S2,S3 where S1 = ST

1 and 0 < S2 = ST
2 , then

S1 + ST
3 S

−1
2 S3 < 0 if and only if
[

S1 ST
3

S3 −S2

]

< 0 or

[

−S2 S3

ST
3 S1

]

< 0.

Lemma 3: [25] For any known matrixG > 0 and vectorb with
appropriate dimensions, an ellipsoidB is defined by

B ,

{

z|(z − b)TG(z − b) ≤ 1
}

where z is a random variable. If, for any given0 < p < 1, the
following inequality

E

{

(z − b)TG(z − b)
}

≤ 1− p

is true, then we have

P{z ∈ B} ≥ p.

A. TheH∞ specification

For the convenience of subsequent derivation, we first give the
following denotations:

Uk ,
1

2
(Λk + I), Dk ,

[

0 Dk

]

,

I ,
[

0 0 0 0 0 0 I
]

,

g̃k ,
[

0 I Dk 0 0 Σgk 0
]

,

ϑk , ∆fkek, δk , ∆hkek,

ρk , ∆gkek, φk , φk(rk),
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ζk ,
[

1 eTk
]T

where all the entries 0 andI (namely, zero matrices and identity ma-
trices) in the matrices throughout the paper are of suitable dimensions
unless stated otherwise.

The filtering error dynamics (6) can be reformulated as










ζk+1 =f̂kζk + B̂kµk + Σ̂fkϑk − Ĥkφk

+
(

ĥkζk + Σ̂hkδk + Êkµk

)

ωk

z̃k =Lkζk

(10)

where

f̂k ,

[

1 0
f(x̂k)− Fkx̂k Φk

]

, ĥk ,

[

0 0
h(x̂k) Πk

]

,

Σ̂fk ,

[

0
Σfk

]

, Σ̂hk ,

[

0
Σhk

]

, B̂k ,

[

0
Bk

]

,

Ĥk ,

[

0
Hk

]

, Êk ,

[

0
Ek

]

, L ,
[

0 Lk

]

.

Next, defining a new vectorηk by

ηk ,
[

ζTk ξTk ϑT
k δTk ρTk φT

k

]T

=
[

1 eTk ξTk ϑT
k δTk ρTk φT

k

]T
,

we further express the filtering error dynamics in the following
compact form:

{

ζk+1 =f̃kηk + ωkh̃kηk

z̃k =Lkζk
(11)

where

f̃k ,
[

f̂k Bk Σ̂fk 0 0 Ĥk

]

, Bk ,
[

B̂k 0
]

,

h̃k ,
[

ĥk Ek 0 Σ̂fk 0 0
]

, Ek ,
[

Êk 0
]

.

In virtue of the RLMI approach, the following theorem presents
a sufficient condition for the filtering error system (6) to satisfy the
requiredH∞ performance specification.

Theorem 1:Let γ > 0, Γ > 0 and {Fk,Hk}0≤k≤N be given. If
there exist a sequence of positive definite matrices{Pk}0≤k≤N+1

with P0 ≤ γ2Γ̄ (Γ̄ , diag{0,Γ}), sequences of positive s-
calars{τ1k, τ2k, τ3k, τ4k}0≤k≤N , a sequence of real value scalars
{εk}0≤k≤N such that

Ωk , Ω̄k −
4

∑

i=1

τikΩik − εkΩσk ≤ 0 (12)

where

Ω̄k ,f̃T
k Pk+1f̃k + α2h̃T

kPk+1h̃k

+ diag{−Pk + LT
kLk,−γ

2I, 0, 0, 0, 0}, (13)

Ω1k ,diag{0,−I, 0, I, 0, 0, 0}, (14)

Ω2k ,diag{0,−I, 0, 0, I, 0, 0}, (15)

Ω3k ,diag{0,−I, 0, 0, 0, I, 0}, (16)

Ω4k ,diag{0, 0, 0, 0, 0, 0, I}

− ITUkg̃k − g̃Tk U
T
k I + g̃Tk Λkg̃k, (17)

Ωσk ,diag{−σk+1 + λσk, 0, 0, 0, 0, 0, 0}

+ g̃TkRkg̃k, (18)

then the desiredH∞ specification defined in (7) is achieved.
Proof: Defining Vk , ζTk Pkζk, we have along the solution of

(11) that

∆k =E{Vk+1|ηk} − Vk

=E{ζTk+1Pk+1ζk+1} − ζTk Pkζk

=E{
(

f̃kηk + ωkh̃kηk
)T
Pk+1

(

f̃kηk + ωkh̃kηk
)

}

− ζTk Pkζk

=ηTk
(

f̃T
k Pk+1f̃k + α2h̃T

k Pk+1h̃k

)

ηk

− ηTk diag{Pk, 0, 0, 0, 0, 0}ηk. (19)

Adding zero term̃zTk z̃k−γ
2ξTk ξk−(z̃Tk z̃k−γ

2ξTk ξk) to both sides
of (19) yields

∆k + z̃Tk z̃k − γ2ξTk ξk − (z̃Tk z̃k − γ2ξTk ξk)

=∆k + (Lkζk)
TLkζk − ηkdiag{0, γ

2I, 0, 0, 0, 0}ηk

− (z̃Tk z̃k − γ2ξTk ξk)

=∆k + ηkdiag{L
T
kLk,−γ

2I, 0, 0, 0, 0}ηk

− (z̃Tk z̃k − γ2ξTk ξk)

=ηTk Ω̄kηk − (z̃Tk z̃k − γ2ξTk ξk) (20)

whereΩ̄k is defined in (13).
On the other hand, bearing in mind the definition ofϑk and noting

‖∆fk‖ ≤ 1, we obtain

ϑT
k ϑk = eTk∆

T
fk∆fkek ≤ eTk ek (21)

which can be equivalently expressed by

ηTk Ω1kηk ≤ 0 (22)

whereΩ1k is defined in (14).
Similarly, it is inferred fromδk = ∆hkek, ρk = ∆gkek (with

‖∆hk‖ ≤ 1 and‖∆gk‖ ≤ 1) that

ηTk Ω2kηk ≤ 0, ηTk Ω3kηk ≤ 0 (23)

whereΩ2k andΩ3k are defined in (15) and (16), respectively.
Let us proceed to deal with the saturation functionφk. It is known

from (4) that

(φk − Λrk)
T(φk − rk) ≤ 0 (24)

which, by noticingUk , 1
2
(Λk + I), can be equivalently described

by

φT
k φk − φT

kUkrk − rTk U
T
k φk + rTk Λkrk ≤ 0. (25)

It is easily known that

rk =yk − ŷk

=g(x̂k) + Ψkek + Σgk∆gkek +Dkνk − g(x̂k)

=Ψkek + Σgkρk +Dkνk

=g̃kηk (26)

whereg̃k is defined previously. Consequently, (25) can be described
by

ηTk diag{0, 0, 0, 0, 0, 0, I}ηk − ηTk I
TUkg̃kηk

− ηTk g̃
T
k U

T
k Iηk + ηTk g̃

T
k Λk g̃kηk ≤ 0 (27)

or, equivalently,

ηTk Ω4kηk ≤ 0 (28)

whereΩ4k is defined in (17).
From the constraint (3) imposed on the saturation level, we have

σk+1 = λσk + (yk − ŷk)
TRk(yk − ŷk)

which, in terms ofηk, can be expressed by

ηTk
(

diag{−σk+1 + λσk, 0, 0, 0, 0, 0, 0}+ g̃TkRkg̃k
)

ηk = 0

or, equivalently,
ηTk Ωσkηk = 0
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whereΩσk is defined in (18).
According to Lemma 1, under the conditions of this theorem, we

obtain Ω̄k ≤ 0. Subsequently, summing up both sides of (20) with
respect tok from 0 to N leads to

N
∑

k=0

∆k =
N
∑

k=0

ηTk Ω̄kηk −
N
∑

k=0

E
{

z̃Tk z̃k − γ2ξTk ξk
}

(29)

or,

N
∑

k=0

E{‖z̃k‖
2} −

N
∑

k=0

γ2‖ξk‖
2

=

N
∑

k=0

ηTk Ω̄kηk −

N
∑

k=0

∆k

=

N
∑

k=0

ηTk Ω̄kηk − ηTN+1Pk+1ηk+1 + ηT0 P0η0. (30)

Noting thatΩ̄k ≤ 0, Pk+1 > 0 andP0 ≤ γ2Γ̄, we arrive at

N
∑

k=0

E{‖z̃k‖
2} ≤

N
∑

k=0

γ2‖ξk‖
2 + γ2eT0 Γe0 (31)

which indicates that theH∞ specification is achieved. The proof is
now complete.

Remark 6:Theorem 1 provides a sufficient condition for the
addressed filtering problem such that the output estimation error
satisfies the prespecified disturbance attenuation level. By virtue of a
set of recursive linear matrix inequalities, the requiredH∞ criterion
can be guaranteed if the proposed set of RLMIs is feasible.

B. Envelope-constraint in probabilityp

Before carrying out the analysis on the envelope-constraint with a
desired probabilityp, we first propose the following lemma that will
be playing a vital role in the establishment of our main results.

Lemma 4:Let the filtering parameters{Fk,Hk}0≤k≤N be given.
If there exist a family of positive definite matrices{Qk}0≤k≤N+1,
sequences of positive scalars{ǫ1k, ǫ2k, ǫ3k, ǫ4k, ǫ5k}0≤k≤N and a
sequence of real value scalars{βk}0≤k≤N satisfying the following
recursive linear matrix inequality:





Ξ̄k F
T
k αH

T
k

∗ −Qk+1 0
∗ ∗ −Qk+1



 ≤ 0 (32)

where

Ξ̄k ,− diag{1, 0, 0, 0, 0, 0} −

5
∑

j=1

ǫjkΞjk − βkΞσk,

Fk ,
[

f(x̂k)− Fkx̂k + B̃kξ
◦
k ΦkΘk

Σfk 0 0 −Hk

]

,

Hk ,
[

h(x̂k) + Ẽkξ
◦
k ΠkΘk 0 Σfk 0 0

]

,

Gk ,
[

Dkξ
◦
k ΨkΘk 0 0 Σgk 0

]

,

B̃k ,
[

Bk 0
]

, Ẽk ,
[

Ek 0
]

,

Ξq ,diag{−1, I, 0, 0, 0, 0},

Ξ2k ,diag{0,−ΘT
kΘk, I, 0, 0, 0},

Ξ3k ,diag{0,−ΘT
kΘk, 0, I, 0, 0},

Ξ4k ,diag{0,−ΘT
kΘk, 0, 0, I, 0},

Ξ5k ,diag{0, 0, 0, 0, 0, I}

− ĪTUkGk − G
T
k U

T
k Ī + G

T
k ΛkGk,

Ī ,
[

0 0 0 0 0 I
]

,

Ξσk ,diag{−σk+1 + λσk, 0, 0, 0, 0, 0}+ G
T
k RkGk,

then the following inequality holds for allk ∈ [0, N ]:

E{(xk − x̂k)
TQ−1

k (xk − x̂k)} ≤ 1. (33)

Proof: Applying input ξ◦k to filtering error system (6) leads to

ek+1 =f(x̂k) + Φkek + Σfkϑk +Bkµk

+
(

h(x̂k) + Πkek + Σhkδk + Ekµk

)

ωk

− Fkx̂k −Hkφk. (34)

The rest of the proof is conducted by induction. First, whenk = 0,
it is inferred from the zero-initial condition and̂x0 = 0 that

E{(x0 − x̂0)
TQ−1

0 (x0 − x̂0)} ≤ 1. (35)

Next, assume that the following inequality holds at the time stepk:

E{(xk − x̂k)
TQ−1

k (xk − x̂k)} ≤ 1. (36)

Then, we only need to demonstrate that, at time stepk + 1, under
the conditions given in this lemma, the following inequality holds:

E{(xk+1 − x̂k+1)
TQ−1

k+1(xk+1 − x̂k+1)} ≤ 1. (37)

To this end, since (36) is true, we have from [13] that there exists
a vectorqk satisfyingE{qTk qk} ≤ 1 such that

xk = x̂k +Θkqk (38)

whereΘk is a factorization ofQk (i.e.,Qk = ΘkΘ
T
k ).

By using (38), the filtering error dynamics (34) driven by the input
ξ◦k can be described by

ek+1 =f(x̂k) + ΦkΘkqk + B̃kξ
◦
k

+
(

h(x̂k) + ΠkΘkqk + Σhkδk + Ẽkξ
◦
k

)

ωk

− Fkx̂k −Hkφk (39)

which can be further expressed as

ek+1 = Fkψk + Hkωkψk (40)

where

ψk ,
[

1 qTk ϑT
k δTk ρTk φT

k

]T
.

Consequently, we have

E{(xk+1 − x̂k+1)
TQ−1

k+1(xk+1 − x̂k+1)}

=E{
(

Fkψk + Hkωkψk

)T
Q−1

k+1

(

Fkψk + Hkωkψk

)

}

=ψT
k F

T
k Q

−1
k+1Fkψk + α2ψT

k H
T
k Q−1

k+1Hkψk

=ψT
k

(

F
T
k Q

−1
k+1Fk + α2

H
T
k Q−1

k+1Hk

)

ψk. (41)

Similar to the proof of Theorem 1, we have fromE{qTk qk} ≤ 1
that

E{ψT
k Ξqψk} ≤ 0. (42)

It is not difficult to infer fromϑk = ∆fkΘkqk and ‖∆fk‖ ≤ 1
that

ϑT
k ϑk = qTk Θ

T
k∆

T
fk∆fkΘkqk ≤ qTk Θ

T
kΘkqk (43)

which can be equivalently expressed as

ψT
k Ξ2kψk ≤ 0. (44)

Moreover, along similar lines, we acquire

ψT
k Ξ3kψk ≤ 0 (45)

and

ψT
k Ξ4kψk ≤ 0. (46)
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Let us now proceed to deal with the saturation constraint (4). First,
rk can be re-written as follows:

rk =yk − ŷk

=g(x̂k) + ΨkΘkqk + Σgkρk +Dkξ
◦
k − g(x̂k)

=Gkψk. (47)

Then, inequality (4) can be equivalently described by

ψT
k Ξ5kψk ≤ 0. (48)

Likewise, we obtain from the saturation level constraint (3) that

ψT
k Ξσkψk = 0. (49)

According to the Schur Complement Lemma, we know from (32)
that

F
T
k Q

−1
k+1Fk + α2

H
T
k Q−1

k+1Hk

− diag{1, 0, 0, 0, 0, 0}

−
5

∑

j=1

ǫjkΞjk − βkΞσk ≤ 0, (50)

which, in combination with Lemma 1, leads to

ψT
k

(

F
T
k Q

−1
k+1Fk + α2

H
T
k Q−1

k+1Hk

− diag{1, 0, 0, 0, 0, 0}
)

ψk ≤ 0. (51)

Therefore, we arrive at

E{(xk+1 − x̂k+1)
TQ−1

k+1(xk+1 − x̂k+1)} ≤ 1. (52)

The proof is now complete.
Theorem 2:Let the filtering gains{Fk, Hk}0≤k≤N , the desired

output {ϕk}0≤k≤N , the tolerance band{χk}0≤k≤N and the de-
sired probability p be given. If there exist a family of posi-
tive definite matrices{Qk}0≤k≤N+1, sequences of positive scalars
{ǫ1,k, ǫ2,k, ǫ3,k, ǫ4,k, ǫ5,k, ςk}0≤k≤N and a sequence of real value
scalars{βk}0≤k≤N satisfying the following recursive linear matrix
inequalities:





Ξ̄k F
T
k αH

T
k

∗ −Qk+1 0
∗ ∗ −Qk+1



 ≤ 0, (53)

[

−χ̃k + ςk + ϕ2
k −ϕT

kLkΘk

∗ −ςkI +ΘT
kL

T
kLkΘk

]

≤ 0 (54)

where

χ̃k , χ2
k(1− p), (55)

then the envelope-constraint in probabilityp defined in (9) is
achieved.

Proof: Since (53) is satisfied, we know from Theorem 2 that,
over the horizonk ∈ [0, N ], the errorsek and z̃◦k can be described
by ek = Θkqk and z̃◦k = LkΘkqk, respectively, whereΘk is a
factorization ofQk. By defining̟k ,

[

1 qTk
]T

, we have

z̃◦k − ϕk =
[

−ϕk LkΘk

]

̟k. (56)

Consequently, the following is true:

(z̃◦k − ϕk)
2 − χ̃k = ̟T

k Υk̟k (57)

where

Υk ,

[

−ϕk

ΘT
kL

T
k

]

[

−ϕk LkΘk

]

+ diag{−χ̃k, 0}.

On the other hand, it is readily obtained from the condition (54)
that

Υk − ςkdiag{−1, I} ≤ 0 (58)

which further implies

E{̟T
k Υk̟k} − E{ςk̟

T
k diag{−1, I}̟k} ≤ 0. (59)

Since it is inferred fromE{qTk qk} ≤ 1 that

E{̟T
k diag{−1, I}̟k} ≤ 0,

we arrive at

E
{

(z̃◦k − ϕk)
2} ≤ χ̃k. (60)

Inequality (60) indicates that

E

{

(
1

χ2
k

(z̃◦k − ϕk)
2

}

≤ 1− p (61)

which, according to Lemma 3, is equivalent to

P{|z̃◦k − ϕk| ≤ χk} ≥ p. (62)

The proof is now complete.

C. Filter Design

Having analyzed theH∞ performance and envelope-constraint in
probability p in the previous subsections, we are now ready to give
the solution to the probability-guaranteed envelope-constrainedH∞

filter design problem for the addressed nonlinear time-varying system.
The solvability of the formulated multi-objective filtering problem is
presented in terms of the feasibility of a series of recursive linear
matrix inequalities.

Theorem 3:Let γ > 0, Γ > 0, {ϕk, χk}0≤k≤N and 0 < p < 1
be given. If there exist sequences of positive definite matrices
{Pk, Qk}0≤k≤N+1 with P0 ≤ γ2Γ̄ (Γ̄ , diag{0,Γ}), sequences of
real value matrices{Fk, Hk}0≤k≤N , sequences of positive scalars
{τik, ǫjk, ςk}0≤k≤N (i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5), sequences of
real value scalars{εk, βk}0≤k≤N such that

(12), (53) & (54)

hold, then the design objectivesR1 andR2 are satisfied simultane-
ously.

Proof: Based on the proofs of Theorems 1 and 2, the theorem
can be proved immediately and therefore is omitted here.

In the following, an iterative algorithm is presented to compute the
sequences of the filtering parameters{Fk,Hk}0≤k≤N recursively.

Algorithm 1: Computational Algorithm for {Fk,Hk}0≤k≤N

1) Initialization: Set k = 0. Set parameters
(

γ,Γ, p, {ϕk, χk}0≤k≤N

)

. ChooseP0 satisfying P0 ≤ γ2Γ.
ChooseQ0 and then factorizeQ0 appropriately to obtain the
matrix Θ0.

2) Solve the RLMIs (12), (53) & (54) for{Fk, Hk}. The matrices
Pk andQk are also obtained. Then factorizeQk appropriately
to obtain the matrixΘk.

3) Setk = k + 1. If k > N , exit. Otherwise, go to2).

Remark 7: It follows from Theorem 3 that the desired filtering
parameters could be a set if non-empty. An interesting issue would
be to seek certain suboptimal solutions among the feasible set based
on some criteria of engineering significance. It should be emphasized
that, thanks to the flexibility of the provided framework, it is not
difficult to design certain suboptimal filters via optimizing one index
while fixing the other.

Remark 8:Notice that the RLMI algorithm proposed in this paper
is based on an LMI approach. As discussed in [22], the computational
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complexity of an LMI system is bounded byO(PQ3 log(U /ε))
whereP represents the row size,Q stands for the number of scalar
decision variables,U is a data-dependent scaling factor andε is
relative accuracy set for algorithm. The complexity of our provided
algorithm can then be easily computed by resorting to the formula
developed in [22].

Remark 9: In this paper, a systematic investigation is initiated on
the recursive filtering problem for nonlinear time-varying stochastic
systems subject to possible measurement outliers. The main novelties
of this paper are outlined as follows: 1) the filter structure is new in
that anadaptivesaturation function is introduced to resist the pos-
sible measurement outliers where the saturation level is recursively
determined at each time step according to previous filtering errors;
2) the objectives of the transient performance are new in that both
theH∞ specification and the envelope-constraint in probability are
taken into account; and 3) the proposed algorithm is new in that
a probabilistic constraint is introduced to ensure that the output of
filtering error (stimulated by a specified input) is confined into a
prescribed envelope with desired probability.

IV. N UMERICAL EXAMPLE

In this section, we shall demonstrate the applicability of the
proposed filtering algorithm via an illustrative example. First, for a
vector a ∈ R

2, denote bya(1) anda(2) the first and second entries
of a, respectively.

Consider the nonlinear system (1) with the following parameters:

f(xk) =

[

0.1x(1) + 1.7 sin(2x(1) + 3) + 0.1 cos(1.2k))

0.6x(2) + 0.2 sin(k)

]

,

g(xk) =
x(1)

8
+ sin(x(2)), h(xk) =

[

0.9x(1) − 0.9

0.3x(2) + 1.2

]

,

B(k) =

[

0.6 sin(k) + 2
1.8 + 0.5 cos(k + 1)

]

, D(k) = 4 sin(k) + 2.5,

ξ◦(k) =
[

1 1
]T
, E(k) =

[

0.9 1
]

, L(k) =
[

0.1 0.1
]

,

µ(k) = 3 sin(2k), ν(k) = cos(2k − 1)/(2 + 3k).

Assume that the initial values of the system state and its estimation
are all zero, namely,

x0 =
[

0 0
]T
, x̂0 =

[

0 0
]T
.

Moreover, we choose the parameters as follows:

p = 0.9, λ = 0.1, R = 0.9, α = 0.3,

γ = 3, χ = 3, ϕ = −0.5,

Γ = diag2{0.1}, Q0 = diag2{1}, P0 = diag{0, 1, 1}.

The simulation results are shown in Figs. 1–4. To be specific, Fig. 1
depicts the estimation errorse(1)k and e(2)k , while Fig. 2 shows the
output filtering errorz̃◦k. From Fig. 2, we know that the filtering
error z̃◦k is successfully constrained within the range determined by
the prespecified upper and lower bounds. Therefore, it can be seen
from Figs. 1–2 that the proposed filtering algorithm is applicable and
performs quite well.

In order to show the ability of our design technique to attenuate the
effects from the possible measurement outliers, we make comparisons
of three cases with different saturation levels as follows: 1) the
saturation level is adaptively changed (i.e., the mechanism proposed
in this paper), denoted by ‘σ-adaptive’ in the simulation figures; 2)
the case without saturation constraint (i.e.,σk = ∞), denoted by ‘σ-
inf’; and 3) the saturation level is fixed as a constant value, denoted
by ‘σ-fixed’. The results are shown in Figs. 3–4, from which we can
see that the proposed algorithm with adaptively changed saturation
level can effectively reduce the impact from measurement outliers,
thereby largely improving the estimation performances.
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Fig. 1. The estimation errorse(1)
k

ande(2)
k

.
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Fig. 2. The output of filtering error̃z◦
k

and the upper and lower bounds.
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subject to differentσk .

V. CONCLUSIONS

In this paper, we have investigated the filtering problem for nonlin-
ear time-varying stochastic systems subject to possible measurement
outliers. With the purpose of mitigating the effects from possible
measurement outliers, a filter has been constructed with a saturated
output injection where the saturation level is determined dynamically
according to the filtering errors. Both the performance indices (i.e.,
the finite-horizonH∞ specification and the envelope-constraint cri-
terion with a pre-determined probability) have been considered over
the specified time interval. By resorting to the recursive linear matrix
inequality approach, sufficient conditions have been derived for the
existence of the desired filter guaranteeing desired performances.
Finally, the proposed filtering algorithm has been verified via an
illustrative numerical example. A possible research topic would
be to extend the main results to more complicated systems with
different filtering requirements such as distributed filtering [19],
[20], minimum entropy filtering [29] and jamming-aware fusion [9].
Moreover, notice that the method used in this paper to deal with
nonlinearities is Taylor expansion, which would inevitably result in
linearization errors. Another potential research direction is to extend
the obtained results for general nonlinear systems characterized by
other methodologies such as T-S fuzzy model [17].
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