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Distributed Recursive Filtering over Sensor Networks with
Non-Logarithmic Sensor Resolution

Hongwei Chen, Zidong Wang, Bo Shen, and Jinling Liang

Abstract—Sensor resolution, which is one of the most important param-
eters/specifications for almost all kinds of sensors, playsan important role
in any signal processing problems. This paper deals with thedistributed
filtering problem for a class of discrete time-varying stochastic systems
subject to non-logarithmic sensor resolution and stochastic nonlinearities.
The soft measurement technique is exploited in the filter design to
overcome the difficulties resulting from the sensor-resolution-induced
(SRI) uncertainty. The aim of the presented filtering problem is to
construct the distributed filter over a sensor network such that, in
the presence of SRI uncertainty and stochastic nonlinearity, an upper
bound on the filtering error covariance is guaranteed and subsequently
minimized by appropriately designing the filer parameters at each time
instant. Moreover, a matrix simplification method is utilized to tackle
the difficulties stemming from the sparsity of sensor networks. Finally,
a numerical example is employed to illustrate the effectiveness of the
proposed filtering scheme.

Index Terms—Distributed filtering, recursive filtering, sensor resolu-
tion, stochastic nonlinearity, wireless sensor networks.

I. I NTRODUCTION

In wireless sensor networks (WSNs), the distributed filtering or
state estimation problem has been a central topic that has received
a persistent research interest, and a great number of distributed
filtering/estimation algorithms have been reported in the literature.
For example, the distributed filtering problems have been investigated
in [9] within theH∞ filtering framework, and the distributed filtering
schemes have been proposed in [3], [7], [16], [18]–[20] based on
the Kalman filtering technology. Representatively, in [19], [20],
a dynamic average-consensus scheme has been proposed and the
consensus-based distributed Kalman filters have been designed. In
[18], three novel distributed Kalman filtering algorithms have been
proposed over sensor networks by resorting to the dynamic consensus
protocols, under which the local filter obtains the state estimate based
on the measurements not only from the corresponding sensor node
itself but also from its neighboring sensor nodes.

As is well known, the nonlinearity is often encountered in real-
world systems and is viewed as one of the essential sources that
complicate the system analysis and synthesis [11], [28]. Itis worth
pointing out that, in some practical systems such as the networked
control systems, the nonlinear disturbances may occur in a stochastic
fashion due mainly to unpredictable fluctuations of the network
load/traffic [21]. Such a randomly occurring nonlinear phenomenon is
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usually referred to as thestochastic nonlinearitywhich, unfortunately,
would invalidate those control/filtering algorithms suitable for linear
and/or deterministic systems. As such, it is of theoreticalnecessity
and practical significance to make dedicated efforts in dealing with
the impact from various stochastic nonlinearities on the corresponding
control/filtering problems. In particular, in [25], a kind of stochastic
nonlinearities has been characterized by a stochastic variable with
known first- and second-order moments. Subsequently, considerable
research attention has been paid to the filtering and controlissues
with stochastic nonlinearities, see e.g. [12], [15], [21],[24], [26].

It is well known that the resolution is one of the most important
specifications for sensors applied in engineering practice. Sensor
resolution (SR) is basically understood as the capability of a sensor to
sense the smallest change of measurements, where a low resolution
means that the information received by sensors is inaccurate to an
extent. Clearly, the effect caused by the low resolution should be
adequately taken into consideration. For example, in a multi-target
tracking problem, the SR is closely related to the capability of
distinguishing the individual target from others and thus plays a
vitally important role in achieving the ideal tracking performance.
In [4], [5], [8], the tracking problem has been investigatedfor
multiple maneuvering targets, where the case of false (and possibly
unresolved) measurements induced by the SR is tackled. In [23], the
SR-induced effects have been dealt with for an arbitrary number of
targets, and a multi-target SR model has been proposed whichcan
be incorporated into the traditional Bayesian tracking filters.

Powered by the advanced sensor technologies, WSNs have been
extensively deployed to record and monitor a wide variety ofvaluable
information including seismic, thermal, visual, or other types of
measured observations. In WSNs, it is often the case that thesensors
are low-cost and low-power disposable devices [27], which implies
that these sensors might have limited resolution. As a result, the
available measurements obtained by these sensors are inaccurate to
a certain extent, which infers that the performance of the distributed
filers based on the limited-resolution sensors would be unavoidably
deteriorated. A fundamental issue then arises for the WSNs:how to
construct the effective distributed filters to estimate thereal states of
the target plants from the SR-induced inaccurate measurements. For
many applications of WSNs such as target tracking, the SR-induced
inaccurate measurements, if not felicitously handled, would seriously
impair the performance of the distributed filters.

It has been well recognized that ignoring the limited resolution of
the sensors in a WSN might result in an incorrect interpretation of the
data [23]. In order to cope with the data association problemin track-
ing, various alternative computational models have been established
to provide a reliable description of the resolution phenomenon. One
effective way is to represent the capability of the sensor toresolve
individual targets in a group by a resolution probability. Following
this line of modeling, a grid-based SR model has been proposed in
the fundamental paper [8], where the model is integrated into the joint
probabilistic data association filter for tracking the multiple targets
in a cluttered environment. Such a model has been further extended
and applied to a variety of target tracking algorithms [4], [5]. It is
worth mentioning that the aforementioned SR models are appropriate
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for the situation where the measurements from different targets are
merged into one due to an inherent resolution threshold. As for the
SR-induced inaccurate measurements, a suitable model is still lacking
in the literature, which motivates the work of this paper.

Indeed, in the context of the distributed filtering problem,it remains
challenging as how to model the SRs and how to design SR-resistant
filters. In the interesting paper [29], a model of the so-called non-
logarithmic SR has been proposed and a robust filter has then been
designed. As for the more practical WSNs, to date, the SR has not
received adequate research attention yet despite the fact that the SR
phenomenon is deemed to be more prevalent in the WSN setting.
Clearly, the SR-induced effect would contribute substantially to the
complexity of designing distributed filters over WSNs, and the issue
would be even more intricate when the stochastic nonlinearity is
also involved. In order to meet the challenges mentioned above,
the objective of this paper is to design a recursive filter fora class
of discrete time-varying systems subject to the non-logarithmic SR
and stochastic nonlinearities, where the design of gains isperformed
offline and requires the global information of the sensors. The main
technical contributions of this paper can be highlighted asfollows:
1) an appropriate model is proposed for the SR which characterizes
the actually available measurements; 2) the SR-induced effects are
dedicatedly sorted out by exploiting the soft measurement technique;
and 3) a set of distributed filters is designed recursively such that an
upper bound of the filtering error covariance is minimized ateach
time step. Finally, a simulation example is presented to verify the
effectiveness of the proposed filtering scheme.

Notations: N+ denotes the set of positive integers.[x]j represents
the jth component of a vectorx. E{x|y} means the mathematical
expectation ofx conditional ony. For matricesMi (i = 1, 2, . . . , n),
diagn{Mi} refers to a block-diagonal matrix where matrixMi is in
the ith main diagonal block.{Mij}n×n means a partitionedn × n

block matrix whereMij is the (i, j)th block submatrix. coln{xi}
is an augmented vector[xT

1 , x
T
2 , . . . , x

T
n ]

T . 1m×n means anm× n

matrix with all entries equal to one.

II. M ODEL FORMULATION AND PRELIMINARIES

Denote byyr ∈ R
ny the measurement received by a sensor with

resolutionS = [s1, s2, . . . , sny ]
T ∈ R

ny , where the definition of SR
is defined as follows.

Definition 1 ( [29]): Let [yr]j (j = 1, 2, . . . , ny) be the jth
physical quantity of the sensor measurement taking values in the
set {κsj |κ = 0,±1, . . . ,±z}, wherez is a given positive integer.
Then,S = [s1, s2, . . . , sny ]

T is called the resolution of the sensor.
In this paper, we consider the following class of discrete time-

varying systems with stochastic nonlinearity:

xk+1 = Fkxk + f̃(k, xk, ηk) +Gkwk (1)

wherek ∈ N represents the discrete time index,xk ∈ R
nx captures

the state of the process,Fk ∈ R
nx×nx and Gk ∈ R

nx×nw are
known deterministic matrices,wk ∈ R

nw denotes the process noise,
ηk is a zero-mean Gaussian noise sequence, andf̃(k, xk, ηk) ∈ R

nx

describes the stochastic nonlinearity withf̃(k, 0, ηk) = 0. The initial
statex0 is a Gaussian random variable with meanx̄0 and covariance
X0. The stochastic nonlinearity under consideration has the first
momentE{f̃(k, xk, ηk)|xk} = 0 and the covariances given by

E{f̃(k1, xk1
, ηk1

)f̃T (k2, xk2
, ηk2

)|xk2
} = 0, k1 6= k2 (2)

E{f̃(k, xk, ηk)f̃
T (k, xk, ηk)|xk} =

l∑

λ=1

Ξλ,kx
T
kΨλ,kxk (3)

wherel is a given positive integer,Ξλ,k andΨλ,k (λ = 1, 2, . . . , l)
are known matrices with compatible dimensions.

Remark 1:The stochastic nonlinearity characterized by (2)–(3)
was first proposed in the pioneering work [14] by Jacobson and
then considered in [26] for the state estimation problem of uncertain
nonlinear stochastic systems. Such kind of nonlinearitiescovers
several well-known nonlinear phenomena as special cases including
the linear state-dependent multiplicative white noises and the random
variables with their powers depending on the sign of a nonlinear
function. We refer the readers to [14], [26] for more details.

The output of system (1) is measured through a WSN consisting
of n sensor nodes. The topology of the WSN is represented by a
digraphG = (V, E ,H) of ordern, whereV = {1, 2, . . . , n} stands
for the set of sensor nodes,E ⊆ V×V means the set of directed edges
in digraphG, andH = {aij}n×n refers to the weighted adjacency
matrix ofG. The elements ofH are nonnegative, andG has a directed
edge(i, j) ∈ E if and only if aij > 0, which implies that theith
sensor node can receive the information from thejth sensor node.
In this case, thejth sensor node is called as a neighbor of theith
sensor node. For notational convenience, theith sensor node plus its
neighbors is denoted byNi , {j ∈ V|(i, j) ∈ E}.

The ideal measurement model of theith (i = 1, 2, . . . , n) sensor
is given as follows:

y
p

i,k = Hi,kxk + vi,k (4)

whereyp

i,k ∈ R
ny means the perfect measurement of theith sensor,

and vi,k ∈ R
ny is the measurement noise. Moreover, the noises

wk and vi,k are mutually independent zero-mean Gaussian white
processes with covariancesQk > 0 andRi,k > 0, respectively. In
addition, they are assumed to be uncorrelated with the otherstochastic
variablesx0 andηk.

In practical applications, the available measurements obtained
by sensor i (i = 1, 2, . . . , n) with non-logarithmic SRSi =
[si,1, si,2, . . . , si,ny ]

T satisfy

[yr
i,k]j = Q

(
[yp

i,k]j
)
=

[
[yp

i,k]j

[Si]j

]

[Si]j (5)

where[·] denotes the integer part1 of “ ·”, yr
i,k ∈ R

ny represents the
available measurement from sensori with resolutionSi, and [Si]j
stands for thejth element of the resolutionSi for the ith sensor.

The soft sensor model adopted in this paper is given by

[ys
i,k]j , E

{
[yp

i,k]j
∣
∣Ii,j

(
[yr

i,k]j
)}

(6)

whereys
i,k ∈ R

ny means the soft measurement of theith sensor and
the intervalIi,j([yr

i,k]j) is defined by

Ii,j
(
[yr

i,k]j
)
=







[
[yr

i,k]j , [y
r
i,k]j + [Si]j

)
, [yr

i,k]j > 0
(
− [Si]j , [Si]j

)
, [yr

i,k]j = 0
(
[yr

i,k]j − [Si]j , [y
r
i,k]j

]
, [yr

i,k]j < 0.

(7)

Remark 2:Note that the perfect measurement[yp

i,k]j is a
Gaussian-like random variable. For the obtained availablemeasure-
ment (5), from (7) one can derive the exact interval that the perfect
measurement[yp

i,k]j falls into, which implies that the soft measure-
ment [ys

i,k]j has a similar normal-like distribution and lies within the
interval Ii,j([yr

i,k]j). That is to say, the perfect measurement[yp

i,k]j
conditional onIi,j([yr

i,k]j) has a truncated normal-like distribution
for the obtained available measurement[yr

i,k]j . Its probability density
function is f(y|Ii,j([yr

i,k]j)) for y ∈ Ii,j([y
r
i,k]j) and f(·) ≡ 0

otherwise, please refer to the proof of Lemma 3 for more details.
Fig. 1 gives an illustration of the probability density function of

1The integer part of a real numberr is ⌊r⌋ if r is nonnegative, and⌈r⌉
otherwise, where⌊·⌋ and ⌈·⌉ are the floor function and the ceiling function,
respectively.
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0

Fig. 1. An illustration of the probability density functionfor the perfect
measurement. The red line and the blue line are, respectively, the probability
density functions of[yp

i,k
]j with and without the conditional information

concerning[yr
i,k

]j .

the perfect measurement. An inspection of Fig. 1 motivates the
idea of the proposed soft sensor model (6) with aim of obtaining
a better/computational approximation for the perfect measurement.

In this paper, the two-step Kalman-type filtering scheme is utilized
to design the distributed filters for the nonlinear time-varying system
(1) with imperfect measurement described by (6). Specifically, the
structure of the distributed filters is given as follows:

x̂
−
i,k = Fk−1x̂

+
i,k−1 (8a)

x̂
+
i,k = x̂

−
i,k +

∑

j∈Ni

aijKij,k

(
y
s
j,k −Hj,kx̂

−
j,k

)
(8b)

wherex̂−
i,k and x̂+

i,k are, respectively, the one-step prediction and the
estimate of the system state based on theith sensor node, andKij,k

stands for the filter gain matrix to be designed. The initial estimate
x̂+
i,0 (i = 1, 2, . . . , n) are set to be the expectation of the initial state,

i.e., x̂+
i,0 = x̄0.

For senori, define the local one-step prediction error and the local
filtering error byǫ−i,k = xk− x̂−

i,k andǫ+i,k = xk − x̂+
i,k, respectively.

Then, we use (1) and (8a) to obtain

ǫ
−
i,k = Fk−1ǫ

+
i,k−1 + f̃(k − 1, xk−1, ηk−1) +Gk−1wk−1. (9)

Let ∆i,k be the difference between the soft measurement and the
perfect measurement from sensori, that is,∆i,k , ys

i,k − y
p

i,k. The
dynamics of the local filtering errors can be described as follows:

ǫ
+
i,k = ǫ

−
i,k −

∑

j∈Ni

aijKij,k

(
Hj,kǫ

−
j,k + vj,k +∆j,k

)
. (10)

For convenience of the later development, we setǫ−k , coln{ǫ−i,k}
and ǫ+k , coln{ǫ+i,k}. Then, the compact forms of (9) and (10) can
be obtained, respectively, as follows:

ǫ
−
k = Fk−1ǫ

+
k−1 + fk−1 +Gk−1wk−1 (11)

ǫ
+
k = ǫ

−
k −

n∑

i=1

IiKkAi

(
Hkǫ

−
k + vk +∆k

)
(12)

where

Kk = {Kij,k}n×n, Gk−1 = In ⊗Gk−1

Fk−1 = In ⊗ Fk−1, wk−1 = 1n×1 ⊗w(k − 1)

Ai = diag{ai1Iny , . . . , ainIny}, ∆k = coln{∆i,k}
fk−1 = 1n×1 ⊗ f̃(k − 1, xk−1, ηk−1), vk = coln{vi,k}
Hk = diagn{Hi,k}, Ii = diag{0, . . . , 0

︸ ︷︷ ︸

i−1

, Inx , 0, . . . , 0
︸ ︷︷ ︸

n−i

}.

The main objective of this paper is to design a set of distributed
filters with the structure (8), based on the measurements obtained
by the sensors with non-logarithmic SR, such that the filtering error
covariance is bounded and such a bound is then locally minimized
in the trace sense by utilizing a recursive scheme.

III. M AIN RESULTS

In this section, we aim to develop a unified framework to cope with
the addressed distributed filtering problem in the presenceof non-
logarithmic SR and stochastic nonlinearities. The soft measurements
of the distributed filters are first obtained to facilitate the filter design.
Subsequently, an upper bound of the filtering error covariance is
calculated, and appropriate filter gains are designed to guarantee that
the obtained upper bound is locally minimized at each time instant.

In the remaining part of this paper, defineXk , E{xkx
T
k },

P−
k , E{ǫ−k (ǫ−k )

T } andP+
k , E{ǫ+k (ǫ+k )T }. The following lemma

provides a recursive algorithm to calculate the covariancefor the
one-step prediction error.

Lemma 1:Consider the prediction error dynamic system given by
(11). The recursion of the one-step prediction error covarianceP−

k

is given as follows:

P
−

k = Fk−1P
+
k−1F

T
k−1 + Γk−1 +Qk−1 (13)

where Γk−1 = 1n×n ⊗ ∑l

λ=1 Ξλ,k−1Tr {Xk−1Ψλ,k−1} and
Qk−1 = Gk−1(1n×n ⊗Qk−1)G

T
k−1 with Xk satisfying

Xk+1 = FkXkF
T
k +

l∑

λ=1

Ξλ,kTr {XkΨλ,k}+GkQkG
T
k . (14)

Proof: It is easy to conclude from (3) that

E{fk−1f
T
k−1} = 1n×n ⊗

l∑

λ=1

Ξλ,k−1E{xT
k−1Ψλ,k−1xk−1}.

Noting thatxT
k−1Ψλ,k−1xk−1 is a scalar, it follows from the prop-

erty of the trace thatE{xT
k−1Ψλ,k−1xk−1} = Tr{Xk−1Ψλ,k−1}

which, together with (11), yields

P
−
k = Fk−1P

+
k−1F

T
k−1 + Γk−1 +Qk−1

which is (13). The proof of (14) follows a similar line as thatof (13),
and is thus omitted here for the sake of brevity.

Lemma 2:Consider system (1) with initial statex0. The distribut-
ed filters (8) with x̂+

i,0 = x̄0 are unbiased, and the corresponding
filtering error covarianceP+

k satisfies the following dynamic equa-
tion:

P
+
k =(I +KkHk)P

−
k (I +KkHk)

T

+KkE{vkv
T
k +∆k∆

T
k }KT

k

+KkE{vk∆
T
k +∆kv

T
k }KT

k (15)

whereKk = −∑n

i=1 IiKkAi.
Proof: First, let us show the unbiasedness of the distributed

filters (8), i.e.,E{ǫ+k } = 0 for all k ≥ 0. In view of x̂+
i,0 = x̄0,

it is easy to verify thatE{ǫ+0 } = 0. Assume, inductively, that this is
true for the integers from0 to k−1. By exploiting (12), it is obvious
that

ǫ
+
k = (I +KkHk)ǫ

−
k +Kk(vk +∆k). (16)

Then, it follows from (11) that

ǫ
+
k =(I +KkHk)Fk−1ǫ

+
k−1 +Kk(vk +∆k)

+ (I +KkHk)(fk−1 +Gk−1wk−1). (17)

Note that the stochastic nonlinearities and process noise are of
zero means. Taking mathematical expectation of both sides of (17)
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yields the following recursion (for the mathematical expectation of
the filtering error):

E{ǫ+k } = (I +KkHk)Fk−1E{ǫ+k−1}+KkE{∆k}. (18)

On the other hand, it follows from (6) that

E{[∆i,k]j} = E
{
E{[yp

i,k]j |Ii,j([yr
i,k]j)} − [yp

i,k]j
}

= E
{
E{[yp

i,k]j |Ii,j([yr
i,k]j)}

}
− E{[yp

i,k]j}
= E{[yp

i,k]j} − E{[yp

i,k]j}
= 0 (19)

which, together with the induction hypothesis and (18), implies that
E{ǫ+k } = 0 holds for all nonnegative integers. Hence, the proposed
distributed filters (8) are unbiased.

Next, we are in the position to calculate the covariance matrix P+
k

of the filtering error. Applying (16), we arrive at

P
+
k =(I +KkHk)P

−
k (I +KkHk)

T + T + T T

+KkE{vkv
T
k +∆k∆

T
k }KT

k

+KkE{vk∆
T
k +∆kv

T
k }KT

k

(20)

whereT = E{(I+KkHk)ǫ
−
k (vk+∆k)

TKT
k }. Noting that the one-

step prediction errorǫ−k is uncorrelated withvk and ∆k, one can
obtain the recursion (15), which ends the proof.

In the light of (4) and (6), the soft measurement can be further
replaced as

[ys
i,k]j = E

{
[Hi,kxk]j + [vi,k]j

∣
∣Ii,j

(
[yr

i,k]j
)}

.
= E

{
[ŷp

i,k]j
∣
∣Ii,j

(
[yr

i,k]j
)}

(21)

where[ŷp

i,k]j , [Hi,kx̂
−
i,k]j + [vi,k]j .

Remark 3:Note that, when calculating the soft measurement
[ys

i,k]j , one needs to know the knowledge of the true statexk, and
this makes the calculation quite difficult. In order to cope with this
issue, we replace the real state by its estimate in the calculation of
the soft measurement. Actually, such a practice is often employed in
the situation that the state is unknown but the state information is
still expected, see e.g. [1], [10].

Remark 4: In our developed filter design scheme, the soft mea-
surement model (6) is established to guarantee theunbiasednessof
the proposed distributed filter (8) (as shown in Lemma 2), which is a
desirable property of the filters because it means that, on average,
the estimated̂x+

i,k equals to the true valuexk. In the following,
we will further show that the distributed filter (8) isbiased if it
is constructed on the basis of the available measurement instead of
the soft measurement. Let us first define∆̄i,k , yr

i,k − y
p

i,k, i.e.,
the difference between the available measurement and the perfect
measurement from sensori. The local filtering error can be derived
asǫ+i,k = ǫ−i,k −

∑

j∈Ni
aijKij,k(Hj,kǫ

−
j,k + vj,k +∆̄j,k) and it then

follows that ǫ+k = ǫ−k − ∑n

i=1 IiKkAi(Hkǫ
−
k + vk + ∆̄k) where

∆̄k = coln{∆̄i,k}. Proceeding as in the proof of Lemma 2, the mean
of this filtering error can be computed as follows:

E{ǫ+k } = (I +KkHk)Fk−1E{ǫ+k−1}+KkE{∆̄k}.
Next, we fix our attention on the second term in the right-handside
(RHD) of the above equation. Combining (4) and (5), we have

E{[∆̄i,k]j} = E{Q([yp

i,k]j)− [yp

i,k]j}
which is not always identically equal to zero, and this implies that the
proposed distributed filter is biased. Therefore, the soft measurement
information adopted in the structure of the distributed filter (8) is
essential/indispensable.

For the purpose of analysis simplicity, we introduce the following
assumption.

Assumption 1:The covariance of the measurement noiseRi,k is
a diagonal matrix.

Lemma 3:Consider system (1) with measurement described by
(5). The soft measurement given by (21) is calculated as follows:

[ys
i,k]j = [Hi,kx̂

−

i,k]j −
√

[Ri,k]j,j
φ(β

(j)
i,k )− φ(α

(j)
i,k)

Φ(β
(j)
i,k )− Φ(α

(j)
i,k)

(22)

where [Ri,k]j,j is the (j, j)-th entry of Ri,k, φ(·) and Φ(·) are,
respectively, the probability density function and the cumulative
distribution function of the standard normal distribution, and

β
(j)
i,k =







[yr
i,k]j+[Si]j−[Hi,kx̂

−

i,k
]j√

[Ri,k]j,j
, [yr

i,k]j > 0

[Si]j−[Hi,kx̂
−

i,k
]j√

[Ri,k]j,j
, [yr

i,k]j = 0

[yr
i,k]j−[Hi,kx̂

−

i,k
]j√

[Ri,k]j,j
, [yr

i,k]j < 0

α
(j)
i,k =







[yr
i,k]j−[Hi,kx̂

−

i,k
]j√

[Ri,k]j,j
, [yr

i,k]j > 0

−[Si]j−[Hi,kx̂
−

i,k
]j√

[Ri,k]j,j
, [yr

i,k]j = 0

[yr
i,k]j−[Si]j−[Hi,kx̂

−

i,k
]j√

[Ri,k]j,j
, [yr

i,k]j < 0.

Proof: For the case[yr
i,k]j = 0, it follows from (7) that

Ii,j([y
r
i,k]j) = (−[Si]j , [Si]j).

It is easy to see that the random variable[ŷp

i,k]j obeys a normal
distributionN([Hi,kx̂

−
i,k]j , [Ri,k]j,j). Note that the probability that

[ŷp

i,k]j falls into the interval(−[Si]j , [Si]j) is Φ(β
(j)
i,k ) − Φ(α

(j)
i,k).

Then, the conditional probability density function of[ŷp
i,k]j is

f
(
y
∣
∣Ii,j([y

r
i,k]j)

)
=

1√
[Ri,k]j,j

φ

(
y−[Hi,kx̂

−

i,k
]j√

[Ri,k]j,j

)

Φ(β
(j)
i,k )− Φ(α

(j)
i,k)

(23)

for −[Si]j < y < [Si]j andf(·) ≡ 0 otherwise. The corresponding
moment-generating function of[ŷp

i,k]j , denoted byM(t), can be
obtained as follows:

M(t) = E
{
exp{ty}

∣
∣y ∈ Ii,j([y

r
i,k]j)

}

=

∫ [Si]j

−[Si]j

exp {ty} f(y|Ii,j([yr
i,k]j)dy. (24)

By letting µ = [Ri,k]j,jt+ [Hi,kx̂
−
i,k]j , it is not difficult to verify

that (25) (see the bottom of the next page) holds, and it then follows
from (24) that

M(t) = exp
{

t[Hi,kx̂
−
i,k]j +

[Ri,k]j,jt
2

2

}

×
Φ
(
β
(j)
i,k − t

√
[Ri,k]j,j

)
−Φ

(
α
(j)
i,k − t

√
[Ri,k]j,j

)

Φ(β
(j)
i,k )−Φ(α

(j)
i,k)

.

(26)

By resorting to the properties of moment-generating function, we
obtain equality (27) (see the bottom of the next page).

The proof for the case[yr
i,k]j 6= 0 follows the similar lines as

above, and is thus omitted here for the sake of brevity.
Based on Lemmas 1-3, the following result provides an upper

bound forP+
k .

Theorem 1:Consider the one-step prediction error covarianceP−

k

in (13) and the estimation error covarianceP+
k in (15). Letγk be a

positive scalar. If the following difference equations

P−
k =Fk−1P+

k−1F
T
k−1 + Γk−1 +Qk−1 (28)

P+
k =(I +KkHk)P−

k (I +KkHk)
T +KkΥkKT

k (29)
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with initial conditionP+
0 = P+

0 have positive-definite solutionsP−
k

andP+
k , then matrixP+

k is an upper bound ofP+
k , that is,

P
+
k ≤ P+

k (30)

holds for allk ≥ 0, whereP+
0 = 1n×n ⊗X0,

Υk ,(1 + γk)diagn{Ri,k}+ (1 + γ
−1
k )diagn{Σi,k}

Σi,k ,diag
{
σ
(1)
i,k , . . . , σ

(ny)

i,k

}

σ
(j)
i,k ,[Ri,k]j,j − [Ri,k]j,j

β
(j)
i,kφ(β

(j)
i,k )− α

(j)
i,kφ(α

(j)
i,k)

Φ(β
(j)
i,k )− Φ(α

(j)
i,k)

− [Ri,k]j,j
[ φ(β

(j)
i,k )− φ(α

(j)
i,k)

Φ(β
(j)
i,k )−Φ(α

(j)
i,k)

]2

. (31)

Proof: This theorem is proved by the mathematical induction.
The conclusion follows immediately for the casek = 0 based on the
initial condition. For the induction step, we assume inductively that
P+
k−1 ≤ P+

k−1. Combining (13) and (28), one obtains that

P
−
k − P−

k = Fk−1(P
+
k−1 −P+

k−1)F
T
k−1 ≤ 0

which impliesP−
k ≤ P−

k . By resorting to the elementary inequality

vk∆
T
k +∆kv

T
k ≤ γkvkv

T
k + γ

−1
k ∆k∆

T
k ,

it follows readily from (15) that

P
+
k ≤(I +KkHk)P

−
k (I +KkHk)

T + (1 + γk)Kkdiagn{Ri,k}
× KT

k + (1 + γ
−1
k )KkE{∆k∆

T
k }KT

k . (32)

Now, we are in the position to cope with the third term in the RHD
of the above equation, which requires the computation ofE{[∆i,k]

2
j}.

From the definition of∆i,k, noticing the approximation ofys
i,k in

(21), we have

E{[∆i,k]
2
j} = E

{(
[yp

i,k]j − E
{
[yp

i,k]j
∣
∣Ii,j

(
[yr

i,k]j
)})2

}

= E
{
[ŷp

i,k]
2
j

∣
∣Ii,j([y

r
i,k]j)

}
− [ys

i,k]
2
j . (33)

With the help of the moment-generating function (24), the first
term in the RHD of (33) is calculated as

E{[ŷp

i,k]
2
j

∣
∣Ii,j([y

r
i,k]j)} =

d2M(t)

dt2

∣
∣
∣
∣
t=0

= [Ri,k]j,j + [Hi,kx̂
−
i,k]

2
j + [Ri,k]j,j

φ′(β
(j)
i,k )− φ′(α

(j)
i,k)

Φ(β
(j)
i,k )− Φ(α

(j)
i,k)

− 2[Hi,kx̂
−

i,k]j
√

[Ri,k]j,j
φ(β

(j)
i,k )− φ(α

(j)
i,k)

Φ(β
(j)
i,k )− Φ(α

(j)
i,k)

. (34)

In light of the fact thatφ′(x) = −xφ(x), it follows from (32) that

P
+
k ≤ (I +KkHk)P

−
k (I +KkHk)

T +KkΥkKT
k

≤ (I +KkHk)P−
k (I +KkHk)

T +KkΥkKT
k = P+

k .

By induction, one concludes that (30) holds for all positiveintegers.
The proof is complete.

In what follows, we will design the filter parameters which are
locally optimal in the sense that the trace ofP+

k is minimized.
Since P−

k is a square matrix with dimensionnxn × nxn, it can
be partitioned inton × n submatrices with dimensionnx × nx.
The partitioned matrix can be written asP−

k = {P−
ij,k}n×n. Let

Kk(i) and P−
k (i) be, respectively, theith row of the partitioned

matrix Kk andP−

k , that is,Kk(i) , [Ki1,k Ki2,k · · · Kin,k] and
P−

k (i) , [P−
i1,k P−

i2,k · · · P−
in,k].

For simplicity of presentation, we denoteU(i)
k , Ai(HkP−

k HT
k +

Υk)Ai andV(i)
k , P−

k (i)HT
kAi. Subsequently, one can partition the

above two matrices byU(i)
k = {U (i)

jl,k}n×n andV
(i)
k = {V (i)

l,k }1×n.

Before proceeding further, definēKk(i) (respectively,V̄(i)
k ) to be

the matrix derived fromKk(i) (respectively,V(i)
k ) by deleting the

column blocks with indexesl 6∈ Ni, and Ū
(i)
k to be the simplified

matrix derived fromU
(i)
k by deleting both the row and the column

blocks with indexesl 6∈ Ni.
Theorem 2:Consider the time-varying system (1) with real mea-

surement (5) and distributed filters (8). The trace of the upper bound
P+

k is locally minimized with filter gainKk = {Kij,k}n×n designed
asKij,k = 0 for j 6∈ Ni and

K̄k(i) = V̄
(i)
k (Ū

(i)
k )−1 for i = 1, 2, . . . , n. (35)

1
√

2π[Ri,k]j,j

∫ [Si]j

−[Si]j

exp{ty} exp
{

− 1

2

(y − [Hi,kx̂
−
i,k]j

√
[Ri,k]j,j

)2}

dy

= exp
{

− 1

2[Ri,k]j,j

(
[Hi,kx̂

−
i,k]

2
j − µ

2
)} 1

√
2π[Ri,k]j,j

∫ [Si]j

−[Si]j

exp
{

− (y − µ)2

2[Ri,k]j,j

}

dy

= exp
{

t[Hi,kx̂
−
i,k]j +

[Ri,k]j,jt
2

2

}[

Φ
( [Si]j − µ
√

[Ri,k]j,j

)

− Φ
(−[Si]j − µ
√

[Ri,k]j,j

)]

(25)

[ys
i,k]j =

dM(t)

dt

∣
∣
∣
∣
t=0

=exp
{

t[Hi,kx̂
−
i,k]j +

[Ri,k]j,jt
2

2

}[(
[Hi,kx̂

−
i,k]j + t[Ri,k]j,j

)Φ
(
β
(j)
i,k − t

√
[Ri,k]j,j

)
−Φ

(
α
(j)
i,k − t

√
[Ri,k]j,j

)

Φ(β
(j)
i,k )−Φ(α

(j)
i,k)

−
√

[Ri,k]j,jφ
(
β
(j)
i,k − t

√
[Ri,k]j,j

)
−

√
[Ri,k]j,jφ

(
α
(j)
i,k − t

√
[Ri,k]j,j

)

Φ(β
(j)
i,k )− Φ(α

(j)
i,k)

]∣∣
∣
∣
t=0

=[Hi,kx̂
−
i,k]j −

√

[Ri,k]j,j
φ(β

(j)
i,k )− φ(α

(j)
i,k)

Φ(β
(j)
i,k )− Φ(α

(j)
i,k)

(27)
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Proof: Taking the trace of both sides of (29) yields

Tr{P+
k } =Tr{P−

k }+ Tr{KkHkP−
k H

T
k KT

k }
+ 2Tr{KkHkP−

k }+ Tr{KkΥkKT
k }. (36)

The second term in the RHD of the above equation can be further
represented by

Tr{KkHkP−
k H

T
k KT

k }

= Tr
{(

n∑

i=1

IiKkAi

)
HkP−

k H
T
k

(
n∑

j=1

AjK
T
k Ij

)}

= Tr
{ n∑

i=1

IiKkAiHkP−
k H

T
k AiK

T
k Ii

}

(37)

where the last equality follows from

Tr{IiKkAiHkP−

k H
T
kAjK

T
k Ij} = 0, ∀ i 6= j.

Similarly, the last term in the RHD of (36) can be rewritten as

Tr{KkΥkKT
k } = Tr

{ n∑

i=1

IiKkAiΥkAiK
T
k Ii

}

.

Taking the partial derivative ofTr{P+
k } with respect toKk, one

obtains the following equality

∂Tr
{
P+

k

}

∂Kk

=2

n∑

i=1

IiKkAiHkP−
k H

T
k Ai − 2

n∑

i=1

IiP−
k H

T
k Ai

+ 2

n∑

i=1

IiKkAiΥkAi. (38)

In order to minimize the trace of matrixP+
k , the partial derivative

(38) is set as zero, which immediately yields
n∑

i=1

IiKkAi(HkP−

k H
T
k +Υk)Ai =

n∑

i=1

IiP−

k H
T
k Ai.

Exploiting the inherent special structure of matrixIi, we have the
following equations:

Kk(i)U
(i)
k = V

(i)
k , i = 1, 2, . . . , n (39)

which give rise to
∑n

j=1 Kij,kU
(i)
jl,k = V

(i)
l,k for l = 1, 2, . . . , n.

Note thatAi = diag{ai1I, . . . , ainI}, where the entryail = 0

when l 6∈ Ni. From the definitions ofU(i)
k and V

(i)
k , it is easy to

see thatU (i)
jl,k = 0 andV

(i)
l,k = 0 hold for l 6∈ Ni. In this case, the

corresponding filter gains can be designed asKil,k = 0 because the
ith sensor node cannot receive any information from its non-neighbor
senorl. Consequently, it is apparent from (39) that

K̄k(i)Ū
(i)
k = V̄

(i)
k , i = 1, 2, . . . , n

which, together with the fact that matrix̄Ui
k is full-row rank, yields

K̄k(i) = V̄
(i)
k (Ū

(i)
k )−1, i = 1, 2, . . . , n. Therefore, the filter gain

Kij,k can be designed as in (35). This accomplishes the proof of
Theorem 2.

Remark 5: It is worth pointing out that the distributed recursive
filtering algorithm proposed in this paper is an offline algorithm,
which means that the filter gains in (35) are firstly computed
iteratively offline and then implemented/installed on practical plants
for application. On the other hand, the design of the gains in(35)
depends on the output matrixHk = diagn{Hi,k} of all agents
and hence needs the global information of the sensor networkwhen
conducting the offline computations.

Remark 6: It is worth mentioning that, due to the influence from
the SR and the stochastic nonlinearity, the parameters in the dis-
tributed filter (8) are skillfully designed by minimizing the trace of
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Fig. 2. The true statexk,1 and its estimate[x̂+
i,k

]1 (i = 1, 2, 3, 4).
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Fig. 3. The true statexk,2 and its estimate[x̂+
i,k

]2 (i = 1, 2, 3, 4).

the upper bound for the estimation error covariance. As such, the
constructed distributed filter is effectively a locally optimal one, and
the possible conservatism stems from the difference between the real
estimation error covarianceP+

k and its upper boundP+
k . According

to (32), it is apparent that the conservatism comes from the utilization
of the elementary inequality. One of our future research topics is to
further reduce such conservatism in order to improve the performance
of our designed locally optimal filter.

IV. A N ILLUSTRATIVE EXAMPLE

In this section, a simulation example is employed to illustrate
the validity and applicability of the developed distributed filtering
algorithm. Consider a sensor network with four nodes, wherethe
communication topology is described by a directed graphG with the
set of nodesV = {1, 2, 3, 4} and the adjacency matrix

H =







1 0 0.9 0.6
0.4 1 0 0.7
0 0.7 1 0.5
0.3 0.7 0 1






.

The target plant is described by (1) wherexk = [xk,1 xk,2]
T ∈ R

2,
the initial statex0 and the process noise obey the zero-mean Gaussian
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Fig. 4. The MSE and its upper boundTr{P+
k
}.

distribution with respective covarianceX0 = diag{1.5, 1.5} and
Qk = diag{0.2, 0.1}, and

Fk =

[
1.02 + 0.03 cos(0.12k) 0.4

−0.1 0.88

]

, Gk = diag{1, 1}.

The nonlinearityf(k, xk, ηk) is set as

f(k, xk, ηk) =

[
0.3
0.15

]
(
0.6[ηk ]1[xk]1sign([xk]1)

+ 0.8[ηk ]2[xk]2sign([xk]2)
)

whereηk ∈ R
2 represents the zero-mean Gaussian white noise with

unitary covariance. It is obvious to confirm thatE{f(k, xk, ηk)} =
0 and E{f(k, xk, ηk)f

T (k, xk, ηk)|xk} = Ξkx
T
kΨkxk with Ξk =

[0.3 0.15][0.3 0.15]T andΨk = diag{0.36, 0.64}. The dynamics of
the target plant is monitored by sensors withSi = 1 (i = 1, 2, 3, 4)
and the following measurement parameters:

H1,k =[0.85 0.38 + 0.12 sin(0.12k)], H2,k = [0.5 1.2]

H3,k =[0.98 + 0.04 sin(0.1k) 0.435]

H4,k =[0.75 + 0.03 sin(0.1k) 0.435 + 0.03 sin(0.1k)].

In the simulation, the measurement noisesvi,k (i = 1, 2, 3, 4)
are mutually uncorrelated zero-means Gaussian white sequences with
Ri,k ≡ 0.4. Figs. 2-3 display the trajectories of the true states[xk]j
(j = 1, 2) and their corresponding estimates[x̂+

i,k]j (i = 1, 2, 3, 4),
which confirm that the proposed filter scheme can perform wellto
estimate the system states. This is mainly due to the soft measurement
technique we have adapted in coping with the SR. In order to quantify
the estimation accuracy, the mean square estimation error is defined
asMSE(k) , 1

T

∑T

t=1

∑n

i=1 ‖ǫ+i,k‖22. Fig. 4 shows the upper bound
Tr{P+

k } as well as the MSE derive fromT = 100 independent
experiments, which illustrates that the MSE stays below itsupper
bound.

V. CONCLUSION

In this paper, the distributed filtering problem has been addressed
for a class of discrete time-varying stochastic systems subject to non-
logarithmic SR and stochastic nonlinearities. A soft measurement
technique has been exploited to deal with the effect resulting from
the SR-induced uncertainty. The upper bound for the filtering error
covariance has been calculated by solving certain Riccati-like differ-
ence equations. After that, the distributed filter parameters have been

appropriately designed to iteratively minimize such an upper bound
in the trace sense. Finally, a numerical example has been provided to
illustrate the effectiveness of the developed filtering strategy. One of
the future research topics is to extend the main results of this paper
to more general systems with more complicated network-induced
phenomena [2], [6], [32], [33].
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