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Model Evaluation of the Stochastic Boolean
Control Networks

Hongwei Chen, Zidong Wang, Bo Shen and Jinling Liang

Abstract—This paper investigates the model evaluation problem for
the stochastic Boolean control networks (SBCNs). First, an algebraic
expression of the SBCN is obtained based on the semi-tensor product
method, and a straightforward approach is then proposed to compute
the probability that the given observed output sequence is produced
by the considered model. Second, two recursive algorithms, namely the
forward and the backward algorithms, are designed for model evaluation
by resorting to the forward-backward technique. In addition, scaling
factors are introduced to deal with the numerical issues arising in the
implementation of the developed algorithms. Finally, to illustrate the
applicability and effectiveness of the proposed algorithms, a Boolean
model of the lac operon is employed as an example for numerical
simulation.

Index Terms—Stochastic Boolean control networks, model evaluation,
forward-backward technique, scaling factor, semi-tensor product.

I. INTRODUCTION

Boolean networks (BNs) were originally introduced by Kauffman
in the late 1960s for simulating and analyzing the dynamic behaviors
of genes in GRNs [16]. A BN can be described by a directed graph,
where the state of a node is restricted to be 0 or 1 (indicating inactive
or active, respectively) and is governed by a Boolean function which
depends on the states of the other nodes with edges directed to this
node. The concept of BN can be extended to Boolean control network
(BCN) by introducing certain external stimuli as control input of
the network. Recently, the development of algebraic state space
representation (ASSR) approach has aroused a significant amount of
new research interest in BNs, and several challenging problems have
been configured in the ASSR framework based on the semi-tensor
product (STP) of matrices. Examples of such problems include, but
are not limited to, stability and stabilization [22], [26], disturbance
decoupling [7], [25], controllability and observability [24], [32],
optimal control [13], [17], and BN synchronization problems [5],
[23].

It has been well recognized that the gene regulation processes are
inherently stochastic due primarily to the random variation of some
key signaling proteins and the probabilistic biochemical reactions
[27], [31]. Experimental results have further confirmed that the tran-
sitions between states of a GRN do occur in a random fashion [28].
As such, theoretical models without accounting for intrinsic/extrinsic
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stochastic noises might not be able to accurately reflect the real
dynamics of the biological GRNs [12]. On the other hand, the recent
work in [6] has shown the benefits of monitoring the stochastic
signals/responses in real time for capturing the true cell dynamics
behind the statistical averages. Therefore, the stochastic noise should
be taken into consideration when simulating the evolution behaviors
of the genes in GRNs by BNs [33] and, so far, many formal types
of uncertain BNs have been proposed as a generalization of the BNs
with examples including the stochastic BNs (SBNs), the probabilistic
BNs and the BNs with stochastic perturbations.

The problem of identifying a BN from the time-series gene
expression data is extremely important in the field of systems biology
since it helps gaining the deep insight into the regulatory mechanisms
among genes. For example, the identification of the behaviors of
p53-MDM2 negative-feedback GRN plays an important role in the
therapy of various types of human cancers including the leukemia and
the breast cancer [11]. In the past two decades, identification of the
deterministic/stochastic BNs with the available data has been a topic
under extensive investigation, and many effective approaches have
been proposed in the literature such as algebraic method [18], [29],
Best-Fit Extension [19] and Bayesian inference [15], and so on. It
is noteworthy that these identification methods for BNs are based on
certain developed algorithms, thereby providing sufficient conditions
only. In [8], a novel method has been proposed for identifying the
BNs from the experimental data by resorting to the STP technique.
In this approach, only the transition matrix of the network needs
to be identified, and this renders certain simplicity as compared to
the way of directly identifying the logic equations. However, as
the size of the corresponding network increases, dimension of the
transition matrix will grow exponentially, which infers that the STP-
based approach has an additional cost due to its exponential intrinsic
nature. Recently, such an approach has been further utilized to deal
with the identification of different types of BNs [1], [10], [21].

The stochastic dynamic behaviors of the GRNs, which have
been validated by the aforementioned experimental/theoretical results,
make it rather difficult to identify the accurate Boolean model
according to the observed data. Actually, due to the limited observa-
tions and the exponential growth of the network scales, the precise
identification of a large-scale becomes an almost impossible mission
[19], [29], not to mention the identification of a stochastic BCN
(SBCN) capturing the stochastic behaviors of the gene regulatory
processes. On the other hand, when identifying a BN from the
given observed sequence by using various well-known identification
methods, we might be able to infer different model configurations of
the BNs [1]. Consequently, for the given observed output sequence
and an identified BN, it is ultimately important to calculate the
probability that the observed sequence would be produced by the
BN, which is referred to as the model evaluation problem.

The model evaluation problem of SBCNs investigated in this paper
can be understood as a certain scoring/evaluating problem on how
well an identified BN matches the given observed sequence. More
specifically, for given model parameters, control input as well as
observation sequences, the purpose of the model evaluation problem
is to compute the exact probability that the observed sequence can

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may 
change prior to final publication. Citation information: DOI10.1109/TAC.2021.3106896, IEEE Transactions on Automatic 
Control.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.



FINAL VERSION 2

be produced by the identified model. As a matter of fact, the model
evaluation problem and the fault diagnosis problem (see [2] and [3])
have the common objective of estimating certain probability so as to
determine whether a given model is appropriate or not. Under the
assumption that all the possible system faults are known and can
be modeled, a fault diagnosis algorithm has been designed in the
interesting paper [2], based on which the fault can be singled out
as the candidate with the largest posterior probability for the given
observation sequence. Recently, the fault detection and diagnosis
problem for BNs has been investigated based on the STP technique
and many novel results have been presented in the literature, see
e.g. [14], [20].

To the best of the authors’ knowledge, the model evaluation
problem of BNs is still open and remains challenging. The main
motivation of our current investigation is to shorten such a gap by
developing some efficient algorithms. The main technical contribu-
tions of this paper can be highlighted in threefold as follows. 1)
A new yet effective approach is proposed for model evaluation of
BNs by referring to the algebraic representation of the SBCNs. 2)
With the help of the forward-backward technique, two recursive STP-
based algorithms, namely the forward algorithm and the backward
algorithm, are designed to compute the probability for the given
observed output sequence to be produced by the model. 3) Scaling
factors are introduced to cope with the numerical issues arising in
the implementation of the developed algorithm.

The remainder of this paper is organized as follows. Section II
provides some necessary preliminaries on the definition of STP as
well as the problem to be addressed. Section III presents the main
results on the model evaluation of the SBCNs. Section IV demon-
strates the feasibility of the proposed algorithms with a biological
example. Section V concludes this paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

A vector is viewed as a column vector except where otherwise
clearly stated. The i-th component of a vector x is denoted by [x]i,
and [A]i,j means the entry of matrix A in the i-th row and the j-
th column. Rm×n stands for the set of all m × n real matrices.
The superscript “>” represents the transpose for real matrices. δim
means the i-th column of the m-dimensional identity matrix Im. The
delta set {δim|i = 1, 2, . . . ,m} is simply denoted by ∆m. A matrix
D ∈ Rm×n is called a logical matrix if D =

[
δi1m δi2m · · · δinm

]
(i1, i2, . . . , in ∈ {1, 2, . . . ,m}), which can also be represented as
D = δm[i1, i2, . . . , in] for convenience. The set of all m × n
logical matrices is denoted by Lm×n. B(n, p) stands for the binomial
distribution with parameters n ∈ N+ and p ∈ [0, 1], and the Bernoulli
distribution with success probability p is simply denoted by B(1, p).
E{·} means the expectation of a stochastic variable “·”. N(µ, σ2)
means the normal distribution with mean µ and variance σ2.

A. Mathematical Preliminaries

Firstly, the definition of STP is presented, which is useful in our
later discussion.

Definition 1: [9] For matrices B1 ∈ Rq×p and B2 ∈ Rn×m, their
STP is defined as follows:

B1 nB2 , (B1 ⊗ Iα/p)(B2 ⊗ Iα/n)

where α is the least common multiple of p and n.
Remark 1: Hereafter, the STP is simply called “product” and the

symbol “n” is omitted if no confusion arises.
Next, with some abuse of notation, the logical variable X ∈ B ,
{1, 0} is identified with the vector x = δ2−X

2 ∈ ∆2. Throughout the
paper, logical variables are always denoted by upper case letters and

their vector forms are denoted by lower ones if no confusion arises.
It is easy to verify that there is a bijective mapping between B and
∆2. Moreover, such a mapping can be generalized to the bijection
between Bn and ∆N with N = 2n by virtue of the STP. Specifically,
the vector X , (X1, X2, . . . , Xn)> ∈ Bn is regarded completely
as the column vector x , nni=1xi ∈ ∆N with xi representing the
vector form of Xi ∈ B. With this bijection in mind, an instrumental
representation of the logical functions, needed in the sequel to derive
the algebraic representation of the SBCNs, is given in the following
lemma.

Lemma 1: [9] Let g(x1, x2, . . . , xn) : Bn → B be a logical
function. Then, there exists a unique matrix Mg ∈ L2×N , called the
structure matrix of g, such that

g(x1, x2, . . . , xn) = Mg nni=1 xi, xi ∈ ∆2.

Finally, we introduce the concepts of random logical matrix as well
as random logical variable.

Definition 2: Let Lκm×n = {L(1), L(2), . . . , L(κ)} with L(1), L(2),
. . ., L(κ) ∈ Lm×n. A logical matrix L is called a κ-valued random
logical matrix if L takes value in the set Lκm×n and L = L(i)

with probability Pi (i = 1, 2, . . . , κ) satisfying
∑κ
i=1 Pi = 1. For

the particular case n = 1, that is, L ∈ {δi1m , δi2m , . . . , δiκm } with
i1, i2, . . . , iκ ∈ {1, 2, . . . ,m}, we call it a κ-valued random logical
variable.

B. SBCNs

The simplest yet basic modeling method for the real regulatory net-
works is to rely on the discrete logic-based system, which facilitates
our study by using the following canonical stochastic, time-invariant
Boolean dynamics:

Xi(k + 1) = fi
(
X(k), U(k),W (k)

)
, i = 1, 2, . . . , n (1a)

where vector X(k) , (X1(k), . . . , Xn(k))> ∈ Bn captures the state
of each entity in a regulatory network (for example, genes, proteins
and small molecules) at discrete time k ∈ N. The logical function
fi describes the regulatory relationships among genes, which gives
the next state of the regulated gene i by combining its regulators’
current states. The system is controlled by the input vector U(k) ,
(U1(k), . . . , Um(k))> ∈ Bm which is assumed to be deterministic
and known. Finally, W (k) , (W1(k), . . . ,Wl1(k))> ∈ Bl1 is
the system noise that reflects the inherent stochastic characteristic
of the gene expression process. Without loss of generality, we
assume that the system noise obeys the Bernoulli distribution, i.e.,
Wi(k) ∼ B(1, pi) for i = 1, 2, . . . , l1.

In the Boolean model, there are two possible states for the abun-
dance of the transcript: high (active gene) and low (inactive gene).
Accordingly, the Boolean-value measurement relating to the directly
unobservable hidden state variables is described by the following
observation equation:

Yj(k) = hj
(
X(k), V (k)

)
, j = 1, 2, . . . , q (1b)

where Y (k) , (Y1(k), . . . , Yq(k))> ∈ Bq (q ≤ n) represents the
observation at discrete time k; V (k) , (V1(k), . . . , Vl2(k))> ∈ Bl2
is the independent observation noise with Vj(k) ∼ B(1, qj) for
j = 1, 2, . . . , l2; and hj(·, ·) is the Boolean function mapping the
current state X(k) and the observation noise V (k) into the measure-
ment space. Moreover, the noises W (k) and V (k) are assumed to be
mutually independent and white in the sense that the noises at any
distinct time instants are independent random variables. We further
assume that the noises are independent with the initial state variable.

In what follows, by resorting to Lemma 1, system (1) is converted
into an algebraic form, which simplify the network inference problem
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significantly. For each Boolean function fi (respectively, hj), one
can find its structure matrix Fi (respectively, Hj), thereby giving the
following component-wise algebraic form of system (1):

xi(k + 1) = Fiw(k)u(k)x(k)

yj(k) = Hjv(k)x(k)

where u(k) = nmi=1ui(k) ∈ ∆M with M , 2m; w(k) =
nl1i=1wi(k) and v(k) = nl2i=1vi(k) are respectively L1-valued and
L2-valued random logical variables with L1 , 2l1 and L2 , 2l2 .
By setting y(k) = nqj=1yj(k) ∈ ∆Q with Q , 2q , the ASSR of
system (1) is further obtained as follows:

x(k + 1) = Fw(k)u(k)x(k) (2a)

y(k) = Hv(k)x(k) (2b)

where F = F1 nni=2 [(IL1MN ⊗ Fi)Φl1+m+n] ∈ LN×(L1MN) and
H = H1nqj=2[(IL2N⊗Hj)]Φl2+n ∈ LQ×(L2N), in which Φl1+m+n

and Φl2+n are the group power reducing matrices. For more details,
please refer to [9].

C. Problem Formulation

Given served competing SBCNs in the form of (1), a fundamental
problem that must be solved is to choose the proper model, which
best matches the known observations among these competing ones,
so that it is chosen/utilized in the real-world applications. For
convenience, the complete parameters set of model (2) is denoted by
θ = (F ,H, ρ, π), where ρ , {p1 . . . , pl1 , q1, . . . , ql2} represents the
noise parameters set, and vector π = (π1, π2, . . . , πN )> describes
the initial distribution of the state with [π]i0 , Pr

{
x(0) = δi0N

}
.

The maximum-likelihood estimation of θ is given by

θ̂ = arg max
θ∈Θ

Pr {y0:K |θ, u0:K−1} (3)

where Θ = {θ1, θ2, . . . , θ`} and θi stands for the parameter of
the i-th candidate model, in which i = 1, 2, . . . , ` and ` is the
number of the total candidate models for the regulatory network;
y0:K , (y(0), y(1), . . . , y(K)) = (δj0Q , δ

j1
Q , . . . , δ

jK
Q ) represents

the entire observed/known output sequence with K being the ter-
minal time instant; and u0:K−1 , (u(0), u(1), . . . , u(K − 1)) =
(δµ0
M , δµ1

M , . . . , δ
µK−1

M ) indicates the given control input sequence.
Now, we are in a position to compute the probability of the

observation sequence y0:K for the given parameter θ and the control
input sequence u0:K−1. More specifically, given u0:K−1 and θ, due
to the randomness characteristic of the system/observation noises as
well as the stochastic initial state, the corresponding output sequence
cannot be uniquely determined which, of course, includes the known
observation sequence y0:K as a special case.

What we are interested is the proportion/probability of y0:K in all
these possible observations, which can be formulated as follows:

Problem 1 (The Model Evaluation Problem): Given the observa-
tion sequence y0:K , the model parameter θ and the corresponding
control sequence u0:K−1, this problem asks for computing the exact
probability that the observed sequence is produced just by that model,
i.e., Pr {y0:K |θ, u0:K−1}.

Remark 2: From the models’ point of view, Problem 1 can also
be regarded as the scoring problem as how suitable a given model
matches an observed output sequence, which is extremely useful in
the process of the system modeling. For instance, if we consider the
case in which we are attempting to choose among several competing
models, the solution to this problem allows us to single out the
optimum model which best matches the known observations.

III. MAIN RESULTS

In this section, the above-formulated problem will be solved.
Firstly, a straightforward approach is proposed in subsection III-A
to compute the probability of the observation sequence y0:K for the
given parameter θ and the control input sequence u0:K−1. Then,
in subsection III-B, two recursive STP-based algorithms are further
designed for model evaluation by resorting to the forward-backward
technique, which will greatly decrease the computational complexity.
Finally, scaling factors are introduced in subsection III-C to deal with
the numerical precision issues arising in the implementation of the
developed algorithms.

A. A Straightforward Approach

Based on the state space representation of the SBCN, we can obtain
a simple algebraic expression for Pr {y0:K |θ, u0:K−1}. For this pur-
pose, we first give an auxiliary result whose proof is straightforward
based on the ASSR formulation and hence omitted here for brevity.

Lemma 2: Let (2) be the ASSR of system (1).
i) For the given control input u(k) = δ

µk
M , the one-step transition

probability from x(k) = δ
ik
N to x(k + 1) = δ

ik+1

N is

Pr{x(k + 1) = δ
ik+1

N |x(k) = δ
ik
N , θ, u(k) = δ

µk
M }

=
[
F n δ

µk
M

]
ik+1,ik

(4)

where F , F n (nl1i=1

[
pi 1− pi

]>
).

ii) For each of the N possible states, the corresponding emission
probability1 can be computed as

Pr{y(k) = δ
jk
Q

∣∣∣x(k) = δ
ik
N , θ} =

[
H
]
jk,ik

(5)

where H , H n (nl2i=1

[
qi 1− qi

]>
).

Remark 3: For the given x(k) ∈ ∆N , there is a set of emission
probabilities governing the distribution of the observation y(k). The
size/cardinal of this set is determined by the nature of the observed
variable y(k). In this paper, it is discrete with Q possible values.

Theorem 1: For the given SBCN (2) with corresponding control
sequence u0:K−1, the probability of the observation sequence y0:K

can be calculated as

Pr {y0:K |θ, u0:K−1}

=
∑

i0,i1,...,iK

πi0

K∏
k=1

[
F n δ

µk−1

M

]
ik,ik−1

K∏
k=0

[
H
]
jk,ik

(6)

where i0, i1, . . . , iK ∈ {1, 2, . . . , N}.
Proof: Consider an arbitrary fixed state sequence of length K

as x0:K , (x(0), x(1), . . . , x(K)) = (δi0N , δ
i1
N , . . . , δ

iK
N ). According

to i) of Lemma 2, the probability of such a state sequence can be
derived as follows:

Pr {x0:K |θ, u0:K−1}
= Pr {x(K)|x0:K−1, θ, u0:K−1} · Pr {x0:K−1|θ, u0:K−1}
= · · ·

= πi0

K∏
k=1

[
F n δ

µk−1

M

]
ik,ik−1

.

Based on the statistical independence of the observations, we can
use ii) of Lemma 2 to obtain Pr {y0:K |x0:K , θ} =

∏K
k=0[H]jk,ik .

The probability that y0:K and x0:K occur simultaneously, namely,
the joint probability of y0:K and x0:K , can be computed as

Pr
{
y0:K , x0:K |θ, u0:K−1

}
1Emission probability is the probability that a particular measurable state

can be observed, provided that system (2) is in one of the hidden states.
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= Pr {y0:K |x0:K , θ} · Pr {x0:K |θ, u0:K−1}

= πi0

K∏
k=1

[
F n δ

µk−1

M

]
ik,ik−1

K∏
k=0

[
H
]
jk,ik

. (7)

For the given model parameter θ and the corresponding control se-
quence u0:K−1, calculating the probability of y0:K involves summing
the joint probability in (7) across all possible state sequences x0:K ,
then one gets (6). The proof is complete.

Explication of the computation in (6) of Theorem 1 can be given
as follows. Initially, at time k = 0, the initial state of system
(2) is x(0) = δi0N with probability πi0 , and simultaneously emit
the observation y(0) = δj0Q with probability [H]j0,i0 . Then the
clock changes from 0 to time 1. Subsequently, the control input
u(0) = δµ0

M steers the SBCN (2) from state x(0) to state x(1) = δi1N
with probability [F n δµ0

M ]i1,i0 , and at the same time generates the
observation y(1) = δj1Q with probability [H]j1,i1 . This recurrence
process continues in such a manner until the last transition at time
K − 1 from state x(K − 1) = δ

ik−1

N to state x(K) = δ
ik
N (driven

by u(K − 1) = δ
iK−1

M ) with probability [F n δ
uK−1

M ]iK ,iK−1 , and
emitting the observation y(K) = δjKQ with probability [H]jK ,iK .

In what follows, we analyze the number of calculations required by
Theorem 1 to get the probability of y0:K generated by the SBCN (2)
with known control input sequence u0:K−1. Firstly, for the STP of
F ∈ LN×(MN) and u(k) ∈ LM×1, one totally needs N2×M times
of multiplications and N2(M − 1) times of additions. Then, each
term in the sum of (6) can be obtained after N2(2M − 1) + 2K + 1
times of calculations. Note that there are N possible states which can
be reached at every time instant k = 0, 1, . . . ,K. Therefore, there
are totally NK+1 possible choices for the state sequence x0:K . The
computational complexity of Theorem 1 requires the order of O(M ·
NK+3), which is computationally infeasible, even for small values
of M , N and K. In the next subsection, a more efficient procedure
is to be proposed for computing the quantity Pr {y0:K |θ, u0:K−1},
which will heavily reduce the computational complexity.

Algorithm 1 Forward Algorithm

Input: observations y0:K = {δj0Q , . . . , δ
jK
Q }, the control sequence

u0:K−1 = {δµ0
M , . . . , δ

µK−1

M }, matrices F and H , and the initial
distribution vector π
Output: the probability Pr {y0:K |θ, u0:K−1}

1: procedure FORWARD ALGORITHM

2: Initialization:
3: for i0 ← 1 to N do
4: P f0 (i0)← πi0 ·

[
H
]
j0,i0

5: end for
6: Recursion:
7: for k ← 0 to K − 1 do
8: for ik+1 ← 1 to N do
9: Compute P fk+1(ik+1) via (10)

10: end for
11: end for
12: Termination:

13: Pr {y0:K |θ, u0:K−1} ←
N∑

iK=1

P fK(iK)

14: return Pr {y0:K |θ, u0:K−1}
15: end procedure

B. The Forward-Backward Algorithm

Let P fk (ik) be the joint probability of all the observations up to
time instant k and the state x(k) = δ

ik
N , that is,

P fk (ik) , Pr{y0:k, x(k) = δ
ik
N |θ, u0:k−1}. (8)

Based on Lemma 2, the following result provides a recursive STP-
based algorithm to compute the probability of the observed sequence
produced by the model.

Theorem 2: Consider the SBCN (2) with observations y0:K and
control input sequence u0:K−1. The probability of the observation
sequence y0:K can be calculated as follows:

Pr {y0:K |θ, u0:K−1} =

N∑
iK=1

P fK(iK) (9)

in which P fK(iK) can be calculated recursively as

P fk+1(ik+1) =
[
H
]
jk+1,ik+1

·
[ N∑
ik=1

[
F n δ

µk
M

]
ik+1,ik

· P fk (ik)
]

(10)
with k = 0, . . . ,K − 1 and P f0 (i0) = πi0 · [H]j0,i0 , i0 ∈
{1, 2, . . . , N}.

Proof: According to the definition of P fK(iK), it is easy to verify
that

Pr {y0:K |θ, u0:K−1} =

N∑
iK=1

Pr{y0:K , x(K) = δiKN |θ, u0:K−1}

=

N∑
iK=1

P fK(iK)

which gives the objective computation as the sum of the terminal
forward variable P fK(iK).

Next, we show the validity of the recursion relationships in (10)
that allow P fK(iK) to be calculated efficiently. From the probability
product rule and the total probability formula, together with the condi-
tional independence properties, the forward variable P fk+1(ik+1) can
be expressed in terms of P fk (ik) as in (11). In order to implement
this recursion, one needs a starting condition that is given by

P f0 (i0) = Pr{y(0), x(0) = δi0N |θ} = πi0 ·
[
H
]
j0,i0

.

The proof is complete.
Remark 4: The forward algorithm2 presented in Theorem 2 to com-

pute Pr {y0:K |θ, u0:K−1} is factorized/programmed in Algorithm 1,
from which the relating computational complexity can be easily
computed in terms of bit operations. From (10), to calculate the entry
P fk+1(ik+1) from the entries P fk (ik), one needs N2(2M − 1) + 2N
calculations. Besides, to find all the N entries at time instant k + 1
from those at k requires N [N2(2M − 1) + 2N ] calculations. Note
that the forward algorithm begins with P f0 (i0) (i0 = 1, 2, . . . , N )
and calculates P f1 (i1), P f2 (i2), . . ., P fK(iK) iteratively. The total
number of calculations dedicated to Algorithm 1 is then

KN
[
N2(2M − 1) + 2N

]
+N

which is in the order of O(MKN3) rather than the O(M ·NK+3)
as required by the direct calculation.

Remark 5: Theorem 2 provides a recursive STP-based method
for calculating the probability of the observation sequence. Actually,
the forward algorithm is a sort of dynamic programming algorithm,
which utilizes a table to deposit the intermediate values as they
build up the probability of the whole observation sequence. Algo-
rithm 1 calculates the probability of y0:K by taking a sum over the
probabilities of all possible states sequences that could generate the
observation sequence, which can be calculated efficiently by folding
each of these sequences into a single forward trellis.

2The forward algorithm is designed on the basis of algebraic form of the
SBCNs that can be solved by using the MATLAB toolbox established by
Cheng (http://lsc.amss.ac.cn/ dcheng/stp/STP.zip).
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Remark 6: Calculation of the forward probability (outlined in
Algorithm 1) is based on the trellis diagram, which is further
illustrated in Fig. 1. The value of each P fk+1(ik+1) is computed
by summing up all the previous values P fk (ik) (ik = 1, 2, . . . , N )
weighted by transition probabilities [F n δ

µk
M ]ik+1,ik and multiplied

by the observation probability [H]jk+1,ik+1 . The key point is that,
since there are N states at each time slot, all the possible state
sequences x0:K will re-merge into these N nodes, no matter how long
the observation sequence is. At time slot k, one needs to compute
values of P fk (ik), ik = 1, 2, . . . , N , where each computation involves
only N previous values of P fk−1(ik−1). It is worth emphasizing that
the structure of the trellis diagram shown in Fig. 1 illustrates the
efficiency of the forward computation algorithm very well.

In a similar manner, we can consider a backward variable P bk (ik)
defined as

P bk (ik) , Pr{yk+1:K

∣∣x(k) = δ
ik
N , θ, uk:K−1}. (12)

With the help of Lemma 2 and the Bayes theorem, we immediately
have the following result.

Theorem 3: Consider SBCN (2) with noisy observations y0:K and
control sequence u0:K−1. Let P bk (ik) be the probability of the partial
observation sequence from k + 1 to the end, given state x(k) =
δ
ik
N and the model θ. Then, the probability of the noisy observation

sequence y0:K can be calculated by

Pr {y0:K |θ, u0:K−1} =

N∑
i0=1

[
H
]
j0,i0
· P b0 (i0) · πi0 (13)

where P b0 (i0) can be calculated recursively as

P bk (ik) =

N∑
ik+1=1

[
H
]
jk+1,ik+1

·P bk+1(ik+1)·
[
FnδµkM

]
ik+1,ik

(14)

in which k = K − 1,K − 2, . . . , 0 and P bK(iK) ≡ 1, iK =
1, 2, . . . , N .

Proof: It follows from (12) that

Pr {y0:K |θ, u0:K−1} =

N∑
i0=1

Pr{y0:K , x(0) = δi0N
∣∣θ, u0:K−1}

=

N∑
i0=1

[
H
]
j0,i0
· P b0 (i0) · πi0 .

By utilizing the conditional independence properties, the recursion
in (15) can be similarly obtained for the quantities P bk (ik). In
addition, one needs an initial condition for this recursion, that is,
a value for P bK(iK). Based on the Bayes theorem, one has (16). By
setting k = K in the above equation and replacing P fk (ik) with
its definition, one can obtain that P bK(iK) = (Pr{y0:K , x(K) =
δiKN |θ, u0:K−1})/P fK(iK) = 1 which implies that P bK(iK) = 1 for
all settings of iK . The proof is complete.

Remark 7: The pseudocode for computing is displayed in Al-
gorithm 2. It is interesting to find that Algorithm 2 involves a

backward message propagating process that evaluates P bk (ik) in
terms of P bk+1(ik+1). At each step, the backward algorithm ab-
sorbs the effect of observation y(k + 1) through the emission
probability [H]jk+1,ik+1 , multiplied by the transition probability
[F n δ

µk
M ]ik+1,ik , and then marginalizes x(k + 1).

Remark 8: The model-based fault detection and diagnosis problem
has been investigated for stochastic Boolean dynamical systems in
a recent work [2], and an effective diagnosis algorithm has been
proposed to select the fault as the candidate with the largest posterior
probability for the given observation sequence. It is worth mentioning
that the calculation in the fault diagnosis step is on the basis of a
bank of Boolean Kalman filter [4] running in the parallel (i.e., one
for each candidate model), which implies that the performance of
the proposed algorithm is closely correlated to that of the Boolean
Kalman filter. Thus, the fault diagnosis algorithm proposed in [2]
might not be appropriate in dealing with certain special/extreme
cases, such as system (1) with larger noises pi (i = 1, 2, . . . , l1) and
qj (j = 1, 2, . . . , l2). Here, the parameters pi and qj determine the
intensity of the system noise and the observation noise, respectively.

Algorithm 2 Backward Algorithm

Input: observations y0:K = {δj0Q , . . . , δ
jK
Q }, the control sequence

u0:K−1 = {δµ0
M , . . . , δ

µK−1

M }, matrices F and H , and the initial
distribution vector π
Output: the probability Pr {y0:K |θ, u0:K−1}

1: procedure BACKWARD ALGORITHM

2: Initialization:
3: for iK ← 1 to N do
4: P bK(iK)← 1
5: end for
6: Recursion:
7: for k ← K − 1 to 0 do
8: for ik ← 1 to N do
9: Compute P bk (ik) via (14)

10: end for
11: end for
12: Termination:

13: Pr {y0:K |θ, u0:K−1} ←
N∑
i0=1

[
H
]
j0,i0
· P b0 (i0) · πi0

14: return Pr {y0:K |θ, u0:K−1}
15: end procedure

C. Scaling Factors

Although computers have become so much capable, numerical
issues still arise in the implementation of the developed algorithms,
especially for the interminable state sequence. From the ‘for’ loop
of lines 8–10 in Algorithm 1, we note that, at each time instant k,
the current value P fk+1(ik+1) is calculated from the previous value
P fk (ik) by multiplying with the transition probability [FnδµkM ]ik+1,ik

and the observation probability [H]jk+1,ik+1 . Since these proba-
bility quantities are always prominently less than 1, the value of

P fk+1(ik+1) = Pr
{
y(k + 1) = δ

jk+1

Q

∣∣∣y0:k, x(k + 1) = δ
ik+1

N , θ, u0:k

}
· Pr

{
y0:k, x(k + 1) = δ

ik+1

N

∣∣∣θ, u0:k

}
= Pr

{
y(k + 1) = δ

jk+1

Q

∣∣∣x(k + 1) = δ
ik+1

N , θ
}
·
( N∑
ik=1

Pr
{
y0:k, x(k) = δ

ik
N , x(k + 1) = δ

ik+1

N

∣∣∣θ, u0:k

})
=
[
H
]
jk+1,ik+1

·
( N∑
ik=1

[
F n δ

µk
M

]
ik+1,ik

· P fk (ik)
) (11)
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Fig. 1. Computation illustration of the forward probability in terms of a
trellis diagram of states δiN , i = 1, 2, . . . , N , where P fk (ik) represents the
probability of being in the state δikN after knowing the first k observations,
given the model parameter θ and the corresponding control input sequence
u0:k−1.

P fk+1(ik+1) might close to 0 exponentially when the ‘for’ loop
(i.e., lines 7–12 in Algorithm 1) runs along the time sequence.
For moderate lengths of the state sequence (say 100 or so), the
computation of P fk+1(ik+1) will quickly overlap the capability of
the modern computer, even though the double-precision floating-point
format is utilized.

In the following, we will discuss the re-scaled versions of
P fk+1(ik+1) and P bk (ik) aiming at increasing the numerical preci-
sion of the developed algorithms, thereby overcome the numerical
difficulties in the implementations. In doing so, a normalized version
of P fk (ik) is put forward as follows:

P̂ fk (ik) , Pr{x(k) = δ
ik
N |y0:k, θ, u0:k−1}

=
P fk (ik)

Pr {y0:k|θ, u0:k−1}
(17)

which will remain within the significant precision of the computers
since it is the ik-th entry of certain probability distribution vector
over N possible states, i.e.,

∑N
ik=1 P̂

f
k (ik) = 1.

For the purpose of associating the scaled probability with the
original forward one, we define the following scaling factors:

ξk , Pr {y(k)|y0:k−1, θ, u0:k−1} (18)

where ξ0 , Pr {y(0)|θ}, which can be computed as

ξ0 =

N∑
i0=1

Pr
{
y(0)|x(0) = δi0N , θ

}
· Pr

{
x(0) = δi0N |θ

}
=

N∑
i0=1

πi0 ·
[
H
]
j0,i0

.

Then, according to the probability product rule, we arrive at

Pr {y0:k|θ, u0:k−1} =

k∏
λ=0

ξλ (19)

which, together with (17), yields P fk (ik) = (
∏k
λ=0 ξλ) · P̂ fk (ik). It

is easy to derive from (10) that

ξk+1 · P̂ fk+1(ik+1)

=
[
H
]
jk+1,ik+1

·
( N∑
ik=1

[
F n δ

µk
M

]
ik+1,ik

· P̂ fk (ik)
) (20)

where ik+1 = 1, 2, . . . , N . Note that
∑N
ik+1=1 P̂

f
k+1(ik+1) = 1.

The above equation yields

ξk+1 =

N∑
ik+1=1

[
H
]
jk+1,ik+1

·
( N∑
ik=1

[
F n δ

µk
M

]
ik+1,ik

· P̂ fk (ik)
)
.

In light of (20), the recursion result (10) for P fk (ik) and P fk+1(ik+1)
can be finally converted into the following recursion for the normal-
ized variables:

P̂ fk+1(ik+1) =
1

ξk+1
·
[
H
]
jk+1,ik+1

·
( N∑
ik=1

[
F n δ

µk
M

]
ik+1,ik

· P̂ fk (ik)
) (21)

In order to implement this recursion, one needs a starting condition
that is given by

P̂ f0 (i0) =
P f0 (i0)

Pr {y(0)|θ} =
πi0 ·

[
H
]
j0,i0∑N

i0=1 πi0 ·
[
H
]
j0,i0

.

Remark 9: It is worth pointing out that, at each step of the
propagating phase concerning the forward message which is used to
calculate P̂ fk+1(ik+1), one needs to compute and store ξk+1, which
is easy to be implemented since it is the coefficient that normalizes
the right-hand side of (20) to give P̂ fk+1(ik+1).

Now, we introduce the re-scaled variables P̂ bk (ik) by using
P bk (ik) =

(∏K
λ=k+1 ξλ

)
· P̂ bk (ik). It follows from (12) and (19)

that

P̂ bk (ik) =
P bk (ik)(∏K
λ=0 ξλ

)( k∏
λ=0

ξλ
)

=
Pr{yk+1:K |x(k) = δ

ik
N , θ, uk:K−1}

Pr{yk+1:K |y0:k, θ, uk:K−1}
which will again be expected to perform numerically well because
the quantity P̂ bk (ik) is just the ratio of two conditional probabilities.
Then, the recursion equality (14) for P bk (ik) and P bk+1(ik+1) can be
converted into the one as follows:

P̂ bk (ik)

=
1

ξk+1
·

N∑
ik+1=1

[
H
]
jk+1,ik+1

· P̂ bk+1(ik+1) ·
[
F n δ

µk
M

]
ik+1,ik

.

When applying this recursion relation, we make use of the scaling
factor ξk+1 that is previously computed in the P fk+1(ik+1) phase.

Remark 10: It is easy to verify that the scaling technique makes
the calculation of P̂ fk (ik) and P̂ bk (ik) within the dynamic range
of the computer for k = 1, . . . ,K. It should be pointed out that
the value of Pr {y0:K |θ, u0:K−1} can be obtained by (19) rather
than by summing up the P̂ fk (ik) (P̂ bk (ik)) terms since they are
re-scaled. Noting that scaling factor ξk (k = 1, . . . ,K) is often
significantly less than 1, the calculation of Pr {y0:K |θ, u0:K−1} via
(19) would exceed the dynamic range of the computer. Therefore, the
logarithm of Pr {y0:K |θ, u0:K−1} is utilized to cope with the model
evaluation problem, which can be calculated from the scaling factors
as log Pr {y0:K |θ, u0:K−1} =

∑K
λ=0 log ξλ.

Remark 11: In the interesting paper [20], an observer has been
designed to evaluate the probabilistic distribution of the state vectors.
Based on this observer, a novel fault detection scheme has been
proposed for the mix-valued probabilistic BNs. It is worth pointing
out that the algorithm proposed in [20] cannot be further utilized
to cope with the fault diagnosis problems. If all the possible types
of system faults are known which are modeled respectively by
θ1, θ2, . . . , θ`, the forward/backward algorithms developed in this
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note then could be used to deal with the fault diagnosis problem
for BNs described by (3).

IV. NUMERICAL SIMULATION

In this section, we employ a GRN known as the lac operon in
Escherichia coli as a numerical example, which is of vital importance
as it can provide numerous insights into understanding the sugar
metabolism. By encoding the interaction type (that is, activation or
inhibition) in Boolean representation, a reduced Boolean model has
been established in [30] to simulate the dynamic behavior and the
interaction of the lac gene as follows:

M(k + 1) = ¬Ge(k) ∧ (L(k) ∨ Lm(k))

L(k + 1) = M(k) ∧ Le(k) ∧ ¬Ge(k)

Lm(k + 1) = ((Lem(k) ∧M(k) ∨ Le(k)) ∧ ¬Ge(k)

(22)

where M , L, and Lm indicate the lac mRNA, the lactose in high
concentration, and the lactose in medium concentration, respectively;
Ge stands for the glucose; Lem and Le represent, respectively, the
medium concentration and the high concentration of extra cellular
lactose.

Remark 12: As is well known, the lac operon exhibits bistability.
In order to show that model (22) also exhibits the same dynamics,
stochasticity in the uptake of the inducer is considered by introduc-
ing a random variable Le ∼ N(µ, σ). Then, concentration of the
extracellular lactose represented by (Le, Lem) is a function of Le as
follows:

(Le, Lem) =


(0, 0), if Le < 1

(0, 1), if 1 ≤ Le < 1

(1, 1), if 2 ≤ Le

which implies that w(k) = n2
i=1wi(k) (w1(k) and w2(k) are the

vector form of the logical variables Le(k) and Lem(k), respectively)
is a random logical variable defined in Definition 2, that is, w(k) takes
values in the set {δ1

4 , δ
3
4 , δ

4
4} and w(k) = δi4 with certain probability

Pi (i = 1, 3, 4). In this case, system (22) becomes an SBCN as in
(2) with u(k) serving as a control input. For notational convenience,
let P = (P1,P3,P4).

Let x1, x2, x3 and u be the vector form of the logical variables
M , L, Lm and Ge, respectively. By resorting to the STP technique
and setting x(k) = n3

i=1xi(k), w(k) = n2
i=1wi(k), the BN (22)

can be converted into the following algebraic form:

x(k + 1) = Fw(k)u(k)x(k) (23a)

where

F = δ8[8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1, 5, 3, 3, 3, 7, 8, 8, 8, 8, 8,

8, 8, 8, 2, 2, 2, 6, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 3, 3,

3, 7, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 8, 4, 4, 4, 8].

The observation equation in this example is given as

Y (k) = X(k)⊕ V (k) (23b)

where symbol “⊕” indicates the modulo-2 addition. Here, the mea-
surement noise V (k) = (V1(k), V2(k), V3(k)) is assumed to be white
with Vj(k) ∼ B(1, qj) for j = 1, 2, 3, and it is mutually independent
with the system noise and the initial state. By resorting to the STP
technique, we have

H = δ8[8, 7, 6, 5, 4, 3, 2, 1, 7, 8, 5, 6, 3, 4, 1, 2, 6, 5, 8, 7, 2,

1, 4, 3, 5, 6, 7, 8, 1, 2, 3, 4, 4, 3, 2, 1, 8, 7, 6, 5, 3, 4,

1, 2, 7, 8, 5, 6, 2, 1, 4, 3, 6, 5, 8, 7, 1, 2, 3, 4, 5, 6, 7, 8].

In this example, the complete parameters set of system (23)
is denoted by θ = (F ,H,P, q, π), where q = (q1, q2, q3).
We take P = (0.1, 0.1, 0.8), q = (0.01, 0.01, 0.01) and π =
(0.05, 0, 0, 0.05, 0, 0, 0, 0.9). Without loss of generality, the control
input sequence u0:49 is set to be (δ2

2 , δ
2
2 , . . . , δ

2
2), which means that

the glucose is low (Ge(k) = 0) at time instants k = 0, . . . , 49. Then,
the transition matrix F and the observation matrix H in Algorithm 1
can be achieved. Fig. 2 displays the entire observed output sequence
y0:50. It can be observed that the system spends a significant amount
of time in the equilibrium state (0, 0, 0). The probability that y0:50

is produced by the above addressed model can be calculated by
Algorithm 1 as Pr {y0:50|θ, u0:49} = 1.0927 × 10−7. Here, the
total number of calculations dedicated to Algorithm 1 is 390408 (as
opposed to 1.2114×1049 required by the direct calculation method).

As a comparison, let θ′ = (F ,H,P′, q′, π) be the complete
parameters set of another identified BN with P′ = (0.15, 0.05, 0.8)
and q′ = (0.015, 0.015, 0.015). By Algorithm 1, we can obtain the
probability that the observed sequence y0:50 is produced by this BN
with parameter θ′ as follows:

Pr
{
y0:50|θ′, u0:49

}
= 2.4955× 10−8 < Pr {y0:50|θ, u0:49}

which implies that the Boolean model with parameter θ matches the
given observed output sequence y0:50 better than the one with θ′.

P bk (ik) =

N∑
ik+1=1

Pr
{
yk+1:K

∣∣∣x(k + 1) = δ
ik+1

N , θ, uk:K−1

}
· Pr

{
x(k + 1) = δ

ik+1

N

∣∣∣x(k) = δ
ik
N , θ, uk:K−1

}

=

N∑
ik+1=1

Pr
{
y(k + 1) = δ

jk+1

Q

∣∣∣yk+2:K , x(k + 1) = δ
ik+1

N , θ, uk+1:K−1

}
· P bk+1(ik+1) ·

[
F n δ

µk
M

]
ik+1,ik

=

N∑
ik+1=1

[
H
]
jk+1,ik+1

· P bk+1(ik+1) ·
[
F n δ

µk
M

]
ik+1,ik

(15)

P fk (ik)P bk (ik) = Pr
{
y0:k|x(k) = δ

ik
N , θ, u0:k−1

}
· Pr

{
x(k) = δ

ik
N |θ, u0:k−1

}
· Pr

{
yk+1:K |x(k) = δ

ik
N , θ, uk:K−1

}
= Pr

{
y0:K |x(k) = δ

ik
N , θ, u0:K−1

}
· Pr

{
x(k) = δ

ik
N |θ, u0:k−1

}
= Pr

{
y0:K , x(k) = δ

ik
N |θ, u0:K−1

} (16)
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Fig. 2. The observation value of the measurement output in (23b).

V. CONCLUSION

In this paper, model evaluation of the SBCNs has been investigated
based on the STP of matrices. By converting the SBCN into an
algebraic form with the dynamics similar to that of a hidden Markov
model, a straightforward approach has been proposed to compute
the probability that the given observed sequence is produced by the
model. In order to reduce the computational complexity, two recursive
STP-based algorithms have been designed for model evaluation
by resorting to the forward-backward technique. Moreover, scaling
factors have also been introduced to deal with the numerical issues
arising in the implementation of the developed algorithms. Finally, a
Boolean model of the lac operon has been employed to illustrate
the applicability and effectiveness of the proposed algorithms. In
the future, we intend to utilize our proposed forward/backward
algorithms to deal with the fault diagnosis problem for BNs as well
as other complex systems [34], [35].
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