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Exites in Cambrian arthropods and homology of
arthropod limb branches
Yu Liu1,2, Gregory D. Edgecombe 2,3✉, Michel Schmidt2,4,5, Andrew D. Bond 6, Roland R. Melzer2,4,5,7,

Dayou Zhai1,2, Huijuan Mai1,2, Maoyin Zhang1,2 & Xianguang Hou1,2✉

The last common ancestor of all living arthropods had biramous postantennal appendages,

with an endopodite and exopodite branching off the limb base. Morphological evidence for

homology of these rami between crustaceans and chelicerates has, however, been challenged

by data from clonal composition and from knockout of leg patterning genes. Cambrian

arthropod fossils have been cited as providing support for competing hypotheses about

biramy but have shed little light on additional lateral outgrowths, known as exites. Here we

draw on microtomographic imaging of the Cambrian great-appendage arthropod Leanchoilia

to reveal a previously undetected exite at the base of most appendages, composed of

overlapping lamellae. A morphologically similar, and we infer homologous, exite is docu-

mented in the same position in members of the trilobite-allied Artiopoda. This early Cambrian

exite morphology supplements an emerging picture from gene expression that exites may

have a deeper origin in arthropod phylogeny than has been appreciated.
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Living arthropods are traditionally thought to have the
appendages of their most recent common ancestor consisting
of an antenna followed by a set of biramous post-antennal

limbs1. Biramy refers to an inner branch (the endopodite) and outer
branch (the exopodite), both of which arise from the same section
of the limb base, known as the protopodite or basipodite. Corre-
spondences between biramous appendages of crustaceans and
Palaeozoic arthropods such as trilobites underpin the presumed
homology of the endopodite, exopodite and protopodite and their
origin at or deeper than the root of the arthropod crown group1,2.
In this framework, some more proximal elements of the limb base,
such as the coxa of crustaceans, are thought to have differentiated
de novo3 or resulted from subdivision of an originally single part
protopodite4.

The canonical view of homology between the two rami of
biramous limbs across the arthropods was called into question
when clonal analysis of peracarid pancrustaceans revealed that
the endopodite and exopodite of their biramous limbs both form
from growth zones along the main limb axis, and uniramous
limbs result from a failure of this axis to split rather than from
loss of the exopodite as traditionally thought5,6. This single axis
contrasts with additional outgrowths from the limb base (known
as exites), which grow along novel axes. This suggested that the
biramous limb in crustaceans differs from the condition seen in
many Cambrian arthropods, which was reinterpreted as a uni-
ramous limb and an exite rather than an endopodite and exo-
podite, respectively5.

Fitting extant chelicerates into this framework is challenged by
prosomal appendages generally being uniramous (composed of a
telopodite widely homologised with an endopodite) and the
opisthosomal appendages being modified into respiratory struc-
tures. Even when there is agreement on a theory of ancestral
biramy in Chelicerata, the identification of particular structures as
either exopodites or exites in chelicerates has been contentious.
For example, the flabellum, a projection on leg VI of horseshoe
crabs (Xiphosura), has been homologised with either an
exopodite1,2 or an exite/epipodite7,8, and the same is true for the
book gills2,9. Gene expression data even allow that the book gill
opercula include a contribution from the walking leg10. Fossils
assigned to the chelicerate stem11 (or crown12) group, such as
Offacolus13 and Dibasterium14, have contributed to this debate
because they have segmented rami that have been homologised
with the endopodite and exopodite of biramous limbs4 and are
inferred to have originated by splitting of a single axis7. A distinct
identity for the supposed exopodite can nevertheless also be
considered, as it appears to emerge from the body wall with
distinct separation from the protopodite.

A different approach to evaluating homology of rami and exites
is offered by functional studies of leg patterning genes. Com-
parison of leg gene function in the amphipod Parhyale and
Drosophila and other insects serves to homologise the distal six
podomeres of crustacean and insect appendages in a one-to-one
manner. Combined with expression patterns of wing genes,
morphologically varied exites can be associated with more
proximal podomeres of the leg, even when they have been
incorporated into the body wall15. This approach has been
extended to chelicerates by drawing on the spider Acanthoscurria,
concluding that chelicerate exites and the inferred exopodite of
Silurian chelicerates such as Dibasterium and Offacolus are non-
homologous with exopodites of pancrustaceans because they
branch from different podomeres7.

In this work, we present evidence for a morphologically dis-
tinctive exite in Cambrian arthropods exposed by computed
microtomography of fossils from the Cambrian (Series 2, Stage 3)
Chengjiang Biota of Yunnan, China. Similarities between this
exite in four species support its homology. Comparisons with

other fossil and extant arthropods, in light of current phyloge-
netic frameworks, suggest an early origin of exites in arthropod
evolution.

Results and discussion
A previously undetected exite in Cambrian arthropods. The
structure of interest is best known from the megacheiran great-
appendage arthropod Leanchoilia illecebrosa, in which it has been
imaged on both sides of the body in the head and trunk. The exite
of this species is illustrated and described in detail, with com-
parative accounts in another species of Leanchoilia, L. obesa, and
in two members of the Artiopoda, Naraoia spinosa and Retifacies
abnormalis. Artiopoda is a monophyletic group16 that unites
trilobites with Palaeozoic taxa sharing a set of mostly homo-
nomous post-antennal appendages of similar structure.

YKLP 11424 is a specimen of Leanchoilia illecebrosa of length
21 mm, preserved in lateral aspect (Supplementary Fig. 1a),
complete apart from lacking the posterior portion of the telson.
The great appendages, four additional cephalic appendage pairs,
and nine preserved pairs of trunk appendages have been digitally
dissected on both sides of the body (Supplementary Fig. 2). Most
details of the protopodite, endopodite and exopodite of the
biramous appendages correspond to previous descriptions of this
species17 and the allied L. superlata from the Burgess Shale18,19

and a complete description is not presented.
An outgrowth composed of two to five overlapping lamellae is

observed at the proximal edge of the protopodite of the last two
head appendages (Supplementary Fig. 3c,d) and in all trunk
appendages (Fig. 1, Supplementary Fig. 4) of YKLP 11424. It is
hereafter referred to as an exite based on its attachment to the
protopodite proximal to that of the exopodite. The number of
overlapping lamellae increases on more posterior appendages, there
being two on the appendage of trunk segment 5, four on segment 7,
and five on segment 8 (Fig. 1, Supplementary Fig. 4). Each lamella
has a similar flap-like shape, and on each appendage a basal lamella
attaches to the protopodite whereas the remaining, overlying
lamellae each attach near the base of the basal lamella
(Supplementary Movie 1). The specimen bears a morphologically
similar exite in the same position on the fourth and fifth cephalic
appendages and the first four pairs of trunk appendages, but its
preservation is poorer than on the more posterior trunk segments.
The more anterior appendages expose only fragments of lamellae
(Supplementary Figs. 3c, d, 4a–d, Supplementary Movies 2, 3).

YKLP 11093 is a specimen of Leanchoilia illecebrosa of length 30
mm and is likewise preserved in lateral aspect (Supplementary
Figs. 1b, 5), including the head and entire trunk. The four biramous
cephalic appendages and first pair of trunk appendages are well
preserved and have been digitally dissected from one side of the
body. A lamellar exite is observed on the fourth (Supplementary
Fig. 5d) and fifth (Supplementary Fig. 5e) cephalic appendages and
on the first trunk appendage (Supplementary Fig. 5f, Supplementary
Movie 4), in each case being composed of flap-like lamellae. The
lamellae are best preserved on the first trunk appendage, in which
they consist of the basal lamella and two overlapping lamellae. The
margins of the exite lamellae are fringed by a few setae
(Supplementary Fig. 5d), which are well shown by additional
specimens (YKLP 10938, 11089; see below). A series of appendages
shows the exopodite folded along the hinge by which it attaches to
the protopodite, such that the exite comes to lie between the
endopodite and exopodite (Supplementary Fig. 6). The endopodite,
exopodite and exite are each oriented in a different plane, rejecting
the possibility that the exite attaches to the exopodite rather than
having an independent attachment to the protopodite.

Information from the two specimens thus indicates a
consistent appearance of the lamellae on the last two cephalic
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appendages but suggests minor variation in the number of
lamellae on anterior trunk appendages (i.e., two versus three),
potentially related to differences in body size.

YKLP 10938 and 11089 are two complete specimens of
L. illecebrosa in lateral aspect. The exites are visible on posterior
cephalic and anterior trunk appendages in light microscopy
(Supplementary Fig. 7), revealing up to nine setae of variable
length fringing the margin of a lamella (Supplementary Fig. 7c).

YKLP 13323 is a complete specimen of Leanchoilia obesa, the
holotype of the species, preserved in dorsal view (Supplementary
Fig. 1c). An appendage from the head (lA4 in Supplementary
Fig. 8a) has been digitally dissected (Fig. 2a, Supplementary
Movie 5) to reveal very similar morphology to exites on cephalic

and trunk appendages of L. illecebrosa. An exite attaches at the
same position on the protopodite, composed of a basal lamella
and two additional flap-like lamellae overlapping it (Fig. 2a inset).
Each of these overlying lamellae attaches proximally, but their
exact attachment is less clear in this species.

YKLP 11425 is a complete specimen of Naraoia spinosa with
the head shield folded at a high angle relative to the trunk shield,
as is common in this species (Supplementary Figs. 1d, 8b). Three
trunk appendages, lT1, lT2 and lT7 (Supplementary Fig. 8b), have
been digitally dissected (Fig. 2b, Supplementary Movie 6) and
reveal exites similar to those of Leanchoilia. An outgrowth
consisting of three overlapping lamellae affixes to the proximal-
most portion of the protopodite, narrowly overlapping the

Fig. 1 Computed tomographic images of YKLP 11424 showing selected exite-bearing appendages of Leanchoilia illecebrosa. a Ventral side of the animal.
b–d Digitally dissected trunk appendages 5, 7, and 8 from the right side of the animal (rT5, rT7, rT8). Each appendage is shown at three different angles to
demonstrate the endopodite (en), the exopodite (ex) and the exite consisting of one basal flap (red arrow) and several additional ones (white arrows). Blue
arrows point to the attachment of the exite. Individual scale bars provided. An, head appendage n; l, left; r, right; ga, great appendage; Tn, trunk appendage
n. Dissections of all appendages are available in Supplementary Figs. 2–4.
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exopodite. One of these exites has relatively short and wide
lamellae, whereas the better-preserved ones have longer, narrower
lamellae that all terminate at almost the same length. The exite
lamellae become shorter and broader posteriorly. The basal
lamella attaches to the protopodite whereas the overlying lamellae
each attach near the base of the basal lamella (Fig. 2b).

YKLP 11426 is a fragmentary specimen of Retifacies abnormalis,
preserving only the trunk (Supplementary Figs. 1e, 8c, 9a,b), but is
confidently identified by diagnostic reticulate sculpture on the
tergum, pygidial shape, and a styliform, annulated telson. Several
trunk appendages bear proximal outgrowths from the protopodite
(Supplementary Fig. 8c). One of the appendages has been digitally
dissected (Fig. 2c, Supplementary Movie 7) to reveal a similar
situation seen in Leanchoilia and Naraoia. Four lamellae of various
sizes originate from the proximal portion of the protopodite. The
lamellae are elongate and paddle-shaped, of similar morphology to
both each other and to the exopodite lamellae. The lamellae are
imbricated with the basal lamella offset distally, and the overlying
lamellae being grouped more proximally. Each lamella attaches to
the protopodite independently.

The exites of Leanchoilia, Naraoia and Retifacies resemble each
other in being composed of a few (two to five) overlapping
lamellae and emerging from the proximal portion of the
protopodite (Fig. 3, Supplementary Fig. 10). An additional shared
character of Leanchoilia and Naraoia is that the basal lamella
forms the attachment to the protopodite and the overlapping
lamellae branch from the basal lamella (Fig. 3). The lamellae of
the exite of Retifacies resemble those of the exopodite in both
having a similar paddle-like shape, but in all three cases the exite
is regarded as a discrete structure rather than being an outgrowth
of the exopodite, like the divided exopodite called a pseudepipo-
dite in cephalocarids20. Naraoia in particular shows a clear
separation of the attachment of the exite and exopodite and a
marked difference in the morphology of the two branches.

Exites have multiple origins. Among the varied kinds of exites
known in arthropods, comparisons with Cambrian fossils have
mostly focused on the epipodites of crustaceans, which can
unequivocally be distinguished from the exopodite of a limb
when both are present (as is likewise the case in the Cambrian
species studied here). Epipodites are unmusculated flaps or clubs
originating proximal to the exopodite on the coxal or precoxal
part of the protopodite of post-maxillulary appendages4,21, ser-
ving an osmoregulatory or respiratory function22. Based on dif-
ferences in position and morphology, exites and even more
specifically epipodites have been ascribed multiple independent
origins within Pancrustacea1, although some correspondences in
gene expression are consistent with their homology between such
divergent groups as branchiopods and malacostracans4. The
pancrustacean Yicaris dianensis from Cambrian Series 2, Stage
323 figures prominently in discussion about the timing of origin
of epipodites. A series of leaf-shaped exites in Yicaris has been
interpreted as epipodites22,23 or as exites of an independently
evolved nature4,21. Irrespective of this debate, leaf-shaped epi-
podites on the biramous trunk appendages of Ercaicunia multi-
nodosa, a stem-group pancrustacean, attest to their origin by
Cambrian Stage 324.

The absence of epipodites in some lineages of Pancrustacea
weakens the case for epipodites being so deeply nested in
Mandibulata that the exites in Leanchoilia and Artiopoda are their
homologues, although Ercaicunia suggests an earlier origin in
Pancrustacea than is predicted by extant lineages on their own24.
The likely multi-fold derivation of epipodites within Pancrustacea
and the discovery of a previously undetected exite with a distinctive
lamellar structure in distantly allied Cambrian arthropods are most

compatible with epipodites and lamellar exites having independent
evolutionary origins. However, it is emerging that exites are more
common in arthropods than is commonly assumed. In addition to
the flabellum of xiphosuran chelicerates noted above, expression of
leg patterning genes and wing genes suggests that the coxal and
tergal plates of amphipod crustaceans, paratergal outgrowths and
tracheae of insects, and wings of pterygote insects are modified
exites7,15. Adding the fossil data presented here, which cover
previously unsampled arthropod lineages, exites may have a deeper
origin in arthropod phylogeny than has been thought.

Implications for exopodites and exites in chelicerates. Inter-
preting the phylogenetic significance of similarities between
Megacheira and Artiopoda is complicated by both groups
repeatedly being placed in two different positions on the
arthropod tree. Megacheira is resolved by character argumenta-
tion or quantitative phylogenetic analyses as either stem-group
Euarthropoda25,26 or as stem-group Chelicerata27–30. Trilobites
and other artiopodans are alternatively allied to Mandibulata31–34

or to Chelicerata26,35. The latter is consistent with the historical
Arachnomorpha36,37 or Lamellipedia38 hypotheses, the latter
named for lamellate setal blades in the exopodite. The evidence
for homology of the lamellar exites in Megacheira (Leanchoilia)
and Artiopoda (Naraoia, Retifacies) presented here suggests a
single origin of this trait and accordingly, assuming that this trait
is apomorphic, a close phylogenetic affinity between these taxa.
Since both groups have been allied with chelicerates and both are
recovered in some phylogenetic analyses in the chelicerate stem-
group35, this character may serve as a synapomorphy of a clade
within total-group Chelicerata. An alternative interpretation
would be that this kind of exite is a symplesiomorphy, potentially
retained from flaps bearing setal blades in stem-group arthropods
such as Opabinia39. However, Leanchoilia and Naraoia shared
detailed similarity in the mode of growth of overlapping lamellae
via the attachment of overlying lamellae to the basal lamella, so a
symplesiomorphy interpretation would force an exite composed
of a few overlapping lamellae to be present throughout the
arthropod stem-group/crown-group transition but to have gone
undetected.

The likely attachment of the exopodite of the chelicerates
Dibasterium and Offacolus to the body wall rather than to the
protopodite noted above may be approximated in trilobites. It has
recently been argued that the exopodite of the Cambrian trilobite
Olenoides serratus attaches partly to the body wall and partly to
the limb base40. In conjunction with previous work, which
suggests that exopodite and endopodite form by the splitting of
the main leg axis5,6 and that exopodites of different arthropod
groups originate on different podomeres7, these findings reinforce
the argument that the trilobite exopodite may not be homologous
with the pancrustacean exopodite.

Our proposal that a lamellar exite is homologous in Artiopoda
and Megacheira carries a prediction that a corresponding exite is
present in other representatives of these groups, as well as in
lineages separating them in the phylogeny. Microtomography of
early-derived trilobites and stem-group chelicerates offers poten-
tial for discovering additional instances of this structure.
Palaeontological data for additional morphologies of exites add
to the emerging picture from gene expression in extant
arthropods that exites are a more pervasive source of evolutionary
novelty in appendage form than has been appreciated.

Methods
Material. Leanchoilia illecebrosa (YKLP 11424, YKLP 11093), Naraoia spinosa
(YKLP 11425): Collected from Yu’anshan Member, Chiungchussu Formation,
Eoredlichia-Wutingaspis trilobite biozone, Cambrian Series 2, Stage 3, Mafang
village, Haikou county, Kunming, Yunnan, China (24°46'20” N, 102°35'10” E).
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Leanchoilia obesa (YKLP 13323), Retifacies abnormalis (YKLP 11426, YKLP
11430): Collected from Yu’anshan Member, Chiungchussu Formation, Eoredlichia-
Wutingaspis trilobite biozone, Cambrian Series 2, Stage 3, Ercaicun village, Haikou
county, Kunming, Yunnan, China (24°47’ N, 102°34’ E).

Microscopic observation and documentation. Fossils were observed and prepared
under a Leica M205 microscope. Macrophotography shown in Supplementary Figs. 1,
7, and 9 was first undertaken using a digital camera (Olympus E-20P) linked to a
microscope Leica MZ12, and, for higher resolution, repeated with a Canon EOS 5DSR
camera (DS126611) coupled with a MP-E 65mm macro photo lens, illuminated with a
LEICA LED5000 MCITM. Similar results were obtained, and the higher resolution
imagery was used in this work. Images were processed with Adobe Photoshop CC 2018
and arranged into figures with Microsoft Office 2016.

Micro-computed tomography and 3D rendering. All specimens were scanned
with a Micro-X ray-CT: Xradia 520 Versa (Carl Zeiss X-ray Microscopy, Inc.,

Pleasanton, USA). Except for YKLP 13323 (Leanchoilia obesa; scanned at the
Institute of Geology and Geophysics, Chinese Academy of Sciences), all other
specimens were scanned at the Yunnan Key Laboratory for Palaeobiology, Institute
of Palaeontology, Yunnan University, Kunming, China.

Scanning parameters are as follow: Leanchoilia illecebrosa (YKLP 11424): Beam
strength: 50 kV/4wW, no Filter, Resolution: 8.92 µm, Number of TIFF images: 2558.
Leanchoilia illecebrosa (YKLP 11093): Beam strength: 50 kV/4W, no Filter,
Resolution: 9.90 µm, Number of TIFF images: 3390. Leanchoilia obesa (YKLP 13323):
Beam strength: 70 kV/6W, no Filter, Resolution: 9.99 µm, Number of TIFF images:
2030. Naraoia spinosa (YKLP 11425): (1) For the entire specimen: Beam strength: 60
kV/5W, no Filter, Resolution: 11.87 µm, Number of TIFF images: 1974; (2) For the
appendages: Beam strength: 70 kV/6W, no Filter, Resolution: 6.22 µm, Number of
TIFF images: 2362. Retifacies abnormalis (YKLP 11426): (1) For the entire specimen:
Beam strength: 60 kV/5W, Filter: LE4, Resolution: 27.45 µm, Number of TIFF
images: 2534; (2) For the appendages: Beam strength: 60 kV/5W, no Filter,
Resolution: 17.01 µm, Number of TIFF images: 3864. Retifacies abnormalis (YKLP
11430): Beam strength: 70 kV/6W, Filter: LE4, Resolution: 17.39 µm, Number of TIFF

Fig. 2 Computed tomographic images showing exite-bearing appendages. a Leanchoilia obesa (YKLP 13323). b Naraoia spinosa (YKLP 11425). c Retifacies
abnormalis (YKLP 11426). Each appendage is shown at different angles to demonstrate the endopodite (en), the exopodite (ex) and the exite consisting of
one basal flap (red arrow) and several additional ones (white arrows). Blue arrows point to the attachment of the exite. Individual scale bars provided. An,
head appendage n; l, left; r, right; Tn, trunk appendage n. CT images of the entire specimens are available in Supplementary Fig. 8.
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images: 1014. All TIFF images were imported into the software Drishti (Version 2.4)
to generate 3D models and enable digital dissections of various structures. Images
were captured with the same software, processed with Adobe Photoshop CC 2018,
and arranged into figures with Microsoft Office 2016. 3D reconstructions shown in
Fig. 3 were produced in Blender 2.90.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the article. The raw CT data generated in this study have been deposited in Zenodo (open
access) [https://doi.org/10.5281/zenodo.4782778].

Received: 1 April 2021; Accepted: 14 July 2021;
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Supplementary Fig. 1 Light photographs of the specimens studied. a
Leanchoilia illecebrosa (YKLP 11424). b Leanchoilia illecebrosa (YKLP 11093,
horizontally flipped). c Leanchoilia obesa (YKLP 13323). d Naraoia spinosa
(YKLP 11425). e Retifacies abnormalis (YKLP 11426). Individual scale bars
provided. An, cephalic appendage n; cs, cephalic shield; ga, great appendage;
l, left; r, right; rs, rostrum; te, telson; tsn, trunk segment n; Tn, trunk appendage
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Supplementary Fig. 2 Computed tomographic images of YKLP 11424 showing the entire body and all dissected appendages of
Leanchoilia illecebrosa. a CT images showing the dorsal and ventral sides of YKLP 11424. b Digitally dissected cephalic appendages.
c Dissected trunk appendages. Individual scale bars provided. An, head appendage n; l, left; r, right; rs, rostrum; ga, great appendage;
Tn, trunk appendage n.
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Supplementary Fig. 3 Computed tomographic images showing different angles of
the dissected biramous appendages in the head of Leanchoilia illecebrosa (YKLP
11424). a-d Horizontally flipped images of the biramous appendages shown in
Supplementary Fig. 2b. Viewed from the ventral side of the animal. a’-d’ 45°rotation of
a-d. a”-d” 45°rotation of a’-d’. a”’-d”’ appendages viewed from their tips. Note that
exite is not observed on cephalic appendages 2 and 3 (rA2, rA3) but is poorly
preserved on the two subsequent ones (rA4, rA5). Individual scale bars provided. An,
cephalic appendage n; en, endopodite; ex, exopodite; r, right.
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Supplementary Fig. 4 Computed tomographic images showing different angles of the dissected biramous
appendages in the trunk of Leanchoilia illecebrosa (YKLP 11424). a-i Horizontally flipped images of the biramous
appendages shown in Supplementary Fig. 2c. Viewed from the ventral side of the animal. a’-i’ 45°rotation of a-i. a”-i”
45°rotation of a’-i’. a”’-i”’ appendages viewed from their tips. Note the poorly-preserved exite in trunk appendages 1-4 (rT1–
rT4). A well-preserved exite with one basal flap (red arrow) and several additional flaps (white arrows) are observed in trunk
appendages 5-9 (rT5–rT9). Individual scale bars provided. An, cephalic appendage n; en, endopodite; ex, exopodite; r, right.
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Supplementary Fig. 5 Computed tomographic images of YKLP 11093 showing
selected appendages of Leanchoilia illecebrosa. a Lateral side of the animal. b–f
Digitally dissected biramous appendages from the head (A2–A5) and the first trunk
segment (T1). b’, c’ 180-degree rotation of b and c, showing the other side of A2 and
A3, respectively. d’–f’ A4, A5 and T1 with their exopodite partly removed, exposing
the complete exite. Note the absence of an exite in cephalic appendages 2 and 3
(A2, A3). A well-preserved exite with one basal flap (red arrow) is preserved in A4, A5
and T1, and several additional flaps (white arrows) are preserved in T1. Blue arrows
point to the attachment of the exite. Individual scale bars provided. An, cephalic
appendage n; en, endopodite; ex, exopodite; ey, eye; ga, great appendage; pro,
protopodite; rs, rostrum; Tn, trunk appendage n; tsn, trunk segment n. All images are
horizontally flipped.



en

A4
a

c

b A5

en

en

T1

90° 180° 270° 340°

en en

pro

en

pro

en

pro

ex

45°

en

0°

en

en

pro

pro

en

pro

en

en

en

en
en

pro

pro

en

pro

en

pro
pro

ex ex
ex

ex
ex

ex ex
ex

ex ex ex

ex
ex

ex

ex

exex

1 mm

1 mm

1 mm

Supplementary Fig. 6 Computed tomographic images of YKLP 11093 showing selected exite-bearing
appendages of Leanchoilia illecebrosa. a–c Comparable angles of A4, A5 and T1 showing the folding of
exopodite along the hinge between the exopodite and the endopodite. Note that the exite is attached to the
limb at a more proximal position than the exopodite (45 degrees and 90 degrees). Individual scale bars
provided. An, cephalic appendage n; en, endopodite; ex, exopodite; pro, protopodite. All images are
horizontally flipped.
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Supplementary Fig. 7 Light microscopic images showing proximal exites (asterisks)
on the appendages of Leanchoilia illecebrosa. a–c YKLP10938, d, e YKLP11089.
Individual scale bars provided. An, head appendage n; cs, cephalic shield; ga, great
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Supplementary Fig. 8 Computed tomographic images showing the ventral side of the studied specimens. a Leanchoilia
obesa (YKLP 13323). b Naraoia spinosa (YKLP 11425). c Retifacies abnormalis (YKLP 11426). Red arrows point to the dissected
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Supplementary Fig. 9 Computed tomographic images showing dissected appendages of Retifacies
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Specimen YKLP 11430. d Ventral side of the head region of YKLP 11430. e Dissected appendage showing
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Supplementary Fig. 10 Computed tomographic images showing digitally dissected elements of
the appendages. Endopodite (yellow), exopodite (blue), protopodite (pink) and exites (red) of
Leanchoilia illecebrosa (a), L. obesa (b), Naraoia spinosa (c), and Retifacies abnormalis (d). Not to
scale.


