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ABSTRACT  

 

Vascular health plays a major role in several human disorders, particularly in 

cardiovascular diseases (CVD) (1,2). The endothelium can be considered an organ that 

regulates vascular homeostasis by maintaining an appropriate vascular tone, platelet activity, 

leukocyte adhesion and angiogenesis. When one or more of these components is compromised 

due to impaired endothelial vascular signalling, endothelial dysfunction (ED) may occur (1). 

One of the main key metabolic manifestations of ED is reduced nitric oxide (NO) 

bioavailability. NO is an important signalling molecule that regulates various vascular 

processes, including through its main role as a vasodilator, acting through relaxation of smooth 

muscle cells (2,3). Impaired bioavailability of NO and up-regulation of various molecules 

involved in vascular function are partly explained by the cooperative and synergistic action of 

inflammation and oxidative stress on ED (4–6). This is particularly evident in older adults, as 

several studies support a new immune-metabolic viewpoint for age-related diseases, termed 

“inflammaging” which is characterized by a chronic low-grade inflammation (7). Thus, 

interventions aiming to regulate the immune response and to prevent the accumulation of 

deleterious reactive species, have been considered to be a relevant therapeutic target to improve 

vascular health (8). 

Nutrition plays a major role in regulating the inflammatory state and enhancing 

endogenous antioxidant defences (9). Many dietary patterns have been associated with the 

prevention of diseases associated with inflammation in epidemiological studies (10), while at 

the same time a large range of dietary interventions have been explored in clinical practice to 

treat pathological conditions such as ED (11). Flavonoids, a class of dietary polyphenols, are 

bioactive compounds that have potential to both prevent and treat conditions related to a pro-

inflammatory and oxidative stress state (12,13). Meta-analysis of controlled trials and cohort 
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studies demonstrate a protective effect of flavonoid intake on CVD (14–18), particularly on 

hypertension (19,20). Anthocyanins, a subclass of flavonoids, are emerging as a potential 

therapeutic option for CVD risk factors (21). Anthocyanins are the largest class of water-

soluble plant pigments, that are responsible for the blue, purple and red colour of many fruits 

and vegetables, such as blueberries, blackberries, red grapes, plums and eggplants (22). The 

beneficial effects of anthocyanins on CVD risk factors are related to their antioxidant and 

immunomodulatory effects, thereby attenuating the synergistic deleterious effects of oxidative 

stress and inflammation in CVD (21,23). In humans, anthocyanin intake has been shown to be 

associated with a lower risk of cardiovascular events (24,25). Intervention studies using 

anthocyanins have demonstrated improvements in vascular function (26) and biomarkers 

related to oxidative stress (27–30),  as well as antioxidant status (28,30–32), lipid profile (33–

35) and inflammatory response (36,37) in both long-term and acute designs. 

Despite these promising findings, there are still several gaps in the literature regarding 

the potential health benefits of flavonoids and anthocyanins. At the epidemiological level, a 

few populations have been investigated in appropriate large-scale studies. Epidemiological 

studies require a specific approach to quantify flavonoid content in foods due to significant 

variation between crops grown in different geographic areas, as well as consideration of the 

variety of diet patterns, both within and between countries. At the clinical level, a number of 

studies have investigated the potential effect of anthocyanins in attenuating and preventing 

pathological conditions. The immediate effect of anthocyanins in the postprandial state has 

been evaluated in several studies using a high-fat high-energy meal challenge. Acute feeding 

studies allow investigation of the ability of these bioactive compounds to attenuate the 

deleterious effects following a stressor meal; however, the findings have not been adequately 

collated to facilitate translation into dietary guidance. Such studies have not included a robust 

investigation of sensitive measures of vascular function in the postprandial state, which along 
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with the immune response are important predictors of CVD. Additionally, there are still several 

gaps to be addressed regarding the effect of anthocyanins on vascular health and inflammation 

in older adults, especially among those with neurodegenerative conditions, such as mild 

cognitive impairment (MCI), which share risk factors with CVD. 

This thesis addresses the following research questions:  

1. Is dietary intake of flavonoids, including anthocyanins, associated with the 

incidence of hypertension in Australian women? 

2. What is the current level of evidence on the postprandial effects of anthocyanins on 

CVD risk factors in high-fat high energy (HFHE) meal challenge studies? 

3. What are the post-prandial effects of anthocyanins on micro- and vascular function, 

and other CVD risk factors in overweight older adults following a HFHE challenge? 

4. What are the chronic effects of anthocyanins on microvascular function, 

inflammatory biomarkers and 24 h ambulatory blood pressure in older adults with 

diagnosis of MCI? 

 

Four studies were conducted to address these research questions. At the 

epidemiological level, nationally representative cohort study data was used to estimate the total 

dietary intake of flavonoids and their subclasses in Australian women. This provided novel 

data that demonstrated an association between flavonoids subclasses with a lower risk of 

hypertension in Australian women. This contributes to the body of evidence that informs 

nutrition messaging and policies for improved cardiovascular health in this population. 

At the clinical level, knowledge synthesis was conducted using a systematic literature 

review approach to collate information on the postprandial effects of anthocyanins on CVD 

risk factors in high-fat meal challenge studies. A total of 13 eligible randomized clinical trials 

reported beneficial effects of anthocyanins, with most the promising results evident for the 
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attenuation of deleterious postprandial effects on oxidative stress and antioxidant status, 

triacylglycerol and total cholesterol concentrations, vascular endothelial function and 

inflammatory biomarkers. Post-prandial changes in blood pressure and lipoproteins were least 

affected by acute anthocyanin consumption.   

A randomised crossover, placebo controlled clinical trial was subsequently designed to 

investigate the postprandial effects of anthocyanins following a HFHE meal challenge, but 

using a novel and robust evaluation of vascular function, namely macro and microvascular 

parameters.  Methodologies combined both classical techniques (flow-mediated dilatation 

(FMD) with the novel imaging technology Laser Speckle Contrast Imaging (LSCI). To our 

knowledge, this is the first study to conduct this type of protocol in studies of nutritional 

interventions. Fruit-based anthocyanins attenuated the postprandial detrimental effects of a 

HFHE challenge on parameters of vascular and microvascular function, and inflammatory 

biomarkers in 16 overweight older adults. 

A second randomised, placebo controlled clinical trial was conducted to investigate the 

longer term effects (8 weeks) of two different doses of anthocyanins provided by Queen Garnet 

plum on inflammatory markers associated with CVD risk factors, along with analysis of 

microvascular function and 24-hour ABP. The innovative aim of this study was to investigate 

such parameters in an older population diagnosed with mild cognitive impairment (MCI), a 

neurodegenerative condition that shares pathological mechanisms with CVD. A daily high dose 

(201 mg/day) of fruit-based anthocyanins consumed for 8 weeks significantly reduced tumour 

necrosis alpha (TNF-α), but did not alter interleulin-6 (IL-6), interleukin-1 beta (IL-1β), high- 

sensitivity C-reactive protein (hs-CRP), microvascular function nor blood pressure parameters. 

No effects were observed in the low dose (45mg/day) group. 
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This body of research contributes novel data on the role of flavonoids, and specifically 

anthocyanins, on vascular function, inflammation and CVD risk across various levels of 

evidence, including: 

• Epidemiological evidence: analytical work conducted in national representative 

cohort of Australian women. 

• Knowledge synthesis: systematic literature review. 

• Experimental evidence: Two randomised controlled clinical trials with 

innovative design that allows interpretation of both acute and chronic effects of 

anthocyanin intake. 
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CHAPTER 1: Introduction 

1.1 Vascular function and cardiovascular diseases 

 

The health of the vascular system plays a major role in several human disorders, 

particularly in CVD (1,2). CVD is a major cause of mortality globally and is the leading cause 

of death for Australian men and women, responsible for over 43,500 deaths (27%) in the year 

2017 (38). Following a pattern that is also similar worldwide, about 1 in 3 Australians aged 18 

years and over (34%) have high blood pressure, comprised of 23% adults with uncontrolled 

high blood pressure and 11% whose blood pressure was controlled using medication (39).  

A common characteristic among CVDs is the alteration of vascular function and/or 

structure. The endothelium, which is comprised of cells that line the internal surface of the 

lumen of blood vessels, is an organ that regulates vascular homeostasis by maintaining an 

appropriate vascular tone, platelet activity, leukocyte adhesion and angiogenesis through the 

controlled release of mediators such as NO and other regulatory factors (3,40). When one or 

more of these components becomes dysregulated due to impaired endothelial vascular 

signalling, a pathological state named endothelial dysfunction (ED) occurs. In the case of ED, 

there is attenuated vasodilation, augmented vasoconstriction, and remodelling of the vessel 

structure that occurs simultaneously in multiple vascular beds (3,41).  

 Determining the aetiology of ED is complex issue, as this condition shares causes and 

outcomes with several other diseases. For example, classical CVD risk factors such as smoking, 

high blood pressure, obesity, dyslipidaemia and glucose intolerance are associated with the 

occurrence of ED (1,40). Furthermore, because the degeneration of vascular beds occurs over 

time, ageing is an independent risk factor for ED (42). After ED manifests, it worsens the 

clinical status in people who have pre-existing diseases such as diabetes, peripheral vascular 

diseases, stroke and other vascular events, hypertension and atherosclerosis (1,2). In CVD for 
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instance, ED is involved in its pathogenesis by increasing its coexistent risk factors, correlating 

with disease progression and predicting cardiovascular events (43–47). 

One of the main key metabolic manifestations of ED is the partial functional loss of 

endothelial-derived vasodilators, such as NO, in which an aberrant accumulation of reactive 

oxygen species (ROS) is one of the leading causes (3).  The bioavailability of NO depends on 

its proper synthesis, which involves the enzyme nitric oxide synthase (NOS). NOS is a family 

of enzymes that catalyse a complex reaction involving L-arginine, NADPH, H+ and O2 into 

citrullline, H2O, NADP and NO, besides other cofactors. Endothelial production of nitric oxide 

synthase (eNOS) is key to the maintenance of vascular health. In a state of exacerbated 

oxidative stress, several intracellular interactions may occur in the endothelium, resulting in a 

phenomenon called “eNOS uncoupling”. This attenuated and/or altered activity of the enzyme 

leads to a switch from the generation of NO to the generation of superoxide anions and 

hydrogen peroxide, thus creating a vicious cycle in regard to the production of ROS and down-

regulation of eNOS (5,48). The outcome of this process is an endothelial phenotype consisting 

of arterial stiffness, altered vasomotion, increased cytokine synthesis, chemokine secretion, 

leucocyte adherence, LDL oxidation, platelet activation, smooth cell proliferation and 

migration and up-regulation of adhesion molecules. This dysregulation in eNOS signalling and 

remodelling of vasculature are the earliest pathological findings in atherosclerosis, a first step 

to CVD development(49,50). 

 

1.2 Inflammation and oxidative stress: Implications for vascular health 

and cardiovascular diseases 

 

Despite the development of successful treatments for dyslipidaemia and hypertension, 

and knowledge of well-established risk factors, CVD still accounts for one third of all deaths 
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worldwide. The multifactorial background makes it difficult to detect initial pathological 

events, which are usually subclinical during the early phase of disease (51). Oxidative stress 

and inflammation are known to contribute to endothelial dysfunction and vascular damage, and 

their roles in the pathophysiology of hypertension and atherosclerosis are now well accepted 

(52,53). 

Inflammation is a complex series of coordinated events regulated by a diverse number 

of features of the immune system including cytokines, enzymes, lipid mediators and vasoactive 

mediators. In non-diseased conditions, inflammatory responses are resolved when pro-

inflammatory factors are no longer active, resulting in maintenance of a highly active and well-

regulated balanced state. However, in certain conditions, inflammation may not be completely 

resolved, resulting in persistent and low intensity stimulation that produces continuous 

inflammatory responses (54,55). This sustained pro-inflammatory state, also called low-grade 

inflammation, can enhance ED (55). ED is an early marker and one of most predominant risk 

factors in the development of atherosclerosis and can be detected before any structural change 

affects the vessel walls (3,40,56). 

The traditional view is that atherosclerosis represents a consequence of lipid 

accumulation as a degenerative process associated with ageing, where cholesterol is 

indisputably recognized as an environmental and genetic driver of the disease. However, this 

does not explain the entire pathophysiological process. Robust evidence shows that 

inflammation participates centrally in all stages of the disease, from initial lesions to end-stage 

thrombotic complications, and current research is addressing questions about which 

inflammatory mechanisms are involved, as well as identification of therapeutic interventions 

(53,57,58). As the endothelium progresses to a dysfunctional state, anti-thrombotic properties 

and endothelial permeability are impaired, along with upregulation of pro-inflammatory 

cytokines and expression of adhesion molecules, thereby facilitating leukocyte adhesion to the 
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endothelium. Subsequently, leukocytes cross the endothelium and migrate into the intima, 

mediated by chemo-attractants. Upon reaching the intima, monocytes transform into 

macrophages and express receptors that facilitate uptake of lipids, leading to the transformation 

into foam cells, which initiate an atherosclerotic lesion (59,60). 

In addition to the more specific vascular inflammatory process described above, which 

involve several mediators such as vascular adhesion molecules (intercellular adhesion 

molecule 1 and vascular adhesion molecule 1), proteases (plasminogen activator inhibitor-1 

and metalloproteinases), endothelins, chemokines (monocyte chemo-attractant protein-1) and 

others, the role of peripheral inflammatory biomarkers such as C-reactive protein (CRP), 

tumour necrosis alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1β) have been 

associated with an increased CVD risk (55,61,62).  This is particularly evident in older adults, 

as several studies support a new immune-metabolic viewpoint for age-related diseases, termed 

“inflammaging”, which is characterized by a chronic, low-grade inflammatory response in the 

absence of a pathogen (7). Additionally, excessive adiposity across all ages is associated with 

an up-regulation of a pro-inflammatory state, as the accumulation of adipose tissue mass 

promotes the secretion and release of inflammatory mediators, including C-reactive protein 

(CRP), interleukin-6 (IL-6), interleukin 1 beta (IL-1β) and tumour necrosis factor alpha (TNF-

α) (63,64). This process also leads to chronic low-grade inflammation that is driven by a 

nutrient excess and/or overnutrition and has the same mechanisms as those underpinning 

“inflammaging” (7).  

CRP has emerged as a major marker of vascular inflammation, playing a direct role in 

promoting ED (65,66) and the development of CVD (67,68). CRP is an acute-phase reactant 

considered to be a reliable biomarker of underlying systemic inflammation due its long half-

life and clinically-available bioassay (53). Although CRP levels may increase up to 1000-fold 

in response to trauma or relevant infections, levels are remarkably stable over long periods of 
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time when measured in asymptomatic individuals, and a high-normal range concentration of 

CRP has been identified as an independent predictor of future vascular events (55). Increasing 

evidence suggests that CRP directly participates in the inflammatory process of atherogenesis, 

with a high expression in the atherosclerotic plaque and an important role in plaque 

vulnerability (69). In a study of 302 autopsies of an atherosclerosis phenotype, it was found 

that the lowest high-sensitivity c-reactive protein (hs-CRP) concentrations were observed in 

those who had died of non-cardiac causes (70). Stable plaques showed a modest elevation, 

while erosive plaques showed a greater elevation, and a marked elevation in hs-CRP was seen 

in ruptured plaques. The highest quartile of hs-CRP concentration was associated with a 1.5 to 

1.7-fold increase in relative risk of symptomatic atherosclerosis. In all cases of sudden cardiac 

death, high concentrations of hs-CRP were identified, regardless of the presence or absence of 

thrombosis, suggesting that hs-CRP identifies lesions rich in lipids and macrophages, and that 

it is associated with a risk of a vascular event, even in patients with clinically stable coronary 

heart disease (70).   

CRP levels may be useful for short-term prognosis and long-term risk assessment after 

a cardiovascular event (69). Therefore, several studies have investigated associations between 

CRP levels and the risk of a wide range of CVD events. A number of studies have investigated 

the predictive role of CRP in myocardial infarction (MI).The Honolulu Heart Study found that 

the odds of MI increased in the first few years of follow-up in participants with high CRP 

concentrations, and that trend was similar after 20 years of follow-up, showing that 

inflammation may play both an early and late role in the atherosclerotic process (71). In another 

study, among 1,086 men followed up for over 8 years, those with the highest quartile of hs-

CRP had a 2.9-fold greater relative risk for MI (p < 0.001) and 1.9-fold greater relative risk for 

stroke (p = 0.02) compared to men in the lowest quartile, that was independent of traditional 

cardiovascular risk factors (72). Another study conducted in 82,544 adults [66,796 men and 
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15,748 women; mean (SD) age 55.1 (9.86) y] without prior cardiovascular diseases or cancer 

at baseline reported 714 incident MI cases over 6 years of follow-up (61). Higher baseline and 

cumulative average concentrations of hs-CRP were consistently associated with increased risk 

of MI (p<0.001 for both).  A longitudinal increase in hs-CRP was also associated with a higher 

future risk of MI, after adjustment for baseline values and other covariates (p<0.001). Each 

1mg/L increment per year in hs-CRP was associated with a 9.3% increase in risk for future MI 

[hazard ratio (HR) = 1.09, 95% CI, 1.03; 1.17]. Participants with high-grade inflammatory 

status (hs-CRP ≥10 mg/L) had a higher risk of MI occurring <3 months versus those compared 

with those that had hs-CRP concentrations <0.5 mg/L (HR = 6.64; 95% CI, 1.49-29.6), and 

with MI occurring ≥4 years (HR = 2.95; 95% CI, 0.90, 9.65) (61). A meta-analysis investigated 

the ability of CRP to predict major cardiovascular events in 5401 individuals with peripheral 

arterial disease (PAD). PAD patients with higher CRP had a significantly higher risk of major 

cardiovascular events compared with those with lower CRP concentrations (HR 2.26, 95% CI 

1.65 to 3.09, p < 0.001). The HR for major cardiovascular events was 1.38 (95% CI 1.16 to1.63, 

p < 0.001) per unit increase in CRP concentration (73). Concerning coronary heart disease 

(CHD), a meta-analysis was conducted presenting a body of evidence of good quality, 

consistency, and applicability. For studies that adjusted for all Framingham risk variables, the 

relative risk for incident CHD was 1.58 (95% CI, 1.37 to 1.83) for CRP levels greater than 3.0 

mg/L compared with levels less than 1.0 mg/L(74).  

TNF-α is a cytokine with a wide range of pro-inflammatory activities and is primarily 

produced by macrophages, endothelial cells, and smooth muscle cells of atherosclerotic arteries 

(75). TNF-α may influence the atherosclerotic process both by causing metabolic perturbations 

and by increasing the expression of surface leukocyte adhesion molecules, chemokines and 

enhancing the production of other cytokines and growth factors. TNF-α also stimulates new 

vessel formation and induces features characteristic of developing atheroma. High 
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concentrations of TNF-α have been associated with premature coronary artery disease, acute 

MI, peripheral arterial disease, and congestive heart failure (75). Concerning the predictive role 

of TNF-α in CVD, a case-cohort study comprising 105 coronary artery disease (CAD) cases 

and 638 individuals randomly selected from a cohort of 5,404 participants aged 35–74 years 

(mean follow-up of 6.1 years) reported that TNF-α was significantly and independently 

associated with CAD (adjusted HRs=1.87;1.31–2.66) (75). Furthermore, there is evidence from 

a large-scale prospective cohort study (2225 participants aged 70-79 years old without baseline 

CVD) that were assessed for incident coronary heart disease, stroke and congestive heart failure 

events during an average follow-up of 3.6 years. TNF-α was significantly associated with CHD 

(per TNF-α SD increase: RR, 1.22; 95% CI, 1.04-1.43) and congestive heart failure (per TNF-

α SD increase: RR, 1.59; 95% CI, 1.30 to 1.95) (76).  

IL-6 is a pleiotropic cytokine with both anti and pro-inflammatory roles that regulates 

a plethora of immune and metabolic responses; however, high concentrations of this cytokine 

have been associated with CVD and mortality (76,77). IL-6 is highly expressed by the vascular 

endothelium and the pharmacological inhibition of IL-6 improves endothelial function (78) 

Such findings are clinically meaningful considering the predictive roles of IL-6 concentrations 

in CVD risk supported by a number of studies. Hazard ratios of 1.80 have been reported 

according to each 1-SD increase in IL-6 for risk of first-ever cerebrovascular events in 

individuals with vascular risk factors but without any pre-existing cardiovascular disease (79). 

Further, in a meta-analysis of 17 prospective studies investigating clinical coronary outcomes 

(i.e., myocardial infarction or coronary death), an odds ratio of 1.61 (95% CI 1.42–1.83) was 

found per 2 SD increase in baseline IL-6 (80). Another meta-analysis of 17 studies comprising 

288,738 healthy individuals reported significantly higher IL-6 concentration in CVD cases 

compared to non-CVD controls [standardized mean difference of 0.14, (95% CI) 0.09- 

0.20]/mean difference of 0.36 [0.28-0.44] pg/mL) (81).  
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IL-1β also plays a central role in CVD development, representing one of the most potent 

inducers of innate immunity and acts as an upstream regulator in the inflammatory cascade 

(82). IL-1β synthesis is significantly upregulated after cardiovascular events such as 

myocardial infarction, as well as in advanced plaque formations in atherosclerotic disease, thus 

it has been investigated as a therapeutic option in secondary and tertiary prevention of CVD 

(83). Intrinsic vascular wall cells and lesional leukocytes alike can produce this cytokine. Local 

stimuli in the plaque induce the generation of active IL-1β through the action of a molecular 

assembly known as the inflammasome (84). The convincing links between IL-1β and pro-

inflammatory diseases, such as atherosclerosis, indicates this cytokine to be a potential 

therapeutic target to improve cardiovascular outcomes (84). In this matter, an anti-IL-1β 

therapy was investigated in a large randomized, double-blind, placebo-controlled trial of 

including 10,061 patients (median follow-up of 3.7y) with a history of myocardial infarction 

and CRP concentrations ≥ 2 mg/L. The treatment with canakinumab (anti-IL-1β monoclonal 

antibody) led to 15% reduction in major adverse cardiovascular events (p=0.007) (85). 

Furthermore, a meta-analysis including 6 cohort studies with 1,855 CVD cases and 18,745 non-

cases with (follow-up times between 5-16y) investigated the effect on incident CVD of  an 

Interleukin-1 receptor antagonist (IL-1RA), which counter-regulates IL-1β as an endogenous 

inhibitor in vivo by blocking the binding site for IL-1β. A pooled standardized hazard ratio 

(95% CI) for incident CVD of 1.11 (1.06–1.17) was found after adjustment for age, sex, 

anthropometric, metabolic, and lifestyle factors (P<0.0001) (82).  

Oxidative metabolism is essential for aerobic life, as nutrients provide energy through 

oxidative phosphorylation, while intermediary metabolism adds direct incorporation of oxygen 

atoms from molecular oxygen (O2) into biomolecules. Any molecules or atoms generated by 

this process containing 1 or more unpaired electrons (free radical) are highly reactive (86). This 

biological process involving generation of oxidative breakdown products can interact and lead 
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to oxidation of DNA, proteins, carbohydrates and lipids. On the other hand, the human 

metabolism has several strategies of defence against oxidative damage, such as enzymatic and 

non-enzymatic antioxidants, besides adaptive responses (87,88).  

The imbalance between oxidants and antioxidants in favour of oxidants, potentially 

leading to tissue damage and/or triggering cell death pathways, is called oxidative stress (50). 

Reactive species or free radicals include reactive oxygen and nitrogen species (RNS), which 

are also important components of intracellular signalling cascades. Thus, the deleterious 

oxidative overload in cells, organs or the entire organism is a condition that can be 

characterized not only by an aberrant quantity, but also by the quality (source) of these 

molecules, as aforementioned in the eNOS uncoupling example (5,88).  

ROS molecules include free oxygen radicals, such as superoxide, hydroxyl and peroxyl, 

as well as non-radicals, such as hydrogen peroxide. The non-radicals are either oxidizing agents 

or are easily converted into radicals. RNS are molecules containing nitrogen such as NO, 

peroxynitrite, and nitrogen dioxide. The source of these molecules may be from by-products 

of endogenous compounds or xenobiotics through mechanisms, such as the electron transport 

chain, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, xanthine oxidase 

(XO), metabolism of the arachidonic acid and cytochrome P-450 (89,90).  

 In a normal physiological state, a sufficient supply of antioxidants is provided during 

metabolic processes, as well from dietary sources, that neutralizes harmful activity of reactive 

species. However, several factors can increase the concentration of such harmful molecules by 

depleting antioxidant defences leading to oxidative stress. These include smoking, sleep 

deprivation, acute microbial infections, being overweight, high sugar and/or fat intake, and 

exposure to metals and air pollutants (5,87). Oxidative stress can lead to injury of the 

endothelium and impairment of NO bioavailability, as well as reduce other functions, such as 
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regulation of blood clotting, local immune responses, control of the fluid volume and 

transportation of electrolytes and other substances between blood vessels and tissues (1,91).  

The immune response plays a major role in ED pathogenesis and also acts directly in 

oxidative balance. Myeloid cells and T lymphocytes protect the host organism from pathogens 

by attacking with bursts of ROS. While these ROS may help to preserve the vascular tone, an 

aberrant production of ROS triggered by immune cells in the absence of any hemodynamic 

insult can lead to damage to the endothelium. Nonetheless, an oxidative stressed state in 

cardiovascular control organs may likewise potentiate inflammatory responses and augment 

ED. Therefore, inflammation and oxidative stress act as cooperative and synergistic partners 

in the pathogenesis of ED (4,5).  

 

1.3 Assessment of vascular and microvascular function 

 

There is increased interest in methods to assess ED to better understand the 

pathogenesis of CVD and other diseases. With the simultaneous advance of knowledge and 

technology in this field, there are already many non-invasive options available in both clinical 

practice and research. Traditional techniques, such as flow-mediated vasodilation (FMD), 

pulse wave velocity (PWV), and carotid intima media thickness are highly correlated with 

cardiovascular outcomes and are useful to track disease progression and assess the efficacy of 

therapeutic interventions in overall vascular health (11). The CVD risk prediction of FMD was 

addressed in a meta-analysis of 23 studies that included 14,753 subjects finding an overall 8 % 

reduction in CVD risk (RR= 0.92; 95%CI: 0.88; 0.95) for each percentage increase in FMD 

(92). However, these methods evaluate conduit artery function, therefore providing limited 

information with regard to mechanisms of systemic microvascular physiopathology.  
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The microcirculation comprises arteries with low resistance, arterioles, capillaries, and 

venules. While the capillary network acts on nutrient and gas exchanges between blood and 

tissues, arterioles play a major role in blood flow regulation by mechanisms including arteriolar 

myogenic response, flow-induced vasodilation, metabolic and neural mediators (93). These 

mechanisms, as well as pathological processes that might affect them are evident in the 

cutaneous microcirculation and can represent ED features and mechanisms upon other vascular 

beds. Therefore, considering that the skin is readily accessible, several imaging techniques have 

been developed in order to use cutaneous microcirculation to investigate the mechanisms of 

systemic microcirculatory function and dysfunction in various diseases (94,95).  

 The first imaging techniques for this purpose were developed using Laser Doppler 

technology. Laser Doppler flowmetry (LDF) assesses blood flow over a small volume (< 

1mm3) and detects and quantifies relative changes in skin blood flow in response to a given 

stimulus. However, this technique presents a relatively poor reproducibility due to the 

significant spatial variability by a heterogenic capture of skin perfusion. Laser Doppler Imaging 

(LDI), the subsequent developed technology, decreased this spatial variability drawback, but it 

is much slower than LDF, thereby, recording rapid changes in skin blood flow over the larger 

areas becomes particularly challenging (95,96). Laser Speckle Contrast Imaging (LSCI) is a 

recent technique based on speckle contrast analysis that provides an index of blood flow. LSCI 

supports a continuous rate of high frame assessment of skin perfusion over wide areas, 

combining advantages of LDF and LDI, and thereby providing good reproducibility of tests 

such as the post-occlusive reactive hyperaemia (PORH) and local thermal heating (LTH) 

challenges (97,98). 

Microvascular reactivity is assessed by stimulating microvessels with various 

physiological or pharmacological challenges. The most common tests that are used in 
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combination with imaging techniques are iontophoresis of vasoactive drugs, such as 

acetylcholine and sodium nitroprusside, PORH and thermal challenges, such as LTH (93). 

Iontophoresis is a non-invasive method of transdermal delivery of drugs based on the 

transfer of charged molecules using electric currents. Acetylcholine and sodium nitroprusside 

iontophoresis have been widely used to assess endothelial-dependent and -independent 

microvascular vasodilation, respectively (95,99). Exact proportions of mechanisms that are 

predominant in the acetylcholine-induced vasodilation are still not clear; however, C-fiber 

(axon reflexes), COX-dependent pathways and NO contribute to this response. In addition, 

endothelial-derived hyperpolarization also contributes to acetylcholine-mediated vasodilation 

in a dose dependent manner (100). In order to avoid non-specific vasodilatory effects, one 

group of researchers reviewed several protocols of iontophoresis of acetylcholine and sodium 

nitroprusside, showing that the type of diluent used for each vasoactive agent, intensity of 

current and the method of electrical current delivery are important to maintain good 

reproducibility (101).  

 PORH is a microvascular reactivity test commonly conducted in the forearm when a 

transient increase in cutaneous blood flow occurs following release of a brief occlusion in the 

brachial artery. There is still no standardized protocol for this test; however, most studies use 

a method in which a cuff, placed above the antecubital fossa, is inflated 50-60mmHg above 

systolic pressure for 2-5 minutes (93). The mechanisms involved in this induced vasodilation 

are still being elucidated, with some studies showing inconsistent results. Many mediators seem 

to contribute to PORH vasodilation and although most of these responses are endothelial-

dependent, NO and COX pathways appear not to exert significant influence (102,103). The 

major contributors to peak and time course of this microvascular reactivity are sensory nerves 

through an axon reflex response (96). The endothelium-derived hyperpolarizing factors 

(EDHF) are also involved, including activity of large-conductance calcium activated potassium 
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channels (BKCa) by epoxyeicosatrienoic acids (95,104). In addition to the abovementioned 

endothelial challenges that allow the evaluation of specific mechanisms, the postprandial state 

is a condition that presents a particular modulation of endothelial function.  

There is emerging evidence that metabolic imbalances in the postprandial state, 

particularly after a high-energy meal rich in fat, are important contributing factors to 

development of CVD (105,106). Overall, the underlying mechanism involves a sharp increase 

in triacylglycerol along with an aberrant production of pro-oxidant molecules leading to an 

oxidative stress state. This may impair vascular and endothelial functions, and mediate the 

onset of an inflammatory response, which further contributes to the generation of more free 

radicals, thus creating a deleterious vicious cycle (105–107). Dietary fats comprise 

heterogeneous molecules with diverse structures, which affect diverse cell processes such as 

transcription regulation, cellular and organelle membrane structure and function, ion channel 

activity and electrophysiology. Responses vary depending on both the fatty acid composition 

of the food source, as well interactions with accompanying nutrients, the food matrix and 

process (108). Modification of the type of dietary fat in a food or overall meal has been shown 

to result in postprandial effects on appetite (109), lipaemia and markers for inflammation and 

endothelial activity (110). 

The high-fat meal (HFM) challenge is one way to investigate the imbalances that are 

promoted on a daily basis in Western diets (105). Considering that a significant part of the day, 

usually two thirds of day time, is spent in the postprandial state, this is an important focus for 

therapeutic investigations. Further details of this type of study and its implications in CVD are 

provided in Chapter 3 of this thesis. 

Taken together, the assessment of macro and microvascular function, including 

techniques that evaluate structural changes in these vascular beds, such as FMD and PORH 

combined with LSCI technology, along with evaluation of biomarkers related to the immune 
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response and oxidative stress, provide reliable information to investigate prediction, severity 

and responsiveness of treatment of several diseases, in particular CVD. Using these methods, 

a wide range of dietary interventions can be explored as potential therapeutic options. 

 

1.4 Flavonoids and implication on cardiovascular diseases 

Diet is one of the most important factors in modulating metabolic and immune 

responses by its direct effect on bioenergetics, body weight, gut microbiota and many other 

systemic body regulation mechanisms. Among different dietary components, polyphenols are 

bioactive compounds that naturally occur in various fruits, vegetables, cereals and beverages. 

They partly contribute to the bitterness, astringency, colour, flavour, odour and oxidative 

stability of such foods (111). Among the vast number of phenolic compounds, the most 

common and widely distributed class are flavonoids, present virtually present in all plants. In 

foods, flavonoids occur as aglycones, methylated derivatives and mostly as glycosides, also 

providing prevention of fat oxidation and protection of vitamins and enzymes. There are more 

than 9,000 flavonoids present in nature with different physical, chemical and physiological 

properties, characteristics that delineate their biological activities. They are found in subclasses 

such as flavanols, flavonols, flavanones, flavones, isoflavones and anthocyanins(112).  

 Dietary intake of flavonoids have been associated with the prevention and incidence of 

several diseases in epidemiological studies. Dietary flavonoid interventions have been  

explored in clinical trials to treat pathological conditions, such as ED (12,13). In the 

endothelium, dietary flavonoids can exert physiological effects as both antioxidant and as 

signalling molecules.  The antioxidant activity is due to their ability to donate hydrogen, bind 

metal ions, resonance stabilization of phenoxyl radicals, thereby acting as reducing agents, 

metal chelators, ROS scavengers, chain-breaking antioxidants, quenchers of singlet oxygen 

formation and protectors of endogenous ascorbic acid. The signalling properties of flavonoids 
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are attributed to interactions with enzymes, kinases and cellular receptors in regulatory 

pathways mediating physiological responses or altering gene expressions (113,114). For 

instance, certain types of flavonoids can modify protein kinase-mediated signal transduction 

and up-regulate antioxidant and anti-inflammatory gene expression (115,116), as well as down-

regulate inflammatory gene expression and improve blood pressure (117).  

 The association between dietary flavonoid intake and potential health benefits in large 

studies can present methodological challenges. Besides the fact that flavonoid content in foods 

is likely to be influenced by seasonality and geographical areas, there are some relevant 

discrepancies between food composition databases with regard to flavonoid content in foods. 

Additionally, the methods used to assess dietary intake of participants are generally insensitive 

to accurately characterise flavonoid consumption (118). Nonetheless, some large prospective 

studies and pooled analyses of clinical trials show positive results in relation to total dietary 

flavonoid and certain subclasses. In a total of 2,087 fatal coronary heart disease (CHD) events 

among 7 prospective cohorts, subjects in the higher tertile of dietary flavonol intake presented 

a combined risk ratio of 0.80 in comparison to subjects in the lower tertile, after adjustment for 

disease and dietary factors. The main flavonol sources that could be extracted from these 

cohorts were from a small number of fruits and vegetables, tea and red wine (16). A meta-

analysis of ten studies investigated mortality by CVD events. The relative risk (RR) of all-

cause mortality among subjects in the higher category of total flavonoid intake was 0.82 in 

relation to subjects in the lower category intake. A trend was also found for risk of death from 

CVD (RR: 0.85 and P=0.099) and CHD (RR: 0.74 and P=0.069). A dose-response analysis 

showed that the lowest risk of all-cause mortality was lower in subjects consuming >200mg/d 

of total flavonoids (13). The effects of cocoa flavonols was analysed in a meta-analysis of 35 

studies, involving 40 treatment comparisons. This pooled analysis with moderate quality 

evidence showed a modest, but significant lowering of both systolic and diastolic blood 
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pressure of 1.8 mmHg on average (19). Furthermore, another subclass of flavonoids, quercetin, 

has also been found to be effective in lowering blood pressure; however, a meta-analysis of 7 

clinical trials only reached significance with dosages of >500mg/day (28). Another study 

evaluated the dietary intake of total flavonoids and subclasses on incidence of hypertension. In 

a prospective cohort of 40,574 healthy women, 9,350 cases of hypertension were observed 

during a follow-up of approximately 14 years. A 10% lower rate of hypertension was found in 

individuals within the higher quintile of flavonol intake when compared to the lower quintile 

[hazard ratio (HR): 0.90, p=0.031]. Proanthocyanidin and anthocyanins also showed a similar 

effect of lowering the incidence of hypertension by 9% between the highest and lowest quintile 

of consumption (HR: 0.91, P= 0.0075 and HR: 0.91, P= 0.0051, respectively)(119). In this 

matter, anthocyanins are emerging as a potential therapeutic option for CVD due to its effects 

on ED mechanisms, mainly on oxidative stress and immune response. 

 

1.5 Anthocyanins 

Anthocyanins are the largest class of water-soluble plant pigments, which are 

responsible for the blue, purple and red colour of many fruits and vegetables. Anthocyanins are 

formed by the coupling of sugars to anthocyanidins, whilst anthocyanidins are their sugar-free 

analogues. There are more than 300 known anthocyanins, but considering the different 

possibilities for their glycosylated part, this can number more than 8,000 types. The most 

common anthocyanins in foods are from six subclasses, namely cyanindin, (comprising 50% 

of anthocyanins), pelargonidin (12%), peonidin (12%), delphinidin (12%), petunidin (7%) and 

malvidin (7%). Degradation of anthocyanins in foods can occur by several food processing and 

storage factors including pH, temperature, exposure to light and oxygen or interactions with 

foods components, such as ascorbic acid, sugar and metal ions (120,121). 
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In large population studies, the estimated average intake of anthocyanins is even more 

challenging than assessing of total flavonoids due to a lack of valid and reliable data on the 

food composition of dietary sources. Nonetheless, a multi-centre investigation in Europe 

estimated the average daily intake of anthocyanins for men to be 19.83 mg and 64.88 mg in 

Holland and Italy, respectively. Among women, the results showed an average daily intake of 

18.73 mg in Spain and 44.08 mg in Italy (122). Besides the difficulties in obtaining accurate 

information on the anthocyanin content of foods and challenges with the assessment of dietary 

intake, seasonality and geographic variation also complicate such analysis. In Australia, a food 

frequency questionnaire was validated to measure flavonoid intake in older adults, and an 

Australian-specific anthocyanin food composition database for dietary studies is being 

developed (123). 

 Cell culture, animal model, human clinical trials and epidemiological studies have 

shown the potential effect of anthocyanins to improve vascular function, inflammatory 

response and other CVD risk factors (26,121,124–137). The essential feature of these benefits 

refers to the major role of anthocyanins modulating the immune response. A large number of 

in vitro and animal studies (121,127,138–140) explain the mechanisms related to the anti-

inflammatory actions of anthocyanins. These include: (1) modulation of arachidonic acid 

metabolism, in which lipid mediators that regulate inflammation (e.g.  prostaglandins and 

leukotrienes) have their key enzymes cyclooxygenases and lipoxygenases inhibited by 

anthocyanins; (2) decreased activity of the NF-κB pathway, which is a transcription factor 

responsible for triggering and regulating inflammatory processes, leading to the expression of 

pro-inflammatory cytokines and enzymes; and (3) suppression of  acute pro-inflammatory 

genes that regulate inducible nitric oxide synthase (iNOS), which is responsible for preventing 

excessive production of nitric oxide (NO).  
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The beneficial effects of anthocyanins on ED may also be related to their ability to 

mitigate the oxidative stress-related damage to the endothelium and their action in 

endothelium-dependent vasodilation signalling pathways. Antioxidant mechanisms of 

anthocyanins are exerted by direct and indirect pathways. Anthocyanins provide direct free 

radical scavenging activity by electron donation (hydrogen), as well as by improving 

endogenous antioxidant defences, such as restoring or enhancing antioxidant enzyme activity, 

such as superoxide dismutase and glutathione peroxidase, as well as up-regulating gene 

expression of glutathione peroxidase (22,138). This antioxidant activity appears to be superior 

to that of other conventional antioxidants such as α-tocopherol, trolox and catechin 

(138,141,142). The chemical structure of each anthocyanin subclasses also influences its 

potential antioxidant effect, which is related to the number and position of hydroxyl groups, 

conjugation groups, degree of glycosylation and the capacity of the aromatic group of donating 

electrons. Thus, different anthocyanins may show different levels of scavenging activity 

towards ROS and reactive nitrogen species (RNS), or other adverse metabolic products 

(138,143). 

 The increase in bioavailability of NO, through increased expression of eNOS, has been 

investigated in cell culture studies. Edirisinghe et al. (126), pre-treated human umbilical vein 

endothelial cells with different concentrations of blackcurrant juice and for different time 

periods, independent of vitamin C. The results showed an up-regulation of eNOS that was 

activated via the Akt/PI3 kinase pathway, while the effect was not vitamin C-dependent. An 

increased eNOS expression was also demonstrated in bovine artery endothelial cells treated 

with cyanidin-3-glucoside. This increase, exerted via the Src-ERK1/2-Sp1 signalling pathway, 

was in a dose and time-dependent manner. Significant results were observed after an incubation 

time of only 8 hours, while after 24 hours of incubation NO output increased twofold (144).   



42 
 

In animal models, studies using anthocyanins as a dietary intervention confirmed many 

of the aforementioned effects observed in cell culture studies, including regulation of the 

immune response and reduced oxidative stress, as well as mediation of lipid transport and 

accumulation, lowering of blood pressure and improved vascular reactivity.  In two acute 

experimental mice models of peritonitis and paw oedema, anthocyanins provided from wild 

mulberry inhibited carrageenan-induced inflammation by suppressing mRNA as well as 

protein levels of COX-2 (145).  In a model of hypercholesterolemia, mice fed with a high-fat 

diet and treated with 2% açai pulp had improved oxidative stress-related biomarkers and better 

lipid profiles, as well as reduced superoxide dismutase activity and increased paraoxonase 

activity (protection of lipoproteins and membranes to oxidative damage) (146). Regarding 

weight loss and adiposity, another study of rodents fed with a high-fat diet for 12 weeks along 

with 40 and 200 mg/kg of cherry anthocyanins attenuated weight gain by 5.2% and 11.2%, 

respectively. This was associated with a lower concentration of plasma leptin, glucose, 

triacylglycerol, total cholesterol and LDL cholesterol, along with a decreased gene expression 

of Il-6 and TNF in this tissue, and a reduction in adipose cell size (147). Cholesterol efflux 

signalling can also be influenced by anthocyanins; however, this effect is attributed to its 

downstream metabolites. For example, protocatechuic acid, a gut microbiota metabolite in 

mice, exerts this cholesterol efflux from macrophages; however, anthocyanins in 

physiologically reachable concentrations did not show this effect (148).   

Parameters related to vascular function such as blood pressure and vascular reactivity 

have also been investigated in animal models. In stroke-prone rats, treatment with a 3% 

blueberry diet for 8 weeks resulted in a significant decrease in systolic blood pressure of 19% 

and 30% in weeks 4 and 6, respectively, along with reduced markers of renal oxidative stress, 

such as proteinuria and kidney nitrite (149). In vascular reactivity parameters, rats fed with 

blueberries for 7 weeks showed diminished vasoconstrictor response to an L-phenylephrine 
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challenge, while inhibition of NOS, but not COX caused a higher vasoconstriction in the 

blueberry group. This was also evidenced as the endothelium-dependent vasorelaxation 

induced by acetylcholine, mediated by the NO pathway, was greater in the anthocyanins group 

compared to the placebo (150). Moreover, another study showed improvements in the aortic 

endothelium-dependent vasorelaxation response, also induced by acetylcholine, in mice fed 

with 2g/kg of cyanidin-3-glucoside for 8 weeks. This result was followed by an increase in 

cGMP concentration and eNOS phosphorylation at Ser 1177 in the aorta (151). 

A few studies have also advanced in nutrigenomic analysis of anthocyanin effects in 

mice models. A mouse model of accelerated atherosclerosis development was fed with 0.02% 

of the diet comprising bilberry anthocyanins extract. The attenuated atherosclerotic lesions in 

the anthocyanins group was followed by a modulation in expression of 1,261 genes, which 

were related mainly to different cellular processes such as oxidative stress, inflammation, 

regulation of adhesion molecules, cell to cell adhesion, paracelullar permeability and 

angiogenesis (152). The same research group previously found altered expression of 2,289 

genes in liver tissue, in the same experimental model provided with the same diet. 

Transcriptional analyses showed that these genes were involved in bile acid synthesis and 

cholesterol uptake into the liver, and downregulation of pro-inflammatory cytokines (153). 

The translation of findings from anthocyanin intervention studies is complex. This is 

because the potential effects of these compounds depends on their complex absorption, 

breakdown to phenolic metabolites and subsequent various actions in cells. Despite promising 

findings to date, many of the mechanistic pathways of their effects are not fully elucidated in 

humans. The method of delivery of anthocyanins also differs between studies and they may be 

provided in whole foods, juices, extracts or as purified anthocyanins. While there is 

homogeneity regarding some outcomes, many other parameters are not consistent between 

studies. Table 1 summarizes several clinical trials using different forms of anthocyanins, and 



44 
 

for several conditions related to ED. Studies evaluating parameters related to oxidative stress, 

inflammation, lipid profile, glucose homeostasis, blood pressure, hemodynamic and vascular 

outcomes were included. However, conditions such as inflammatory and infectious diseases, 

cancers, as well as studies evaluating specific groups of individuals such as professional 

athletes, smokers, children, and pregnant or breastfeeding women were not included.  

 Overall, chronic supplementation of anthocyanins showed a relevant role in oxidative 

stress, lipid peroxidation, antioxidant status and vascular outcomes with the majority of studies 

reporting improvements in related parameters. A moderate beneficial effect, with some 

heterogeneity among studies, was evidenced for lipid profile, glucose homeostasis, vascular 

inflammatory markers and hemodynamic factors. Although some studies showed 

improvements in outcomes such as blood pressure, peripheral inflammatory markers and 

anthropometry, these were the parameters with the highest inconsistency between studies using 

anthocyanins in medium or long-term dietary interventions. On the other hand, postprandial 

studies show the most promising results in the attenuation of deleterious postprandial effects 
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Table 1-1. List of clinical trials with chronic and acute supplementation of anthocyanins 

CHRONIC SUPPLEMENTATION OF ANTHOCYANINS 

Study 
Subjects/ 

condition 
Sex Age 

Sampl

e size 
Study design 

Intervention/daily dose 

– anthocyanins content 

Duratio

n (days) 
Results (intervention vs control) 

Traustadó

ttir et al. 

2009(154) 

Healthy F/

M 

61-

75 

12 Double blind, 

placebo controlled, 

crossover 

Tart cherry juice 

(480mL) - 59.5 mg of 

total anthocyanins  

14 ↓forearm ischemia-reperfusion  F2-

isoprostane response 

↓ urinary 8-hydroxy-2 

9-deoxyguanosine; 8-hydroxyguanosine 

↔ urinary isoprostanes 

Lee et al. 

2016 (155) 

Body mass 

index >23 

kg/m2 

F/

M 

19-

65 

63 Double blind, 

placebo controlled, 

RCT 

Extract of black soybean 

- 31.45 mg of total 

anthocyanins 

56 ↓abdominal fat; TG; LDL-c; non-HDLc 

Davinelli 

et al. 

2015(156) 

Healthy, 

overweight 

and smokers 

F/

M 

45-

65 

42 Double-blind, 

placebo-controlled, 

RCT 

Extract of maqui berry - 

468 mg of total 

anthocyanins 

28 ↓ plasma OxLDL; urinary F2-isoprostanes 

↔ anthropometry; blood pressure; lipid 

profile 

Li et al. 

2015(157) 

Diabetic F/

M 

>18 

(39.8 

± 

13.8) 

58 Double-blind, 

placebo-controlled, 

RCT 

Billberry and 

blackcurrant purified 

anthocyanins – 160mg  

of total anthocyanins 

168 ↓LDL-c; TG;  apolipoprotein B-48;  

apolipoprotein C-III; glucose; HOMA-IR 

↑ HDL-c 

↓F2-isoprostanes; 13-

hydroxyoctadecadienoic acid;  carbonylated 

proteins 

↑ total radical-trapping antioxidant 

parameter; FRAP 

Habanova 

et al. 

2016(158) 

Healthy F/

M 

48.3 

± 

5.64 

36 Non-randomized, 

pre-post 

intervention study 

65g of frozen bilberries 

– 194mg of total 

anthocyanins 

42 ↓ TC; TG; LDL-c; glucose;  

↑ HDL-c 

↔ anthropometry; blood pressure 

McAnulty 

et al. 

2014(159) 

Healthy, 

postmenopaus

al  

F/

M 

18-

50 

25 Placebo-controlled, 

RCT 

Blueberry extract 

(equivalent to 250 g 

rehydrated berries) – 

total anthocyanins value 

not provided 

42 ↓ AIx; aortic systolic pressure 

↔ anthropometry; overall blood pressure 

↓ diastolic blood pressure (sub-analyses) 

↑ absolute NK cells 

↔ ORAC; FRAP 
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Kuntz et 

al. 

2014(160) 

Healthy F 23-

27 

30 Double blind, 

placebo controlled, 

crossover, two 

intervention groups 

+ palcebo 

Juice – 277.5mg of total 

anthocyanins; smoothie 

- 324.7mg of total 

anthocyanins 

14 ↑plasma superoxide dismutase; catalase 

activity; TEAC 

↔ plasma glutathione peroxidase and 

erythrocyte superoxide dismutase 

↓ plasma and urinary MDA 

↔IL-2, -6, -8 and -10; CRP; sCD40;TNF-

α; MCP-1; CAMs 

Study 
Subjects/ 

condition 
Sex Age 

Sampl

e size 
Study design 

Intervention/daily dose 

– anthocyanins content 

Duratio

n (days) 
Results (intervention vs control) 

Kardum 

et al. 2014 

(161) 

Healthy F 25-

49 

29 Non-randomized, 

pre-post 

intervention study 

Chokeberry juice - 

25mg of total 

anthocyanins 

84 ↓ TBARS; PAB; TOS 

↑ PON1; TAC 

↔ anthropometry; blood pressure; 

biochemical parameters 

Lynn et al. 

2014(162) 

Healthy F/

M 

35-

50 

47 Double-blind, 

placebo-controlled, 

RCT 

Tart cherry juice 

concentrate - 273.5mg 

total anthocyanins 

42 ↔ arterial stiffness; CRP; blood pressure; 

TC; HDL-c 

↑ FRAP 

Wright et 

al. 

2013(163) 

BMI: 32.8 ± 

4.6 kg/m2 

M 53.1 

± 7.6 

16 Double-blind, 

placebo-controlled, 

RCT 

Dried purple carrot- 

118.5 mg of total 

anthocyanins 

28 ↔ anthropometry; LDL-c; TC; blood 

pressure; CRP 

Broncel et 

al. 

2010(164) 

Healthy 

(n=22) and 

metabolic 

syndrome 

(n=25) 

F/

M 

42-

65 

47  Aronia extract - 3-O-

cyanidin-galactoside 

(64.5%), 3-O-cyanidin-

arabinoside 

(28.9%), 3-O-cyanidin-

xyloside (4.2%), and 3-

O-cyanidinglucoside 

(2.4%) – mg? 

60 ↓ systolic and diastolic blood pressure; 

endothelin-1; TBARS; antioxidant enzymes 

catalase 

↓TC; LDL-c; TG;  

↑ superoxide dismutase;  glutathione 

peroxidase; fibrinogen 

↔ CRP 

Basu et al. 

2011(165) 

Metabolic 

syndrome 

F 52.0

±8.0 

36 Double-blind, 

placebo-controlled, 

RCT 

Cranberry juice - 12.4 

mg of total anthocyanins 

;  119mg of total 

Proanthocyanidins 

56 ↔blood pressure; lipid profile; glucose; 

CRP; IL-6 

↓ serum MDA and 4-hydroxynonenal; 

plasma OxLDL 

↑ plasma antioxidant capacity 
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Basu et al. 

2010(166) 

Metabolic 

syndrome 

F/

M 

50.0 

± 3.0  

66 Single-blind, 

placebo-controlled, 

RCT 

Blueberry beverage – 

742mg of  total 

anthocyanins 

56 ↓ diastolic and systolic blood pressure;  

↓ plasma MDA; 4-hydroxynonenal; 

OxLDL 

↔  lipid profile; glucose;  HbA1C; CRP; 

CAMs; IL-6;  myeloperoxidase 

Dohadwal

a et al. 

2011(167) 

Coronary 

artery disease 

F/

M 

62.0 

± 

10.0 

44 Double blind, 

placebo controlled, 

crossover, RCT 

Cranberry juice – 94mg 

of total anthocyanins 

28 ↔ blood pressure; FMD; carotid-radial 

PWV 

↓ carotid-femoral PWV 

↔ lipid profile; glucose; insulin; CRP, 

ICAM-1 

Kent et al. 

2017(168) 

Mild to 

moderate 

dementia 

 70+ 49 

Double-blind, 

placebo-controlled, 

RCT 

Cherry juice – 138 mg 

of total anthocyanins 84 

↓ Systolic and diastolic blood pressure 

↔ CRP; IL-6 

 

 

Study 

 

 

Subjects/ 

condition 

 

 

Sex 

 

 

Age 

 

 

 

Sampl

e size 

 

 

Study design 

 

 

Intervention/daily dose 

– anthocyanins content 

 

 

 

Duratio

n (days) 

 

 

 

Results (intervention vs control) 

Thompson 

et al. 

2017(169) 

Healthy 

F/

M 

38.0 

± 

12.0 

16 

Double blind, 

placebo controlled, 

crossover,  RCT 

Blackberry and billberry 

extracts - 320mg of total 

anthocyanins 

28 

↓ monocyte-platelet aggregate formation;  

platelet endothelial cell adhesion molecule-

1; procaspase activating compound-; P-

selectin; ADP-induced whole blood platelet 

aggregation 

↔ blood pressure; fibrinogen; lipid profile, 

CRP 

Zhu et al. 

2011/2013 

(170,171) 

Hypercholester

olemic F/

M 

40-

65 
150 

Double blind, 

placebo controlled, 

crossover,  RCT 

Purified anthocyanins - 

320mg of total 

anthocyanins 
84 

↑ FMD;  serum cGMP 

↔ blood pressure; TG; TC; glucose; insulin 

↓ VCAM-1; CRP; IL-1b;  LDL-c 

↑ HDL-c 

Hasselund 

et al. 

2012/2013 

(172,173) 

Healthy;  
blood 

pressure>140/

90 mm Hg; not 

medicated 

M 35-

51 

31 Double blind, 

placebo controlled, 

crossover, RCT 

Purified anthocyanins – 

640mg of total 

anthocyanins 

28 ↔ blood pressure 

↑ HDL-c; von Willebrand factor, 

↔ TC; TG; LDL-c; glucose; CRP; MCP-1; 

P-selectin; CAMs; IL-6 (trend); TNF-α; IL-

4; L-arg/ADMA; FRAP 
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ACUTE SUPPLEMENTATION OF ANTHOCYANINS 

Study 
Subjects/cond

ition 
Sex Age 

Sampl

e size 
Study design 

Intervention/daily dose – 

anthocyanins content 

Sample 

collection 

(hours) 

Results (intervention vs control) 

Park  et 

al. 2016 

(174) 

Individuals 

with insulin 

resistence 

F/

M 

56-

67 

21 Randomized 

controlled, four-

arm, dose-response, 

crossover trial 

High fat and carbohydrate 

meal with freeze-dried whole 

strawberry powder (0, 10, 20, 

30 and 40g) 

0, 0.5, 1, 

1.5,  2, 3, 

4, 5 and 6 

↓ insulin; insulin;glucose; OxLDL 

↔ IL-6 

Toaldo et 

al. 2015 

(175) 

Healthy F/

M 

20-

55 

30 Double-blind, 

placebo-controlled, 

cross-over, two 

intervention groups 

Organic red grape juice – 

159.2  mg  of total 

anthocyanins / conventional  

red grape juice – 42  mg of 

total anthocyanins  

0-1h ↓ TBARS; lipid hydroperoxides 

Frank et 

al. 

2012(176) 

Healthy F/

M 

22-

27 

8 Randomized, open-

label, two-way 

crossover 

Hibiscus sabdariffa L. 

aqueous extract - 130.25mg 

of total anthocyanins 

0, 0.5, 1, 

1.5, 2, 

2.5, 3, 4, 

6, 8 and 

10h 

↑ plasma FRAP AUC; plasma 
ascorbic acid  

↓ plasma uric acid 

↓ urinary MDA  

↑ urinary ascorbic acid 

Edirisingh

e et al. 

2011 (177) 

Overweight; 

25>BMI>33.5

k/m2 

F/

M 

50.9 

± 

15.0 

24 Randomised, 

single-blind, 

placebo- 

controlled, cross-

over trial 

high-carbohydrate, moderate-

fat meal + strawberry 

beverage - 120.69mg of total 

anthocyanins   

0, 0.5, 1, 

1.5,  2, 3, 

4, 5 and 6 

↓ CRP; IL-6;  insulin 

↔ IL-1β; PAI-1; TNF-α 

Glucose; 

Study 
Subjects/cond

ition 
Sex Age 

Sampl

e size 
Study design 

Intervention/daily dose – 

anthocyanins content 

Sample 

collection 

(hours) 

Results (intervention vs control) 

Alqurashi 

et al. 2016 

(178)  

Healthy, 

overweight 

25>BMI>30k/

m2 

M 30-

65 

23 Randomized, 

controlled, double-

blind, crossover 

Açai-based smoothie – 

493mg of total anthocyanins 

0, 1, 2, 3, 

4, 5, 6 

and 7h 

↑ FMD 

↓ total peroxide oxidative status 

AUC 

↔ blood pressure; glucose 

Dohadwal

a et al. 

2011 (167) 

Coronary 

artery disease 

F/

M 

62.0 

± 8.0 

15 Open label Cranberry juice – 94mg of 

total anthocyanins 

0, 2 and 

4h 

↔ blood pressure;  

↑ FMD (%); FMD (mm) 
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Symbols: ↑ Higher than control treatment ↓ Lower than control treatment ↔ No significant effect. Abbreviations: RCT, random clinical trial; LDL-c, low-density lipoprotein 

cholesterol; OxLDL, oxidized low-density lipoprotein; TBARS, thiobarbituric acid reactive substances; ORAC, oxygen radical absorbance capacity; FRAP, ferric ion reducing 

antioxidant power; TEAC, trolox equivalent antioxidant capacity; MDA, malondialdehyde;  TNF-α, Tumour necrosis factor alpha; MCP-1, monocyte chemoattractant protein-

1; CAMs, cell adhesion molecules; TAC, total  antioxidative  capacity; TOS, total   oxidative   status; PON1, paroxonase-1 activity; PAB, pro-oxidant-antioxidant balance; 

AUC, area under the curve; CAT, antioxidant enzymes catalase; FMD, flow-mediated dilation; HbA1C , glycated haemoglobin; PWV, pulse wave velocity; ICAM-1, intercellular 

adhesion molecule-1; VCAM-1, vascular adhesion molecule-1; DVP-RI, digital volume pulse reflection index; DVP-SI, digital volume pulse stiffness index; AIx, augmentation 

index; L-arg/ADMA, L-arginine/asymmetric dimethyilarginine ratio; cGMP, cycluc guanosine monophosphate.

Keane et 

al. 2016 

(179) 

Pre-

hypertension 

(SBP>130 mm 

Hg, DBP >80 

mm Hg, or 

both) 

M 31.0 

± 9.0 

16 Placebo-controlled, 

single-blinded, 

crossover, 

randomized Latin 

square design 

Montmorency tart cherry 

juice – 73.5 mg of total 

anthocyanins 

0, 1, 2, 3, 

5 and 8h 

↓ systolic blood pressure; DVP-RI; 

PWV; peripheral blood pressure; 

mean arterial pressure 

↔ microvascular reactivity 

[endothelium (trend) and non-

endothelium dependent] ; heart rate;  

DVP-SI(trend); AIx 

Jin et al. 

2011 (180) 

Healthy F/

M 

44.5

±13.

3 

20 Randomised, 

double-blind, 

placebocontrolled 

cross-over acute 

Blackcurrant juice – 50.5mg 

of total anthocyanins 

0 and 2h 

(vascular 

reactivity)

, 0-8 

(plasma 

and 

urine), 8-

24 (urine) 

↑ plasma ascorbic acid; uric acid; 

insulin 

↔ microvascular reactivity 

↔ plasma FRAP; ORAC; TG; 

ICAM-1; VCAM-1; glucose;  

Kent et al. 

2016 (181) 

Young and 

older adults 

M/

F 

18-

35 / 

55+ 

13 Pilot cross-over 

study 

High-flavonoid cherry juice 

(300mLx1 and 100mLx3) -  

0, 2 and 

6h 

↓ systolic and diastolic blood 

pressure; heart rate 

Rodriguez

-Mateoz et 

al. 2013 

(182) 

Heathy 

M 
18-

40 
21 

Randomized, 

controlled, double-

blind, crossover 

Five blueberry beverages – 

129, 258, 310, 517 and 

724mg of total anthocyanins 
0, 2, 4 

and 6h 

↑ FMD 

↓NADPH oxidase activity 

↔ Aix; PWV; DVP-SI; DVP-RI; 

↔ peripheral and central blood 

pressures  

Zhu et al. 

2011 (170) 

Hypercholester

olemic 
F/

M 

40-

65 
12 

Randomized, 

controlled, double-

blind, crossover 

Purified anthocyanins - 

320mg of total anthocyanins 
0, 1, 2 

and 4h 

↑ FMD;  serum cGMP 
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on oxidative stress and antioxidant status, triacylglycerol and total cholesterol concentrations, 

vascular endothelial function and inflammatory biomarkers. Post-prandial changes in blood 

pressure and lipoproteins were least affected by anthocyanins (more details are provided in 

Chapter 3: The postprandial effect of anthocyanins on cardiovascular disease risk factors: a 

systematic literature review of high-fat meal challenge). 

 In addition to the findings reported in Table 1, other studies investigated the effect of 

anthocyanins in a large numbers of subjects, both in large prospective cohorts and systematic 

reviews with or without meta-analysis. Cassidy et al (183–185), conducted three different 

analyses in the Nurses’ Health Study II evaluating the anthocyanin intake and incidence of 

certain conditions and events related to ED. The flavonoid and anthocyanin intakes were 

calculated using validated food-frequency questionnaires. In one cohort analysis of 93,600 

healthy women aged between 25 and 42 years, an inverse association between intake of 

anthocyanins (highest versus lowest quintiles) and risk of myocardial infarction was observed 

(HR: 0.68; 95% CI, 0.49-0.96; P=0.03) after multivariate adjustment. The combined intake of 

blueberries and strawberries, in individuals consuming more than three serving per week versus 

a lower intake, tended to be associated with a decreased risk of myocardial infarction (HR: 

0.66; 95% CI, 0.40-1.08; P=0.03). Anthocyanins were the only flavonoid class to show  

positive benefits in relation to the incidence of these CVD events (184). Furthermore, while 

following 43,880 healthy men with no prior diagnosis of CVD for 24 years, a total of 4046 

myocardial infarction and 1572 stroke cases occurred, in which all of these events were 

confirmed by medical records. After multivariate adjustment, a higher anthocyanin intake was 

inverse associated with non-fatal myocardial infarction (HR: 0.81; 95% CI: 0.69-0.96; P= 0.03) 

in normotensive individuals, whilst a borderline significant trend was observed in all 

individuals (HR: 0.87; 95% CI: 0.75-1.00; P = 0.04; P= 0.098). Fatal myocardial infarction and 

stroke was not associated with anthocyanin intake in that analysis (183). In another 
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investigation, Cassidy et al.(185) examined the association between flavonoid intake and 

incidence of hypertension by grouping results from three different cohorts. A total of 133,914 

women from the Nurses' Health Study I and II, as well as 23,043 men from the Health 

Professionals Follow-Up Study were followed-up for 14 years, resulting in 29,018 cases of 

hypertension in women and 5629 cases of hypertension in men. A reduction of 8% in risk of 

hypertension (RR: 0.92; 95% CI: 0.86, 0.98; P < 0.03) was found comparing individuals from 

the highest quintile versus lowest quintile of anthocyanins intake. This effect was even higher 

among individuals under 60 years of age (RR: 0.88; 95% CI: 0.84, 0.93; P < 0.001).  

Regarding the pooled analyses of anthocyanin interventions in clinical trials, systematic 

reviews and meta-analysis have been conducted for outcomes related to ED such as blood 

pressure, CVD risk factors and vascular function, with inconsistent results. A meta-analysis 

evaluating the effect of berries on CVD risk factors among healthy individuals or patients with 

CVD (n = 1,251 subjects from 21 randomized clinical trials) reported that berry consumption 

lowered LDL-c, systolic blood pressure, fasting glucose, body mass index, haemoglobin A1c 

and TNF-α, whilst no significant effects were demonstrated for HDL-c, triglycerides, total 

cholesterol and diastolic blood pressure. It is important to note that not all berries have 

anthocyanins as their primary source of polyphenols; however, the majority of dietary 

interventions from the included studies were rich in anthocyanins (186). Another systematic 

review of randomized controlled trials evaluated the effect of purified anthocyanins and 

anthocyanin-rich extracts on markers of CVD. A total of twelve clinical trials with both healthy 

and individuals with CVD were included in this review, but the large heterogeneity prevented 

the conduct of a meta-analysis. Considering LDL-c, HDL-c, total cholesterol, triglycerides and 

blood pressure, an improvement was only evident for LDL-c among diseased individuals or 

those with elevated concentrations of this biomarkers (131).  
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 Parameters such as vascular reactivity and stiffness have also been evaluated in a 

systematic review and meta-analysis of 24 studies, including both acute and chronic dietary 

interventions of anthocyanin-rich foods or extracts(26). Among the acute studies, FMD was 

reported in 4 studies, while reactive hyperaemia index by peripheral arterial tonometry was 

evaluated only in 2 studies. The pooled analysis showed a significant improvement for FMD, 

mainly observed 1-8 hours after consumption of anthocyanin doses, which ranged from 7 to 

724mg. There was no improvement in reactive hyperaemia index; however, when the 

microvascular reactivity outcome was analysed collectively along with FMD, there was a 

significant improvement after anthocyanin provision. Arterial stiffness, which was evaluated 

through pulse wave velocity, was also improved by acute anthocyanins intake, whilst no 

changes were observed for augmentation index. Once again, considering both outcomes for a 

pooled analysis of vascular stiffness, there was a trend towards an improvement of this 

parameter following anthocyanins intake. Among longer term studies ranging from one week 

to six months, with anthocyanin daily doses of 12 to 320mg, an improvement in FMD was 

found. The increase in reactive hyperaemia index did not reach significance; however, taken 

together along with FMD for a vascular reactivity measure, the pooled analysis showed an 

improvement in this parameter. In relation to arterial stiffness, the results from both pulse wave 

velocity and augmentation index showed no improvements when analysed individually; 

however, there was a trend toward an improvement in vascular stiffness when these two 

parameters were analysed collectively (26). 

 Taken together, this body of pre-clinical, clinical and epidemiological evidence support 

the potential beneficial effects of anthocyanins on vascular function and other CVD risk 

factors, and warrant the conduction of clinical trials with innovative methodologies for a robust 

investigation of such parameters.    
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1.6 Problem statement 

 

Several gaps in the literature remain regarding the association of flavonoids and their 

potential health benefits. At the epidemiological level, only a few populations have been 

investigated in appropriate large-scale studies. This type of evidence requires consideration of 

specific differences in the flavonoid content of foods that exist between different geographical 

areas and crops, as well as the variety of dietary patterns and cuisines between populations will 

affect the amount and type of consumption of flavonoid-rich food items, while differing 

lifestyle factors and life expectancies will also influence the contribution of flavonoids to the 

incidence of hypertension and other chronic diseases. These methodological challenges limit 

extrapolation of findings from epidemiological studies of flavonoid intake and incidence of 

disease outcomes from one population to another. Still, previous analysis of dietary patterns, 

conducted in the Australian population identified differences in the level of consumption of 

individual food groups by age (187). Therefore, considering the limited evidence from 

longitudinal studies that assess the association between the incidence of hypertension and 

consumption of flavonoids in the Australian population, a life course approach is necessary.  

At the clinical level, a number of studies have investigated the effect of specific 

flavonoids across a wide range of conditions. Among the different groups of flavonoids, 

anthocyanins are particularly promising in terms of their potential benefits in attenuating and 

preventing pathological conditions, mainly through their potential anti-inflammatory, anti-

oxidant and signalling effects. The effect of anthocyanins in the postprandial state have been 

evaluated by several studies using the HFHE meal challenge. This method allows investigation 

of whether these bioactive compounds are capable of attenuating the deleterious effects 

following a HFHE meal; however, such findings have not been adequately collated and 

synthesized regarding the scope of the impact of acute anthocyanin dietary intake on CVD risk 
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factors. Within this range of studies, another gap that was identified is the lack of robust 

investigation of the vascular function in the postprandial state, which along with the immune 

response is an important predictor of CVD. This is particularly evident in older adults, as 

several studies support a gradual loss of vascular health, and a new immune-metabolic 

viewpoint for age-related diseases, termed ‘inflammaging’, characterized as a chronic low-

grade inflammation. Additionally, there are still several gaps to be addressed regarding the 

effect of anthocyanins in this vascular-inflammatory axis in older adults, especially among 

those with neurodegenerative conditions that share risk factors with CVD. 

 

1.7 Hypothesis 

 

Following the problem statement, this thesis has three main hypotheses, namely: 

1) A higher dietary intake of flavonoids is associated with a lower incidence of 

hypertension in Australian women; 

2) An acute dietary intervention with food anthocyanins is capable of attenuating 

potential postprandial deleterious effects of a high-fat high energy-meal on 

vascular function, immune response and other CVD risk factors; 

3) A chronic dietary intervention with food anthocyanins will improve 

microvascular health, and reduce inflammation and blood pressure in older 

adults with a diagnosis of MCI. 

 

 

1.8 Research Objectives and Conceptual Framework 

To test the study hypotheses, the following objectives were developed: 
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1) To determine if there is an association between higher dietary intake of flavonoids and 

subclasses and the incidence of hypertension in two cohorts of Australian women; 

2) To collate and synthesize the current evidence of the postprandial effects of 

anthocyanins on CVD risk factors in high-fat meal challenge studies; 

3) To determine if consumption of food anthocyanins has postprandial effects on the 

macro and microvascular function, inflammatory and oxidative stress biomarkers, and 

lipid profile following a high-fat high-energy meal in overweight or obese older adults; 

4) To determine if chronic consumption of food anthocyanins has beneficial effects on the 

microvascular function, inflammatory biomarkers and 24 h ambulatory BP in older 

adults with a diagnosis of MCI. 

 

In order to test the above hypothesis and address the research objectives, four studies 

were developed across three levels of evidence, including: 

• Epidemiological evidence: Secondary analysis of data from a nationally representative 

cohort of Australian women. 

• Knowledge synthesis: Systematic Literature Review. 

• Experimental evidence: Two randomised placebo-controlled Clinical Trials (RCTs) 

with an innovative design that allowed interpretation of both acute and chronic effects of 

anthocyanin intake. 

 

The Conceptual Framework for the thesis, demonstrating the four studies across the three levels 

of evidence is shown in Figure 1-1. 



56 
 

 

 Figure 1-1. Thesis Conceptual Framework 

GEE, generalized estimated equations; FFQ, food frequency questionnaire; CVD, 

cardiovascular disease. 

 

 

1.9 Significance of the Research 

Flavonoids are emerging as potential dietary bioactive components that exert beneficial 

effects on certain pathological conditions, as well as having a preventive role in several chronic 

and degenerative diseases. This thesis aims to explore gaps in the literature in both cases. 

Regarding the epidemiological aspect, this thesis addresses the association between daily 

consumption of flavonoids and the incidence of hypertension. A population-based study was 



57 
 

conducted to estimate the total intake of flavonoids and their subclasses in the Australian 

female population by exploring data collected in a nationally representative cohort study.  This 

analysis found an association between flavonoids and the occurrence of hypertension, which is 

a novel finding. This provides evidence that is useful for nutrition messaging and policies 

targeting improved cardiovascular health in this population. 

A robust review of pre-clinical literature showed that anthocyanins are capable of 

improving vascular endothelial function, and have relevant anti-inflammatory and anti-oxidant 

effects; however, clinical evidence of these effects in humans is still lacking in many aspects. 

This thesis aims to advance this field, by conducting a systematic literature review to synthesize 

and summarise the published literature relating to the acute effect of anthocyanins on 

postprandial responses to a high energy, high fat stressor meal, as well as by undertaking two 

randomised, placebo- controlled clinical trials to add to knowledge inquiry.   

The two innovative clinical trials were conducted in older adults. The first investigated 

the postprandial effects of anthocyanins following a HFHE meal challenge using a more robust 

evaluation of vascular function than has been conducted in previous similar studies. Vascular 

function was measured by exploring macro and microvascular parameters through a 

combination of classical and novel techniques using the latest imaging technologies, including 

FMD and LSCI. To our knowledge, this was the first study of its kind to conduct this protocol 

using an anthocyanin dietary intervention. As well as the assessment of vascular function, 

classical CVD biomarkers were included, such as lipid profile, blood pressure, and 

inflammatory biomarkers. Another clinical trial was conducted to investigate the longer term 

effects (8 weeks) of anthocyanin supplementation provided through the Australian-grown 

Queen Garnet plum on inflammatory markers associated with CVD risk factors, along with 

analysis of microvascular function and 24-hour ABP. The aim of this study was to investigate 

such parameters in an older population with a diagnosis of mild cognitive impairment, which 
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is a neurodegenerative condition that shares pathological mechanisms with CVD. Considering 

the major role of the inflammatory response and vascular function in CVD and cognitive 

decline, this data may be of clinical relevance for this high-risk group. 
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Chapter 2: Association between flavonoid intake and risk of 

hypertension in two cohorts of Australian women: a longitudinal 

study 

 

Large prospective studies and pooled analyses of clinical trials have shown health 

benefits of flavonoids on CVD risk factors and incidence. However, only a few populations 

were investigated by appropriate large-scale studies, including a comprehensive assessment of 

flavonoid subclasses and food sources. This type of evidence requires a specific approach as 

flavonoid content in foods can vary significantly among different geographic areas and crops, 

as well as considering the cultural diversity in cuisine and dietary patterns within a country and 

worldwide. Therefore, epidemiological studies associating flavonoid intake and incidence of 

diseases can hardly be extrapolated from one population to another. In this matter, the present 

population-based study estimated the association between intake of total flavonoids and its 

subclasses and incidence of hypertension in two population-based cohorts of Australian 

women, including reproductive-aged and middle-aged individuals. Flavonoid intake was 

associated with a lower incidence of hypertension in both cohorts. Higher intakes of flavones, 

isoflavones and flavanones, attributed mainly to orange, orange juice, apples and soy milk, 

were associated with a reduced risk of hypertension among middle-aged women followed-up 

over 15 years. Higher intakes of flavanols, attributed mainly to red wine and apples, were 

associated with a reduced risk of hypertension among reproductive-aged women followed-up 

for 12 years. These findings can be used in nutritional messages and policies aimed at 

improving the cardiovascular health of women of different life stages 

The majority of this chapter forms the substantive content of a published article 

(Appendix C) 
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2.1 Introduction 

Cardiovascular disease (CVD) is a major cause of mortality globally and is the leading 

cause of death for Australian men and women. In 2018, CVD was responsible for over 41,800 

deaths in Australia (26% of all deaths)(188). Following a similar pattern to that observed 

worldwide, the prevalence of hypertension among adults was 33.7% (36.0% among men and 

31.4% among women in 2017-2018[1]. This prevalence increased with age, from less than 10% 

in the 18-34 year age group to almost 50% in people aged over 85 years(188).  

Hypertension is an independent risk factor for CVD and does not have a defined 

aetiology. Several factors play a role in increased blood pressure including modifiable factors, 

such as smoking, body weight, physical activity, alcohol, high sodium intake and other dietary 

imbalances(189). Among the various pathophysiological mechanisms involved in 

hypertension, the co-operative and synergistic action of inflammation and oxidative stress play 

an important role(190–192).  

Nutrition plays a major role in enhancing endogenous antioxidant defences and 

regulating the inflammatory state(193). Epidemiological studies have identified many dietary 

patterns that are associated with the prevention of diseases associated with inflammation(194). 

Among the various protective dietary components are polyphenols, which are bioactive, plant-

based compounds that naturally occur in fruits, vegetables, cereals and beverages(195). Of the 

large number of polyphenolic compounds found in foods, the most common and widely 

distributed class are flavonoids, present in virtually all plants. Flavonoids are classified into six 

subclasses, namely flavanols (including proanthocyanidins), flavonols, flavanones, flavones, 

isoflavones and anthocyanins(196). In the endothelium, dietary flavonoids can exert 

physiological effects as both antioxidants and as signalling molecules(196,197). 

Several large prospective studies and pooled analyses of clinical trials show health 

benefits for total dietary flavonoid intake and some of its subclasses. A meta-analysis of five 
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prospective cohort studies, comprising 200,256 individuals and 45,732 cases of hypertension, 

showed a non-significant lower risk of hypertension for higher total flavonoid intake, while 

dietary anthocyanin intake was associated with an 8% reduction in risk of hypertension when 

comparing highest vs. lowest intake(198). The effects of cocoa flavonols were analysed in a 

meta-analysis of 35 randomized clinical trials studies, showing significant lowering of both 

systolic and diastolic blood pressure by 1.8 mm Hg(199). Furthermore, a meta-analysis of 7 

trials involving 587 participants found that intake of quercetin, a flavanol subclass, resulted in 

a significant reduction in blood pressure(200). However, differing dietary patterns and cuisines 

between populations will affect the amount and type of consumption of flavonoid-rich food 

items, while differing lifestyle factors and life expectancies will also influence the contribution 

of flavonoids to the incidence of hypertension and other chronic diseases. Previous analysis of 

dietary patterns in the ALSWH identified differences in the level of consumption of individual 

food groups in the middle-aged and reproductive-aged cohorts (187). Therefore, considering 

the limited evidence from longitudinal studies that assess the association between the incidence 

of hypertension and consumption of flavonoids in the Australian population, a life course 

approach is necessary. 

This study aims to evaluate the association between intake of total flavonoids and its 

subclasses and incidence of hypertension in two population-based cohorts of Australian women 

that included reproductive-aged and middle-aged individuals. 

2.2 Methods 

Study population 

 The Australian Longitudinal Study on Women’s Health (ALSWH) includes a 

representative sample of more than 40,000 women that were recruited in 1996. Women were 

randomly sampled from the National Health Insurance scheme (Medicare) that includes all 

Australian citizens and permanent residents(201). The reproductive-aged and middle-aged 
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cohorts (including women born in 1973–78 and 1946–51, respectively) were used for the 

purpose of this study, as these cohorts included validated assessment of dietary intake. Further 

details of the recruitment methods, response rates, retention and attrition have been described 

elsewhere (202). 

These cohorts have been surveyed seven and eight times at approximately three-year 

intervals, respectively, since 1996. The initial sample response rate from the middle-aged 

cohort was n = 13,714 for Survey 1, with subsequent Surveys 2 to 8 yielding samples of n = 

12,338 (90%), n = 11,221 (81.8%), n = 10,905 (79.5%), n = 100 10,638 (77.6%), n = 10,011 

(73.0%), n = 9,151 (66.7%) and n = 8,622 (62.9%), respectively. In the reproductive-aged 

cohort, the initial sample comprised n = 14,247, while response rates for Surveys 2 to 7 were 

n = 9,688 (68%), n = 9,081 (63.7%), n = 9,145 (64.2%), n = 8,200 (27.6%), n = 8,126 (57%) 

and n = 7,186 (50%), respectively. Dietary intake was assessed at Surveys 3 and 5 in the 

reproductive-aged cohort, and at Surveys 3 and 7 in the middle-aged cohort. Survey 3 was 

therefore used as baseline for both cohorts. The Human Research Ethics Committees of the 

University of Newcastle and the University of Queensland approved the study methods. All 

participants signed a consent form before joining the study. 

 

Dietary intake 

Dietary intake over the past 12 months was assessed through a validated FFQ, The 

Dietary Questionnaire for Epidemiological Studies, version 2 (DQES v2)(203,204), which has 

been validated against seven days of weighed food records with correlation coefficients ranging 

from 0.28 for vitamin A to 0.78 for carbohydrates(204). Participants reported their usual daily 

frequency of intake and portion size for 101 individual food items according to a 10-point scale 

ranging from ‘Never’ to ‘Three or more times per day’. The Australian Food Composition 

Database (NUTTAB95) was used to calculate energy, macro and micronutrient intakes(205). 
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In order to determine flavonoid intake, each food item was assigned a total flavonoid 

and subclasses content value using the ‘PhenolExplorer’ polyphenol food composition 

database. The PhenolExplorer is a comprehensive and freely available database that contains 

more than 35,000 content values for 500 different polyphenols in over 400 foods(206). Each 

selected food item from the FFQ was manually cross‐referenced with this database. Foods 

listed in the FFQ that were not in PhenolExplorer were assumed to contain no flavonoids. Of 

the foods in the FFQ, 42 foods were assigned a flavonoid content. Flavonoid and subclass 

intakes from each food were measured by multiplying the consumption (g/day) for each food 

by its flavonoid content (per gram edible weight). Individual flavonoids from the six subclasses 

were summed to provide a total value for each subclass, and data for total flavonoids were 

calculated as the sum of these subclasses. A daily dietary intake of each flavonoid subclass and 

total flavonoid intake was calculated for each individual. The food item ‘tea’, which is an 

important source of flavonoids in this population, was not included in this version of the FFQ, 

but a relevant question was present in another part of the survey. However, the rate of responses 

and missing values differed from the FFQ data, thus the inclusion of “tea” and “herbal tea” 

flavonoids was addressed in a sub-analysis.  

Dietary intake was not assessed at every survey. Based on previous research showing 

that diet quality is stable in these age cohorts(207,208), dietary intake data from Survey 3 were 

applied to survey 4 in the reproductive-aged cohort and to Surveys 4 to 6 in the middle-aged 

cohort. Survey 5 dietary data were applied to subsequent surveys in the reproductive-aged 

cohort to account for any changes in intake. 

 

Incidence of hypertension 

The occurrence of hypertension was determined from self‐reported data on doctor-

diagnosed hypertension available in each survey from the following question: “In the past three 
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years, have you been diagnosed or treated for: High blood pressure (hypertension)”. For 

incidence estimation, hypertension was defined as new onset reported at Survey 4 onwards, 

while participants that reported hypertension in the first three surveys were excluded from our 

analysis. A previous study showed an agreement of 89% between self-reported hypertension 

and antihypertensive medication use in the middle-aged cohort utilised in the present 

study(209).  

 

Covariates 

Data on a wide range of demographic, socio-economic factors and hypertension risk 

factors were collected in each survey for both cohorts. The following variables were included 

as covariates: education (low – no formal qualifications or school or intermediate certificate or 

equivalent; intermediate – high school or leaving certificate, trade/apprenticeships, or 

certificate or diploma; or high – university degree); income management (impossible/difficult 

all the time; difficult some of the time; or easy); body mass index (BMI)[underweight and 

normal weight (BMI up to 25 kg/m2); overweight (BMI 25-30 kg/m2); or obese (BMI >30 

kg/m2)]; smoking status (never been a smoker; former smoker; or current smoker); alcohol 

consumption [rarely & non-drinker (<1 drink per week); low risk (up to 14 drinks per week); 

or risky (15 to 28 drinks per week) & high risk (more than 28 drinks per week)]; doctor-

diagnosed diabetes type I & II combined (no or yes). Physical activity scores were derived 

from validated questions on frequency and duration of walking, and on moderate- and 

vigorous-intensity activity, and were categorised as: sedentary/low (<500 total metabolic 

equivalent (MET) minutes/week); moderate (500 - <1000 MET minutes/week); or high (>1000 

MET minutes/week)(210). In the middle-aged cohort, menopause status was determined using 

questions regarding the occurrence of hysterectomy, oophorectomy, hormone replacement 

therapy (HRT) and menstrual pattern, and categorised as ‘surgical menopause’, ‘not defined 
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due to HRT or oral contraceptive pill, ‘pre-menopausal’, ‘peri-menopausal’ or ‘post-

menopausal’. Four dietary intake variables derived from the FFQ, (fibre, cholesterol, vitamin 

C and sodium) were also included as covariates. 

 

Data analysis 

Generalised Estimating Equation (GEE) analyses investigated associations of quintiles 

of total flavonoid and subclass intake with incident hypertension, adjusting for demographic 

and dietary variables, and hypertension risk factors. GEE was the chosen statistical approach 

to enable accounting for repeated exposure and outcome measures in the same individual. 

Survival analysis could not be performed due to lack of data on date of hypertension diagnosis. 

An exchangeable correlation matrix, a binomial distribution of dependent variables and a log 

link function were selected to conduct the GEE. Potential confounders were defined a priori 

based on literature and on the available data. Four models were used to adjust for potential 

confounders: (1) adjusted for energy intake and age; (2) additionally adjusted for hypertension 

risk factors (diabetes, smoking, physical activity, alcohol intake and menopause status) and 

demographics (education and income management); (3) additionally adjusted for dietary intake 

variables related to flavonoid intake and hypertension risk (fibre, vitamin C, sodium and 

cholesterol); and (4) additionally adjusted for BMI (potential mediator).  

Sub-analyses were conducted by adding the total flavonoids, flavanols and flavonols 

related to tea consumption for each individual. Another sub-analysis was conducted to 

determine the influence on the results of additionally adjusting for gestational diabetes and 

hypertension among women who reported a live birth during the study period. All analyses 

were conducted using the software STATA/SE 15.1 (StataCorp LLC, TX, USA).  
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2.3 Results 

In the middle-aged cohort, 11,221 women completed Survey 3 and after exclusion for 

hypertension reported prior to Survey 4 (n=3,334), missing data on dietary intake (n=407), 

hypertension (n=339) and covariates (n=463), as well as implausible energy intake (<500kcal 

or >5000 kcal/day) (n=48), 6,630 women were included for data analyses (Figure 2-1). In the 

reproductive-aged cohort, 9,081 women completed Survey 3 and after exclusion for 

hypertension reported prior to Survey 4 (n=693), missing data on dietary intake (n=140), 

hypertension (n=1,367) and covariates (n=737), and implausible energy intake (n=45), 6,099 

women were included for data analyses (Figure 2-2). No differences were found in baseline 

characteristics between women in- and excluded for analyses in the middle-aged and 

reproductive-aged cohort (Table 2-S1 and 2-S2). 
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Figure 2.1. Flow diagram of the sample for analyses of the association between flavonoids 

intake and incidenct hypertension in middle-aged women in the Australian Longitudinal Study 

on Women’s Health, n=6,630 

 

All baseline characteristics are presented according to quintiles of total flavonoid intake (Table 

2-1 and 2-2 for middle-aged and reproductive-aged cohorts, respectively). There was a higher 

level of education and physical activity, and a lower BMI, according to higher quintiles of total 

flavonoid intake, in both cohorts. In the middle-aged cohort, there was a decreasing number of 

current smokers across the quintiles of total flavonoids consumption, which was not observed 

in the reproductive-aged cohort. Comparing the 5th quintile of intake between cohorts, there 

was more than double the number of current smokers in the younger cohort compared to the 

middle-aged cohort (20.8% vs 9.9%). Alcohol consumption had a similar non-linear pattern 
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Figure 2-2. Flow diagram of the sample for analyses of the association between flavonoids 

intake and incidenct hypertension in reproductive-aged women in the Australian Longitudinal 

Study on Women’s Health, n=6,099 

 

across quintiles in both cohorts for the ‘risky & high risk” alcohol intake category, however 

individuals in the 5th quintile had higher values in both cohorts, which could be attributed to 

the high flavonoid content of red wine. Concerning income management, the category “easy” 

presented an increase across quintiles of flavonoid intake, while a decrease was observed in 

the category “impossible/difficult all the time”, showing that higher income is associated with 

higher flavonoid intake.  
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Table 2-1. Baseline characteristics of middle-aged women in the Australian Longitudinal 

Study on Women’s Health according to quintiles of total flavonoids intake, n=6,630 

  Total flavonoid intake  

Variables Categories 

Quintile 

1 

n =1289 

Quintile 

2  

n =1304 

Quintile 

3  

n =1315 

Quintile 

4  

n =1367 

Quintile 

5  

n =1353 

p-

valuea 

Mean age 

(years) (SD) 
- 

52.3 

(1.44) 

52.4 

(1.42) 

52.4 

(1.44) 

52.5 

(1.45) 

52.5 

(1.46) 
0.0027 

Educationb (%) 

low 74.31   66.08   62.48   54.93   53.72   
< 

0.0001 
intermediate 15.55   19.93   22.06   24.09   23.70   

high 10.14  13.99  15.46  20.98  22.58  

Income 

management 

(%) 

impossible/difficu

lt all the time 

12.80   11.03   8.05   7.16   6.67   

< 

0.0001 

difficult some of 

the time 

26.67   26.97   23.33   26.20   22.41   

not too bad 43.11   44.49   48.10   44.14   47.39   

easy 17.42 17.52  20.52  22.49  23.52  

BMIc (%) 

normal weight 46.26  49.58   51.18   51.47   54.92   
< 

0.0001 
overweight  32.68   30.21   32.28   32.60   31.14   

obese 21.06 20.20  16.55  15.92  13.94  

Smoking status 

(%) 

never smoker 52.46   58.29   65.82   65.63   61.76   

< 

0.0001 

former smoker 25.10   25.30   21.88   24.09   28.31   

current smoker 22.44 16.40  12.30  10.28  9.92  

      

Physical 

activityd (%) 

sedentary or low  57.09   51.81   45.84   44.23    39.78   
< 

0.0001 
moderate  21.16   18.91   23.69   23.67   25.41   

high 21.75 29.29  30.47  32.10  34.82  

Alcohol 

consumption 

(%) 

rarely & non-

drinker 

46.46   39.94   37.88   30.83   23.78   

< 

0.0001 low risk 47.64   53.01   58.32   64.70   65.53   

risky & high risk 5.91 7.04  3.80  4.47  10.69  

Menopause 

status (%) 

surgical 

menopause  

29.23   29.19   25.77   27.13   22.67   

0.039 

not defined due to 

HRT/OCP 

18.60   19.46   19.98   18.96   18.99   

pre-menopausal 9.55   9.36   10.49   8.85   10.44   

peri-menopausal  19.39   17.33   17.99   19.55   22.67   

post-menopausal 23.23  24.65  25.77  25.53  25.24  

Diabetes type I 

& II (%) 

no 97.24 97.50 97.02 96.38 98.03 
0.167 

yes  2.76 2.50  2.98  3.62  1.97  

BMI, body mass index; HRT, hormone replacement therapy; OCP, oral contraceptive pill. aP-value of 

chi-square test. bEducation: low, none or school certificate; intermediate, high school certificate, 

trade/apprenticeship, certificate/diploma; high: university or higher university degree. cBMI: normal 

weight, 16-25 kg/m2; overweight, 25-30 kg/m2, obese, >30 kg/m2. dPhysical activity: sedentary & low, 

<500 metabolic equivalents (MET) per week; moderate, 500-1000 MET per week; high, >1000 MET 

per week.  
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Table 2-2. Baseline characteristics of reproductive-aged women in the Australian Longitudinal 

Study on Women’s Health according to quintiles of total flavonoids intake, n=6,099 

  Total flavonoid intake  

Variables Categories 

Quintile 

1 

n =1177 

Quintile 

2 

n =1203 

Quintile 

3 

n =1245 

Quintile 

4 

n =1236 

Quintile 

5 

n =1239 

p-

valuea 

Mean age 

(years) (SD) 
- 

27.6 

(1.45) 

27.6 

(1.46) 

27.4 

(1.47) 

27.6 

(1.43) 

27.6 

(1.44) 
0.0177 

Educationb (%) 

low 13.42   9.72   7.03   5.24   6.02   
< 

0.0001 
intermediate 51.60   47.11   43.06   37.69   34.81   

high 34.98  43.18  49.90  57.07  59.17  

Income 

management 

(%) 

impossible/difficu

lt all the time 

12.07   10.99   9.92   7.81   9.47   

< 

0.0001 

difficult some of 

the time 

33.64   30.62   24.86   27.79   25.44   

not too bad 37.77   39.94   39.79   41.54   39.74   

easy 16.51  18.45  25.43  22.85  25.35  

BMIc (%) 

normal weight 58.93   63.98   65.61   67.36   68.74   
< 

0.0001 
overweight  22.60   22.47   20.42   21.66   20.51   

obese 18.47  13.54  13.97  10.98  10.75  

Smoking status 

(%) 

never smoker 57.38   63.98    62.04   62.12   60.36   
< 

0.0001 
former smoker 16.82   15.41   17.15   17.51   18.84   

current smoker 25.80  20.61  20.81  20.38  20.81  

Physical 

activityd (%) 

sedentary or low  51.39   44.16   39.11   33.04   30.37   
< 

0.0001 
moderate  22.08   24.83   25.53   24.33   23.87   

high 26.52  31.01  35.36  42.63  45.76  

Alcohol 

consumption 

(%)  

rarely & non-

drinker 

46.54   38.96   32.18   24.83   20.71   

< 

0.0001 low risk 50.77   58.98   65.41   72.50   73.27   

risky & high risk 2.68  2.06  2.41  2.67  6.02  

Diabetes type I 

& II (%) 

no 98.86   98.92   98.65   98.81   99.01   
0.956 

yes  1.14  1.08  1.35  1.19  0.99  

BMI, body mass index. aP-value of chi-square test. bEducation: low, none or school certificate; 

intermediate, high school certificate, trade/apprenticeship, certificate/diploma; high: university or 

higher university degree. cBMI: normal weight, 16-25 kg/m2; overweight, 25-30 kg/m2, obese, >30 

kg/m2. dPhysical activity: sedentary & low, <500 metabolic equivalents (MET) per week; moderate, 

500-1000 MET per week; high, >1000 MET per week. 

 

Baseline nutrient and food group intake, according to quintiles of total flavonoid intake, 

are presented in the Supplementary material (Table 2-S3 and 2-S4 for middle-aged and 

reproductive-aged cohorts, respectively). There was an increasing consumption of the majority 

of dietary variables (energy, PUFA, protein, carbohydrates, vitamin C, fibre, calcium, iron, low 

fat dairy, vegetables, legumes, fruits and fruit juice) across quintiles in both cohorts, while 
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‘high fat dairy’ was the only variable which decreased across quintiles. The consumption of 

tea increased with the increasing consumption of total flavonoids in the middle-aged cohort, 

but not in the reproductive-aged cohort. 

The baseline proportional intake of flavonoid subclasses that contributed to total 

flavonoids for both cohorts are presented in the Supplementary material (Figure 2-S1). The 

addition of tea substantially increased total flavonoid intake (89.8 to 244.7 mg and 71.5 to 

167.2 mg in the middle-aged and reproductive-aged cohorts, respectively) as well as the 

relative contribution of flavonols to total flavonoid intake (47 to 79%, and 32 to 70%, in the 

middle-aged and reproductive-aged cohorts, respectively). Baseline food sources of flavonoid 

subclass intakes are presented in the Supplementary material (Figure 2-S2 and 2-S3 for middle-

aged and reproductive-aged cohorts, respectively). The top two contributors to flavonols, 

flavanols and isoflavones, along with the three top contributors to sources of anthocyanins, 

flavones and flavanones, were identical in both cohorts. Red wine and apples were the main 

source of flavanols, while strawberries and red wines were the main source of anthocyanins. 

Orange and orange juice were the main sources of flavanones, while orange juice and 

watermelon were the major source of flavones. Red wine, onion and spinach were the main 

sources of flavonols, while soymilk was the major source of isoflavones.  

In the middle-aged cohort, there were 1,645 cases (24.9%) of hypertension during a 

maximum of 15 years follow-up. Higher intakes of flavones [adjusted relative risk (ARR) for 

intake quintile 5 vs 1: 0.82, 95% CI: 0.70-0.97], isoflavones (0.86, 0.75-0.99) and flavanones 

(0.83, 0.69-1.00) were associated with a lower risk of hypertension (Table 2-3). Intakes of total 

flavonoids, anthocyanins, flavanols and flavonols were not associated with incidence of 

hypertension. In the reproductive-aged cohort, there were 336 cases (5.5%) of hypertension 

during a maximum of 12 years follow-up. In this cohort, the relative risks for total flavonoids, 

flavanols and flavonols were lower when comparing quintile 4 versus quintile 1. A higher 
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intake of flavanols (ARR for intake quintile 4 vs 1: 0.70, 95% CI: 0.49-0.99) was associated 

with a 30% lower risk of hypertension (Table 2-4). In both cohorts when including tea in the 

analysis, intake of total flavonoids and flavanols, were not associated with incidence of 

hypertension (Table 2-S5 and 2-S6). A sub-analysis was conducted in the reproductive-aged 

cohort among women that gave birth to children. In addition to the fully adjusted model from 

previous analyses, a model additionally adjusted for gestational diabetes and gestational 

hypertension did not change the results (Table 2-S7).  

 

Table 2-3. Relative risks for associations of total flavonoids and subclasses intake with incident 

hypertension in middle-aged women in the Australian Longitudinal Study on Women’s Health, 

n=6,630  

 Total Flavonoids  

 Quintile 1 

n =1289 

Quintile 2  

n =1304 

Quintile 3  

n =1315 

Quintile 4  

n =1367 

Quintile 5  

n =1353 

Mean 

intake 

(mg) (SD) 

27.9 (10.0) 52.4 (5.8) 74.0 (7.1) 102.9 (10.4) 169.6 (48.5) 

N (%) 

cases 
312 (24.2) 351 (26.9) 328 (24.9) 342 (25.0) 301 (22.2) 

Model 1 1.00 1.02 (0.89 – 1.16) 0.90 (0.78 – 1.03) 0.88 (0.77 – 1.01) 0.76 (0.66 – 0.87) 

Model 2 1.00 1.07 (0.93 – 1.22) 0.99 (0.86 – 1.13) 0.99 (0.86 – 1.14) 0.86 (0.74 – 0.99) 

Model 3 1.00 1.07 (0.93- 1.22) 0.98 (0.86 – 1.13) 0.99 (0.85 – 1.14) 0.84 (0.71 – 1.00) 

Model 4 1.00 1.08 (0.95 – 1.24) 1.02 (0.88 – 1.17) 1.03 (0.89 – 1.19) 0.90 (0.76 -1.06) 

 Flavanols  

Mean 

intake 

(mg) (SD) 
9.7 (4.4) 23.9 (3.8) 36.0 (2.7) 47.6 (4.3) 86.6 (34.8) 

N (%) 

cases 
303 (23.5) 341 (26.1) 319 (24.2) 359 (26.2) 312 (23.1) 

Model 1 1.00 0.97 (0.85 – 1.11) 0.94 (0.82 – 1.08) 0.97 (0.85 – 1.11) 0.81 (0.70 – 0.93) 

Model 2 1.00 1.02 (0.89 – 1.16) 0.97 (0.85 – 1.11) 1.05 (0.92 – 1.20) 0.88 (0.77 – 1.02) 

Model 3 1.00 1.04 (0.91 – 1.19) 0.99 (0.86 – 1.13) 1.10 (0.96 – 1.26) 0.94 (0.81 – 1.09) 

Model 4 1.00 1.03 (0.90 – 1.18) 1.01 (0.88 – 1.15) 1.10 (0.96 – 1.26) 0.97 (0.83 – 1.12) 

 Flavonols  

Mean 

intake 

(mg) (SD) 
3.4 (1.5) 5.5 (2.6) 6.3 (3.9) 6.4 (3.9) 15.0 (8.3) 

N (%) 

cases 
318 (24.7) 304 (23.3) 348 (26.5) 341 (24.9) 323 (23.9) 

Model 1 1.00 0.90 (0.78 – 1.03) 0.95 (0.83 – 1.08) 0.96 (0.84 – 1.09) 0.86 (0.76 – 0.99) 

Model 2 1.00 0.94 (0.82 – 1.08) 1.00 (0.88 – 1.15) 1.00 (0.88 – 1.14) 0.93 (0.81 – 1.07) 

Model 3 1.00 0.96 (0.83 – 1.10) 1.03 (0.90 – 1.17) 1.02 (0.90 – 1.17) 0.98 (0.85 – 1.13) 
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Model 4 1.00 0.97 (0.84 – 1.11) 1.04 (0.91 – 1.19) 1.04 (0.91 – 1.18) 1.02 (0.89 – 1.18) 

 Anthocyanins  

Mean 

intake 

(mg) (SD) 
0.61 (0.3) 1.6 (0.3) 2.9 (0.5) 5.3 (0.99) 12.4 (5.8) 

N (%) 

cases 
308 (23.9) 341 (26.1) 354 (26.9) 311 (22.7) 320 (23.6) 

Model 1 1.00 0.99 (0.86 – 1.13) 1.02 (0.90 – 1.17) 0.85 (0.74 -0.98) 0.92 (0.80 – 1.05) 

Model 2 1.00 1.03 (0.90 – 1.18) 1.08 (0.95 – 1.24) 0.95 (0.82 – 1.09) 0.99 (0.86 – 1.14) 

Model 3 1.00 1.04 (0.91 – 1.19) 1.10 (0.96 – 1.26) 0.97 (0.84 – 1.11) 1.03 (0.89 – 1.19) 

Model 4 1.00 1.02 (0.90 – 1.17) 1.08 (0.94 – 1.23) 0.94 (0.81 – 1.08) 0.99 (0.86 – 1.15) 

 Flavones  

Mean 

intake 

(mg) (SD) 
1.54 (0.7) 3.9 (0.7) 6.8 (0.9) 10.7 (1.4) 21.0 (8.5) 

N (%) 

cases 
347 (26.9) 305 (23.4) 335 (25.5) 357 (26.1) 290 (21.4) 

Model 1 1.00 0.83 (0.73 – 0.95) 0.86 (0.76 – 0.98) 0.88 (0.77 – 1.00) 0.72 (0.63 – 0.83) 

Model 2 1.00 0.88 (0.77 – 1.00) 0.94 (0.82 -1.07) 0.98 (0.86 – 1.11) 0.81 (0.70 – 0.93) 

Model 3 1.00 0.87 (0.76 – 1.00) 0.93 (0.81 – 1.07) 0.97 (0.84 – 1.12) 0.82 (0.69 – 0.97) 

Model 4 1.00 0.88 (0.77 – 1.00) 0.94 (0.82 – 1.08) 0.96 (0.84 – 1.11 0.81 (0.69 – 0.96) 

 Isoflavones  

Mean 

intake 

(mg) (SD) 
0.22 (2.5) 0.31 (3.4) 0.30 (2.8) 0.61 (4.0) 13.8 (16.6) 

N (%) 

cases 
361 (28.0) 340 (26.1) 318 (24.2) 325 (23.8) 290 (21.4) 

Model 1 1.00 0.92 (0.81 -1.05) 0.85 (0.74 – 0.97) 0.84 (0.74 – 0.97) 0.70 (0.61 – 0.80) 

Model 2 1.00 0.92 (0.81 – 1.04) 0.86 (0.76 -0.98) 0.89 (0.78 – 1.01) 0.77 (0.68 – 0.89) 

Model 3 1.00 0.92 (0.81 – 1.05) 0.87 (0.76 – 0.99) 0.90 (0.80 – 1.04) 0.81 (0.71 -0.94) 

Model 4 1.00 0.91 (0.80 – 1.04) 0.87 (0.76 - 0.99) 0.95 (0.84 – 1.09) 0.87 (0.76 – 1.00) 

 Flavanones  

Mean 

intake 

(mg) (SD) 
6.1 (9.2) 13.9 (10.2) 22.6 (9.8) 35.4 (11.3) 64.7 (27.9) 

N (%) 

cases 
343 (26.6) 322 (24.7) 339 (25.8) 322 (23.5) 308 (22.8) 

Model 1 1.00 0.85 (0.74 – 0.97) 0.88 (0.77 – 0.99) 0.82 (0.72 – 0.94) 0.77 (0.67 – 0.88) 

Model 2 1.00 0.90 (0.79 – 1.03)  0.96 (0.84 – 1.10) 0.92 (0.80 – 1.05) 0.87 (0.76 – 1.00) 

Model 3 1.00 0.90 (0.79 – 1.03) 0.94 (0.82 – 1.08) 0.88 (0.75 – 1.03) 0.79 (0.65 – 0.96) 

Model 4 1.00 0.91 (0.80 – 1.04) 0.95 (0.83 -1.09) 0.90 (0.77 – 1.04) 0.83 (0.69 – 1.00) 

Model 1: adjusted for total energy intake and age; Model 2: model 1 + additionally adjusted for 

hypertension risk factors (smoking status, diabetes, physical activity, alcohol intake, menopause status) 

and demographics variables (education, income management); Model 3: model 2 + additionally 

adjusted for dietary intake variables (fibre, cholesterol, vitamin C, sodium); Model 4: model 3 + 

additionally adjusted for body mass index.  
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Table 2-4. Relative risks for associations of total flavonoids and subclasses intake with incident 

hypertension in reproductive-aged women in the Australian Longitudinal Study on Women’s Health, 

n=6,099 

 Total Flavonoids  

 Quintile 1 

n =1177 

Quintile 2 

n =1203 

Quintile 3 

n =1245 

Quintile 4 

n =1236 

Quintile 5 

n =1239 

Mean 

intake 

(mg) (SD) 
32.6 (27.9) 49.2 (29.3) 63.2 (30.6) 83.8 (34.2) 126.0 (54.4) 

N (%) 

cases 
74 (6.3) 79 (6.1) 70 (5.3) 51 (4.1) 62 (4.6) 

Model 1 1.00 0.97 (0.71 – 1.32) 0.85 (0.62 – 1.17) 0.60 (0.42 – 0.86) 0.74 (0.53 – 1.05) 

Model 2 1.00 1.02 (0.75 – 1.39) 0.92 (0.66 – 1.27) 0.66 (0.46 – 0.95) 0.79 (0.55 – 1.12) 

Model 3 1.00 0.99 (0.72 – 1.36) 0.87 (0.62 – 1.23) 0.61 (0.42 – 0.91) 0.68 (0.44 – 1.06) 

Model 4 1.00 1.05 (076. 1.43) 0.93 (0.66 – 1.30) 0.68 (0.46 – 1.01) 0.77 (0.50 – 1.20) 

 Flavanols  

Mean 

intake 

(mg) (SD) 
7.6 (11.8) 12.5 (14.2) 17.1 (13.8) 23.9 (15.0) 48.3 (31.8) 

N (%) 

cases 
82 (7.0) 77 (6.4) 69 (5.5) 53 (3.9) 55 (4.1) 

Model 1 1.00 0.89 (0.66 – 1.21) 0.76 (0.56 – 1.04) 0.58 (0.41 – 0.81) 0.61 (0.43 – 0.85) 

Model 2 1.00 0.93 (0.69 – 1.27) 0.81 (0.59 – 1.12) 0.63 (0.44 – 0.89) 0.61 (0.43 – 0.88) 

Model 3 1.00 0.94 (0.69 – 1.28) 0.82 (0.59 – 1.14) 0.64 (0.45 – 0.92) 0.64 (0.44 – 0.93) 

Model 4 1.00 0.98 (0.72 – 133) 0.90 (0.65 – 1.24) 0.70 (0.49 – 0.99) 0.72 (0.49 – 1.04) 

 Flavonols  

Mean 

intake 

(mg) (SD) 
3.4 (1.5) 5.5 (2.6) 6.3 (3.9) 6.4 (3.9) 15.0 (8.3) 

N (%) 

cases 
71 (5.5) 82 (6.3) 57 (4.3) 50 (3.7) 55 (4.1) 

Model 1 1.00 1.06 (0.78 – 1.45) 0.75 (0.54 – 1.06) 0.65 (0.45 – 0.92) 0.72 (0.51 – 1.01) 

Model 2 1.00 1.10 (0.81 – 1.51) 0.81 (0.57 – 1.14) 0.69 (0.48 – 0.99) 0.74 (0.52 – 1.06) 

Model 3 1.00 1.10 (0.80 – 1.50) 0.80 (0.56 – 1.15) 0.69 (0.48 – 1.00) 0.74 (0.51 – 1.08) 

Model 4 1.00 1.12 (0.82 – 1.54) 0.88 (0.61 – 1.25) 0.79 (0.54 – 1.14) 0.86 (0.59 – 1.26) 

 Anthocyanins  

Mean 

intake 

(mg) (SD) 
1.8 (2.9) 2.9 (2.8) 4.1 (2.9) 5.8 (3.4) 10.5 (7.5) 

N (%) 

cases 
70 (5.4) 69 (5.3) 68 (5.2) 68 (5.0) 61 (4.5) 

Model 1 1.00 0.92 (0.66 – 1.28) 0.89 (0.64 – 1.24) 0.92 (0.66 – 1.27) 0.86 (0.61 – 1.20) 

Model 2 1.00 0.97 (0.70 – 1.34) 0.95 (0.68 – 1.32) 0.98 (0.70 – 1.37) 0.89 (0.63 – 1.26) 

Model 3 1.00 0.98 (0.70 – 1.36) 0.96 (0.69 – 1.33) 0.99 (0.71 – 1.40) 0.93 (0.65 -1.33) 

Model 4 1.00 0.97 (0.70 – 1.35) 0.93 (0.67 – 1.30) 0.99 (0.71 – 1.39) 0.88 (0.62 – 1.26) 

 Flavones  

Mean 

intake 

(mg) (SD) 
1.5 (0.7) 3.9 (0.7) 6.8 (0.9) 10.7 (1.4) 21.0 (8.5) 

N (%) 

cases 
75 (6.4) 58 (4.8) 78 (6.3) 57 (4.6) 68 (5.5) 

Model 1 1.00 0.76 (0.55 – 1.07) 0.99 (0.73 – 1.37) 0.69 (0.49 – 0.97) 0.83 (0.59 – 1.17) 
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Model 2 1.00 0.80 (0.57 – 1.11) 1.04 (0.77 – 1.43) 0.75 (0.53 – 1.05) 0.89 (0.64 – 1.26) 

Model 3 1.00 0.80 (0.57 – 1.12) 1.03 (0.75 – 1.43) 0.73 (0.50 – 1.05) 0.84 (0.54 – 1.32) 

Model 4 1.00 0.79 (0.57 – 1.12) 1.06 (0.77 – 1.46) 0.73 (0.51 – 1.05) 0.84 (0.54 – 1.30) 

 Isoflavones  

Mean 

intake 

(mg) (SD) 
0.3 (3.1) 0.3 (2.9) 0.5 (3.9) 1.0 (4.8) 9.5 (14.1) 

N (%) 

cases 
71 (6.0) 62 (5.1) 82 (6.6) 68 (5.5) 53 (4.3) 

Model 1 1.00 0.86 (0.61 – 1.20) 1.16 (0.84 – 1.58) 0.91 (0.65 – 1.26) 0.68 (0.48 – 0.96) 

Model 2 1.00 0.90 (0.64 – 1.25) 1.20 (0.88 – 1.64) 0.99 (0.71 – 1.37) 0.76 (0.53 – 1.08) 

Model 3 1.00 0.90 (0.64 – 1.25) 1.22 (0.89 – 1.66) 1.01 (0.72 – 1.41) 0.83 (0.57 – 1.20) 

Model 4 1.00 0.92 (0.66 – 1.28) 1.30 (0.95 -1.77) 1.12 (0.80 – 1.57) 1.03 (0.71 – 1.49) 

 Flavanones  

Mean 

intake 

(mg) (SD) 
11.2 (15.9) 17.1 (15.0) 24.8 (16.5) 33.7 (18.4) 57.1 (31.2) 

N (%) 

cases 
69 (5.9) 70 (5.8) 51 (4.1) 71 (5.7) 68 (5.5) 

Model 1 1.00 1.01 (0.73 – 1.40) 0.81 (0.58 – 1.15) 0.98 (0.70 – 1.35) 0.95 (0.68 – 1.33) 

Model 2 1.00 1.06 (0.76 – 1.46) 0.86 (0.61 – 1.21) 1.06 (0.76 – 1.48) 1.03 (0.73 – 1.45) 

Model 3 1.00 1.07 (0.77 – 1.49) 0.87 (0.61 – 1.24) 1.09 (0.76 – 1.56) 1.03 (0.64 – 1.66) 

Model 4 1.00 1.13 (0.82 – 1.57) 0.90 (0.63 – 1.28) 1.13 (0.79 – 1.63) 1.08 (0.67 – 1.73) 

Model 1: adjusted for total energy intake and age; Model 2: model 1 + additionally adjusted for 

hypertension risk factors (smoking status, diabetes, physical activity, alcohol intake) and demographics 

variables (education, income management); Model 3: model 2 + additionally adjusted for dietary intake 

variables (fibre, cholesterol, vitamin C, sodium); Model 4: model 3 + additionally adjusted for body 

mass index.  

 

2.4 Discussion 

Findings from this population-based prospective study of Australian women showed an 

association between a higher dietary intake of flavonoid subclasses and lower incidence of 

hypertension. In the middle-aged cohort, a higher intake of flavone, flavanone and isoflavone 

subclasses of flavonoids were associated with a lower incidence of hypertension. In the 

reproductive-aged cohort, higher intakes of flavanols were associated with lower incidence of 

hypertension. Inconsistencies in the present findings between cohorts may be explained by 

generational differences in food intake, as previously demonstrated by differences in the level 

of consumption of individual food items in the ALSWH middle-aged and reproductive-aged 

cohorts(187). Our analyses have also shown differences in the contribution of foods to 
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flavonoid intake, both in the diversity and in the percentage of food items for each subclass, 

which may further contribute to explaining the differences in associations between the cohorts. 

Additionally, the generational differences on hypertension risk factors(211) may also partly 

explain the inconsistencies found for associations between subclasses of flavonoids and 

incidence of hypertension in the two different age-range cohorts in our study. Similar analyses 

have been conducted in other populations. Cassidy et al.(212) examined the association 

between flavonoid intake and incidence of hypertension in a combined grouping of three 

different cohorts that included 133,914 women from the Nurses' Health Study I and II, and 

23,043 men from the Health Professionals Follow-Up Study. Across 14 years of follow-up, 

there were 29,018 cases of hypertension in women and 5629 cases of hypertension in men. A 

reduction of 8% in the risk of hypertension (RR: 0.92; 95% CI: 0.86-0.98) was found, 

comparing individuals from the highest quintile versus lowest quintile of anthocyanin intake. 

This association was stronger among individuals younger than 60 years (RR: 0.88; 95% CI: 

0.84-0.93). Other subclasses were not associated with hypertension; however, a pooled analysis 

for individual compounds suggested a 5% (95% CI: 0.91-0.99) lower risk for the highest 

compared with the lowest quintiles of intake of the flavone apigenin. In participants ≤60 y, a 

6% (95% CI: 0.88-0.97) lower risk was observed for the flavanol catechin(212). Another study 

conducted in women found that the highest quintile of flavonol intake was associated with a 

10% lower rate of hypertension compared to the lowest quintile (HR: 0.90; 95% CI: 0.84-0.97) 

after a follow-up of 14 years(213). Proanthocyanidin (polymerised flavanols) and anthocyanin 

subclasses also showed a similarly lowered risk of 9% in incidence of hypertension between 

highest and lowest quintiles of consumption (HR: 0.91; 95% CI: 0.84-0.97; and HR: 0.91, 95% 

CI: 0.85-0.97, respectively)(213).  

In the present study, there were slight differences between the two age cohorts with regard 

to contribution of subclasses to total flavonoid intake, but few relevant differences compared 



77 
 

to the aforementioned studies conducted in other countries. In both the middle-aged and 

reproductive-aged cohorts, the four subclasses that were main sources of flavonoids were the 

same (in descending order: flavanols, flavanones, flavonols and anthocyanins) as those 

reported in USA cohorts(212,214). In a cohort of French women, anthocyanins were the 

subclass that provided the second highest amount of flavonoids(213). There were, however, 

pronounced differences between our study and other cohort studies in total amount of flavonoid 

intake. A limitation is that the FFQ in the ALSWH did not include tea, but this could be 

ascertained from questions in another part of the survey. The daily total flavonoid intake, 

including tea flavonoids, in the middle-aged and reproductive-aged cohorts was 245 and 167 

mg/day, respectively. Comparing to cohort studies from other countries, our results were 

similar to the value of 190 mg/day reported in NHANES 1999–2002(214), but lower than the 

358 to 415 mg/day reported in the analysis of the three Health Professionals cohort studies by 

Cassidy et al.(212) and the amount of 575 ±302 mg/day reported in a French cohort(213). 

Comparisons between such studies need to be interpreted with caution due to the use of 

different databases for flavonoid calculation, as well as considering that such databases are 

constantly being updated to reflect changes in the food supply. However, a previous study 

conducted in a cohort of women aged over 75 years (n=1063) observed that the application of 

the United States Department of Agriculture (USDA) and phenol-explorer source data yielded 

a high correlation of intake estimates for total-flavonoids, flavanols, flavanones and 

anthocyanidins, while a poorer correlation for flavonols and flavones was found(215). Both 

studies conducted in USA(212,214) used the United States Department of Agriculture (USDA) 

database, while the study conducted in France(213) used the European Phenol-Explorer 

database. 

In both the middle-aged and reproductive-aged cohorts, total flavonoid intake increased 

with higher education, income and physical activity and lower BMI, with the same pattern 
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found for education(213,214), income(214), physical activity(212,214) and BMI(212,213) 

among other studies. A higher intake of total flavonoids found in our middle-aged, compared 

to reproductive-aged, cohort (245 vs 167 mg/day, respectively) is consistent with an increased 

flavonoid density of diets with age that is reported in other cohorts(213,214).  

Three subclasses of flavonoids, flavones, isoflavones and flavanones, were associated 

with a lower risk incident hypertension in the middle-aged cohort. The primary contributor for 

flavones and flavanones was orange juice (66% and 45% respectively), while for isoflavones 

was soy milk (93%). Flavones have been shown to exert an anti-hypertensive effect, mainly 

through their vasorelaxation properties(216). Flavone derivatives possess an endothelium-

dependent vasorelaxant effect, associated with an increased production of NO and prostacyclin 

PGI2 in a concentration-dependent manner(216). For example, luteolin, a flavone found in high 

concentrations in food items evaluated in the present study (including watermelon, celery and 

pumpkin) has been shown to exert a direct effect on vasorelaxation by improving acetylcholine-

induced NO generation(217).  

The BP lowering potential of isoflavones is linked to their signalling properties in the 

endothelium. The soy isoflavones, genistein, daidzein and glycitein, activate endothelial nitric 

oxide synthase and increase the capacity of serum to stimulate prostacyclin release in human 

endothelial cells(218). However, their effects on blood pressure remain equivocal, mainly due 

to inter-individual differences in equol (a gut microbiota-derived isoflavone metabolite) 

production as well as different dietary sources of isoflavones(218,219).  

The main flavanones, naringin, hesperidin, and eriodictoyl, present a wide range of 

beneficial properties, such antioxidant, anti-inflammatory, hypolipidemic, and anti-atherogenic 

activities(217). The main source of flavanones worldwide are citrus fruits(217), as was found 

in both cohorts in the present study. A few studies support our findings of the association 

between flavanone intake and reduced incident hypertension. Experimental studies indicate 

https://www.sciencedirect.com/topics/medicine-and-dentistry/genistein
https://www.sciencedirect.com/topics/medicine-and-dentistry/daidzein
https://www.sciencedirect.com/topics/medicine-and-dentistry/glycitein
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that the antihypertensive activity of flavones are mediated by endothelium-dependent and 

endothelium-independent mechanisms. Not only can flavones increase NO generation, but can 

also reduce [Ca2+]i and the consequent contraction of endothelial muscle cells(220).  

 The inclusion of tea flavonoids in our analyses resulted in the association of flavanols 

with lower incidence of hypertension not remaining longer significant in the reproductive-aged 

cohort. Some factors may explain this finding. The missing values and response rate of the 

FFQ did not match the questions about tea within the survey. Thus, the sub-analysis had a 

lower sample size and less statistical power. The percentage of total flavonoids and flavanols 

from tea is also much higher in the present study compared to other similar studies in the 

USA(212,214) and France(213), in which the annual per capita consumption of tea is 0.23 and 

0.20 kg, compared to 0.75 kg in the Australian population. Lastly, the consumption of black 

tea alone was not associated with a lower incidence of hypertension in the present study (ARR 

for intake quintile 4 vs 1: 0.96, 95% CI: 0.74-1.59).  

Limitations of this study include the use of self-reported data for hypertension. This may 

have caused misclassification of cases; however, a previous study(209) showed a high 

correlation (89%) between self-reported doctor-diagnosed hypertension and use of 

antihypertensive medication. Moreover, flavonoid content in foods is likely to be influenced 

by seasonality and geographic areas, and there may be discrepancies between food composition 

databases and flavonoid content in foods between different countries. Potential measurement 

error and selection bias based on the factors of seasonality and geographic areas were 

attenuated by the fact that the FFQ reflected 12 months of dietary intake and that recruitment 

of participants was proportional in all Australian states. In general, FFQs may lack detail about 

some flavonoid-rich food sources(221). The FFQ included in ALSWH was developed over two 

decades ago(204), and it may not have included relevant high-flavonoid food items that have 

increased in popularity over this period, such as blackberries, cherries, blueberries and 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/antihypertensive-activity
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raspberries(222). This could have led to an underestimation of anthocyanin intake, as the mean 

intake in the present study was 4.7 mg/day in the middle-aged and 5.0 mg/day in the 

reproductive-aged cohort, compared to 24.2 mg/day reported in 2019 in the overall Australian 

population from a nationally representative sample that used two 24-hr recalls as the method 

of dietary assessment(222). The mean anthocyanin intakes in other cohort studies that have 

found a reduction in incident hypertension were 12.5 mg/day(212) and 71.0 mg/day(213), 

while another cohort from NHANES 1999–2002(214) reported a dietary intake of only 3.03 

mg/day. Strengths of this study include the representative sample of Australian women across 

two age cohorts, the prospective design, and repeated measures.  

Residual confounding is a known problem in all observational studies; however, 

adjustments were made for key confounding factors, in-line with previous studies. Potential 

confounders were extensively explored in our models, with access to a wide range of 

demographic, hypertension risk factor and dietary intake variables. The large sample size 

allowed for a stepwise regression with bidirectional elimination in order to create the models 

for such adjustments, therefore avoiding major multicollinearity and overfitting issues of the 

model. Results were not adjusted for multiple testing. A common limitation is the inability to 

adjust for all dietary intake variables that are highly related (collinearity). The main predictor 

variable in this study, flavonoids, represents bioactive compounds that are present in virtually 

all plants; therefore, adjusting for all dietary components such as fibre, potassium and inorganic 

nitrates, that are also present in plants and/or other high-flavonoid food items is not viable in 

the modelling. We included fibre in our model because of its high significance in the model, 

and the well-established contribution of fibre in overall diet quality that is associated with blood 

pressure, as well as its high linearity with potassium and inorganic nitrates. Lastly, there was a 

relevant number of missing survey data on both cohorts; however, there is only a small 

probability that such loss over time was selective, as it is unlikely that a person would be unable 
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or unwilling to complete the next survey as a result of being diagnosed with hypertension. 

Hypertension is a ‘silent’ condition that per se has no major cognitive or physical implications, 

and has a non-invasive and non-onerous treatment(189). Potential attrition bias could be due 

to hypertension being a risk factor for major adverse cardiovascular events (MACE), which 

can lead to debilitating complications(223); however, this would only have been a cause for 

selective drop-out if a MACE occurred without the diagnosis of hypertension, or after the 

diagnosis of hypertension and before the following survey (period of approximately 3 years). 

Still, there was a higher response rate for surveys conducted in the middle-aged cohort (62.9%) 

compared to the reproductive-aged cohort (50.0%), despite a 5-fold higher number of cases of 

hypertension in the former. Concerning the exclusion of women due to missing data, there was 

no significant change in any variable included in the models in both cohorts. Recruitment of 

participants was proportional to population size in all Australian states, thereby enabling 

generalizability of the study findings to Australian women. 

 

2.5 Conclusion 

 Flavonoid intake was associated with a lower incidence of hypertension in two 

population-based cohorts of Australian women who were either of reproductive-age or middle-

aged. Higher intakes of flavones, isoflavones and flavanones, attributed mainly to orange, 

orange juice, apples and soy milk, were associated with a reduced risk of hypertension among 

middle-aged women followed-up over 15 years. Higher intakes of flavanols, attributed mainly 

to red wine and apples, were associated with a reduced risk of hypertension among 

reproductive-aged women followed-up for 12 years. These findings can be used in nutritional 

messages and policies aimed at improving the cardiovascular health of women of different life 

stages. 
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2.6 Supplementary Material 

 

Table 2-S1. Baseline characteristics of the study population comparing the sample with exclusions 

(n=6,630) with the sample with no exclusions (n=7,887) for missing data of middle-aged women in the 

Australian Longitudinal Study on Women’s Health 

Variables Categories n=6,630 n=7,887 P-valuea 

Mean age (years)  - 58.4 ±1.4 58.4 ±1.4 0.99 

Total energy (kcal) - 1583.3 ±539.8 1579.0 ±549.0 0.64 

Total flavonoid 

intake  

- 89.8 ±54.1 88.1 ±54.5 0.06 

Total flavonoid 

intake (including tea) 

- 244.7 ±143.1 243.3 ±144.1 0.54 

Fibre - 20.3 ±8.1 20.0 ±8.0 0.06 

Cholesterol - 240.3 ±107.5 241.3 ±110.1 0.58 

Vitamin C - 117.1 ±64.0 116.5 ±65.5 0.58 

Sodium - 2105.0 ±782.1 2098.3 ±790.3 0.61 

Educationb (%) 

low 61.2 63.2 0.97 

intermediate 21.4 20.7  

high 17.4 16.1  

Income management 

(%) 

impossible/difficult all the 

time 

9.7 10.6 0.99 

difficult some of the time 21.9 22.2  

not too bad 45.5 45.4  

easy 22.9 21.9  

BMIc (%) 

normal weight 45.9 45.3 0.98 

overweight 33.8 33.9  

obese 20.4 20.8  

Smoking status (%) 

never smoker 60.8 60.3 0.97 

former smoker 29.0 28.8  

current smoker 10.2 10.8  

    

Physical activityd (%) 

sedentary or low 35.11 36.2 0.98 

moderate 23.7 23.5  

high 41.1 40.3  

Alcohol consumption 

(%) 

rarely & non-drinker 32.8 33.8  

low risk 61.0 60.1  

risky & high risk 6.2 6.1  

Menopause status 

(%) 

surgical menopause 30.0 30.5 1.0 

not defined due to 

HRT/OCP 

7.1 7.0  

pre-menopausal 0.1 0.1  

peri-menopausal 2.0 2.0  

post-menopausal 60.7 60.3  

Diabetes type I & II 

(%) 

no 94.8 94.8 1.0 

yes 5.2 5.2  

Values are mean and SD (±) or percentages (%). BMI, body mass index; HRT, hormone replacement 

therapy; OCP, oral contraceptive pill. aP-value of independent t-test or chi-square test. bEducation: low, 

none or school certificate; intermediate, high school certificate, trade/apprenticeship, 
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certificate/diploma; high: university or higher university degree. cBMI: normal weight, 16-25 kg/m2; 

overweight, 25-30 kg/m2, obese, >30 kg/m2. dPhysical activity: sedentary & low, <500 metabolic 

equivalents (MET) per week; moderate, 500-1000 MET per week; high, >1000 MET per week.  
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Table 2-S2. Baseline characteristics of the study population comparing the sample with exclusions 

(n=6,099) versus the sample with no exclusions (n=8,388) for missing data of reproductive-aged women 

in the Australian Longitudinal Study on Women’s Health 

 

Variables Categories n=6,099 n=8,388 P-valuea 

Total energy (kcal) - 1638.7 ±586.5 1638.9 ±604.7  

Total flavonoid 

intake  

- 71.5 ±49.0 70.3 ±48.8 0.14 

Total flavonoid 

intake (including tea) 

- 167.2 ±123.5 165.5 ±123.4 0.41 

Fibre - 19.4 ±7.3 19.3 ±7.4 0.42 

Cholesterol - 266.9 ±115.0 269.3 ±122.1 0.23 

Vitamin C - 105.9 ±59.0 104.9 ±59.0 0.31 

Sodium - 2256.8 ±889.2 2267.4 ±925.3 0.49 

Mean age (years) 

(SD) 
- 

33.7 ±1.4 33.7 ±1.5 0.21 

     

Educationb (%) 

low 5.9 7.0 0.84 

intermediate 37.6 40.0  

high 56.7 53.1  

Income management 

(%) 

impossible/difficult all the 

time 

10.1 11.2 0.98 

difficult some of the time 26.5 28.2  

not too bad 41.2 39.7  

easy 22.2 20.9  

BMIc (%) 

normal weight 56.0 55.8 0.99 

overweight 25.5 25.5  

obese 18.5 18.7  

Smoking status (%) 

never smoker 65.2 62.2 0.85 

former smoker 23.3 24.6  

current smoker 11.5 13.4  

Physical activityd (%) 

sedentary or low 49.4 49.6 0.99 

moderate 22.1 22.5  

high 28.4 27.8  

Alcohol consumption 

(%) 

rarely & non-drinker 35.6 36.3 0.99 

low risk 60.3 59.6  

risky & high risk 4.1 4.2  

Diabetes type I & II 

(%) 

no 97.8 97.6 0.99 

yes 2.2 2.4  

Values are mean and SD (±) or percentages (%). BMI, body mass index. aP-value of independent t-

test or chi-square test. bEducation: low, none or school certificate; intermediate, high school 

certificate, trade/apprenticeship, certificate/diploma; high: university or higher university degree. 

cBMI: normal weight, 16-25 kg/m2; overweight, 25-30 kg/m2, obese, >30 kg/m2. dPhysical activity: 

sedentary & low, <500 metabolic equivalents (MET) per week; moderate, 500-1000 MET per week; 

high, >1000 MET per week. 
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Table 2-S3. Baseline nutrient and food group intake according to quintiles of total flavonoids intake 

in middle-aged women in the Australian Longitudinal Study on Women’s Health, n=6,630 

 Total flavonoid intake  

  Intake per 

day 

Quintile 1 

n =1289 

Quintile 2  

n =1304 

Quintile 3  

n =1315 

Quintile 4  

n =1367 

Quintile 5  

n =1353 
p-value1 

Total 

flavonoids 

(mg) 

27.9 ±10.0 52.4 ±5.8 74.0 ±7.1 
102.9 

±10.4 

169.6 

±48.5 
< 0.0001 

Energy (kcal) 
1381.5 

±479.0 

1476.2 

±484.0 

1561.9 

±497.1 

1655.7 

±526.1 

1784.2 

±590.4 
< 0.0001 

Flavonoids per 

1000 kcal 
20.2 ±7.2 35.5 ±4.0 47.4 ±4.6 62.1 ±6.3 95.1 ±27.2 <0.0001 

Total fat (g) 58.3 ±24.2 60.4 ±24.1 60.9 ±24.8 63.3 ±25.8 66.9 ±27.1 < 0.0001 

Energy from 

diet (%) 
38.0 36.8 35.1 34.4 33.7  

Saturated fat 

(g) 
24.0 ±10.9 24.7 ±11.1 24.4 ±11.2 24.9 ±11.6 25.9 ±11.9 < 0.0001 

PUFA (g) 8.8 ±4.5 9.0 ±4.3 9.5 ±4.8 10.2 ±4.8 11.0 ±5.5 < 0.0001 

MUFA (g) 20.5 ±8.8 21.3 ±8.9 21.4 ±9.0 22.4 ±9.6 
23.6 

±10.22 
< 0.0001 

Protein (g) 71.4 ±28.1 76.4 ±28.1 79.4 ±26.5 84.7 ±29.9 89.8 ±34.0 < 0.0001 

Energy from 

diet (%) 
20.7 20.7 20.3 20.5 20.1  

Carbohydrates 

(g) 

144.2 

±50.2 

158.1 

±52.9 

175.4 

±54.5 

187.8 

±58.4 

206.7 

±70.4 
< 0.0001 

Energy from 

diet (%) 
41.7 42.8 44.9 45.4 46.3  

Vitamin C 

(mg) 
67.9 ±26.7 87.7 ±34.6 

110.48 

±40.9 

135.8 

±50.6 

173.9 

±84.7 
< 0.0001 

Cholesterol 

(mg) 

225.4 

±107.0 

237.1 

±103.2 

235.4 

±97.5 

244.6 

±108.0 

256.0 

±117.1 
< 0.0001 

Fibre (g) 15.1 ±5.8 17.2 ±6.1 20.0 ±6.6 22.4 ±7.2 25.3 ±9.3 < 0.0001 

Calcium (mg) 
751.8 

±282.2 

807.3 

±284.7 

858.8 

±287.5 

913.3 

±306.7 

931.5 

±318.9 
< 0.0001 

Iron (mg) 9.5 ±4.2 10.5 ±4.2 11.5 ±4.3 12.4 ±4.8 13.6 ±5.9 < 0.0001 

High fat dairy 

(g) 

123.3 

±180.0 

98.0 

±163.9 

82.1 

±145.5 

77.8 

±152.6 

66.0 

±135.5 
< 0.0001 

Low fat dairy 

(g) 

168.7 

±181.1 

207.3 

±183.2 

231.5 

±178.0 

250.9 

±188.8 

260.3 

±185.2 
< 0.0001 

Vegetables (g) 83.4 ±45.0 90.6 ±44.9 98.3 ±42.9 
107.2 

±46.7 

118.3 

±53.2 
< 0.0001 

Legumes (g) 26.8 ±19.6 26.8 ±17.6 27.8 ±19.5 28.9 ±19.7 30.3 ±20.3 < 0.0001 

Fruits (g) 
102.7 

±72.8 

139.8 

±84.6 

197.1 

±99.0 

249.8 

±112.9 

312.4 

±152.2 
< 0.0001 

Fruit juice (g) 20.4 ±32.4 43.3 ±57.8 68.0 ±75.3 89.8 ±95.2 
135.4 

±157.1 
< 0.0001 

Tea (g) 
108.7 

±148.2 

268.3 

±201.2 

288.8 

±195.3 

293.2 

±192.5 

295.8 

±197.3 
< 0.0001 

Values presented in mean and standard deviation (±). 1p-value based on one-way ANOVA.  PUFA, 

polyunsaturated fatty acids; MUFA, monounsaturated fatty acids; CHO, carbohydrates; High fat dairy: 
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full cream milk, hard cheese, firm cheese, soft cheese, cream cheese, flavoured milk; Low fat dairy: 

ricotta, cottage cheese, low fat cheese, reduced fat milk, skim milk, soy milk, Vegetables: beetroot, 

broccoli, cabbage, capsicum, carrots, cauliflower, celery, garlic, lettuce, mushrooms, onion, pumpkin, 

spinach, tomatoes, zucchini; Legumes: baked beans, bean sprouts, green beans, other beans, chickpeas; 

Fruit: apples, pineapples, apricots, bananas, mango, watermelon, rockmelon, honeydew, oranges, 

peaches, pears, strawberries. 
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Table 2-S4. Baseline nutrient and food group intake according to quintiles of total flavonoids intake 

in reproductive-aged women in the Australian Longitudinal Study on Women’s Health, n=6,099 

Intake per 

day 

Quintile 1 

n =1177 

Quintile 2 

n =1203 

Quintile 3 

n =1245 

Quintile 4 

n =1236 

Quintile 5 

n =1239 
p-value1 

Total 

flavonoids 

(mg) 

20.2 ±6.6 39.1 ±5.2 58.6 ±6.2 84.7 ±9.7 
147.6 

±43.0 
< 0.0001 

Energy 

(kcal) 

1436.7 

±526.3 

1549.6 

±552.4 

1647.6 

±576.4 

1681.3 

±595.8 

1897.4 

±684.3 
<0.0001 

Flavonoids 

per 1000 

kcal 

14.1 ±4.6 25.2 ±3.3 35.6 ±3.8 50.4 ± 5.8 77.8 ±22.7 <0.0001 

Tota fat (g) 61.8 ±27.3 64.0 ±28.5 66.9 ±29.2 66.5 ±29.5 73.1 ±32.2 <0.0001 

Energy from 

diet (%) 
38.7 37.2 36.5 35.6 34.7  

Saturated 

fat (g) 
26.6 ±12.6 27.1 ±13.2 27.9 ±13.0 27.2 ±13.5 29.3 ±14.7 <0.0001 

PUFA (g) 8.3 ±4.3 8.8 ±4.4 9.4 ±5.0 9.7 ±4.7 11.0 ±5.4 <0.0001 

MUFA (g) 21.6 ±9.8 22.4 ±10.3 23.6 ± 10.9 23.5 ±10.8 25.9 ±11.8 <0.0001 

Protein (g) 71.8 ±27.0 77.6 ±29.1 81.9 ±30.9 83.1 ±31.9 91.6 ±36.6 <0.0001 

Energy from 

diet (%) 
20.0 19.4 19.9 19.8 19.3  

Carbohydra

tes (g) 
150.0 ±54.5 167.3 ±56.9 180.9 ±59.5 189.0 ±63.6 219.6 ±49.6 <0.0001 

Energy from 

diet (%) 
41.8 43.2 43.0 45.0 46.3.  

Vitamin c 

(mg) 
64.2 ±22.9 93.3 ±31.0 118.2±40.0 142.8 ±56.0 197.4 ±91.3 <0.0001 

Cholesterol 

(mg) 

231.2 

±101.3 

239.7 

±107.8 

249.0 

±111.8 

248.0 

±116.2 

269.8 

±133.1 
<0.0001 

Fibre 14.3 ±5.3 16.7 ±5.7 18.4 ±6.2 20.2 ±6.9 23.8 ±8.6 <0.0001 

Calcium 

(mg) 

764.1 

±273.5 

824.2 

±268.2 

848.0 

±276.6 

877.9 

±289.4 

912.6 

±328.7 
<0.0001 

Iron (mg) 9.3 ±3.8 10.6 ±4.4 11.4 ±4.7 11.9 ±4.9 13.5 ±5.5 <0.0001 

High fat 

dairy (g) 

150.0 

±196.1 

125.2 

±176.8 

108.6 

±165.3 

91.2 

±149.3 

92.2 

±158.1 
<0.0001 

Low fat 

dairy (g) 

165.1 

±177.2 

189.0 

±172.5 

202.6 

±174.3 

222.9 

±172.0 

221.7 

±173.2 
<0.0001 

Vegetables 

(g) 
72.9 ±42.4 87.8 ±46.1 91.9 ±45.3 98.7 ±46.8 109.4 ±54.8 <0.0001 

Legumes (g) 23.6 ±20.7 25.7 ±21.1 26.5 ±21.3 27.7 ±22.0 30.6 ±25.8 <0.0001 

Fruits (g) 73.5 ±48.1 
110.1 

±65.7 

145.0 

±86.9 

196.0 

±112.1 

267.1 

±153.5 
<0.0001 

Fruit juice 

(g) 
20.7 ±24.3 60.7 ±54.9 99.1 ±78.2 

129.3 

±115.0 

222.6 

±210.8 
<0.0001 

Tea (g) 
118.2 

±160.9 

144.4 

±164.3 

135.4 

±160.7 

135.9 

±155.9 

143.0 

±160.3 
<0.0001 
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Values presented in mean and standard deviation (±). 1p-value based on one-way ANOVA.  PUFA, 

polyunsaturated fatty acids; MUFA, monounsaturated fatty acids; CHO, carbohydrates; High fat dairy: 

full cream milk, hard cheese, firm cheese, soft cheese, cream cheese, flavoured milk; Low fat dairy: 

ricotta, cottage cheese, low fat cheese, reduced fat milk, skim milk, soy milk, Vegetables: beetroot, 

broccoli, cabbage, capsicum, carrots, cauliflower, celery, garlic, lettuce, mushrooms, onion, pumpkin, 

spinach, tomatoes, zucchini; Legumes: baked beans, bean sprouts, green beans, other beans, chickpeas; 

Fruit: apples, pineapples, apricots, bananas, mango, watermelon, rockmelon, honeydew, oranges, 

peaches, pears, strawberries. 
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Table 2-S5. Relative risks for associations of total flavonoids and flavanols intake (including tea) 

with incident hypertension in middle-aged women in the Australian Longitudinal Study on Women’s 

Health, n=6,630  

 Total Flavonoids  

 Quintile 1 

n =1289 

Quintile 2  

n =1304 

Quintile 3  

n =1315 

Quintile 4  

n =1367 

Quintile 5  

n =1353 

Intake 

(mg), 

mean±SD 

44.8 ±21.6 132.1 ±27.0 241.6 ±28.4 354.3 ±24.6 434.8 ±46.1 

N (%) 

cases 
315 (24.4) 312 (24.2) 343 (26.1) 335 (24.5) 329 (24.3) 

Model 1 1.00 0.87 (0.76 – 1.00) 0.93 (0.81 – 1.06) 0.98 (0.86 – 1.12) 0.89 (0.78 – 1.02) 

Model 2 1.00 0.93 (0.81 – 1.06) 0.99 (0.86 – 1.12) 1.01 (0.88 – 1.15) 0.96 (0.84 – 1.10) 

Model 3 1.00 0.94 (0.87 – 1.14) 1.00 (0.89 – 1.16) 1.02 (0.89 – 1.16) 0.98 (0.85 – 1.13) 

Model 4 1.00 0.95 (0.83 – 1.09) 1.02 (0.90 – 1.17) 1.05 (0.92 – 1.19) 1.02 (0.89 – 1.18) 

 Flavanols  

Intake 

(mg), 

mean±SD 

13.7 ±8.4 77.0 ±25.7 177.8 ±30.5 288.2 ±38.1 342.0 ±29.8 

N (%) 

cases 
314 (24.3) 309 (23.7) 343 (26.1) 325 (23.8) 343 (25.4) 

Model 1 1.00 0.90 (0.79 – 1.03) 0.97 (0.85 -1.10) 0.96 (0.84 – 1.10) 0.96 (0.84 – 1.09) 

Model 2 1.00 0.95 (0.83 – 1.09) 1.02 (0.89 – 1.16) 0.98 (0.86 – 1.12) 1.03 (0.90 – 1.18) 

Model 3 1.00 0.98 (0.85 – 1.12) 1.04 (0.91 – 1.19) 0.99 (0.86 – 1.13) 1.08 (0.94 – 1.23) 

Model 4 1.00 0.99 (0.86 – 1.13) 1.06 (0.92 -1.20) 1.03 (0.90 – 1.17) 1.11 (0.97 – 1.27) 

Model 1: adjusted for total energy intake and age; Model 2: model 1 + additionally adjusted for 

hypertension risk factors (smoking status, diabetes, physical activity, alcohol intake, menopause status) 

and demographics variables (education, income management); Model 3: model 2 + additionally 

adjusted for dietary intake variables (fibre, cholesterol, vitamin C, sodium); Model 4: model 3 + 

additionally adjusted for body mass index.  

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

Table 2-S6. Relative risks for associations of total flavonoids and flavanols intake (including tea) 

with incident hypertension in reproductive-aged women in the Australian Longitudinal Study on 

Women’s Health, n=5,340 

 

 Total Flavonoids  

 Quintile 1 

n =1030 

Quintile 2 

n =1049 

Quintile 3 

n =1090 

Quintile 4 

n =1088 

Quintile 5 

n =1083 

Intake 

(mg), 

mean±SD 

34.6 ±13.5 77.8 ±13.3 131.6 ±15.7 212.0 ±32.9 370.3 ±72.7 

N (%) 

cases 
68 (6.6) 80 (7.6) 58 (5.3) 50 (4.6) 59 (5.4) 

Model 1 1.00 1.12 (0.82 – 1.54) 0.80 (0.57 – 1.13) 0.69 (0.48 – 0.99) 0.80 (0.57 – 1.12) 

Model 2 1.00 1.19 (0.87 – 1.64) 0.85 (0.61 -1.21) 0.75 (0.52 – 1.08) 0.85 (0.60 – 1.21) 

Model 3 1.00 1.18 (0.85 – 1.63) 0.85 (0.60 -1.22) 0.75 (0.51 – 1.09) 0.86 (0.60 – 1.23) 

Model 4 1.00 1.26 (0.91 – 1.74) 0.94 (0.66 – 1.34) 0.89 (0.61 – 1.30) 1.04 (0.72 – 1.48) 

 Flavanols  

Intake 

(mg), 

mean±SD 

8.0 ±4.3 30.1 ±9.1  75.9 ±18.5  146.4 ±38.4 300.1 ±67.0 

N (%) 

cases 
79 (7.7) 66 (6.3) 56 (5.1) 52 (5.7) 62 (5.7) 

Model 1 1.00 0.80 (0.58 – 1.10) 0.69 (0.49 – 0.96) 0.63 (0.45 – 0.88) 0.73 (0.53 – 1.01) 

Model 2 1.00 0.84 (0.61 – 1.16) 0.73 (0.52 – 1.02) 0.66 (0.47 -0.94) 0.78 (0.56 – 1.08) 

Model 3 1.00 0.85 (0.62 – 1.18) 0.75 (0.53 – 1.05) 0.68 (0.48 – 0.97) 0.81 (0.58 – 1.13) 

Model 4 1.00 0.88 (0.64 – 1.22) 0.82 (0.58 – 1.15) 0.79 (0.56 – 1.12) 0.95 (0.68 – 1.33) 

Model 1: adjusted for total energy intake and age; Model 2: model 1 + additionally adjusted for 

hypertension risk factors (smoking status, diabetes, physical activity, alcohol intake) and demographics 

variables (education, income management); Model 3: model 2 + additionally adjusted for dietary intake 

variables (fibre, cholesterol, vitamin C, sodium); Model 4: model 3 + additionally adjusted for body 

mass index.  
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Table 2-S7. Relative risks for associations of total flavonoids and subclasses intake with incident 

hypertension in reproductive-aged women that gave birth to children in the Australian Longitudinal 

Study on Women’s Health, n=3,345 

 Total Flavonoids  

 Quintile 1 

n =655 

Quintile 2 

n =664 

Quintile 3 

n =671 

Quintile 4 

n =678 

Quintile 5 

n =677 

Intake 

(mg), 

mean±SD 

28.5 ±21.9 45.5 ±24.4 62.1 ±25.1 84.1 ±29.6 132.4 ±51.1 

N (%) 

cases 
31 41 35 19 26 

Model 1 1.00 1.40 (0.87 – 2.24) 1.20 (0.72 – 2.00) 0.65 (0.35 – 1.22) 0.97 (0.49 – 1.91) 

Model 2 1.00 1.43 (0.89 – 2.28) 1.23 (0.74 – 2.04) 0.66 (0.35 -1.24) 0.99 (0.50 – 1.94) 

 Flavanols  

Intake 

(mg), 

mean±SD 

6.4 ±8.0 11.1 ±11.1 16.4 ±11.3 24.2 ±13.0 50.8 ±29.3 

N (%) 

cases 
30 38 35 25 24 

Model 1 1.00 1.24 (0.77 -1.99) 1.19 (0.73 – 1.97) 0.91 (0.52 – 1.60) 0.87 (0.49 – 1.57) 

Model 2 1.00 1.25 (0.78 – 2.01) 1.23 (0.75 – 2.04) 0.94 (0.54 – 1.64) 0.90 (0.50 – 1.61) 

 Flavonols  

Intake 

(mg), 

mean±SD 

3.7 ±2.3 5.4 ±2.6 7.2 ±3.4 8.4 ±4.4 12.6 ±7.1 

N (%) 

cases 
33 45 22 25 20 

Model 1 1.00 1.40 (0.89 – 2.18) 0.81 (0.47 -1.40) 0.89 (0.52 – 1.52) 0.75 (0.41 – 1.35) 

Model 2 1.00 1.42 (0.91 – 2.21) 0.84 (0.49 – 1.46) 0.90 (0.52 – 1.54) 0.76 (0.42 – 1.37) 

 Anthocyanins  

Intake 

(mg), 

mean±SD 

1.5 ±2.3 2.7 ±2.4 3.9 ±2.6 5.8 ±2.8 10.8 ±6.3 

N (%) 

cases 
37 35 31 31 18 

Model 1 1.00 0.87 (0.55 – 1.37) 0.77 (0.78 – 1.23) 0.82 (0.51 – 1.34) 0.50 (0.28 – 0.90) 

Model 2 1.00 0.87 (0.55 – 1.37) 0.78 (0.49 – 1.25) 0.84 (0.52 – 1.38) 0.52 (0.29 – 0.92) 

 Flavones  

Intake 

(mg), 

mean±SD 

1.2 ±1.8 1.9 ±2.0 2.8 ±1.9 4.2 ±2.1 7.6 ±4.4 

N (%) 

cases 
32 30 38 25 27 

Model 1 1.00 1.03 (0.63 – 1.69) 1.27 (0.78 – 2.07) 0.82 (0.46 – 1.46) 0.91 (0.45 – 1.87) 

Model 2 1.00 1.03 (0.63 – 1.69) 1.29 (0.79 – 2.09) 0.85 (0.48 – 1.50) 0.93 (0.45 – 1.89) 

 Isoflavones  

Intake 

(mg), 

mean±SD 

0.27 ±2.8 0.20 ±2.3 0.29 ±2.6 0.61 ±3.3 9.9 ±14.5 

N (%) 

cases 
39 29 39 24 21 

Model 1 1.00 0.73 (0.46 – 1.17) 1.12 (0.72 – 1.74) 0.75 (0.44 – 1.25) 0.87 (0.50 – 1.51) 

Model 2 1.00 0.73 (0.45 – 1.17) 1.12 (0.73 – 1.74) 0.75 (0.45 – 1.25) 0.88 (0.50 – 1.52) 
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 Flavanones  

Intake 

(mg), 

mean±SD 

9.2 ±13.7 16.0 ±13.1 24.0 ±14.0 33.9 ±15.6 61.1 ±30.8 

N (%) 

cases 
32 34 28 32 26 

Model 1 1.00 1.25 (0.77 – 2.02) 0.98 (0.58 – 1.66) 1.17 (0.67 – 2.04) 1.08 (0.51 – 2.31) 

Model 2 1.00 1.27 (0.79 – 2.06) 1.01 (0.60 – 1.70) 1.19 (0.68 – 2.08) 1.10 (0.52 – 2.36) 

Total flavonoids (including tea) 

Intake 

(mg), 

mean±SD 

41.2 ±25.0 80.2 ±28.0 130.4 ±31.5 209.4 ±46.4 367.2 ±79.0 

N (%) 

cases 
36 36 26 23 24 

Model 1 1.00 1.10 (0.69 – 1.76) 0.84 (0.50 – 1.40) 0.82 (0.47 – 1.41) 0.79 (0.46 – 1.36) 

Model 2 1.00 1.10 (0.69 – 1.75) 0.85 (0.51 – 1.42) 0.84 (0.48 – 1.44) 0.79 (0.46 – 1.35) 

Flavanols (including tea) 

Intake 

(mg), 

mean±SD 

10.3 ±9.8 30.5 ±13.4 76.2 ±23.8 146.7 ±42.1 297.2 ±68.4 

N (%) 

cases 
37 34 21 24 29 

Model 1 1.00 1.24 (0.77 – 1.99) 1.19 (0.73 – 1.97) 0.91 (0.52 – 1.60) 0.87 (0.49 – 1.57) 

Model 2 1.00 1.25 (0.78 – 2.01) 1.23 (0.75 – 2.04) 0.94 (054 – 1.64) 0.90 (0.50 – 1.61) 

Model 1: adjusted for total energy intake, age, hypertension risk factors (smoking status, diabetes, 

physical activity, alcohol intake, demographics variables (education, income management), dietary 

intake variables (fibre, cholesterol, vitamin C, sodium) and body mass index; Model 2: Model 1 + 

additionally adjusted for gestational diabetes and gestational hypertension.  
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Figure 2-S1. Flavonoids subclasses intake among total flavonoids in reproductive-aged (n=6,099) 

and middle-aged (n=6,630) women in the Australian Longitudinal Study on Women’s Health.

        

 

        

A, middle-aged cohort; B, reproductive-aged cohort; C, middle-aged cohort including tea flavonoids; 

D, reproductive-aged cohort including tea flavonoids. 
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Figure 2-S2. Food source of flavonoids subclasses intake in middle-aged women in the Australian 

Longitudinal Study on Women’s Health, n=6,630 
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Figure 2-S3. Food source of flavonoids subclasses intake in reproductive-aged women in the 

Australian Longitudinal Study on Women’s Health, n=6,099 
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CHAPTER 3: The postprandial effect of anthocyanins on 

cardiovascular disease risk factors: a systematic literature review 

of high-fat meal challenge studies 

 

The effect of anthocyanins in the postprandial state have been evaluated by several 

clinical trials using a HFHE meal challenge. This method allows to assess if these bioactive 

compounds are capable of attenuating the deleterious effects following a HFHE meal; however, 

such findings were not yet collated and synthetized with the scope of the impact of 

anthocyanins on CVD risk factors. Therefore, systematic research literature was conducted in 

this purpose. A total of 13 eligible studies were included and beneficial effects of anthocyanins 

were reported with most promising results indicating the attenuation of deleterious postprandial 

effects on oxidative stress and antioxidant status, triacylglycerol and total cholesterol 

concentrations, vascular endothelial function and inflammatory biomarkers. Post-prandial 

changes in blood pressure and lipoproteins were least affected by anthocyanins.   

The majority of this chapter forms the substantive content of a published article 

(Appendix A) 

 

3.1 Introduction 

 

Cardiovascular diseases (CVD) are still the number one cause of death globally, 

representing 31% of deaths in 2016. Most CVDs can be prevented by addressing and managing 

behavioural risk factors such as diet (224). Several CVD risk factors are associated to the 

atherosclerotic process and other vascular dysfunctions closely linked to nutrition (225).  
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There is an emerging evidence that metabolic imbalances at the postprandial state, 

particularly after a high-energy meal rich in fat, are important contributing factors to 

development of CVD (105,106). Overall, the underlying mechanism involves a sharp increase 

in triacylglycerol along with an aberrant production of pro-oxidant molecules leading to an 

oxidative stress state, which may impair vascular and endothelial functions, as well as mediate 

the onset of an inflammatory response, which further contributes to the generation of more free 

radicals, thus creating a deleterious vicious cycle (105–107). Dietary fats comprise 

heterogeneous molecules with diverse structures, which affect diverse cell processes such as 

transcription regulation, cellular and organelle membrane structure and function, ion channel 

activity and electrophysiology. Responses vary depending on both the fatty acid composition 

of the food source, as well interactions with accompanying nutrients, the food matrix, and how 

it has been processed(108). Modification of the type of dietary fat in a food or overall meal has 

been shown to result in postprandial effects on appetite (109), lipaemia and markers for 

inflammation and endothelial activity (110). 

The high-fat meal (HFM) challenge is one way to investigate these imbalances 

promoted in a daily basis in Western diets (105). Thus, this type of studies allows dietetic 

therapeutic opportunities to attenuate the harmful effects of aberrant production of pro-oxidant 

molecules. Nutrition plays a major role in enhancing endogenous antioxidant defences and 

regulating the inflammatory state (9) and dietary components consumed alongside a high fat 

meal may be beneficial in blunting a harmful postprandial response (226). 

Anthocyanins, a subclass of flavonoids, are emerging as a potential therapeutic option 

for CVD risk factors(21). Anthocyanins are the largest class of water-soluble plant pigments, 

that are responsible for the blue, purple and red colour of many fruits and vegetables, such as 

blueberries, blackberries, red grapes, plums and eggplants (22). The positive results of 

anthocyanins on CVD risk factors are related to its antioxidant and immunomodulatory effects, 
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thereby attenuating the cooperative and synergistic deleterious effects of oxidative stress and 

inflammation in this condition (21,23). In humans, anthocyanins intake has been associated 

with a lower risk of cardiovascular events (24,25), as well as studies using anthocyanins as a 

diet intervention have shown improvements in vascular function (26) and in biomarkers related 

to oxidative stress (27–30), antioxidant status (28,30–32), lipid profile (33–35) and 

inflammatory response (36,37) in both long-term and acute designs. 

  To date, there has been no review of the effect of such compounds in studies using a 

HFM challenge. In order to address this question, a systematic literature review was undertaken 

using the procedures outlined in the PRISMA statement (227) aiming to evaluate if 

concomitant consumption of anthocyanins with a HFM attenuates the deleterious postprandial 

response of parameters known to be CVD risk factors, including blood pressure, vascular 

endothelial function, lipid profile and biomarkers related to oxidative stress, antioxidant status 

and immune response. 

 

3.2 Methods 

 

Search strategy 

A systematic literature review was undertaken using the procedures outlined in the 

PRISMA statement (227). Five electronic databases were searched up to the period of 1st 

February 2020; Medline, Scopus, CINAHL, Web of Science and PubMed. Two researchers 

were responsible for studies selection, data extraction, quality assessment and synthesis. The 

search strategy was carried out in accordance with the database orientations using Boolean 

operators (OR and AND), parenthesis, quotation marks and asterisk. Quotation marks were 

used to search for exact terms or expressions; parenthesis were used to indicate a group of 

search terms or combine two groups of search terms enabling all possible combinations of 
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sentences; asterisks were used to search all words derived of the precedent inflected part. The 

groups of search terms used were: "endothelium function" or "endothelium dysfunction" or 

"laser speckle" or "laser doppler" or "flow-mediated dilatation" or FMD or LSCI or "arterial 

stiffness" or "pulse wave velocity" or PWV or "lipid profile" or LDL or VLDL or ox-LDL or 

"oxidative stress" or "lipid peroxidation" or "blood pressure" or cytokines or inflammation or 

immune or inflammatory or chemokine or adhesion or malondialdehyde or isoprostanes or 

nitrite or nitrate or ENO* "nitric oxide") AND ("postprandial" or "postprandial" or "post 

prandial" or "meal challenge" or "challenge meal" or "test meal") AND anthocyanins. The 

study selection, quality assessment, data extraction and synthesis were conducted by two 

researchers independently and then reviewed by all authors. The review was registered with 

PROSPERO (CRD42019126265). 

 

Selection criteria 

Selection criteria were formed using the Population Intervention Comparison Outcome 

Study design (PICOS) format (227). The criteria used to screen the titles and abstracts of 

literature returned through database searching (Table 3-1).  

 

Table 3-1. PICOS (participants, interventions, comparisons, outcomes, and study 

design) criteria to define the research question 

Parameter Inclusion criteria 

Participants Young adults (18-59 years of age) 

Interventions 
Dietary intervention with anthocyanins in whole food or purified 

extract 

Comparators A comparison group receiving a control intervention 

Outcomes 

CVD risk factors including blood pressure, lipid profile, vascular and 

endothelial function, biomarkers related to inflammation, oxidative 

stress and antioxidant status 
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Study design 
Randomised or cross-over clinical trials with high fat meal challenge 

for all groups. 

 

Only articles published in English were included. Exclusion criteria: mean age of 

participants <18 or >59 years; no nutritional information of the HFM, placebo or dietary 

intervention; other conditions besides the HFM challenge. Reference lists of included articles 

were screened for further studies that may have been missed in initial database search.  

 

 Data extraction 

Two independent reviewers extracted data and cross checked results to ensure 

consistency. The following data were extracted from each study and reported in a summary 

table; year of publication, author(s), participant demographics, sample size, anthocyanin source 

and dose, control used, test meal and study outcomes (Table 3-2). Authors were contacted if 

further information was required. 

 

Risk of bias assessment 

Studies included in this review were assessed for potential bias using the revised 

Cochrane risk-of-bias tool for randomised trials (228). Two researchers independently 

reviewed each study, performing evaluation across five risk-of-bias domains, with each domain 

rated either low risk, high risk or some concern of bias. The prescribed algorithm was used to 

determine domain ratings and overall risk-of-bias judgement for each study (228). 

 

3.3 Results 

 

Study selection 
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A total of 9135 articles returned through database searching. 1464 duplicates were 

removed and 7671 articles were excluded during title and abstract screening (Figure 3-1). The 

full-text of the remaining 29 articles were accessed and evaluated according the study selection 

criteria. Sixteen articles were excluded as they did not meet all criteria and the remaining 13 

studies were eligible for the review.  

 

    

Figure 3-1: Flow diagram of the search and selection strategy. 

 

Characteristics of studies included in review 
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The characteristics of the 13 studies reviewed are summarised in Table 3-2. All studies 

included had a cross-over design with a wash-out period ranging from 4 to 28 days, of which 

four were double-blinded (229–232), seven were single-blinded (37,233–238) and two did not 

present blind strategies (239,240). The mean age of subjects involved in included studies 

ranged from 20.2 to 50.9 years and five studies were conducted only in male subjects 

(229,232,233,237,240), while all other recruited men and women. The majority of studies were 

conducted on healthy individuals, except for one study on subjects with an atherosclerosis-

prone phenotype (233), one on subjects with obesity and insulin resistance phenotype (235) 

and another one with participants with at least one CVD risk factor (239). In relation to the 

dose of anthocyanins used in the intervention, six studies used a dose <100mg 

(37,230,231,233,236,239) and four studies used doses >100mg (229,232,237,238), while two 

studies used three different doses (235,240) and one study used two different doses (234) within 

both ranges. Overall, the dose ranged from 11.2 to 1530mg of anthocyanins. The fat content 

within meal challenges were <40g in four studies (37,230,234,235) and >40g in nine studies 

(229,231–233,236–240). Concerning fat content as % of energy, the meal challenges in six 

studies provided >50% of energy from fats(229,230,232,233,239,240), while seven studies 

provided <50% energy from fats(37,231,234–238). The main type of fats within the challenge 

meals were derived from animal products with high content of saturated fats such as cream, 

sausages, cheese, fried potatoes, bacon, eggs and butter. There were no relevant source of 

omega-3 fatty acids included in any of the challenge meals. All studies used a macronutrient 

matched placebo in the control arm. In eleven studies(126,129,186,229–234,241), either a 

beverage, yoghurt or smoothie was used, while two studies(238,240) provided meals without 

incorporating the freeze-dried source of anthocyanins. One study used water as an additional 

control treatment(239), while another also matched the content of vitamin C in the 

placebo(232)
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Table 3-2. High-fat meal challenge studies analysing cardiovascular risk factors 

Reference Population sample 

size 

Diet intervention(s) Control arm(s) Test meal Outcomes 

Alqurashi et 

al. 2015, 

UK(229) 

Healthy male adults 

(n=23), mean age 46yr 

± 1.9, BMI 27.6kg/m2 

± 0.4 

Açai smoothie: 150g 

frozen açai pulp, 50g 

banana, 155.1Kcal, 

8.5g fat, 2.4g PTN, 

17.2g CHO, 7.2g 

fibre, 493mg 

anthocyanins 

 

Colour and 

macronutrient 

matched smoothie 

Meal+beverage: 

869.7 Kcal 

(60.6% from fat), 

58.5g fat, 74.4g 

CHO, 11.4g PTN  

Blood pressure: ↔ 

FMD: ↑ 1.4%, p=0.001 at 2h and ↑ 0.8%, 

p<0.001 at 4h. 

Plasma total oxidant capacity (peroxide 

concentrations): ↓ area under the curve over 

7h, p=0.02 

Cerletti et al. 

2014, 

Italy(239) 

Adults (n=18: 9 

females, 9 males), 

36.9 ± 10.5yr, BMI 

26.8 ±4.0. At least one 

CVD risk factor 

(overweight, 

hypertension, 

smoking, high serum 

cholesterol or TG 

levels 

Red orange juice: 

53.1mg anthocyanins 

a) Blonde orange 

juice; b) water 

890 Kcal (52.6% 

from fat), 52g fat, 

25g PTN, 81g 

CHO 

Augmentation index (vascular stiffness): ↓ 

2.18 ± 19.26 to -6.11 ± 11.90, p=0.0030 

Reactive hyperaemia index (vascular 

reactivity): ↔ 

Blood pressure: ↔ (diastolic blood pressure 

within group:↓ p=0.0045) 

TAG: ↔ (↓ within the intervention group, 

p=0.0131)  

 

Edirisinghe et 

al. 2010, 

USA(37) 

Healthy adults (n=24, 

14 females, 10males) 

BMI 29.2 ±2.3,  

50.9yrs ± 15 

Milk based beverage + 

strawberry powder, 

39.04mg 

anthocyanins 

Macronutrient 

matched placebo 

beverage 

962.3 Kcal 

(28.1% from fat), 

30g fat, 36g PTN, 

135g CHO 

 

hsCRP: ↓ 3.1 (SEM 0.1) vs 2.7 (SEM 0.5) 

mg/L, P=0.02 at 6h 

IL-6: ↓ 3.4 (SEM 0.5) vs 4.5 (SEM 0.5) 

pg/ml, P<0.05 at 6h. 

TNF-α: ↔ 

IL-1β: ↔ 

 

Miglio et al. 

2012, 

Italy(230) 

Healhy adults (n=14), 

45yr ± 9, BMI 

26.8kg/m2 ± 2.2 

a) Fruit juice (86% 

mix apple, grape, 

blueberry, 

pomegranate juices), 

6.5mg anthocyanins 

b) Fruit juice (63% 

Energy and sugar 

matched placebo, 

66g CHO 

1344 Kcal (54.2% 

from fat), 81g fat, 

104g CHO, 52g 

PTN, 3.1g fibre 

Urinary FRAP: ↑ 35%, p<0.01 

Plasma TRAP: ↑ p<0.05 at 1h, ↑ 8%, 

p<0.001 at 2h, ↑ p<0.01 at 4h. 

Plasma FRAP: ↔ 

Plasma uric acid: ↓ p<0.05 at 8h 
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mix of  pineapple, 

blackcurrant and plum 

juices), 16mg 

anthocyanins 

 

Plasma Thiols: ↓ p<0.05 at 0.5, 1, 4 and 8h, 

↓ p<0.01 

Ascorbic acid: ↔ 

Ono-Moore et 

al. 2016, 

USA(234) 

Healthy adults (n=23, 

18 females, 5 males), 

30yr ± 3yr, BMI 

21.9kg/m2 ± 0.4 

Yoghurt + freeze dried 

blueberry powder: a) 

87.9mg 

anthocyanins; b) 

154.5mg 

anthocyanins 

Macronutrient 

matched control 

yoghurt: 191 

Kcal, 0.6g fat, 

45.1g CHO, 1.2g 

PTN, 10g fibre 

 

653 Kcal (40.0% 

from fat), 29g fat, 

73.6g CHO, 24g 

PTN 

TAG: ↔ 

LDL-c: ↔ 

HDL-c: ↔ 

IL-8: ↔ 

IL-1β: ↔ 

TNF-α: ↔ 

Park et al. 

2016, 

USA(235) 

Adults with obesity 

and insulin resistance 

phenotype (n=21, 16 

females, 5 males), 

39.8yr ± 13.8, BMI 

40.2 ± 7.2 

Freeze dried whole 

strawberry powder: a) 

42.2mg 

anthocyanins; b) 

87.9mg; c) 154.5mg 

Milk based colour 

and macronutrient 

matched beverage 

967 Kcal (23.6% 

from fat), 25.4g 

fat, 146.2g CHO, 

36.9g PTN, 12.3g 

fibre 

TAG: ↔ 

ORAC: ↔ 

IL-6: ↔ 

OxLDL-c: ↓ –3.0 ± 0.8 U/L, p<0.05 

 

Richter et al. 

2017, 

USA(238) 

Healthy adults (n=30, 

13 females, 17 males), 

BMI 31 kg/m2 ± 0.5, 

28yr ± 2.0 

Freeze dried 

strawberry powder:  

163.41mg 

anthocyanins (added 

to meal) 

 

Strawberry 

flavoured powder 

(added to meal) 

1004Kcal (44.8% 

from fat), 50g fat, 

105g CHO, 32g 

PTN, 7g fibre 

 

Blood pressure: ↔ 

TAG: ↔ 

OxLDL-c: ↔ 

MDA: ↔ 

Augmentation index: ↔ 

Aortic stiffness (PWV): ↔ 

 

Urquiaga et 

al. 2016, 

Chile(240) 

Healthy adult males 

(n=9), 20.2yr (18.7-

27.3), BMI 24.6 kg/m2 

(20.7-29.4) 

Berry concentrate: a) 

added on beverage, 

90mg anthocyanins; 

b) added on burger 

and on beverage, 

174.3mg 

anthocyanins 

Plain burger and 

water 

527 Kcal (58.9% 

from fat), 48.7g 

PTN, 34.33g fat, 

4.6g CHO 

TAG: ↔ 

MDA: ↓ p<0.05 at all time points for 

intervention “b” and ↓ p<0.05 at 5 and 6h for 

intervention “a” 

PTNcarbonyls: ↓ p<0.05 at 2, 3, 4, 5 and 6h 

for intervention “b” and ↓ p<0.05 at 4 and 6h 

for intervention “a” 

Plasma FRAP: ↔ 

Ascorbic acid: ↔ 
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Huang 2016, 

USA(236) 

Healthy adults (n= 14, 

9 males and 5 

females), 25yrs ± 4, 

BMI 26kg/m2 ± 2 

Freeze dried 

strawberry added to a 

beverage, 49.02mg 

anthocyanins 

Macronutrients 

matched 

beverage: 41Kcal, 

0.8g PTN, 0.1g 

fat, 9.1g CHO 

 

841 Kcal (43.9% 

from fat), 41g fat, 

96g CHO 

TAG: ↔ 

OxLDL-c: ↔ 

IL-6: ↓ p=0.048 (intervention consumed 

before the meal) over 10h; ↔ (intervention 

consumed within and after the meal, trend 

p<0.1) over 10h 

Kay & Holub 

2002, 

Canada(237) 

Healhy males(n=8), 

mean age 46.9 ±1.9), 

BMI 23.8kg/m2 ± 0.8 

Freeze dried wild-

blueberry supplement: 

1160mg  

anthocyanins 

 

 

Control 

supplement 

matched in CHO 

and energy  

853 Kcal (49.3% 

from fat), 46.7 g 

fat, 75.2g CHO, 

32.4g PTN, 4.5g 

fibre  

 

ORAC: ↑ p<0.05 

Total antioxidant status: ↑ 4.5%, p=0.05. 

TAG: ↔ 

TC: ↔ 

LDL-c: ↔ 

HDL-c: ↔ 

 

Peluso et al. 

2011, 

Italy(231) 

Healthy adults, (n=14, 

12 males and 2 

females),  45.1yrs ± 

8.6, BMI 26.8 kg/m2 ± 

2.2 

Blackcurrant, plum 

and pineapple 

beverage: 16mg 

anthocyanins 

Placebo beverage  

devoid of 

antioxidant 

activity 

Meal+beverage: 

1344 Kcal (30.0% 

from fat), 184g 

CHO, 44.8g fat, 

49g PTN 

TAG: ↔ 

TC: ↔ [prevented a significant increase 

(p<0.001) observed only at the control group 

over 8h] 

IL-17: ↓ p<0.05 at 4 and p<0.01 at 8h 

IL-6: ↓ 0.5h (p<0.01), 1h (P<0.05) and 2h 

(p<0.001) 

TNF-a: ↓ at multiple time points (p<0.01 at 

1h, p<0.05 at 2 and 6h, p<0.001 at 4 and 8h) 

 

Huebbe et al. 

2011, 

Germany(233) 

Adult with 

atherosclerosis prone 

phenotype (n=11), 

37.4 yrs ±1.9, BMI 

32.1 ±1.2 

Blackcurrant based 

beverage (15% 

blackcurrant puree, 

9% raspberry puree, 

7% cherry puree, 39% 

red grape juice + 

banana puree): 

11.2mg anthocyanins 

(7.5mg delphinidin-3-

glucoside, 7.5mg 

cyanidin-3-glucoside, 

Macronutrient 

matched 

beverage: 

1029Kcal, 63.8g 

fat, 6.0g PTN, 

107.6g CHO, 

1.8g fibre 

Blackcurrant 

based beverage 

(added cream and 

sugar): 1029 Kcal 

(55.8% from fat), 

63.8g fat, 6.0g 

PTN, 107.6g 

CHO, 1.8g fibre 

TAG: ↔ (↓ trend, p=0.059) 

LDL-c: ↔ 

HDL-c: ↔ 

TC: ↔ 

OxLDL-c: ↔ 

IL-1β: ↔ 

TNF-α: ↔ 

ORAC: ↑ p<0.040 at 90min and p<0.02 at 

120 min  

Ascorbic acid: ↑ 14 mmol/l, p<0.004 
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0.8mg malvidin-3-

glucoside) 

 

 

Polley et al. 

2019, 

USA(232) 

Healthy adults (22 yrs 

± 3.0), BMI 25.5 ±3.4  

Montmorency tart 

cherry concentrate: 

1513.8mg 

anthocyanins 

Macronutrient 

matched beverage 

+11mg of vitamin 

C: 166.5Kcal,  

CHO 39.4g; PTN 

2.24g 

Biscuit, sausage 

patty and butter: 

920 Kcal (58.7% 

from fat), 60.0g 

fat, 22.2g PTN, 

72g CHO, 

ORAC: ↔ 

FRAP: ↔ 

TG: ↔ 

 

      

Abbreviations and symbols: CHO, carbohydrate; PTN, protein; FMD, flow-mediated dilatation; Kcal, kilocalories; TAG, triacylglycerol; TC, total cholesterol; 
HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; OxLDL-c, oxidized low-density lipoprotein cholesterol; hsCRP, high 
sensitivity C-reactive protein; FRAP, ferric reducing ability of plasma; TRAP, total radical-trapping antioxidant parameter; ORAC: oxygen radical absorbance 
capacity; ↔, no significant changes; ↑, significant increase; ↓, significant decrease 
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Risk of bias 

The overall risk of bias was judged as “low risk” for ten studies (37,229,230,232,234–

236,238–240), while three studies (231,233,237) were judged as having “some concern” due 

to ranking as such in one or more risk domains (Table 3-3). Among the studies that were 

identified as having “some concern” regarding risk of bias, two studies (233,237) had missing 

information on domain 1 (risk of bias arising from the randomization process) and one study 

(231) had missing information on domain 3 (risk of bias due to missing outcome data) (228).
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      Table 3-3. Overall risk of bias of included studies 
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Domain 1: Risk of bias arising 

from the randomisation process              

Domain 2: Risk of bias due to 

deviations from the intended 

interventions (effect of assignment 

to intervention) 

             

Domain 3: Risk of bias due to 

missing outcome data              

Domain 4: Risk of bias in 

measurement of the outcome              

Domain 5: Risk of bias in selection 

of the reported result              

Overall risk of bias 
             

Symbols:  low risk;  some concern
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Outcomes 

The outcomes analysed in the included studies were blood pressure, lipid profile, 

vascular and endothelial function, as well as biomarkers related to inflammation, oxidative 

stress and antioxidant status (Table 3-2). The postprandial response of such outcomes were 

analysed after the intake of the high-fat meal challenge, which means that a significant decrease 

may actually mean an attenuation of an increase pattern. Three studies measured blood pressure 

(229,238,239) before and after the HFMC, none of which found significant changes in systolic 

blood pressure. One study found a reduction in diastolic blood pressure in the anthocyanins 

intervention group (p=0.0045), while an absence of effect was observed in the other two arms 

administering water or a matched anthocyanins-free placebo (239). Vascular and endothelial 

function were evaluated by three studies (229,238,239). Alqurashi et al. (229) assessed 

endothelial function in the brachial artery by flow-mediated dilatation (FMD) with a 

postprandial increase of 1.4% versus 0.4% at 2h (p=0.001) and an increase of 0.8% versus a 

decrease of -0.3% at 6h (p<0.001), comparing the intervention with the placebo group, 

respectively. Cerletti et al. (239) assessed vascular stiffness through the augmentation index 

(AI) and vascular reactivity through the reactive hyperaemia index (RHI). The latter did not 

present significant changes, but there was a significant decrease (2.18 ± 19.26 to -6.11 ± 11.90, 

p=0.0030) in the AI 3h after the meal only in the anthocyanins intervention arm (239). Richter 

et al. (238) investigated AI and augmentation pressure through pulse wave analysis and the 

aortic stiffness assessed by carotid-femoral pulse wave velocity (PWV). None of the 

parameters were significantly different between intervention and control arms (238). 

Regarding the lipid profile, ten studies evaluated triacylglycerol (TAG) (231–240), of which 

one study found a higher decrease (p=0.0131)  in the intervention group (239) and other study 

found a trend(p=0.059) of a decrease 60 minutes after ingestion of the HFMC (233). Total 

cholesterol (TC) was evaluated by five studies (231,233,234,237,239) and two studies found 
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significant changes. Cerltetti et al. (239) found a reduction (p=0.0339) only in the anthocyanin 

intervention arm (239), while Peluso et al. (231) found that the anthocyanins prevented an 

increase in the intervention group, therefore a significant increase was only observed in the 

control group over 8h (p<0.001) (231). The studies that measured HDL-c (233,234,237) and 

LDL-c (233,234,237) did not find any significant changes.  

Among inflammatory markers, six studies evaluated IL-6 (37,231,233–236) 

concentrations, of which three (37,231,236) reported significant changes. In one study (37) the 

anthocyanin intervention was able to attenuate an increase in IL-6 response six hours after the 

HFMC compared to the placebo group [3.4 (SEM 0.5) versus 4.5 (SEM 0.5) pg/ml, P<0.05]. 

Similarly, Peluso et al. (231) found a significant attenuation in postprandial IL-6 concentration 

at 0.5 (p<0.01), 1 (P<0.05) and 2h (p<0.001) time points (231). Another study (236) found a 

trend to attenuate such response in two groups (consuming the anthocyanins intervention 

within or after the HFMC) and a significant decrease in the group consuming the anthocyanins 

intervention before the meal (p=0.048). The cytokine TNF-α was evaluated by four studies 

(37,231,233,234) and with one study (231) finding a significant result preventing a postprandial 

rise of TNF-α concentrations at multiple time points (p<0.01 at 1h, p<0.05 at 2 and 6h, p<0.001 

at 4 and 8h). 

There were no significant changes in IL-1β concentrations between treatments cross 

the three studies evaluated this cytokine (37,233,234). Only one study (37) evaluated hsCRP 

concentrations before and after the HFMC presenting a significant lower concentration 

compared to placebo [3.1 (SEM 0.1) versus 2.7 (SEM 0.5) mg/L, P=0.02]. Still, there was one 

study that measured IL-8 concentration finding not significant results (234) and one study that 

evaluate Il-17 which found a significant postprandial reduction at 4(p<0.05) and 8h(p<0.001) 

time points (231). 
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A large variety of oxidative stress and antioxidant status biomarkers were measured by 

nine studies (229,230,232,233,235–238,240) included in this review. Four studies 

(233,235,236,238) evaluated OxLDL-c concentrations; however, only one study (235) found a 

significant reduction (–3.0 ± 0.8 U/L, p<0.05) in the intervention arm compared to placebo. 

Plasma malondialdehyde (MDA) concentration was measured in two studies (238,240) in 

which one found that the anthocyanins interventions arms were able to prevent postprandial 

MDA accumulation (p<0.05 at multiple time points), and the mean value of the area under the 

curve of was reduced compared to placebo (240). This same study also found a reduction 

(p<0.05 at multiple time points for both anthocyanins interventions) in plasma protein 

carbonyls and an increase in the DPPH (2,2-diphenyl-1-picrylhydrazyl) plasma antioxidant 

capacity (240). The ferric reducing ability of plasma (FRAP) assay was used to examine 

antioxidant capacity in was evaluated by three studies (230,232,240), but no significant effects 

of anthocyanin intervention were detected. However, Miglio et al. (230) found a 35% increase 

in the urinary excretion of antioxidants as indicated by raised urinary FRAP (P<0.01). This 

same study found an increase (p<0.05 at 1h, p<0.001 at 2h and p<0.01 at 4h) in plasma total 

radical-trapping antioxidant parameter (TRAP), as well as a significant attenuation in the 

increase of endogenous antioxidants thiols and uric acid (UA) (p<0.05 at 8h). Plasma ascorbic 

acid (vitamin C) was measured in four studies (230,233,237,240), of which one study (233) 

found an increase in the anthocyanin intervention arm (+14 mmol/l, p<0.004) compared to the 

placebo. The oxygen radical absorbance capacity (ORAC) of plasma/serum was evaluated, 

before and after the HFMC, in five studies (232,233,235,237,240), of which two found 

significant changes. In one study (233), the intervention was able to prevent the postprandial 

decrease in the ORAC of plasma at 90 and 120 min following the HFM challenge (p<0.040 

and p<0.02, respectively), while another study (237) found a significant increase in serum 

ORAC 1h after the HFMC in intervention group when compared to the control (p<0.05). 
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Furthermore, this same study found a significant increase in the total antioxidant status (TAS) 

assay (+4.5%, p=0.05). Lastly, one study (229) measured the total oxidant capacity in plasma 

by assessing the total peroxide concentrations, and found a significantly lower incremental area 

under the curve in the intervention group(p = 0.02). 

 

3.4 Discussion 

The results of studies included in this systematic literature review indicate that the 

postprandial state, after exposure to a high fat meal, may provide a useful context to investigate 

acute metabolic changes, from well-known lipid responses to complex phenolic compound 

signalling pathways that contribute to the development of CVD. A wide range of risk factors 

such as blood pressure, lipid profile, vascular and endothelial function, as well as biomarkers 

related to inflammation, oxidative stress and antioxidant status were included as outcomes in 

the acute studies in the review.  

 Despite the lack of positive results in blood pressure, of which only study found a 

significant decrease in diastolic blood pressure (239), vascular and endothelial parameters 

showed more positive results. It is more likely that such parameters will respond in a higher 

magnitude than blood pressure in acute studies, due to the excess postprandial production of 

pro-oxidant molecules following the HFMC. This may in turn inactivate endothelial dependent 

factors, in particular nitric oxide, leading to impaired vasodilation and the onset of an 

inflammatory response, which further leads to the generation of more free radicals (226,242). 

In this matter, açai consumption was associated with improvements in endothelial vascular 

function, measured by FMD, in healthy overweight man, which was also followed by an 

increase in total oxidant capacity in plasma, assessed as a measure of total peroxide 

concentrations (229). The significant improvement in FMD found in this study(229) was 1% 

higher than in controls, a magnitude of effect that has been shown in a meta-analysis to be 
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associated with an overall 8 % reduction in CVD risk (RR= 0.92; 95%CI: 0.88; 0.95) for each  

percentage increase (92) . Flow-mediated dilatation is a non-invasive measurement of 

endothelium function that has been associated with CVD risk prediction(92,243). Another 

study found a decrease in arterial stiffness, measured by AI, after consumption of blood orange 

juice anthocyanins in individual with at least one CVD risk factor (overweight, hypertension, 

smoking, high serum cholesterol or triacylglycerol levels) (239). 

A recent systematic review evaluated the postprandial inflammatory response to HFM 

challenge, in which IL-6 was stated as the inflammatory marker with the stronger response to 

this stress (244). IL-6 has a pleiotropic nature showing both anti and pro-inflammatory roles 

and regulating a plethora of immune and metabolic responses, however a high concentration 

of this cytokine has been associated with CVD and mortality (77,245). Still, IL-6 has a high 

expression on vascular endothelium and the pharmacological inhibition of IL-6 improves 

endothelial function (78). The inhibitory effect on postprandial IL-6 concentrations found 

within the studies added in this review demonstrates a potential therapeutic effect of 

anthocyanins for CVD (37,231,236). One possible mechanism that anthocyanins may exert this 

effect is through decreasing the activity of the NF-κB pathway, which is a transcription factor 

responsible for triggering and regulating inflammatory processes, leading to the expression of 

pro-inflammatory cytokines and enzymes (21,121). Concerning the clinical significance of the 

magnitude of effects reported in the studies that observed benefits associated with anthocyanin 

intake, the significant changes of between 0.34 and 0.90 pg/mL represent changes from 

baseline of >2 SD(37,236) and >3 SD(231). These results are clinically meaningful considering 

the predictive roles of IL-6 concentration in CVD risk. Hazard ratios of 1.80 are reported 

according to each 1-SD increase in IL-6 for risk of first-ever cerebrovascular events in 

individuals with vascular risk factors without any pre-existing cardiovascular disease(79). 

Further, a positive predictive value of 100% is reported for coronary artery disease when IL-6 
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concentrations exceed 1.0 pg/mL in patients who have an intermediate cardiovascular risk 

profile and chest pain(246). In a meta-analysis of 17 prospective studies investigating clinical 

coronary outcomes (i.e., myocardial infarction or coronary death), an odds ratio of 1.61 (95% 

CI 1.42–1.83) was found per 2 SD increase in baseline IL-6 (247). Another meta-analysis of 

17 studies comprising 288,738 healthy individuals reported a significantly higher IL-6 

concentration in CVD cases compared to non-CVD controls (standardized mean difference 

[95% CI]) of 0.14 [0.09, 0.20]/mean difference of 0.36 [0.28, 0.44] pg/mL) [52]. These 

significant changes in IL-6 concentration were found only in studies which the mean BMI of 

participants were >25kg/m2. Overweight and obesity are an independent risk factor for CVD, 

as well as are associated with a low-grade continuous inflammation with high implications in 

the atherosclerotic process. The possibility of regulating this persistent not resolved 

inflammatory state can be crucial in attenuating the progress of the atherosclerosis disease, 

especially in the early stages. This is the same scenario, in which the only study (37) that 

evaluated CRP found a significant reduction of 0.4 (SD 0.1) mg/L in a study population with a 

mean BMI >29kg/m2. This effect reduced the hsCRP concentration in the intervention arm to 

values <3.0 mg/L, which is considered a clinical threshold for many cardiovascular conditions, 

including a reduced hospitalisation rate for heart failure in subjects with stable coronary heart 

disease[53]. CRP is also associated with CVD and mortality (67,68), and has been implicated 

in endothelial dysfunction in in vitro and in vivo studies (65,66). On the other hand, the 

cytokines IL-1β and TNF-α not appear to transiently and/or robustly change in the postprandial 

period after a HFMC, thus a decrease in concentration of these molecules is not likely to occur 

with acute diet interventions (244). In the present review, the three studies that evaluate IL-1β 

were conducted in healthy normal weight (234), healthy overweight (37) and overweight/obese 

adults with atherosclerosis prone phenotype (233), however none of them found significant 

changes. TNF-α also plays a pleiotropic and major role in CVD, but high concentrations have 
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been associated with deleterious effects mainly through vascular dysfunction and atherogenesis 

by many mechanisms such as regulation of the vascular permeability, disruption of the 

endothelial barrier, degradation of glycocalyx, increased production of ROS and decreasing 

NO bioavailability and increase its removal (250,251). In line with the review by Emerson et 

al. (2017) (244), the studies included in our review found inconsistent changes of TNF-α 

concentrations after the HFMC, i.e. two studies found a decrease (233,234), one an increase 

(231) and other study reported no changes (37). The study that had a postprandial increase in 

TNF-α concentration was the only one that found a significant lowering effect with the diet 

intervention with anthocyanins (231). Another relevant finding in this same study was the 

inhibitory effect of on postprandial increase of IL-17, a cytokine with highly pro-inflammatory 

properties that are also associated with CVD, especially with cardiovascular events such as 

stroke and myocardial infarction (252). There is accumulating evidence that IL-17 it is involved 

in the pathogenesis of cardiovascular diseases by amplifying the inflammation induced by other 

cytokines in synergistic interactions (253). This cytokine is also positively correlated with 

OxLDL-c, a molecule with a crucial role in the oxidative stress mediated atherosclerosis 

development.  

OxLDL-c is a key factor in the initiation and progression of atherosclerosis and 

contributes to endothelial dysfunction and plaque destabilization through various mechanisms 

(254). Among the four studies that measured postprandial concentration of Ox-LDL-c, the only 

study that found a significant reduction was conducted in participants with an obese and insulin 

resistant phenotype [35]. Several other oxidative stress and antioxidant status biomarkers were 

investigated within the added studies in this review, showing the most promising results in 

relation to the effects of anthocyanin intervention on parameters following the HFM challenge. 

MDA is an end product of lipid peroxidation, the radical-initiated oxidative decomposition of 

poly-unsaturated fatty acids (255). Urquiaga et al. (240) found a reduction in postprandial 
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concentration of MDA at multiple time points following two different anthocyanin 

interventions (i.e. added to food or beverage) using a berry concentrate. This same study also 

found a reduction in plasma protein carbonyls and an increase in the DPPH (2,2-diphenyl-1-

picrylhydrazyl) plasma antioxidant capacity (240). Protein carbonylation is one of the most 

harmful irreversible oxidative protein modifications, and is considered a major hallmark of 

oxidative stress‐related disorders (256). The DPPH assay is a method that is widely used to test 

the ability of compounds to act as free radical scavengers or hydrogen donors, and therefore 

can be used to evaluate antioxidant activity. Another anti-oxidant assay, the FRAP, (based on 

single electron transfer reaction to evaluate the antioxidant effect of nonenzymatic defense in 

biological fluids) was measured in three studies that reported no significant effect of the 

anthocyanin intervention in plasma (230,232,240). However, one of these studies found a 35% 

increase in the urinary excretion of antioxidants (P<0.01), which was followed by an increase 

TRAP and an attenuation in the increase of endogenous antioxidants thiols and UA. TRAP 

differs from FRAP as an assay that measures the ability of antioxidants to buffer a reaction 

probe against peroxidation, and it’s determined by measuring the length of time that oxygen 

uptake is inhibited (257). Results from both FRAP and TRAP methods have to be carefully 

interpreted considering that FRAP has low specificity in measuring the antioxidant activity of 

many important antioxidants such as ascorbic acid, glutathione and albumin, and that TRAP 

does not necessarily provide a reliable or sensitive measure of the ability of plasma to interfere 

with lipid peroxidation[66].  UA levels are related to oxidative status, especially antioxidant 

capacity and it is well known that high plasma UA levels are strongly associated CVD (258). 

Taken together, the positive results of these three different oxidative stress biomarkers show a 

relevant anti-oxidant signalling effect of anthocyanins in these studies conducted in healthy 

adults (230,240). Another relevant biomarker of antioxidant status is vitamin C, which is a 

readily water-soluble and not storable in tissues. Therefore, vitamin C is a good biomarker for 
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short-term studies (259). One study added in this review found an increase in plasma vitamin 

C (233); however, even though the placebo was matched in macronutrients and energy, only 

the diet intervention had a relevant content of vitamin C (122.3 vs 0.3mg). Thus, it is unlikely 

that the plasma concentration of vitamin C was increased due to the anthocyanins. The ORAC 

of plasma/serum, which was evaluated in five studies in this review, appears to be a 

controversial method in regard to its application for in vivo studies, especially after the 

withdraw of the ORAC food database by the USDA in 2010. There is still debate regarding the 

absorbance and breakdown of polyphenols, such as flavonoids and subclasses, into smaller 

phenolics compounds with signalling, anti-inflammatory and anti-oxidant properties (242). 

Nevertheless, two studies found an increase in plasma ORAC following 60 (233), 90 and 120 

(237) minutes after the HFMC, and one study also found a significant increase in  TAS (237), 

another non-specific assay that assess the overall antioxidant status of a sample.  

The post-prandial response in the lipid profile, when compared to fasting lipids, can 

represent a different and even independent risk factor for CVD (34,106). The transient lipid 

and lipoprotein accumulation that occurs in the circulation after a high-fat meal represents the 

individual capacity to metabolize an acute fat input (260) and has been associated as an 

important risk factor in atherosclerosis development (107). The most relevant postprandial lipid 

marker it is triacylglycerol. It is the lipid with the greatest post-prandial difference from fasting 

lipid markers (34), and has been associated as an independent risk factor for cardiovascular 

events (35). The results found in our review support these statements, as significant changes 

were only found in triacylglycerol (233,239) concentrations and total cholesterol (231,239), 

which has a composition of 20% triacylglycerol in its formula. 

The choice of placebo in this type of acute study design is important in order to identify 

whether it is indeed the anthocyanin effect that is observed in the results, or whether there are 

other nutrients or food constituents that may be affecting the study outcomes. All studies 
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included in this review included a placebo that was matched in macronutrient and fibre content, 

however other nutrients such as vitamin C and other flavonoids that may also play a role in 

postprandial oxidative stress and inflammation are not commonly considered. It is complex, 

and often  impossible, to provide a perfectly matched placebo in food studies of this type, 

therefore results from studies that use different placebos should be carefully scrutinized. 

The most notable challenge and limitation of this study was to address a wide range of 

CVDs biomarkers assessed in this type of acute clinical trial. Overall, the comparison among 

studies had a relevant clinical importance of these metabolic, immune and physiological factors 

that has a synergistic impact on CVDs, however there was a variety of parameters addressed 

with different methods within each of such factors. This made the possibility of meta-analysis 

or other pooled analyses unfeasible, however it not impeded results to be compared narratively. 

Another source of heterogeneity in these studies may have resulted from variability in the HMF 

challenges regarding their macronutrient and energy content, particularly the types of fat, as 

well as the format in which the meals were delivered. Accumulating evidence suggests that the 

health effects of dietary fats vary(108). Substitution of  saturated fatty acids from butterfat with 

omega-6 PUFA resulted in a decreased postprandial lipaemia, as well as reduced 

concentrations of IL-6, TNF-α, soluble TNF-α receptors, and soluble vascular cell adhesion 

molecule-1 in overweight men(110). However, all studies included in this review used animal 

products as the main source of fat, and there were two main types of meals: 1) beverages that 

were enriched with cream and/or milk; or 2) mixed meals including animal products with a 

high content of saturated fat such as sausages, cheese, butter, eggs and bacon. A standardized 

meal for these type of studies would be preferred but may be difficult to implement because of 

cultural diversity in cuisine and dietary patterns. Despite that all included studies were 

conducted in young and middle-aged adults (mean age ranging from 20.2 to 46.9y), there were 

slightly differences in mean BMI with two studies having participants with BMI<25kg/m2 



121 
 

(234,240) six with BMI from 25-30kg/m2 (37,229–231,236,239) and three with BMI>30kg/m2 

(233,235,238) .Only three studies were not conducted in healthy adults, of which participants 

were not considered healthy due to lipidaemia (233), insulin-resistance phenotype (235) or with 

at least one CVD risk factor (239). However, studies conducted in participants with major 

chronic diseases with implication on CVDs, such as diabetes and hypertension, were not 

included in this review. Another feature in the design of this type of study is that tests are 

conducted over multiple time following the HFM challenge, thereby raising a concern that the 

number of false positive findings may be inflated. For this reason, the interpretation of results 

found in only one or a few time points, and that are not sustained, has to be interpreted with 

caution. Still, parameters that have been used in the studies to investigate oxidative stress and 

antioxidant status represent a wide range of analytical methods, and there is no formal 

mechanism to establish consensus regarding the optimal biomarkers for such nutritional studies 

(259,261).  

 

3.5 Conclusion 

 

Despite some positive findings, there was heterogeneity for changes in some CVD risk 

factors between studies. The most promising results were for the attenuation of deleterious 

postprandial effects on oxidative stress and antioxidant status, triacylglycerol and total 

cholesterol concentrations, as well as for vascular endothelial function and inflammatory 

biomarkers. The post-prandial changes in blood pressure and lipoproteins were the parameters 

least affected by anthocyanin treatment. Further studies are required in order to advance in the 

knowledge of how post-prandial changes are associated with CVD incidence and progress, and 

to investigate how these imbalances can be attenuated by bioactive compounds such 

anthocyanins.  
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CHAPTER 4: Anthocyanins attenuate vascular and inflammatory 

responses to a high fat high energy meal challenge in overweight 

older adults: a cross-over, randomized, double-blind clinical trial. 

 

 The findings from the previous study ‘The postprandial effect of anthocyanins on 

cardiovascular disease risk factors: a systematic literature review of high-fat meal challenge’ 

guided the original design and conduct of this clinical trial. Within this range of studies, another 

gap that was identified is the possibility of a more robust investigation of the vascular function 

in the postprandial state, which along with the immune response are important predictors of 

CVD. Therefore, we created a protocol to explore macro and microvascular parameters by 

combining classical and novel techniques with the latest imaging technologies, such as the 

flow-mediated dilatation (FMD) and the Laser Speckle Contrast Imaging (LSCI). To our 

knowledge, this was the first study to conduct this type of protocol in studies with nutritional 

interventions. Additionally, the present clinical trial also aim to determine if consumption of 

food anthocyanins has postprandial effects on inflammatory and oxidative stress biomarkers, 

and lipid profile following a high-fat high-energy meal in older adults with overweight or 

obesity 

The results supported that fruit-based anthocyanins attenuated the potential 

postprandial detrimental effects of a HFHE challenge on parameters of vascular and 

microvascular function, and inflammatory biomarkers in overweight older adults. 

The majority of this chapter forms the substantive content of a published article 

(Appendix B). 
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4.1 Introduction 

Metabolic imbalances in the postprandial state, particularly following a high fat high 

energy (HFHE) meal, are associated with long term development of CVD(106,107). The 

underlying mechanisms involve a sharp increase in circulating triacylglycerol concentrations, 

along with a pro-inflammatory response and an aberrant production of pro-oxidant molecules, 

which together may impair vascular endothelial function(105,262,263). Endothelial 

dysfunction is associated with an impaired bioavailability of nitric oxide (NO) and an up-

regulation of various other molecules involved in the adverse vascular function(6,264).  

This is particularly evident in older adults, as several studies support a new immune-

metabolic viewpoint for age-related diseases, termed “inflammaging” which is characterized 

by a chronic, low-grade inflammatory response in the absence of a pathogen(7). Additionally, 

excessive adiposity at all ages is associated with an up-regulation of a pro-inflammatory state, 

as the accumulation of adipose tissue mass promotes the secretion and release of inflammatory 

mediators, including high sensitive C-reactive protein (hs-CRP), interleukin-6 (IL-6), 

interleukin 1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α)(63,64). This process also 

leads to chronic low-grade inflammation that is driven by a nutrient excess and/or overnutrition 

and has the same mechanisms as those underpinning “inflammaging”(7). A HFHE challenge 

is a method to investigate such imbalances that regularly occur in response to typical ‘Western’ 

dietary patterns(264,265). A review of 57 studies investigating the postprandial state has shown 

that a HFHE meal induces acute postprandial inflammation; however, heterogeneity was 

observed for cytokines and soluble adhesion molecules, while leukocyte surface markers, 

mRNA and proteins were elevated in almost all studies(266). Strategies that aim to attenuate 

these potential detrimental postprandial effects will be of clinical relevance. 

Dietary factors play a major role in regulating the inflammatory state and mobilizing 

the endogenous antioxidant defences(9). Protective dietary components that are consumed 
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together with a HFHE meal may be beneficial in attenuating the potentially harmful 

postprandial responses(226). Anthocyanins, a subclass of flavonoids, are emerging as one such 

potential agent for ameliorating adverse CVD risk factors(21,222,267). Anthocyanins have 

been shown to elicit immunomodulatory(21,23) and antioxidant effects(23,268), thereby 

blunting the cooperative and synergistic deleterious effects of oxidative stress and 

inflammation(190) and may, therefore, provide protection against CVD risk factors. A number 

of in vitro and in vivo studies have shown that anthocyanins upregulate endothelial nitric oxide 

synthase (eNOS) mRNA and NO synthesis(126,144,269,270) via several signalling pathways, 

and prevent peroxynitrite-mediated ED(125,271). Anthocyanins can also prevent the 

expression of adhesion molecules and the adhesion of monocytes to endothelial cells 

challenged by pro-inflammatory agents, and have the ability to elicit cell adaptive responses 

involving the transcription factor Nrf2(272). However, there is still limited data regarding the 

effect of anthocyanins on vascular function(273). To our knowledge, no study to date has 

investigated such effects on the microvasculature and predictive values for CVD are not yet 

defined, as they are for vascular function measured by flow mediated dilatation(11), which is 

considered to be a well-recognized early biomarker of atherosclerosis and a key contributor to 

the onset and progression of CVD(243,274,275). Measurement of the systemic 

microcirculatory function may help to identify ED pathological processes, and better elucidate 

the mechanisms underlying structural changes among these two vascular beds(96,102,276). 

The aim of this study was to investigate the postprandial effects of food anthocyanins 

on vascular and microvascular functions, inflammatory biomarkers and oxidative stress 

following a HFHE meal challenge in overweight older adults. A secondary aim was to evaluate 

the acute effects of the 4 day run-in period of food anthocyanins on such markers. Outcomes 

combined both vascular and microvascular function analyses, along with the evaluation of 

classic CVD risk factors and associated biomarkers(277,278), including blood pressure, serum 
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concentration of triacylglycerols (TG) and total cholesterol (TC), inflammatory markers 

including hs-CRP, IL-6, IL-1β, TNF-α, and serum derivatives of reactive oxidative metabolites 

(DROM).   

 

4.2 Methods 

This study was conducted according to the guidelines of the Declaration of Helsinki, 

and approved by the University of Wollongong Human Research Ethics Committee, New 

South Wales, Australia (HREC 2019/043). It was also registered with the Australian New 

Zealand Clinical Trials Registry (ACTRN12620000437965). Written informed consent was 

obtained from all subjects. 

 

Study Subjects 

Sixteen subjects (13 female and 3 male) were recruited from Wollongong, NSW, 

Australia through advertisements within the local community, and through the University of 

Wollongong and Illawarra Health and Medical Research Institute social media networks 

between June and August 2019. Inclusion criteria included males and females aged 55+ years 

with a body mass index (BMI) ≥25kg/m2. Exclusion criteria were: current treatment or 

diagnosis of hypertension or diabetes; chronic liver or renal diseases; history of cardiovascular 

events; current administration of either anti-inflammatory medication, aspirin or warfarin; 

smoking; diagnosis or self-reported gastrointestinal disorders; allergy to stone fruits or food 

colorants, unwillingness to consume a full English style breakfast that included meat products 

(e.g. vegetarians) at the research facility. 

 

Study Design and Treatments 
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The study was a crossover, randomized, controlled, double-blind design with a 4 day 

run-in period. The study design and procedures are outlined in Figure 4-1. Briefly, four days 

prior to the test days, participants were asked to consume either 250 mL of Queen Garnet plum 

juice (intervention) or apricot juice (control) per day. Participants underwent consultation with 

a dietitian that included education on avoiding foods that are rich in anthocyanins during the 4 

day run-in period prior to testing. On the night prior to the testing day, a standardised low 

flavonoid frozen meal was consumed for dinner by all participants. Participants fasted (12h) 

prior to the testing day.  

On the testing day, participants were required to consume a HFHE meal in conjunction 

with a 250mL dose of either the intervention or the control juice. Blood samples and blood 

pressure measures were collected at baseline (fasted state), and 2h and 4h following the 

consumption of the HFHE meal. Vascular function and microvascular blood flow was 

evaluated at baseline and 2h after the meal. Urine was collected for 24h following the HFHE 

meal. 

After a wash-out period of 14 days, participants were allocated to the opposite treatment arm, 

starting with the 4 day run-in period. Randomization was conducted by a researcher 

independent to the data collection using a computer generated randomization sequence and, 

in order to minimize order effects, an across subjects counter-balancing process was used. 

Several blinding strategies were undertaken, including advertising the study to participants as 

a “fruit juice study” without providing information on which fruit was being investigated, as 

well as colouring of the control juice to match the intervention juice colour. The usual dietary 

intake of participants was collected before the beginning of the study using a 3-day food 

record, consisting of 2 weekdays and 1 weekend day, and analysed using Foodworks 10 

(Xyris Software, Australia), which includes the Australian Food Composition Database 

2019(279). (Table 4-1) 
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Table 4-1. Dietary intake of participants 

Energy (kcal) 1724 (375.6) 

Protein (g) 80.7 (26.0) 

Fat – total (g) 71.4 (18.9) 

Saturated fat (g) 29.2 (5.0) 

Carbohydrates (g) 171.2 (42.3) 

Dietary fibre (g) 20.7 (7.4) 

Sodium (mg) 1870.5 (563.8) 

Vitamin C (mg) 30.4 (22.9) 

Vitamin E (mg) 3.7 (2.6) 

Vitamin A* (µg) 362.6 (170.7) 

Anthocyanins (mg) 19.1 (31.8) 

Values are mean and SD. *Total Vitamin A equivalents.  

Values were obtained from the Australian Food Composition  

Database 201926.  

 

 

 Figure 4-1.  Study design and procedures repeated on each treatment arm

 

Test meals, and intervention and control juices 
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 The test meal consisted of 1 hash brown (62g) 2 beef chipolatas (90g), 1 croissant 

(168g) served with unsalted butter (5g) and apricot jam (10g) and 2 scrambled eggs (2 x52g  

eggs, 30mL pure cream, 10g unsalted butter, 0.5g salt) (Table 4-2). One serving of Queen 

Garnet plum juice (intervention) was provided as 220g of plum puree with 30mL of water 

added. The anthocyanin content was analysed by the Queensland Department of Agriculture 

and Fisheries (DAF, Australia) by Performance Liquid Chromatography (HPLC) (91.3 mg of 

anthocyanins  per 100g of Queen Garnet plum juice) and a pH differential method (94 

mg/100g), following the standard AOAC 2005.02 protocol for total monomeric anthocyanin 

pigment(280). The 200 mg of anthocyanins provided per serve can be considered a high dose 

based on a systematic literature review of similar studies. In that review, only 2 of the included 

13 studies used a higher dose, and a number of studies achieved significant vascular  effects at 

doses lower than 100mg(273). Apricot juice was chosen as the control juice due to its similar 

consistency, nutritional content and total flavonoid concentration, but an overall lack of 

anthocyanins(281). Food dyes (red and blue) were added to the apricot juice to resemble the 

colour of the Queen Garnet plum juice.  

 

 

Table 4-2. Nutrition information of the test meal and fruit juices 

 Test meal1 
Plum juice 

(250 mL) 

Apricot juice 

(250 mL) 

Energy (kcal) 856.9 98 96 

Protein (g) 25.9 0.6 0.7 

Fat – total (g) 65.3 < 0.1 < 0.1 

Saturated fat (g) 32.9 < 0.1 < 0.1 

Carbohydrates (g) 41.4 22.2 22.2 

Dietary fibre (g) 1.7 4.4 4.0 
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Sodium (mg) 941 6 2 

Vitamin C (mg) 0 0.3 1.2 

Anthocyanins (mg) 02 200.83 02 

Anthocyanins (mg) 02 206.84 02 

1Whole meal including one hash brown (62g), two scrambled eggs (104g) with pure cream 

(30g), butter (10g) and salt (0.5g), two beef chipolatas (90g), one croissant (168g) with butter 

and apricot jam; 2Phenol-explorer 3.0(282); 3High Performance Liquid Chromatography; 4pH 

differential method. Values were obtained from the Australian Food Composition  

Database 201926. 

 

Blood pressure 

BP was measured at baseline (fasted state), and 2h and 4h following the consumption 

of the HFHE meal using an using a Welch Allyn Connex 6700 Vital Signs Monitors (Welch 

Allyn, NSW, Australia). Participants were rested in supine position for 5 minutes, in a quiet 

room with a correctly fitting arm cuff. BP was measured on both arms, and a repeat measure 

taken on the arm with the higher reading, with the average of the two readings recorded(283). 

 

Flow mediated dilation (FMD) and microvascular perfusion 

 Participants were rested in a quiet, temperature-controlled room (23 °C ±1), in a supine 

position for 20 minutes. In brief, the first procedure was the microvascular PORH test 

conducted on the left arm, followed by the FMD conducted on the right arm, and lastly 

iontophoresis of acetylcholine, combined with LSCI, conducted in the left forearm (with 30 

minutes between tests in the left forearm). 

Vascular function was measured using FMD following standard guidelines(284), by a 

trained researcher. The same blinded researcher administered the test for each participant at 

two time points (baseline and 2hrs post-meal consumption, Figure 4-1) on both treatment arms, 
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and was responsible for the analysis of the resulting images to prevent inter-rater error. FMD 

of the brachial artery was measured using an uSmart3300 Ultrasound system (Terason, 

Massachusetts, USA) in combination with a semi-automated computerized analysis system 

(FMD Studio, QUIPO, Pisa, Italy). The brachial artery was imaged longitudinally at 2-10cm 

proximal to the antecubital fossa. Video recording collected beat to beat measures of the 

diameter and velocity for 1 minute, and the average was used as the baseline. Then the blood 

pressure cuff placed around the forearm was inflated to 60mmHg above resting systolic blood 

pressure. Blood flow was restricted for 5 minutes, then the cuff was rapidly released, resulting 

in reactive hyperaemia. Video was recorded for the 5 minutes period following the cuff release. 

The FMD response was calculated as the relative diastolic diameter change from baseline 

compared to the peak diastolic diameter following hyperaemia and expressed as a percentage. 

This flow-mediated dilatation protocol is routinely performed in our laboratory using the 

methods outlined by Francois et al. (2016)(285); with intra-subject coefficients of variation of 

7.1% for %FMD. 

Microvascular cutaneous vascular reactivity was measured using an LSCI system with 

a laser wavelength of 785 nm (Pericam PSI System, Perimed AB, Järfälla, Sweden). The image 

acquisition rate was 21 images/s, and the distance between the laser head and the skin surface 

was fixed at 25 ±0.5 cm. The skin of the volar side of the left arm was gently cleaned with 70% 

isopropyl alcohol swabs. Three equidistant skin areas (region of interest) of approximately 80 

mm2 were selected in the central volar part for the left arm(286), avoiding any skin mark or 

bulge areas(95). Participants were instructed to avoid any movement, and not to speak or 

breathe deeply during the record(95). During the PORH test, the baseline perfusion was 

measured in the volar side of the left forearm for 2 minutes, followed by an arterial occlusion 

maintained for 3 minutes using a blood pressure cuff around the upper arm inflated to a pressure 

of 50-60 mmHg above systolic pressure reading(96,276). After the blood pressure cuff was 
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released, the PORH response was recorded for 3 minutes. The following parameters were 

extracted: baseline flow (BF), biological zero (BZ) and peak value (PV)(95). The PV was 

obtained with a 5 second “time of interest” starting from the highest value after deflation of the 

cuff(286). RF was calculated as BF – BZ. The maximum PORH perfusion (PORHmax) was 

calculated as PV – RF (Supplementary material, Figure S1 and Table S1). This PORH 

protocol is routinely performed in our laboratory; with intra-subject coefficients of variation of 

7.7% for PV and 11.4% for PORHmax.  

Additionally, a pharmacological reactivity test was conducted using iontophoresis of 

acetylcholine (2%, dissolved in deionized water) using a micropharmacology system (PF 751 

PeriIont USB Power Supply; Perimed) with a single electrical current of 0.1mA for 30s(101). 

Microvascular blood flow was recorded for 2 minutes prior to the current and 8 minutes after 

the pharmacological stimulus. The maximum perfusion following the iontophoresis of 

acetylcholine (IONTmax) was calculated by using subtracting the RF from the PV using the 

same procedures used in the PORH test (Supplementary material, Table S1). 

 

Blood and urine samples 

Plasma and serum samples were stored at -80 °C, prior to analysis. IL-1β, IL-6 and 

TNF-α, were analysed in a Luminex 200 using a Human High sensitivity T cell magnetic bead 

panel kits (Merck Millipore, Billerica, MA, USA). hs-CRP, TC and TG were analysed on a 

BK400 automated chemistry analyser using a commercial immunoturbidometric assay 

(Biobase, Shandong, China). Derivatives of reactive oxidative metabolites were analysed in a 

Cobas Mira Plus (Roche, Washington, USA) using a commercially available colorimetric kit 

(Diacron, Grosseto, Italy).  

Urine samples were collected between 0-4h, 4-12h and 12-24h and stored at -80 °C, 

prior to analysis. Aliquots of 3 mL from each timepoint were pooled and 1 mL of the pooled 
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sample was analysed using ultra-performance liquid chromatography–tandem mass 

spectrometry (UPLC-MS/MS) to determine differences in excretion of total anthocyanins 

(expressed as cyanidin-3-O-glucoside equivalents equivalents), and phenolic acid metabolites 

related to anthocyanins (protocatechuic acid, hippuric acid and ferulic acid). Briefly, 1 ml urine 

was extracted by solid phase extraction using Discovery® DSC-18 (6 mL, 1 g) cartridges(287). 

The eluate was evaporated under nitrogen, reconstituted in 1 % formic acid in water and 

analysed by UPLC-MS/MS (Waters Acquity H-Class UPLC instrument coupled to a Waters 

Xevo TQ tandem mass spectrometer), operating in multiple reaction monitoring and positive 

electrospray ionization modes. The presence of each compound is expressed in ng/mL or 

µg/mL 

 

Statistical Analyses 

Data are presented as mean and standard deviation or median and interquartile range. 

Natural log transformation was used when non-normal data better fit the normal distribution 

(triacylglycerol, total cholesteterol, hs-CRP, PV and PORHmax). Two-way repeated measures 

ANOVAs were used to investigate the outcomes. Significant interaction effects were analysed 

by post-hoc comparisons with Bonferroni correction. Dependent t- and Wilcoxon signed-tank 

tests evaluated the difference in baseline measures to investigate the effects of the 4 day run-in 

period, as well as to investigate the differences in other time points among the treatments. 

Pearson and Spearman coefficients were calculated to evaluate potential baseline correlations 

between vascular parameters and inflammatory biomarkers. All LSCI parameters were 

transformed from arbitrary perfusion units (PU) to cutaneous vascular conductance (cvc) by 

dividing the obtained values by the mean arterial pressure to yield cvc in PU/mmHg. SPSS 

(version 25, IBM, Chicago, IL, USA 2019) was used for all statistical analyses. Significance 
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was accepted at alpha p<0.05, and non-significant p values between p=0.05-0.099 were 

considered a trend in the data. 

The primary endpoint of change in FMD from baseline to 2 h was used for the power 

calculation. Based on a previous study that found a significant effect of anthocyanins on post-

prandial changes in FMD(229), and aiming for a significant improvement of 1% in FMD, 13 

participants were required to achieve a study power of 80% with an α of 0.05.  

 

4.3  Results 

All sixteen recruited subjects completed the study (n=16). The mean age and BMI for 

the study group were 65.9 years (SD 6.0) and 30.6 kg/m2 (SD 3.9), respectively. Mean baseline 

body anthropometry and clinical measures (weight, height; total cholesterol, triacylglycerol, 

systolic and diastolic blood pressure) are presented in Table 4-3. No harms or unintended 

effects were observed through the study. The sample size of some vascular parameters was 

reduced due to experimental error (participant movement during the tests), resulting in n=15 

for PORH and FMD, and n=13 for iontophoresis with acetylcholine. No significant correlations 

were observed between baseline vascular parameters and inflammatory biomarkers (P>0.05) 

(Supplementary material, Table S2). 

 

Table 4-3. Baseline demographics 

n 16 

Female 13 

Male 3 

Age (years) 65.9 (SD 6.0) 

Body weight (kg) 81.5 (SD 10.5) 

Height (cm) 163 (SD 8.7) 

BMI (kg/m2) 30.6 (SD 3.9) 

Total cholesterol (mmol/L) 6.28 (IQR 1.33) 
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Triacylglycerol (mmol/L) 0.94 (IQR 0.84) 

SPB (mm Hg) 120.2 (SD 12.3) 

DPB (mm Hg) 69.3 (SD 7.4) 

Values are means and standard deviation or median and  

interquartile range. SD, standard deviation; IQR,  

interquartile range; DBP, diastolic blood pressure;  

SBP, systolic blood pressure. 

 

Blood pressure, triacylgycerol and cholesterol  

There were significant post-prandial changes on diastolic blood pressure, 

triacylglycerol and total cholesterol across the time points (P<0.05 for time effect), but no 

significant interaction or simple effect of treatment between the intervention and the control 

arms (P>0.05) (Table 4-4).
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Table 4-4. Blood pressure, triacylglycerol, total cholesterol and triacylglycerol before and after a high fat high energy meal challenge in 

control and intervention groups. 

Measures Group Baseline 2h 4h Timea Treatmenta Time x treatmenta 

SPB (mm hg) 
Control 118.9 (SD 11.1) 116.3 (SD 12.6) 123.2 (SD 12.8) 

0.001* 0.692 
F(2,30)=0.278, 

P=0.759,  ηp2=0.018 Anthocyanins 118.8 (SD 12.9) 117.7 (SD 10.6) 123.4 (SD 12.4) 

DBP (mm hg) 
Control 70.1 (SD 6.9) 67.4 (SD 7.3) 70.5 (SD 7.6) 

0.002* 0.148 
F(2,30)=1.684, 

P=0.203,  ηp2=1.01 Anthocyanins 68.0 (SD 6.7) 66.6 (SD 5.5) 70.8 (SD 6.6) 

Triacylglycerol 

(mmol/L) 

Control 0.95 (IQR 0.79) 1.30 (IQR 0.96) 2.12 (IQR 1.45) 
>0.001* 0.357 

F(2,30)=0.083, 

P=0.921,  ηp2=0.006 b Anthocyanins 0.89 (IQR 0.89) 1.29 (IQR 1.35) 2.22 (IQR 2.35) 

Total 

cholesterol 

(mmol/L) 

Control 6.16 (IQR 1.39) 6.02 (IQR 1.65) 6.09 (IQR 1.26) 
>0.001* 0.756 

F(2,30)=0.648, 

P=0.530,  ηp2=0.041 b Anthocyanins 6.28 (IQR 1.27) 6.40 (IQR 1.16) 6.27 (IQR 1.14) 

Values are mean and standard deviation or median and interquartile range (n=16). SD, standard deviation; IQR, interquartile range; ηp2, partial 

eta-squared, DBP, diastolic blood pressure; SBP, systolic blood pressure. a P-values for two-factors repeated measures ANOVA; b results from 

log natural transformed dat
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Vascular function 

Postprandial changes (i.e. the difference between baseline and 2h after the HFHE meal) 

in mean FMD were +0.16% in the anthocyanins group and -0.47% in the control group (Table 

4-5). There was a significant treatment effect (P=0.028); however, there was no main effect of 

time (P=0.474) or interaction between treatment and time (P=0.219) (Table 4-5). Dependent 

t-tests showed no significant difference between baseline in FMD results (P=0.212, +4.09% 

SD 1.12 intervention vs 3.58% SD 1.14 control arm) indicating no effect of the 4 day run-in 

period, and a significant difference (P=0.019) of 1.14% in post-prandial FMD among 

treatments (+4.25% SD 1.34 intervention vs 3.11% SD 1.00 control arm), (Figure 4-2a). There 

was no significant interaction between time and treatment nor a significant treatment effect for 

the peak shear rate; however, a trend towards a time effect was observed (P=0.091) (Table 4-

5)
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Table 4-5. Vascular and microvascular reactivity parameters before and after a high fat high energy meal challenge in control and intervention 

groups. 

Parameter Group Baseline 2h Timea Treatmenta Time x treatmenta 

FMD (%) 
Control 3.58 (SD 1.14) 3.11 (SD 1.00) 

0.474 0.028 
F(1,14)=1.653, P=0.219, 

ηp2=0.106 Anthocyanins 4.09 (SD 1.12) 4.25 (SD 1.34) 

Peak shear 

rate (sec -1) 

Control 954.7 (SD 344.1) 881.9 (SD 219.6) 
0.091 0.583 

F(1,14)=1.293, P=0.275, 

ηp2=0.085 Anthocyanins 955.5 (SD 324.7) 811.5 (SD 300.5) 

PV (cvc) 
Control 1.20 (IQR 0.37) 1.08 (IQR 0.28) 

<0.001 0.125 
F(1,14)=0.121 P=0.465,  

ηp2=0.036 b  Anthocyanins 1.21 (IQR 0.28) 1.16 (IQR 0.23) 

PORHmax 

(cvc) 

Control 0.85 (IQR 0.28) 0.73 (IQR 0.23) 
<0.001 0.062 

F(1,14)=2.247 P=0.155,  

ηp2=0.130 b Anthocyanins 0.88 (IQR 0.27) 0.83 (IQR 0.21 ) 

IONTmax 

(cvc) 

Control 0.45(SD 0.20) 0.45 (SD 0.25) 

0.748 0.620 
F(1,12)=0.020, P=0.889,  

ηp2=0.002 Anthocyanins 0.43 (SD 0.22) 0.41 (SD 0.22) 

Values are mean and standard deviation or median and interquartile range. FMD,  flow-mediated dilatation; SD, standard deviation; IQR, 

interquartile range; cvc, cutaneous vascular conductance in PU/mmHg; ηp2, partial eta-squared; PV, peak value; PORHmax, post-occlusive 

reactive hyperaemia maximum perfusion; IONTmax, maximum perfusion following iontophoresis of acetylcholine. a P-values for two-factors 

repeated measure
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Figure 4-2. Flow mediated dilatation and microvascular reactivity parameters before and after 

a high fat high energy meal challenge in control and intervention groups (n=15 for panels A, B 

and C, and n=13 for panel D). Values are mean and error bars are standard deviation (A and 

D) or median and error bars are 1st and 3rd quartile (B and C). FMD, flow mediated dilatation; 

PORHmax, post occlusive reactive hyperaemia maximum perfusion; cvc, cutaneous vascular 

conductance in PU/mmHg *P<0.05 (dependent t-test at A and Wilcoxon signed-tank test at C); 

†P=0.088(Wilcoxon signed-tank test). 
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No significant interactions between time and treatment were evident for any parameter 

of the PORH test (Table 4-5). A significant time effect for PV and PORHmax (p<0.001 for 

both parameters) was found, indicating a post-prandial effect of the HFHE meal challenge 

independent of treatment. The treatment effect for PV was not significant (P=0.125) and 

dependent t-tests showed no significant difference resulting from the 4 day run-in period on 

fasting measures (P=0.334, Wilcoxon signed-tank test). There was a trend for a higher post-

prandial PV in the anthocyanins group (p=0.088, Wilcoxon signed-tank test) (Figure 4-2b). 

The parameter PORHmax presented a trend towards a treatment effect (P=0.062) and no 

significant difference carried by the 4 day run-in period in fasting measures (P=0.594, 

Wilcoxon signed-tank test) (Figure 4-2). A significantly higher postprandial PORHmax of 

0.10 PU/mmHg (P=0.049, Wilcoxon signed-tank test) was evident in the anthocyanins group 

compared to the control group (Figure 4-2c). The microvascular reactivity test induced by the 

iontophoresis of acetylcholine showed no significant effects for IONTmax (Table 4-5). There 

was no significant difference between the fasting (P=0.582, dependent t-test) and post-prandial 

(P=0.684, dependent t-test) IONTmax between the treatments (Figure 4-2d). The data used to 

calculate the microvascular parameters are presented in the supplementary material (Table S3). 

 

Inflammatory markers and serum derivatives of reactive oxidative metabolites 

 A significant interaction effect was found for serum hs-CRP (P=0.036) (Table 4-6). 

Corrected pairwise comparisons showed no significant differences between the baseline 

(fasted), 2h and 4h postprandial values for both treatments (P>0.05) (Figure 4-3). However, 

there was a significantly lower hs-CRP concentration 4h postprandially in the anthocyanins 

group when compared to the control arm (P=0.026, Wilcoxon signed-tank test), as well as 

trends in the baseline and in the 2h postprandial time point (P=0.098 and P=0.083, respectively, 
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Wilcoxon signed-tank test) (P=0.095 at baseline P=0.099 at 2h, and P=0.008 at 4h, Wilcoxon 

signed-tank tests) (Figure 4-3).  

There were no significant effects for serum concentration of IL-6, TNF- α and IL-1β 

(Table 4-6). A trend in the treatment effect was evident for IL-6 concentrations (P=0.075). 

There was a significantly lower concentration of IL-6 at the 4h post-prandial time point in the 

anthocyanins group when compared to the control group (P=0.009, Wilcoxon signed-tank test) 

(Figure 3). There was no significant difference evident following the 4 day run-in period in 

fasting concentrations for any of the inflammatory biomarkers between groups (P>0.05, 

dependent t tests) (Figure 4-3).  

There was a significant effect of time (P=0.002) in serum concentrations of DROM, 

however, no significant treatment or interaction effect was evident (P>0.05) (Table 4-6).  

 

Urinary excretion of total anthocyanins and phenolic acids 

The 24h concentration of total anthocyanins in the urine was higher in the intervention 

arm 1.86 ng/mL (IQR 3.23) than the control arm 0.015 ng/mL (IQR 0.12) following the HFHE 

meal challenge (P<0.001 ) (Table S4, Supplementary material). Concerning anthocyanins 

metabolites, there were significantly higher concentration of hippuric acid in the urine for 

participants within intervention arm versus the control (P=0.027), while no significant 

differences were observed for protocatechuic acid and ferulic acid. 
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Table 4-6. Serum concentration of inflammatory biomarkers and derivatives of reactive oxidative metabolites before and after a high fat 

high energy meal challenge in control and intervention groups. 

Parameter Group Baseline 2h 4h Timea Treatmenta Time x treatmenta 

hs-CRP 

(mg/L) 

Control 2.30 (IQR 1.95) 2.40 (IQR 2.05) 2.30 (IQR 1.95) 
0.299 0.094 

F(2,30)=3.763, 

P=0.036,  ηp2=0.212b Anthocyanins 1.70 (IQR 1.00) 1.70 (IQR 0.95) 1.80 (IQR 0.90) 

IL-6 

(pg/mL) 

Control 5.95 (IQR 4.20) 5.40 (IQR 3.70) 5.98 (IQR 4.73) 
0.436c 0.075 

F(2,30)=0.635, 

P=0.537,  ηp2=0.041 Anthocyanins 6.00 (IQR 8.83) 5.85 (IQR 6.45) 5.55 (IQR 5.48) 

TNF-α 

(pg/mL) 

Control 13.65 (IQR 10.65) 12.45 (IQR 9.25) 12.53 (IQR 9.89) 
0.277 0.987 

F(2,30)=0.868, 

P=0.430,  ηp2=0.055 Anthocyanins 13.65 (IQR 8.88) 14.30 (IQR 7.95) 13.10 (IQR 7.33) 

IL-1β 

(pg/mL) 

Control 1.60 (IQR 1.39) 1.55 (IQR 1.65) 1.55 (IQR 1.26) 
0.896 0.868 

F(2,30)=1.436, 

P=0.254,  ηp2=0.087 Anthocyanins 1.20 (IQR 1.15) 1.40 (IQR 1.10) 1.45 (IQR 1.28) 

DROM 

(cu) 

Control 487.3 (SD 77.6) 497.1 (SD 81.1) 502.6 (SD 68.3) 
0.002 0.298 

F(2,30)=0.752, 

P=0.480,  ηp2=0.048 Anthocyanins 473.1 (SD 75.5) 496.4 (SD 77.0) 496.5 (SD 78.6) 

Values are mean and standard deviation or median and interquartile range. hs-CRP, high-sensitivity c-reactive protein; IQR, interquartile range; 

ηp2, partial eta-squared, IL-6, interleukin-6; TNF-α. Tumour necrosis factor alpha; IL-1β, interleukin-1 beta; DROM, derivatives of reactive 

oxidative metabolites; cu, Carratelli units SD, standard deviation. a P-values for two-factors repeated measures ANOVA; b results from log 

natural transformed data; c Greenhouse-Geisser correction (Mauschly’s test P=0.037, Epsilonb =0.727). 
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Figure 4-3. Serum concentration of inflammatory biomarkers before and after a HFHE meal 

challenge in control and intervention groups (n=16). Values are median and error bars are 1st 

and 3rd quartile. hs-CRP, high-sensitivity c-reactive protein, IL, interleukin, TNF, tumour 

necrosis factor. *P<0.05 (Wilcoxon signed-tank test); † P=0.095 at 0h and P=0.099 at 2h 

(Wilcoxon signed-tank tests). 

 

4.4 Discussion 

The intake of food anthocyanins with a HFHE meal challenge was able to attenuate the 

potential detrimental effects on both vascular and microvascular function, and on the 

inflammatory response. Compared to the control arm, participants had a significant higher 
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postprandial FMD and some of the parameters of microvascular function, and significant lower 

concentration of postprandial hs-CRP, with a trend for lower IL-6 levels when allocated in the 

anthocyanins intervention arm. Several outcomes presented a significant time effect from the 

fasted state to the post-prandial measures, confirming that a single HFHE meal is a sufficient 

challenge to induce some negative vascular and inflammatory responses that are not apparent 

in the fasted state. Importantly, our findings indicate that food-based anthocyanins may confer 

protection against cardiovascular and inflammatory insults caused by a typical HFHE 

‘Western’ diet in older overweight, though otherwise healthy, adults.  

The endothelium plays a major role in vascular homeostasis and its implications in the 

development of atherosclerosis and CVD are well established(288,289). Flow-mediated 

dilatation is a non-invasive measurement of endothelium function that has been associated with 

CVD risk prediction(243,274). A meta-analysis of 23 studies, including 14,753 subjects, found 

an overall 8 % reduction in CVD risk (RR= 0.92; 95%CI: 0.88; 0.95) for each percentage 

increase in FMD(274). In the present study, food anthocyanins induced a slightly increase in 

the postprandial FMD, while a decline was observed in the control arm. Participants had a 

1.14% higher post-prandial FMD when allocated in the anthocyanins intervention. The ability 

of anthocyanins to prevent the reduction in FMD caused by a HFHE meal challenge suggests 

that there are benefits for cardiovascular health in older adults that consume a high fat diet; 

however, the extrapolation of such results has to be cautious, considering the difference 

between FMD assessed in the fasted and in the postprandial state are still not elucidated. 

Although a 1.14% change may be considered small in healthy, normal weight young adults, 

this magnitude of effect is of higher clinical significance for individuals in the present study, 

who had a BMI >30kg/m2 and were aged >65 years, two factors related to impaired brachial 

artery FMD(42,284,290). In the current study, the postprandial difference of 1.14% represents 

a 36.7% higher FMD in the anthocyanin compared to the control arm. Similar findings were 
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observed in a double-blind, randomized, crossover study (conducted in 23 male participants, 

aged 46y SD 1.9, BMI of 27.6 kg/m2 SD 0.4) that investigated postprandial effects of an açaí 

smoothie following a HFHE meal challenge compared to a control smoothie matched by 

macronutrients and vitamin C(229). In that study, the intervention arm was provided more than 

a twofold (493mg) quantity of anthocyanins than that provided in the current trial but a similar 

improvement was observed in postprandial FMD after 2h (1.4% vs 0.4% for intervention vs 

control smoothie; P = 0.001)(229). The immunomodulatory(21,23) and antioxidant 

effects(23,125,268,271) of anthocyanins, as well as their capacity to upregulate eNOS mRNA 

and NO synthesis(126,144,269,270), are the proposed mechanisms to exert this vascular 

protective effect against the potential pro-inflammatory and oxidative stress state caused by the 

HFHE meal. However, NO is a highly reactive molecule with a short half-life, which 

complicates its direct measurement(291), and the  evaluation and implication of its metabolites 

remains challenging in vascular biology research(292). Concerning the peak shear rate, there 

were no significant changes between treatment arms before and after the HFHE meal challenge. 

Participants had an identical peak shear rate before the HFHE meal, followed by a slightly 

postprandial decrease in both conditions. 

 In additional to effects on macrovascular function, we observed significant changes for 

microvascular reactivity tests. Flow-mediated dilatation and PORH both rely on measuring the 

transient increase in blood flow following the release of a brief occlusion; however, while FMD 

assesses changes in diameter of the brachial artery induced by shear stress in the artery 

wall(293), PORH assesses the cutaneous perfusion in the microvasculature, in this case in areas 

of the skin of the forearm(96). In the present trial, both the PV and PORHmax parameters were 

reduced after the high-fat meal challenge in both groups, but there was a significantly lower 

reduction when anthocyanins were consumed with the meal, indicating a preventative effect of 

anthocyanins in HFHE meal-induced changes in these parameters. Unlike FMD, the effects of 
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anthocyanin consumption on LSCI microvascular parameters and CVD outcomes have not yet 

been explored in larger studies. To our knowledge, this is the first study to report the results of 

LSCI microvascular parameters along with FMD following a dietary intervention. Our findings 

suggest that underlying mechanisms associated with the observed effects might be due to 

common mechanisms between different vascular beds. The mechanisms underlying the 

vascular reactivity in the PORH test are still being elucidated, but many mediators seems to 

contribute to vasodilation and although most of these responses are endothelial-dependent, NO 

and COX pathways do not appear to exert significant influences(102,103). The major 

contributors for peak and time course of this microvascular reactivity are the sensory nerves 

through an axon reflex response(95). The endothelium-derived hyperpolarizing factors 

(EDHF) are also involved, including large-conductance calcium-activated potassium channels 

(BKCa) stimulated by epoxyeicosatrienoic acids(93,104). Therefore, we also utilised LSCI 

technology with iontophoresis of acetylcholine to assess a more specific endothelial 

microvascular reactivity response related to NO availability(96). However, the cutaneous 

perfusion following iontophoresis of acetylcholine was not altered in either of the study arms. 

This may be in keeping with the finding that the NO response associated with endothelial 

function decreases with age, while other pathways are preserved(294–296).  

The inflammatory response is a fundamental component of atherosclerosis and is 

related to the development of CVD,(190,277) with low grade continuous inflammation 

occurring in association with adiposity(297) and aging (“inflammaging”)(298).  Higher pro-

inflammatory cytokine concentrations are also associated with decreased health-related quality 

of life in older adults(299). For these reasons, the target population for the current study was 

older adults who were overweight or obese. The ability to suppress a persistent inflammatory 

state is important to attenuate the progress of  atherosclerotic disease(277,278). A large number 

of in vitro and animal studies(21,121,127,139) provide insight into these mechanisms related 
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to the anti-inflammatory actions of anthocyanins. These include: (1) modulation of arachidonic 

acid metabolism, in which lipid mediators that regulate inflammation (e.g.  prostaglandins and 

leukotrienes) are modulated by anthocyanins through inhibition of the key enzymes 

cyclooxygenases and lipoxygenases; (2) decreased activity of the NF-κB pathway, which is a 

transcription factor responsible for triggering and regulating inflammatory processes that lead 

to the expression of pro-inflammatory cytokines and enzymes; (3) suppression of acute pro-

inflammatory genes that regulate inducible nitric oxide synthase (iNOS), an enzyme 

responsible for moderating some of the production of nitric oxide (NO). hs-CRP has emerged 

as a major marker of vascular inflammation playing a direct role in promoting endothelial 

dysfunction(65,66) and clinical CVD events(67,68,297). In the present trial, we found a 

significant interaction effect between time and treatment for serum hs-CRP. Breaking down 

this simple effect, we showed no significant influence of time and a significantly lower hs-CRP 

concentration at the 4h post-prandial time point in the anthocyanin arm, as well as a trend for 

lower concentrations at the fasted state and at the 2h post-prandial time point. An ability of 

food-based anthocyanins to reduce hs-CRP concentrations in a population with risk factors 

such as advanced age and high BMI, could be of major clinical benefit regarding attenuation 

of the “inflammaging” process and chronic low-grade inflammation.  

A systematic review of the literature examining the postprandial inflammatory response 

to a HFHE meal challenge reported consistent robust increases in IL-6 across studies, while 

IL-1β and TNF-α did not appear to transiently and/or robustly change in the postprandial 

period(244). Among the six studies(37,231,233–236) that evaluated the effect of food 

anthocyanins on post-prandial IL-6  concentrations, three studies(37,231,236) reported 

significant reductions in postprandial concentrations when compared to the control group. In 

the present trial, no significant main or simple effects were evident for serum concentration of 

IL-6; however, a trend was observed in the main effect of treatment, as well as significantly 
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lower IL-6 concentration at the 4h post-prandial time point (P=0.009). IL-6 has a high 

expression on vascular endothelium(64)  and although IL-6 possess both pro- and anti-

inflammatory properties(300), it is an independent contributor to variations in endothelium-

dependent vasodilatation(301). Our results demonstrate changes associated with food-based 

anthocyanins on hs-CRP and IL-6 concentrations, which combined could indicate reduced 

vascular inflammation. Such findings may have positive implications in the progression of 

atherosclerosis and CVD events in this high risk group. Further studies are required to better 

elucidate the different clinical implications between fasted and post-prandial serum 

concentration of such biomarkers. Similar to other studies(244), serum concentrations of IL-

1β and TNF-were not altered after the HFHE meal challenge by any treatment. Only a small 

number of studies (one(231) out of four(37,231,233,234)) that investigated TNF-α response to 

a meal challenge found that the anthocyanins prevented a postprandial rise of concentrations, 

while no significant effects were found for IL-1β in these studies(37,231,233,234).  

Serum DROM was evaluated in the present trial as a marker of oxidative stress. DROM 

is increased in patients with coronary artery disease and is also associated with cardiovascular 

events, thus could provide clinical benefits for risk stratification of coronary artery disease 

where higher DROM place a person at greater risk(302). We found a significant time effect in 

serum concentrations of DROM, indicating postprandial oxidative stress induced by the HFHE 

meal; however, no significant difference between treatment arms was found. This same 

response was observed for systolic and diastolic blood pressure, as well for total cholesterol 

and triacylglycerol. Similar to our findings, no significant changes in postprandial systolic 

blood pressure were reported in 3 studies(229,238,239) following a food anthocyanin 

intervention, except for one study that found a reduction in diastolic blood pressure(239). A 

large number of studies(231–240) that evaluated postprandial total cholesterol and 
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triacylglycerol also reported no changes, while only two studies found a reduction in 

triacylglycerol(233,239) concentrations and total cholesterol(231,239). 

The urinary analyses demonstrated higher concentrations of total anthocyanins and 

hippuric acid biomarkers in 24h urine following consumption of the intervention and control 

juices, confirming the uptake and metabolism of these compounds from the anthocyanin-rich 

plum juice. The absence of anthocyanins in the urine corresponding to the control arm confirms 

the anthocyanins dietary restriction during the 4-day run-in period, the lack of anthocyanins in 

the control juice, as well as a sufficient wash-out period. A large variation in the excretion of 

both anthocyanin and phenolic acid biomarkers reflects the large intra-individual variation in 

the metabolism of anthocyanins and flavonoids46,85. The lack of significant difference between 

the arms for protocatechuic acid and ferulic acid may reflect the potential presence of other 

flavonoids in the background diet and in the control (apricot) juice. 

Limitations in the present study include the different numbers of females and males 

enrolled, thus precluding sub-analysis by gender; however, the small number of males included 

in the study had similar scores to females and the exclusion of them for sensitivity analyses did 

not alter the significance of any of the results. A further limitation was the impossibility to 

repeat the FMD and microvascular reactivity tests in case of experimental errors (participant 

movement during the tests) due to the protocol of measures being collected at specific time 

points. This resulted in a small sample size reduction for the FMD and PORH test (n=1) and 

the iontophoresis of acetylcholine (n=3). Concerning the evaluation of endothelium and non-

endothelium mechanisms in vascular and microvascular reactivity, we were not able to conduct 

nitrate-mediated dilation nor iontophoresis of sodium nitroprusside due to temporal reasons, 

considering it would be not viable, if not impossible, in a postprandial study to conduct a 

protocol with all of these measures. Discussion of the results is therefore based on the tests that 

were conducted and the elucidated underlying mechanisms described in the literature. Another 
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limitation is that there were no measures before the start of the 4 day run-in period, and despite 

that there was no significant difference in baseline, the 4 day run in period might have 

modulated a few parameters in the anthocyanins group, and therefore facilitating the significant 

post-prandial difference between the treatment arms. On the other hand, this design simulates 

a daily diet routine, in which individuals could be constantly eating random sources of 

anthocyanins, or still consuming supplements or food items on a daily basis that continuously 

exposes them to many bioactive compounds. This allowed us to investigate the postprandial 

effect of a continuous anthocyanins stimulus, while at the same time, avoid an overestimated 

effect in a ‘super controlled’ setting. 

An important strength and key feature in the design of this study should be considered 

for interpretation of the results, as well as for comparison with other post-prandial studies. It is 

challenging to investigate a specific bioactive compound, such as a specific flavonoid, in a 

clinical trial using foods as vehicles for delivery. A food item that is a rich source of a particular 

flavonoid may also contain other classes of flavonoids or still other bioactive compounds, such 

as other polyphenols, and/or inorganic compounds (such as nitrate) that might have similar or 

synergistic effects on the outcomes to those being assessed. In order to address this issue, the 

choice of the placebo food item for the control arm is an important consideration. A placebo 

that is only matched in macro, or even micronutrient content, can underestimate the effects of 

other bioactive compounds. In this study, we aimed to evaluate the acute effect of a high dose 

of anthocyanins using Queen Garnet plum juice as the food source. In order to isolate the effect 

of the anthocyanins, we chose apricot juice as the control due to its lack of anthocyanins, but 

its similarly matched macro- and micronutrient content, as well as its polyphenol profile(281), 

that includes flavanols (such as quercetin), catechins and epicatechins, all of which are potential 

mediators of cardiovascular health(200,303–305). The choice of this control juice is novel in 
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that the effects of the flavonoid subclass of anthocyanins can be isolated from other bioactive 

compounds. 

 

4.5  Conclusion 

The postprandial effects of food anthocyanins improved several CVD biomarkers in 

overweight older adults following a HFHE meal challenge. Potentially beneficial effects were 

observed in parameters of both macrovascular and microvascular function, as well as some 

inflammatory biomarkers. The HFHE meal challenge induced increases in postprandial blood 

pressure, DROM, triacylglycerol and total cholesterol; however, anthocyanin consumption did 

not attenuate these responses. Our findings may have a relevant role in the cardiovascular 

health of this high-risk group considering the major role of the vascular endothelium and the 

inflammatory response in the atherosclerosis disease and CVD events. Further studies are 

required to better elucidate the clinical implications of post-prandial biomarkers of CVD. 

 

4.6  Supplementary Material 
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Figure 4-S1. Cutaneous perfusion recorded with laser speckle contrast imaging during post-

occlusive reactive hyperaemia. 

BF, baseline flow; BZ, biologic zero; PV, peak value 
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Table 4-S1. Description of Post-Occlusive Reactive Hyperaemia Microvascular Parameters  

MICROVASCULAR PARAMETER DESCRIPTION 

Baseline flow (BF) 
The most stable 15 seconds within the first 2 

minutes of reading. 

Biologic zero (BZ) 
The most stable 3 seconds displaying the lower 

values before the deflation of the cuff. 

Resting flow (RF) BF-BZ 

Peak perfusion value (PV) 

Five seconds period starting from the highest 

value in the first rise (slope) after deflation of 

the cuff 

PORHmax PV – RF 

Area under the curve (AUC) 
Area under the curve comprising of 60 seconds 

after deflation of the cuff 

PORHmax, post-occlusive reactive hyperaemia maximum perfusion. 
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Table 4-S2. Correlations between baseline vascular parameters and inflammatory biomarkers 

 

IL-1β IL-6 TNF-α hs-CRP Peak value 
PORH

max 

IONT

max 
FMD 

Peak 

shear 

stress 

IL-1β 

Correlation Coefficient 1.000 .505 .594 -.265 -.052 -.032 -.480 .272 .324 

Sig. (2-tailed) . .046 .015 .341 .849 .905 .114 .326 .238 

N 16 16 16 15 16 16 12 15 15 

IL-6 

Correlation Coefficient .505 1.000 .469 .039 -.043 .018 .161 .220 -.334 

Sig. (2-tailed) .046 . .067 .889 .875 .948 .618 .431 .223 

N 16 16 16 15 16 16 12 15 15 

TNF-α 

Correlation Coefficient .594 .469 1.000 -.136 -.026 .021 -.469 .121 .007 

Sig. (2-tailed) .015 .067 . .629 .922 .940 .124 .666 .980 

N 16 16 16 15 16 16 12 15 15 

hs-CRP 

Correlation Coefficient -.265 .039 -.136 1.000 .434 .209 .123 .064 -.007 

Sig. (2-tailed) .341 .889 .629 . .106 .454 .719 .829 .982 

N 15 15 15 15 15 15 11 14 14 

Peak 

value 

Correlation Coefficient -.052 -.043 -.026 .434 1.000 .944 .336 .461 .346 

Sig. (2-tailed) .849 .875 .922 .106 . .000 .286 .084 .206 

N 16 16 16 15 16 16 12 15 15 

PORH

max 

Correlation Coefficient -.032 .018 .021 .209 .944 1.000 .413 .421 .211 

Sig. (2-tailed) .905 .948 .940 .454 .000 . .183 .118 .451 

N 16 16 16 15 16 16 12 15 15 

IONT

max 

Correlation Coefficient -.480 .161 -.469 .123 .336 .413 1.000 -.247 a -.443 a 

Sig. (2-tailed) .114 .618 .124 .719 .286 .183 . .464 .172 

N 12 12 12 11 12 12 12 11 11 

FMD 
Correlation Coefficient .272 .220 .121 .064 .461 .421 -.247 a 1.000 .286 a 

Sig. (2-tailed) .326 .431 .666 .829 .084 .118 .464 . .301 
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N 15 15 15 14 15 15 11 15 15 

Peak 

shear 

stress 

Correlation Coefficient .324 -.334 .007 -.007 .346 .211 -.443 a .286 a 1.000 

Sig. (2-tailed) .238 .223 .980 .982 .206 .451 .172 .301 . 

N 15 15 15 14 15 15 11 15 15 

IL-1β, interleukin-1 beta; IL-6, interleukin-6; TNF-α. Tumour necrosis factor alpha; hs-CRP, high-sensitivity c-reactive protein; PORHmax, 

post-occlusive reactive hyperaemia maximum perfusion; IONTmax, maximum perfusion following iontophoresis of acetylcholine; FMD,  flow-

mediated dilatation. 

All correlations derived from Spearman's rank correlation coefficient, unless described elsewhere.  

a Correlations derived from Pearson correlation coefficient. 
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Table 4-S3. Additional data from microvascular parameters 

Parameter Group Baseline 2h 

PORH PV 

(PU) n=15 

Control 103.7 (SD 14.1) 88.5 (SD 14.5) 

Anthocyanins 105.3 (SD 17.1) 91.3 (SD 12.6) 

PORH BF 

(PU) n=15 

Control 42.5 (SD 5.6) 42.5 (SD 6.7) 

Anthocyanins 42.6 (SD 7.5) 42.2 (SD 9.7) 

PORH BZ 

(PU) n=15 

Control 16.2 (SD 6.0) 15.9 (SD 5.3) 

Anthocyanins 15.0 (SD 4.6) 16.8 (SD 6.2) 

PORH RF 

(cvc) n=15 

Control 0.31(SD 0.07) 0.32 (SD 0.07) 

Anthocyanins 0.32 (SD 0.05) 0.31 (SD 0.08) 

IONT BF 

(cvc) n=13 

Control 0.35 (SD 0.08) 0.36(SD 0.11) 

Anthocyanins 0.33 (SD 0.07) 0.33 (SD 0.08) 

IONT PV 

(cvc) n=13 

Control 0.80(SD 0.23) 0.80(SD 0.28) 

Anthocyanins 0.75 (SD 0.26) 0.74 (SD 0.24) 

AUC (PU) 

n=14 

Control 3968.7 (SD 437.4) 3731.3 (SD 493.3) 

Anthocyanins 3941.5 (SD 591.9) 3783.9 (SD 542.5) 

AUC (cvc) 

n=14 

Control 0.0216 (SD 0.004) 0.0222 (SD 0.003) 

Anthocyanins 0.0218 (SD 0.003) 0.228  0.003) 

Data are mean and standard deviation or median and interquartile range. PORH, post-

occlusive reactive hyperaemia; PU, perfusion units, BF, baseline flow; RF, resting flow; IQR, 

interquartile range; cvc, cutaneous vascular conductance in PU/mmHG; BZ, biologic zero; 

SD, standard deviation; PV, peak value; AUC, area under the curve. 
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Table 4-S4. Urinary concentrations of total anthocyanins and phenolic acid biomarkers from 

a 24-hour pooled urine sample from the control and intervention arms. 

Parameter Intervention Control 
Within-subject 

contrasts a 

Total 

Anthocyanins 

(ng/mL) 

1.86  

(IQR 3.23) 

0.015  

(IQR 0.12) 

F(1,15)=27.44, 

P<0.001,  ηp2=0.647 

Protocatechuic 

acid (ng/mL) 

86.78  

(IQR 362.2) 

20.08  

(IQR 179.65) 

F(1,15)=0.680, 

P=0.423,  ηp2=0.043 

Hippuric acid 

(µg/mL) 

1565.70  

(SD 912.89) 

1022.36  

(SD 322.21) 

F(1,15)=6.05, 

P=0.027,  ηp2=0.287 

Ferulic Acid 

(ng/mL) 

12.04  

(IQR 72.22) 

40.69  

(IQR 65.09) 

F(1,15)=0.752, 

P=0.733,  ηp2=0.008 

Values are mean and standard deviation (SD) or median and interquartile range (IQR) 

a P-values from repeated measures ANOVA; ηp2, partial eta-squared;   

Total anthocyanins expressed as cyanidin-3-O-glucoside equivalents (CGE) 
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CHAPTER 5: Food anthocyanins decrease serum concentrations 

of TNF-α in older adults with mild cognitive impairment: a 

randomized, controlled, double blind clinical trial. 

 

There are still several gaps to be addressed regarding the effects of anthocyanins on the 

vascular-inflammatory axis in older adults, especially among those with neurodegenerative 

diseases, such as mild cognitive impairment (MCI), a condition that shares pathological 

mechanisms with CVD. This is particularly evident in older adults, as several studies support 

a gradual loss of the vascular function, and a new immune-metabolic viewpoint for age-related 

diseases, termed ‘inflammaging’ which is characterized by a chronic low-grade inflammation. 

Therefore, the present trial aimed to evaluate the chronic effects of food anthocyanins (8 weeks) 

on the microvascular function, inflammatory biomarkers and 24 h ambulatory blood pressure 

(ABP) in older adults with diagnosis of MCI. 

A daily high dose of fruit-based anthocyanins (201 mg) for 8 weeks reduced concentrations 

of TNF-α in older adults with MCI. Anthocyanins did not alter other inflammatory biomarkers, 

microvascular function or blood pressure parameters, while an overall lack of effects were 

observed in the low dose (47 mg) group. 

Considering the major role of the inflammatory response and vascular function in CVD and 

cognitive decline, this novel data may present relevant clinical implications in this high-risk 

group; however, further studies with a larger sample size and longer period of follow-up are 

required to better elucidate whether these changes in inflammatory biomarkers will alter CVD 

risk and progression of cognitive decline. 

The majority of this chapter forms the substantive content of a published article 

(Appendix D). 
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5.1 Introduction 

Vascular function, blood pressure and inflammation are a triad of factors relevant to the 

pathogenesis of several major chronic diseases, including cardiovascular disease 

(CVD)(306,307), and neurodegenerative conditions, such as mild cognitive impairment 

(MCI)3,4. The endothelium can be considered an organ that regulates vascular homeostasis by 

maintaining an appropriate vascular tone, platelet activity, leukocyte adhesion, and 

angiogenesis. When one or more of these components is compromised due to impaired 

endothelial vascular signalling, endothelial dysfunction (ED) may occur(306). In addition to 

hypertension and ED, the inflammatory response mediates several CVD related underlying 

mechanisms5,6. The association between concentrations of pro-inflammatory cytokines, such 

as CRP, IL-6 and TNF-α, and the development of atherosclerosis and CVD is well 

established5,7. There is evidence to suggest that directly targeting inflammation may be 

beneficial for the secondary prevention of CVD, and that such benefits may be independent of 

traditional CVD risk factors, such as cholesterol8,9. The role of inflammatory cytokines 

provides a mechanism through which risk factors for atherosclerosis may alter arterial biology, 

and thereby result in a systemic pro-atherothrombotic milieu8. This is particularly evident in 

older adults; several studies support a new immune-metabolic viewpoint for age-related 

diseases termed ‘inflammaging’, characterized by a chronic, low-grade inflammatory 

response10,11. Furthermore, there is evidence that diseases of the cardiovascular system, such 

as stroke, atrial fibrillation, coronary heart disease (CHD), and heart failure are linked to 

cognitive decline12. A meta-analysis of 10 prospective cohort studies showed that CHD was 

associated with increased risk of cognitive impairment or dementia (OR = 1.45, 95%CI = 1.21–

1.74, p<0.001)13. Several mechanisms underlying the association between CVD and cognitive 

decline have been proposed: [1] shared risk factors, which might alter clearance of brain toxins 

or otherwise increase neurodegeneration; [2] CVD might lead to clinical or subclinical strokes, 
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leading to cognitive impairment; and [3] CVD might directly alter cerebral perfusion14. In this 

context, interventions aiming to regulate the CVD risk factors are also relevant therapeutic 

targets to attenuate cognitive decline. 

Potential nutritional therapeutic options are emerging, with anthocyanins, a subclass of 

flavonoids, showing promising benefits related mainly to immunomodulatory, vascular 

signalling and antioxidant effects(21), thereby blunting the cooperative and synergistic 

deleterious effects of oxidative stress and inflammation5,16.  Anthocyanins are the largest class 

of water-soluble plant  pigments that are responsible for the blue, purple and red colour of many 

fruits and vegetables, such as blueberries,  blackberries, red grapes, plums and eggplants17. A 

large number of in vitro and animal studies(21,317–319) provide insight into these mechanisms 

related to the anti-inflammatory actions of anthocyanins.  These studies also observed a 

potential positive effect on vascular function through the suppression of acute pro-

inflammatory genes that regulate inducible nitric oxide synthase (iNOS), an enzyme 

responsible for moderating some of the production of nitric oxide (NO)21, as well as attenuating 

endothelium‐dependent dysfunction by anthocyanins metabolites20.A meta-analyses of 

randomized clinical trials (RCT) observed an improvement in vascular reactivity measured by 

flow-mediated dilation (FMD) among 6 studies ranging from one week to six months of 

intervention, with anthocyanin daily doses of 12 to 320mg22. Concerning lipid profiles and 

blood pressure, a systematic review of 12 RCT (3-24 weeks of duration and dose range of 7.35–

640 mg/day of anthocyanins) identified a significant effect only on lowering LDL-c among 

diseased individuals or those with elevated biomarkers23.  Both reviews22,23 did not find a dose-

response relationship in the cited RCTs, nor evidence of  adverse effects of anthocyanins within 

those concentrations. Therefore, the relevant concentration of anthocyanins required to produce 

physiologically relevant is still to be elucidated. 
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Among non-invasive techniques to measure endothelial function, Laser Speckle 

Contrast Imaging (LSCI) is a relatively new technique that provides a non-invasive index of 

blood flow in the microcirculation24. This technique, combined with dynamic tests such as 

post-occlusive reactive hyperaemia (PORH), is able to provide information on several different 

aspects of microvascular physiology25. Measuring 24-hour ambulatory blood pressure (ABP) 

has several benefits over traditional single assessment, such as minimising white-coat 

phenomena and masked hypertension, and demonstrating nocturnal hypertension and loss of 

normal dipping patterns26. ABP monitoring is a stronger predictor of cardiovascular morbidity 

and mortality than most traditional BP measuring techniques26–28. 

This paper provides secondary analysis of a clinical trial that investigated the effect of 

combining a cognitive training rehabilitation program with a dietary intervention focusing on 

increasing anthocyanin intake in older persons with MCI.  The aim of the current analysis is to 

investigate the effects of a nutritional intervention consisting of 8 weeks of food-anthocyanins 

on inflammatory markers associated with CVD risk factors(277,278), along with analysis of 

microvascular function and 24-hour ABP in older adults with MCI.  

 

5.2 Methods 

The clinical trial was conducted according to the guidelines of the Declaration of 

Helsinki, and approved by the joint University of Wollongong and Local Health District 

Human Research Ethics Committee, New South Wales, Australia (HREC 2017/581). The study 

was registered with the Australian New Zealand Clinical Trials Registry 

(ACTRN12618001184268). This manuscript is reporting results from the secondary outcomes, 

while the primary outcome related to cognitive function will be reported elsewhere. Written 

informed consent was obtained from all subjects before beginning the study procedures. 

 



161 
 

Study Subjects 

A total of 34 subjects enrolled in the study between April 2018 and November 2019. 

The inclusion criteria were: 55+ years; diagnosis of MCI-amnesic type with memory 

complaints, Mini Mental State Examination (MMSE) score of 24 or above, and estimated 

premorbid IQ of more than 80, confirmed by clinical psychologists (ZF, SB, AP). A diagnosis 

of MCI was given when an individual experienced cognitive change (typically 1 to 1.5 standard 

deviation below age and education matched peers on culturally appropriate normative data) in 

one of more cognitive areas that are insufficient to interfere with activities of daily living and 

without progressive deterioration. All subjects were participating in a 6 week ‘Making the most 

of your Memory’ rehabilitation group.  Exclusion criteria were: a diagnosis of dementia; 

significant neurological history, untreated hypertension or diabetes; chronic liver or renal 

disease; smoking; diagnosis or self-reported gastrointestinal disorders; acute upper respiratory 

tract infection; allergy to stone fruits or food colorants.  

 

Study Design and Treatments 

The study was a randomized, controlled, double-blind clinical trial conducted at the 

Illawarra Health and Medical Research Institute and at the Port Kembla Hospital, NSW 

Australia. On test days, participants attended the research facility for the study procedures after 

a 12 hour overnight fast (Figure 5-1). Briefly, the PORH test (microvascular reactivity) and 

blood collection were completed before provision of a standardized breakfast (minimal 

anthocyanin-containing cereals, milk, bread, butter and anthocyanin-free fruit jam), followed 

by collection of data including socio-economic status, anthropometry, medication use and 

dietary intake.  

The  usual diet was assessed using a 3-day food record that participants were instructed by a 

dietitian to complete at home (Table 5-1) and analysed using Foodworks 10 (Xyris Software, 
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Australia), which includes the Australian Food Composition Database 2019(325). The 

anthocyanins content was calculated using the ‘PhenolExplorer’ polyphenol food composition 

database(206). Participants were instructed to maintain their usual diet throughout the course 

of the study. 

Participants were fitted with a 24-hour ambulatory blood pressure monitor which was 

collected from their home the following day. Participants were randomly allocated to one of 

three dietary interventions (250 ml/day): a) low-anthocyanins Queen Garnet Plum (QGP) juice; 

b) high-anthocyanins QGP juice; c) apricot juice (control). Juice was supplied weekly to 

participants when they attended the memory clinic. The duration of the dietary intervention 

was 8 weeks, after which time participants returned to the research facility for the final data 

collection. Compliance was measured by requesting the empty bottles from participants. 

Block randomization (3x3) was conducted by a researcher independent to the data 

collection or enrolment of participants using a computer generated randomization sequence. 

Blinding strategies included colouring of control juice, as well as advertising and consenting 

participants to a “fruit juice study” without providing information on which fruit was being 

investigated.  
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Figure 5-1. Study design and procedures. PORH, post-occlusive reactive hyperaemia; ABP, 

ambulatory blood pressure; QGP queen garnet plum. 

 

Table 5-1. Dietary intake of participants at baseline, assessed using 3-day food records. 

 Control 
Low 

anthocyanins 

High 

Anthocyanins 
All 

P-

valuea 

n 14 9 6 29  

Energy (kcal) 
2170.4 SD 

745.1 

2072.1 SD 

495.8 

2040.8 SD 

177.2 

2113.1 SD 

580.4 
0.880 

Protein (g) 103.2 SD 38.6 95.0 SD 28.6 88.9 SD 10.5 97.7 SD 31.3 0.634 

Fat – total (g) 86.7 SD 35.9 72.1 SD 26.4 72.8 SD 17.5 79.3 SD 30.1 0.453 

Saturated fat (g) 35.9 SD 18.1 29.8 SD 13.0 31.0 SD 8.6 33.0 SD 14.9 0.608 

Carbohydrates (g) 227.3 SD 79.9 239.4 SD 52.0 236.4 SD 32.3 233.0 SD 62.9 0.900 

Dietary fibre (g) 28.2 SD 13.4 26.5 SD 10.0 28.1 SD 7.3 27.6 SD 11.1 0.934 

Sodium (mg) 
2619.5 SD 

1434.4 

2468.4 SD 

567.2 

2082.7 SD 

397.2 

2461.4 SD 

1057.6 
0.599 

Vitamin C (mg) 90.4 IQR 99.9 76.1 IQR 59.7 
101.7 IQR 

122.5 
86.7 IQR 85.6 0.546 

Vitamin E (mg) 9.6 IQR 5.4 8.2 IQR 6.3 8.3 IQR 1.5 9.0 IQR 4.8 0.441 

Vitamin A* (µg) 881.2 IQR 529.4 
611.5 IQR 

767.5 

887.7 IQR 

330.5 

807.7 IQR 

590.7 
0.875 

Anthocyanins 

(mg) 

2.7 IQR 22.5; 

13.9 SD 22.9 

3.6 IQR 17.8; 

68.1 SD 188.3 

1.4 IQR 5.4; 

73.3 SD 101.5 

43.1 IQR 82.8; 

43.1 SD 114.2 
0.426 

Values are mean and standard deviation or median and interquartile range. aP-value for one-way 

ANOVA among the three treatments; * Total Vitamin A equivalents. Values obtained from the 

Australian Food Composition Database 2019(325). Anthocyanins content values obtained from the 

‘PhenolExplorer’ polyphenol food composition database(206). 

 

Intervention and control juices 

 The low-anthocyanins QGP juice consisted of 99% fruit and 1% water that went 

through a high pressure-low temperature treatment. The high-anthocyanins QGP juice was a 

blend of 220g of frozen QGP with 30mL of water added. The anthocyanin content of both 
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juices were analysed by the Queensland Department of Agriculture and Fisheries (DAF, 

Australia) by Performance Liquid Chromatography (HPLC) and the pH differential method, 

following the AOAC 2005.02 protocol. An apricot juice was chosen as the control arm due to 

similar consistency, nutritional content and flavonoid content(282) to the QGP juice, but 

without anthocyanins. Food dyes (red and blue) were added to the apricot juice to closely 

approximate the colour of the QGP juice. The total anthocyanins content for the 250 mL bottle 

of low-anthocyanins QGP juice was 48 mg based on the HPLC method and 44 mg based on 

the pH differential method, while the total anthocyanins content for the 250 mL bottle of 

untreated QGP juice was 201 mg based on the HPLC method and 207 mg based on the pH 

differential method. Additional nutritional information of the fruit juices can be found in the 

supplementary material (Table 5-S1). 

 

Blood samples 

Pre and post (baseline and 8 weeks) fasted plasma and serum samples were collected 

in the morning, following the microvascular reactivity test, and then stored at -80 °C, prior to 

analysis. IL-1β, IL-6 and TNF-α were analysed in a Luminex 200 using a Human High 

sensitivity T cell magnetic bead panel kits (Merck Millipore, Billerica, MA, USA). High 

sensitivity CRP was analysed on a BK400 automated chemistry analyser using a 

immunoturbidometric assay (Biobase, Shandong, China).  

 

24-hour ambulatory blood pressure 

The 24-hour ambulatory blood pressure was measured using an automated Welch Allyn 

ABPM 7100 (Welch Allyn, NSW, Australia). Participants were fitted with the device and 

appropriate instructions were provided(322). Participants were asked to record any moderate 

or intense physical activity. Criteria for measurements errors include the exclusion of the 
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following measures: 70 mmHg ≤ SBP ≤ 250 mmHg and 30 mmHg ≤ DBP ≤ 130 mmHg. 

Daytime blood pressure was defined as 09-21h and night-time as 11-05h. The “dipping” pattern 

was calculated using a ratio of night-time/daytime blood pressure(322). 

 

Microvascular function 

 Participants were rested in a quiet, controlled temperature room 23 °C ±1, in a supine 

position for 15 minutes. Blood pressure was measured before the PORH test procedure using 

a Welch Allyn Connex 6700 Vital Signs Monitors (Welch Allyn, NSW, Australia), according 

to clinical guidelines(283). Microvascular cutaneous vascular reactivity was measured by using 

LSCI (Pericam PSI System, Perimed AB, Järfälla, Sweden), The baseline perfusion was 

measured in the volar side of the left forearm for 2 minutes, followed by the PORH test: an 

arterial occlusion was maintained for 3 minutes using a BP cuff around the upper arm inflated 

to a pressure of 50-60 mmHg above systolic BP reading; after the BP cuff was released, the 

PORH response was recorded for 3 minutes. The following parameters were extracted: baseline 

flow (BF), biological zero (BZ) and peak value (PV). The PV was obtained with a 5 second 

“time of interest” starting from the highest value after deflation of the cuff(326). RF was 

calculated as BF – BZ. The maximum PORH perfusion (PORHmax) was calculated as PV – 

RF (Supplementary Figure 5-S1 and Table 5-S2. By international convention all parameters 

are expressed in arbitrary Perfusion Units (PU). Microvascular flow parameters were then 

transformed to cutaneous vascular conductance (CVC) by dividing mean arterial pressure to 

yield CVC in PU/mmHg. This PORH protocol is routinely performed in our laboratory; with 

intra-subject coefficients of variation of 7.7% for PV and 11.4% for PORHmax. Additional 

LSCI data combined with the PORH test are listed in the supplementary material 

(Supplementary Table 5-S3). 
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Statistical Analyses 

Data are presented in mean and standard deviation (SD) or median and interquartile 

range according to data distribution. Natural log transformation was used to normalize the data, 

where appropriate. Differences in the baseline demographics among the treatment groups were 

investigated by one-way ANOVA and chi-squared tests. Outliers were graphically inspected 

and exclusions were conducted with Z-scores >2.5 or modified Z-scores >3.5. A two-way 

mixed [1 between-subject factor with 3 levels (treatment) and 1 within-subject with 2 levels 

(time)] ANOVA was used to investigate the outcomes and significant effects were followed by 

corrected post-hoc pairwise comparisons(327,328). Parameters with significant baseline 

between-group imbalances (IL-6 and IL-1β) were further inspected using ANCOVA(329,330). 

The Kruskal-Wallis test was used to inspect results from ANOVA tests conducted with data 

with normality concerns. SPSS (version 25 SPSS Statistic Subscription, IBM, Chicago, IL, 

USA 2019) was used for all statistical analyses. Significance was accepted at alpha p<0.05, 

and non-significant p values between p=0.05-0.099 were considered a trend in the data. Post-

hoc power analysis were conducted for each parameter that had a significant result or trend. 

 

5.3 Results 

A total of 47 participants were assessed for eligibility and 31 participants (19 female 

and 12 male) out of 34 enrolled participants completed the trial (Figure 5-S2). Two withdrawals 

were related to the participants reporting that the study was too onerous and one withdrawal 

was related to an underlying gastrointestinal condition that made the juice consumption 

unviable. Baseline mean age and BMI of participants were 75.3 (SD 6.9) years and 26.1 (SD 

3.3) kg/m2, respectively. Additional baseline demographics are listed in Table 5-2.  
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Table 5-2. Baseline demographics  

 Control 
Low 

anthocyanins 

High 

Anthocyanins 
All P-valuea 

n 14 10 7 31  

Gender (M/F) 5/9 6/4 1/6 12/19 0.043 

Age (years) 74.9 (SD 7.8) 76.1 (SD 6.7 ) 75.1 (SD 6.1) 75.3 (SD 6.9) 0.875 

BMI (kg/m2) 25.2 (SD 3.1) 27.1 (SD 2.3) 26.6 (SD 4.7) 26.1 (SD 3.3) 0.377 

Hypertensionb 5 (35.7%) 4 (40%) 4 (57%) 13 (41.9%) 0.637 

Day SPB (mm 

Hg) 
127.9 (SD 17.9) 128.1 (SD 13.9) 128.5 (SD 16.9) 128.1 (SD 15.9) 0.997 

Day DPB (mm 

Hg) 
78.4 (SD 10.0) 78.6 (SD 8.7) 80.2 (SD 12.5) 78.9 (SD 9.9) 0.928 

SPB night/day 

ratio 
0.89 (SD 0.04) 0.90 (SD 0.09) 0.98 (SD 0.08) 0.92 (SD 0.08) 0.112 

DPB night/day 

ratio 
0.89 (SD 0.09) 0.88 (SD 0.09) 0.95 (SD 0.12) 0.91 (SD 0.10) 0.362 

BMI, body mass index; SPB, systolic blood pressure; DPB, diastolic blood pressure. aP-value for one-

way ANOVA or chi-square test among the three treatments; b Participants with controlled hypertension 

taking anti-hypertensive drugs. 

 

Inflammatory biomarkers  

A significant time and treatment interaction effect was found for serum concentrations 

of TNF-α [F(2,27)=7.739, P=0.002, ηp2=0.364] with post-hoc analysis indicating a power of 

99.2% The breakdown of this interaction showed a lower TNF-α in the high anthocyanins 

group (7.60 pg/mL SD 3.18) vs controls (11.00 pg/mL SD 3.51) after 8 weeks of intervention 

(P=0.047, independent t-test) (Figure 5-2a). Regarding serum concentrations of IL-6, there was 

a significant treatment effect (P=0.013), a trend towards an effect of time (P=0.096) and a trend 

for an interaction effect [F(2,21)=2.933, P=0.075, ηp2=0.218]; however, post-hoc analysis 

indicated a power of 44.6%. Baseline IL-6 was higher in the high anthocyanins group when 

compared to the low anthocyanins group or controls (P<0.001 and P=0.009, respectively, 
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independent t tests), but between-group differences were not significant after 8 weeks of 

intervention (P>0.05) with a 36.6% decrease in IL-6 levels in the high anthocyanins group from 

baseline to 8 weeks (Figure 5-2b). An ANCOVA adjusting for baseline imbalances identified 

no significant treatment effect (P>0.05). The values of IL-1β were natural log transformed to 

approximate a normal distribution. There were significant time and treatment effects (P=0.022 

and 0.038), and a trend for an interaction effect [F(2,27)=2.972, P=0.068, ηp2=0.180], however, 

post-hoc analysis indicated a power of 42.3%. Similar to IL-6, baseline serum concentration of 

IL-1β was higher in the high anthocyanins group, compared to the low anthocyanins group or 

controls (P=0.025 and P=0.019, respectively, Mann-Whitney test), but not significant between 

groups after treatment (P>0.05), with a 23.3% decrease in IL-1β observed in the high 

anthocyanins group over time (Figure 5-2c). A Kruskal-Wallis test confirmed that differences 

between treatment groups at baseline (P=0.028) were no longer significant after 8 weeks of 

treatment (P=0.153). An ANCOVA adjusting for baseline imbalances identified no significant 

treatment effect (P>0.05).  There was no interaction effect [F(2,25)=1.146, P=0.334, 

ηp2=0.084], nor time or treatment effects (P>0.05) for serum concentration of CRP (Figure 5-

2d). Analyses conducted with natural log transformed data or with the Kruskal-Wallis test for 

non-parametric raw data confirmed no effects on CRP serum concentrations (P>0.05). There 

were no gender differences in baseline concentrations of TNF-α (P=0.931), IL-6 (P=0.061), 

IL-1β (P=0.233) and hsCRP (P=0.895).  
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Figure 5-2. Serum concentration of inflammatory biomarkers before and after 8 weeks intervention. 

Values are mean and error bars are standard deviation (A and B) or median and 1st and 3rd quartile (C 

and D). TNF, tumor necrosis factor; IL, interleukin; CRP, c-reactive protein. A) time*treatment effect 

(P=0.002); *HighAntho vs Control (P=0.047, independent t-test). B) No significant treatment effect 

between groups (P>0.05); *HighAntho vs LowAntho (P<0.001, independent t-test); C) No significant 

treatment effect between groups (P>0.05); *HighAntho > Control (P=0.019, Mann-Whitney test) 

*HighAntho > LowAntho (P<0.025, Mann-Whitney test) D) No significant changes or differences 

between groups (P>0.05). 
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24-hour ambulatory blood pressure 

There was no significant interaction, treatment or time effects on any of the 24-hour 

ambulatory systolic and diastolic BP parameters (daytime, nocturnal and 24-hour, and dipping 

patterns) (Table 5-3). Based on the classification of dipping ratios(322) of <0.9 and >0.8 for 

‘normal dipping’, <1.0 and >0.9 for ‘reduced dipping’, and >1.00 for ‘no dipping and rising’, 

there were several changes between treatments. The mean systolic and diastolic BP dipping 

pattern of controls changed from ‘normal dipping’ at baseline to ‘reduced dipping’ after the 

intervention, and the systolic BP dipping pattern of the high anthocyanins group changed from 

‘reduced dipping’ at baseline to ‘no dipping and rising’ after the intervention. There were no 

gender differences for any baseline 24-hour ambulatory systolic and diastolic BP parameters 

(all P’s>0.05)
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Table 5-3. 24-hour ambulatory blood pressure measures before and after treatment in control and intervention groups 

Parameter Group n PRE POST Timea Treatmenta Time x treatmenta 

Day SPB 

Control 9 126.3 (SD 14.6) 125.2 (SD 11.9) 

0.595 0.911 
F(2,21)=0.453, P=0.642, 

ηp2=0.041 
LowAntho 8 127.7 (SD 14.8) 129.3 (SD 16.9) 

HighAntho 7 127.4 (SD 14.7) 123.7 (SD 17.2) 

Day DPB 

Control 9 79.9 (SD 10.9) 79.9 (SD 9.1) 

0.962 0.970 
F(2,21)=0.610, P=0.553, 

ηp2=0.055 
LowAntho 8 78.5 (SD 9.3) 81.3 (SD 9.5) 

HighAntho 7 80.2 (SD 12.5) 77.6 (SD 8.1) 

24h SPB 

Control 9 121.4 (SD 12.9) 123.1 (SD 9.6) 

0.818 0.745 
F(2,21)=1.573, P=0.231, 

ηp2=0.130 
LowAntho 8 123.2 (SD 11.0) 126.0 (SD 14.3) 

HighAntho 7 129.3 (SD 19.9) 125.8 (SD 16.4) 

24h DPB 

Control 9 75.9 (SD 9.3) 78.4 (SD 8.3) 

0.529 0.928 
F(2,21)=1.463, P=0.254, 

ηp2=0.122 
LowAntho 8 74.6 (SD 8.4) 78.8 (SD 10.4) 

HighAntho 7 80.0 (SD 13.8) 76.9 (SD 10.0) 

Nocturnal SBP 

Control 9 113.6 (SD 10.5) 117.5 (SD 8.9) 

0.510 0.284 
F(2,21)=0.324, P=0.727, 

ηp2=0.005 
LowAntho 8 114.9 (SD 11.9) 115.0 (SD 14.2) 

HighAntho 7 126.4 (SD 27.1) 126.9 (SD 22.4) 

Nocturnal DBP Control 9 71.0 (SD 8.4) 73.4 (SD 9.8) 0.623 0.651 



172 
 

LowAntho 8 68.6 (SD 9.9) 72.3 (SD 14.1) 
F(2,21)=0.470, P=0.632, 

ηp2=0.043 
HighAntho 7 71.9 (SD 19.1) 74.5 (SD 13.4) 

SPB night/day 

ratio 

Control 8 0.89 (SD 0.04) 0.93 (SD 0.08) 

0.308 0.103 
F(2,20)=0.559, P=0.581, 

ηp2=0.053 
LowAntho 8 0.90 (SD 0.09) 0.89 (SD 0.08) 

HighAntho 7 0.98 (SD 0.08) 1.03 (SD 0.17) 

DPB night/day 

ratio 

Control 9 0.89 (SD 0.09) 0.92 (SD 0.08) 

0.555 0.236 
F(2,21)=0.067, P=0.935, 

ηp2=0.006 
LowAntho 8 0.88 (SD 0.09) 0.88 (SD 0.09) 

HighAntho 7 0.95 (SD 0.12) 0.96 (SD 0.12) 

Values are means and standard deviation. SPB, systolic blood pressure; DPB, diastolic blood pressure; ηp2, partial eta-squared. a P-values for two-factor mixed 

ANOVA. 
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Microvascular function 

No significant time or treatment effects were observed in the microvascular parameter ‘peak 

value’ in CVC. A trend towards an interaction effect was found [F(2,24)=2.678, P=0.089, ηp2=0.182]; 

however, post-hoc comparisons showed no significant effect of time nor treatment. There was no 

significant interaction effect [F(2,24)=0.309, P=0.737, ηp2=0.025], nor time or treatment effects 

(P>0.05) in the maximum perfusion following the PORH test (PORHmax). There were no gender 

differences in baseline BF (P=0.549), BZ (P=0.858), RF (P=0.451), PV (P=0.675) and PORHmax 

(P=0.884) in CVC. A full description of all microvascular parameters in PU and CVC (PU/mmHg) are 

presented in the supplementary material (Table 5-S3). 

 

 

Figure 5-3. Microvascular reactivity parameters before and after 8 weeks intervention. Values are mean 

and error bars are standard deviation. CVC, cutaneous vascular conductance in PU/mmHg; PORHmax, 

post occlusive reactive hyperaemia maximum perfusion. No significant differences between groups 

(P>0.05). 
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5.4 Discussion 

Consumption of anthocyanins provided in the QGP juice for 8 weeks decreased the 

serum concentrations of TNF-α in older adults diagnosed with MCI. This effect was only 

observed in the intervention group that received the higher dose (201 mg/day) of anthocyanins. 

Other outcomes, including other inflammatory biomarkers, parameters of microvascular 

function and 24-hour ABP measures, remained unchanged in both treatment groups compared 

to controls.   

The major finding in the present trial was the significant decrease in serum 

concentration of TNF-α in the high-anthocyanins intervention group. TNF-α is a cytokine with 

a wide range of pro-inflammatory activities that is primarily produced by macrophages, 

endothelial cells, and smooth muscle cells of atherosclerotic arteries(64). TNF-α may influence 

the atherosclerotic process by causing metabolic perturbations and by increasing the expression 

of surface leukocyte adhesion molecules, chemokines and enhancing the production of other 

cytokines and growth factors. High concentrations of TNF-α have been associated with 

premature coronary artery disease, acute myocardial infarction, peripheral arterial disease, and 

congestive heart failure(277). The magnitude of reduction of TNF-α observed with the high 

dose of anthocyanins in this trial [2.86 pg/mL, from 10.46 (SD 2.84) to 7.60 (SD 3.18) pg/mL] 

may have important clinical implications considering the predictive role of TNF-α in CVD 

events supported by previous studies. For example, in a case-cohort study comprising 105 CAD 

cases and 638 individuals randomly selected from a cohort of 5,404 participants aged 35–74 

years (mean follow-up of 6.1 years), TNF-α was significantly and independently associated 

with CAD (adjusted HRs=1.87;1.31–2.66)(331). Furthermore, there is evidence from large-

scale prospective studies, such as a cohort of 2225 participants (70-79 years old) without 

baseline CVD that were assessed for incident coronary heart disease, stroke and congestive 

heart failure events during an average follow-up of 3.6 years. In that cohort, TNF-α was 
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significantly associated with coronary heart disease (per TNF-α SD increase: RR, 1.22; 95% 

CI, 1.04 to 1.43) and congestive heart failure (per TNF-α SD increase: RR, 1.59; 95% CI, 1.30 

to 1.95) events(76). The beneficial outcomes reported in such studies were found for 

differences in TNF-α, which supports the clinical significance of the reductions observed in 

our study in older adults.  

 Despite a reduction in concentrations of IL-6 (36.6%) and Il-1β (23.3%) in the group 

receiving the high-anthocyanins treatment, these changes were no longer significant after 

adjusting for baseline imbalances between groups. These two interleukins are fundamental 

components of atherosclerosis, related to CVD(190,277). IL-6 is highly expressed by the 

vascular endothelium and the pharmacological inhibition of IL-6 can improve endothelial 

function(332). Concerning the clinical significance of the magnitude of effect found in the high 

anthocyanins intervention in the present trial, a significant reduction of 2.08 pg/mL represents 

a change from baseline of approximately 2 SD [5.68 (SD 1.24) pg/mL at baseline to 3.60 (SD 

0.97) pg/mL after the treatment]. Other studies have reported hazard ratios of 1.80 according 

to each 1-SD increase in IL-6 for risk of first-ever cerebrovascular events in individuals with 

vascular risk factors, but without any pre-existing CVD(333). Furthermore, in a meta-analysis 

of 17 prospective studies investigating clinical coronary outcomes (i.e., myocardial infarction 

or coronary death), an odds ratio of 1.61 (95% CI 1.42–1.83) was found per 2 SD increase in 

baseline IL-6(334). 

IL-1β synthesis is significantly upregulated after cardiovascular events such as 

myocardium infarction, as well as in advanced plaque formations in atherosclerosis disease; 

thus, it has been investigated as a therapeutic option in secondary and tertiary prevention of 

CVD(335). Local stimuli in the plaque induces the generation of active IL-1β through the 

action of a molecular assembly known as the inflammasome(336). The convincing links 

between IL-1β to pro-inflammatory diseases, such as atherosclerosis indicates this cytokine as 
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a potential therapeutic target to improve cardiovascular outcomes(336). In support of this, an 

anti-IL-1β therapy was investigated in a large randomized, double-blind, placebo-controlled 

trial of 10,061 patients (median follow-up of 3.7y) with a history of myocardial infarction and 

CRP ≥ 2 mg/L. Treatment with canakinumab (anti-IL-1β monoclonal antibody) led to 15% 

reduction in major adverse CVD events (p=0.007)(313). Furthermore, a meta-analysis 

including 6 cohort studies with 1,855 CVD cases and 18,745 non-cases with follow-up times 

between 5-16y investigated the role of Interleukin-1 receptor antagonist (IL-1RA), which 

counter-regulates IL-1β as an endogenous inhibitor in vivo by blocking the binding site for IL-

1β, and incident CVD(337). A pooled standardized hazard ratio (95% CI) for incident CVD of 

1.11 (1.06–1.17) was found after adjustment for age, sex, anthropometric, metabolic, and 

lifestyle factors (P<0.0001)(337). A lack of studies regarding the magnitude of change in IL-

1β concentration and CVD prediction makes it complex to extrapolate the clinical significance 

of our findings. The significant treatment effect showed a reduction of 0.140 pg/mL [0.600 

(IQR 1.065) pg/mL at baseline and 0.460 (IQR 0.215) pg/mL after treatment] in the high 

anthocyanins group, representing a 23.3% reduction from baseline. Overall, our results, 

combined with the strong evidence pinpointing a relationship between inflammatory markers 

and CVD suggest that food-derived anthocyanins may be an important potential therapeutic 

treatment for reducing inflammation and promoting subsequent health benefits. Another 

feature of the present trial is that all participants were diagnosed with MCI; therefore, such 

health benefits may have potential implications in attenuating the advance of cognitive decline, 

considering that a number of studies support the association between neuroinflammation and a 

decline in cognitive function(338–340). Several studies support that CVD are associated with 

increased risk of cognitive impairment and dementia(314–316,341,342). 

The changes observed in concentrations of TNF-α were not accompanied by changes 

in vascular outcomes, either in parameters derived from the 24h ABP measurements or 
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microvascular assessment. The observed changes in mean systolic and diastolic BP dipping 

pattern are not clinically relevant considering that the ratios were borderline compared to the 

classification thresholds and had relatively high standard deviations. It has been suggested that 

the cutaneous microcirculation may mirror generalized systemic vascular dysfunction(343), 

and continuous high frame assessment of skin perfusion over wide areas measured through 

LSCI provides strong reproducibility for vascular challenges(344,345). Based on the ability of 

anthocyanins to exert beneficial physiological effects as antioxidant and anti-inflammatory 

compounds, we proposed that treatment might improve the vascular reactivity measured using 

the PORH test. Mechanisms underlying the vascular reactivity response in the PORH test are 

still being elucidated; however, the findings of the present study suggest that reduction in serum 

TNF-αmay not affect microvascular reactivity in older adults. The use of the LSCI in 

nutritional intervention studies is relatively new, and there are no published reference values 

for predicting any condition, nor values that have an established clinical significance in 

vascular biology literature. A recent study from our group found a positive acute effect 

(postprandial) of anthocyanins in attenuating vascular and inflammatory responses to a high 

fat high energy meal challenge in overweight older adults(346). An improvement for both 

microvascular and macrovascular function was observed in that study, as assessed by PORH 

test combined with LSCI and FMD, respectively.  

Limitations of our study include the variation in sample size and gender between 

treatment groups. Forty two percent of participants were hypertensive; however, this is 

reflective of the overall prevalence of 45.2% in Australians aged 75 years and older(347) and 

values did not significantly differ between the treatment groups. The limited sample size 

hindered the ability to conduct sub-analysis by sex or prevalence of hypertension, and may 

have influenced the baseline between-group imbalances in IL-6 and IL-1β concentration 

despite randomization. It should be noted that RCTs conducted in participants with MCI have 
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a complex recruitment process, and that the sample size of the present study was larger than 

that in 44% of included studies in a systematic review of treatments for MCI(348). A key 

feature in the design of this study was the placebo chosen for the control group. Investigation 

of a specific bioactive compound, such as anthocyanins, in a clinical trial using foodstuffs as 

the vehicle of delivery is challenging. Foods that are rich in a particular flavonoid sub-class 

may also contain other classes of flavonoids or other bioactive compounds, such as other 

polyphenols, and/or inorganic compounds (such as nitrate) that might have similar or 

synergistic effects on the outcomes assessed. We aimed to evaluate the effect of two different 

doses of anthocyanins using differently processed juice as the food source. A potential 

limitation that may have led to the absence of effects in the low dose group is that the average 

mean intake of anthocyanins in the usual diet of participants was similar to the intervention per 

se (68mg compared to 48mg). In order to isolate the effect of anthocyanins from other 

bioactives, apricot juice was provided as the control due to its lack of anthocyanins, but its 

similarly matched macro- and micronutrient content, as well as its polyphenol profile(206), 

including flavanols (such as quercetin), catechins and epicatechins, all of which are potential 

mediators of cardiovascular health(200,303–305).  

 

5.5 Conclusion 

A daily high dose of fruit-derived anthocyanins for 8 weeks decreased serum 

concentrations of TNF-α in older adults diagnosed with MCI. This change was not 

accompanied by effects on other inflammatory biomarkers, 24h ABP or microcirculation 

function, and no effects were observed in the low anthocyanin dose treatment group. 

Considering the major role of the inflammatory response in CVD and cognitive decline, our 

finding suggest that a regular high intake of anthocyanins may have clinical implications in 

this high-risk group; however, further studies with a longer follow-up and larger sample size 
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are required to better elucidate if these changes in concentrations of TNF-α will alter CVD risk 

and progression of cognitive decline. 

 

5.6 Supplementary Material 

Table 5-S1. Description of Post-Occlusive Reactive Hyperaemia Microvascular Parameters  

MICROVASCULAR PARAMETER DESCRIPTION 

Baseline flow (BF) 
The most stable 30 seconds within the first 2 minutes 

of reading. 

Biologic zero (BZ) 
The most stable 3 seconds displaying the lower 

values before the deflation of the cuff. 

Resting flow (RF) BF-BZ 

Peak perfusion value (PV) 
Five seconds period starting from the highest value 

in the first rise (slope) after deflation of the cuff 

PORHmax PV - RF 

PORHmax, post-occlusive reactive hyperaemia maximum perfusion 
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Table 5-S2. Nutrition information of the test meal and fruit juices (250 mL) 

 

Low-

anthocyanins 

QGP juice 

High-

anthocyanins 

QGP juice 

Apricot juice 

Energy (kcal) 113 98 96 

Protein (g) 0.7 0.6 0.7 

Fat – total (g) < 0.1 < 0.1 < 0.1 

Saturated fat (g) < 0.1 < 0.1 < 0.1 

Carbohydrates (g) 23.1 22.2 22.2 

Dietary fibre (g) 2.9 4.4 4.0 

Sodium (mg) 7 6 2 

Vitamin C (mg) 0.3 0.3 1.2 

Anthocyanins1 (mg) 46.7  200.8 03 

Anthocyanins2 (mg) 43.7 206.8 03 

1High Performance Liquid Chromatography; 2pH differential method; 3Phenol-explorer23. Remaining 

values were obtained from the Australian Food Composition Database 201924. 
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Table 5-S3. Post-occlusive reactive hyperaemia parameters 

Parameter Group n PRE POST Timea Treatmenta Time x treatmenta 

PV (pu) 

Control 11 96.4 (SD 29.3) 93.5 (SD 22.0) 

0.565 0.637 
F(2,24)=0.418, P=0.663, 

ηp2=0.034 
LowAntho 9 85.9 (SD 10.2) 82.2 (SD 12.6) 

HighAntho 7 99.4 (SD 16.9) 101.4(SD 19.6) 

PV (cvc) 

Control 11 1.02 (SD 0.26) 1.01 (SD 0.21) 

0.598 0.637 
F(2,24)=2.678, P=0.089, 

ηp2=0.182 
LowAntho 9 1.00 (SD 0.13) 0.90 (SD 0.15) 

HighAntho 7 1.00 (SD 0.26) 1.07 (SD 0.25) 

PORH (cvc) 

Control 11 0.55 (SD 0.22) 0.53 (SD 0.22) 

0.084 0.149 
F(2,24)=0.309, P=0.737, 

ηp2=0.025 
LowAntho 9 0.42 (SD 0.15) 0.36 (SD 0.09) 

HighAntho 7 0.56 (SD 0.24) 0.50 (SD 0.18) 

RF (cvc) 

Control 11 0.29 (SD 0.06)  0.31 (SD 0.07) 

0.200 0.047 
F(2,24)=1.403, P=0.265, 

ηp2=0.105 
LowAntho 9 0.39 (SD 0.09) 0.38 (SD 0.07) 

HighAntho 7 0.28 (SD 0.08) 0.37 (SD 0.18) 

BZ (pu) 

Control 11 17.4 (SD 9.3)  15.7 (SD 6.9) 

0.971 0.827 
F(2,24)=3.369, P=0.051, 

ηp2=0.219 
LowAntho 9 16.2 (SD 6.6) 14.4 (SD 3.9) 

HighAntho 6 15.2 (SD 2.9) 18.9 (SD 4.9) 

BF (pu) Control 11 44.8 (SD 12.3) 44.9 (SD 14.2) 0.134 0.564 
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LowAntho 9 49.9 (SD 6.7) 49.0 (SD 7.4) 
F(2,24)=2.751, P=0.084, 

ηp2=0.187 
HighAntho 6 44.0 (SD 8.3) 53.9 (SD 16.1) 

Data are mean and standard deviation. PV, peak value; ηp2, partial eta-squared ;PORH, post-occlusive reactive hyperaemia; RF, resting flow; BZ, biologic 

zero; pu, perfusion units; BF; baseline flow; cvc, cutaneous vascular conductance
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Figure 5-S1. Cutaneous perfusion recorded with laser speckle contrast imaging during post-

occlusive reactive hyperaemia. BF, baseline perfusion; BZ, biologic zero; PV, peak value 
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Figure 5-S2. Consort 2010 Flow diagram 
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CHAPTER 6: Conclusions and recommendations 

 

6.1 Overview of core findings 

 

The studies presented in this thesis utilised different study design methodologies to 

address the central research questions concerning the role of dietary intake of flavonoids and 

anthocyanins on vascular function, inflammation and other cardiovascular disease risk factors. 

Following an extensive exploration of the literature, gaps were identified that guided the design 

and conduct of all studies. The availability of resources, expertise of the research team 

collaborators and access to healthcare services in the local area were also considered in order 

to maximize efficiency of the body of work. This approach covered domains of: a) 

Epidemiological evidence: analytical work conducted in national representative cohort of 

Australian women: b) Knowledge syntheses: systematic literature review of randomized 

clinical trials; and c) Experimental evidence: conduct of two clinical trials to assess the acute 

and chronic effect of anthocyanin nutritional interventions in older adults. 

The first gap identified was a lack of data from the Australian population regarding the 

association between the dietary intake of flavonoids and incidence of hypertension. 

Epidemiological evidence suggests that a higher dietary flavonoid intake is associated with a 

reduced risk of several chronic diseases, including hypertension. However, different dietary 

patterns and cuisines between populations affects the amounts and types of flavonoid-rich 

foods consumed, while differing lifestyle factors and life expectancy also influence the 

contribution of flavonoids to the incidence of hypertension and other chronic diseases. 

Moreover, the flavonoid content of foods is likely to be influenced by seasonality and differ 

between geographic areas. Therefore, a study was developed to investigate the association 

between intake of flavonoids and their subclasses, and incidence of hypertension among 
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Australian women in two age cohorts. Findings from this population-based prospective study 

showed an association between a higher dietary intake of flavonoids and lower incidence of 

hypertension. In the middle-aged cohort, higher intakes of the flavonoid subclasses, flavones, 

isoflavones and flavanones, found mainly in orange and orange juice, apples and soy milk, 

were associated with a reduced risk of hypertension among middle-aged women followed-up 

over 15 years. In the younger, reproductive-aged cohort, a higher intake of total flavonoids and 

flavanols, attributed mainly to orange juice, red wine, apples and onions, were associated with 

a reduced risk of hypertension over a 12 year follow-up period. These findings contribute to 

the current knowledge in his field, which may be used in nutritional messages and policies 

aiming to improve the cardiovascular health of women at these two different life stages. 

Interestingly, in two other similar studies (119,185) that found a reduction in incident 

hypertension in other countries, the benefits were attributed to other groups of flavonoids, such 

as flavonols and anthocyanins. This confirms a need to conduct studies in different regions 

because of variations in cultural and socio-economic characteristics that influence dietary 

patterns. Taken together, such findings suggest that nutritional messages and policies aiming 

to improve the cardiovascular health through increased consumption of dietary flavonoids may 

vary from population to population, as well as between different ages ranges.  

 The epidemiological study had a general approach regarding the classes of flavonoids, 

while the other studies that composed this Thesis had a scope focused in clinical nutrition, and 

advanced into a more specific investigation of one class of flavonoids, the anthocyanins. 

Additionally, although blood pressure and hypertension were addressed in all of these studies, 

a variety of parameters related to CVD were further investigated. Among studies that evaluate 

the effects of anthocyanins on CVD risk factors and associated biomarkers, a number of studies 

addressed the potential acute effects of anthocyanins in studies using a HFM challenge; 

however, such finding were not yet collated and synthetized. This gap led to the second study 
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of this Thesis, a systematic literature research  that was conducted focusing in knowledge 

synthesis of the postprandial effects of anthocyanins on CVD risk factors in HFM studies. A 

total of 13 eligible studies were included and beneficial effects of anthocyanins were reported, 

with most promising results indicating attenuation of deleterious postprandial effects on 

oxidative stress and antioxidant status, triacylglycerol and total cholesterol concentrations, 

vascular endothelial function and inflammatory biomarkers. Post-prandial changes in blood 

pressure and lipoproteins were least affected by anthocyanins. The systematic literature review 

identified beneficial effects of acute dietary anthocyanin interventions on CVD risk factors 

following a HFM challenge; however, due to the heterogeneity in changes of some parameters 

identified between the studies, further studies are required in order to advance the current 

knowledge of the underlying mechanisms between post-prandial imbalances and CVD 

incidence and progression, and to investigate how these imbalances are attenuated by bioactive 

compounds such anthocyanins. 

Based on the findings from the systematic literature review, another gap that was 

identified was a need for a more robust investigation of vascular function in the postprandial 

state, which along with the immune response, is an important predictor for CVD risk. This is 

particularly evident in older adults, as several studies support a gradual loss of the vascular 

function, and a new immune-metabolic viewpoint for age-related diseases, termed 

‘inflammaging’ which is characterized by a chronic low-grade inflammation. Additionally, 

excessive adiposity at all ages is associated with an up-regulation of a pro-inflammatory state, 

as the accumulation of adipose tissue mass promotes the secretion and release of inflammatory 

mediators. This process also leads to chronic low-grade inflammation that is driven by a 

nutrient excess and/or overnutrition and has the same mechanisms as those underpinning 

“inflammaging”. Therefore, a clinical trial was designed in the same setting of investigating 

the postprandial effects of anthocyanins following a HFHE meal challenge; however the 
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novelty was related to evaluation of both macro and microvascular parameters by combining 

classical and novel techniques with the latest imaging technologies, such as the flow-mediated 

dilatation (FMD) and the Laser Speckle Contrast Imaging (LSCI). In addition to vascular 

function assessments, classical CVD biomarkers such as lipid profile and blood pressure, and 

inflammatory biomarkers were also evaluated. To our knowledge, this is the first study to 

conduct this type of protocol in studies with nutritional interventions. The findings supported  

the postprandial effects of food anthocyanins in improving several CVD biomarkers in 

overweight older adults following a HFHE meal challenge. Potentially beneficial effects were 

observed in parameters of both macrovascular and microvascular function, as well as some 

inflammatory biomarkers. The HFHE meal challenge induced increases in postprandial blood 

pressure, diacron reactive oxygen metabolites, triacylglycerol and total cholesterol; however, 

anthocyanin consumption did not attenuate these responses. Such results corroborated with 

findings from the systematic literature review, and also advanced knowledge concerning the 

postprandial vascular regulation and how the effects exerted by anthocyanins can be observed 

in different vascular beds. Our findings contribute new evidence regarding the potential 

protective effect of dietary anthocyanins on vascular function and inflammatory responses, 

parameters that have a major role on atherosclerotic disease and CVD events.  

Considering there were still several gaps to be addressed regarding the longer term 

effect of anthocyanins in this vascular-inflammatory axis in older adults, another clinical trial 

was conducted to investigate the chronic effects (8 weeks) of two different doses of food-

anthocyanins on inflammatory markers associated with CVD risk factors, along with analysis 

of microvascular function and 24-hour ABP. This study was also conducted in older adults, but 

the aim was to investigate such parameters in individuals that had a diagnosis of Mild Cognitive 

Impairment, a neurodegenerative condition that shares pathological mechanisms with CVD. A 

daily high dose of fruit-derived anthocyanins for 8 weeks decreased serum concentrations of 
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TNF-α. These changes were not accompanied by effects on other inflammatory biomarkers 

(IL-6, hs-CRP and IL-1β), 24h ABP or microcirculation function, and no effects were observed 

in the low anthocyanin dose treatment group. Considering the major role of the inflammatory 

response in CVD and cognitive decline, our findings suggest that a regular high intake of 

anthocyanins may have clinical implications in this high-risk group; however, further studies 

with a longer follow-up are required to better elucidate whether this change on the i will alter 

overall CVD risk and/or progression of cognitive decline. 

Overall, the findings from all four studies suggest that flavonoids and anthocyanins 

have an important role as a potential non-pharmacological treatment option to improve vascular 

health and reduce cardiovascular risk.  

 

6.2 Strengths and limitations  

 The specific methodological strengths and limitations of each study have been 

addressed in-depth in each of the research chapters. However, more general aspects of the 

thesis will be addressed in this section. 

 Firstly, for the epidemiological aspect, the main strength of this study was the 

representative sample of Australian women across two age cohorts, the prospective design, and 

repeated measures over time. The statistical approach of using generalized estimated equations 

allowed for adjustments of key confounding factors. Potential confounders were extensively 

explored in our models, as there was access to a wide range of demographic, hypertension risk 

factor and dietary intake variables. The large sample size allowed for a stepwise regression 

with bidirectional elimination in order to create the models for such adjustments, therefore 

avoiding multicollinearity and overfitting of the model. Recruitment of participants was 

proportional to the population size in all Australian states, thereby enabling generalizability of 

the study findings to Australian women generally. However, a few limitations were present 



190 
 

such as the absence of men in this cohort and the use of self-reported data for hypertension. 

Moreover, the FFQ used may lack detail about some flavonoid-rich food sources due to it being 

developed over two decades ago, and it may not have included relevant high-flavonoid food 

items that have increased in popularity over this period, such as blackberries, cherries, 

blueberries and raspberries. This could have led to an underestimation of anthocyanin intake, 

as the mean intake in the present study was 4.7 mg/day in the middle-aged and 5.0 mg/day in 

the reproductive-aged cohort, compared to 24.2 mg/day reported in 2019 in the overall 

Australian population from a nationally representative sample that used two 24-hr recalls as 

the method of dietary assessment (222). This may have hindered a more robust overall message 

from the Thesis, considering that all other three studies focused in this specific flavonoid 

subclass.  

The most notable challenge and limitation of conducting the systematic literature 

review was to address a wide range of CVD-related biomarkers assessed in this type of acute 

clinical trial. We had originally considered conducting a meta-analyses for the various 

outcomes included in the review, particularly for those outcomes that were most frequently 

reported. However, the major variation in reporting of the included meal challenge studies, 

presentation of data according to varying postprandial time points, and the use of different 

methodologies to measure outcome variables rendered the possibility of meta-analysis or other 

pooled analyses as unfeasible. However, the narrative analysis remains valuable. Another 

source of heterogeneity in the included studies may have resulted from the variability in the 

macronutrient and energy content of the HMF challenges, particularly regarding the types of 

fat, as well as the format in which the meals were delivered.  

Despite these limitations, all included studies were conducted in young and middle-

aged adults (mean age ranging from 20.2 to 46.9y), but there were differences in mean BMI 

between studies (two studies included participants with BMI<25kg/m2 [34,40], while six 
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targeted those with BMI between 25 and 30kg/m2 [26,29–31,36,39] and three included 

participants with BMI>30kg/m2 [33,35,38]). Another feature in the design of this type of study 

is that tests are conducted over multiple time periods following the HFM challenge, thereby 

raising a concern that the number of false positive findings may be inflated. For this reason, 

the interpretation of results found for only one or a few time points, and that were not sustained, 

had to be interpreted with caution. Still, parameters that have been used in included studies to 

investigate oxidative stress and antioxidant status represented a wide range of analytical 

methods, and there is no formal mechanism to establish consensus regarding the optimal 

biomarkers to use in such nutritional interventions (259,261). The main strength of the 

systematic literature review was to present the body of evidence to date in a clear and concise 

way, as well as discussing and suggesting which results need to be further investigated and 

identifying gaps that require further elucidation. The latter was what guided the design of the 

clinical trial included in Chapter 4.  

 A key feature of the two studies that comprised the experimental evidence part of this 

thesis was the ability to evaluate microcirculatory functioning using a cutting edge technology, 

the Laser Speckle Contrast Imaging (LSCI) method. Assessment of the microcirculation has 

been performed for decades, but the LSCI method is the first one to provide excellent 

reproducibility to assess skin microvascular reactivity (97). The main methodological strength 

of the acute study that evaluated postprandial effects of anthocyanins in older adults following 

a HFM challenge was the inclusion of a more robust evaluation of the vascular function, by 

exploring both macro and microvascular parameters by combining classical (FMD) and novel 

techniques (LSCI). To our knowledge, this is the first study to conduct this type of protocol in 

a nutritional intervention study. Although this innovative design allowed us to explore 

macrovascular and microvascular function, a few limitations need to be highlighted. It was not 

possible to repeat the FMD and microvascular reactivity tests in case of experimental errors, 
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such as a participant movement during testing, due to the protocol of measures being collected 

at specific time points. Concerning the evaluation of endothelial and non-endothelial 

mechanisms in vascular and microvascular reactivity, we were not able to conduct nitrate-

mediated dilation nor iontophoresis of sodium nitroprusside due to the time limit between 

measures, considering it would be not viable, if not impossible, in a postprandial study to 

conduct a protocol with all of these measures. Another strength that can be attributed to both 

the acute and longer clinical trials was the choice of the control intervention. It is challenging 

to investigate a specific bioactive compound, such as a specific flavonoid, in a clinical trial 

using foods as vehicles for delivery. A food item that is a rich source of a particular flavonoid 

may also contain other classes of flavonoids, or still other bioactive compounds such as other 

polyphenols and/or inorganic compounds (such as nitrate), that might have similar or 

synergistic effects on the outcomes to those being assessed. In order to address this issue, the 

choice of the placebo food item for the control arm is an important consideration. A placebo 

that is only matched in macro, or even micronutrient content, can underestimate the effects of 

other bioactive compounds. In both studies, we aimed to evaluate the acute effect of 

anthocyanins using Queen Garnet plum juice as the intervention food source. In order to isolate 

the effect of anthocyanins, we chose apricot juice as the control due to its lack of anthocyanins, 

but its similarly matched macro- and micronutrient content, as well as its polyphenol profile 

(281), that includes flavanols (such as quercetin), catechins and epicatechins, all of which are 

potential mediators of cardiovascular health (20,303,305,349). The choice of this control juice 

allowed the effects of only anthocyanins to be isolated from other bioactive compounds. 

Concerning the second clinical trial that was conducted in older adults with a diagnosis of MCI, 

the small sample size was its main limitation. In addition to recruitment being slower than 

expected due to difficulties recruiting this patient group, and difficulties in ensuring a definite 

clinical diagnosis of MCI, the trial had to be cut short due to COVID-19 restrictions that 
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prevented face-to-face data collection. The smaller sample size of the final clinical trial has 

probably introduced issues of insufficient power and possibility of Type II error. 

 Overall, the main strength of this thesis is that all studies were highly connected to each 

other. The epidemiological study, answered a more general research question using data from 

a nationally representative cohort study, while the research questions were more narrowly 

focused in the experimental clinical trials. The systematic literature review and the first clinical 

trial addressed similar research outcomes. Both clinical trials shared several important features 

such as: food-based intervention of anthocyanins; microcirculation assessment using LSCI 

technology; evaluation of inflammatory biomarkers; and were conducted in older adults. The 

combination of studies presented in this thesis together helps address the main research 

questions in a complementary manner.  

 

6.3 Future research and recommendations 

  Findings from this thesis have contributed novel findings to advance knowledge of this 

topic, but have also highlighted new areas for further research. 

 In the epidemiological approach of investigating the association of dietary intake of 

flavonoids in the Australian population, further studies with a similar methodology, but in  

different populations with varying outcomes are recommended. For example, a national 

representative study investigating the incidence of hypertension among Australian men is still 

lacking. Likewise, data on the incidence of other CVD and related conditions and their 

associations with the dietary intake of flavonoids are also needed. Considering that the dietary 

intake, in terms of sources of flavonoids, vary according to many factors over time, it is 

recommended that such analyses need to be conducted from time-to-time in different 

populations, using an appropriate and updated dietary intake assessment method for accurate 

estimation of dietary intake. Still, the possibility of evaluating blood, urine and faecal samples, 
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and measures of vascular function along with an epidemiological analyses, provide an 

important link between experimental and epidemiological evidence and would help elucidate 

the mechanisms underlying the dietary intake of flavonoids and incidence of various disease 

states.  

 At the clinical level, a number of key points and recommendations for future research 

are highlighted below: 

• The choice of the intervention and placebo is an important consideration in order to 

compare and generalise conclusions across studies. As the evidence of the effects of 

anthocyanins to prevent and treat certain conditions is increasing, future studies will 

need to investigate specifically which types of anthocyanins exert these effects, as well 

as identify the synergistic effects of nutrients and food matrices that may be 

contributing to observed effects. There is also a need to focus on methodologies to 

stabilise or reduce degradation of these bioactive compounds in foods during 

processing and handling. In cases where the research question aims to explore the 

effects of a specific bioactive compound, a placebo choice that isolates this compound 

is recommended, in order to avoid non-specific effects of other polyphenols or nutrients 

such as dietary fibre and nitrate concentration. 

• The assessment of postprandial parameters as CVD risk factors is still relatively new 

and less explored when compared to fasting measures. Although the findings from the 

systematic literature review and the clinical trial presented in Chapter 4 showed 

improvements in a variety of biomarkers associated with CVD, future studies should 

explore whether such changes will impact on CVD incidence and progression, and how 

these measures may differ from fasting measures. In other words, determine how the 

fasting and postprandial flow-mediated dilatation scores differ in prediction values for 

later CVD events.  
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• The use of the LSCI technology to assess microvascular function has increased in recent  

years; however, this remains an exploratory field, and further studies that include this 

outcome measure are required in the context of CVD research. There is a need to 

standardize the vascular reactivity tests protocols, in order to allow better comparison 

between studies and improve reproducibility of such tests within and between studies. 

Moreover, studies with larger sample sizes are required to investigate the association 

between these new microvascular parameters and other already established measures 

of vascular function, such as the gold-standard FMD, as well to investigate the 

association with other traditional and related CVD biomarkers. 

• In studies that evaluate risk factors that are shared between CVD and neurodegenerative 

conditions such as in the clinical trial presented in Chapter 5, a longer nutritional 

intervention and follow-up period would be recommended in order to investigate if the 

improvements of such risk factors will reduce the overall incidence of CVD events and 

attenuate further cognitive decline over time.  

 

6.4 Conclusion 

 The studies included in this thesis have addressed several gaps related to the role of 

dietary intake of flavonoids and anthocyanins on vascular function, inflammation and other 

cardiovascular disease risk factors. This body of research was conducted across three levels of 

evidence: Epidemiological evidence; Knowledge syntheses; and Experimental evidence. This 

was achieved by utilising a wide range of scientific methods in the medical sciences field, 

especially in nutritional epidemiology and clinical nutrition. From secondary data analysis, to 

the identification, selection and critical appraisal of relevant primary research, and the design 

and execution of original clinical trials, a vast array of interpersonal and laboratory skills, 

statistical methods and forms of presenting results were utilized.  
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 Collectively, the four studies included in this thesis have resulted in novel findings that 

contributed to the advance of the knowledge in this field, as well as highlighting what is still 

have to be addressed, and identified new gaps to be explored in future studies. In a broader 

context, this research strengthen the concept that bioactive compounds, as part of diet or as a 

nutritional intervention, may have positive impact in health outcomes and help to attenuate the 

burden and incidence of chronic diseases.  
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7 Appendices 

7.1 Appendix A - Published Paper: Association between flavonoid 

intake and risk of hypertension in two cohorts of Australian 

women: a longitudinal study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



223 
 

 

 

 

 

 

 

Article removed for copyright reasons, please refer to: do Rosario VA, Shoenaker DAJM, 

Kent K, Weston-Green K, Charlton K. Association between flavonoid intake and risk of 

hypertension in two cohorts of Australian women: a longitudinal study. European Journal 

of Nutrition (2020). https://doi.org/10.1007/s00394-020-02424-9 



224 
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anthocyanins on cardiovascular disease risk factors: a systematic 
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