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Abstract 
   

     It has been known for about a century that hydrogen contamination causes severe 

degradation in the mechanical properties of metals. This phenomenon is generally 

termed as ‘hydrogen embrittlement’ (HE). In this thesis, the underlying mechanisms 

behind HE phenomenon were elucidated on an atomic scale. The H segregation at 

various grain boundaries (GBs) and its influence on the structure, mechanical 

properties, deformation mechanisms and failure response of GBs were examined by 

atomistic simulations.  

 First, H segregation at various GBs was studied in this thesis. The results indicated 

that H segregation properties were very sensitive to GB structures. The effects of H 

atoms on the mechanical behaviour and plastic deformation of GBs were then 

examined. It was shown that H atoms modified the behaviour of dislocation nucleation 

and caused the yield stress of dislocation nucleation to increase or decrease. Different 

deformation mechanisms were directly responsible for this modification.  In addition, 

H segregation increased the critical shear stress and impeded the coupled GB motion, 

irrespective of the GB structures. During GB migration, H-vacancy clusters cannot 

grow, which suggests that the coupled GB motion may help to resist H-induced 

intergranular embrittlement.  

 The role of H atoms in changing the interaction of dislocations with GBs was also 

investigated. Several interaction mechanisms such as dislocation transmission, 

nucleation and reflection were reported for different glide planes and GB structures. 

Segregated H atoms transformed these interaction mechanisms into ones involving 

dislocation absorption for most of GBs. This disordered the atomic structure of GBs 

and established a local stress state, which promoted the ultimate failure of GBs due to 

the formation of vacancies. 

 The decohesion of Ni GBs in the presence of H was examined by direct simulations. 

Computational tensile tests showed that under the equilibrium concentration of H atoms 

typical of embrittlement in Ni, and in conjunction with the local H diffusion process, 

the maximum reduction of tensile strength and fracture energy was 6.60% and 15.75% 

for Σ5 (210) ⟨100⟩ and Σ17 (530) ⟨100⟩ GBs, respectively. Further calculations of these 

cohesive parameters aided by the dislocation-GB interactions revealed that the H 

embrittling effect in metallic materials was largely assisted by the plasticity process.  

     The ability of H segregation at GBs to modify both the ductile emission and brittle 
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cleavage of the intergranular cracks was studied. It was found that H segregation had a 

limited embrittling effect on the predicted ductile cracks along the GBs, but favoured 

the cleavage process in intrinsically brittle directions. Furthermore, cyclic loading can 

promote the accumulation of H into the GB region ahead of the crack tip and overcome 

crack trapping, thus inducing a ductile-to-brittle transformation.  

Keywords: Hydrogen embrittlement; Grain boundary; dislocations; fracture 

mechanics; ductile to brittle transition  
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Chapter 1 Introduction 

1.1 Research background 

      In 1875, Johnson examined the way different acids affected the mechanical 

properties of iron and noted that after immersion in strong hydrochloric or dilute 

sulfuric acid, a piece of iron could be broken after being bent once, whereas it could 

be bent two or three times before immersion. It was shown that these effects on the  

toughness and breaking-strain were temporary, and the metal would regain its original 

character [1]. He attributed this phenomenon to hydrogen (H) segregation where the H 

atoms in acids entered the metal and hindered the movement of iron atoms, thus 

causing a temporary loss of toughness and strength. This was the first report of H-

induced degradation in the mechanical performance of iron, and launched the field of 

study of hydrogen embrittlement (HE) of metals. Researchers then found that this H-

induced failure was universal in metals, such as steels [2-4], aluminium [5-7] and 

titanium alloys [8-10].  

     High-strength steels and engineering alloys are widely used in aerospace 

engineering, oil and gas transportation, offshore platforms and nuclear energy, etc. 

However, HE phenomenon severely limits their industrial applications. During 

manufacturing and fabrication, the hydrogen molecular H2 can be adsorbed on the 

metal surface and dissociated into H atoms. These H atoms then segregate into metals, 

diffuse within the lattice structure, and are eventually trapped by defects such as 

vacancies, dislocations and grain boundaries (GBs) [11]. When there is a large 

accumulation of H, crack initiation and propagation occur, which leads to the final 

rupture and catastrophic failure of metallic systems.  For example, high-strength steels 

are preferred in the automotive industry to increase fuel efficiency by reducing weight 

while still meeting strength requirements. When exposed to an aggressive environment 

these steels endure the threat of HE due to the presence of H gas [12]. Moreover, with 

the fast development and increasing utilisation of H energy, the HE of steels is also 

becoming a severe challenge in the design and use of H-pressurised pipes and storage 

containers [13].  

     The activation of the HE phenomenon and its influence on the deterioration of 

mechanical properties in structural materials depends on factors such as [14]: (1) 

material microstructure, such as defects and impurity densities, (2) H charging and 
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diffusion, and H interaction with various traps and trapping conditions, (3) H coverage 

and its local distribution around defects, and (4) mechanical and environmental loading 

conditions at macro, micro, and nano scales. Due to its multi-faceted nature, there are 

still strong debates on the H-induced failure mechanisms and general HE models.  

     As an important ingredient of crystal imperfections, the GB significantly affects 

intergranular HE [14-20]. GBs can play a critical role in the transport and segregation 

of H and fracture patterns in polycrystalline materials [14], and “special” GBs are often 

utilised by GB engineering to increase resistance to intergranular HE in metallic 

systems [17]. For example, Bechtle et al. [17] used thermomechanical processing to 

engineer Ni-201 alloy. By comparing the mechanical properties and fractography of 

samples with low and high fractions of low-Σ boundaries, particularly Σ3 twins, they 

found that microstructures with a higher proportion of Σ3 boundaries displayed higher 

tensile ductility and fracture toughness. Therefore, a deeper understanding of the 

behaviour of GBs during the HE phenomenon is of significance to improved failure 

predictions and to design of HE-resistant materials. It has been proposed that the role 

of H is to weaken the cohesive bonding strength of GB planes, thereby facilitating GB 

separation or cleavage crack growth [15, 16]. This H-enhanced decohesion (HEDE) 

theory is commonly quoted to interpret experimentally-observed cleavage-like failure. 

However, recent studies of the microstructure beneath H-induced intergranular facets 

in structural materials such as Ni and Fe, and martensitic and austenitic steels suggest 

that ultimate failure cannot be caused by HEDE alone [6, 18-20]. H-enhanced localised 

plasticity (HELP) and dynamic dislocation-GB interactions probably play a decisive 

role in establishing conditions for intergranular failure by boundary decohesion. The 

plasticity helps accumulate sufficient H into the GB and change the boundary structure 

and local stress state, which facilitates the embrittlement process. Unfortunately, 

further details of how the dynamic plasticity process occurs on an atomic scale cannot 

be directly observed with experimental techniques. 

     With the advent of computational resources, atomistic simulations are 

increasingly being used to study the GB-mediated plasticity process and various HE 

mechanisms on an atomic scale. For example, Spearot et al. [21, 22] conducted a series 

of molecular dynamics (MD) simulations to investigate the nucleation events from 

GBs with <100> and <110> tilt axes over a wide range of misorientation angles.They 

found that the tensile stress for dislocation nucleation was directly correlated to the 

grain orientations and certain structural units of GBs. Cahn and Mishin [23] took 
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advantage of atomistic simulation on [001] symmetric tilt GBs to examine the shear-

induced coupled motion. Two distinct coupling modes (positive and negative 

branches) were predicted based on the proposed geometric model of coupling. They 

revealed that GB migration was achieved by the deformation of structural units and 

collective glide of lattice dislocations on corresponding slip planes. Tehranchi and 

Curtin [24] calculated the reduction of theoretical strength on various symmetric tilt 

GBs and found that the theoretical strength was not significantly reduced by the 

presence of H atoms for all studied GBs. Song and Curtin [26-28] examined the H-

triggered ductile-to-brittle transition in bulk Ni and Fe via finite-temperature coupled 

atomistic/discrete dislocation (CADD) multiscale method and MD simulations. They 

claimed that the formation of nano-hydride due to a substantial accumulation of H 

around the crack tip promoted brittle fracture by preventing the dislocation emission 

of crack tip. Moreover, the interactions between H and vacancies proved to be critical 

for failure [30-32]. H and vacancies preferred to accumulate as defect complexes near 

GBs, thereby producing damage and causing brittle fracture along the GBs [33]. 

1.2 Research motivations and objectives 

     In this thesis, MD simulations were employed to study the H segregation at various 

GBs and how it influenced the structure, mechanical properties, deformation mechanisms 

and failure response of GBs. It is envisioned that these simulation results can provide 

important insights into experimental observations and enrich our knowledge of the 

multifaceted problem of HE.  

     This thesis begins with an investigation of H segregation at various GBs and its 

influence on the mechanical response and plastic deformation of GBs. To advance GB 

engineering, characterising the GBs and related H adsorption behaviour becomes critical. 

Inspired by Ashby et al. [34], the structure of all GBs with a powerful geometrical 

approach of space tessellation was analysed. Based on the structural characterisation, a 

corresponding computational route to identify all possible H trapping sites at GBs was 

developed. Subsequently, molecular statics (MS) calculations were carried out to 

evaluate the energetics of H segregation at GBs. This method provides an atomistically-

based thermodynamic framework to quantify the HE.  As mentioned above, the HELP 

mechanism postulates that H atoms enhance dislocation mobility and generation. 

However, recently Xie et al. [35] conducted quantitative mechanical tests in an 

environmental transmission electron microscope to examine dislocation movement, and 



4 

 

found that mobile dislocations lost their mobility under H atmosphere, contrary to the 

HELP mechanism. In addition, Song and Curtin [36] proposed that H-formed Cottrell 

atmospheres following dislocations produced resistance to dislocation motion. As a 

consequence, these observations made the HELP mechanism controversial, and it still 

remains unclear whether solute H promotes or suppresses dislocation nucleation or 

movement. Motivated by this, tensile and shear deformation simulations of bicrystal 

models with tilt/twist GBs were performed to reveal the effects of H on the dislocation 

dominated plasticity in this thesis. 

      The H-modified interaction of dislocations with GBs was also studied. Recent 

experiments [18, 19] showed that the microstructure beneath H-induced intergranular 

facets was comprised of extremely high density of dislocations, suggestive of an 

acceleration of plasticity process (dynamic dislocation-GB interactions) and pre-failure 

deformation prior to crack initiation. However, the effects of H atoms on modifying the 

interaction mode of GBs and the accurate role of the interaction process in promoting 

ultimate failure are unknown. Dislocations can interact with GBs in various forms: (i) 

absorption followed by the formation of GB dislocations, (ii) direct transmission through 

the GB, (iii) reflection from the original grain, or (iv) nucleation from the GB [37]. The 

introduction of H atoms into the GB can modify the interaction mechanisms via several 

aspects. H atoms can produce pronounced changes in the atomic structure of the GB. The 

disordered atomic structure obviously serves as a dislocation sink or trap which absorbs 

the impinging dislocations. Furthermore, the segregation of H into the GB gives rise to a 

concentration of stress along the GB. These stress fields interact with the impinging 

dislocations, and change the initial slip and net Burgers vector along the GB. In addition, 

the dislocation dissociation into GB dislocations is suppressed by H atoms that cannot 

diffuse to lower-energy sites during GB migration. As the slip transfer is hindered, the 

strain energy and local stress within the GB is increased. To relieve the accumulated 

energy, an alternative response such as crack nucleation and propagation may be 

initiated, causing ultimate failure. In this thesis some aspects of this problem were 

investigated.   

      H-induced failure was examined by direct simulations of the decohesion of Ni GBs 

in the presence of H. The HEDE mechanism posits that segregated H atoms reduce the 

cohesive bonding strength of the GB, and increase the propensity for cleavage-like failure 

[15, 16]. While this theory is backed up by experimental observations of cleavage failure 

in metallic systems, it is insufficient and is open for more in-depth quantification and 
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analysis. By necessity, atomistic simulations can be used to directly assess the magnitude 

of the reduction in GB cohesive properties as a function of H concentrations and GB 

types during GB separation. Two parameters control the GB decohesion in the presence 

of H. One is the theoretical cohesive strength of the GB. Generally, the GB cohesive 

strength is higher than the plastic flow stress of metal, thus facilitating dislocation 

emission from the GB when subjected to tensile loading while preventing cleavage-like 

separation. The introduction of H atoms into the GB could change these properties, and 

thus encourage intergranular failure. The other is the fracture energy of the GB, which is 

the difference between intact and fully-separated system energies. This parameter is 

directly associated with the critical stress intensity factor for cleavage according to 

Griffith’s theory. Given that dislocation-GB interactions could establish the conditions—

stress state, boundary disruption and critical H concentration to cause the GB to become 

the weak link in metallic systems and therefore the source of crack nucleation, 

presumably these factors must aid the GB decohesion and change the two controlling 

parameters. Thus, this study aims to examine the H-induced reduction in theoretical 

cohesive strength and fracture energy, with contributions from dislocation-GB 

interactions.  

      Although the direct decohesion of GBs produces H-induced reduction in GB 

properties, it is abstruse to answer whether such reduction is sufficient to induce brittle 

fracture instead of ductile fracture today. When considering brittle fracture to happen via 

the propagation of sharp cracks, such a process is suppressed if dislocation emission 

blunts the crack tip. It seems to be vital to address the issue associated with the inherent 

competition between brittle cleavage and ductile emission at a sharp crack tip.  If H 

segregation can decrease the fracture energy to a level at which the critical stress intensity 

factor for cleavage 𝐾𝐼𝑐 falls below that for dislocation emission 𝐾𝐼𝑒, it is possible for 

brittle cleavage to occur. Otherwise, the sharp crack tip blunts by dislocation emission, 

decreasing the crack tip stress intensity and preventing cleavage process. As 

aforementioned, cleavage 𝐾𝐼𝑐 is controlled by the fracture energy, which is reduced with 

increasing H concentration. Within Rice’s theory, emission 𝐾𝐼𝑒  is determined by the 

unstable stacking fault, which is increased or slightly decreased by H atoms depending 

on H concentration. Therefore, significant H aggregation around the crack tip is critical 

for 𝐾𝐼𝑐 < 𝐾𝐼𝑒 . This process can occur quasi-statically or dynamically, involving H 

diffusion from the bulk toward GB crack tips or dynamic crack growth. In this work, we 
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studied the influence of H atoms on modifying the behaviour of cracks under monotonic 

and cyclic loading.  

1.3 Structure of the thesis 

      Most of the research outcomes of this thesis have been peer-reviewed and published 

in journals. The thesis begins with a literature review of the HE phenomenon that was 

studied using various progressive experimental techniques, theoretical modelling and 

simulations (Chapter 2). In Chapter 3, the fundamental features of MD simulations are 

described, and the details of MD model construction and other related techniques are 

explained. In Chapter 4 and 5, the effects of H segregation on the mechanical behaviour 

and plastic deformation of GBs in Ni and Fe are examined by direct simulations. The role 

of H atoms in changing the interaction of dislocations with GBs is demonstrated in 

Chapter 6. Chapter 7 examines the decohesion of Ni GBs in the presence of H via direct 

simulations. Chapter 8 is focused on the influence of H segregation at GBs in modifying 

both the ductile emission and brittle cleavage of the intergranular cracks.  The 

conclusions and recommendations for future work are given in Chapter 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

Chapter 2 Literature review 

      Since the HE phenomenon is of concern to industry, a great deal of research has been 

carried out. Fig. 2.1 summarises the approaches used in HE studies [38], where the scale 

of study shifted from macro, through to micro/meso, and up to the nano and atomic. 

These multi-disciplinary and multi-scale approaches provided a direct, or indirect 

characterisation of H effects and H-related deformation and damage in metallic 

materials. Various experimental techniques, theoretical modelling and simulations were 

utilised in HE literature, including: (i) scanning electron microscopy (SEM) [39, 40], (ii) 

transmission electron microscopy (TEM) [39, 41], (iii) environmental transmission 

electron microscopy (ETEM) [42-48], (iv) atomic force microscopy (AFM) [46, 47, 49], 

(v) focused-ion beam (FIB) microscope and machining [46, 47, 50], (vi) thermal 

desorption spectroscopy (TDS) analysis [51, 52], (vii) atom probe tomography (APT) 

[53, 54], (viii) modelling and simulation: density functional theory (DFT) and first 

principles modelling [55-59], cohesive zone modelling (CZM) [60-65], molecular 

dynamics (MD) and Monte Carlo (MC) simulation [35, 66-69], finite element (FE) 

simulation [55, 68, 70, 71]; (ix) progressive micro- and nano-mechanical testing, such as 

slow strain rate testing (SSRT) [72-74] and nanoindentation testing [55, 60, 63, 75-82]. 

In the following, some representative reviews are introduced and discussed to provide 

some insights into the HE problem.  

 

Fig. 2.1. Historical summary of approaches in HE literature [38]. 
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2.1 Experimental techniques   

2.2.1 Macro-scale experiments 

     Experiments revealed that material degradation due to H segregation under 

mechanical testing was characterised by changes in macromechanical properties. The 

effects of gaseous H on the mechanical properties include: (i) yield strength, (ii) tensile 

strength, (iii) elongation to failure, (iv) reduction of area, (v) fracture toughness, (vi) 

threshold stress-intensity factor, (vii) fatigue life, and (viii) crack propagation [83]. For 

example, Djukic et al. [84] conducted a comprehensive failure analysis of a damaged 

boiler tube made of grade 20 – St.20 (or 20G, equivalent to AISI 1020). Samples were 

chosen from the boiler tubes of a fossil fuel power plant, caused by high temperature H 

attack during service. Subsequent tensile testing, hardness measurement and impact 

strength testing (on instrumented Charpy machine) revealed that local hydrogenation 

reduced the ductility of the material (elongation to failure and reduction of the area). 

Takakuwa and Soyama [85] performed an indentation test with inverse problem analysis 

to uncover the influence of H on the local yield stress close to the surface of austenitic 

stainless steel. The indentation test was effective in detecting the variations in the 

mechanical properties of austenitic stainless steel caused by H as H was mainly 

distributed nearby the surface due to its low diffusion and high solubility. To establish a 

link between the absorption depth and H effects using the indentation test, a secondary 

ion mass spectrometry was used to measure the H depth data. As shown in Fig. 2.2, it is 

obvious that the yield stress rises prominently with increasing H charging time. The value 

reaches over 650 MPa after 48h of H charging, doubling the value of 304 MPa measured 

before H charging. Once the charging is terminated, the yield stress is ultimately reverted 

to its initial value due to H desorption from the charged surface. The H-induced 

hardening effects in the indentation test can be ascribed to H-dislocation interactions. 

There is a link between the H absorption profile and the plastic deformation depth in the 

indentation test. The hydrogen-induced hardening increases significantly as the 

hydrogen absorption depth increases up to the plastic deformation depth and then 

saturates when the hydrogen absorption depth goes beyond the plastic deformation. 
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Fig. 

Fig. 2.2. (a) The variation in yield stress due to H absorption and desorption. (b) Hydrogen-induced 

hardening behaviour explained by the relationship between the ratio of the hydrogen absorption depth to 

the plastic deformation depth and the ratio of the residual indentation depth before hydrogen charging to 

that after hydrogen charging [85]. 

     Siddiqui and Abdullah [86] carried out experiments to assess the effects of 

hydrogenation time on the mechanical behaviour of 0.31% carbon steel, independent of 

other processing and constitutional variables. The experimental results showed a 

complex phenomenon regarding H-modified plasticity. It is clear from Fig. 2.3(a) that as 

the charging time increases from 1 to 6 h, there is a gradual increase in tensile strength 

for all heat-treated specimens. When the H charging time further increases from 6 to 8 

h, a small decrease in tensile strength is observed, in particular, for specimens tempered 

at 200 and 400 °C. In contrast, there is very little change in tensile strength of specimens 

tempered at 300 °C, but for hydrogenated specimens between 6 and 8 h and tempered at 

500 °C, a constant increase in tensile strength is noticed. The yield stress as a function 

of H charging time is plotted in Fig. 2.3(b). The yield stress of 0.31% carbon steel shows 

a slow increase with the charging time increasing from 1 to 7h. Subsequently, a very 

small reduction in yield stress occurs for all tempered and received specimens when 

charged between 7 and 8 h. There is a similar behaviour in the breaking strength of the 

0.31% carbon steel (Fig. 2.3(c)). Fig. 2.3(d) presents a modest decrease in elongation to 

failure after cathodic hydrogen charging. The ductility of quenched and hydrogenated 

specimens is the lowest compared to as-received cases. However, the overall trend is 

similar, i.e., as the hydrogenation time increases, the elongation decreases. They 

attributed the increase in tensile strength, yield stress, breaking strength and loss in 

elongation to failure when hydrogenated between 1 and 6 h to a number of factors. High 

H diffusion resulted in interactions of H atoms with various types of defects such as 

dislocations, GBs, precipitates interfaces, carbide matrix produced by the heat treatment. 
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Immobilising and interference with these defects changed the mechanical properties of 

the steel. After 6 h of H charging the decrease in tensile strength, yield stress, breaking 

strength and loss in elongation to failure was ascribed to H diffusion into pre-existing 

stressed micropores/voids. The exerted pressure due to the gas adds to the external 

applied load on the specimen. The fracture stress is therefore decreased. 

 

Fig. 2.3. Effect of hydrogenation time on (a) tensile strength, (b) yield stress, (c) breaking strength and (d) 

elongation of steel [86]. 

     Gangloff and co-workers [4,75, 78, 87] studied the H-assisted crack process of high 

strength alloys such as steels, superalloys, 7000 series aluminium alloys and Beta 

Titanium alloys in the presence of both internal and environmental hydrogen. For 

internal hydrogen assisted cracking, H atoms can be introduced globally throughout the 

microstructure by manufacturing operations such as casting, welding, surface-chemical 

cleaning, electrochemical machining, electroplating, and heat treatment, as well as by 

environmental exposure such as cathodic electrochemical reactions at low temperatures 

and gaseous hydrogen exposure at elevated temperatures. Subcritical crack growth 

occurs when the H-charged metal is subsequently stressed, as shown in the right-portion 

of Fig. 2.4. Loading causes a redistribution of dissolved hydrogen from the surrounding 

microstructure to the crack tip process zone to promote crack growth. Stress is not 

necessary during hydrogen uptake, and the production of environmental hydrogen at the 

crack tip during stressing is insignificant since the loading environment is typically 

benign. H environment assisted cracking involves a conjoint action of mechanical 

loading and chemical reaction where H atoms are mainly produced on clean crack 
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surfaces near the tip, followed by an uptake of H into the crack tip and subsequent 

embrittlement, as shown in the left and bottom portions of Fig. 2.4. The mass transport 

of elements of the surrounding environment is unique to the occluded crack volume and 

supplies surface reactions of the crack tip, as shown in three environments. From left to 

right, H is produced by dissociative chemical adsorption for H2, by chemical reactions 

for gases such as water vapour or H2S, or by electrochemical cathodic reactions for acidic 

or alkaline electrolytes. Once produced, the H diffuses ahead of the crack tip into the 

plastic zone to cause damage.  

 

Fig. 2.4. The sequence of elemental processes that supply damaging H to the crack tip fracture process 

zone during either H environment assisted cracking for gaseous hydrogen, water vapour or an electrolyte, 

or internal hydrogen assisted cracking for a H pre-charged microstructure [87].  

      The crack growth behaviour was defined in three stages [87]: In stage I when the 

stress intensity factor was just above a threshold value less than the fracture toughness of 

the metal, the crack growth velocity increased prominently. In stage II the crack growth 

rate was independent of the stress intensity factor, and in stage III the crack growth rate 

increased as the stress intensity factor increased to values close to the fracture toughness. 

These studies showed that the presence of H promoted stage I cracking and reduced the 

fracture toughness of metals.  They also stated that nano-scale investigations are required 

for the fundamental understanding of H-induced cracking.  
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      H not only influences the tensile properties, it also influences ductility [13，88-90] 

and harness [91-93]. Depending on the H coverage, H-dislocation interaction and local 

H trapping conditions in different grades of steels, both hardening and softening effects 

due to H segregation were observed. By combining positron annihilation spectroscopy 

(PAS) and TDS experiments, Lawrence et al. [89] found that H charging increased the 

yield stress and work hardening rate of Ni single crystals and polycrystalline Ni-201 alloy 

samples. The stress-strain curves in Fig. 2.5(a) and (b) show that the yield stress of 

material with 1-mm grain size is generally lower than that with 35-μm grain size; this is 

in concordance with the Hall-Petch relationship and the well-annealed condition of the 

material with 1-mm grain size. For both the 1-mm grain size and 35-μm grain size cases, 

hydrogen charging increases the yield stress and work hardening rate, as calculated from 

the slope of the stress-strain curve at 6% and 8% true strain. At 77K the yield stress 

changes more prominent, with the increase of approximately 18% and 50% for the 1-mm 

and 35-μm grain size material, respectively (see Fig. 2.5(b) and Table 2.1). At room 

temperature, the work hardening increases more significant during deformation, with the 

increase of approximately 56% and 58% for the 1-mm and 35-μm grain size material, 

respectively (see Fig. 2.5(a) and Table 2.1). Samples of Ni single crystals were only 

loaded along the [001] crystallographic direction at 293K. The corresponding stress-

strain curves in Fig. 2.5(a) show that significant increases in the yield strength (42%) and 

work hardening rates (approximately 50%) are caused by H charging. With these 

increases being dependent to temperature, it was postulated that at low temperature 

(77K), H enhanced and stabilized the formation of vacancies and vacancy clusters, which 

induced an ‘Orowan type’ hardening effect even when solute H was immobile in essence; 

at room temperature (297K), mobile H atoms interacted with mobile dislocations, 

restricting dislocation cross-slip and providing an additional hardening increase.  
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Fig. 2.5. Stress-strain curves for single crystal, 1-mm grain size, and 35-μm and grain size Ni-201 at (a) 

293 K and (b) 77 K, in the presence and absence of H. 

Table 2.1. Yield stress and work hardening values under different conditions. Work hardening rates are 

calculated at 6% and 8% strain. 

Sample Yield stress Work hardening @ 6% Work hardening @ 8% 

SC[001], 293 K 42 48 55 

1 mm, 293 K 5 56 86 

1 mm, 77 K 19 7 29 

35 μm, 293 K 8 58 69 

35 μm, 77 K 52 16 12 

     The in-situ electrochemical nanoindentation by Stenerud et al. [92] made similar 

conclusions. They attributed the H-induced increase in the harness to either an enhanced 

slip planarity or a suppressed dislocation mobility in the presence of H. On the other 

hand, the introduction of H atoms caused softening [94-96] or no change [40] of the 

mechanical properties in some experiments. TDS and nanoindentation experiments were 

employed to elucidate the effects of electrochemical and gaseous H on the mechanical 

response of a low carbon steel [96]. While electrochemical charging enhanced hardening, 

gaseous charging induced softening. The results revealed that the hardening/softening 

behaviour was dependent on H concentration, i.e., hardening occurred at relatively higher 

H concentration by electrochemical charging, whereas softening occurred at lower H 

concentration by gaseous charging. 

2.2.2 Micro/nano-scale experiments 

      Unlike the macro-scale experiments described above, micro/nano-scale techniques 

have been used to probe H effects on the material microstructure (GBs, dislocations, 

voids, etc.). Among all interactions of solute H with various defects, one of the most 
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important issues is how solute H modifies the behaviour of dislocations which are the 

main carriers of plastic flow. Through extensive in situ TEM experiments, the “Illinois 

group” led by Birnbaum, Robertson, and Sofronis [20, 97-103] provided direct evidence 

of H enhanced the mobility of dislocations. Two types of experiments were carried out. 

One involved introducing H gas while keeping the rate of displacement of the stage 

constant; this was characterised by a change in the dislocation velocity. The other 

experiment involved generating mobile dislocations. They stopped the dislocation 

motion by keeping the applied load constant, added a gas environment to the microscope, 

and then observed the change of stationary dislocations. Both experiments showed that 

the introduction of H increased the dislocation velocity. Fig. 2.6 shows an example of 

this effect. A Fe sample was deformed in a vacuum to generate dislocations, then the 

applied displacement of the stage was held and H gas was introduced after the 

dislocations stopped.  H enhanced the dislocation motion, as evidenced by comparing the 

series of time-resolved images. The dislocation velocity is indicated by the times of each 

frame, as shown in Fig. 2.6.  

     Experiments also revealed that the presence of H atoms promoted the generation rate 

of dislocation sources. Fig. 2.7 shows an example of this effect. Three dislocation sources 

are formed by the introduction of H gas, as indicated by the arrowheads in Fig. 2.7(a). 

Source 3 evolutes by Fig. 2.7(h) and expands again in Fig. 2.7(i). Dislocation 1 expands 

and breaks into two segments propagating in different directions when it meets the free 

surface. Experimental observations also showed that the equilibrium separation distance 

between dislocations in an array was prominently changed by H gas [98]. Fig. 2.8 

presents the separation distance between dislocations in S310 steels under varying H gas 

pressure. It is found that the distance between the dislocations is decreased with the 

increase of the H gas pressure. These experiments suggest that the introduction of H 

environment can lead to more compact dislocation pile-ups and weaken the dislocation–

dislocation interactions, and thus localise the plastic deformation.   
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Fig. 2.6. Time-resolved images of the dislocation motion in the presence of H [97]. 

 

Fig. 2.7. Generation of dislocation sources in Fe caused by H gas. Arrowheads indicate the sources, and 

arrows represent the dislocation motion direction [97].  

   

Fig. 2.8. H effects on the separation distance between dislocations. (a) Composite image of a dislocation 

pile-up in vacuum (black lines) and in the H environment with 95 torr (white lines). (b) Dislocation 

separation distance under varying H gas pressure [98].   

     The influence of H on the nucleation of dislocations was also investigated.  Barnoush 
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and his co-workers [104, 105] probed dislocation nucleation behaviour and examined the 

dependence of the pop-in load on H charging by performing NI-AFM experiments on in 

situ H-charged samples under controlled electrochemical conditions. Typical load-depth 

curves of Ni samples under cathodic and anodic potentials are shown in Fig. 2.9. It can 

be seen that the pop-in load corresponding to the nucleation and formation of dislocation 

loops is reduced by the introduction of cathodically charged H. This reduction of the pop-

in load in nickel was explained using homogenous dislocation nucleation theory where 

H resulted in the reduction of shear modulus and stacking fault energy in Ni.  

     

Fig. 2.9. Load-depth curves for Ni at cathodic (a) and anodic (b) potentials [104]. 

     The HE process is associated with the competition between ductile transgranular and 

brittle intergranular failure in polycrystalline metals. In situ TEM deformation 

experiments showed the H-induced transition from ductile transgranular to brittle 

intergranular failure [106, 107]. For example, Lissila and Birnbaum studied the 

embrittlement of H charged Ni that had been heat treated to segregate S to the GBs using 

tensile tests at 77 K. The failure mode was transgranular in the absence of H and 

intergranular in the presence of H. Fig. 2.10 demonstrates a typical picture of the 

intergranular fracture in nickel with H.  

          

Fig. 2.10. (a) The crack opening displacement of the intergranular crack observed in 

the H-charged polycrystalline Ni. (b) The fracture surface of the intergranular crack [106]. 
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     Perhaps, the challenge in HE analysis is how H-influenced dislocation gives rise to 

accelerated brittle-like intergranular failure. Recently, some experimental evidence from 

new fractographic analysis techniques contributes to understanding this question. Studies 

on Ni [108] and Fe [19] model systems analysed the slip traces on the fracture surface, 

suggesting enhanced plasticity activities. The high magnification SEM and TEM in Fig. 

2.11 shows that dislocations cells are immediately beneath the fracture surface, and the 

plastic strain characterised by the size of dislocation cells is almost three times what the 

sample actually experienced macroscopically. In fact, for the Ni case this dislocation 

structure is found to extend over a significant distance from the fracture surface [109] 

(see Fig. 2.11c), suggestive of an acceleration of plasticity process and pre-failure 

deformation prior to crack initiation.  It was proposed that H environment led to a 

dislocation structure in Ni at 15% strain at failure that would normally only occur at 40% 

strain without H [110]. The enhanced plasticity deformed the GBs, and transported large 

amounts of H atoms to the GBs, decreasing their cohesive strength and promoting failure.   

            

Fig. 2.11. H-induced intergranular failure of Ni. (a) SEM micrograph of fracture surface. (b) TEM 

micrograph of microstructure immediately underneath the fracture surface. (c) TEM micrograph of 

microstructure away from the fracture surface [108, 109].    

     In summary, experiments with various techniques have been conducted to deepen our 

understanding of HE process. However, the exact underlying mechanisms are still 

missing. Therefore, theoretical approaches exist in the field to uncover different aspects 
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of the HE phenomenon. 

2.2 Theoretical modelling   

     There have been numerous HE mechanisms over the past few years, such as hydride 

formation and cleavage, H-enhanced decohesion (HEDE), H-enhanced localised 

plasticity (HELP), adsorption-induced dislocation emission (AIDE), and defactant 

theory.  

2.2.1 Hydride formation and cleavage 

     The nucleation of hydrides was firstly observed in titanium alloy. It was postulated by 

Gahr [111], however, the hydrides are unstable and may dissolve quickly as the crack 

passes through them in steel [10]. This is a stress-intensity based mechanism. At low 

stress intensities, hydride formation decreases the local stress intensity at the crack tip 

and therefore continued fracture needs an increment in external stress. Once the local 

stress intensity is increased to exceed the intensity needed for hydride fracture, the crack 

can proceed by repeated hydride nucleation, growth and cleavage. At high stress 

intensities, failure is a constrained plastic mechanism in which the stress for plastic flow 

is reduced at a higher hydrogen concentration [10, 111]. This mechanism is illustrated in 

Fig. 2.12. 

 

Fig. 2.12. Hydride formation and cleavage mechanism [39]. 

2.2.2 Hydrogen-enhanced decohesion (HEDE)  

     The hydrogen enhanced decohesion model proposed by Troiano and Oriani [15, 16] 

suggests that H atoms are to weaken the inter-atomic bonds in the steel, thereby 

facilitating grain boundary separation or cleavage crack growth. There is the same 

implication with the surface energy theory proposed by Petch and Stables [78]. 

Decohesion is generally assumed to be a simple and sequential tensile separation of 

atoms ahead of sharp crack tips, but dislocation activity at the crack tip in plastically 
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deforming metals is an intrinsic competition that dissipates energy and blunts the crack 

tip, thus inhibiting decohesion. Therefore, high concentrations of H are usually needed 

to reduce the fracture energy to a level where the critical stress intensity factor for 

cleavage falls below that for dislocation emission. H segregation and the decohesion 

typically occur at several positions: (i) tens of nanometers ahead of crack tips where the 

shielding effects of dislocation render a maximum stress, (ii) sharp crack tips caused by 

absorbed H,  (iii) particle-matrix interfaces, as shown in Fig. 2.13.       

                                 

 Fig. 2.13. Decohesion process caused by weakening the inter-atomic bonds as a result of (i) H in the 

lattice; (ii) adsorbed H; (iii) H at particle-matrix interfaces [39]. 

2.2.3 Hydrogen-enhanced localised plasticity (HELP)  

     Based on fractographic observations of the ductile features on failure surfaces, 

Beachem was the first to propose that H assisted cracking is directly related to the 

microstructural state. This finding changed our thinking about the HE mechanism. 

Birnbaum, Robertson, and Sofronis [97-103] developed this theory and proposed that as 

the hydrostatic stress around crack tips is high, H atoms easily accumulate near crack 

tips, which facilitates dislocation activities and localised plasticity ahead of crack tips, 

thus causing cracking. Subsequent crack propagation occurs due to more localised 

microvoid coalescence (MVC), as seen in Fig. 2.14. The HELP mechanism is entirely 

different from HEDE theory, as HELP postulates that failure of materials is due to local 

plasticity, not the simple decohesion of inter-atomic bonds.   
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Fig. 2.14. Illustration of the HELP mechanism associated with localised plasticity and microvoid 

coalescence in the region of high H concentrations [39].  

     The main reasons for enhanced localised plasticity in the presence of H include: (i) H 

promotes the generation of dislocation sources: the introduction of H decreases the 

stacking fault energy and  encourages the ejection of Frank-Read dislocation sources and 

local plasticity, (ii) H increases dislocation motion: H modifies the stress field such that 

the interaction energy between the dislocation and obstacles is reduced, enabling 

dislocation to move at a lower stress, (iii) H reduces the separation distance between 

dislocations: the H shielding model assumes that dislocation-dislocation interaction is 

influenced by H. One manifestation of such a model is that the separation between 

dislocation pile-ups is decreased with H.    

2.2.4  Adsorption-induced dislocation emission (AIDE) 

      In 1976 Lynch first proposed the AIDE mechanism. This theory was further 

developed in subsequent research [112-114]. The so-called "dislocation emission" 

includes both dislocation nucleation and movement away from the crack tip.  Once the 

dislocation is nucleated, external loading can easily drive it away from the crack tip. 

Consequently, dislocation nucleation is critical and promoted by H adsorption. The 

nucleation process is often accompanied by the synchronous formation of a dislocation 

core and surface step via the shearing of atoms (breaking of old atomic bonds and 

reforming of new atomic bonds). Thus, the weakening of inter-atomic bonds by H 

adsorption can facilitate the emission of dislocations, which further accelerates the 

expansion of cracks. 

     The AIDE mechanism posits that crack propagation involves not only dislocation 

emission emanating from the crack tip, but also the nucleation and growth of microvoids 

at tens of nanometers ahead of the crack tip. This is ascribed to the fact that in the plastic 

zone near the crack tip, the stress required for dislocation emission is sufficiently high 
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due to the absence of H adsorption. General dislocation activities thus occur before 

dislocation emission, which causes voids to nucleate and advance at slip-band 

intersections, second-phase particles, or positions in the plastic zone around cracks.  The 

formation of voids contributes to crack propagation and ultimate failure.  

                          

Fig. 2.15. Schematic diagram illustrating the AIDE mechanism involving crack growth and coalescence 

with voids formed in the plastic zone ahead of cracks [39].  

2.2.5 Defactant theory 

     Based on equilibrium thermodynamics, Kirchheim [115, 116] proposed a general 

theory in which solute H atoms that segregate into defects in solids and reduce their 

formation energies are regarded as “defactants”. Given a fixed chemical potential, the 

energy of a defect with H is lower than that without H, which promotes the formation of 

defects. Furthermore, H segregation increases and the free energies of defects decrease 

as the H chemical potential increases. If the defect is dislocation, defactant H can reduce 

the dislocation line energy. When the H chemical potential is high at which defactant 

effects are significant, dislocation nucleation becomes autonomous, and subsequently 

ductile failure occurs. From this perspective, the theory concurs with the HELP 

mechanism. Moreover, the defactants segregate into the newly-formed free surfaces and 

then reduce the surface energy and corresponding work of fracture, all of which promotes 

brittle cleavage. From this perspective, the theory is in line with HEDE mechanism. In 

addition, the defactants decrease the formation energies of dislocations at the crack tip 

and vacancies, thereby increasing the dislocation generation and equilibrium 

concentration of vacancies. In this sense, this theory is in accordance with AIDE 
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mechanism.   

     Note that the H chemical potential in the defactant theory is far higher than that in 

realistic experimental conditions. Such high H coverage is also used in recent atomistic 

simulations of H in GBs and related fracture. Besides, this theory is within the framework 

of equilibrium thermodynamics, so it does not address kinetics. There might be 

insufficient time for H to be transported into defects such as surfaces, dislocations and 

GBs to achieve equilibrium conditions where HE is observed.  

     Overall, each mechanism has different deeds, and some and multiple HE mechanisms 

may operate together. However, a quantitative prediction of fundamental mechanisms 

has not been completely resolved.  More in-depth studies are required in this field. 

2.3 Simulations  

     In line with experimental activities, simulations are effective in testing fundamental 

theories and conjectures, and quantifying embrittlement features. Herein, the atomistic 

simulations are mainly discussed to provide atomic details of H-related plasticity and 

fracture phenomenon.  

2.3.1 Hydrogen trapping, diffusion and segregation 

     Pedersen and co-workers [117] carried out a simulation analysis using the adaptive 

kinetic Monte Carlo (AKMC) method to investigate the effect of GBs on the diffusion 

mechanism and diffusion rate. The diffusion paths for an H atom in the vicinity of three 

different GBs are presented in Fig. 2.16. Obviously, for the twist GB, the H atom prefers 

to stay in the upper grain and is blocked by the GB. For other two cases, the H atom 

crosses the GB. For the twist + tilt GB, the path shows that the density of stable sites for 

the H atom within the GB is higher than in the crystal grains.  

     In addition, the diffusion path was analysed from an energy perspective. For twist GB, 

the energy barrier for an H atom to enter a stable site within the GB is 0.45eV(see Fig. 

2.17(a)), a significant increase in energy from the B-layer and inwards to the GB layer, 

which explains why the trajectory in Fig. 2.16(a) never crosses the GB. Fig. 2.17(b) 

shows that the influence of the tilt GB on the energy is greater than for the twist GB. For 

tilt + twist GB, the H atom spends more than 99% of the total time in the GB region 

because a large number of sites with low-energy in the GB region can serve as trapping 

sites so as to reduce diffusion.  
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Fig. 2.16. H atom diffusion path at the vicinity of (a) Σ5 twist GB, (b) Σ5 tilt GB and (c) twist+ tilt GB 

structure [117].  

 

Fig. 2.17. The calculated minimum energy paths for H atom diffusion (a) perpendicular to the plane of a 

twist GB, (b) parallel to the plane of the tilt GB and (c) the energy of sites and accumulated time at the 

twist + tilt GB as functions of the Z-coordinate of the H atom [117].  

      Zhou et al. [118] studied the segregation and diffusion of H in tungsten GB using a 

first principles method in order to understand the GB trapping mechanism of H. They 

first examined the solution and segregation energies of all potential GB sites for H, 

including interstitial and substitutional cases (see Fig. 2.18). It can be seen from Fig. 2.19 

that single H atom energetically prefers to occupy the interstitial site rather than the 

substitutional site in the GB. Dissolution and segregation of H are directly associated 

with the optimal charge density. W GB can act as a trapping centre which drives the H 

atom to segregate towards the GB, comparable to the monovacancy in the W bulk. This 

is because the most stable sites exist at the vacant space in the GB with the lowest solution 

and segregation energy. In addition, they concluded that H2 molecule and H bubble 

cannot form in the W GB as the H–H equilibrium distance was 2.15 Å, much larger than 

that in a H2 molecule. Taking into account the lower vacancy formation energy in the GB 

as compared with the bulk, they also proposed that experimentally-observed H bubble 
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formation in the W GB should be via a vacancy trapping mechanism.  

 

Fig. 2.18. (a) Side view of Σ5 (310)/[001] tilt W GB. (b) Top view of the N atom layer of the W GB 

supercell [118].   

 

 

Fig. 2.19. Segregation energies as a function of occupation sites per H atom in a W GB for the interstitial, 

substitutional and vacancy cases [118]. 

     Du and Ismer [119] studied the interaction of H interstitials with open and close-

packed boundary structures within the ferritic α- and austenitic γ-Fe from three aspects: 

the stability of H in the vicinity of the GBs, the effect of H on the fracture strength of the 

interface, and the mobility of H towards and within the GB planes. Fig. 2.20 shows H 

solution energies as a function of the distance from the GB interface for the studied GBs 

in bcc (red dots) and fcc (blue squares) Fe. The solution energy of H within the different 

GB structures depends on the local coordination of the corresponding interstitial site and 

is only moderately correlated with the actual volume of the interstitial site. Within the 
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close-packed and low-energy Σ3 GBs, the available interstitial sites are very similar to 

the tetrahedral and octahedral sites in the corresponding bulk structures. Only at the 

interface different interstitial sites are available, which leads to H being attracted within 

the bcc Σ3 structure and being repulsed from the fcc Σ3 GB. Within the open GB 

structures, Σ5 bcc and Σ11 fcc, various interstitial sites are available, and generally 

provide favourable binding sites for H atoms; this implies that H is trapped at the GB. 

  

Fig. 2.20. H solution energies as a function of the distance from the boundary for investigated GBs in Fe 

[119].  

      The mobility of H within α- and γ-Fe GBs was also studied. As shown in Fig. 2.21, 

none of the GBs provides a fast diffusion channel for H atoms, but the more open 

structure, Σ5 bcc and Σ11 fcc, favour diffusion along the GB plane and might thus direct 

H diffusion towards other defects such as GB junctions or dislocations. These close-

packed boundary structures do not promote H diffusion and might even represent two-

dimensional barriers to H diffusion. 

                                          

Fig. 2.21. Diffusion pathway for an H interstitial within the interface region of the investigated GBs in Fe 

[119]. 

      Stefano and Mrovec [120] used density functional simulations to examine the 
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interaction of H with high-angle GBs in nickel. Two symmetric tilt GBs were selected 

for the study: Σ5 (210) [001] GB and Σ3 (111) [1̅10] GB. Like the above studies, they 

first identified the various interstitial positions in the two GB supercells and calculated 

the H segregation. It is concluded from Fig. 2.22 that Σ3 does not attract H atoms, 

whereas Σ5 acts as an efficient two-dimensional sink for H. This is because the 

segregation energy for Σ3 GB is negligibly small, while Σ5 GB possesses multiple 

trapping sites with moderate segregation energies ranging from -0.09 to -0.23 eV. H 

migration across and along the GBs was then discussed. It can be seen from Fig. 2.23(a) 

that the H jump between two neighbouring octahedral sites parallel to Σ3 GB plane is 

equal to that in perfect crystal where the migration takes place through a metastable 

tetrahedral site, while H migration has a different path as the neighbouring octahedral 

sites across the GB plane share their faces instead of edges as in bulk (see Fig. 2.23(a) 

and (b)). Consequently, H migration across the GB plane between neighbouring 

octahedral sites without the intermediate tetrahedral site.  The high migration energy 

barrier indicates that Σ3 GB acts as a two-dimensional barrier for H diffusion.  

      Fig. 2.23(c) gives the diffusion of H across Σ5 GB. The barrier for H migration from 

bulk towards the GB plane is very slow so that H atoms can easily reach the favourable 

segregation sites inside the GB cavities. In contrast, the GB can serve as an effective two-

dimensional sink that H hardly escapes from the GB cavity, albeit the migration is not 

high. For H migration along the GB plane, the five locally stable sites inside the cavity 

are shown in Fig. 2.24. Obviously, H can move freely inside the cavity due to the low 

migration barrier. The estimated ratio value of diffusivity between the GB and bulk at 

room temperature suggests that the H diffusivity at the atomic scale along Σ5 GB is about 

two orders of magnitude greater than that in the perfect single crystal.            
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Fig. 2.22. Valence electron density plots for the ∑5 GB [120]. 

 

 

Fig. 2.23. Local atomic configuration for the minimum energy paths for H migration [120]. 

 

 

Fig. 2.24. Potential energy surface for H along the Σ5 GB plane obtained by interpolation of several NEB 

calculations [120]. 
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      Zhou and Song [121] used first principles calculations to examine H adsorption at 

GBs in a variety of fcc metals. A novel modelling approach that combined the space 

tessellation of polyhedral packing units and first principles calculation was developed. 

Using the geometric approach of space tessellation of polyhedral packing units, they 

identified potential H adsorption sites along GBs as only one interstitial site of H 

adsorption corresponded to the centroid of each polyhedron. Five types of polyhedrons 

are shown in Fig. 2.25: i.e., tetrahedron (TET), octahedron (OCT), pentagonal bipyramid 

(PBP), cap trigonal prism (CTP), and bitetrahedron (BTE).  

                                  

Fig. 2.25. Schematic illustration of polyhedron in representative Σ5 (130) [100] GB and bulk lattice [121]. 

      A general physics-based formula was used to provide accurate assessments and 

reveal the chemomechanical origin of H trapping and segregation energetics at GBs (Eq. 

2.1). This model was validated through the quantitative evaluation of hydrogen 

adsorption energies as a function of the volumetric deformation of polyhedral structural 

units at GBs for several fcc metals.  

                                       𝐸𝑎𝑑 = 𝐸0
𝑎𝑑 − 𝐵𝛺𝑝

𝑑𝑉𝑝

𝑉𝑝
0                                            (2.1)         

where 𝐸0
𝑎𝑑 is the chemisorption energy of hydrogen in a deltahedron, B is the bulk 

modulus, 𝑉𝑝
0 is the volume of the pristine polyhedron, 𝛺𝑝 is the partial volume of the H 

atom.  

      In Zhou’s further research [122], atomistic simulations were employed to identify the 

root cause underlying the volumetric distortion at those polyhedrons and attempt to 

explain the corresponding physical origin within continuum mechanics. Based on 

simulation result, the relation between the local hydrostatic stress (𝜎ℎ
𝑝

) and the local 

volumetric distortion (𝛿𝑉𝑝/𝑉𝑝
0) was described by the following formula: 

                                        𝜎ℎ
𝑝 − 𝑠0

𝑝 = 𝐶0 ×
𝛿𝑉𝑝

𝑉𝑝
0                                                  (2.2) 

where 𝐶0  and 𝑠0
𝑝

 are two constants. In particular, the 𝑠0
𝑝

 is dependent on the type of 

polyhedron. The linear relationship between local volumetric distortion at polyhedrons 
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and their associated hydrostatic stresses has been revealed. This linear relationship 

confirms the validity of continuum mechanism in describing the lattice deformation at 

atomistic (i.e., individual polyhedron) level at GBs, and suggests the crucial role of stress 

in determining H adsorption energetics. 

      Huang and Song [123] developed a computational route to divide a relaxed GB into 

deltahedral packing units by using an H atom as a probe. Similar to Zhou’s result, five 

various deltahedral packing units were identified at selected tilt GBs. Besides, they also 

studied the fast and slow separation limits corresponding to GB fracture at fixed H 

concentration and fixed H chemical potential, respectively. The work of separation at fast 

fracture and low fracture was calculated and compared (see Table 2.2). It can be seen that 

the reduction of the GB separation energies due to H segregation was around 50% in the 

slow fracture limit, as opposed to about 10% in the fast fracture limit. Hence, these 

atomistic calculations demonstrated that the H embrittlement effects on GBs are more 

significant in the slow limit than the fast one. 

Table 2.2. Work of separation for (a) pure GBs,𝑊0, (b) fast fracture at constant H concentration, 𝑊Γ, and 

(c) slow fracture at constant chemical potential, 𝑊μ. 
 

Σ5(310)[001] Σ17(140)[001] Σ11(113)[011] Σ27(115)[011] 

W0 3.60 3.46 4.29 3.93 

WΓ 3.24 3.06 3.99 3.43 

(WΓ−W0)/W0 −10% −12% −7% −13% 

W μ 1.94 1.64 2.27 1.44 

(Wμ −W0)/W0 −46% −53% −47% −63% 

 

      The above energetics set a benchmark for the time scales for H diffusion. The H 

segregation to free surfaces provides thermodynamic limits for cleavage failure. The 

interaction of H atoms with GBs gives rise to diffusion-independent fracture energies for 

intergranular failure. H segregation to vacancies has implications for the enhancement of 

vacancy concentrations as a result of the decreased formation energy for vacancy and H-

vacancy complexes. The interaction between H atoms and dislocations forms the basis 

of understanding the hardening, softening, H transport by dislocations, and dislocation 

pinning effects that set H diffusion rates. Nevertheless, these simulations cannot directly 

reveal the overall plastic flow behaviour or underlying mechanisms behind the HE 

processes.   

2.3.2 Hydrogen interaction with dislocations 

      With high computational costs of DFT calculations, it is impossible to simulate 

plastic flow behaviour involving long-range of H-dislocation interactions and motions.  
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More sophisticated simulation techniques are thus required. Zhao et al. [124] examined 

the interactions between the impurities (H and He) with dislocations (edge and screw) in 

α-Fe using a multiscale quantum-mechanics/molecular mechanics (QM/MM) approach. 

They found that H and He both favoured the tetrahedral sites at the dislocation core by 

calculating the impurity-dislocation binding energy and the impurity solution energy. 

This was consistent with many of the studies mentioned above [119-121]. The impurity 

diffusion along the dislocation core was investigated using the QM/MM nudged-elastic 

band method. It was concluded that H and He both diffused between adjacent tetrahedral 

sites along the dislocation line, although the diffusion barrier along the screw dislocation 

was lower than the bulk value for both impurities. With the edge dislocation, although H 

had similar diffusion barriers as in the bulk, He had much higher diffusion energy barriers 

than the bulk. The H enhanced dislocation mobility was consistent with experimental 

observations. Although these simulations could compute the interaction of H atoms with 

dislocations, it is still impossible to simulate larger and more complex interaction 

processes such as dislocation glide.  

      As computing power increases, atomistic simulations such as MS and MD based on 

semi-empirical interatomic potentials have been developed to study long-range 

phenomena such as the dislocation interaction with multiple H atoms and H diffusion 

into defects [125-129]. For example, Taketomi and Matsumoto [128] carried out MS 

analyses of the H-trap energy around a {112}<111> edge dislocation in alpha iron. By 

comparing the H-trap energy for the tetrahedral (T) and octahedral (O) sites under shear 

stress and hydrostatic static stress, it was revealed that H distribution was also sensitive 

to shear stress for the crystal orientation analysed here. This indicated that strong trap 

sites were distributed across a wide range on the slip plane around the dislocation core. 

Fig. 2.26 and Fig. 2.27 shows that the shear stress effect on the trap-energy of an O site 

type A is much stronger than the hydrostatic effect. 
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Fig. 2.26. Relationship between hydrogen-trap energy and applied simple shear [128]. 

 

Fig. 2.27. Relationship between hydrogen-trap energy and applied hydrogen static stress [128]. 

      Song and Curtin [36] performed MD simulations of dislocation pile-ups in α-Fe. 

Three equally spaced edge dislocations were placed into the periodic simulation model 

at zero shear stress. H atoms with a wide range of concentrations were randomly inserted 

into tetrahedral sites and equilibrated at room temperature to generate Cottrell 

atmospheres. A dislocation obstacle was created ahead of the first dislocation by freezing 

some atoms. Under shear deformation the second and third dislocations were driven to 

pile-up against the first dislocation. For different H concentrations and shear stresses, the 

pile-up configurations were the same, suggestive of that H had no shielding effect on 

dislocation-dislocation interactions (see Fig. 2.28). Understanding the HELP mechanism 

thus requires examination of more complex dislocation/H interactions. Zhou et al. [130] 

analysed the effects of H charging on the mechanical behaviour of fcc Ni and Pd under 

nanoindentation. They found that H segregation slightly reduced the pop-in load for 

dislocation nucleation, and hardly influenced the indentation response after pop-in (see 

Fig. 2.29). Furthermore, the results showed that the change in pop-in load was directly 
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correlated with the H-induced swelling of the lattice. In other words, the presence of H 

simply showed lattice dilation, and no direct effects on dislocation plasticity. This 

information suggests that rate-dependent mechanisms related to fluctuating nucleation 

and H diffusion are presumably the cause of experimental observations of H-induced 

reduction in the pop-in load.  

                                

Fig. 2.28. (a) MD simulation model of dislocation pile-ups in α-Fe. (b) Equilibrium separation distance 

between dislocations with various H coverage [36].  

                

Fig. 2.29. (a) Image of dislocation nucleation during nanoindentation without and with H. (b) The 

indentation load as a function of indentation depth in pure Ni and Ni-H [110].  

      Tehranchi [131] studied the bow-out behaviour of an edge dislocation in Fe with and 

without H. Fig. 2.30(a) shows the H-free dislocation configuration subjected to shear 

stress. The bowed dislocation is asymmetric and mainly contains ≈70° and 45° segments 

connected via an intermediate edge segment. When the critical applied stress is reached, 

Orowan dislocation loops are formed around each obstacle, and the remaining dislocation 

glides through the simulation cell. The presence of H leads to a different result. Fig. 

2.30(b) shows an H-charged dislocation configuration where the H diffusion is 
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asymmetric along the dislocation line. It is energetically unfavourable for H atoms to 

segregate to the 70° segment, and therefore H diffusion into the intermediate edge 

segment occurs. In contrast, H atoms prefer to remain in the 45° segment during the 

simulation. The high H diffusion barrier at glide direction of the 45°  edge segments 

hinders the bow-out process. In particular, the intermediate edge segment acts as a 

secondary pinning point for the dislocation. Meanwhile the 70° segment containing less 

H atoms, can bow-out more easily. Thus overall, the shear stress required for dislocation 

escaping from the obstacle was pronouncedly increased in the presence of H atoms. 

 

 

Fig. 2.30. Configurations of (a) H-free and (b) H-charged edge dislocation in Fe under applied shear stress 

[131].  

2.3.3 Hydrogen interaction with crack tips/GBs 

2.3.3.1 Basic theoretical framework  

       Before proceeding to the interaction between hydrogen and crack tips, the Griffith 

and Rice criteria for cleavage and dislocation emission must be reviewed. The influence 

of interstitial H atoms on the key parameters in each criterion is also presented. 

According to Griffith’s theory, cleavage occurs when the rate of energy release at the 

crack tip 𝐺 =  𝛼𝐾𝐼𝑐
2  reaches the critical value, 𝐺𝑐 = 2𝛾𝑖 = 𝛾𝑠1 + 𝛾𝑠2(for single crystal), 

𝐺𝑐 = 2𝛾𝑖 = 𝛾𝑠1 + 𝛾𝑠2 − 𝛾𝐺𝐵 (for grain boundary), where 𝛾𝑠𝑖 (i = 1,2), and 𝛾𝐺𝐵  are the 

energies of the surfaces made after cleavage and grain boundary energy, respectively. 

The critical stress intensity factor for cleavage can be determined as  

                                         𝐾𝐼𝑐 = √
2𝛾𝑖

𝛼
                                                            (2.3) 
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      The calculation of 𝛼 has been well established, depending on the anistropic plane-

strain moduli 𝑐𝑖𝑗 as [132]. 

                               𝛼 = [√
𝑐22

2
 √2𝑐11 + 2𝑐12+𝑐44]                                        (2.4) 

     An important subtlety in using Eq. 2.3 is that the value of 𝛾𝑖 is required but the proper 

fracture surface for many intergranular crack problems is not well defined. The surface 

with the lowest energy may be kinked (non-flat), which changes the local crack tip stress 

intensity. The GB structure can also have a long periodic repeat distance, so the crack 

could be “trapped” in some local region of the GB where the local energy needed to 

extend the crack exceeds the average surface energy. Thus, the critical 𝐾𝐼𝑐 computed by 

Griffith’s theory may not be accurate, and could be lower or higher than an assessment 

based on an assumed fracture surface. The presence of H makes this problem even more 

complicated because H atoms generally reduce the surface energy and the GB energy, so 

it is not guaranteed that 2𝛾𝑖 = 𝛾𝑠1 + 𝛾𝑠2 − 𝛾𝐺𝐵 decreases in all cases.  

      Several models have been proposed to obtain the fracture energy in the presence of 

impurities [132-135]. Fig. 2.31 shows two of those models, proposed by Lu et al. [132] 

and Van der Ven and Ceder [133]. Starting from a layer of H atoms in the bulk metal, Lu 

et al. [132] simulated crystal decohesion by introducing a thick layer of vacuum and 

letting the H atoms remain on the surface. The advantage of this model was that it was 

straightforward to use DFT to directly calculate such a fracture energy (2𝛾𝑖) in one step, 

while the disadvantage was that the initial state was not a mechanically stable distribution 

of H in the bulk metal. As a result, in the high coverage regime, the initial states in this 

model became unstable due to the repulsion between H atoms. As shown below, this state 

needed not be invoked because H in particular was a very mobile impurity, freely 

diffusing from one interstitial site to another. 

      Van der Ven and Ceder [133,134] also investigated the effects of hydrogen impurities 

on the decohesion of a pair of Al (1 1 1) planes by an equilibrium thermodynamic 

description. They determined the energy and grand force potential of the cohesive zone 

as a function of lattice plane separation and hydrogen coverage using the first principles 

DFT and a lattice gas model Hamiltonian. 
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Fig. 2.31. Models used to calculate the fracture energy (2γ) as a function of H coverage (ΘH) from DFT: 

(a) Lu et al.’s model [132]; (b) Van der Ven and Ceder’s model [133,134]. 

      Jiang and Carter [135] proposed an alternative means and computed the ideal fracture 

energy of metals (Fe and Al) in the presence of varying amounts of H, using periodic 

DFT. The ideal fracture energy as a function of H coverage can be expressed as follows: 

                                 2𝛾𝑖(Θ𝐻) = −∆𝐻𝑠 + 2𝛾(0) + 𝐸𝑎𝑑(Θ𝐻)                          (2.5) 

      The approaching using a Born-Haber thermodynamic cycle is illustrated in Fig. 2.32. 

 

Fig. 2.32. The Born-Haber cycle used to calculate the ideal fracture energy 2𝛾𝑖(Θ𝐻) along a certain plane 

of a single crystal at a hydrogen atom coverage Θ𝐻. ∆𝐻𝑠: solution enthalpy of H2 in the bulk metal. 𝛾(0): 

surface energy of the pure metal without hydrogen. 𝐸𝑎𝑑 : dissociative adsorption energy of H2 on metal 

surfaces [135]. 

      Yamaguchi and his teammates [136] calculated the change of 2𝛾𝑖 from the GB and 

fracture-surface segregation energies of hydrogen and found that the cohesive energy 

(work of fracture) of the GB can be reduced significantly if many H atoms segregated at 

GBs and fracture surface. The cohesive energy can be expressed using the following 

equation: 

         2𝛾𝑖 = (2𝛾𝑠 + ∆𝐸𝐹𝑆,𝑡𝑜𝑡𝑎𝑙
𝑠𝑒𝑔,1

 /𝐴 + ∆𝐸𝐹𝑆,𝑡𝑜𝑡𝑎𝑙
𝑠𝑒𝑔,2

 /𝐴)  − (𝛾𝐺𝐵 + ∆𝐸𝐺𝐵,𝑡𝑜𝑡𝑎𝑙
𝑠𝑒𝑔

 /𝐴)         (2.6) 

here, A is the area of GB and surface plane of the unit cell.  

      Under pure mode-I loading, dislocations can be emitted along a slip plane inclined at 

an angle θ with respect to the crack plane if the critical stress intensity reaches a critical 

value 𝐾𝐼𝑒. In fcc materials, dislocation emission often proceeds via the nucleation of a 

leading partial dislocation which generates a stacking fault between the crack tip and 
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emitted dislocation [137, 138]. Within a Peierls model for the sliding of two surfaces and 

for an elastically anisotropic material, Rice [139] developed an approximate expression 

for 𝐾𝐼𝑒 that depends on the unstable stacking fault 𝛾𝑢𝑠𝑓 as 

                       𝐾𝐼𝑒 = 𝑓1(𝜃)
−1√

2𝜇

1−𝑣
𝛾𝑢𝑠𝑓[1 + (1 − 𝑣)𝑡𝑎𝑛2∅]                          (2.7)                                                        

where 

                                          𝑓1(𝜃) = 𝑐𝑜𝑠
2(𝜃/2)sin (𝜃/2)                            (2.8)                                                        

where 𝜇  is the shear modulus, 𝑣  is Poisson’s ratio, 𝜃  and ∅ is the angle between the 

dislocation burgers vector in the slip plane under consideration and the vector 

perpendicular to the crack front in the slip plane [139-141]. For anisotropic materials, the 

effective value of 𝜇 is calculated using the convention from Zimmerman and Gao [142]. 

The introduction of H along the slip plane is envisioned to change 𝛾𝑢𝑠𝑓 as a function of 

the H concentration, 𝛾𝑢𝑠𝑓(𝑐), and thus to change 𝐾𝐼𝑒(𝑐). Here, 𝑐 is the number of H per 

surface metallic atom that would exist if the material were separated along the plane of 

interest. As for cleavage, this model neglects any other effects induced by the H, such as 

its effect at the surface step created upon dislocation nucleation or the modification of 

the local elasticity and/or stress field due to H, among other possibilities. 

2.3.3.2 Hydrogen-assisted ductile-to-brittle transition  

       Because of the high mobility of H in metals [143], it is natural to postulate that 

ductile-to-brittle transition is related to hydrogen diffusion and accumulation [144]. In 

addition, MD simulations suggest that HE is related to the accumulation of H atoms in a 

tensile stress field. This accumulation not only enhances the pinning effect to 

dislocations, which can harden the material, it also decreases the free surface energy and 

stacking fault energy near the crack tip [26]. This mechanism can be expressed using two 

parameters, 𝐾𝐼𝑒 and 𝐾𝐼𝑐, the stress intensity factors associated with the emission of first 

dislocation from the crack and with the initiation of crack cleavage, respectively. For a 

given material, if 𝐾𝐼𝑒  is smaller than 𝐾𝐼𝑐 , it will deform plastically near a crack tip. 

However, if 𝐾𝐼𝑐 is smaller than 𝐾𝐼𝑒,  it will start cleavage near a crack tip. Note here that 

any change in H concentration would likely change the free surface energy and stacking 

fault energy, which would then affect the relative values of 𝐾𝐼𝑐 and 𝐾𝐼𝑒. As a result, a 

ductile material may have 𝐾𝐼𝑐  smaller than 𝐾𝐼𝑒 , which results in a ductile-to-brittle 

transition [26-28]. Song and Curtin [26] made continuum predictions for emission and 

cleavage using computed generalised stacking fault energies and surface energies in a 
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model Ni-H system, and then used an atomistic model to investigate actual crack tip 

behaviour in the presence of controlled arrays of H atoms around the crack tip. The 

procedure proposed by Van der Ven[133, 134] and standard method [28] were used to 

calculate the fracture energy and unstable stacking fault in the presence of hydrogen, as 

shown in Fig. 2.33 and Fig. 2.34.     

 

Fig. 2.33. Surface or fracture energy versus H concentration for {1 0 0}, {1 1 0} and {1 1 1} surfaces, as 

calculated using the methods of Van der Ven et al and Jiang et al [26]. 

 

Fig. 2.34. GSF energy versus slip displacement 𝛿  on the {1 1 1} <1 1 2> slip system, for various H 

concentrations 𝑐. Unstable and stable stacking fault points are indicated by filled circles and filled triangles, 

respectively. a0 is the equilibrium lattice parameter for Ni [26]. 

      Fig. 2.33 shows that the (100) and (111) surface energies are not widely different, 

and neither is the effective elastic constant for fracture along these planes, leading to 

relatively small differences in the predicted values of 𝐾𝐼𝑐 (𝑐). However, the (110) surface 

energy is much higher. This indicates that it is more difficult to cleavage along the (110) 

surface than (100) or (111) surfaces. Fig. 2.34 shows that both unstable stacking fault 

𝛾𝑢𝑠𝑓 and stable stacking fault 𝛾𝑠𝑓 increase with increasing H concentration, and that a 

stable stacking fault energy barely exists for concentration above 𝑐 > 0.15 , which 

indicates that the critical stress intensity for emission increases so as to make it difficult 

for dislocation emission. Simulations were then performed in the framework of the 
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coupled atomistic/discrete-dislocation (CADD) multiscale method, which consisted of a 

fully atomistic region around the crack tip surrounded by a continuum region that can 

contain discrete dislocations.  Both brittle and ductile fracture were considered. As shown 

in Fig. 2.35(a), the measured  𝐾𝐼𝑐 values deviate somewhat from the predicted values as 

H atoms are introduced along the crack plane, with discrepancy becoming larger as 𝑐 

increases. The origin of the discrepancy is likely associated with the local volume 

expansion due to introduction of H atoms, which leads to an additional compressive stress 

along the crack plane. In the ductile orientation, dislocation emission is observed along 

slip plane. Fig. 2.35(b) shows that 𝐾𝐼𝑒  increases with increasing H concentration and 

closely follows the prediction value. 

             

Fig. 2.35. Critical stress intensity factors 𝐾𝐼𝑐  and 𝐾𝐼𝑒  for brittle cleavage and dislocation emission, 

respectively, for various cleavage and slip planes, as a function of hydrogen concentration on the relevant 

plane. (a) Cleavage on plane {1 0 0} and (b) Emission in orientation (1 1 1)[1 1 2] [26]. 

      In Song’s further work [28], the HE problem in the presence of equilibrium H 

distributions around the crack tip was examined. Specifically, a new model was proposed 

wherein the diffusion of H to a crack tip led to a very high local H concentration that 

corresponded, essentially, to the formation of a “nanohydride” material. The key to this 

“nanohydride” material (e.g. H concentrations approaching those of the accepted bulk 

hydride phase) was its ability to prevent dislocation emission or absorption at the crack 

tip, thereby suppressing the blunting of cracks, inhibiting ductile fracture mechanisms, 

and driving cleavage failure. The analysis was performed in single crystal Ni and for 

several tilt GBs and several initial crack notch radii, using MS and embedded-atom-

method interatomic potentials. Hydride formation was created with equilibrium 

segregation of H. With a simple solution model, the equilibrium H concentration 𝑐(𝑥) at 

site 𝑥  can be determined by the difference in energy ∆𝐸(𝑥)  between an H atom at 

position 𝑥 and an H atom in the bulk crystal under zero load as: 

                              𝑐(𝑥) =
𝑐0exp [∆𝐸(𝑥)/𝐾𝐵𝑇]

1+𝑐0 exp[∆𝐸(𝑥)/𝐾𝐵𝑇]
                                                         (2.9) 
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where 𝑐0  is the equilibrium H concentration (H atoms per Ni) in an unstressed bulk 

crystal, T is the temperature, and the positive ∆𝐸(𝑥)  corresponds to binding, thus 

favouring segregation to site 𝑥 relative to the bulk crystal. In any given system, 𝑐0 is 

determined by an externally imposed chemical potential 𝜇  at temperature T. In the 

presence of a loaded crack, a major component of the energy is the elastic interaction 

energy 𝑝(𝑥)∆𝑉 where 𝑝(𝑥) = ∑ 𝜎𝑖𝑖(𝑥)/3
3
𝑖=1  is the crack-induced field at position 𝑥 and 

∆𝑉 is the misfit volume of the H atom.  In the presence of H around the crack tip, 

dislocation emission can be inhibited such that the applied load can be increased beyond 

𝐾𝐼𝑒. Increased loading then allows for a further accumulation of H atoms near the crack 

tip, which can further suppress dislocation emission. Fig. 2.36 and Fig. 2.37 illustrate the 

embrittlement mechanism explicitly for two different crack geometries. Obviously, with 

increasing load, the crack tip becomes completely surrounded by a growing nanohydride, 

which prevents dislocation emission and finally culminates in brittle cleavage through 

most of the nanohydride phase (see Fig. 2.36(e) and Fig. 2.37(e)).   

      In addition, Song and Curtin also calculated the size of the “nanohydride” formed at 

the crack tip as a function of hydrogen chemical potential, temperature, H diffusion rate, 

load level and loading rate. As Fig. 2.36 shows, the size of the nano-hydride is L and H 

atoms will move into this region and saturate it at an atomic ratio of 1. 

                         
𝜋

2
(𝐿 + 𝑅)2 −

𝜋

2
𝑅2 = 2.1𝑐0 (

5(1+𝑣)𝐷Ω𝐾̇𝐼

12√2𝜋𝑘𝐵𝑇
𝑡2)

4

5
                      (2.10)                          

      Using 𝐾𝐼 = 𝐾̇𝐼𝑡, the nanohydride size L as a function of 𝐾𝐼 can be obtained by 

                                        𝐿 = √𝑅2 + (
𝐾𝐼

𝐴0
)
8

5 − 𝑅                                          (2.11) 

where  

                                    𝐴0 = (
1.67√2𝜋𝑘𝐵𝑇

(1+𝑣)𝐷Ω
)
1/2

𝑐0
−
5

8𝐾̇𝐼

1

2                                  (2.12) 

      𝐴0  is the single parameter that combines the effects of concentration, diffusion 

coefficient, stress intensity loading rate, and temperature that controls the kinetics of 

formation of the nanohydride, where 𝑅 is the inner radius of crack tip, as shown in Fig. 

2.36, 𝑐0 is the H concentration far away from crack tip, 𝑣 is Poisson’s ratio, D is the 

diffusivity of H atom, Ω is the partial volume of hydrogen, 𝐾̇𝐼 is the changing rate of 

stress intensity and 𝑘𝐵 is the Boltzmann constant. 
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Fig. 2.36. Example of evolution of the nanohydride phase around a geometry I crack tip with increasing 

load (a)–(d) and (e) configuration at 1.96 MPa pm after loading to 𝐾𝐼  = 2.06 MPa pm, where cleavage 

through the nanohydride occurs. (f) Schematic of simple geometry for characterizing the size L of 

nanohydrides [28].  

          

Fig. 2.37. Example of evolution of the nanohydride phase around a geometry IV crack tip at with increasing 

load (a)–(d) and (e) configuration at 1.90 MPa pm after loading to 𝐾𝐼  = 1.95 MPa pm, where cleavage 

through the nanohydride occurs [28]. 

       Xing et al. [145-147] investigated H-assisted ductile-to-brittle transition in α-iron 

under cyclic loading. An H concentration that corresponded to ductile-to-brittle transition 
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was predicted. Based on the estimated critical H concentration , the number of H atoms 

required to saturate the plastic zone and allowed for ductile-to-brittle transition to occur 

under specific experimental condition was calculated according to Eq. 2.13, 

                       𝑁𝐻
𝑡𝑜𝑡𝑎𝑙 =

𝑐𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑙𝑧[𝜋(𝑟𝑝+𝑉̅𝑟∗𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)
2−𝜋𝑟𝑝

2]

𝑎0
3/2

                          (2.13) 

where 𝑐𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is the theoretical value, 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is the loading time corresponding to the 

critical loading frequency, 𝑙𝑧 is the thickness of the specimen, and 𝑉̅𝑟 is the average 

velocity of H movement at the boundary of the plastic zone. 

       Fig. 2.38 shows a crack growth model. The plastic zone under plain strain conditions 

can be approximated as a circular region with radius 𝑟𝑝 . To reach the dynamic 

equilibrium of H concentration in the plastic zone during cyclic loading, an annulus 

region with an inner radius 𝑟𝑝 and an outer radius 𝑅𝑒𝑞 is needed to supply and deplete the 

H atoms. The H concentration outside of plastic zone is estimated to be 𝑐0. Therefore, 

the minimum time, 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, for H diffusion in/out of circular region during cyclic load 

to satisfy the dynamic equilibrium hydrogen concentration in plastic zone is related to 

critical frequency through 𝑓𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙=1/(2𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙). The diffusivity of H atoms outside the 

plastic zone is assumed to be constant since these regions are not stress concentrated. As 

the stress intensity changes from 𝐾𝑚𝑖𝑛 to 𝐾max in a range of time t, the H atoms can 

diffuse into the plastic zone from a farthest position 𝑟𝑝 +𝑅𝑒𝑞. The total volume of the 

annulus red region in Fig. 2.38 which offers H atoms to the plastic zone during loading 

can be estimated as 𝑙𝑧[𝜋(𝑟𝑝 + 𝑅𝑒𝑞)
2 − 𝜋𝑟𝑝

2] , where 𝑅𝑒𝑞 = 𝑉̅𝑟 ∗ 𝑡 and 𝑉̅𝑟 is the average 

velocity of H movement. The total number of Fe atoms contained in the red region is 

𝑙𝑧 [𝜋(𝑟𝑝 + 𝑅𝑒𝑞)
2
− 𝜋𝑟𝑝

2] /(𝑎0
3/2), where 𝑎0

3/2 is the volume taken by each Fe atom. 

The total number of H atoms needed to saturate the plastic zone is equal to an atomic 

ratio of H/Fe (𝑐0) multiplied by the number of Fe atoms. 

                                  

Fig. 2.38. The geometry of a crack, where the orange circular region is the plastic zone, and the blue region 

is a circle region where the radius is equal to 𝑟𝑝. The red annulus region is to offer and deplete the hydrogen 

atoms [145].  
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      Matsumoto and Taketomi [127] applied the MD method to examine the mode I crack 

growth in α-Fe single crystals with and without H. With the same orientation (ductile 

orientation), crack propagation was carried out at 100K and 400K.  The simulation results 

showed that there was no dislocation emission at 100K because of a lower temperature 

than the ductile-to-brittle transition temperature, while at 400K, dislocation emission 

from the crack tip and crack propagation along the {112} slip plane were observed at 

high frequency with H atoms. Fig. 2.39 shows the crack propagation for three cases of H 

concentrations. It is clear that dislocations are first emitted from a crack tip along the slip 

plane, and the crack propagation is then promoted along the slip plane. They analysed 

the interaction between dislocation and H atoms [128] and concluded that the H atoms at 

a dislocation cores reduced the energy barrier for dislocation motion and increased 

dislocation mobility. The crack propagation (separation of the slip plane) was mainly due 

to the H atoms trapped at dislocation cores, and such separation was connected among 

pile-up dislocations. The above mechanism was a hybrid of the HELP and the HEDE. 

The fracture was related to the HELP mechanism in that plastic deformation with 

dislocations was needed prior to the fracture. On the other hand, the fracture was 

associated with the HEDE mechanism in that the fracture resulted from the separation of 

a slip plane.  

            

Fig. 2.39. Snapshots of crack propagation behavior for the crystal orientation (B) at 400 K. (a) 𝑥0 = 1.0 ×

10−4 (b) 𝑥0 = 3.0 × 10−4 (c)𝑥0 = 0 [127]. 

       In Matsumoto’s further study [147], the effect of H on dislocation emission from a 

mode II crack in α-Fe was investigated using an atomistic model. It was found that H 

reduced the stacking fault energy of α-Fe, resulting in an enhancement of dislocation 

emission, but the distance from the H atoms to the crack tip was only limited to a few 

angstroms. They also confirmed that dislocation enhancement can occur at realistic H 
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concentrations of H gaseous under thermal equilibrium conditions. 

2.3.3.3 Intergranular fracture/decohesion along GBs 

      The HE is often prone to cleavage-like failure, frequently along GBs in 

polycrystalline metals [148, 149]. Cleavage-like failure implies that sharp cracks can 

propagate without blunting, and this points towards studying crack-tip specific 

phenomena associated with H. Based on the analysis in Section 2.3.3.2, the same 

competition between dislocation emission and cleavage is expected to be relevant, with 

the expectation that (i) cleavage along a GB is easier than in the bulk crystal, (ii) 

dislocation emission which occurs into the grains is similar to emission in the bulk 

crystal, (iii) H segregation to the GB should decrease the stress intensity required for 

cleavage, and (iv) emission may be influenced by H on the cleaved GB surfaces, but 

perhaps not by H accumulation along the slip plane.  

      Tehranchi and Curtin [29] performed atomistic simulations to study the effects of 

segregated H on the behaviour of cracks along various symmetric tilt GBs in fcc Ni. The 

existing EAM potential was modified by changing some parameters that described the 

Ni-H interactions. The binding energy of H atoms to various atomic sites in studied GBs, 

and to various surfaces created by separating these GBs into two possible fracture 

surfaces were computed and used to determine equilibrium H concentrations at bulk H 

concentrations typical of embrittlement in Ni. Table 2.3 shows the results of the 

theoretical predictions of the Griffith’s and Rice’s theories as well as the simulation 

results, which indicates that no ductile-to-brittle transition is observed for the predicted 

ductile cracks in the presence of segregated H atoms along any of the GBs studied. 

However, H atoms make cleavage easier for crack growth in the intrinsically brittle 

directions. For example, for Ni Σ99(557)⟨110⟩ GB, the predicted cleavage load decreases 

from 1.00 𝑀𝑃𝑎√𝑚 in pure Ni to 0.92 𝑀𝑃𝑎√𝑚 in the presence of H. Simulations in pure 

Ni show partial cleavage at 0.912  𝑀𝑃𝑎√𝑚 , with cleavage finally occurring at 

1.52  𝑀𝑃𝑎√𝑚 . In the presence of H, the final cleavage load to 1.072  𝑀𝑃𝑎√𝑚 , 

approaching the predicted values. It is worth noting that the simulated value is larger than 

the Griffith’s prediction. This can be attributed to crack trapping within the GB structure. 

Griffith’s theory considers only the surface energy, which is an average over the various 

structural units in the GB, while crack tip can be arrested within the higher-tougher 

regions in the simulation cases. With trapping, a higher 𝐾+ is required for crack growth. 

If 𝐾+is higher than the critical emission load(𝐾+ > 𝐾𝐼𝑒), local plastic events can occur 
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prior to cleavage. In pure Ni Σ9(221)⟨110⟩ GB, the final event in the predicted cleavage 

direction is actually emission ahead of the crack tip and thus no cleavage is observed. In 

the presence of H, the cleavage occurs along the GB in place of dislocation emission. 

The only ductile-to-brittle transition arises from the reduction of trapping effects rather 

than reduction in the fracture energy, which is so different from the results observed in 

Ni single crystal [28].  

      Barrows [150,151] employed a statistical approach combined with MD simulations 

to explore the influence of H on intergranular decohesion from atomistic simulation data 

during steady-state crack propagation along the GB. A range of <110> symmetric tilt 

GBs in Ni were studied, with H coverages and favourable sites for H segregation 

motivated by Monte Carlo calculations. Decohesion was assessed through extraction of 

a traction–separation relationship in a statistically meaningful approach based upon 

atomistic cohesive zone volume elements (CZVEs). They discussed how the H coverage 

influenced the details of crack propagation along the Σ3(112) symmetric tilt GB and 

concluded that increasing H asymmetrically influenced the crack tip velocity during 

propagation, which led to a general decrease in the work of separation required for crack 

propagation, and provided a reduction in the peak stress in the extracted traction-

separation relationship. 

Table 2.3. Theoretical and simulated cleavage and emission stress intensities for all GBs [29]. 

 c0 Rice’s theory Griffith’s theory Simulation results 

  (MPam) (MPam) (MPam) 

NiΣ3(111)⟨110⟩ 0.0 1.01 1.03 1.20 Cleavage 

 0.001 1.01 1.03 1.20 Cleavage 

 0.0 0.38 1.03 0.62 Emission 

 0.001 0.38 1.03 0.58 Emission 

NiΣ9(221)⟨110⟩ 0.0 1.500 0.98 1.49 Rearrangement 

 0.001 1.50 0.97 1.39 Cleavage 

 0.0 0.64 0.98 0.72 Emission 

 0.001 0.64 0.97 0.93 Emission of two partials 

NiΣ99(557)⟨110⟩ 0.0 1.41 1.00 1.52 Cleavage 

 0.001 1.41 0.92 1.07 Cleavage 

 0.0 0.62 1.00 0.63 Emission 

 0.001 0.62 0.92 0.58 Emission 

NiΣ5(120)⟨100⟩ 0.0 N.A. 0.92 0.91 Cleavage 
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2.3.3.4 Effects of H on the structure and deformation of GBs 

      One manifestation of H-induced failure is a transition in the failure mode from ductile 

transgranular to brittle intergranular. Although H-induced reduction in the cohesive 

strength is ultimately the cause of failure, the conditions for establishing this failure mode 

are driven by H-enhanced plasticity processes [106, 108, 109]. This includes the changes 

in the GB structure and local H concentration associated with slip transfer, as well as the 

increase in local stress around the GB due to the H-accelerated plasticity that occurs prior 

to the initiation of an intergranular crack. 

      O’Brien et al. [152] examined H segregation to misoriented GBs vicinal to the 

Σ3(111)[11̅0](coherent-twin) boundary. Results showed that the presence of H affected 

a change in structure of the boundaries with increasing concentration. Fig. 2.40 shows 

the preferred locations for H segregation in the case of low-angle boundaries. It can be 

seen that the structure of the boundary differs from that the H-free boundary. This 

structural change is due to the increasing concentration of H reducing the length of the 

extended stacking faults in Fig. 2.40(a)-(d).  

                          

Fig. 2.40. Snapshots illustrating the preferred locations for H segregation [152]. 

       Recently, Kuhr and Farkas [153] reported fully three-dimensional atomistic MD 

studies of the mechanical response of identical samples with and without H in the GBs. 

They selected random boundaries and applied tensile deformation in a strain-controlled 

virtual tensile test to examine the response of polycrystalline samples. The presence of 

H in the GBs can change the grain boundary structure, creating regions of high free 

volume at the sites of H clusters. Fig. 2.41 shows the overall distribution of dislocations 

in the H-free sample and H coverages of 3.2 H/nm2. By comparing the deformation in 

each grain at various strains, it can be seen that the number of slip systems activated as 

 0.001 N.A. 0.75 0.65 Cleavage 

 0.0 N.A. 0.92 1.38 Cleavage 

 0.001 N.A. 0.75 1.20 Cleavage 
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well as the number of events is greater in the sample with 3.2 H/nm2 than in H-free 

material. 

                    

Fig. 2.41. Dislocation structures for samples without GB H (left) and 3.2 H/nm2 (right) [153]. 

      Fig. 2.42 shows the crack growth as a function of applied strain for various levels of 

H coverage at the GB. The results indicate that crack initiation on the GB is relatively 

insensitive to H coverage. Once cracks are nucleated in the GB, their growth is 

significantly enhanced by the presence of intergranular H. A further visual inspection 

suggests that the cracks nucleate in a region of high dislocation activity and close to the 

location at which a dislocation pile-up forms against the boundary. 

 

                                                 

Fig. 2.42. Crack length as a function of applied strain for various levels of H coverage at the GB [153]. 

2.4 Summary  

      Notwithstanding such a rich literature explaining H-related phenomenon using 

experimental techniques, theoretical modelling and simulations, there are still strong 

debates and polarization of opinions on the underlying HE mechanisms [20, 35, 36, 39, 

41, 131, 154]. Particularly, a comprehensive investigation on the role of GBs in the H-

related deformation and failure is lacking. Some questions still remain open: (1) what 

atomic mechanism is responsible for H interaction with GBs and (2) how does the 

interaction process contribute to H embrittlement failure? In this thesis, the technique of 

MD simulations was used to study H segregation at various GBs and its influence on the 
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structure, mechanical properties, deformation mechanisms, and failure response of GBs. 

It is envisioned that these simulation results can provide important insights into 

experimental observations and enrich our knowledge of the multifaceted problem of HE. 
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Chapter 3 Fundamentals of atomistic simulations 

      As mentioned before, atomistic simulations such as MS and MD can provide 

information on the nanoscale H distribution around various defects, and probe the 

mechanical behaviour and fracture mechanisms in the presence and absence of H. In this 

chapter, basic research fundamentals such as the simulation method, potential selection, 

visualisation tools, and structure and defects identification are briefly introduced.  

3.1 MS and MD simulations 

      In this thesis, MS simulations were performed to generate GBs with minimum 

energy, or the most favourable interface structures. MS simulations are a form of classical 

atomistic simulations that are implemented to determine minimum energy structures in 

the absence of temperature effects, i.e., they are performed at 0K. Energy minimisation 

is a process in which atoms can move from their initial positions with increments and 

directions that result in a decrease in the overall potential energy of the system. The 

energy minimisation approach used here utilises the conjugate gradient minimisation 

method. The conjugate gradient method can solve large systems of linear equations for a 

set of inputs and atom positions, and minimise a desired quantity and the potential energy. 

Ultimately, this is achieved using an iterative approach with minimum potential energy 

determined once the difference between the potential energy at one step and the potential 

energy at the next step is less than the user-defined threshold value. A more detailed 

explanation of the atomistic conjugate gradient method, and other minimisation methods 

for solving systems of equations, can be found in Shewchuk [90].  

      MD simulations were carried out to investigate the fundamental mechanisms of GBs 

in the presence of H. As classical mechanics based simulations, model atoms are 

modelled as unified spheres with a defined mass, and their trajectories and interactions 

are determined in accordance with Newton’s 2nd law of motion and an interatomic 

potential:  

                                                        𝑚𝑖
𝑑2𝑟𝑖(𝑡)

𝑑𝑡2
= 𝑓𝑖                                                        (3.1) 

where 𝑚𝑖 and 𝑟𝑖 are the mass and position of the atom 𝑖. The fore 𝑓𝑖 through which the 

particles interact with each other derives from the interaction potentials: 

                                                   𝑓𝑖 = −
𝜕

𝜕𝑟𝑖
𝑈(𝑟1, … , 𝑟𝑁)                                              (3.2) 

where 𝑈 is potential energy, and 𝑟1, … , 𝑟𝑁 consists of 3N spatial coordinates of the atomic 
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configuration.  

      All simulations were carried out using the Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) [155]. As a classical MD simulation code with a focus on 

materials modelling, LAMMPS was originally developed at Sandia National 

Laboratories, a US Department of Energy facility, and was designed to run efficiently on 

parallel computers. Performing a MD simulation requires three basic steps. First, a 

system of atoms must be created and assigned initial positions or velocities if necessary. 

Next, the thermodynamic state of the system must be fixed. Fixing the thermodynamic 

state of the system defines the equations of motion that the trajectories of the atoms will 

follow. Finally, the equations of motion that are defined by fixing the thermodynamic 

state of the system must be solved or integrated every timestep to update the positions 

and velocities of the atoms. The initial positions are determined by put atoms on the 

lattice sites with a crystallographic orientation.  The velocities are randomly chosen from 

a Gaussian distribution with a mean of 0.0 and a sigma scaled to produce the required 

temperature: 

                                              
3𝑁

2
𝑘𝐵𝑇 =

1

2
∑ 𝑚𝑖𝑟̇𝑖

2(𝑡)𝑁
𝑖=1                                            (3.3) 

where 𝑘𝐵  is the Boltzmann constant and T is the temperature. 

      The Verlet algorithm is used to solve the equations of motion. Through Tayler 

expansion of the coordinate of a particle around time 𝑡 + ∆𝑡 and 𝑡 − ∆𝑡, the particle 

coordinate at time 𝑡 + ∆𝑡 can be calculated by: 

                                𝑟𝑖(𝑡 + ∆𝑡) = 2𝑟𝑖(𝑡) − 𝑟𝑖(𝑡 − ∆𝑡) +
𝑓𝑖

𝑚𝑖
∆𝑡2 + 𝑜(∆𝑡4)                  (3.4) 

      The velocity of the particle can be derived from: 

                                            𝑣𝑖(𝑡) =
𝑟𝑖(𝑡+∆𝑡)−𝑟𝑖(𝑡−∆𝑡)

2∆𝑡
+ 𝑜(∆𝑡2)                                     (3.5) 

3.2 Potential selection 

      Semi-empirical interatomic potentials have been widely used in atomistic simulations 

such as MS and MD to study long-range phenomena including dislocation interaction 

with multiple H atoms and the H diffusion process into defects [26, 29, 125-127, 129, 

147, 156-159]. The development of metal-H potentials is mainly based on the embedded 

atom method (EAM), with fitting of parameters to first-principle energetic calculations 

and experimental results. To date, Ni-H and Fe-H EAM potentials have been widely used 

in the literature. Notwithstanding some shortcomings, these potentials can be used to 

investigate specific deformation and failure mechanisms with carefully designed 
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simulations. 

      The well-established Ni-H EAM potential was first introduced by Angelo et al. [160]. 

This potential includes Ni-Ni, Ni-H, H-H interactions. As shown in Table 3.1, the 

parameters 𝑐1 , 𝑐2 , 𝑐3 , 𝑐5 , and 𝑟𝑐𝑢𝑡  are used to define the Ni-Ni interactions. The 

interactions of Ni and H are fitted by allowing 𝑐1, 𝑐2 and 𝑐3 for the Ni-H pair interaction, 

𝑐4  and 𝑐5  for the hydrogen electron density, and 𝑐6 , 𝑐7 , 𝑐8 , 𝑐9  for the hydrogen 

embedding energy to vary. The cut-off distance for all interactions involving hydrogen 

is fixed at 𝑟𝑐𝑢𝑡 = 2.8 Å. Recently, Tehranchi and Curtin [29] made modifications to better 

reproduce the results obtained from the DFT method for H in the Σ5 boundary. The misfit 

volume of 3.27 Å3 and H migration barrier in the modified potential agree well with the 

experimental values. Also, the H-H interaction energy is in good agreement with DFT 

calculations and energies required for the NiH hydrides. Consequently, this Ni-H 

potential is effective in probing various mechanics issues and phenomena such as H 

interaction with the stress field related to defects. Table 3.2 shows the original and revised 

values for the modified parameters in the potential and the relevant bulk properties of Ni.  

Table 3.1. The parameters used to determine the embedded atom potential [160]. 

 

 
Ni-Ni Ni-H H-H 

𝒄𝟏 5.6411172 6.6090538 0.12027801 

𝒄𝟐 1.4136118 1.0256391 0.00000000 

𝒄𝟑 1.1333300 2.1101256 0.00000000 

𝒄𝟒 1.0000000  5.5854322 

𝒄𝟓 2.8448303  75.998895 

𝒄𝟔   0.53419208 

𝒄𝟕   13.526207 

𝒄𝟖   22.592082 

𝒄𝟗   1.1292331 

𝒄𝟏𝟎 -19.743089  0.0000000 

𝒓𝒄𝒖𝒕(Å) 4.84 2.8 2.8 

 

Table 3.2. Original and modified parameters for the Ni–H EAM potential based on the formulation of 

(Angelo et al.,[160]; Baskes et al.,[161]) [29].   

Parameter Original [160,89]  Modified 

c10
H  (eV) 13.26 13.85 

c6(eV) 0.53419208 0.52 

c9 1.1292331 1.092 

rc
H (Å) 2.8 2.7 

c11 (GPa) 251.7 251.7 

c12 (GPa) 147.3 147.3 

c44 (GPa) 130.6 130.6 

γusf (mJ/m2) 276 276 
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      The currently used Fe-H potential was developed by Ramasubramaniam et al. [162] 

on the basis of the Fe potential by Ackland [163]. Song and Curtin [27] further modified 

the potential to eliminate unphysical H clustering at high H concentrations by introducing 

an additional repulsive term into the pairwise for H-H interaction in the form of a Weibull 

function,  

𝑓(𝑟𝑖𝑗, 𝜆, 𝑘, 𝐶0, 𝐵0, 𝑟0, 𝑟1) = 

                

{
 
 

 
 𝐶0 [

(𝑟𝑖𝑗−𝑟0)

𝜆
]
𝑘−1

𝑒𝑥𝑝 [− (
𝑟𝑖𝑗−𝑟0

𝜆
)
𝑘

− 𝐵0(𝑟𝑖𝑗 − 𝑟1)
2
]  𝑖𝑓 𝑟𝑖𝑗 ≥ 𝑟1,

𝐶0 [
(𝑟𝑖𝑗−𝑟0)

𝜆
]
𝑘−1

𝑒𝑥𝑝 [− (
𝑟𝑖𝑗−𝑟0

𝜆
)
𝑘

]  𝑖𝑓 𝑟0 ≤ 𝑟𝑖𝑗 < 𝑟1,

0       𝑖𝑓 𝑟𝑖𝑗 < 𝑟0.

                  (3.6) 

where 𝑟𝑖𝑗  (𝑖 ≠ 𝑗) denotes the distance between H atoms 𝑖 and 𝑗, with 𝜆, 𝑘, 𝐶0, 𝐵0, 𝑟0 and 

𝑟1 constant parameters. The second exponential term for 𝑟𝑖𝑗 ≥ 𝑟1is a tail treatment to 

ensure smooth termination of the function at the potential cutoff distance. This potential 

has reasonable bcc Fe properties, surface energy in the presence and absence of H, low 

H diffusion barrier, and stable FeH hydrides.  

3.3 Ensemble  

      To solve or integrate the equations of motion, the positions and velocities of the atoms 

are updated every timestep under ensembles. There are three important thermodynamics 

ensembles used in MD simulations: microcanonical ensemble (NVE); isothermal 

ensemble (NVT); and isothermal-isostress ensemble (NPT) where N is the number of 

atoms, V is the volume, E is the energy, T is the temperature, and P is the pressure. The 

microcanonical ensemble (NVE) represents constant number of atoms, volume, and 

energy, and the sum of kinetic and potential energy is conserved. This ensemble is not 

suitable for cases with a desired temperature or pressure.  The isothermal ensemble 

(NVT) can keep the system temperature constant by rescaling the temperature with 

the Nose-Hoover thermostat, the Berendsen thermostat, or the Langevin thermostat. In 

contrast, the isothermal-isostress ensemble (NPT) can control the temperature and the 

pressure by Nose-Hoover barostat or Berendsen barostat.  

3.4 Boundary conditions  

      To save computing time and eliminate the influence of surface force, the periodic 

boundary condition is usually applied to the simulation model. Under periodic boundary 

conditions, particles interact across the boundary, and then exit from one end of the box 
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and re-enter at the other end. As shown in Fig. 3.1, the simulation box is repeated by 

copying itself 9 times for a two-dimensional system. The atom-a1 indicated by a green 

circle exits from one side of the box boundary and re-enter the box on the opposite side 

(atom-a2 marked by a purple circle).  

      Sometimes, to focus on the individual boundary and exclude the effects of secondary 

boundary, free boundary conditions are set to encompass the atoms in that dimension, no 

matter how far they move.  

 

 

Fig. 3.1.  Two-dimensional periodic boundary condition where the central configuration is surrounded by 

its copies.  

3.5 Visualisation Methods 

      After the set-up of suitable models, MD calculations usually produce huge amounts 

of data, i.e., position and velocity components are available for thousands of atoms and 

for thousands of time steps. To go into the detailed properties of a nanocrystalline, the 

essential information for whole atoms must be captured. This process often includes a 

great deal of grains within the atomic configuration and in turn involves a large number 

of atoms. Atomeye [164], AtomViewer [165] and Ovito [166] are used for visualisation 

and data analysis for output by large-scale MD/MS and Monte-Carlo simulations. They 

provide many customised functions to identify and accentuate certain structural characters 

of an atomistic configuration. These methods facilitate the observation of atomic scale 

processes related to thermal processes during sample annealing or to deformation 

mechanisms during plastic deformation. The major visualisation methods used in this 

thesis to calculate potential energy, local stress and strain, centrosymmetric parameter and 
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common neighbour analysis (CNA) parameter are summarised in the following. 

3.5.1 Potential energy 

      Atoms can be coloured by their local potential energy and viewed in visualisation 

software. In nanocrystalline systems, structural defects such as GBs can be identified by 

only showing the atoms with potential energies higher than a certain threshold. Note that 

care must be taken in using this method to identify the GB region because by definition, 

only those atoms in a high energy configuration are considered, which naturally biases 

the probed GB structure to more disordered configurations. Fig. 3.2(a) shows the atomic 

positions of those atoms with a cohesive energy of approximately 0.1 eV higher than the 

fcc crystalline energy. With this criterion the GB and partial dislocation core are visible.  

                    

Fig. 3.2. Four different methods of visualization of grain boundary and dislocation segment within a 

nanocrystalline environment. Atoms are shaded according to (a) potential energy, (b) local stress, (c) 

centrosymmetric parameter and (d) common neighbour analysis (CNA). 

3.5.2 Local stress  

      The instantaneous stress tensor of each atom can be calculated by the virial stress 

[167]: 

     𝜎𝑖𝑗 =
1

𝑉
(
1

2
∑ ∑

𝑈′

𝑟𝑖𝑗𝑖≠𝑗𝑗
𝑟𝛼
𝑖𝑗
𝑟𝛽
𝑖𝑗
−∑𝑚𝑖𝑣𝑖𝑣𝑖

𝑖
)                           (3.7) 
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Here, 𝑉stands for the volume of partition element, 𝑈′ is the derivative of the potential 

energy with respect to position. 𝛼 and 𝛽 denote the indices in the Cartesian coordinates 

and 𝑖 and 𝑗 are atom index numbers. 𝑟𝑖𝑗 is the distance between atom 𝑖 and 𝑗. 𝑚 and 𝑣 

indicate the mass and velocity of the atom. Fig. 3.2b shows how the atoms are shaded 

according to local stress. 

3.5.3 Centrosymmetric parameter 

      In solid-state systems the centrosymmetry parameter (CSP) [168] is a useful measure 

of the local lattice disorder around an atom and therefore can be used to characterise 

whether the atom is part of a perfect lattice, a local defect (e.g. a dislocation or stacking 

fault), or  is located at a surface.  The CSP value of an atom having N nearest neighbours 

(N = 12 for fcc cubic, N = 8 for bcc lattices) is given by: 

                                                𝑃𝐶𝑆𝑃 = ∑ |𝑟𝑖 + 𝑟𝑖+𝑁/2|
2𝑁/2

𝑖=1                                        (3.8) 

where 𝑟𝑖  and  𝑟𝑖+𝑁/2  are vectors pointing from the central atom to a pair of opposite 

neighbours. For lattice sites in an ideal centrosymmetric crystal, the contributions of all 

the neighbour pairs in this formula will be cancelled, and the resulting CSP value will be 

zero. Atomic sites within a defective crystal region, in contrast, typically have a 

disturbed, non-centrosymmetric neighbourhood. In this case the CSP becomes positive. 

Using an appropriate threshold, to allow for small perturbations due to thermal 

displacements and elastic strains, the CSP can be used as an order parameter to filter out 

atoms that are part of crystal defects. 

3.5.4 Common neighbour analysis 

      To identify the defective structure and its evolution during the simulations, the 

common neighbour analysis (CNA) technique [169] is used. It gives a classification of 

all the atoms by their local crystallinity. This visualisation of grain and GB structures has 

been greatly facilitated by a medium range order analysis of all atoms within the sample, 

which ascribes a local crystallinity class to each atom. This is carried out by selecting the 

common neighbours of a pair of atoms separated by no more than a second nearest 

neighbour distance, and introducing a classification scheme for the nearest-neighbour 

bond pathways between the two atoms. 

      The structural type determined by the algorithm is encoded as an integer value: 

      1 = fcc, face-centred cubic 

      2 = hcp, hexagonal close-packed 
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      3 = bcc, body-centred cubic 

      4 = ico, icosahedral coordination 

      5 = other, unknown coordination structure 

      The CNA calculation can be sensitive to the specific cutoff value. It should be insured 

that the appropriate nearest neighbours of an atom are found within the cutoff distance 

for the presumed crystal structure, e.g. 12 nearest neighbours for perfect fcc crystals, and 

14 nearest neighbours for perfect bcc crystals. The following formulae can be used to 

obtain a good cutoff distance: 

                                                 𝑟𝑐
𝑓𝑐𝑐

=
1

2
(
√2

2
+ 1) 𝑎0  ≈ 0.8536𝑎                                            (3.9) 

                                                  𝑟𝑐
𝑏𝑐𝑐 =

1

2
(√2 + 1)𝑎 ≈ 1.207𝑎                                             (3.10) 

where 𝑎0  is the lattice parameter for the crystal structure.  

3.6 Dislocation extraction algorithm 

      The authors of Ovito developed a computational method, namely, dislocation 

extraction algorithm (DXA) to identify all the dislocation line defects in an atomistic 

crystal, determine their Burgers vectors, and output a line representation of the 

dislocations [165, 170].  This algorithm can recognise partial dislocations and also certain 

secondary grain boundary dislocations (such as twinning dislocations in fcc). 

      The fundamental concept underlying the DXA is the Burgers circuit 

construction [171], which is the canonical method already proposed in the 1950s to 

discriminate dislocations from other crystal defects, and to determine their Burgers 

vectors. In the formulation employed in the dislocation analysis, a Burgers circuit 𝐶 is a 

path in the dislocated crystal consisting of a sequence of atom-to-atom steps (line 

elements ∆𝑋), as shown in Fig. 3.3. Assuming there is a mapping ∆𝑋→∆𝑋′ that translates 

each line element of the path to a corresponding image ∆𝑋′ in a perfect crystal lattice. 

Summing these transformed line elements algebraically along the associated path 𝐶′, 

gives the true Burgers vector of the dislocation enclosed by 𝐶: 

                                                                      𝑏 = −∑ ∆𝑋′𝐶′                                                            (3.11) 

 

      The Burgers vector 𝑏 is the closure failure of the path after transferring it to the 

perfect reference crystal. Notably, the resulting vector 𝑏 stays the same if we change the 

original circuit 𝐶, as long as it still encloses the same dislocation. On the other hand, 

if 𝑏 = 0, it is known that the Burgers circuit did not enclose any defect with dislocation 

http://dx.doi.org/10.1080/14786445108561310
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character (deliberately ignoring the possibility that the circuit encloses multiple 

dislocations whose Burgers vectors cancel). 

       

Fig. 3.3. Burgers circuit method to detect and identify a dislocation. A closed circuit around the dislocation 

is translated from (a) the dislocated crystal to (b) the perfect reference crystal. The closure failure is called 

the Burgers vector of the dislocation. 

3.7 Summary 

      Molecular dynamics simulations can provide important insights by supporting or 

contradicting conjectures and concepts to rationalise experiments. For HE phenomenon, 

they can provide information on the nanoscale H distribution around various defects, and 

probe the mechanical behaviour and fracture mechanisms in the presence and absence of 

H. In this chapter, basic fundamentals such as the simulation method, potential selection, 

visualisation tools, and structure and defects identification have been introduced in detail.  
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Chapter 4  Influence of hydrogen segregation on tensile 

deformation behaviour of grain boundaries  

 

 

 

 

 

 

 

 

 

 

4.1 Introduction  

     The segregation of solute H has a profound effect on mechanical properties of GBs. 

In this chapter, systematic MD simulations were performed to investigate H segregation 

at various GBs and its influence on mechanical response and dislocation nucleation of 

different GBs in Ni. The results showed that the trapping ability of H was strongly 

dependent on GB structures. GBs containing more open structure or significant excess 

volume had higher maximum excess H concentration.  Analysis of stress-strain curves 

showed that the segregation of H resulted in a decrease/increase in the yield stress of GBs 

depending on different GB types. This phenomenon was directly associated with 

different deformation mechanisms in the presence of H. The remainder of this chapter is 

organized as follows. The simulation methodology is described in Section 4.2, H 

segregation maps, mechanical response and deformation mechanisms are presented in 

Section 4.3, followed by our summary in Section 4.4. 

4.2 Simulation methodology  

     All simulations were implemented with MD simulator LAMMPS [155]. The semi-

empirical EAM potential for Ni-H used in the present study was first introduced by 

Angelo et al. [160] and then modified by Curtin et al. [28，29] to eliminate the instability 

of NiH hydrides. Twelve types of [11̅0] symmetric tilt GBs were constructed by rotating 

grain-A above the interface plane around the Z axis by θ/2 clockwise, while rotating 

This chapter is extracted from the following publications: 
 

1. Li J, Lu C*, Pei L, Zhang C, Wang R, Tieu K. Influence of hydrogen environment 

on dislocation nucleation and fracture response of <110> grain boundaries in nickel. 

Comput Mater Sci. 2019;165:40-50.  

2. Li J, Lu C*, Pei L, Zhang C, Wang R, Tieu K. Atomistic simulations of hydrogen 

effects on tensile deformation behaviour of [0 0 1] twist grain boundaries in nickel. 

Comput Mater Sci. 2019;159:12-23. 
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grain-B underneath the grain boundary by θ/2 counterclockwise, as shown in Fig. 4.1. 

The simulation cell was modelled with periodic boundaries along X and Z directions and 

free boundary condition in Y direction. After GB initialization, various in-plane rigid 

body translation of grain-A with respect to grain-B combined with atom deletion criteria 

were adopted to determine optimal GB structures. 

                                    

Fig. 4.1. Schematic diagram of a bicrystal model with [11̅0] tilt GB. 

     In order to search all possible trapping sites for H atoms at each GB type, the Voronoi 

tessellation of atoms was constructed with Voro++ code [172]. The each Voronoi vertex 

was concerned as a specific trapping site for solute H. After placing H atom at a particular 

site α, initial Ni-H configuration was constructed and optimized via the conjugate 

gradient process. The segregation energy for one H atom at the one type of trapping site 

𝛼 is calculated by 

                                 𝐸𝛼
𝑠𝑒𝑔

= (𝐸𝐺𝐵
𝛼 − 𝐸𝐺𝐵) − (𝐸𝑂−𝑠𝑖𝑡𝑒 − 𝐸𝑏𝑢𝑙𝑘)                                      (4.1)   

where 𝐸𝐺𝐵
𝛼  and 𝐸𝐺𝐵 represent the total system energies of GB structures with and without 

H atom, respectively. 𝐸𝑂−𝑠𝑡𝑖𝑒 is the system energy associated with H atom trapped into a 

lattice octahedral site in the single crystal bulk, and 𝐸𝑏𝑢𝑙𝑘 is the total energy of a single 

crystal bulk. 

     The considered GBs are characterized by the excess enthalpy (GB energy) defined as  

                                                       𝛾𝐺𝐵 = 
𝐸𝑠𝑙𝑎𝑏−𝑁𝑁𝑖𝐸𝑎𝑡𝑜𝑚

𝐴
                                             (4.2)   

where 𝐸𝑠𝑙𝑎𝑏  is the total potential energy of Ni atoms within a slab extending ±15  Å 

normal to the boundary plane, 𝑁𝑁𝑖 means the number of Ni atoms within the slab, 𝐸𝑎𝑡𝑜𝑚 

is the cohesive energy per Ni atom in the bulk, and 𝐴 is the area of boundary plane. In 

general, a higher value of 𝛾𝐺𝐵  indicates a weaker cohesive strength of GBs. Excess 
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volume is also introduced to characterize the GBs as  

                                                         ∆𝑉𝐺𝐵 = 
𝑉𝑠𝑙𝑎𝑏−𝑁𝑁𝑖𝑉𝑎𝑡𝑜𝑚

𝐴
                                        (4.3)   

where 𝑉𝑠𝑙𝑎𝑏 is the total Voronoi volume of Ni atoms within the slab, and 𝑉𝑎𝑡𝑜𝑚 is the 

Voronoi volume per Ni atom in the bulk. A lower value of ∆𝑉𝐺𝐵 indicates a more compact 

boundary structure. 

     The efficiency of H segregation into GBs, referred to excess H concentration, is 

expressed as  

                                                                     𝐶𝐻 = 
𝑁𝐻

𝐴
                                                  (4.4)   

where 𝑁𝐻 is the number of H atoms within the slab.  

     Based on the segregation energy map, a series of Ni-H interactions under various 

excess H concentrations were created by successively adding one H atom into 

‘favourable’ trapping sites until all ‘favourable’ sites were occupied. Herein we define 

all sites with segregation energy lower than zero (octahedral sites in bulk) as ‘favourable’. 

      For all cases, the simulation cell was equilibrated within isobaric-isothermal (NPT) 

ensemble at desired temperature and pressure for 0.1 ns (i.e., 𝑇 = 10𝐾, 𝜎𝑥𝑥 = 𝜎𝑧𝑧 = 0 

GPa) prior to tensile loading. Then, the tensile deformation was applied along Y axis for 

each case to investigate the H effect on mechanical response of  GBs. Atoms within 10 

Å of the top and bottom were frozen, and did not enter into MD simulations. The 

simulation cell was subjected to a successive incremental loading (about 108 s-1 constant 

tensile strain rate) by displacing frozen atoms (top and bottom) in opposite directions. 

During the MD simulations, the temperature was kept at 10 K via the Nose–Hoover 

thermostat, and the time increment of simulation was set 1 fs.  

4.3 Results and discussion  

4.3.1 GB structure and energy 

     All GBs considered in the present study are listed in Table 4.1, and atomic 

configurations of typical equilibrium GB structures are illustrated in Fig. 4.2. Five basic 

structural units (SUs) are identified and labelled among these GBs. Specifically, C, D and 

E SUs correspond to Σ11 (1 1 3̅), Σ3 (1 1 1̅) and Σ9 (2 2 1̅) GBs, A and A' SUs are basic 

units of Σ1 (001) θ = 0° and Σ1 (110) θ = 180° perfect crystal orientations. Other GBs 

with non-preferred misorientation come from a combination of these basic SUs with 

complexity. For example, Σ153 (4 4 11̅̅̅̅ ) GB is composed of C and D SUs (7C + D), Σ11 

(3 3 2̅) GB contains a combination of D and E SUs (D + E), and GBs with 𝜃 > 141.06° 
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contain E and A/A' SUs. Note that the dissociated boundary structures are observed in 

three GBs: Σ3 (1 1 2̅), Σ153 (4 4 11̅̅̅̅ ) and Σ171(11 11 10̅̅̅̅ ), where D SUs extend from 

one or two sides of the boundary, resulting in intrinsic stacking fault (ISF) facets inside 

lattice region. Table 4.1 lists the GB energy and excess volume for each case in the [11̅0] 

system. It can be seen that both GB energy and excess volume exhibit two minor cusps 

with respect to the favoured Σ11 (1 1 3̅) GB and Σ3 (1 1 1̅) GB (coherent twin boundary), 

which own very simple boundary structures (C and D SUs).   

Table 4.1. Model parameters for twelve GBs after energy minimization. 
 

Tilt angle 

θ (°) 

GB normal       

(hkl)A/(hkl)B 

Model size 

𝑳𝒙, 𝑳𝒚, 𝑳𝒛(𝒏𝒎) 
𝜸𝑮𝑩 

(𝒎𝑱 ∙ 𝒎−𝟐) 

GB atoms 

(%) 
∆𝑽𝑮𝑩 (Å) 

38.94 Σ9(1 1 -4)/(1 1 4)  13.72, 23.71, 10.95 800.97 3.1 0.3333 

50.48 Σ11(1 1 -3)/(1 1 3) 13.20, 23.30, 10.95 375.80 2.5 0.1962 

54.43 Σ153(4 4 -11)/(4 4 11) 12.31, 26.08, 10.95 617.27 2.6 0.2066 

70.53 Σ3(1 1 -2)/(1 1 2) 13.41, 22.24, 10.95 806.91 3.9 0.2661 

86.63 Σ17(2 2 -3)/(2 2 3) 12.31, 22.95, 10.95 870.27 3.0 0.3041 

97.05 Σ57(4 4 -5)/(4 4 5) 15.03, 21.02, 10.95 731.82 3.1 0.2577 

109.47 Σ3(1 1 -1)/(1 1 1) 13.79, 22.58, 10.95 50.39 1.8 0.0803 

114.53 Σ171(11 11 -10)/(11 11 10) 13.80, 25.85, 10.95 419.64 2.8 0.2440 

129.52 Σ11(3 3 -2)/(3 3 2) 13.99, 22.81, 10.95 920.38 2.6 0.3641 

141.06 Σ9(2 2 -1)/(2 2 1) 13.43, 22.99, 10.95 1097.49 4.1 0.3743 

153.48 Σ19(3 3 -1)/(3 3 1) 12.99, 24.21, 10.95 1081.91 3.3  0.3884 

166.56 Σ73(6 6 -1)/(6 6 1) 12.75, 24.06, 10.95 877.01 1.7 0.3342 
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Fig. 4.2. The equilibrium [11̅0] GB structures with SUs (a) Σ11 (11-3) = 50.48°, (b) Σ153 (44-11) = 54.43°, 

(c) Σ57 (44-5) = 97.05°, (d) Σ3 (11-1) = 109.47°, (e) Σ171 (1111-10) = 114.53°, (f) Σ9 (22-1) = 141.06°, 

(g) Σ9 (11-4) = 38.94°, (h) Σ3 (11-2) = 70.53°, (i) Σ17 (22-3) = 86.63°, (j) Σ11 (33-2) = 129.52°, (k) Σ19 

(33-1) = 153.48°, and (l) Σ73 (66-1) = 166.56°. The structures are shown along the [11̅0] tilt axis, where 

atoms are coloured according to their centro-symmetry parameter. 

4.3.2 H trapping map 

Based upon identified equilibrium structures of GBs, we plot H segregation energy 

maps for typical GBs in Fig. 4.3. The possible trapping sites are indicated by small 

spheres and coloured according to the segregation energy. As shown in Fig. 4.3, different 

GBs possess unique H trapping maps. Combined with segregation energy distribution 

curves in Fig. 4.4, it is found that trapping sites with the lowest segregation energy  are 

located at the boundary planes except Σ3 (1 1 1̅) coherent twin boundary. For coherent 

twin boundary, GB plane contains no octahedral interstitial sites as local stacking 

sequence of (111) layers is A-B-A rather than A-B-C. Thus, H atoms occupy exclusively 

at the octahedral sites located in between the twin boundary plane and its adjacent (111) 

plane (see Fig. 4.3). Fig. 4.4 also presents that possible H trapping sites with low 

segregation energy are generally distributed within a region ±5 Å from the boundary 

planes for most of GBs, and the segregation energy at sites located far away from GB 

planes approaches 0 eV. This manifests a driving force for the segregation of H atoms 

from the bulk into the GB region, being consistent with previous observations [173]. It 

is worth noting that two GBs, i.e., Σ153 (4 4 11̅̅̅̅ ) and Σ171 (11 11 10̅̅̅̅ ), provide a wider 

region within ± 15 Å of the GB planes, where H atoms favourably occupy. Further 

examination of Fig. 4.3(b) and (e) indicates that, apart from GB regions, H atoms also 

occupy at the right side of intrinsic stacking fault (ISF) facets. The main reason is that 

high hydrostatic stress on the right side of ISF facets drives more H atoms to segregate 

(see the inset of Fig. 4.4).      
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Fig. 4.3. H segregation energy maps for typical GBs, all cells are shown along the [11̅0] tilt axis. Larger 
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spheres represent Ni atoms (green), and smaller ones indicate possible H trapping sites.      

         

 



65 

 

 

               

Fig. 4.4. Distribution of segregation energies as a function of distance from the GB plane. Atoms in the 

inset of (b) are coloured by the hydrostatic stress value.  

The segregation energy maps including GB energies, H segregation energies, excess 

volume as well as maximum excess H concentrations are summarized in Fig. 4.5. It can 

be seen from Fig. 4.5(a) that, for most of GBs, the lowest and highest segregation energy 

varies somewhat over the entire misorientation range, but there are some interesting and 

notable exceptions. Specifically, the lowest segregation energy (-0.04 eV) of Σ3 (1 1 1̅) 

GB is much higher than that of other GBs, i.e., Σ9 (2 2 1̅) with the segregation energy of 

-0.28 eV, indicating that the trapping ability of Σ3 (1 1 1̅) GB is almost negligible. The 

highest segregation energy of three GBs, i.e., Σ153 (4 4 11̅̅̅̅  ), Σ3 (1 1 2̅ ) and Σ171 

(11 11 10̅̅̅̅ ), is apparently different from that of other GBs, which is attributable to the 

presence of ISF facets. To quantitatively evaluate the trapping ability of GBs, the 

maximum excess H concentration is introduced and calculated by dividing the number 

of favourable sites by the GB area. As seen in Fig. 4.5(b), the trapping ability of H is 

strongly dependent on the GB structure, evidenced by that the maximum excess H 

concentration is changed pronouncedly as the misorientation angle increases. 

Intriguingly, GBs with E SUs ( 𝜃 > 109.47° ) have higher maximum excess H 

concentration than other GBs with C and D SUs. When correlated with GB character, it 

becomes clear that E SUs contain more open structure or significant excess volume, 

where H atoms prefer to attach. To the contrary, due to compact structure or low excess 

volume, Σ11 (1 1 3̅) and Σ3 (1 1 1̅) GBs expectantly have poor H trapping ability.       
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Fig. 4.5. Summary of segregation energy maps for 12 types of GBs. (a) GB energy and H segregation 

energy, with squares denoting GB energy, solid circles denoting lowest H segregation energy, and hollow 

circles denoting highest H segregation energy. (b) Maximum excess H concentration (triangles) and excess 

volume (pentagons). 

4.3.3 Tensile response and deformation mechanisms of tilt GBs 

 After examining H segregation into various GB types, influence of H segregation on 

tensile deformation behaviour of Ni-H system is discussed in the following paragraphs. 

The stress-strain curves with different excess H concentrations are demonstrated in Fig. 

4.6. The stress components were calculated using the expression taken from the Virial 

theorem, and the average atom volume was used in the stress calculations. The strain was 

calculated from the applied strain rate multiplied by the deformation time. All curves 

manifest a range of stress drops, which correspond to dislocation nucleation, 

multiplication and annihilation [21, 22]. Particularly, the first stress drop is associated 

with the incipience of dislocation plasticity, we thus denote the point of the maximum 

stress just prior to the first stress drop as the yield stress. The insets of Fig. 4.6 display 

the dependency of yield stress on excess H concentration. For GBs containing C and/or 

D SUs (Σ11, Σ153, Σ57, Σ3, Σ9, Σ3 and Σ17), the segregation of H results in a 

considerable decrease in the yield stress, while the yield stress of GBs with E SUs (Σ171, 

Σ9, Σ11, Σ19 and Σ73) increases significantly with increasing excess H concentration. 

The seemingly inverse observations suggest that the effect of solute H on the nucleation 

of dislocations is strongly sensitive to GB types. In the following three different GBs 

(Σ11, Σ3 and Σ9) are taken as examples to elucidate the role of H in the plastic 

deformation process. As other GBs are composed of these three basis GBs, it is believed 

that specific properties of these three GBs are applicable to and characteristic for all 

considered GBs. 
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Fig. 4.6. The stress-strain curves for typical GBs with different excess H concentrations. The insets 

show the dependence of the yield stress on H content. 

GBs with C and D SUs (Σ11 and Σ3) 

  To demonstrate the possible impact of H atoms on the dislocation emission from GBs 

with C SUs, we begin with the analysis of nucleation from the interface without H. In the 
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case of Σ11 (1 1 3̅) GB in the absence of H shown in Fig. 4.7(a), when the maximum 

stress is reached at 𝜀 =  9.60%, two partial dislocations with the Burgers vectors of 

1/6[1 1 2 ] and 1/6[1 1 2̅ ] nucleate and slip on the (1 1 1̅)  and ( 1 1 1)  planes in the 

grain-A and grain-B, respectively, with a set of extrinsic stacking faults (ESFs) left behind. 

Aside from ESFs, the twin is also formed at the GB during tensile deformation. The 

evolution of C SUs leading to ESFs and twin is interpreted in Fig. 4.7(c)-(e). On the 

whole, the uniaxial tension causes the bicrystal model to elongate in Y direction and 

shorten in X and Z directions. Further examination of MD simulations suggests that the 

reduction of size in X direction shrinks C SUs, resulting in dislocation nucleation. 

Specifically, as presented in Fig. 4.7(c), atom-a translates along the negative X direction 

as the first C unit shrinks, which causes atoms residing on the plane 1 gliding towards 

the interface, and atoms on the plane 2 slipping away from the interface. As a result of 

this relative shift of the slip systems, the first partial dislocation is nucleated with the ISF 

left behind. Following the same mechanism, the movement of atom-b leads to the second 

nucleation of partial dislocation through a relative shift of atoms on the plane 2 and the 

plane 3. It is worth noting that atoms on the plane 2 first move out of the interface due to 

the translation of atom-a, and then return to the initial position (perfect fcc structure) 

driven by the movement of atom b, forming an ESF. The continuous shrinkage of C SUs 

provides the sources of consecutive dislocation nucleation events, resulting in the 

broadening of twin region. As shown in Fig. 4.7(d) and (e), the translation of atom-c and 

atom-d along the negative X direction leads to the broadening of twin region with the 

lattice spacing of five{1 1 1} planes. 

  As can be seen in Fig. 4.7(b), the onset of plasticity is associated with the nucleation 

of a series of ISFs in the presence of H, unlike the H-free case. H atoms segregate 

exclusively into the centre of capped trigonal prism (CTP) and octahedron (OCT) at 

boundary plane, indicated by green and magenta lines [121]. This segregation has the 

effect on changing GB structure, as the thickness of identified GB region increases with 

H concentration. As the tensile deformation proceeds, atom a moves along the negative 

X direction, pushing H atom 1 translating together. As a result, atoms residing on the 

plane 1 shift towards the interface, while atoms on the plane 2 slip in the opposite 

direction. The only discrepancy between Fig. 4.7(f) and (c) is that the shift of atoms on 

the plane 2 away from the boundary is driven by the H atom-1 in the presence of H, rather 

than atom-a without H. It is easier for H atom-1 to nucleate the first partial dislocation 
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(the relative slip of plane 2) than atom-a, since shorter translating distance is required. 

After dislocation emission, the interstitial site of H atom-1 changes from CTP centre to 

OCT centre.  Also, H atom-4 locally moves for accommodating GB reconstruction, with 

one OCT site transformed into another.  As displayed in Fig. 4.7(g), the final position of 

H atom-4 at the centre of new OCT apparently hinders the return of plane 2, which makes 

it difficult for the nucleated ISF to transform into an ESF/twin.    

 

Fig. 4.7. Dislocation activities and atomic configurations for Σ11 (1 1 3̅ ) GB with various excess H 

concentrations during tensile deformation process: (a, c-e) without H, (b, f-g) with H of 𝐶𝐻 = 0.09 Å-2. All 

figures are coloured by CNA, where atoms with a perfect fcc structure are blue, the red atoms organize the 

GB plane and the dislocation core, the continuous light blue atoms represent the stacking fault, and H 

atoms are assigned in yellow. Three-dimensional polyhedrons shown in (f) and (g) include CTP (green) 

and OCT (magenta). 

  Fig. 4.8 shows dislocation activities and atomic configurations for Σ3 (1 1 1̅) GB (D 

SUs) without and with H during tensile deformation. This type of boundary has a simple 

GB structure and the lowest GB energy, which provides no free volume for atoms to 

move or rearrange when subjected to uniaxial tension. It is difficult therefore for partial 

dislocations to nucleate or emit from the GB. To accommodate continued tensile strain, 

lattice dislocation loops with the Burgers vectors of 1/6[112], 1/6[1̅2̅1̅] and 1/6[2̅1̅1̅] 
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are nucleated from three activated slip systems(111̅), (11̅1), and (1̅11) in the grain 

interior at 𝜀 =12.68%, as demonstrated in Fig. 4.8(b). According to Schmid factor 

analysis, all activated planes are primary slip planes with the maximum Schmid factor 

𝑆𝐹(111̅)
𝑚𝑎𝑥 = 𝑆𝐹(11̅1)

𝑚𝑎𝑥 = 𝑆𝐹(1̅11)
𝑚𝑎𝑥 = 0.314 . During the whole deformation process, no 

dislocations appear to nucleate from the twin boundary. Fig. 4.8(c) shows that local 

atomic structures of twin boundary are pronouncedly modified in the presence of H. 

Besides thicker GB region, GB atoms are more disordered with higher CSP values. When 

the tensile strain reaches 𝜀 =10.84%, Shockley dislocations are directly nucleated from 

the disordered twin boundary, different from H-free case. Due to that the interface 

provides the source of dislocation nucleation, the yield stress is decreased from 18.92 

GPa to 15.77 GPa.  

            

Fig. 4.8. Dislocation activities and atomic configurations for Σ3 (1 1 1̅) GB with various excess H 

concentrations during tensile deformation process: (a) and (b) without H, (c) and (d) with H of 𝐶𝐻 =

0.03 Å-2. All figures are coloured by CSP. 

GBs with E SUs (Σ9) 

      Fig. 4.9 demonstrates dislocation activities and atomic configurations for Σ9 (2 2 1̅) 

GB without and with H during tensile deformation. As seen in Fig. 4.9(b), a series of very 

short ISF facets are first emitted from the boundary prior to yielding in the absence of H. 

According to the DXA analysis, these facets are Shockley partials with the Burgers 

vectors of 1/6[112̅] and 1/6[112] nucleating from the GB and gliding on  (111) and 

(111̅) planes in the grain-A and grain-B, respectively, both of which are primary slip 
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planes with the Schmid factor of 𝑆𝐹(111)
𝑚𝑎𝑥 = 𝑆𝐹(111̅)

𝑚𝑎𝑥 = 0.471 . Later on, only certain 

partial dislocations propagate away from the boundary at the expense of other nucleated 

ISF facets. Spearot and Tschopp [21, 174] concluded that the evolution of E SUs was 

responsible for dislocation nucleation events. Specifically, as seen in Fig. 4.9(d), atom-d 

slips out of the downward E SU while atom-e slips into the downward E SU along the (1 

1 1) plane when subjected to a tensile loading. Similarly, atom-j slips out of the upward 

E SU while atom-i slips into the upward E SU along the (111̅) plane. The relative motion 

of atoms-d, -e, -i and -j reduces and collapses the free volume of  E SUs positioned at the 

end of the {111} plane, and eventually evolves E SUs into C SUs. 

          

           

Fig. 4.9. Dislocation activities and atomic configurations for Σ9 (2 2 1̅) GB with various excess H 

concentrations during tensile deformation: (a-e) without H and (f-j) with H of 𝐶𝐻 = 0.21  Å
-2. All 

figures are coloured by CNA, the same as described in Fig. 4.7. 
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  Regarding Fig. 4.9(f)-(j), one can find that the presence of H in the boundary can 

make it difficult for E SUs to nucleate Shockley partial dislocations, evidenced by a 

higher yield stress/strain and less frequency of nucleation events. Furthermore, short ISF 

facets cannot nucleate from the interface until the onset of plasticity, unlike the H-free 

cases. As shown in Fig. 4.9(i) and (j), five segregation sites are identified in one structural 

period of GB (downward and upward E SUs) according to H trapping map and marked 

with numbers 1 to 5. As the imposed tensile strain increases, atom-i attempts to slip into 

the H-segregated upward E SU, but this movement is effectively hindered by H atoms-4 

and -5. With the help of high tensile stress, atom-i eventually squeezes into the space 

between H atoms-4 and -5, evolving E SU into C SU. As a consequence, H atoms-4 and 

-5 are pushed away from their original sites. In contrast to the upward E SU, the 

downward E SU consisting of atoms a-f are occupied with more H atoms (H atoms 1-3), 

therefore, the tensile stress required to activate the relative shift of atoms-d and -e 

becomes higher. Although not shown in Fig. 4.9, the downward E SU is ultimately 

collapsed, with a Shockley partial dislocation emitted. Overall, the segregated H atoms 

constrain the collapse of the free volume within E SUs, and result in a postponed 

dislocation nucleation event.     

  Note that, during dislocation emission, GB atoms rearrange themselves and push the 

segregated H atoms to move. Therefore, H atoms probably end up in the new locations 

that are less favourable for segregation than their original sites. For example, it can be 

clearly clued from Fig. 4.9(j) that H atom-4 finally occupies a new position out of the 

boundary plane (new-formed C SU). To characterize this effect, we consider the change 

of the energy of H segregation associated with dislocation nucleation process: ∆𝐸 =

[(𝐸𝑑
𝐻 − 𝐸𝐻) − (𝐸𝑑

𝑃 − 𝐸𝑃)]/𝑁𝐺𝐵
𝐻  . where 𝐸𝑑

𝐻  and 𝐸𝑑
𝑃  are the system energies after 

dislocation nucleation with and without H, 𝐸𝐻  and 𝐸𝑃  are the system energies before 

dislocation nucleation with and without H, and 𝑁𝐺𝐵
𝐻  is the number of H atoms at GBs. As 

seen in Fig. 4.10, GBs with higher ∆𝐸 value generally correspond to higher yield stress. 

During dislocation nucleation process (the collapse of E SUs), a higher value of ∆𝐸 

suggests an increased energy of H segregation, being indicative of an increased energy 

barrier for pushing solute H from initial positions to less favourable sites, thus a higher 

yield stress is required to overcome this higher energy barrier in such a way as to activate 

the nucleation event. 
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Fig. 4.10. Yield stress and the change of the energy of H segregation vs. excess H concentration. 

4.3.4 Tensile response and deformation mechanisms of twist GBs 

  For generality, we also investigate the effects of H atoms on the mechanical behaviour 

and plastic deformation of twist GBs (TGBs). The stress-strain curves obtained with 

different bulk H concentrations are demonstrated in Fig. 4.11.  Fig. 4.12 shows that the 

addition of H into the Σ65 and Σ5 TGBs results in a decrease in the yield stress, while 

the yield stress of Σ145 TGB rises significantly with increasing bulk H concentration.  

As a high-angle TGB, Σ5 has no pre-existing dislocations. Thus the reduction in yield 

stress due to the presence of H suggests that H facilitates dislocation nucleation and 

enhances local plasticity around the TGB. However, for low-angle TGBs (Σ65 and Σ145), 

it is invalid for predicting H-induced local plasticity simply based on the 

decrease/increase of the yield stress, as the equilibrium structures of these TGBs are 

accommodated by dislocation networks. Therefore, a closer examination of dislocation 

activities and atomic movement is required to identify the role of H in the plastic 

deformation process at different TGBs. 
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Fig. 4.11. Stress-strain curves of bicrystal models with different bulk H concentrations: (a) Σ145 TGB, (b) 

Σ65 TGB and (c) Σ5 TGB. 

 

        Fig. 4.12. Yield stress vs. bulk H concentration for all models. 

Σ145 (θ = 6.73°) TGB. Fig. 4.13 shows the dislocation activities and atomic 

configurations for ∑145 (𝜃 = 6.73°) TGB with and without H during tensile deformation 

process. Dislocation activities at point 2 from Fig. 4.13(b)-(e) are circled for further 

analysis. Fig. 4.13(a) shows the initial configuration prior to tensile deformation in the 

absence of H. Clearly, the screw dislocations have already split into two partials separated 
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by a stacking fault in each square network unit. For example, a 1/2[110]  pure screw 

dislocation dissociates into two Shockley partials (1/6[121] and 1/6[211̅]) residing on 

(11̅1) plane at point 1, bounding an intrinsic stacking fault. It should be noted that the 

1/2[110] perfect screw dislocation is common to (11̅1) and (1̅11) two slip planes, which 

makes it possible for dislocation dissociation to happen on both planes, marked as points 

1 and 2.  Similarly, the dissociation from 1/2[1̅10] perfect screw dislocation into partials 

occurs on (111) and (111̅) planes at points 3 and 4. As deformation proceeds, continued 

tensile stress leads to the further dislocation dissociation and the expansion of intrinsic 

stacking fault. At a strain of 3.04% in Fig. 4.13(b), dislocation dissociation at point 2 has 

been fully completed, and dissociated partial dislocations will no longer glide away from 

the TGB into lattice regions. The above reaction can be expressed in vector form: 

                                  1/2[110](1̅11) → 1/6[211](1̅11) + 1/6[121̅](1̅11)                      (4.5) 

     To mediate the additional tensile strain, the leading partial dislocation further splits 

into a stair-rod dislocation and a Shockley dislocation as shown in Fig. 4.13(c). This 

dissociation process is given as: 

                                  1/6[211](1̅11) → 1/6[11̅0](001) + 1/6[121](11̅1)                     (4.6) 

     The formed Shockley partial 1/6[121] glides on the cross-slip plane (11̅1), while the 

produced stair-rod partial 1/6[11̅0] lies on the (001) plane. This dislocation is sessile as 

(001) plane is not a slip plane. But later on, the trailing partial dislocation on the primary 

plane catches up and reacts with the stair-rod dislocation at the intersection of the  (11̅1) 

and (1̅11 ) planes, with another Shockley partial formed on the cross-slip plane. This 

reaction is summarised as: 

                                  1/6[11̅0](001) + 1/6[121̅](1̅11)  → 1/6[211̅](11̅1)                     (4.7) 

    The interaction process is energetically favourable from the perspective of Frank 

energy criteria. In addition, the elastic energy is further released by the swipe of the 

trailing partial dislocation eliminating the bounded intrinsic stacking fault. A new 

extended dislocation has transferred totally to the cross-slip plane in Fig. 4.13(d), and is 

free to glide on this plane in Fig. 4.13(e). This observed cross-slip involving a stair-rod 

dislocation in Ni is a new finding in MD simulations, which can approve the model 

proposed by Fleischer [175]. 

     As shown in Fig. 4.13(f)-(h), the presence of H can make a difference during the 

tensile deformation process. At low bulk H concentration, an H-enhanced dislocation 

dissociation (local plasticity) is observed at the elastic stage (see Fig. 4.13(f) and (g)). 
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Analogous to the H-free case, continued tensile strain causes the leading partial to 

dissolve into a star-rod dislocation and a Shockley partial dislocation (see Fig. 4.13(h)), 

shown as following: 

                                1/6[121̅](1̅11) → 1/6[1̅10](001) + 1/6[211̅](11̅1)                        (4.8) 

                               

Fig. 4.13. Dislocation activities and atomic configurations for Σ145 (𝜃= 6.73°) TGB with various bulk H 

concentrations during tensile deformation process: (a)-(e) without H, and (f)-(h) with H of Cbulk = 3.0 ×

10−5. All images are coloured by DXA. The blue lines are the perfect dislocations, the green lines represent 

the Shockley dislocations, the pink lines are the stair-rod dislocaitons, and the red lines are other types of 

dislocaitons. Stacking-fault atoms are shown in red, and H atoms are assigned in pink. 

    However, in contrast to H-free case, the trailing partial 1/6[211] on the primary plane 

cannot ‘catch’ the produced stair-rod dislocation to form a new partial on cross-slip plane. 

This observed H-induced slip planarity at the expense of cross-slip is interpreted that H 
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reduces the stacking-fault energy [176], which decreases the tendency for cross-slip by 

increasing the separation distance between the trailing partial and stair-rod dislocation. 

Moreover, H-enhanced dislocation dissociation on the (111) plane blocks the movement 

of newly-dissociated Shockley partial 1/6[211̅] on cross-slip plane. Consequently, stair-

rod dislocation1/6[1̅10], trailing dislocation 1/6[211] and newly-dissociated Shockley 

partial 1/6[211̅] form a stable and sessile arrangement (Lomer-Cottrell lock), acting as 

a strong barrier to the further glide of dislocations on the (11̅1) and (1̅11) planes. This 

exactly explains that the higher tensile stress is required to activate the onset of yielding 

in the presence of H, compared to the H-free case.  

Σ65 (θ = 14.25°) TGB. The detailed deformation process of Σ65 (𝜃 = 14.25°) TGB in the 

presence and absence of H is presented in Fig. 4.14. In the absence of H, the equilibrium 

TGB structure is composed of two series of screw dislocations 𝑏1 = 1/2[110]  and 𝑏2 =

1/2[1̅10], as marked in Fig. 4.14(a). Prior to yielding point, it is found that dislocation 

dissociation events occur onto {111} planes in network units as shown in Fig. 4.14(b), 

i.e. 1/2[110] pure screw dislocation dissolves in its glide plane (1̅11) into two Shockley 

partial dislocations: 1/6[211]  and 1/6[121̅] ; 1/2[1̅10 ] screw dislocation dissociates 

into 1/6[1̅21]   and 1/6[2̅11̅]  partials on plane (111̅) . The atomic mechanism 

responsible for this dislocation dissociation is illustrated in Fig. 4.14(e). Four groups of 

atoms have been marked, specifically, atoms L ~ P reside on one (1̅11) plane; atoms A 

~ F rest in the second (1̅11) plane; the third takes the positions Q ~ R, and atoms F ~ 

K are located at (111̅) plane. It’s worth noting that atom-A is common to planes (1̅11) 

and (111), while atom-F lies in the intersection line [101] between planes (1̅11) and 

(111̅). With the increase of the imposed tensile stress, the hydrostatic stress of all atoms 

increase, and atoms A ~ C and F ~ I have the highest stress values (see Fig. 4.14(e2)). 

Driven by high hydrostatic stress, atoms-B, -C, -G and -H make movement to find stable 

positions, while atoms-A, -F and -I are sessile due to coplanar constrains. This can be 

clued that, after dislocation dissociation, atoms-B, -C, -G and -H change in colour from 

near-red in Fig. 4.14(e2) to near-yellow in Fig. 4.14(e3), while the colours of atoms-A, -

F and -I are nearly kept the same. The movement path of atoms-B and -C has been 

indicated by black arrows in Fig. 4.14(e4). Instead of jumping from the site-B to the site-

C over the top of the atom-M (vector 𝐵𝐶⃗⃗⃗⃗  ⃗), atom-B moves to the nearby site-R along the 

‘valley’ between the atoms-M and -O(vector 𝐵𝑅⃗⃗⃗⃗  ⃗). Likewise, atom-C attempts to jump to 
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the new site-Q via a valley between the atoms-N and -P (vector 𝐶𝑄⃗⃗⃗⃗  ⃗) rather than vector 

𝐶𝐹⃗⃗⃗⃗  ⃗. This zig-zag motion results in dislocation dissociation from a pure screw dislocation 

into two Shockley partial dislocations onto {111} planes (see Fig. 4.14(b)). However, 

further dissociation no longer continues as the movement of atom-B from site-R to site-

C (vector 𝑅𝐶⃗⃗⃗⃗  ⃗) and atom-C from site-Q to site-F (vector 𝑄𝐹⃗⃗⃗⃗  ⃗) is blocked by the sessile 

atom-F.  When the strain increases to yielding point of 9.64%, the dissociated partials 

begin to interact with other dislocations in the neighbouring network units and further 

dislocation emission are observed in Fig. 4.14(d).  

Fig. 4.14(f)-(j) show the dislocation activities and atomic mechanisms during tensile 

deformation process at low bulk H concentration (𝐶𝑏𝑢𝑙𝑘 = 3.0 × 10−5 ). Initially, H 

atoms segregate exclusively to the intersections of dislocation network, as shown in Fig. 

4.14(f). It is very interesting to notice that dislocation dissociation events occur at a much 

lower tensile strain (𝜀 = 2.04%), compared to H-free case, implying that H can promote 

earlier dislocation dissociation and enhance dislocation plasticity around the TGB. To 

explain this phenomenon, atomic configuration of ∑65 TGB in the presence of H is 

illustrated in Fig. 4.14(j). It is clearly seen that introduction of H (atoms-A and -E) into 

TGBs has the profound effect of changing local stress state and atomic structure: H 

increases local stress (see atom-B in Fig. 4.14(j1)) and promotes the generation of 

vacancy (see Fig. 4.14(j3)). Due to the high hydrostatic stress, atom-B attempts to move 

to the nearby stable position, even though at low tensile stress. Meanwhile, the H-

generated vacancy facilitates the motion of atom-D as indicated by black arrow in Fig. 

4.14(j3), which in turn accelerates the motion of atom-B. Finally, the zigzag motion of 

atoms-B and -D releases their stresses to a lower level (see Fig. 4.14(j2)) and causes the 

screw dislocation to dissociate into two Shockley partial dislocations (see Fig. 4.14(g)). 

Following the same mechanism, the motion of atoms-F and -I makes the dislocation 

dissociation happen on the (111) plane. Note that, even though H-enhanced dislocation 

dissociation exists at the elastic stage, the onset of yielding of H-charged cases at low 

bulk H concentration is still correlated to dissociated dislocation interactions as well as 

dislocation emission, like the H-free case. Therefore, the initial yield stress is reduced 

slightly with the increase of bulk H concentration (𝐶𝑏𝑢𝑙𝑘 ≤ 6.0 × 10−4), as shown in Figs. 

4.11 and 4.12. However, at high bulk H concentration, a totally different tensile 

deformation mechanism is observed. Here, no H-enhanced dislocation dissociation 

events can be observed at the elastic stage. When the yielding point is reached (𝜀 = 
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8.44%), 1/6[1̅12] and 1/6[11̅2̅] Shockley partials directly nucleate from the TGB plane 

into the grain-A and grain-B, with an extrinsic stacking fault left behind. In summary, as 

the H content is increased, planar defect is gradually formed at the expense of dislocation 

network, leading to a change in plasticity mode from one dominated by dissociated 

dislocation interactions to the other controlled by dislocation nucleation from the 

boundary plane. This H-induced plasticity mode change is the main reason why the yield 

stress of Σ65 TGB at high bulk H concentration is much lower than that at low bulk H 

concentration and H-free case. 
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Fig. 4.14. Dislocation activities and atomic configurations for Σ65 (𝜃= 14.25°) TGB with various bulk H 

concentrations during tensile deformation process: (a-e) without H and (f-j) with H of Cbulk = 3.0 × 10
−5. 

All images are coloured by DXA, the same as described in Fig. 4.13, except (e) and (j) coloured by the 

hydrostatic stress value. 

Σ5 (θ = 36.87°) TGB. Fig. 4.15 shows the dislocation activities for Σ5 (𝜃 = 36.87°) TGB 

with and without H at different deformation stages, respectively. For the H-free cases 

(see Fig. 4.15(a)-(c)), the boundary composed of planar defect gradually becomes 

coarsened before reaching the yielding point as the tensile deformation proceeds. In Fig. 

4.15(b), the onset of plasticity is activated by an array of nucleation of partial dislocation 
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loops with edge and screw characters from the interface plane into grain-A and grain-B 

simultaneously. It can be seen that dislocation slip occurs on four {111} planes, leading 

to four nucleated partial dislocations (1/6[1̅12] ,1/6[11̅2] , 1/6[1̅1̅2]  and 1/6[112] ) 

linked back to the TGB plane by extrinsic stacking faults. According to Schmid factor 

analysis, they are all the favourable slip planes with the maximum Schmid factor 

𝑆𝐹(11̅1)
𝑚𝑎𝑥 = 𝑆𝐹(1̅11)

𝑚𝑎𝑥 = 𝑆𝐹(111)
𝑚𝑎𝑥 = 𝑆𝐹(111̅)

𝑚𝑎𝑥 = 0.471 . As the tensile strain carries on, the 

intersection of operative slip systems leads to dislocation interactions. Furthermore, the 

presence of abundant extrinsic stacking faults in bicrystal model also blocks the 

movement of newly nucleated partial dislocations from the TGB plane, as shown in Fig. 

4.15(c).  

For H-charged cases (see Fig. 4.15(d)-(i)), different tensile deformation mechanisms 

are observed.  As shown in Fig. 4.15(d) and (g), some ledges occur within the boundary 

planes, and the spacing between ledges decreases as the bulk H concentration is increased, 

which arises as a result of heterogeneous distribution of H atoms along TGB plane.  The 

formation of GB ledges related to dislocation nucleation is already reported [177]. At low 

bulk H concentration (𝐶𝑏𝑢𝑙𝑘 = 6.0 × 10
−4), when the yield stress is reached (𝜀 = 9.08%), 

a series of Shockley dislocations with the Burgers vector of  1/6[1̅12] and 1/6[1̅1̅2] 

nucleate from H-induced GB ledges and slip on (11̅1) and  (111) planes in grain-A and 

grain-B, respectively. Continued tensile strain leads to dislocation nucleation events on 

other possible slip systems (see Fig. 4.15(f)). Theoretically, dislocation slip should occur 

on four {111} planes simultaneously as the maximum Schmid factor is identical on 

different slip systems, whereas, in the presence of H, partial dislocations nucleate on one 

certain slip system earlier than other slip planes. Moreover, the tensile stress/strain for 

dislocation nucleation is lower than that of H-free case. This implies that the 

configuration of H-induced GB ledges facilitates easier dislocation nucleation event. 

Further evidence supporting this point is presented in Fig. 4.15(g)-(i). More GB ledges 

created by high H concentration trigger the nucleation of 1/6[1̅1̅2]  and 1/6[1̅12̅] 

partials from the boundary plane at a lower tensile strain, with an array of extrinsic 

stacking faults left behind. To accommodate additional tensile deformation, another two 

groups of partial dislocations (1/6[112] and 1/6[11̅2̅]) on (111̅) and (11̅1) slip planes 

are also activated from dislocation interaction sites,  as shown in Fig. 4.15(i). 
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Fig. 4.15. Dislocation activities and atomic configurations for Σ5 (𝜃= 36.87°) TGB with various bulk H 

concentrations during tensile deformation process: (a)-(c) without H, (d)-(f) with H of Cbulk = 6.0 × 10−4, 

and (g)-(i) with H of Cbulk = 3.0 × 10−3. The insertions of (d) and (g) are coloured by the CSP value. All 

other images are coloured by CNA, the same as described in Fig. 4.7, and H atoms are assigned in green. 

4.4 Summary 

 MD simulations were carried out to elucidate the influence of solute H on tensile 

deformation mechanisms of various types of GBs in Ni. For tilt GBs, H segregation 

energy maps demonstrated that the trapping ability of H was strongly dependent on GB 
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structures. GBs with E SUs had higher maximum excess H concentration than those with 

C and D SUs, since E SUs contained more open structure relative to other SUs. Analysis 

of stress-strain curves shown that the segregation of H resulted in a considerable decrease 

in the yield stress of GBs with C and D SUs, while the yield stress of GBs with E SUs 

increased significantly with increasing excess H concentration. The difference was likely 

attributed to different deformation mechanisms: (a) H can facilitate dislocation 

nucleation via changing local atomic structures of GBs with C and D SUs; (b) for GBs 

with E SUs, the segregated H atoms constrained the reduce of the free volume within E 

SUs so as to result in a postponed dislocation nucleation event. In terms of energy, the 

increase in the yield stress was correlated with the ultimate collapse of E SUs leading to 

an increase in the energy of H segregation during dislocation emission. As with tilt GBs, 

the H-modified mechanical response of twist GBs was also sensitive to the GB character. 

Different deformation mechanisms such as easier dislocation nucleation due to the 

presence of H, H-enhanced dislocation dissociation, and H-induced slip planarity were 

directly responsible for this modification.   
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Chapter 5  Effect of H segregation on shear-coupled 

motion of 〈110〉 grain boundaries 

 

 

 

 

 

 

 

5.1 Introduction  

     Under shear stress a GB can move in its normal direction, leading to one grain growing 

into another. Such shear-driven GB migration operates as an important mechanism 

during plastic deformation, grain growth, recrystallization and phase transformation. In 

a system with impurities, the driven migration of a GB together with its absorbed 

impurity atoms is an activated process. By contrast, the impurity atoms may be left 

behind by the moving GB, leading to non-activated GB migration. At low temperatures, 

H atoms are immobile, thereby suppressing the GB migration and strengthening H-

segregated metals. This chapter aims to study these aspects. To this end, the simulation 

methodology is described in Section 5.2; H segregation maps and shear deformation 

mechanisms without and with solute H are given in Section 5.3; the role of H in the 

damage of GBs in α-Fe is discussed in Section 5.4; and a summary of findings is 

presented in Section 5.5.  

5.2 Simulation methodology  

     All simulations were implemented with MD simulator LAMMPS [155] by using the 

widely-used EAM interatomic potentials for Fe-H developed by Ramasubramaniam et 

al. [162] and further modified by Song and Curtin [27] to prevent the unrealistic 

clustering of H atoms. The bicrystal models with [11̅0] STGBs were constructed by 

rotating grain-A above the interface plane by θ/2 clockwise around the Z axis, while 

rotating grain-B underneath the grain boundary by θ/2 counterclockwise (see Fig. 5.1). 

The simulation cell was modelled with periodic boundaries along the X and Z directions 

and a free boundary condition in Y direction. Four types of STGBs were considered in 

This chapter is extracted from the following publication: 
 

Li J, Lu C*, Pei L, Zhang C, Wang R, Tieu K. Effects of H segregation on shear-

coupled motion of <110> grain boundaries in α-Fe. Int J Hydrogen Energy. 

2019;44:18616-27. 
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this work, as listed in Table 5.1. After GB initialization, various in-plane rigid body 

translations of grain-A with respect to grain-B combined with atom deletion criteria were 

adopted to find optimal GB structures.  

                               

Fig. 5.1. Schematic diagram of a bicrystal model rotated around the [11̅0] axis. 

Table 5.1. Model parameters for four GBs after energy minimization. 

 

Tilt angle 

θ (°) 

GB normal 

(hkl)A/(hkl)B 

Model size 

𝑳𝒙, 𝑳𝒚, 𝑳𝒛(𝒏𝒎) 
GB energy 

(𝒎𝑱 ∙ 𝒎−𝟐) 

Excess 

volume 

(Å) 

26.53 Σ19(1 1 -6)/(1 1 6) 13.20, 23.30, 10.95 1157.21 0.23 

70.53 Σ3(1 1 -2)/(1 1 2) 12.31, 22.95, 10.95 262.80 0.01 

109.47 Σ3(1 1 -1)/(1 1 1) 12.31, 22.95, 10.95 1310.72 0.36 

141.06 Σ9(2 2 -1)/(2 2 1) 13.43, 22.99, 10.95 1288.50 0.19 

     In order to search all possible trapping sites for H atoms at each GB type, the Voronoi 

tessellation of atoms was constructed with Voro++ code [172]. Each Voronoi vertex was 

concerned as a specific trapping site for solute H. After placing H atoms at a particular 

site 𝛼, the initial Fe-H configuration was obtained and optimized via conjugate gradient 

process. The segregation energy for one H atom at trapping site 𝛼 within the GBs is given 

by: 𝐸𝛼
𝑠𝑒𝑔

= (𝐸𝐺𝐵
𝛼 − 𝐸𝐺𝐵) − (𝐸𝑇−𝑠𝑖𝑡𝑒 − 𝐸𝑏𝑢𝑙𝑘) , where 𝐸𝐺𝐵

𝛼  and 𝐸𝐺𝐵  represent the total 

system energies with and without H atom at GBs respectively, 𝐸𝑇−𝑠𝑖𝑡𝑒  is the system 

energy associated with the H atom trapped into the lattice tetrahedral site in a single 

crystal bulk, and 𝐸𝑏𝑢𝑙𝑘 is the total energy of a single crystal bulk. Based on calculated 

segregation energy maps, a series of Fe-H interactions under various H concentrations 

(𝐶𝐻 ranging from 10−4 to 10−3 in atomic ratio) were created by successively adding one 

H atom into ‘favourable’ trapping sites until all ‘favourable’ sites were occupied. Here 
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we define all sites with segregation energy lower than zero as ‘favourable’. Prior to the 

shear deformation, the constructed simulation cell with different H concentrations was 

first heated up to 300 K over 100 ps, then cooled down to 10 K for 100 ps.   

     The atoms within 12 Å thick region on the top of grain-A and the bottom of grain-B 

were fixed and frozen by setting the interatomic force to zero. A constant shear velocity 

of  𝜈 = 0.8 m/s was subsequently applied to the upper slab along the X direction, while 

the lower slab remained stationary. Under shear loading, the temperature was kept at 10 

K via the NVT ensemble, and the time increment of simulation was set 1 fs.  

5.3 Results  

5.3.1 GB structure and H trapping map 

     Typical equilibrium GB structures are shown in Fig. 5.2. Herein, the SU model 

proposed by Sutton and Vitek [178] is used to characterize the local atomic structure 

within each GB. In the SU model, certain GBs correspond to favoured SUs, while all 

other GBs are characterized by two neighbouring favoured SUs. For the [11̅0 ] α-Fe 

system, two Σ3 GBs are clearly favoured boundaries with B and C SUs, respectively. 

Also, the A and A’ SUs are basic units of θ = 0° and 180° perfect crystals. The other GBs 

with non-preferred misorientation come from a combination of these basic SUs with 

complexity. For example, Σ19 (1 1 6̅) GB is composed of A and B SUs (2A + B), and Σ9 

(2 2 1̅) GB contains C and A’ SUs (C + 2A’), as shown in Fig. 5.2. 

 

Fig. 5.2. The equilibrium [11̅0] GB structures with SUs (a) Σ19 (11-6) = 26.53°, (b) Σ3 (11-2) = 70.53°, 

(c) Σ3 (11-1) = 109.47° and (d) Σ9 (22-1) = 141.06°. The structures are shown along the [11̅0] tilt axis, 

and atoms are coloured according to their centro-symmetry parameters. 

     To uncover the interplay between GB structures and H trapping, H segregation energy 

maps for four identified GBs are presented in Fig. 5.3. The possible trapping sites are 

indicated by small spheres and coloured according to the segregation energy. It can be 

seen from Fig. 5.3 that different GBs possess unique H trapping maps. Combined with 
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the segregation energy distribution curves in Fig. 5.4, it is found that there exists a 

symmetric relationship with segregation energy at a distance of GB plane. For all 

considered GBs, boundary sites (a region ±5 Å from GB planes) correlated with atoms 

in the B and C SUs tend to have much lower segregation energy than those in the bulk 

lattice. This manifests an energetically favourable driving force for the segregation of H 

atoms from the bulk into the GB region, being consistent with previous observations 

[173]. In addition, the lowest and highest segregation energy varies somewhat over the 

entire misorientation ranges, but there is one exception. The lowest segregation energy (-

0.25 eV) of Σ3 (1 1 2̅) GB is much higher than that of the other GBs, i.e., Σ19 (1 1 6̅) 

GB with the segregation energy of -0.56 eV, indicating that the trapping ability of this 

twin boundary is almost negligible. The main reason is that Σ3 (1 1 2̅) twin boundary has 

the most compact structure or lowest excess volume, as seen in Table 5.1. 

 

              

Fig. 5.3. H segregation energy maps for four GBs, and all cells are shown along the [11̅0] tilt axis. Larger 

spheres represent Fe atoms (green), and smaller ones indicate possible H trapping sites.      
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Fig. 5.4. Distribution of segregation energies as a function of distance from the GB. 

5.3.2 Shear response and GB motion of pure GBs 

     Fig. 5.5 shows the shear stress and GB displacement of bicrystal models with four 

pure GBs as functions of simulation time.  The stress components were calculated using 

the expression taken from the virial theorem, and the average atom volume 

was used in the stress calculations. One can see that for most scenarios, the shear stress 

initially rises without GB motion until reaching a peak value where GBs collectively 

move upwards or downwards. We denote the peak value as the critical shear stress in this 

work.  Concomitant with each GB motion, the shear stress drops abruptly, followed by a 

long period of elastic loading stage where the stress gradually builds up. By consecutively 

applying the shear strain, the entire stick-slip dynamics is repeated, issuing in a sawtooth 

behaviour for shear stress and a stop-and-go GB migration. It is worthy to note that, with 

regard to Σ3 (1 1 1̅) GB, a pure sliding event can be observed since it is accompanied by 

relative grain translation and a drop of the shear stress without normal GB migration.  
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Fig. 5.5. Shear stress-time and GB displacement-time curves for pure GBs at 10K. 

     The coupling factor 𝛽 of various GBs is determined by the slope of the dashed line. 

According to the MD simulation results, they are -0.49, 0.68 and -0.57 for Σ19 (1 1 6̅), 

Σ3 (1 1 2̅) and Σ9 (2 2 1̅) GBs respectively. For Σ3 (1 1 1̅) GB, there is no coupling factor 

for pure sliding. In terms of [001] tilt GBs in fcc Cu, Cahn et al. [179] proposed geometric 

model of coupling to describe the coupling factor 𝛽 based on the Frank-Bilby equation 

[180, 181]. The Frank-Bilby approach indicated that different Burgers vector contents of 

the GBs can be determined solely by geometric considerations, resulting in a multivalued 

𝛽 . For a [001] fcc system, two Burgers vector contents (〈100〉 and 1/2〈110〉) were 

identified and described by corresponding coupling factors: 𝛽<100> = 2tan (
𝜃

2
)  and 

𝛽<110> = −2tan (
𝜋

4
−
𝜃

2
). Homer et al. [182] went further and examined the generality of 

shear coupling mechanism over three typical tilt GBs ([001], [11̅0] and [111]) in fcc Ni. 

They reported that [11̅0] and [111] GBs did not follow the predicted coupling model. 

Recently, Niu et al. [183] claimed that the shear coupling of [001] GBs in bcc W obeyed 

the same derivation procedure as predicted in Cahn’s investigation. In our case, [11̅0] 

boundaries in bcc α-Fe were chosen for simulation. Therefore, it is very necessary to 

examine whether the geometric theory holds valid in [11̅0] GBs in bcc metals. According 

to the most commonly-known dislocations (〈100〉 and 1/2〈111〉) in bcc crystals, we 

predict two shear coupling modes as seen in Fig. 5.6. 
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Fig. 5.6. Dislocation mechanisms of [11̅0] GBs in bcc α-Fe with 〈100〉 and 〈111〉 coupling shear modes. 

     Considering two grains, grain-A (OABC) and grain-B (ODEF) rotate around the [11̅0] 

tilt axis and form a symmetric tilt GB with misorientation angle θ. When subjected to 

shear deformation, the 〈100〉 GB dislocations of grain-A first advance along the slip 

direction. For example, segment AO undergoes a translation to a new position OO’. To 

align with the lattice of grain-B, the segment OO’ then rotates counterclockwise by the 

tilt angle θ, conforming the segment OD. During the whole deformation process, the 

grain translation and normal GB displacement can be obtained from the 

relations:  𝑆<100> = 2𝑎 sin(
𝜃

2
) ,  𝐻<100> = −𝑎 cos (

𝜃

2
) , where 𝑎  is the lattice constant.  

Therefore, the corresponding 〈100〉 coupling factor of [11̅0] GBs in bcc α-Fe can be 

given as: 𝛽<100> =  𝑆<100>/ 𝐻<100> = −2 tan(
𝜃

2
). Following a similar mechanism, we 

obtain the tangential translation and normal GB motion of the 〈111〉 coupling mode: 

 𝑆<111> = 𝑎√3 sin(
𝜑

2
) ,  𝐻<111> = −(√3𝑎/2) cos(

𝜑

2
) . The relative coupling factor is 

readily derived from the ratio:  𝛽<111> =  𝑆<111>/ 𝐻<111> = −2 tan(
𝜑

2
)   , where 

𝜑

2
=

𝜃

2
− tan−1 √2 . Therefore, the coupling factor can be also expressed as:  𝛽<111> =

2 tan(tan−1 √2 −
𝜃

2
). Based upon the predicted coupling modes, the theoretical 𝛽 value 

of each GB type is calculated as -0.47, 0.71 and -0.57, matching perfectly with the MD 

simulation results. As shown in Fig. 5.5, Σ19 (1 1 6̅) GB belongs to 〈100〉 mode, whereas 

Σ3 (1 1 2̅) and Σ9 (2 2 1̅) GBs migrate in 〈111〉 mode. Furthermore, it is found that the 
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critical shear stress of Σ19 (1 1 6̅) GB is twice as high as that of Σ3 (1 1 2̅) and Σ9 (2 2 1̅) 

GBs, which is likely attributable to the fact that 〈100〉 dislocations are more difficult to 

glide than 1/2〈111〉 ones [179]. 

5.3.3 Shear response and motion of GBs with H content 

     Fig. 5.7 shows the influence of H atoms on the coupled GB motion in terms of the 

shear stress and GB displacement vs. simulation time, as well as the dependence of the 

critical shear stress on H concentration. It is clear that the critical shear stress of both 

〈100〉 and 〈111〉 mode GBs (Σ19 and Σ9) in the presence of H is increased when 

compared to H-free cases, indicating that H impedes the local mobility of GBs. As seen 

in Figs. 5.7 and 5.8, GBs are pinned by the segregated H in the initial stress-accumulation 

stage, and the elastic loading time becomes longer than that without H. To overcome the 

pinning effect of H on GB mobility, a higher critical shear stress is needed for the normal 

GB displacement. For example, regarding the Σ9 (2 2 1̅) GB at 𝐶𝐻 = 3.0 × 10−3, there 

is an elastic loading stage lasting 1.2 ns, in which the critical shear stress increases up to 

5.1 GPa, more than two orders of magnitude higher than the H-free case. Once the critical 

shear stress is reached, the coupled GB motion takes place, with a series of H-vacancy 

clusters left behind.  It has been proven that H-vacancy clusters can serve as the primary 

cause for microstructural damage [184]. However, in the present work it is seen that these 

H-vacancy clusters fail to contribute to the ultimate failure. More details on this 

observation will be provided in Section 5.4. It should be mentioned that, after introducing 

H atoms, the subsequent grain translation is longer and the normal GB displacement is 

shorter in comparison to that of H-free case, which causes the coupling factor 𝛽  to 

decrease (see Fig. 5.7(b) and (e)). When the H concentration exceeds a certain value, i.e., 

1.5 × 10−3  for Σ19 (1 1 6̅ ) GB, and 5.5 × 10−3  for Σ9 (2 2 1̅ ) GB, the GB coupling 

disappears, and a transition from the coupled GB motion to pure GB sliding is observed.  
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Fig. 5.7. (a) shear stress-time and (b) GB displacement-time curves for Σ19 (1 1 6̅) GB under various H 

concentrations. (c) The critical shear stress vs. H concentration for Σ19 (1 1 6̅) GB. Σ9 (2 2 1̅) GB has the 

same descriptions as presented in (d)-(f).  

     Cahn et al. [179] revealed that the GB migration was achieved by the deformation of 

GB dislocation structures. Does the presence of H change the local dislocation structures 

of the GBs so as to affect their motion? To answer this, we begin with the analysis of 

atomic mechanisms responsible for the GB motion without and with H. In terms of Σ19 

(1 1 6̅ ) GB, the GB motion is in fact the collective gliding of an array of straight 

dislocations. From the extracted dislocation lines in Fig. 5.8(a), one can observe that 

these dislocations are 〈100〉-type, agreeing well with the predicted coupling mode. In the 

presence of H (𝐶𝐻 = 1.0 × 10−3), it can be seen from Fig. 5.8(b) that these 〈100〉-type 

dislocations interact with each other. This behaviour is generally in accordance with the 
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shielding concept of the HELP model, in which H reduces the interaction distance 

between dislocations [98]. A strong interaction force among dislocations seems to make 

it difficult to drive the gliding of 〈100〉-type dislocations, thus hindering the GB motion. 

Also, upon further shear loading the dislocation dissociation event occurs, for example, 

the 〈100〉-type dislocation splits into a 〈111〉-type dislocation and an other-type 

dislocation( [001] → 1/2[1̅1̅1̅] + 1/2[113] ), which further prevents the GB migration. 

Regarding Σ9 (2 2 1̅) GB in Fig. 5.8(c), the boundary is composed of A’ and C SUs. Two 

perfect D SUs are adjacent to the GB unit C and located at the upper and lower grains, 

respectively. During the GB migration, these SUs (C and D) can be transformed into each 

other by relatively small in-plane atomic displacements. Specifically, unit C composed 

of Fe atoms 5, 6 and 9-12 is transformed into D SU in the upper grain and the rectangular 

D SU consisting of Fe atoms 2-7 in the lower grain becomes six-member kite-shaped C 

SU. This unit transformation makes the GB plane move downward, accompanied by a 

lateral translation of the upper grain. Note that at 𝐶𝐻 = 1.0 × 10
−3, the coupled motion 

is still dominated by the unit transformation (see Fig. 5.8(d)). Concomitant with each GB 

migration step, the GB structure along the Y direction is converted from |DCD| to |DDC′|. 

The C’ SU is regarded as a distorted C SU, arising from the H detachment during the GB 

migration. With the disordered structure, the difficulty for structural transition from D 

SU to C’ SU is increased, which may explain why the presence of H results in a higher 

critical shear stress. In the case of high H concentration, a totally different phenomenon 

is observed. After the addition of H atoms, the local atomic configurations of the GB are 

significantly destroyed, with C and D SUs disappearing (see Fig. 5.8(f)). Under this 

condition, it is impossible to achieve GB migration via a unit transformation, instead, a 

pure sliding event occurs.  
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Fig. 5.8. Dislocation activities and atomic configurations for Σ19 (1 1 6̅) GB: (a) without H and (b) with 

H of  𝐶𝐻 = 1.0 × 10
−3. (c) and (d) are atomic structures for Σ9 (2 2 1̅) GB without H and with H of 𝐶𝐻 =

1.0 × 10−3, respectively. (e) and (f) are atomic details of  Σ19 (1 1 6̅) GB and Σ9 (2 2 1̅) GB, respectively, 

at 𝐶𝐻 = 6.0 × 10
−3. Atoms are coloured by CNA, where atoms with a perfect bcc structure are dark yellow, 

green atoms organize the GB plane and the dislocation core, and H atoms are assigned in pink. Different 

types of dislocations are identified by DXA in Ovito. 
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5.4 Discussion  

     Solute H atoms were introduced into two types of [11̅0] STGBs, namely 〈100〉 and 

〈111〉 mode GBs, in order to study their possible influence on the coupled GB motion. In 

all investigated cases, the GB migration process is markedly impeded, independent of 

GB structures. The present findings are in line with the observations on other impurities 

in metallic systems, like Mg in Al [185], O in Al [186], and He in W [187]. These studies 

have suggested that local structural changes caused by segregated impurities play a 

decisive role in the GB mobility. For example, Niu et al. [187] reported that He trapping 

could have an effect on changing GB dislocation structures by the formation of jogs and 

He-vacancy clusters. The critical shear stress was governed by a competition between 

the impeding effect of He and the facilitating effect of jogs. In the cases investigated in 

the present work, GB dislocation structures are modified by H-enhanced dislocation 

interaction events at 〈100〉 mode Σ19 GB within the framework of the HELP mechanism. 

These dislocation intersections can serve as dislocation sources owing to high local stress 

and disordered atomic structure. Proceeding to higher shear deformation, dislocation 

dissociation occurs at the expense of dislocation gliding, thereby inhibiting GB migration. 

Specifically, the dissociation process is energetically unfavourable according to the Frank 

energy criteria, a high system energy is therefore consumed to activate this event. 

Consequently, the residual energy required for normal dislocation gliding becomes low 

so as to suppress GB motion. Regarding 〈111〉 mode Σ9 GB, H throws the atomic 

structures of GBs into disarray, which prevents the GB structural transformation and 

changes the coupling mode.  

 As mentioned before, abundant vacancies were generated and stabilized by H in the 

form of H-vacancy clusters when subjected to shear deformation (see Fig. 5.8). This has 

been revealed to play a crucial role in embrittling metallic materials in previous 

experiments [188, 189] and MD simulations [125, 190-192]. Motivated by this, we 

further discuss the effects of segregated H atoms on the vacancy evolution during the 

coupled GB motion. As shown in Fig. 5.9, for H-free cases, there are no vacancies 

nucleated from either 〈100〉 or 〈111〉 mode GBs under shear deformation. Hirth and Lothe 

[193] concluded that vacancy generation typically originates from dislocation plasticity 

including the growth of prismatic loops, dislocation-dislocation interactions, etc. 

However, in our case, the shear plasticity is mainly controlled by the collective gliding 

of a series of parallel dislocations in the absence of H, without dislocation interactions or 



97 

 

other dislocation forms nucleating vacancies. In contrast, for all H-charged samples, 

extensive dislocation interaction events occur via the HELP mechanism, thus increasing 

the generation rate of vacancies. And more importantly, a certain number of these 

vacancies are combined with H and transformed into H-vacancy clusters, as 

demonstrated in Fig. 5.8. In this way, vacancies can be largely preserved during 

dislocation sinks and annihilation [125]. Attributed to these aspects, the vacancy 

nucleation rate is increased while the vacancy annihilation rate is decreased with 

increasing H concentrations, rendering that GBs with a higher H concentration have a 

higher vacancy concentration. However, a careful observation on Fig. 5.9 indicates that 

vacancies are mainly formed at the initial shear stage (H detachment process) in the 

presence of H, and there are few vacancies newly generated during the subsequent GB 

migration. Two factors could have contributed to the observed behaviour: firstly, since 

almost all solute H atoms are detached from GBs at initial shear stage, new vacancies are 

hardly nucleated or stabilized nearby the migrating GBs. Secondly, the detached H-

vacancy clusters at the initial GB position cannot tend to grow in size via vacancy 

accumulation due to a lack of dislocation plasticity activities when the GBs migrate away. 

These points are also beneficial for us to understand why no ultimate failure occurs in 

our simulation models, as seen in Fig. 5.10. Li et al. [191] revealed that the growth of H-

vacancy clusters activated the nucleation event of proto nanovoids, which further led to 

the occurrence of macroscopic fracture via nanovoid growth and coalescence. In the 

present work, although some H-vacancy clusters are found in the models, their growth is 

not encouraged as aforementioned. Accordingly, the voids are not triggered and HE does 

not eventuate (see Fig. 5.10). In view of this, it seems that the deformation mechanism 

dominated by the coupled GB motion is beneficial to reduce the susceptibility to H-

induced intergranular embrittlement, which may prove to be fruitful in designing new 

metallic materials with high resistance to HE.  
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Fig. 5.9. The evolution of vacancy concentration with simulation time for (a) Σ19 (1 1 6̅) GB and (b) Σ9 

(2 2 1̅) GB under various H-charged concentrations.  

            

 

Fig. 5.10. MD simulation snapshots of atomic configurations of Fe bicrystals containing (a) and (b) Σ19 

(1 1 6̅ ) GB, (c) and (d) Σ9 (2 2 1̅ ) GB with different simulation time at 𝐶𝐻 = 1.0 × 10
−3 . Atoms are 

coloured by CNA, the same as described in Fig. 3.8. 

5.5 Summary  

 MD simulations were carried out to elucidate the influence of H segregation into 

several typical [11̅0] STGBs on the shear response and coupled GB motion of bicrystals 

in α-Fe. The major conclusions can be summarized as follows: 

 (1) Under shear loading, the deformation modes of GBs except Σ3 (1 1 1̅) GB were 

found to operate by normal GB migration coupled to tangential translation of grains. 

Depending on our geometric model of coupling for [11̅0] STGBs in bcc metals, two 

different coupling branches (〈100〉 and 〈111〉) were predicted and further validated by the 
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simulation results. Furthermore, it was found that the critical shear stress of 〈100〉 mode 

GBs is twice as high as that of 〈111〉 mode ones.  

 (2) Solute H had a considerable impeding effect on the coupled GB motion, 

irrespective of GB structures. In contrast to H-free cases, H segregation increased the 

critical shear stress and decreased the coupling factor. When the H concentration reached 

a critical value, the response of GBs to shear deformation changed from coupling to pure 

GB sliding. It was confirmed from atomic mechanisms that the impeding effect of H 

mainly originated from the fact that H severely damaged the local atomic structures of 

GBs. Regarding 〈100〉 mode Σ19 GB, solute H enhanced dislocation interactions by 

modifying the GB dislocation structures, and thus prevented the collective gliding of GB 

dislocations responsible for GB migration. In terms of 〈111〉 mode Σ9 GB, the presence 

of H disordered local structures of the GB, thereby suppressing the GB structural 

transformation and changing the coupling mode.  

(3) It was revealed that the vacancy concentration increases with increasing solute H 

concentration. Although H-vacancy clusters were formed by the solute H stabilizing the 

vacancies, they cannot grow larger via vacancy accumulation as GBs with extensive 

dislocation plasticity migrate away, which directly suppressed the occurrence of ultimate 

failure. Therefore, it seems that the coupled GB motion may be beneficial to resist H-

induced intergranular embrittlement.  
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Chapter 6  Hydrogen-modified interaction between 

lattice dislocations and grain boundaries  

 

 

 

 

 

 

 

 

 

6.1 Introduction  

     Experimental evidence of the microstructure beneath H-induced intergranular facets 

has shown an acceleration of plasticity process and pre-failure deformation prior to crack 

initiation, suggestive of the significance of dislocation-GB interactions on establishing 

the conditions for intergranular fracture. However, the effects of H atoms on modifying 

the interaction mode of GBs and the accurate role of the interaction process in promoting 

ultimate failure are unknown. In view of this, here a nanoscale understanding for the H-

modified dislocation-GB interaction in Ni was developed using MD simulations. 

Particularly, the influence of H on the interaction mechanisms between the screw 

dislocation and various [11̅0] symmetric tilt GBs on an atomic scale was studied. The 

remainder of this chapter is organized as follows. The details of simulation setup are 

described in Section 6.2. H segregation maps and dislocation-GB interaction mechanisms 

without and with solute H are given in Section 6.3. The simulation results are discussed 

in Section 6.4, followed by the main summary in Section 6.5.  

6.2 Simulation methodology  

     MD simulations were carried out using the software package LAMMPS [155] with 

the EAM potential for Ni-H [28, 29, 160]. The bicrystal model was used to study the 

dislocation-GB interaction because it enables a well-controlled investigation of specific 

GB properties. The initial structures of nine [11̅0] STGBs were constructed on the basis 

of the coincidence site lattice (CSL) and then equilibrated by energy minimisation using 

This chapter is extracted from the following publications: 
 

1. Li J, Lu C*, Pei L, Zhang C, Wang R. Hydrogen-modified interaction between 

lattice dislocations and grain boundaries by atomistic modelling. Int J Hydrogen 

Energy. 2020;45:9174-87.  

2. Li J, Lu C*, Pei L, Zhang C, Tieu K. Influence of solute hydrogen on the 

interaction of screw dislocations with vicinal twin boundaries in nickel. Scripta 

Mater. 2019;173:115-9. 
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a nonlinear conjugate gradient method. The crystallographic orientations of grain-A 

along X-[112], Y-[1̅1̅1], Z-[11̅0] in Fig. 6.1 were the same for all GBs; the orientations 

of grain-B were changed depending on the misorientation angle, refer to Table 6.1. Free 

boundary conditions were applied in the X and Y directions to minimise the effect of 

image forces, while a periodic boundary condition was prescribed along the Z direction. 

A single screw dislocation with Burgers vector of 𝑎0/2[1̅10] was placed on the (1̅1̅1) 

slip plane within the grain-A via a rigid-displacement procedure [194, 195] at a distance 

of 80 Å away from the GBs, where 𝑎0  is the lattice parameter. With this separation 

distance, no attractive or repulsive forces were detected between the dislocation and GBs 

during relaxation. The core of the screw dislocation can split into two Shockley partials 

(leading and trailing partial dislocations) according to 1/2[1̅10] → 1/6[1̅21] +

1/6[2̅11̅].  

Fig. 6.1. Model domain of Σ57 (4 4 5) GB for simulating the interaction between a screw dislocation and 

GBs. All atoms are coloured by the CNA, the same as described in Fig. 4.7. 

     To study the effect of solute H on the dislocation-GB interactions, all possible trapping 

sites for H atoms at each GB type were first identified through Voronoi tessellation [172]. 

The H segregation maps were then plotted based on the calculated segregation energy 

𝐸𝛼
𝑠𝑒𝑔

  for one H atom at one type of trapping site 𝛼 , see more details in Chapter 4.  

Subsequently, the H occupation probability at site 𝛼 was calculated as 

                                               𝜃𝛼 =
𝜃𝑏𝑢𝑙𝑘exp (−𝐸𝛼

𝑠𝑒𝑔
/𝐾𝐵𝑇)

1+𝜃𝑏𝑢𝑙𝑘exp (−𝐸𝛼
𝑠𝑒𝑔

/𝐾𝐵𝑇)
                                           (6.1) 

where 𝜃𝑏𝑢𝑙𝑘 is bulk H concentration in atomic ratio, 𝐾𝐵 is Boltzmann’s constant and 𝑇 is 

the temperature. The Ni-H interactions were finally created by adding H atoms into 
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‘favourable’ trapping sites according to the occupation probability 𝜃𝛼. Here we define all 

sites with segregation energy lower than zero as ‘favourable’. The bulk H concentration 

and temperature is set at 𝜃𝑏𝑢𝑙𝑘 = 0.001 and 𝑇 = 300K, respectively. Prior to the MD shear 

simulations, energy minimisation was imposed again, followed by a heating process to 

bring the H distribution to a state of equilibrium. 

The atoms within the 10 Å thick region near the free surfaces along the Y direction 

were fixed and frozen by setting the interatomic force to zero. The shear strain at a 

constant rate 108 s-1 was applied to the simulation cell on the Y-Z shear plane by rigidly 

displacing the upper frozen atoms along the Z direction. MD simulations were carried 

out under constant energy ensemble (NVE) with a timestep of 1 fs. Note that the H 

segregation into GBs was performed at 300 K but the shear deformation was started at 

0.1 K to suppress any thermal activation of dislocation processes.  

Table 6.1. Characterization of the GBs, including tilt angle, Σ value, model size and GB energies. 

 

6.3 Results  

6.3.1 GB structure and H trapping map 

     Atomic configurations of several typical GB structures are illustrated in Fig. 6.2. Five 

basic SUs are identified and labelled among these GBs. Specifically, C, D and E SUs 

correspond to Σ11 (1 1 3), Σ3 (1 1 1) and Σ9 (2 2 1) GBs. A and A' SUs are basic units of 

Σ1 (001) θ = 0° and Σ1 (110) θ = 180° perfect crystal orientations. Other GBs with non-

preferred misorientations come from a combination of these basic SUs with complexity. 

For example, Σ57 (4 4 5) GB is composed of C and D SUs, and Σ171 (11 11 10) GB 

contains a combination of D and E SUs. Note that Σ171 (11 11 10) GB has the dissociated 

Tilt angle  

(°) 

  CSL value 

(𝜮) 

Model size 

𝑳𝒙, 𝑳𝒚, 𝑳𝒛(𝒏𝒎) 
GB energy 

(𝒎𝑱 ∙ 𝒎−𝟐) 

26.53 Σ19(1 1 6) 39.06, 18.41, 1.99 904.52 

50.48 Σ11(1 1 3) 38.19, 18.06, 1.99 375.80 

70.53 Σ3(1 1 2) 38.80, 18.29, 1.99 806.91 

97.05 Σ57(4 4 5) 38.70, 18.99, 1.99 731.82 

109.47 Σ3(1 1 1) 39.43, 18.38, 1.99 50.39 

114.53 Σ171(11 11 10) 38.71, 19.19, 1.99 419.64 

141.06 Σ9(2 2 1) 39.01, 18.98, 1.99 1097.49 

153.48 Σ19(3 3 1) 38.36, 19.53, 1.99 1081.91 

174.60 Σ451(15 15 1) 38.09, 18.40, 1.99 547.31 
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structure that D SUs extend from two sides of the boundary, resulting in ISF facets inside 

lattice region. For convenience of further discussion, we refer Σ11 (1 1 3), Σ3 (1 1 1) and 

Σ9 (2 2 1) boundaries as ‘singular’ GBs, and classify others as ‘general’ GBs.  

          

 

Fig. 6.2. Atomic images of the equilibrium GB structures with SUs. The structures are viewed along the 

[11̅0] tilt axis. Atoms on consecutive {110} planes are shown as blue and red. Several incoming glide 

planes are marked by solid lines and labelled as 1–3.   

     The H segregation energy maps are depicted in Fig. 6.3. The possible trapping sites 

are indicated by small spheres and coloured according to the segregation energy. Since 

different GBs possess different SUs, the segregation energy distribution of each GB type 

is unique. For instance, the lowest segregation energy of Σ9 (2 2 1) GB is -0.28 eV, and 

the sites with this energy are located within E SUs. In contrast, the lowest segregation 

energy of Σ3 (1 1 1) GB is only -0.04 eV, and H atoms occupy exclusively at the 
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octahedral sites located in between the twin boundary plane and its adjacent (1 1 1) plane.  

By comparing the segregation energy, it is found that Σ3 (1 1 1) GB has much higher 

segregation energy than other types of GBs, indicating that the trapping ability of this 

twin boundary is almost negligible. This concurs with many experimental results that 

CTBs are inherently resistant to H embrittlement due to their low H solubility [197-199]. 

 

Fig. 6.3. H segregation energy maps for six typical GBs, all cells are shown along the [11̅0] tilt axis. Larger 

spheres represent Ni atoms (green), and smaller ones indicate possible H trapping sites. 

6.3.2 Shear response and interaction outcomes 

     Taking Σ9 (2 2 1) GB as an example, the dislocation-GB interaction occurs in five 

stages, as divided by the dashed line in Fig. 6.4(a). The corresponding atomic 

configurations are illustrated in Fig. 6.4(b).  In stage-①, the shear stress linearly rises 

without dislocation motion. A stress drop on the shear stress-strain curves is evident when 

incoming screw dislocation moves towards the boundary, as shown in stage-②. Once the 

dislocation impinges on the GB, the stress increases again in order to overcome high GB 

repulsion until it reaches a peak value (stage-③). This value is taken as the critical shear 
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stress in this study. For Σ9 (2 2 1) GB, the dislocation is eventually incorporated into the 

GB, and then dissociates into GB dislocations (stage-④). This observation is in 

concordance with the formal theory of crystalline interfaces that while impinging onto a 

GB, the lattice dislocation can dissociate or redistribute itself into GB dislocations with 

the total Burgers vector conserved [200]. With further shear deformation, the dissociated 

GB dislocations repel each other and propagate along the boundary plane (see Fig. 6.4(b) 

at a strain of 1.69%). In stage-⑤, the dislocation propagation is hindered when GB 

dislocations arrive at the fixed area of the simulation model. The stress curves reach the 

strain-hardening stage with a continuous increase of stress without any new deformation 

mechanisms to release the system stress.   

Fig. 6.4. (a) Shear stress-strain curves during the interaction between a screw dislocation and Σ9 (2 2 1) 

GB with different slip planes and H concentrations. P1, P2 and P3 are slip planes, and 𝜃𝑏𝑢𝑙𝑘  is H 

concentration. (b) Snapshots of atomic configuration for each stage of P2, 𝜃𝑏𝑢𝑙𝑘= 0 case in (a).   

     All possible dislocation-GB interaction outcomes for different types of GBs with 

various incoming planes without and with H are listed in Table 6.2. In the absence of H, 

it is found that for ‘singular’ GBs (Σ3, Σ9 and Σ11), dislocation dissociation from the 

screw dislocation into GB dislocations is the interaction mechanism regardless of 

incoming planes. In the case of ‘general’ GBs (Σ57, Σ171 and Σ451), with different glide 

planes the shear loading may lead to different interaction outcomes due to the complexity 

of GB structures.  For example, when the incident dislocation glides on the plane 1 and 

reacts with the Σ171 (11 11 10) GB, a new partial dislocation is nucleated from the 

boundary, whereas dislocation dissociation and reflection dominate the deformation 

process when the incoming slip is on plane 2 and 3, respectively.  In contrast to H-free 
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cases, absolutely different interaction mechanisms are observed in the presence of H. For 

most of the scenarios, H segregation tends to transform these interactions into ones 

involving dislocation absorption.  There are two exceptions: Σ3 (1 1 1) GB and Σ171 (11 

11 10) GB with slip plane 2. The main reason is that the twin boundary and the twin 

segments of Σ171 (11 11 10) GB hardly trap H atoms, the interaction mechanism 

therefore does not change.  

Table 6.2. Summary of the interaction outcomes. The following abbreviations are used. D: Dislocation 

dissociation, N: Dislocation nucleation, T: Dislocation transmission, R: Dislocation reflection, A: 

Dislocation absorption.   

 

6.3.3 Atomic mechanisms for dislocation-GB interactions  

‘Singular’ GBs  

     In the following we analyse atomic mechanisms responsible for dislocation-GB 

interactions without and with H. Herein, the Thompson tetrahedron is referred to 

elucidate the dislocation reaction paths [195]. Fig. 6.5(a) presents that the screw 

dislocation on plane 1 with the Burgers vector 𝐴𝐵 approaches and reacts with Σ3 (1 1 1) 

GB in the absence of H. It can be seen that this dislocation moving towards the twin 

boundary is constricted, and the two separated partials (𝛾𝐵 and 𝐴𝛾) are recombined into 

a full dislocation 𝐴𝐵 at the intersection. At a shear strain of 1.73%, the constricted full 

dislocation 𝐴𝐵  dissociates into two GB dislocations (twinning partials 𝐴𝛿  and 𝛿𝐵 ) 

propagating in opposite directions along the twin boundary. The dissociation mechanism 

GBs Incoming planes 

𝜽𝒃𝒖𝒍𝒌= 0 𝜽𝒃𝒖𝒍𝒌= 0.001 

Critical 

shear stress 

(MPa) 

Reaction 

types 

Critical 

shear stress 

(MPa) 

Reaction 

types 

Σ11(1 1 3) 
1 109 D 114 A 

2 102 D 105 A 

Σ57(4 4 5) 

1 81 N 87 A 

2 82 T 89 A 

3 84 N 86 A 

Σ3(1 1 1) 1 132 D 132 D 

Σ171(11 11 10) 

1 102 N 104 A 

2 98 D 98 D 

3 103 R 112 A 

Σ9(2 2 1) 

1 85 D 87 A 

2 78 D 81 A 

3 74 D 76 A 

Σ451(15 15 1) 

1 91 T 99 A 

2 89 N 89 A 

3 93 N 97 A 
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can be summarised as: 𝛾𝐵 + 𝐴𝛾 → 𝐴𝐵 → 𝐴𝛿 + 𝛿𝐵,  or 1/6[1̅21] + 1/6[2̅11̅] → 1/

2[1̅10] → 1/6[1̅21̅] + 1/6[2̅11]. A step height of one (111) atomic layer is associated 

with each twinning partial, indicating that the propagation of these partials results in a 

GB migration that expands the grain-B at the expanse of the grain-A. For the H-charged 

case, the dissociation behaviour at the intersection is identical to that without H since the 

twin boundary hardly absorbs H atoms (see Fig. 6.5(b)). 

            
Fig. 6.5. Interaction of a screw dislocation with Σ3 twin boundary: (a) 𝜃𝑏𝑢𝑙𝑘= 0 and (b) 𝜃𝑏𝑢𝑙𝑘= 0.001. H 

atoms are assigned in yellow. The direction of dislocation motion and GB migration is marked out by the 

yellow and red arrows, respectively.  

     For the interaction with Σ11 (1 1 3) GB, our MD simulation results in Fig. 6.6 show a 

more complex process. Without H, the leading partial 𝛾𝐵 first intersects the boundary 

plane, and then generates two GB disconnections. These disconnections are single-layer 

GB dislocations with Burgers vector b = 1/22 < 471 > (denoted as GB dislocation 1 

and 2). When the shear strain is increased up to 1.71%, the trailing partial  𝐴𝛾  is 

incorporated. Meanwhile, a new single-layer GB dislocation 4 is formed, introducing one 

new GB plane indexed as GB3. Due to the GB migration (the occurrence of GB3), the 

single-layer GB dislocation 2 is transformed into a double-layer GB dislocation 3, which 

has the height of two (1 1 3) atomic layers. MD simulations reveal that the double-layer 

disconnection possesses tiny Burgers vector b = 1/22 < 332 > . Upon further shear 

deformation, GB dislocation 4 proceeds upwards gradually along the [3̅3̅2] direction, 

resulting in a leftward migration of the boundary from GB1 to GB3 for a distance of one 

(1 1 3) lattice spacing. Similarly, associated with the lateral motion of GB dislocation 1 

is a leftward migration of the boundary from GB2 to GB1. It is noticed that the double-

layer GB dislocation 3 remains static until it meets the moving single-layer GB 

dislocation 1. At a shear strain of 1.98%, the single-layer GB dislocation 1 composes 

promptly with the double-layer GB dislocation 3 (1 + 3) into a new single-layer GB 
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dislocation 5. Subsequently, the dislocation 5 glides continuously along the [332̅] 

direction and contributes to the GB migration from GB1 to GB3. From the above analysis, 

it appears that the interaction outcome of a screw dislocation with Σ11 (1 1 3) GB is 

dislocation dissociation and nucleation of different types of GB dislocations (single-layer 

and double layer). Through the lateral motion of GB dislocations, continuous and smooth 

migration of the Σ11 (1 1 3) GB occurs. For the interaction with H, Fig. 6.6(b) suggests 

no dislocation dissociation when only absorption mechanism is involved. The incident 

dislocation (𝛾𝐵 and 𝐴𝛾) is completely absorbed by the boundary without nucleating the 

GB dislocations. This behaviour originates from the fact that dislocation dissociation (the 

nucleation of GB dislocations) usually triggers GB migration (see Fig. 6.6(a)), which is 

not correlated with any atomic diffusion or mass transport. H segregation can impede the 

GB motion since the migration of the GB needs diffusion of H atoms to the newly 

appearing stable sites (i.e., newly-formed C SUs). Due to the suppressed GB migration, 

the dislocation dissociation process is hindered, and the incident dislocation is enforced 

to get absorbed into the boundary. Following the same mechanism, the addition of H 

atoms transforms dislocation dissociation into dislocation absorption when the incoming 

dislocation interacts with Σ9 (2 2 1) GB.  

            
Fig. 6.6. Interaction of a screw dislocation with Σ11 (1 1 3) GB: (a) 𝜃𝑏𝑢𝑙𝑘= 0 and (b) 𝜃𝑏𝑢𝑙𝑘= 0.001. The 

direction of dislocation motion and GB migration is marked out by the yellow and red arrows, respectively.  

‘General’ GBs  

     Due to small deviations in the lattice orientation relative to the twin boundary, Σ57 (4 

4 5) and Σ171 (11 11 10) GBs are considered to be vicinal twin boundaries [201]. For 

simplicity, we refer the boundary steps of Σ57 (4 4 5) as ‘interior’ disconnections and 

Σ171 (11 11 10) GB as ‘exterior’ disconnections. Fig. 6.7 presents the simulations of a 

screw dislocation interacting with the Σ57 (4 4 5) GB without and with H. When 

inhabited on glide plane 1, the leading partial 𝛾𝐵  combines with one ‘interior’ 
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disconnection 𝛿𝐷 to emit a twinning partial 𝛿𝐵 along the twin segment, leaving behind 

a Shockley partial dislocation 𝛾𝐷  at the initial interaction site. The corresponding 

dislocation reaction can be written as: 𝛾𝐵 + 𝛿𝐷 → 𝛾𝐷 + 𝛿𝐵 , or 1/6[1̅21] + 1/

3[1̅1̅1̅] → 1/6[1̅1̅2̅] + 1/6[2̅11]. Proceeding to a higher shear loading, the twinning 

partial 𝛿𝐵 glides towards the ‘interior’ disconnection 𝐷′𝛿 and eventually nucleates an 

extended dislocation into the adjacent twin lattice (grain-B). DXA indicates that this 

extended configuration contains a 30º leading partial 𝛾′𝐴′, a 90º trailing partial 𝐷′𝛾′, and 

a bounded stacking fault ribbon. This nucleation process can be expressed as: 𝐷′𝛿 +

𝛿𝐵 → 𝐷′𝐵(𝐷′𝐴′) → 𝛾′𝐴′ + 𝐷′𝛾′. In contrast to the H-free case, an absolutely different 

interaction mechanism is observed in the presence of H. As shown in Fig. 6.7(b), the 

‘interior’ disconnection completely absorbs the whole incident dislocation (𝛾𝐵 and 𝐴𝛾).  

This occurs because H segregation produces pronounced changes in the atomic structure 

of disconnections. The disordered atomic structure of disconnections obviously serves as 

a dislocation sink or trap which effectively absorbs the impinging dislocations. After 

dislocation absorption, the newly-nucleated dislocation 𝐴𝛿/𝐵𝐷  releases a twinning 

partial 𝛿𝐵 , with a perfect dislocation 𝐴𝐷  formed at the interaction site. The twinning 

partial 𝛿𝐵 is finally absorbed by the ‘interior’ disconnection 𝐷′𝛿 in the form of a perfect 

dislocation 𝐷′𝐵 without nucleating new partials into the twin lattice. With different glide 

planes the shear loading may lead to different dislocation interactions. Fig. 6.7(c) 

demonstrates a direct dislocation transmission when the incident slip is on plane 2. The 

‘interior’ disconnection 𝐷′𝛿 first attracts the leading partial 𝛾𝐵, moving the incoming 

dislocation downwards by the two (1̅1̅1) atomic layers. Continued shear deformation 

then results in the transmission of the leading partial 𝛾𝐵  through the ‘interior’ 

disconnection 𝐷′𝛿 into the neighbouring grain. Along with the further movement, the 

trailing partial 𝐴𝛾 approaches the ‘interior’ disconnection 𝐷′𝛿 and eventually becomes 

trapped. The addition of H atoms increases the difficulty of slip transmission across the 

Σ57 (4 4 5) GB. It is found that in Fig. 6.7(d), the leading and trailing partial dislocations 

are successively absorbed by the ‘interior’ disconnection 𝐷′𝛿 , which transforms the 

Frank dislocation into perfect one according to the equation: 𝐴𝐵 + 𝐷′𝛿 → 𝐴𝛿 + 𝐷′𝐵. 
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Fig. 6.7. MD snapshots illustrating the interaction process between Σ57 (4 4 5) GB and a screw dislocation 

gliding on: (a) plane 1 without H, (b) plane 1 with H of 𝜃𝑏𝑢𝑙𝑘= 0.001, (c) plane 2 without H and (d) plane 

2 with H of 𝜃𝑏𝑢𝑙𝑘= 0.001. The insets of each snapshot are coloured by the dislocation type. The light blue 

lines represent the Frank dislocations, the green lines represent the Shockley partial dislocations, the dark 

blue lines indicate the perfect dislocations, and the red line are the other types of dislocations. 

     For Σ171 (11 11 10) GB, ‘exterior’ disconnections can relax into Shockley partial 

dislocations and stair-rod dislocations, with a series of ISFs left in grains, as illustrated 

in Fig. 6.8(a) and (b). The dislocation nucleation event occurring at glide plane 1 

resembles that for the ‘interior’ disconnections with plane 1. When the incident 

dislocation intersects the twin segment on plane 2, the dislocation dissociation is identical 

to the case of Σ3 (1 1 1) GB. However, the dislocation slip on plane 3 produces a new 

interaction mechanism. As seen in Fig. 6.8(a) and (b), the dislocation is first constricted 

into a perfect dislocation due to strong repulsive force from the dissociated ISF, and then 

reflected into a different {111} slip plane in the initial matrix lattice (grain-A) via splitting 

into two Shockley dislocations ( 𝐴𝛿  and 𝛿𝐵 ): 𝛾𝐵 + 𝐴𝛾 → 𝐴𝐵 → 𝐴𝛿 + 𝛿𝐵,  or 1/

6[1̅21] + 1/6[2̅11̅] → 1/2[1̅10] → 1/6[1̅21̅] + 1/6[2̅11]. It is worth noting that there 

is a substantial decrease in the length of ISFs as the H concentration increases in Fig. 

6.8(c) and (d). When the length of ISFs is very short, the emitted Shockley partials can 

react with the residual stair-rod dislocations and then generate 1/3[111] disconnections. 
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This structural change due to H segregation can prominently affect the dislocation-GB 

interaction. Instead of dislocation reflection, the impinging screw dislocation is totally 

absorbed by the Σ171 (11 11 10) GB.  

   
Fig. 6.8. MD snapshots illustrating the interaction process between Σ171 (11 11 10) GB and a screw 

dislocation gliding on plane 3: (a) and (b) without H, (c) and (d) with H of 𝜃𝑏𝑢𝑙𝑘= 0.001.  

     As for Σ451 (15 15 1) GB, Fig. 6.9(a), the dislocation on slip plane 1 is found to 

directly pass through the GB without reacting with neighbouring GB dislocations, 

underlying free slip transmission. Nevertheless, when the incoming dislocation 

approaches the boundary, GB dislocations transform from pure Lomer locks into Lomer-

Cottrell ones: 𝐶𝐷 → 𝐶𝛿 + 𝛿𝛾 + 𝛾𝐷,  or 1/2[1̅1̅0] → 1/6[1̅1̅2] + 1/6[1̅1̅0] + 1/

6[1̅1̅2̅]. This Lomer-Cottrell lock has been observed in many metals through in-situ 

experiments and been proven to contribute to work hardening [202]. After complete slip 

transmission, the dissociated Lomer-Cottrell locks can recombine into a series of pure 

Lomer locks. Under H environment, Fig. 6.9(b) suggests no slip transmission during 

interaction process when only dislocation absorption mechanism is involved. It can be 

therefore concluded that the presence of H atoms increases the barrier for slip 

transmission across the Σ451 (15 15 1) GB. On glide plane 2, Fig. 6.9(c), the leading 

partial 𝛾𝐵 combines with the pure Lomer lock, and nucleates a partial 𝛿𝐵 with a stair-

rod dislocation 2𝛿𝛾  left at the intersection. The stair-rod dislocation 2𝛿𝛾  is of edge 
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character and is sessile because it locates on the unfavourable (001)  slip plane. This 

nucleation process can be expressed as: 𝛾𝐵 + 𝐶𝐷 → 2𝛿𝛾 + 𝛿𝐵 , or 1/6[1̅21] +

1/2[1̅1̅0] → 1/3[1̅1̅0] + 1/6[2̅11].  The dislocation configuration contains two 30º 

partials (𝐴𝛾 and 𝛿𝐵) and one stair-rod dislocation 2𝛿𝛾, which can be identified as a Hirth 

lock. The presence of H atoms again changes the interaction process into dislocation 

absorption where the lattice dislocation is fully absorbed by the H-charged GB (see Fig. 

6.9(d)). 

            
Fig. 6.9. MD snapshots illustrating the interaction process between Σ451 (15 15 1) GB and a screw 

dislocation gliding on: (a) plane 1 without H, (b) plane 1 with H of 𝜃𝑏𝑢𝑙𝑘= 0.001, (c) plane 2 without H 

and (d) plane 2 with H of 𝜃𝑏𝑢𝑙𝑘= 0.001.  

6.3.4 Interaction of dislocation pile-ups with the GB 

     The interaction between dislocation pile-ups of five dislocations and vicinal twin 

boundaries in the presence of H is presented in Fig. 6.10. Taking ‘interior’ disconnections 

as an example, the interaction mechanisms of the first three dislocations are essentially 

the same as the single dislocation case where the incoming dislocations are thoroughly 

absorbed by the boundary. As a consequence of dislocation absorption, the GB structure 

becomes more disordered and the local dilative stress at the reaction site is considerably 

increased. When two additional dislocations impinge on the GB, after absorption, new 
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partial dislocations are emitted from the ‘interior’ disconnection into the twin grain, with 

the local stress relieved to a large extent. It needs to be mentioned that during the stress 

relief process, vacancies are generated by dislocation plasticity due to dynamic 

dislocation-GB interaction, and some of them are transformed into H-vacancy complexes 

by combing with H atoms, as seen in the insets in Fig. 6.10(d). Previous research by Li 

et al. [191] revealed that the nucleated vacancies were naturally stabilised by solute H to 

H-vacancy complexes, serving as the embryos for the nucleation of proto nano-voids. 

The growth and coalescence of nano-voids could contribute to the ultimate failure of 

metallic materials [3, 191]. It is believed that the vacancy formation under the 

environment where dislocation-GB interaction determines the atomic structure of GBs 

and establishes the local stress state is one possible factor for the experimentally-

observed quasi-brittle fracture surfaces of H embrittled steels [46, 106, 203]. 

 

Fig. 6.10. MD snapshots illustrating the interaction process between Σ1241 (20 20 21) GB and 5-

dislocation pile-up gliding on plane #L3 with H of 𝐶𝐻 = 0.14 Å
-2 : (a) absorption of the first three 

dislocations, (b) absorption of the fourth dislocation and (c) absorption of the fifth dislocation. All 

images except insets are coloured by CNA. The left and right insets of each snapshot are coloured by 

CSP and von-Mises shear stress, respectively. (d) Vacancy evolution with the number of incoming 

dislocations in the absence and presence of H. The large pink particles are vacancies detected by 

Atomviewer while the small yellow ones are H atoms. 

6.4 Discussion  

     In this study, the interaction between a screw dislocation and [11̅0] STGBs under 

shear deformation without and with H has been investigated.  In the absence of H, it is 

found that dislocation-GB interactions are sensitive to GB structures and glide planes 

where the incoming dislocation propagates. This dependency was elegantly demonstrated 

by Bachurin et al., who showed that the misorientation angle of the GB, the sign of the 
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Burgers vector of the incoming dislocation and the exact site where the dislocation 

intersected the GB all played important roles in governing dislocation-GB interactions 

[204]. The analysis of the interaction of dislocation with ‘singular’ GBs shows that the 

dislocation dissociation predominates the deformation mechanism. This dissociation is 

achieved through the nucleation and lateral motion of GB disconnections, which 

contributes to the GB migration. By comparison, ‘general’ GBs are of more complicated 

atomic structures as they are a combination of these ‘singular’ GBs with complexity (see 

Fig. 6.2). As a consequence, different glide planes mean different interaction sites where 

the dislocation meets the GB, thereby leading to different interaction mechanisms. The 

reaction outcomes include dislocation nucleation, transmission, dissociation and 

reflection (see Figs. 6.7-6.9). Although extensive dislocation-GB interaction simulations 

have been done to reveal these reactions, most of them are focused on one or two 

mechanisms [194, 195, 205-208].  To our knowledge, such systematic investigation of 

dislocation-GB interactions is the first time conducted by far.  

     In the presence of H, the interaction mechanism is dislocation absorption for the vast 

majority of cases. The leading and trailing partials are successively absorbed by the H-

charged GBs. In the case of Σ11 GB, the interaction is transformed from dislocation 

dissociation to absorption since the presence of H hampers the GB migration. In essence, 

the impeded GB migration is associated with changes of the GB structure during the 

dislocation-GB interaction, leading to the increase in heats of segregation of the solute 

atoms, which cannot diffuse to lower-energy sites within the timeframe of MD 

simulations. This effect has been characterized by ∆𝐸 = [(𝐸𝑑
𝐻 − 𝐸𝐻) − (𝐸𝑑

𝑃 − 𝐸𝑃)]/

𝑁𝐺𝐵
𝐻   in our previous study [209], where 𝐸𝑑

𝐻  and 𝐸𝑑
𝑃  are the system energies after the 

dislocation-GB interaction with and without H, 𝐸𝐻  and 𝐸𝑃  are the system energies 

before the dislocation-GB interaction with and without H, and 𝑁𝐺𝐵
𝐻  is the number of H 

atoms at GBs. The slip transmission of dislocation occurs when the dislocation intersects 

Σ57 GB along plane 2 and Σ451 GB along plane 1 without H (see Fig. 6.7(c) and 6.9(a)). 

It is clear that the former one is partial transmission where only leading partial is 

transferred to the neighbouring grain, whereas the latter one is complete transmission 

where the whole incident dislocation penetrates through the GB. H segregation enables 

the initial GB dislocations to trap and absorb the incoming dislocation (see Fig. 6.7(d) 

and 6.9(b)). In current study, the attachment of H to the initial GB dislocations modifies 

the local stress field, reducing it along the dislocation glide plane, as seen in marked 
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region of Fig. 6.11. This has always been an assumption of the HELP mechanism [20, 

210-212]. Owning to the shielding effect, GB dislocations tend to move along the glide 

plane and interact with the incident dislocation, thereby hindering slip transmission. The 

interaction with Σ171 GB shows that H atoms change the boundary structure and shorten 

the length of ISFs, suppressing dislocation reflection while driving dislocation absorption.  

To account for this it is necessary to consider the influence of H on the dislocation spacing. 

Ferreia et al. showed that the presence of H was observed to reduce the elastic interactions 

between obstacles and perfect and partial dislocations; thus, reducing the equilibrium 

separation distance between dislocations [98]. In our simulation case, H reduces the 

spacing (the length of ISFs) between the emitted Shockley partials and residual stair-rod 

dislocations. Due to the disappearance of ISFs, instead of dislocation reflection, the 

dislocation is absorbed by the GB. Additionally, it is found that H stabilizes the 

configurational structure of dislocations, for example, the pure Lomer locks always 

dissociate into Lomer-Cottrell locks without H, Fig. 6.9(a) and (c), whereas they hold in 

their initial configurations with H, Fig. 6.9(b) and (d). This observation was revealed by 

Ferreira et al. [213], who demonstrated that solute H could stabilize dislocations and stop 

the dislocation cross-slipping. This locking of dislocations by H can also be evident in 

Figs. 6.7-6.9 where after dislocation absorption, the newly-formed GB dislocations stay 

at their positions without further nucleation or transmission into the neighbouring grain.  

 
Fig. 6.11. Shear stress component on GB dislocations of Σ451 (15 15 1): (a) without H and (b) with H of 

𝜃𝑏𝑢𝑙𝑘= 0.001. H atoms are removed to facilitate viewing of the defect structures.      

     As aforementioned, there is a tendency for solute H to increase the difficulty of 

dislocation reactions (transmission, nucleation, dissociation and reflection). To quantify 

this effect, we introduced a control box at the intersection to measure the energy barrier 

for the dislocation-GB interaction [214]. The defect atoms within the control box were 

identified by CSP value (𝑃 > 0.5), and the energy barrier was calculated by considering 
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the net change in potential energy of the defect atoms during the dislocation-GB 

interaction normalized by the atomic volume of defect atoms: 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 =
∑ 𝐸𝑙𝑜𝑎𝑑

𝑖𝑛
𝑖 −𝐸𝑠

𝑉
  , 

where 𝐸𝑙𝑜𝑎𝑑
𝑖  is the real-time potential energy of defect atom 𝑖 upon shear loading, 𝐸𝑠 is 

the static energy, and  𝑉 is the total volume of defect atoms in the static configuration. 

Fig. 6.12(a) plots the evolution of energy barrier for dislocation interaction with Σ57 GB 

during deformation. After the dislocation intersects the boundary, there is a sharp increase 

of the energy until a maximum value where the dislocation reaction occurs. Subsequently, 

the energy plummets, corresponding to the completion of the interaction. The maximum 

value is taken as the energy barrier for dislocation-GB interaction. To link this with 

intrinsic GB parameter, we rationalise the energy barrier for various types of GBs with 

initial GB energy in Fig. 6.12(b). For each type of GB, there is a strong inverse 

relationship between the energy barrier for dislocation-GB interaction and the GB energy; 

that is, the GBs with lower GB energy provide a higher energy barrier for dislocation 

interaction, which is in concordance with Sangid’s conclusion [214]. However, the fitted 

power law function in current study is slightly different from Sangid’s model as we adopt 

a different potential for Ni and use different GB types. 

Fig. 6.12. (a) Interaction of dislocation with Σ57 (4 4 5) GB in terms of the energy barrier to the applied 

shear strain. (b) Energy barrier for dislocation-GB interaction plotted against the static GB energy for 

various types of GBs without and with H.   

     Here it is important to stress that the introduction of H atoms into the GB generally 

increases the energy barrier for dislocation-GB interaction (see Fig. 6.12(b)). This 

manifests that the GB tends to impede the slip transmission and dissociation of the 

incoming dislocation in the presence of H. Alternatively, the lattice dislocation is always 

absorbed into the GB, agreeing well with the simulation results in Figs. 6.7-6.9. 

Furthermore, our simulations reveal that dislocation absorption disorders the atomic 

structure of GBs and establishes a local stress state. These factors have been proposed to 
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play a critical role in achieving intergranular fracture in experiments [47, 203]. Hence, 

based on our simulation results and experimental evidence, the following consequences 

may be anticipated. When lattice dislocations interact with the GB, the segregation of H 

atoms is prone to impede the process of slip transmission and dislocation dissociation, 

and thus promote dislocation absorption. This activates the GB to a more disordered 

atomic structure and increases the localised strain energy stored within the GB. To relieve 

the accumulated energy, an alternative response such as vacancy formation and crack 

propagation may be initiated, causing the H-induced intergranular decohesion.  

6.5 Summary  

 In summary, by using atomistic simulations, the interaction mechanisms between a 

screw dislocation and various [11̅0] STGBs in Ni without and with H were studied, with 

special emphasis on the solute H effects on them. The main results are summarised as 

follows.  

(1) The incident dislocation dissociated into GB dislocations while intersecting 

‘singular’ GBs. This dissociation was achieved through the nucleation and lateral motion 

of GB disconnections, which contributed to the GB migration. For interactions with 

‘general’ GBs, several possible dislocation reactions occurred depending on the specific 

glide planes and GB structures. When the incoming dislocation interacts with the GB, it 

directly transmitted into the neighbouring grain, or promoted the nucleation of new 

dislocations from the GB, or reflected back into the initial grain.  

    (2) Segregated H atoms transformed interaction mechanisms into ones involving 

dislocation absorption for most of GBs. The twin boundary of Σ3 GB and twin segments 

of Σ171 GB hardly trapped H atoms, therefore the transformation was not observed. The 

change from dislocation dissociation to absorption for ‘singular’ GBs was attributed to 

that H impeded the GB migration. In the case of ‘general’ GBs, the boundaries were 

prone to absorb the incident dislocation within the framework of HELP mechanism 

where H modifies the stress field of GB dislocations, reduces the equilibrium separation 

distance between GB dislocations, and stabilizes the configurational structure of GB 

dislocations.  

(3) The energy barrier for dislocation-GB interaction was found to strongly correlate 

with the static GB energy in both H-free and H-charged cases. GBs with lower interfacial 

energy provided a higher barrier for dislocation interaction. The presence of H atoms 

generally increased the energy barrier for dislocation-GB interaction (dislocation 
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nucleation, transmission, dissociation and reflection), thereby promoting dislocation 

absorption. This activated the GB to a more disordered atomic structure and established 

a local stress state, which is expected to contribute to the H-induced intergranular fracture 

via vacancy formation and crack propagation.  
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Chapter 7 Atomistic investigation of hydrogen induced 

decohesion of grain boundaries 

 

 

 

 

 

 

7.1 Introduction  

     This chapter is focused on direct simulations of the decohesion of Ni GBs in the 

presence of H. To this end, two cohesive parameters including the GB cohesive strength 

and the fracture energy of the GB as a function of H concentrations and GB types during 

GB separation process were first examined. Then the GB cohesive properties aided by 

dislocation-GB interactions that could establish the conditions—stress state, boundary 

disruption and critical hydrogen concentration to cause the GB to become the weak link 

in metallic systems were studied.  Finally, these calculations were coupled with 

experimental observations of high dislocation plasticity, which provide a picture of H 

embrittlement arising from the cooperative action of H-induced plasticity and GB 

decohesion. 

7.2 Computational approach 

     All calculations were performed using the molecular dynamics code (LAMMPS) [155] 

and simulation samples were visualised using the OVITO [166]. The semi-empirical 

EAM potential for Ni-H used in the present study was first introduced by Angelo et al. 

[160] and then modified by Curtin et al. [28，29] to eliminate the instability of NiH 

hydrides. Twenty types of symmetric tilt Ni GBs with ⟨100⟩, ⟨110⟩ and ⟨111⟩ tilt axis 

were constructed on the basis of the CSL model, as listed in Table 7.1. The dimension of 

each of grains along Y direction was set to 60 Å. The simulation domain extends 6 repeat 

units (RUs) along X direction and 3 RUs along Z direction, as shown in Fig. 7.1. Periodic 

boundary conditions were enforced in all three directions. To avoid any effects of the 

second GB along Y direction, regions of 10 Å thickness were set as vacuum spaces on 

the top of grain-A and the bottom of grain-B. The bulk and free surface (FS) models have 

This chapter is extracted from the following publication: 
 

Li J, Lu C*, Pei L, Zhang C, Wang R. Atomistic investigation of hydrogen induced 

decohesion of Ni grain boundaries. Mech Mater. 2020;150:103586. 
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the same dimensions as the bicrystal model. After structural initialization, the atoms in 

bulk, GB and FS samples were fully optimised during energy minimisation process.  

     The GB energy 𝛾𝐺𝐵 is determined as the difference between the energy of GB sample 

and that of bulk sample, divided by the GB area:  

                                                      𝛾𝐺𝐵 =
𝐸𝐺𝐵−𝐸𝑏𝑢𝑙𝑘

𝐴
                                                                  (7.1) 

     The propensity of H to segregate into the GB is defined by the segregation energy 

given by Eq. 7.2: 

                                        𝐸𝑠𝑒𝑔
𝛼 = (𝐸𝐺𝐵+𝐻

𝛼 − 𝐸𝐺𝐵) − (𝐸𝑏𝑢𝑙𝑘+𝐻 − 𝐸𝑏𝑢𝑙𝑘)                         (7.2) 

where 𝐸𝐺𝐵, 𝐸𝐺𝐵+𝐻
𝛼 , 𝐸𝑏𝑢𝑙𝑘 and 𝐸𝑏𝑢𝑙𝑘+𝐻 are the system energy of the clean GB, the GB 

with H atom at trapping site 𝛼 , the clean bulk Ni and the bulk sample with H atom, 

respectively. To find all possible trapping sites along GBs, a geometric approach of space 

tessellation of polyhedral packing units was used [209]. 

 
Table 7.1. Characterization of the GBs, including Σ value, tilt angle, numbers of atoms and GB energies. 

 

Sigma (𝜮) Angle 

(°) 
GB energy 

(𝑱 ∙ 𝒎−𝟐) 
No. of 

atoms 
Sigma (𝜮) Angle 

(°) 
GB energy 

(𝑱 ∙ 𝒎−𝟐) 
No. of 

atoms 

13(510) ⟨100⟩ 22.62 1.22 8736 17(223) ⟨110⟩ 86.63 0.95 13920 

17(410) ⟨100⟩ 28.07 1.25 8820 17(334) ⟨110⟩ 93.37 0.88 17100 

5(310) ⟨100⟩ 36.87 1.21 9000 3(111) ⟨110⟩ 109.47 0.09 11520 

5(210) ⟨100⟩ 53.13 1.26 8508 11(332) ⟨110⟩ 129.52 1.01 13788 

17(530) ⟨100⟩ 61.93 1.19 11712 9(221) ⟨110⟩ 141.06 1.17 13020 

5(320) ⟨100⟩ 67.38 1.10 10008 19(331) ⟨110⟩ 153.48 1.15 15648 

19(116) ⟨110⟩ 26.53 1.00 16350 13(143) ⟨111⟩ 27.80 1.16 12672 

9(114) ⟨110⟩ 38.94 0.88 12894 7(132) ⟨111⟩ 38.20 1.18 15768 

11(113) ⟨110⟩ 50.48 0.43 10752 19(253) ⟨111⟩ 46.80 1.19 19080 

3(112) ⟨110⟩ 70.53 0.90 14430 3(121) ⟨111⟩ 60.00 0.90 16650 
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Fig. 7.1. (a) Schematic illustration of the bicrystal sample. Atomic structure of (b) Ni bulk, (c) Σ5 (210) 

GB and (d) Ni (210) free surface.     

     According to H segregation energy, the H occupation probability at site 𝛼 is derived 

as: 

                                                 𝜃𝛼 =
𝜃𝑏𝑢𝑙𝑘exp (−𝐸𝑠𝑒𝑔

𝛼 /𝐾𝐵𝑇)

1+𝜃𝑏𝑢𝑙𝑘exp (−𝐸𝑠𝑒𝑔
𝛼 /𝐾𝐵𝑇)

                                                    (7.3) 

where 𝜃𝑏𝑢𝑙𝑘 is bulk H concentration in atomic ratio, 𝐾𝐵 is Boltzmann’s constant and 𝑇 is 

the temperature. The bulk H concentration is set at 𝜃𝑏𝑢𝑙𝑘  = 0.001 where H-induced 

intergranular fracture has been observed [149]. The Ni-H configurations were created by 

inserting H atoms into ‘favourable’ trapping sites based on 𝜃𝛼 . Here all sites with a 

negative 𝐸𝑠𝑒𝑔
𝛼  are defined as ‘favourable’. In addition, to amplify the solute H effect, an 

extreme case was also considered, namely, all favourable trapping sites were filled by H 

atoms independent of 𝜃𝑏𝑢𝑙𝑘. This was quantified by the maximum excess, calculated by 

dividing the total number of favourable sites by the GB area. After attaining Ni-H 

configurations with a desired H coverage, the system cell was optimised via non-linear 

conjugate gradient energy minimisation.  

      The computational tensile tests were carried out to investigate the influence of H 

segregation on GB cohesive properties. The cleavage plane was set a priori [29] and the 

two grains (grain-A and grain-B) were rigidly separated at the cleavage plane parallel to 

the boundary by inserting some distance (0.1, 0.2, 0.3 ….., 6 Å, etc.). After each 

separation, the interfacial stress 𝜎𝑦𝑦  was directly computed according to the virial 
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theorem by the formula [215]:  

𝜎𝑖𝑗 =
1

𝑉
∑(

1

2
∑ 𝑟𝛼𝛽

𝑖

𝑁

𝛽=1

𝐹𝛼𝛽
𝑗
−𝑚𝛼𝑣𝑖

𝛼𝑣𝑗
𝛼)

𝑁

𝛼=1

                                              (5.4) 

Here, 𝑖  and 𝑗  denote indices in the Cartesian coordinates and 𝛼  and 𝛽  are atom index 

numbers. 𝑚  and 𝑣  indicate the mass and velocity of the atom. 𝑟𝛼𝛽  and 𝐹𝛼𝛽  are the 

distance and force between atom 𝛼 and 𝛽, respectively. 𝑉stands for the volume of system 

with total number of atoms 𝑁. The theoretical cohesive strength can be taken as the peak 

value of tensile stress. The separation energy 𝐸𝑠𝑒𝑝, can be obtained from the difference 

between the real-time and initial system energies: 

                                                      𝐸𝑠𝑒𝑝 =
𝐸𝑥− 𝐸𝐺𝐵

𝐴
                                                                      (7.5) 

where 𝐸𝑥 is the real-time energy of the fracture sample with a separation distance of 𝑥. 

The limit of the separation energy at a separation distance that the energy does not change 

any more, is defined as the fracture energy. Two types of calculations about fracture 

energy were conducted: (1) rigid separation without subsequent relaxations, 𝐸𝑓𝑟𝑎𝑐
𝑢 ; (2) 

with atomic relaxations, 𝐸𝑓𝑟𝑎𝑐
𝑟 . For each GB type, several possible cleavage planes were 

chosen to determine the minimum theoretical cohesive strength and fracture energy 

surfaces as shown in Fig. 7.2. 

     The H diffusion process is ignored during separation in the above tensile tests. 

However, it is possible for solute H to diffuse over a few atomic hops from the immediate 

sub-surface to the fracture surface so as to change the fracture energy [29].  Due to the 

limit of simulation time scales, it is not possible to conduct direct simulation of such local 

diffusion. Herein, we move all sub-surface H into favourable trapping sites on the fracture 

surface by hand, and then calculate the corresponding fracture energy.  
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Fig. 7.2. Schematic diagram of (a) the fracture paths for the Σ5 (210) ⟨100⟩ GB and (b) the totally separated 

two free surfaces. P1, P2 and P3 stand for the potential cutting planes separating two grains.  

7.3 Results  

7.3.1 H trapping map 

Fig. 7.3 shows H segregation energy maps for four typical GB/FS. The possible 

trapping sites are indicated by small spheres and coloured according to the segregation 

energy. For the GB, most of the trapping sites with segregation energy that is different 

from that of the bulk occur within a region ±5 Å from the boundary centre, manifesting 

that the GB region is energetically conducive to H segregation. As for the FS, H atoms 

prefer to occupy at the surface layers.  Taking the Σ5 (210) GB/FS as an example, the 

lowest segregation energy for this GB is -0.28 eV and the corresponding sites are located 

at the GB centre. In contrast, trapping sites with the lowest segregation energy of -0.55 

eV are on the top layer of the FS.  

The summary of segregation energy maps including GB/FS energy, H segregation 

energy and maximum excess H concentration is plotted in Fig. 7.4. It is obvious that 

segregation energies vary somewhat over the misorientation range except Σ3 (111) ⟨110⟩ 

case. Σ3 (111) ⟨110⟩ has the segregation energy of -0.04 eV and -0.47 eV at the GB and 

FS, respectively, which is much higher than that at other GB/FS. This is ascribed to the 

atomic configuration that Σ3 (111) ⟨110⟩ GB is the most compact boundary in face-

centred cubic crystals, and its coherent twin structure composed of close-packed (111) 

layers provides very small excess volume for H segregation. The trapping ability of 

GB/FS is quantitatively evaluated by the maximum excess H concentration, as marked 

by triangles in Fig. 7.4(a) and (b), respectively. The range of maximum excess is 0.03-
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0.22 Å-2 for a GB and 0.06-0.16 Å-2 for a FS. Furthermore, it is found that the maximum 

excess H concentration is prominently varied with different tilt axis and misorientation 

angle, being indicative of that the H trapping ability is sensitive to the GB/FS character.  

     

 

Fig. 7.3. H segregation energy maps for four types of GB/FS. Larger spheres represent Ni atoms, and 

smaller ones indicate possible H trapping sites. 
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Fig. 7.4. Summary of segregation energy maps for 20 types of GB and FS tilted around 〈100〉, 〈110〉 and 

〈111〉  axis. Squares denote GB/FS energy, solid and hollow circles denote the lowest and highest H 

segregation energy, respectively, and triangles denote maximum excess H concentration. 

7.3.2 Computational tensile tests 

     Fig. 7.5 shows the rigid separation energy and tensile stress of bulk Ni, clean GB, GB 

with bulk H concentration of 𝜃𝑏𝑢𝑙𝑘 = 0.001 and maximum excess of H. For each case, 

the fracture plane with the minimum theoretical cohesive strength and fracture energy is 

chosen to plot these curves. As can be seen in Fig. 7.5, all GBs show a similar trend for 

cohesive properties. There is a sharp increase of the separation energy with separation 

distance at the beginning. Subsequently, it rises at a slower rate until the energy reaches 

an asymptote. By comparing separation energy of different configurations, it is found 

that the energy of clean GB is lower than that of bulk Ni, and the presence of H atoms 

decreases the separation energy of the GB. In addition, the results in Fig. 7.5(d)-(f) 

present that the theoretical cohesive strength of bulk Ni is the largest. Compared to the 

clean GB, H segregation slightly decreases the tensile strength of the GB.   

     The cohesive properties calculated for all the bulk/GBs under different H 

environments are plotted in Fig. 7.6, and some scenarios of interest are summarised in 

Table 7.2 and 7.3. It can be seen that the cohesive strengths of GBs are not pronouncedly 

changed by H at 𝜃𝑏𝑢𝑙𝑘 = 0.001. The maximum reduction in the tensile strength occurs at 
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Σ5 (210) ⟨100⟩ GB, with the value decreased by 6.60% from 27.12 GPa to 25.33 GPa. 

To amplify the role of H atoms, all possible trapping sites of each GB were occupied by 

H, and the corresponding strength was computed. As shown in Fig. 7.6(a) and Table 7.2, 

even though with maximum excess H concentration, there is no remarkable reduction in 

the strength, with a maximum drop of only 7.99% for the Σ3 (121) ⟨111⟩ GB. As a 

comparison, the calculation of the cohesive strength of bulk Ni separated across a fracture 

plane parallel to each GB is also presented. The maximum excess of H in bulk Ni is 

considered by filling all octahedral sites located within ±5 Å from the fracture plane. 

Similar to the GB, H segregation causes a slight decrease in theoretical cohesive strength 

of bulk Ni. Taking the Ni (210) as an example, the reduction is from 27.25 GPa to 26.34 

GPa, only 3.34%. 

     The unrelaxed and relaxed fracture energies of GBs are summarised in Table 7.2. 

Atomic relaxation reduces the fracture energy of each GB in the absence and presence of 

H. In addition, it can be seen that H segregation does not prominently decrease the 

unrelaxed or relaxed fracture energy.  For all investigated GBs at 𝜃𝑏𝑢𝑙𝑘  = 0.001, the 

magnitude of the reduction of fracture energy is no more than 12% of clean GB cases. To 

investigate the local H diffusion, all sub-surface H atoms were moved to the final fracture 

surfaces, and the corresponding relaxed fracture energy was calculated. The diffusion 

process lowers the energy, but the magnitude of change remains small, with a maximum 

reduction of 15.75% for the Σ17 (530) ⟨100⟩ GB.  By comparison, there is a precipitous 

drop in fracture energy when H atoms are introduced into GBs with maximum excess, 

ranging from 10.23% to 41.52% across all GBs. Considering the local H diffusion 

process,  the maximum reduction can reach as high as 46.49%, obtained for Σ9 (221) 

⟨110⟩ GB. According to Griffith criterion, the brittle cleavage process is mainly 

controlled by the critical stress intensity, expressed by the equation 𝐾𝐼
𝑐 = √𝐸𝑓𝑟𝑎𝑐

𝑟 /𝐴1, 

where 𝐴1 is a constant depending on the anisotropic linear elasticity [132].  Therefore, 

even though the maximum reduction in the relaxed fracture energy (𝐸𝑓𝑟𝑎𝑐
𝑟 ) can reach 

46.49% for the GB with maximum excess of H plus local H diffusion, the critical stress 

intensity (𝐾𝐼
𝑐) is reduced only by 26.83%. In this regard, the tendency for significant 

promotion of the intergranular fracture seems small. 
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Fig. 7.5. Rigid separation energy and tensile stress as a function of separation distance for different GBs 

under varying H concentrations: (a) and (d) Σ5 (210) ⟨100⟩ GB, (b) and (e) Σ3 (111) ⟨110⟩ GB, (c) and (f) 

Σ3 (121) ⟨111⟩ GB.             

               

        
Fig. 7.6. Theoretical cohesive strength and fracture energy plotted as a function of misorientation angle 

with different tilt axes. The vertical dashed lines indicate the GBs of interest. 
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Table 7.2. Theoretical cohesive strength and fracture energy of GBs. The minimum values of cohesive properties for each GB are highlighted in bold.  P1, P2 and P3 

are the cleavage planes. 

 

 

Theoretical cohesive strength (GPa) Fracture energy (J/m2) 

𝜃𝑏𝑢𝑙𝑘=0 𝜃𝑏𝑢𝑙𝑘=0.001 
Maximum 

excess of H 

𝜃𝑏𝑢𝑙𝑘=0 𝜃𝑏𝑢𝑙𝑘=0.001 

𝜃𝑏𝑢𝑙𝑘=0.001, 

local 

diffusion 

Maximum excess 

of H 

Maximum excess 

of H, local 

diffusion 

𝐸𝑓𝑟𝑎𝑐
𝑢  𝐸𝑓𝑟𝑎𝑐

𝑟  𝐸𝑓𝑟𝑎𝑐
𝑢  𝐸𝑓𝑟𝑎𝑐

𝑟  𝐸𝑓𝑟𝑎𝑐
𝑟  𝐸𝑓𝑟𝑎𝑐

𝑢  𝐸𝑓𝑟𝑎𝑐
𝑟  𝐸𝑓𝑟𝑎𝑐

𝑟  

Σ5(210) 

<100> 

P1 27.12 26.05 24.97 5.05 3.74 4.87 3.70 3.51 3.81 3.35 3.35 

P2 28.96 26.81 25.67 5.21 3.86 4.89 3.60 3.42 4.41 3.10 2.92 

P3 27.12 25.33 25.61 4.14 3.74 3.68 3.78 3.30 3.47 3.20 3.09 

Σ17(530)<

100> 

P1 26.28   25.75 25.43 5.12 3.89 4.95   3.66 3.38 4.18 3.95 3.91 

P2 26.85 25.99 24.68 4.66 3.81 4.32 3.39 3.21 3.24 2.74 2.63 

P3 26.75 26.24 24.74 4.30 3.81 3.93 3.36 4.33 3.54 2.89 2.78 

Σ11(113)<

110> 

P1 26.50 26.73 26.14 4.90 4.79 4.87 4.70 4.11 4.46 4.11 3.97 

P2 26.39 26.18 25.90 5.01 4.39 4.80 3.98 3.77 4.12 3.59 3.28 

P3 27.61 27.10 25.94 4.60 4.41 4.34 4.02 4.02 3.84 3.64 3.44 

Σ3(111) 

<110> 

P1 27.84 27.53 27.83 4.01 4.00 3.99 3.96 3.71 3.75 3.70 3.59 

P2 28.02 27.65 27.92 3.94 3.91 3.84 3.70 3.59 3.67 3.51 3.40 

P3 28.02 27.64 27.97 3.94 3.91 3.85 3.70 3.69 3.65 3.65 3.65 

Σ9(221) 

<110> 

P1 27.05 26.62 28.50 4.76 3.62 4.63 3.25 3.17 4.04 2.70 2.34 

P2 26.78 27.20 29.92 4.51 3.42 4.26 3.19 3.19 4.19 2.89 2.11 

P3 26.21 25.81 24.20 3.48 3.44 3.35 3.29 3.08 3.01 2.00 1.83 

Σ7(132) 

<111> 

P1 25.87 26.40 26.18 4.96 3.79 4.92 3.62 3.51 4.86 3.64 3.03 

P2 26.33 25.61 25.17 4.90 3.70 4.82 3.63 3.44 4.51 3.44 3.44 

P3 27.15 27.46 27.12 4.48 3.88 4.39 3.63 3.54 3.87 3.27 2.90 

Σ3(121) 

<111> 

P1 27.54 25.49 24.69 4.59 4.13 4.86 4.43 4.00 4.49 3.31 2.89 

P2 26.03 26.37 24.70 4.40 3.77 3.94 3.48 3.40 3.54 2.84 2.41 

P3 27.08 25.80 23.95 4.11 3.77 3.63 3.53 3.37 3.20 3.01 2.65 
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Table 7.3. Theoretical cohesive strength and fracture energy of bulk Ni.  

 

 

 

 

 

 

 

 

7.3.3 GB decohesion aided by plasticity 

     During the deformation and failure process in metals, dislocation plasticity could 

combine H atoms to cause the cohesive strength of the GB to become the weak link in 

metallic systems and therefore the source of crack nucleation [19, 20, 108]. Thus it is 

necessary to investigate the GB decohesion aided by localised plasticity.  Plasticity 

(dynamic dislocation-GB interactions) typically provokes the GB to transform into an 

activated state with a more disordered atomic structure, and establishes a local stress 

state [216], we therefore directly quantify the influence of the two factors (boundary 

disruption and stress state) on the H-induced GB decohesion by computing the 

reduction in cohesive strength. Here, we choose three typical GBs (Σ5 (210) ⟨100⟩, Σ3 

(111) ⟨110⟩ and Σ3 (121) ⟨111⟩) to identify the dependency of the GB cohesive strength 

on GB type. The schematics of the calculation for the GB cohesive strength with various 

configurations are shown in Fig. 7.7. For clean GB in Fig. 7.7(a), the transverse stresses 

are kept free. The model in Fig. 7.7(b) is the same as clean GB, but filled with maximum 

excess of H. For Fig. 7.7(c), the disordered boundary structure is obtained via displacing 

GB atoms randomly in all directions, followed by a local minimisation. It is obvious 

that after boundary disruption, GB has a higher centrosymmetry parameter value and 

more distorted environments. In the case of the model in Fig. 7.7(d), the transverse 

stresses are applied in X and Z directions to imitate the local stress state. Finally, the 

above all factors are combined into the model in Fig. 7.7(e).    

     Fig. 7.8 shows the tensile stress–separation distance curves for various GB 

configurations in Fig. 7.7. Due to the randomness in the boundary disruption artificially 

introduced on the GB, we have prepared ten models with different disordered atomic 

 

Theoretical cohesive 

strength (GPa) 

Relaxed fracture energy,  

𝐸𝑓𝑟𝑎𝑐
𝑟  (J/m2) 

𝜃𝑏𝑢𝑙𝑘=0 
Maximum 

excess of H 
𝜃𝑏𝑢𝑙𝑘=0 

Maximum 

excess of H 

Ni(210) 27.25 26.34 4.89 3.27 

Ni(530) 26.83 26.41 4.89 3.31 

Ni(113) 27.49 27.02 4.81 3.22 

Ni(111) 28.33 28.15 3.99 3.46 

Ni(221) 27.10 26.48 4.58 2.64 

Ni(132) 26.48 25.92 4.87 3.12 

Ni(121) 26.96 26.22 4.66 2.76 



130 

 
 
 

structures. The averaged cohesive strength of these ten models is given in Table 7.4 

accordingly. Similarly, five models with different transverse stress values ranging from 

0 GPa to 5 GPa are used here in calculation of GB cohesive strength under stress state. 

As shown in Fig. 7.8 and Table 7.4, the presence of H does not reduce the cohesive 

strength significantly by itself, i.e., the reduction of 7.93% for  the Σ5 (210) ⟨100⟩ GB, 

0.04% for the Σ3 (111) ⟨110⟩ GB and 7.99% for the Σ3 (121) ⟨111⟩ GB.  By comparison, 

the magnitude of the reduction of cohesive strength can reach as high as 29.65% for the 

Σ5 (210) ⟨100⟩ GB, 23.74% for the Σ3 (111) ⟨110⟩ GB and 25.12% for the Σ3 (121) 

⟨111⟩ GB when localised plasticity (boundary disruption and local stress state) is 

considered. 

 

        
Fig. 7.7. Calculation for GB cohesive strength with various configurations: (a) Ni GB, (b) Ni GB, 

maximum excess of H, (c) Ni GB, boundary disruption, (d) Ni GB, local stress state and (e) Ni GB, with 

three factors combined. Ni atoms are coloured according to their centrosymmetry value, and H atoms are 

assigned in purple.      
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Fig. 7.8. Tensile stress-separation distance curves for tensile stretching of various GBs: (a) Σ5 (210) ⟨100⟩, 

(b) Σ3 (111) ⟨110⟩, and (c) Σ3 (121) ⟨111⟩. 

                      
Table 7.4. Theoretical cohesive strength of various GBs with different configurations. 

 

7.4 Discussion 

     Previously, some studies directly measured the reduction in the GB cohesive 

strength with varying H coverage [55, 56, 150, 151]. However, H coverage was 

unrealistic as only some lowest-energy trapping sites were identified and filled. 

Furthermore, the dependency of the GB cohesive strength on H coverage should be 

conducted in the context of GB type as for the same H concentration, the H-induced 

reduction may differ from various GBs. In the present study, a powerful geometric 

approach of space tessellation was used for finding every possible trapping site, which 

provides an atomistically-based thermodynamic framework to quantify the GB fracture 

by H segregation in Ni.  In addition, various ⟨100⟩, ⟨110⟩ and ⟨111⟩ GBs were studied 

to explore the influence of GB type on the relationship between the GB cohesive 

strength and H coverage.  

     By mapping H segregation energy at the GB/FS and calculating cohesive properties 

during GB separation along the fracture plane, it is found that the theoretical cohesive 

strength and fracture energy are sensitive to GB type. Among all investigated cases, Σ3 

(111) ⟨110⟩ GB exhibits marginal reduction in cohesive strength and energy due to H 

segregation, being in concordance with the DFT calculation [56]. Under the equilibrium 

Various configurations 

Cohesive strength (GPa) 

Σ5 (210) ⟨100⟩ 

GB 

Σ3 (111) ⟨110⟩ 

GB 

Σ3 (121) ⟨111⟩ 

GB 

Ni GB 27.12 27.84 26.03 

Ni GB, maximum excess of H 24.97 27.83 23.95 

Ni GB, boundary disruption  23.31 24.59 23.85 

Ni GB, stress state 21.67 25.89 23.42 

Ni GB, three factors combined 19.08 21.23 19.49 
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H concentration where H embrittlement in Ni is observed ( 𝜃𝑏𝑢𝑙𝑘  = 0.001), in 

conjunction with local H diffusion process the maximum reduction of tensile strength 

and fracture energy is 6.60% and 15.75% for Σ5 (210) ⟨100⟩ and Σ17 (530) ⟨100⟩ GBs, 

respectively. As such, one question needs to be considered: whether such weakening of 

the GB due to H (only a few percent of the strength reduction) is sufficient to induce a 

transition from transgranular to intergranular failure in experiments [149]?  

 Although it is abstruse to answer this question today, more recently, numerous 

studies of the microstructure beneath H-induced intergranular facets in structural 

materials such as Ni and Fe, martensitic, and austenitic steels indicate that H-enhanced 

plasticity (dynamic dislocation-GB interactions) plays a critical role in establishing the 

conditions for intergranular fracture by boundary decohesion [19, 20, 108].  

Experimental evidence showed that the microstructure was comprised of extremely 

high density of dislocations, which was more evolved and complicated than expected 

for the failure strain. In fact, for the Ni case, this dislocation structure was found to 

extend over a significant distance from the fracture surface, suggestive of an 

acceleration of plasticity process and pre-failure deformation prior to crack initiation. 

Combining the experimental observations of accelerated plasticity and direct 

decohesion calculations, the mechanism of plasticity-mediated decohesion becomes 

evident. Under this scenario, the ultimate fracture behaviour itself is by HEDE but the 

conditions for achieving it are via HELP (combined effects of HEDE and HELP).  

 Herein, the role of HELP mechanism is assumed to be threefold: (i) the plasticity 

accumulation induced by slip transfer provides an effective path for H atoms to be 

deposited into the GB. If the dislocations intersecting with the GB are transporting H 

atoms, the consequence of slip transmission will accumulate H atoms on the GB. 

Additionally, the change in the GB structure due to dislocation-GB interactions allows 

the GB to accommodate more H atoms as additional favourable trappings sites are 

generated. In the current study, all calculations are performed at fixed segregation of H 

to the GB, and this dynamic H transportation process is not considered. Therefore, our 

calculation of the reduction in GB cohesive properties is likely an underestimate of H 

embrittling effect on ultimate decohesion; (ii) when the dislocations are incorporated 

into the GB, the segregated GB by H tends to trap the incoming dislocations [216]. The 

dislocation accumulation activates the GB to a more disordered structure and increases 

the strain energy density within the GB. By quantitative calculation in Fig. 7.8 and Table 
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7.4, it is found that the GB with a more disordered atomic structure can reduce the 

cohesive strength of the GB even without H atoms. For example, the reduction is 

3.81GPa for the Σ5 (210) ⟨100⟩ GB with a boundary disruption, being comparable to 

2.15 GPa for the GB in the presence of H. Based on this calculation, it is suggested that 

GB disruption caused by dislocation plasticity process is important in achieving H 

embrittling effect in metallic materials; (iii) as the GB hinders slip transfer, a local stress 

state on the GB is built up. Similar to the factor of boundary disruption, stress state can 

also help reduce the GB cohesive strength and play a crucial role in the embrittlement 

process. Ultimately, with these conditions combined, our results reveal that the final 

decohesion process (HEDE activation) is largely facilitated.  

7.5 Summary 

     In summary, H trapping maps and H-induced change in cohesive properties of 

various GBs were studied using MD simulations. Under conditions typical of H-

induced intergranular fracture in Ni, the maximum reduction in the GB cohesive 

strength and fracture energy due to H segregation was 6.60% and 15.75%. Combining 

these calculations with experimental observations of high dislocation plasticity, it was 

revealed that the realisation of H embrittling effect in metallic materials was largely 

assisted by the boundary disruption and local stress state concentrated on the GB 

through the plasticity process. These findings advance the atomic-level understanding 

of the GB decohesion, and suggest appropriate directions for design of new materials 

against H embrittlement. 
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Chapter 8 Hydrogen-modified behaviour of cracks 

along grain boundaries  

 

 

 

 

 

 

8.1 Introduction  

     As the occurrence of HE is frequently along GBs in polycrystalline metals, and often 

shows cleavage-like features, it is believed that understanding of crack behaviour along 

GBs is fundamental to clarify HE. Considering cleavage-like failure to happen by the 

propagation of sharp cracks, such a process is suppressed if dislocation emission blunts 

the crack tip. This points towards examining crack-tip specific behaviour (the inherent 

competition between brittle cleavage and ductile emission) associated with hydrogen. 

In this chapter, the technique of MD simulations was employed to investigate the H-

modified behaviour of GB cracks in α-Fe bicrystal models. Various H concentrations, 

loading spectra (monotonic and cyclic) and GB types (symmetric and asymmetric) were 

considered for increasing complexity. The remainder of this chapter is organized as 

follows. The simulation methodology is described in Section 8.2. Theoretical 

predictions according to Griffith’s and Rice’s models of brittle cleavage and ductile 

emission, separately, and atomistic mechanisms of crack tip events in the presence of 

H under various loading spectra are given in Section 8.3. The results are discussed in 

terms of H-induced transition into intergranular failure, and a summary is concluded in 

Section 8.4. 

8.2 Computational approach 

     All simulations were carried out using the Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) [155] with a Finnis–Sinclair-type embedded-atom-

method potential for Fe-H [67, 162]. Four bicrystal models with tilt GBs were 

established with specified crystallographic orientations: Σ3 (1 1 2) [1 1̅ 0] GB, Σ17 (2 

2 3) [1 1̅ 0] GB, Σ5 (2 1̅ 0) [0 0 1] GB,  and Σ11 (5 5 7)A(7̅ 7̅ 1)B [1 1̅ 0] GB, as shown 

This chapter is extracted from the following publication: 
 

Li J, Lu C*, Wang L, Pei L, Godbole A, Michal G. The role of hydrogen on the 

behavior of intergranular cracks in bicrystalline α-Fe nanowires. Nanomaterials. 

2021;11:294. 
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in Fig. 8.1(d)-(g). The simulation domains have dimensions 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 of about 430 

Å × 480 Å × 20 Å and a total number of atoms of about 3.6 × 105. A crack of length 

100 Å was created by removing three atomic planes along the boundary, and the 

periodic boundary condition was imposed along the crack front direction (Z axis).  The 

atoms within the 10 Å thick region near the free surfaces along the Y direction were 

fixed and frozen by setting the interatomic force to zero. An incremental displacement 

was applied to the frozen atoms to load the crack according to anisotropic elastic mode 

I stress intensity field 𝐾𝐼 [217]. To study the effects of solute H, H atoms were randomly 

inserted into simulation models with four H concentrations of approximately 45, 90, 

135 and 180 mass parts per million (mppm) respectively. The system was initially 

loaded to 𝐾𝐼𝑎𝑝𝑝 = 0.6 MPa √𝑚  to drive H segregation around the crack tip, where 

𝐾𝐼𝑎𝑝𝑝 represents the applied stress intensity factor. Prior to fracture simulations, the 

constructed models were first heated at a temperature of 700 K for 0.5 ns, then cooled 

to 300 K for 0.5 ns, followed by further equilibration at 300 K for 3 ns. As shown in 

Fig. 8.1(b) and (c), H atoms preferentially segregate onto the GB and crack surfaces 

due to the strong H trapping effect of defects (GBs/cracks) and high diffusion of H 

atoms in the α-Fe lattice. After obtaining equilibrated Fe-H configurations, the crack 

was loaded further by imposing successive increments of ∆𝐾𝐼𝑎𝑝𝑝 = 0.002 MPa √𝑚 

every 1×10-3 ns. For the cyclic loading cases, loading spectra are presented in Section 

8.3. MD simulations were performed under the canonical ensemble (NVT) [218] with 

time steps of 0.5 and 1 fs for models with and without H, respectively. The Nose-Hoover 

method [219, 220] was used to keep the system temperature at 300 K.  

 

Fig. 8.1. MD simulation set-up for mode-Ⅰ fracture along tilt boundary. (a) Geometry and crystallographic 

orientations of simulation model. (b) and (c) H distribution around the crack tip with 45 and 135 mppm 

H atoms. (d)-(g) Atomic configurations of the equilibrium structure of various GB types. Images are 
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coloured by CNA, where atoms with bcc structure are coloured in blue, atoms at the GB and free surface 

are coloured in red, atoms with fcc structure are coloured in green, and H atoms are assigned in yellow. 

The structural units of each GB are outlined by the black line. Possible dislocation slip systems are 

indicated with pink arrows.   

8.3 Results 

8.3.1 Theoretical model for embrittlement  

      As illustrated in Fig. 8.2, an intergranular crack is inserted along a tilt GB and 

propagates to the right. According to Griffith’s theory, the critical stress intensity factor 

for cleavage propagation under mode I loading is derived as: 

                                              𝐾𝐼𝑐 = √𝛾𝑖/𝐴1                                                             (8.1)   

where 𝛾𝑖 is fracture energy, and 𝐴1 is a constant depending on the anisotropic linear 

elasticity 𝑐𝑖𝑗 [56, 221]:                                                        

                                      𝐴1 = [
√𝑐22

2
√2𝑐11 + 2𝑐12+𝑐44]

−1

                                                     (8.2)   

      The calculation method of 𝛾𝑖 as a function of the H concentration and GB type has 

been presented in our previous study [209], and the corresponding results are shown in 

Fig. 8.2(e). It is clear that for all investigated GBs 𝛾𝑖 is decreased with increasing H 

concentration.  

      Rice’s model of dislocation emission from a crack tip is adopted here to study the 

intrinsic ductility of the GB [139]. In this model, the critical stress intensity factor 

required for dislocation emission can be determined as: 

                       𝐾𝐼𝑒 =
1

𝑐𝑜𝑠2(𝜃/2)sin (𝜃/2)
√
2𝐺

1−𝑣
𝛾𝑢𝑠𝑓[1 + (1 − 𝑣)𝑡𝑎𝑛2∅]                      (8.3)                

where 𝐺 is the shear modulus, 𝑣 is the Poisson ratio, 𝜃 and ∅ is the angle between the 

cleavage and slip planes, the angle of the crack normal and the Burgers vector, and 𝛾𝑢𝑠𝑓 

is unstable stacking fault energy. For calculating 𝛾𝑢𝑠𝑓 by using MD, a single crystal is 

created and shown in Fig. 8.2(c). The generalized stacking fault energies are determined 

by rigidly displacing the upper block on (1 1 2̅)/(1 1 0) plane along [1 1 1]/[1 1̅ 1̅] 

direction while fixing the lower block and calculating the energy change in the whole 

simulation cell. In the present study, H atoms mainly occupy at the crack tip and GB, 

and a few H atoms exist at the slip plane. Further, some studies have revealed that H 

segregation into the slip plane marginally changes the 𝛾𝑢𝑠𝑓 [26, 145, 146]. Therefore, 

we use the value of 𝛾𝑢𝑠𝑓 for pure Fe in all cases.          
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Fig. 8.2. Schematic representations of (a) a crack along a tilt GB and (b) dislocation emission on slip 

plane emanating from the crack tip. (c) Simulation model for calculating the generalized stacking fault 

in (112̅)[111] and (110)[11̅1̅] slip systems. Atoms with perfect bcc structure are coloured by dark blue, 

and the red atoms represent the stacking fault and the free surface. (d) The generalized stacking fault 

energy versus fractional displacement in (112̅)[111]  slip system (blue circle) and (110)[11̅1̅]  slip 

system (pink star). (e) Fracture energy of various GBs as a function of H concentration.  

      It needs to be mentioned that, directional anisotropy exists for intergranular crack 
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propagation. With different values of 𝜃 and ∅,  ductile behaviour (dislocation emission) 

may be expected for one crack tip (𝐾𝐼𝑒 < 𝐾𝐼𝑐), while brittle behaviour (cleavage) may 

occur for the opposite crack tip within the GB plane (𝐾𝐼𝑐 < 𝐾𝐼𝑒). For example, the crack 

of Σ17 (2 2 3) GB exhibits ductile behaviour along [3 3 4̅] direction, while shows brittle 

fracture along [3̅ 3̅ 4] direction (see Fig. 8.3). Likewise, in the case of Σ11 (5 5 7)A(7̅ 7̅ 

1)B GB, [7 7 10̅̅̅̅ ]  is ductile direction, while [7̅ 7̅ 10]  is theoretically brittle direction 

(Fig. 6.4). 

8.3.2 Dislocation emission and cleavage of crack tip under monotonic loading 

     Fig. 8.3(a)-(e) shows atomic configurations of the intergranular crack along the Σ17 

(2 2 3) GB for two cracking directions.  For crack propagation along the [3 3 4̅ ] 

direction (see Fig. 8.3(a)), crack tip plasticity takes place by emission of twins at 

𝐾𝐼𝑎𝑝𝑝 = 0.86 MPa √𝑚 in the absence of H. This behaviour is in accordance with Rice’s 

model (𝐾𝐼𝑒 < 𝐾𝐼𝑐 in Fig. 8.3(f)). Upon increasing the applied load, the nucleated twins 

propagate as the twinning space widens from 7.1 Å to 18.8 Å, further blunting the crack 

tip. Under an H environment (45 mppm H atoms), the ductile emission behaviour is 

similar, but Fig. 8.3(b) shows that crack tip plasticity is initiated at the opposite grain 

and at a lower applied load 𝐾𝐼𝑎𝑝𝑝 = 0.84 MPa √𝑚  . This can be ascribed to H 

segregation that disrupts the atomic structure around crack tip (compare insets in Fig. 

8.3(a) and (b) at 0.6 MPa √𝑚). The disordered structure obviously serves as a plasticity 

source [216], promoting slip activity from the crack tip. As H concentration increases, 

the fracture energy decreases (see Fig. 8.2). The corresponding 𝐾𝐼𝑐 is therefore reduced 

according to Griffith’s theory, as indicated by Eq. 8.1. For the model with a high H 

concentration (180 mppm), the calculated 𝐾𝐼𝑐 drops to 0.78 MPa √𝑚 , less than 𝐾𝐼𝑒 =

0.82 MPa √𝑚  (see Fig. 8.2(f)), suggesting that a ductile-to-brittle transition by H 

segregation at the crack tip will occur. However, the simulation results demonstrate that 

crack behaviour is more complex than a simple cleavage process (see Fig. 8.3(c)). At a 

load of 0.80 MPa √𝑚, the crack is seen to cleave along the boundary plane without any 

ductile emission, whereas such a brittle cleavage stops at a higher load of 0.97 MPa √𝑚, 

in which emission of twins and blunting of crack tip resumes. The process of twinning 

propagation continues with the applied load; crack tip thus exhibits ductile behaviour 

at H concentration of 180 mppm. This phenomenon may be correlated with crack 

trapping in GBs. The crack advances through the region of low-disorder atomic 
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structure (see Fig. 8.3(c) at 0.80 MPa √𝑚) but is eventually arrested by high-disorder 

region (see Fig. 8.3(c) at 0.92 MPa √𝑚). Such trapping leads to a higher 𝐾𝐼𝑎𝑝𝑝, and 

local plasticity can be triggered in place of cleavage if 𝐾𝐼𝑎𝑝𝑝 > 𝐾𝐼𝑒 (see Fig. 8.3(c) at 

0.97 MPa √𝑚).  

 

Fig. 8.3. MD snapshots illustrating the crack propagation in the simulations of Σ17 (2 2 3) GB along (a) 

[3 3 4̅] direction with 0 mppm H atoms, (b) [3 3 4̅] direction with 45 mppm H atoms, (c) [3 3 4̅] direction 

with 180 mppm H atoms, (d) [3̅ 3̅ 4] direction with 0 mppm H atoms and (e) [3̅ 3̅ 4] direction with 180 

mppm H atoms. (f) Overview of critical stress intensity factors 𝐾𝐼𝑒 and 𝐾𝐼𝑐, and global applied stress 

intensity factor 𝐾𝐼𝑎𝑝𝑝  in dependence on crack orientation and H concentration. The partially filled 

diamonds indicate ductile emission, while solid diamonds indicate brittle cleavage. Crack propagation 
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distance versus the stress intensity 𝐾𝐼𝑎𝑝𝑝 with various H concentrations along (g) [3 3 4̅] direction and 

(h) [3̅ 3̅ 4] direction.      

 
 

Fig. 8.3 (Continued) 

     In contrast to the [3 3 4̅ ] cracking direction, [ 3̅ 3̅ 4 ] is the theoretically brittle 

orientation (see Fig. 8.3(f)). In pure Fe, fracture along the boundary plane occurs in a 

perfectly brittle manner at 0.90 MPa √𝑚 (see Fig. 8.3(d)), which is quite close to the 

predicted value of 0.88 MPa √𝑚. The presence of H causes a reduction in 𝐾𝐼𝑐, and thus 

the 𝐾𝐼𝑎𝑝𝑝. For example, it is seen from Fig. 8.3(e) that with H (180 mppm) the applied 

load is decreased to 0.79 MPa √𝑚  for onset of cleavage. The results in Fig. 8.3(h) 

furthermore show that the crack propagation distance along H-charged GB is much 

larger than that along pure GB at the same 𝐾𝐼𝑎𝑝𝑝, being indicative of that H segregation 

facilitates cleavage process of the GB crack in predicted brittle direction. 

     The crack tip behaviour for Σ11 (5 5 7)A(7̅ 7̅ 1)B GB is qualitatively similar to that 

for the Σ17 (2 2 3) GB, as seen in Fig. 8.4. Emission of twins with Burgers vector 

[1 1 1]/6  dominates the plastic deformation of the crack along [7 7 10̅̅̅̅ ]  ductile 
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direction in the absence of H (see Fig. 8.4(a)). Low concentration of H atoms enhances 

the local plasticity, just as in Σ17 (2 2 3) GB. With increasing H concentration, the crack 

tip still exhibits ductile behaviour and no ductile-to-brittle transition is observed even 

though the predicted 𝐾𝐼𝑐  is below 𝐾𝐼𝑒  (see Fig. 8.4(c)). It is interesting to note that 

instead of twinning emission, an array of full dislocations with Burgers vector [1̅ 1̅ 1]/2 

nucleate at 0.88 MPa √𝑚 after a partial cleavage, and then slip away from the crack tip. 

For the predicted brittle direction, cleavage advances along the boundary upon 

continuous loading, and H atoms make it easier for crack growth (see Fig. 8.4(d) and 

(e)). Similar results are also observed at Σ3 (1 1 2) and Σ5 (2 1̅ 0) GBs, as shown in Fig. 

8.5.  

 

 

Fig. 8.4. MD snapshots illustrating the crack propagation in the simulations of Σ11 (5 5 7)A(7̅ 7̅ 1)B GB 

along (a) [7 7 10̅̅̅̅ ] direction with 0 mppm H atoms, (b) [7 7 10̅̅̅̅ ] direction with 45 mppm H atoms, (c) 

[7 7 10̅̅̅̅ ] direction with 180 mppm H atoms, (d) [7̅ 7̅ 10] direction with 0 mppm H atoms and (e) [7̅ 7̅ 10] 

direction with 180 mppm H atoms. (f) Overview of critical stress intensity factors 𝐾𝐼𝑒 and 𝐾𝐼𝑐, and global 
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applied stress intensity factor 𝐾𝐼𝑎𝑝𝑝  in dependence on crack orientation and H concentration. The 

partially filled diamonds indicate ductile emission, while solid diamonds indicate brittle cleavage. Crack 

propagation distance versus the stress intensity 𝐾𝐼𝑎𝑝𝑝 with various H concentrations along (g) [7 7 10̅̅̅̅ ] 

direction and (h) [7̅ 7̅ 10] direction.      

 

  

Fig. 8.5. (a) and (d) Overview of critical stress intensity factors 𝐾𝐼𝑒 and 𝐾𝐼𝑐, and global applied stress 

intensity factor 𝐾𝐼𝑎𝑝𝑝  in dependence on crack orientation and H concentration. The partially filled 

diamonds indicate ductile emission, while solid diamonds indicate brittle cleavage. Crack propagation 

distance versus the stress intensity 𝐾𝐼𝑎𝑝𝑝 with various H concentrations along (b) [1 1 1̅] direction, (c) 

[1̅ 1̅ 1] direction, (e) [1̅ 2̅ 0] direction and (f) [1 2 0] direction.     
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8.3.3 Dislocation emission and cleavage of crack tip under cyclic loading 

      Recent experiments in a near-neutral pH stress corrosion cracking environment 

have shown that H segregation significantly decreases the threshold stress intensity 

factor in fatigue tests, which facilitates the occurrence of brittle fracture [222-224]. 

Inspired by the experimental findings, we study the influence of various loading spectra 

on the crack tip deformation along GBs. Here, only theoretically ductile directions of 

Σ17 (2 2 3) [1 1̅ 0] GB and Σ11 (5 5 7)A(7̅ 7̅ 1)B [1 1̅ 0] GB are considered. The cyclic 

loading spectra are shown in Fig. 8.6; the maximum value of applied stress intensity 

factor is 0.95 MPa √𝑚 for Σ17 (2 2 3) GB, and 0.87 MPa √𝑚 for Σ11 (5 5 7)A(7̅ 7̅ 1)B 

GB, and R (𝐾𝑚𝑖𝑛/𝐾𝑚𝑎𝑥) is 0.4. Fig. 8.7 shows the volume density of H atoms in the 

GB region and the grain interior for the bicrystal models as a function of number of 

cycles. For calculation of the volume density of H atoms, a slab extending ±1.3 nm 

perpendicular to the boundary plane was defined as the GB region, and a slab with the 

8.0 nm thickness in the grain centre (grain A/B) was considered as the region of grain 

interior.  

      In contrast to monotonic loading cases, the ductile-to-brittle transition for GB 

cracks are observed at Σ17 (2 2 3) GB and Σ11 (5 5 7)A(7̅ 7̅ 1)B GB under cyclic loading 

(see Fig. 8.8). Specifically, Fig. 8.8(a) shows that a partial cleavage starts at 

0.90 MPa √𝑚 , which corresponds to the second cycle of loading phase. Continued 

cyclic loading leads to the successive separation of GB structure, with the final rupture 

occurring in the fifth cycle. As with Σ17 (2 2 3) GB, crack propagates by cleavage along 

the predicted ductile direction of Σ11 (5 5 7)A(7̅ 7̅ 1)B GB without any plastic activity, 

and the two grains are ultimately separated during unloading phase in the third cycle. 

This transformation may be explained that cyclic loading encourages H accumulation 

around the crack tip along the boundary. As seen in the inserts of Fig. 8.8(a) and (c), 

cyclic loading concentrates the stress field ahead of the crack tip, which provides a 

driving force for H accumulation. During several cycles H atoms in the bulk diffuse 

into the GB region ahead of the crack tip, as evidenced in Fig. 8.8(b) and (d) and Fig. 

8.7, where volume density of H atoms in the GB region is prominently increased, while 

the volume density in the grain interior is gradually reduced. With increasing H atoms 

on the GB, the GB fracture energy is markedly reduced (see Fig. 8.2), thus favouring 

brittle cleavage. Additionally, cyclic loading can aid the crack tip in overcoming the 

trapping; if a crack propagating along one direction is arrested by a high-disorder region, 
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it alternatively extends through a lower-disorder region along another direction with 

subsequent cycles (compare the cracking path in insets of Fig. 8.8(a) and (c)), reducing 

crack trapping and promoting the cleavage process. The ductile-to-brittle transition due 

to H accumulation and suppressed crack trapping under cyclic loading fully supports 

the experimental observations of large-spaced striations at the fatigue fracture surfaces 

in a near-neutral pH stress corrosion cracking environment [19].     

 

Fig. 8.6. Cyclic loading spectra in the simulations. 

 

 

    

 

 

 

 

 

Fig. 8.7. The volume density of H atoms in the GB and the grain interior region versus number of cycles.  
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Fig. 8.8. MD snapshots illustrating the crack propagation along the predicted ductile direction of (a) Σ17 

(2 2 3) GB and (c) Σ11 (5 5 7)A(7̅ 7̅ 1)B GB with 135 mppm H atoms during cyclic loading. The upper 

inserts are loading spectra, and lower inserts of each image represent stress field distribution and are 

coloured by hydrostatic stress value. (b) and (d) The corresponding H distribution maps under different 

stress intensity. Possible cracking path is marked by dark dash, and H diffusion is indicated with pink 

arrows.            

8.4 Discussion 

     The simulations show that H segregation creates no ultimate cleavage for the 

predicted ductile cracks along the studied GBs under monotonic loading, whereas a 

ductile-to-brittle transition is observed under cyclic loading. This can be ascribed to that 

cyclic loading helps accumulate H atoms around the crack tip along the boundary and 

overcome crack trapping in the GB. 
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     Previously, some studies directly measured the reduction in the GB cohesive 

properties with varying H coverage and GB type [25, 44], reporting that at equilibrium 

concentrations for which embrittlement has been observed in experiments, the 

reduction due to H segregation is potentially insufficient to cause intergranular failure. 

By considering the intrinsic competition between cleavage fracture and dislocation 

emission at a crack tip, our results suggest that Fe GBs cannot be embrittled simply by 

equilibrium segregation of H atoms to GBs, being accordance with those calculations. 

Embrittlement is therefore presumably associated with H transport process. During 

cyclic loading, the tensile stress filed is concentrated around the crack tip. As the 

movement velocity of H atoms towards the crack tip is relate to hydrostatic stress, 𝑉 ∝

∇𝜎ℎ𝑦𝑑  [27], the concentrated stress results in high H movement. In addition, after 

several cycles H atoms in the bulk have ample time to diffuse into the GB region ahead 

of the crack tip. Under this scenario, ultimate failure is expected to occur.  

     Aside from H segregation, it is found that crack trapping can also affect the ductile-

to-brittle transition. In the case of Σ17 (2 2 3) GB, brittle cleavage is predicted to occur 

along the [3 3 4̅] direction with 180 mppm H atoms according to the Griffith’s theory. 

However, atomistic simulations show that ductile emission remains the ultimate 

mechanism. This discrepancy can be expressed as effects due to crack trapping in GBs. 

Unlike single crystals, GBs typically have complicated atomic structures, crack tip can 

therefore be arrested by high-disorder regions of the GB. This blunts the crack tip while 

encouraging the occurrence of local plasticity. Under cyclic loading, the crack advances 

dynamically. It is less likely that the crack tip stays dormant and trapped by the GB. In 

other words, if the crack tip is trapped by a high-disorder region at loading phase, it 

may change its position and propagating path at unloading phase. In this regard, the 

dynamic propagation alleviates crack trapping and facilitates cleavage process.  

8.5 Summary 

     In summary, to clarify the HE mechanism, the H-modified behaviour of 

intergranular cracks in bicrystal α-Fe was investigated via MD simulations. It was found 

that twinning emission from the crack tip was favoured in the intrinsically ductile 

directions, and H segregation created no ultimate cleavage. However, the presence of 

H atoms caused a significant reduction in the critical stress intensity factor for cleavage 

and facilitated brittle fracture in the theoretically brittle directions. Further, the 
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simulations showed that cyclic loading accumulated H atoms around the crack tip along 

the boundary and overcame crack trapping in the GB, and thus induced a ductile-to-

brittle transition. These findings enrich our knowledge on experimental observations of 

H-assisted brittle cleavage failure, and suggest suitable directions for GB engineering 

of HE-resistant materials.  
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Chapter 9 Conclusions and recommendations for 

future work 

9.1 Conclusions 

     In this thesis, the underlying mechanisms behind HE phenomenon on an atomic 

scale have been investigated. H segregation at various GBs and its influence on the 

structure, mechanical properties, deformation mechanisms and failure response of GBs 

have been examined by atomistic simulations. Simulations models cover numerous 

influencing factors: (1) material microstructure, such as GBs, dislocations and cracks, 

(2) H charging and diffusion, H interaction with various traps and trapping conditions, 

(3) H coverage and its local distribution around defects, and (4) mechanical loading 

conditions such as tensile, shear, monotonic and cyclic loading.  

     First of all, H segregation properties were studied in this thesis. Both tilt and twist 

symmetric GBs were considered as simulation models. It was found that different GBs 

possessed unique H segregation energy maps, and the trapping ability of H was strongly 

dependent on GB structures. GBs with more open structure had higher maximum excess 

H concentration. Of all the investigated GBs, it was found that the twin boundary 

seldom absorbed H. Increasing the fraction of twin boundaries by GB engineering is 

thus presumably one strategy for reducing the severity of HE, as shown in experiments 

[112]. The effects of H atoms on the mechanical behaviour and plastic deformation of 

various types of GBs were examined by direct MD simulations. When subjected to 

tensile loading, dislocation nucleation from the GB dominated the deformation 

mechanism. The presence of H modified this behaviour. The simulations revealed that 

H segregation gave rise to an increase/decrease in the yield stress for dislocation 

nucleation. The introduction of H caused the change in the structure, which facilitated 

the onset of plasticity. This softening was in accordance with the envisioned HELP 

mechanism. By contrast, for some types of GBs, segregated H atoms could harden the 

material as the result of the constrained collapse of SUs and the formation of dislocation 

locks. Regarding shear deformation, the coupled GB migration was the controlling 

mechanism of plasticity process. The segregated H atoms retarded such motion as H 

cannot diffuse into low-energy sites within the time scale of the shear loading. An 

analysis of vacancy concentration showed that during GB migration H-vacancy clusters 

cannot grow larger via vacancy accumulation.  Therefore, it seems that the coupled GB 
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motion may be beneficial to resist H-induced intergranular embrittlement.  

 The role of H atoms in changing the interaction of dislocations with GBs was also 

studied by direct simulations in this thesis. The dislocations typically interacted with 

GBs in forms: (i) dislocation absorption followed by the formation of GB dislocations, 

(ii) direct dislocation transmission through the GB, (iii) dislocation reflection from the 

original grain, or (iv) dislocation nucleation from the GB. Segregated H atoms 

transformed these interaction mechanisms into ones involving dislocation absorption 

for most of GBs. Specifically, H induced a transition from dislocation dissociation to 

absorption for ‘singular’ GBs because H impeded the GB migration. In the case of 

‘general’ GBs, the boundaries were prone to absorb the incident dislocation within the 

framework of the HELP mechanism where H modifies the stress field of GB 

dislocations, reduces the equilibrium separation distance between GB dislocations, and 

stabilizes the configurational structure of GB dislocations. The dislocation-GB 

interactions had two possible influences on ultimate intergranular fracture. Specifically, 

the absorption of incoming dislocations by the GB increased the strain energy density 

within the GB, and established a local stress state at the GB. During the subsequent 

stress relief process, the formation of extensive vacancies was observed, which is 

expected to cause H-induced intergranular failure by the growth and coalescence of 

vacancies and nano-voids.  

 Moreover, the decohesion of Ni GBs in the presence of H was examined via direct 

simulations. The computational tensile tests showed that under the equilibrium 

concentration of H atoms typical of embrittlement in Ni, and in conjunction with local 

H diffusion process, the maximum reduction of tensile strength and fracture energy was 

6.60% and 15.75% for Σ5 (210) ⟨100⟩ and Σ17 (530) ⟨100⟩ GBs, respectively. 

Motivated by the above dislocation-GB interactions and experimental evidence of high 

dislocation plasticity, these decohesion parameters with boundary disruption and local 

stress state were calculated. The direct calculations revealed that the realisation of H 

embrittling effect in metallic materials was largely assisted by the plasticity process. 

These findings provide a picture of H embrittlement arising from the cooperative action 

of H-induced plasticity and GB decohesion. 

 The influence of H segregation at the GBs in modifying the ductile emission and 

brittle cleavage of the intergranular cracks was studied by atomistic simulations. The 

simulation of the mode I crack tip indicated that twinning emission from the crack tip 
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was favoured in the intrinsically ductile directions, and H segregation created no 

ultimate cleavage. In the theoretically brittle directions, the presence of H atoms caused 

a significant reduction in the critical stress intensity factor for cleavage and facilitated 

brittle fracture. For all investigated GB cracks, there was no tendency for H atoms to 

induce the ductile-to-brittle transition in Fe under monotonic loading. These 

observations suggested that the equilibrium segregated H atoms were insufficient to 

cause the intergranular failure of Fe in experiments. Further investigation of the H-

modified behaviour of GB cracks under cyclic loading showed that cyclic loading 

accumulated H atoms around the crack tip along the boundary and overcame crack 

trapping in the GB, inducing a ductile-to-brittle transition. Thus, H-assisted brittle 

cleavage failure presumably involves mechanisms such as H diffusion or dynamic crack 

growth. 

9.2 Recommendations for future work 

 Atomistic simulations in this thesis provided some insights into the plasticity and 

fracture related to H segregation in metallic systems, all of which can deepen our overall 

understanding of the HE phenomenon of metals and provide a pathway to designing 

new materials with high resistance to HE. However, due to the multifaceted nature of 

HE, this field is still open for more in-depth analysis. Some potential research areas are 

as follows: 

 In order to validate the HELP theory, the dislocation nucleation and motion in the 

presence of H atoms under tensile and shear loading have been probed. In parallel, the 

nanoindentation approach is also effective in testing the H effects on plasticity at small 

scales. Previous experiments stated that the presence of H often decreased the pop-in 

load corresponding to the onset of plasticity [104, 105, 188-233]. This phenomenon 

was ascribed to the decrease in dislocation line tension due to H segregation to 

dislocations, which facilitated homogeneous dislocation nucleation. However, there 

were no pre-existing dislocations underneath nanoindenter prior to the nucleation, so 

the reduction of dislocation line tension would not presumably occur. In addition, pop-

in event originated from the simultaneous burst of dislocations, not direct homogeneous 

dislocation nucleation. Hence, the H-induced decrease of dislocation pop-in remains 

unclear so far. Wen et al. [234] performed simulations and also reported the reduced 

load. This phenomenon was mainly attributed to H-induced lattice swelling that led to 
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the development of shear stress (artifacts of the simulation). By contrast, Tehranchi and 

Curtin [235] proposed a physical process that explained early pop-in. Underneath the 

indenter, the stress field was compressive, leading to a positive misfit volume of H and 

a driving force of H to diffuse away from the indentation region. As a consequence of 

H misfit volume and non-uniform H distribution, the H diffusion process gave rise to 

additional stresses on the indentation region. These developed stresses enabled an early 

pop-in. Along these lines, further research is required to probe the mechanisms for the 

widely-observed pop-in.  

 Recent experiments in metals showed the presence of nano-voids along the fracture 

surface of H embrittled samples [3, 46, 47, 236-240].  These studies motivated the 

development of H-enhanced nano-void nucleation and growth mechanism. It was 

proposed that the plasticity-generated vacancies can be stabilized by H in the form of 

H-vacancy complexes. These complexes can be preserved during further dislocation 

interactions. DFT calculations indicated that complexes had a good stability in various 

metallic systems and might serve as the embryos for void formation [32, 241, 242]. 

Unfortunately, these calculations were mainly performed for studying energetics of 

H-vacancy complexes and cannot provide kinetic routes that explain the evolution of 

such complexes into nano-voids during dislocation plasticity. Further atomistic 

investigation is envisioned to probe the precise role of H-vacancy complexes in 

promoting the formation of proto nano-voids and bridge the link of atomic-scale events 

with the incipient macroscopic failure of HE.  

 In addition, the influence of solutes on enhancing or suppressing the HE in metals 

should also be investigated. For example, there are always carbon atoms in iron and 

steels in the form of interstitial solutes that precipitate as carbides, segregate at 

dislocations in Cottrell atmospheres, or segregate into the GBs [243, 244]. It has been 

reported that impurities such as carbon atoms play a pivotal role in altering the cohesive 

strength of the GB and dislocation-GB interactions [245-247]. These carbon interstitials, 

carbide precipitates, and Cottrell atmospheres can affect the motion of dislocations and 

the evolution of dislocation substructures at a larger scale, thereby changing the 

occurrence and frequency of dislocation-GB interactions. The effects of carbon atoms 

on the HE in the ferrous alloys can be then examined and analysed accordingly. 
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