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Abstract

Lattice-based cryptography is an excellent candidate for post-quantum cryptogra-
phy, i.e. cryptosystems which are resistant to attacks run on quantum computers.
For efficiency reason, most of the constructions explored nowadays are based on
structured lattices, such as module lattices or ideal lattices. The security of most
constructions can be related to the hardness of retrieving a short element in such lat-
tices, and one does not know yet to what extent these additional structures weaken
the cryptosystems. A related problem – which is an extension of a classical prob-
lem in computational number theory – called the Short Principal Ideal Problem
(or SPIP), consists of finding a short generator of a principal ideal. Its assumed
hardness has been used to build some cryptographic schemes. However it has been
shown to be solvable in quantum polynomial time over cyclotomic fields, through
an attack which uses the Log-unit lattice of the field considered. Later, practical
results showed that multiquadratic fields were also weak to this strategy.

The main general question that we study in this thesis is

To what extent can structured lattices be used to build a post-quantum
cryptography?

Such a question encompass two dimensions: practicability and security. To study
this general question, one can follow several directions.

1. Study algebraically structured lattices such as ideal lattices, especially in terms
of security.

2. In case algebraically structured lattices reveal themselves to be problematic,
study lattices based on structures which cannot be linked to algebraic or arith-
metical constructions such as number fields.

3. Improve computations over number fields, to help following the previous di-
rection especially in a practical point of view.

We follow these main ideas, and this thesis is as follows.
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We study the possibility of constructing an encryption scheme based on matrices
called diagonally dominant matrices. The structure of these matrices is based on
standard linear algebra properties. It is not linked to an underlying algebraic con-
struction such as a polynomial ring or a number field.

We follow the first direction by studying the SPIP over some real Kummer exten-
sions, and generalise the work done over multiquadratic fields. We show that these
fields have a structure which allowsus to compute their unit group and retrieve a
generator of a principal ideal efficiently. Our implementation of these algorithms
allows us to evaluate in practice the possibility of solving the SPIP through the
Log-unit lattice. We are also able to study the geometrical properties of the situa-
tion and compare it to the one over cyclotomic fields. In particular we are able to
exhibit a subfamily of Kummer fields over which solving the SPIP is more difficult
than over cyclotomic or multiquadratic fields. Our work also highlights the need of
considering large degree number fields to be able to draw meaningful conclusions
from practical results.

To study Kummer fields, we need to design and implement efficient algorithms.
It was particularly necessary to study number fields of degree as large as possible.
To this end, we develop practical algorithms to compute two important tasks over
number fields: computing norms of ideals relative to an extension, and computing
roots of polynomials. In both cases, we study certified algorithms running in poly-
nomial time, and heuristic algorithms allowingfaster computations. We compare the
efficiency of our implementations with the methods implemented in the softwares
MAGMA or PARI/GP, and show that we obtain speed-ups for both tasks.
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Chapter 1

Introduction

1.1 Cryptography: history and context

History of cryptology

The word cryptology etymologically means “knowledge of secret”, and designates the
science dealing with secure data communication. It can be divided in two subcate-
gories. First is cryptography which is the study on how to hide information, how to
build processes – called cryptosystems or schemes – allowing data to be exchanged in
a secure way. The cryptanalysis is the part of cryptology which deals with analysing
said constructions to determine up to which point they are secure.

Cryptology has a long history. Indeed, one of the most famous cryptosystems is
Caesar’s cipher used by Julius Caesar which is a shift cipher where each letter in
a text is shifted by a fixed number of ranks in the alphabet. More recently one
can cite the example of Enigma, the machine used by the German army during
WWII to encrypt data. The underlying scheme was notoriously broken by a team
assembled by the British military force which included a father of computer science,
Alan Turing.

Despite this long interest in secure communication, cryptology truly became a
science during the twentieth century with its mathematical conceptualisation intro-
duced by Shannon in 1975. Nowadays, it lives a massive boom with the numerical
revolution. Indeed, we use remote communication and online transactions daily. A
few examples of such tasks are using our mobile phone, secure e-mails, or contactless
payment. As individuals, we need these exchanges to be done in a secure way, i.e.
such that nobody can eavesdrop or steal our identity.

The advances in computer science and numerical technologies allows us to com-
municate among each other way faster than humans used to, but it also brings some
downsides. One of them is the possibility of malicious entities collecting data with-
out individual consent. Thus a developed cryptography publicly available is needed
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CHAPTER 1. INTRODUCTION 2

in order to allow individuals to hide and protect data as much as possible.

Modern cryptography

Modern cryptography is usually separated into two types. The first is called secret
key cryptography or symmetric cryptography, and corresponds to the cryptography
which has been used historically. In secret key cryptosystems, two people wishing
to communicate safely have to agree on a secret key which will allow them to both
encrypt and decrypt the information they will exchange. They have to be the only
ones to know the key, which is then secret to the outside world, especially to ma-
licious entities. However, to agree on a key, they need to meet or go through a
trusted third-party. These constraints are not compatible with our everyday use of
cryptography.

The second type is called public key cryptography or asymmetric cryptography, and
is relatively recent since it was introduced in 1976 by W. Diffie and M. Hellman [36].
With such schemes, if one entity wishes to be able to receive secure communications,
it generates a secret and a public key and publicly reveals the public key. This way,
anyone can encrypt data using it, and only the secret key holder is able to decrypt.
Note that such a cryptosystem allows two parties to securely exchange a key for
later use in a secret key cryptosystem. Generally speaking, the security of public
key protocols rely on the supposition that some underlying mathematical problem
is hard to solve. The most common problems are integer factorisation as in the
RSA protocol [88] and discrete logarithm [36]. Despite extensive research, the best
classical algorithms solving these problems are subexponential in the size of the
entry. They are also widely used because of their simplicity and efficiency. These
qualities are essential for an everyday usage of cryptography.

Post-quantum cryptography

However the security of public-key cryptography is now under threat from a rela-
tively new tool, namely quantum computers. They follow different laws of compu-
tation than classical computers – that are called quantum computing – and they
can solve efficiently some mathematical problems that we still do not know how to
solve with a classical computer. In particular, P. Shor proved in its breakthrough pa-
per [95] that a quantum computer can solve in polynomial time the factorisation and
the discrete logarithm problems. Until recently we could still consider schemes based
on these problems to be safe since we are not yet successful in building such a quan-
tum computer. However the progress made in the last decades led the U.S. National
Security Agency (NSA) to declare in 2015 that it considered quantum computing
as an upcoming threat. It also called for a change in the orientation of research to
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focus on developing a cryptography which could be resistant to quantum computers,
and that is commonly called post-quantum cryptography [10]. Subsequently the U.S.
National Institute of Standards and Technology (NIST) announced in 2016 a call for
standardisation for post-quantum cryptography [1], which is at the time of writing
in its Round 3.

Lattice-based cryptography

Several techniques have been considered to build a post-quantum cryptography
upon. Among them are error-correcting codes, multivariate polynomials, hash-
functions and Euclidean lattices [10]. The last one is among the most popular
options. To give an idea, five of seven of the final candidates for Round 3 of the
NIST process are based on lattices.

A Euclidean lattice is a discrete subgroup of Rn. It can always be described as
the integral linear combinations of a set of linearly independent vectors (b1, . . . , br),
which is called a basis of the lattice. The classical problems on lattices are the
Shortest Vector Problem (SVP) which consists of finding a non zero lattice vector
with minimal norm and the Closest Vector Problem for which, given a vector t
of Rn, one has to find the vector closest to t in the lattice. These problems are
known to be NP-hard over random instances [2, 39]. Usually in cryptography, one
is more interested in their approximate versions. Hence the following definition of
the approximation problems. The γ-approximate Shortest Vector Problem (SVPγ)
consists of finding a lattice vector whose norm is smaller than γ times the minimal
norm of a lattice vector. The γ-approximate Closest Vector Problem (CVPγ) consists
of finding a lattice vector which is at a distance to t smaller than γ times the distance
of t to the lattice. The complexities of SVPγ and CVPγ decrease when γ is increasing,
going from NP-hard for constant γ to P for γ exponential in the rank of the lattice.

The complexities mentioned are true over random lattices, which is mostly not
the case of lattices used in cryptography. One typically wants a trapdoor to exist in
order to be able to decrypt. In cryptosystems based on lattices, the private key is
generally a “good” basis, i.e. composed by relatively short vectors which are almost
orthogonal to each other. The public key is then a “bad” basis, for example the
Hermite Normal Form (HNF) representing the lattice. The private key then allows
to decrypt efficiently and the security of the scheme relies on the assumed hardness
to retrieve a good basis from the bad one.

The drawback of general lattices is their efficiency, which is an important parame-
ter for public key cryptography. They are represented by matrices therefore both the
storage and the computation cost are expensive. In order to cope with this, one can
use special lattices with an extra algebraic structure. Several cryptosystems based
on different structures have been proposed and studied over the years. One can cite
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the work of C. Gentry [45] for a fully homomorphic scheme, of N. Smart and F.
Vercauteren [97], the NTRU cryptosystem [54], and the more recent Ring-Learning
With Errors (RLWE) [66] or Module-Learning With Errors (MLWE) [61, 23]. The
two first schemes consider lattices which are also principal ideals of a number field.
Their security relies on the supposed hardness of retrieving a short generator of
said ideal. This problem is called the Short Principal Ideal Problem (SPIP).The
RLWE and RSIS primitives are based on ideal lattices and their security is linked to
the SVP problem restricted to such lattices, i.e. the Ideal Shortest Vector Problem
(ISVP). Finally the NTRU, MLWE and MSIS primitives rely on module lattices.
The hardness of the two last can be linked to the one of the SVP restricted to them
namely the Module Shortest Vector Problem (MSVP). Module lattices are lattices
represented by block matrices such that each block is a basis matrix of an ideal
lattice.

1.2 Goal and organisation of the research and thesis

General questions and directions

The main question that we consider regarding lattices and post-quantum cryptog-
raphy is the following.

“Determine to what extent structured lattices can be used to build a
post-quantum cryptography.”

The first direction that one can follow to answer this question would be the fol-
lowing.

“Study algebraically structured lattices such as ideal lattices or module lattices,
especially in terms of security.”.

Then one can consider a second direction.

“Consider less structured lattices – which cannot be linked to an underlying
algebraic structure such as a number field – and explore the possibility of building

efficient schemes.”.

Main objectives of the thesis

Regarding the first direction – which is the one mostly followed by the community –
even though most of propositions discussed nowadays such as the candidates to the
NIST process use the more complex structures (module lattices) it is still important
to study the Short Principal Ideal Problem. First the SPIP is a classical problem
in computational number theory [31], and is interesting in itself. Secondly, even
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though it is simpler than the ISVP, these two problems are linked. In particular,
the SPIP is an intermediate task in some algorithms to solve the ISVP [9, 33, 79].
Then the techniques used to analyse this problem could be extended to analyse the
ISVP. One could determine if some of the structures are weaker than others. Finally,
as we mentioned, some cryptographic constructions rely directly on the supposed
hardness of the SPIP.

A generic way of solving the SPIP is done in two steps. First find a generator of
the ideal, then reduce this generator to recover a short generator. The first step can
be done in quantum polynomial time [13], while the best classical algorithms run in
subexponential time [31]. Moreover one can rewrite the second step as a reduction
phase with respect to a lattice depending only on the chosen number field K, namely
the Log-unit lattice of K. This lattice can also be computed in quantum polynomial
time [38]. Thus, from a post-quantum perspective, the only interrogation is whether
the second step can be carried out, i.e. if a given lattice problem can be solved. This
strategy has been mentioned by Campbell et al. in [26]. Cramer et al. showed it
can be efficiently and successfully performed over cyclotomic fields [34], then Bauch
et al. studied multiquadratic fields and exhibited efficient classical (as opposed to
quantum) algorithms allowing them to retrieve a generator of principal ideal with
high probability [6].

Therefore, we focused on studying the SPIP for the reasons mentioned above, and
more precisely we fixed the following goal.

G1: “Determine to what extent the choice of number field influences the success of
a recovering a short generator from another generator”.

Moreover we believe that since it can be difficult to analyse number theoretical
problems, it is important to be able to do efficient computations. This way, we could
study how some algorithms – which can be computed in quantum polynomial time
– behave in practice. Finally, we aimed to study high dimensional number fields, i.e.
dimensions of interest in cryptography. Such dimensions are out of reach of generic
algorithms computing the main number theoretical objects that are needed for the
study of the SPIP. That is why we focus on our second goal.

G2: “Design and implement efficient algorithms allowing the study of high degree
number fields.”.

Real Kummer extensions For all these reasons we extended the work done over
multiquadratic fields to Kummer extensions of exponent p, where p is a prime integer.
In particular we designed algorithms to compute the unit group of such number
fields, retrieve a generator of a principal ideal and shorten it. We implemented
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these procedures in MAGMA [22] for real Kummer extensions of Q of exponent p,
i.e. generated by p-th roots of integers, and real Kummer extensions of Q with
two exponents – generated by p-th and q-th roots of integers where p and q are
prime integers – in order to break the structure and discover if one can still solve
the SPIP with a good probability. Moreover our implementation allows us to study
the Log-unit lattice of these fields and classify them with respect to their security
level. In particular we were able to exhibit a class of fields – real Kummer fields of
dimension p2 – over which the SPIP seems to be more difficult to solve than number
fields already studied.

Faster computations in number fields Then as mentioned, part of the work is
to improve computations over number fields to be able to handle high dimensions.
During our study of Kummer extensions we had to design a procedure to compute
p-th roots in these fields. It is inspired by an application of the LLL algorithm men-
tioned in the original paper [63]. We then extended our method to the computation
of polynomial roots in number fields and compared it to the performance of the
generic algebraic algorithm of K. Belabas [7]. Comparisons are made over different
types of polynomials and number fields. Our implementation is in PARI/GP [76].
Another important task needed for our work on Kummer extensions is the compu-
tation of relative norms of ideals. We implemented two simple algorithms, one of
which is inspired by algorithms of Cohen [31]. We compare their performances to
the procedure implemented in MAGMA.

Finally, we mentioned that it is unknown to what extent extra algebraic structures
can be used to solve problems over lattices, and that it is still important to consider
more general lattices. This leads to our third goal.

G3: “Study lattices without underlying algebraic structure to build efficient
encryption schemes.”.

Diagonally dominant matrices An example of scheme based on lattices without
a link to algebraic structures such as number fields is DRS [83]. It is a signature
scheme which uses diagonally dominant matrices. We studied such matrices and
showed that they can be used to construct an encryption scheme. In particular, we
design reduction algorithms which can be more efficient than using LLL if properly
implemented.

Organisation of the thesis

The rest of the thesis is organised as follows.



CHAPTER 1. INTRODUCTION 7

– Chapter 2 is dedicated to the description of the background and preliminaries.

– Chapter 3 deals with our work on diagonally dominant matrices and the ex-
tension of the DRS signature scheme to DRE encryption scheme.

– We describe in Chapter 4 the improvements we developed for computational
tasks in number fields.

– We then develop our work on Kummer extensions in Chapter 5. It corresponds
to the paper [64].
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Chapter 2

Background and preliminaries

2.1 Notations and recalls

First let us mention that vectors are considered to be row-vectors throughout this
thesis.

• For any p ∈ N∗ ∪ {∞}, we denote classically the lp norm on Rn to be lp(x) =
p
√∑n

i=1|xi|p if p is an integer and lp(x) = max{|xi| | i ∈ J1, nK} if p =∞. We
also denote lp by ‖ · ‖p.

• Given (a, b) ∈ Z2 we will denote by Ja, bK the corresponding segment of Z.
Concerning intervals, we follow the convention (common in french literature)
which uses only square brackets. As an example, [a, b[ is the same as {x ∈ R |
a 6 x < b}.

• Given a ring A and a matrix M in Mn,m(A), Mi will designate the i-th row of
M . The matrix will be generally defined as M = [mi,j] i∈J1,nK

j∈J1,mK
. When it is not

the case, the elements of M will be denoted by Mi,j.

• Given a morphism σ : A 7→ B, and x an object which can be identified with
a vector of An, we will write xσ for the image of x under the action of σ. In
particular if f(X) = f0 + · · · + fnX

n ∈ A[X] then fσ is the polynomial of
B[X] equal to σ(f0) + · · ·+ σ(fn)Xn.

• Given A,B two rings and f(X) ∈ A[X], we will denote by ZB(f) the set of
roots of f(X) which belong to B, i.e.

ZB(f) = {x ∈ B | f(x) = 0}.

10
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• Given A a ring and when it makes sense, we will write 〈b1, . . . , bn〉A for Ab1 +

. . . , Abn. When there is no ambiguity, we will simply use 〈b1, . . . , bn〉

• Given S ⊂ Rn, we will write span(S) for the minimal sub-vector space of Rn

containing S.

• Let G be a group and S ⊆ G. We denote by 〈S〉 the subgroup of G generated
by S.

• Given a function f : N → R+, one defines Õ(f(n)) as O(f(n)|log f(n)|c) for
some c > 0.

• Complexities are often expressed by mean of the L-notation. Given a variable
N and two constants α and c with α ∈ [0, 1] and c > 0, LN(α, c) is defined by

exp
(
(c+ o(1)) log(N)α(log logN)1−α) .

Gram-Schmidt orthogonalisation

An important and classical computation in linear algebra is the Gram-Schmidt or-
thogonalisation (GSO). It allows transforming a free family of a vector space (with
a scalar product) into in an orthogonal family. The naive algorithm can be found
in Algorithm 1.

Algorithm 1 GSO

Require: A free family B = {b1, .., br} of Rn

Ensure: A family B̃ = {b̃1, .., b̃n} with b̃1 = b1 and (b̃i | b̃j) = 0 for i 6= j
1: B̃ ← B
2: for i = 1 to r do
3: b̃i ← bi
4: for j = 1 to i− 1 do

5: b̃i ← b̃i −
(bi | b̃j)
(b̃j | b̃j)

b̃j

6: end for
7: end for
8: return B̃

Let B be a family represented by a matrix B, B̃ the orthogonal family returned by
the GSO process and B̃ its representative matrix. For any (i, j) ∈ J1, rK× J1, nK one
usually denotes by µi,j the coefficient (bi|b̃j)

(b̃j |b̃j)
occurring in Algorithm1. First remark
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that the process depends on the order of B. Then we have the relation

B =



1 0 0 . . . 0

µ2,1 1 0 0

µ3,1 µ3,2 1
. . . ...

...
... . . . . . . 0

µr,1 µr,2 . . . µr,r−1 1


B̃. (2.1)

We will designate by G the unnamed matrix above. We also consider that G can
be returned by Algorithm 1. Moreover we will also denote by πi the orthogonal
projection onto 〈b1, . . . , bi−1〉⊥R = 〈b̃1, . . . , b̃i−1〉⊥R , the orthogonal supplement of the
sub-vector space spanned by the (i− 1)-th first elements of the basis.

Definition 2.1 (GSO). Given a basis B, we will call the basis B̃ outputted by
Algorithm 1 the GSO of B.

2.2 Lattices

We refer the reader interested in more in-depth presentations on Euclidean lattices
to [69, 32].

2.2.1 First meeting with lattices

Definition 2.2. A Euclidean lattice is a discrete subgroup of Rn where n is a positive
integer. We say a lattice is an integral lattice when it is a subgroup of Zn or rational
when it is in Qn. A basis of a lattice L is a basis of L as a Z-module. The cardinal
of said basis is called the rank of the lattice.

Notation. Given a matrix B we will write L(B) the lattice generated by its row
vectors.

Definition 2.3 (Span of a lattice). Let L be a lattice generated by a basis B =

(b1, . . . , br). We call span of L and write span(L) the vector space generated by B,
i.e. 〈B〉R = Rb1 + · · ·+ Rbr.

As for vector spaces, a lattice has an infinite number of bases, at least when its
rank r is greater than 2. More precisely, consider r 6 n two integers, together with
B and B′ two matrices in Mr,n(R) which row vectors are independent. Then one
has

L(B) = L(B′) ⇐⇒ ∃U ∈ GLr(R) | B′ = UB.
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Figure 2.1: Two bases of the same lattice

This is illustrated in Figure 2.1, where two bases of the same lattice of R2 are
plotted.
There are invariants independent from the choice of the basis. They are mainly

geometrical parameters of the lattice.

Lemma 2.1. Consider a matrix B, U ∈ GLr(R) and B′ = UB. Then the following
equality holds: det(BBT) = det(B′B′T).

Definition 2.4. Consider a Euclidean lattice L with basis matrix B. Then the
determinant of L, denoted by det(L), is the value

√
det(BBT).

Notation. The determinant of a lattice L is also called its volume because it is the
volume of the fundamental domain defined by the vectors of one of its bases. Thus
it is also written vol(L).

Figure 2.2: Two bases, same volume

One can see in Figure 2.2 that the two bases define two different fundamental
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domains, which however have the same volume. These two geometrical situations
induce two different hardness of solving problems over the same lattice.

Dual lattice

Attached to any lattice is another lattice called the dual lattice.

Definition 2.5 (Dual basis). 1. Consider a free family B = (b1, . . . br) ⊆ Rn.
The dual family of B denoted by B∨ is the family (b∨1 , . . . , b

∨
r ) ⊆ Rn defined by

∀(i, j) ∈ J1, rK2, (b∨i | bj) = δi,j. (2.2)

2. Given a lattice L = L(B), the dual lattice of L is the lattice generated by B∨.
It is denoted by L∨.

Remark 1. Given a lattice L, it follows directly from Definition 2.5 that the dual
lattice verifies L∨ = {x ∈ Rn | ∀y ∈ L, (x | y) ∈ Z}. This characterisation can be
used as an alternative definition.

The dual lattice has special properties linked to the lattice.

Proposition 2.1. Let L be a lattice and B the matrix of a basis of L. The following
are true.

1. The matrix (BBT)−1B is the matrix of a basis of L∨. When L is full-rank,
this matrix becomes B−T= (BT)−1.

2. det(L∨) = 1
det(L)

.

Hermite Normal Form

Despite an infinite number of bases, there is a canonical way of representing rational
lattices. The presentation will be done over integral lattices, but the results from the
last type can be used on the former. Given a rational lattice L, simply remark that
there is a minimal d ∈ Z – called the denominator of L – such that dL is integral.

Definition 2.6 (Hermite Normal Form [31]). Consider H = [hi,j](i,j) ∈ Mm,n(Q).
We say that H is in Hermite Normal Form (HNF) if there is r ∈ J1, nK and a strictly
increasing map f : J1, rK→ J1, nK which satisfy the following conditions.

1. For all i0 ∈ J1, rK,

• hi0,f(i0) > 0;
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• for all i ∈ J1,mK \ {i0}, hi,f(i0) = 0 if i > i0 and 0 6 hi,f(i0) < hi0,f(i0)

otherwise.

2. The last m− r rows are equal to 0.

Remark 2. One important case is when m = n = r, so for all i ∈ J1, nK, f(i) = i.
Then H in HNF is an upper triangular matrix with non zero coefficients on the
diagonal.

One can show that any integral lattice basis is equivalent to a unique matrix in
Hermite Normal Form.

Theorem 2.1 ([31]). Consider M ∈ Mm,n(Z). Then there are U ∈ GLm(Z) and a
unique H in HNF such that H = UM .

Definition 2.7. Given a lattice L we will call Hermite Normal Form of L or HNF
of L the matrix H in HNF equivalent to a basis B of L. It is denoted by HNF(L).

The HNF of a basis is particularly useful for several computations on lattices. One
can use it to compare them (inclusion), solve linear systems, test if an element is
in a lattice [31] for example. Moreover it can be computed in polynomial time [58],
and is still an active area of research [80, 65].
Because of these properties, the HNF of a full rank lattice is a good candidate for

a public key in lattice based cryptography [68].

Geometrical properties, size and volumes

As we will see later, important properties and problems over lattices are geometrical
ones. They essentially are about norms of vectors and volumes. Let us state some
results in order to set the overall context.

Definition 2.8 (Minima). Consider L a lattice of rank r. Then for any i ∈ J1, rK,
its i−th minimum is

inf
{
R ∈ R+ | dim span(L ∩ B̄(0, R)) > i

}
and is denoted by λi(L).

Remark 3. First, the first minimum λ1(L) is the norm of a vector in L \ {0} with
minimal norm. Then the definition depends on the choice for a norm. We mostly use
the standard Euclidean norm. If another lp norm is considered, the i-th minimum
will be denoted by λ(p)

i (L).

We can give a minimal bound of λ1 using the Gram-Schmidt orthogonalisation of
a basis we have at hand.
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Theorem 2.2. Let B = (bi)i∈J1,rK be a basis of a lattice L. Then λ1(L) > min{‖b̃i‖ |
i ∈ J1, rK}.

Then one can analyse further the geometry to obtain approximate values on λ1.

Theorem 2.3 (Minkowski’s convex body theorem [70]). Let L be lattice of Rn of
rank r, and S a convex subset of Rn such that vol(S) > 2r · detL. Then there is
x ∈ L ∩ S \ {0}.

Now considering that an approximate value of the volume of a hyperball Br(0, R)

is Vr(R) ∼ 1√
rπ

(2πe
r

)r/2Rn, one obtains the following approximation of λ1.

Heuristic 2.1 (Gaussian heuristic). Given a lattice L of rank r, an approximate
value for λ1(L) is

λ1(L)gauss =

√
r

2πe
× p
√

vol(L). (2.3)

Definition 2.9 (Hermite’s factors). The r-th Hermite’s factor is

γr = max

{(
λ1(L)

vol(L)

)2

| L is a lattice of rank r

}

Another important value attached to a lattice is its covering radius.

Definition 2.10 (Covering radius). Let L be a lattice of rank r. Then its covering
radius µ(L) is defined as follows.

µ(L) = max{d(x,L) | x ∈ span(L)}

Alternatively one can define the covering radius as the minimal value R such that
the ambient space is fully covered by balls of radius R and centered in lattice points.

Remark 4. As it is the case for lattice minima, the covering radius depends on
the choice of norm. We will therefore denote the covering radius by µ(p) when we
consider the norm lp.

2.2.2 Hard problems on lattices

Let us now describe the major computational problems over lattices. We have
seen that questions arising when studying lattices concern short vectors. It is then
coherent that the first problem concerns the shortest one.

Definition 2.11 (SVP: Shortest Vector Problem). Given a basis B of a lattice L
of rank r, find u ∈ L \ {0} such that ‖u‖ = λ1(L).
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The problem is NP-hard [2, 39] over general lattices. Usually in cryptography, one
does not need to find the shortest vector but a close approximation. How close that
approximation can be in practice is one of the central points of research in lattice-
based cryptography. Hence the following definition of the approximate version of
the problem.

Definition 2.12 (SVPγ: γ-approximate Shortest Vector Problem). Given a basis
B of a lattice L of rank r and an approximation factor γ, find u ∈ L\{0} such that
‖u‖ 6 γ × λ1(L).

(a) SVP

γ
×
λ1

(L
)

(b) SVPγ

Figure 2.3: SVP and SVPγ

The second important problem on lattices is the Closest Vector Problem.

Definition 2.13 (CVP: Closest Vector Problem). Given a basis B of a lattice L
of rank r and t ∈ Rn, find u ∈ L such that ∀v ∈ L, ‖t− u‖ 6 ‖t− v‖.

The CVP is also known to be NP-hard [39]. As there is an approximate version
of SVP, the same exists for CVP.

Definition 2.14 (CVPγ: γ-Approximate Closest Vector Problem). Given a basis
B of a lattice L of rank r, an approximation factor γ and t ∈ Rn, find u ∈ L such
that ∀v ∈ L, ‖t− u‖ 6 γ‖t− v‖.

t

(a) CVP

t

γ
×
d
(t,L

)

(b) CVPγ

Figure 2.4: CVP and CVPγ
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The last problems that we will be interested in are the Bounded Distance Decoding
with it approximate version, as well as the Guaranteed Distance Decoding.

Definition 2.15 (BDD: Bounded Distance Decoding). Given a basis B of a lattice
L and a point x such that d(x,L) < λ1(B)/2, find the lattice vector v ∈ L closest
to x.

Definition 2.16 (BDDγ: γ-Approximate Bounded Distance Decoding). Given a
basis B of a lattice L, a point x and a approximation factor γ ensuring d(x,L) <

γλ1(B) find the lattice vector v ∈ L closest to x.

In practice, one considers BDDγ for γ < 1
2
. This ensures that there is only one

lattice vector v satisfying d(x, v) < γλ1(B).

One can remark that the BDD is a version of the CVP with the knowledge that
the target is close to the lattice.These problems depend on two parameters. First the
basis given as an input and second the approximation factor γ for the approximate
versions. The complexity is decreasing when γ increases, except for BDDγ which is
in fact harder. Moreover a better basis, i.e. with short vectors and relatively or-
thogonal one to each other allows the problems to be solved faster or up to a better
approximation factor.

A last problem close to the BDD is the Guaranteed Distance Decoding.

Definition 2.17 (GDDγ: γ-Guaranteed Distance Decoding). Given a basis B of a
lattice L, any vector v in span(L) and an approximation factor γ, find w ∈ L such
that ‖w − v‖ 6 γλ1(L).

Remark the differences between the BDD and the GDD. The vector given as input
of the latest can be any vector of the ambient space, not just the ones particularly
close to L.

2.2.3 Algorithms for lattices

We already saw that lattice problems are geometrical in nature, and that some of
a lattice’s properties can be linked to the GSO of a given basis. Moreover remark
that if L = L(B) with B being an orthogonal basis, then the problems can be easily
solved. Finally, intuitively if a basis B is composed by vectors globally more orthog-
onal to each other than the vectors of another basis matrix B′ are, then the vectors
of B will be globally shorter than the vectors of B′. This is due to the fact that
the volume of the fundamental domains defined by both bases are equal to vol(L).
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Therefore, given a basis it is natural to orthogonalise it as much as possible to solve
problems on lattices. Since it likely results in a basis with shorter vectors, we will
call such a process a reduction process or reduction algorithm.

First let us define a weak notion of basis reduction due to Hermite [51].

Definition 2.18 (Size-reduce). A basis B = (b1, . . . , br) of a lattice is said to be
size-reduced if its GSO satisfies the following condition:

∀i ∈ J1, rK,∀1 6 j < i, |µi,j| 6
1

2
.

Geometrically speaking, if one recalls that µi,j =
(bi|b̃j)
‖b̃j‖2

, a size-reduced basis is
such that the projection of bi onto 〈b1, . . . , bi−1〉R is in the domain[

1

2
,
1

2

]i−1

×
(
b̃j

)
j∈J1,i−1K

One can find the simple algorithm computing a size-reduced basis in Algorithm 2,
which is essentially an approximation of the GSO algorithm (Alg. 1).

Algorithm 2 SizeReduce
Require: A free family B = {b1, .., bk} of L such that |µi,j| 6 1/2 for all i 6= j , the

matrix G containing all µi,j, an element b /∈ L.
Ensure: An element bk+1 such that |µ′k+1,i| 6 1/2 for i 6= k + 1
1: bk+1 ← b
2: B̃, G← GSO(B)
3: for i = k to 1 do

4: bk+1 ← bk+1 −

⌊
(bk+1 | b̃i)
‖b̃i‖2

⌉
bj

5: Update G
6: end for
7: return B ∪ {bk+1}, G

Theorem 2.4 (Complexity of size reduction). Consider B = (b1, . . . , br) ⊆ Rn and
b ∈ Rn, and denote by M = max{log2 ‖x‖2 | x ∈ B ∪ {b}}. Then one can compute
the output of Algorithm 2 in bit-complexity

O (rnM(rM)) . (2.4)

Remark 5. When considering a full-rank lattice, i.e. r = n, and a classical com-
plexity for the multiplication – for exampleM(n) = Õ(n) – Equation (2.4) becomes
Õ(n3M).
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A first reduction algorithm: LLL [63]

A fairly natural way of reducing a basis would be to follow Algorithm 1, and replace
all coefficients µi,j by their closest integers. This way one could obtain a basis close
to the GSO of the starting matrix, i.e. which is size-reduced. In order to obtain
a polynomial time algorithm outputting a basis which is proven to be reduced for
varying dimension, one has to introduce a new reduction condition. This is the
result of the ground breaking work by A. K. Lenstra, H. W. Lenstra and L. Lovász
in [63]. They define a new notion of reduced basis, that is then called LLL-reduced.

Definition 2.19. Consider a lattice L defined by a basis B = (b1, . . . , br) and
δ ∈]1

4
, 1[. Then B is called LLL-reduced with parameter δ (or δ-LLL reduced) if it

satisfies the following conditions.

1. It is size-reduced : ∀i ∈ J1, rK,∀1 6 j < i, |µi,j| 6 1
2
.

2. It satisfies the Lovász conditions :

∀i ∈ J2, rK, δ‖b̃i−1‖ 6 ‖b̃i + µi,i−1b̃i−1‖2 = ‖b̃i‖2 + µ2
i,i−1‖b̃i−1‖2.

Then the LLL algorithm shown in Algorithm 3 essentially consistsof applying
SizeReduce to new vector basis incrementally, verify if Lovász condition is true and
continue if so. Otherwise we swap the two last vectors and reduce again.

Algorithm 3 LLL

Require: B, a basis of L of rank r, and a constant δ ∈]1
4
, 1[.

Ensure: B′, a δ−LLL reduced basis of L.
1: i← 2

2: B′ ← {b1}
3: while i 6 r do
4: B′ ← (b′1, . . . , b

′
i−1)

5: B′, G← SizeReduce(B′, bi)
6: if Lovász condition is satisfied for δ, i then
7: i← i+ 1

8: else
9: Swap(b′i, b

′
i−1)

10: i← max{2, i− 1}
11: end if
12: end while
13: return B



CHAPTER 2. BACKGROUND AND PRELIMINARIES 21

Remark that each time the family is modified, one needs to update its GSO. It is
done in SizeReduce where the whole GSO is computed. However since at a given
step i, only bi and eventually bi−1 (because of the swap) are modified only a few
coefficients need to be updated.

Theorem 2.5. Consider L a lattice of rank r, B = (b1, . . . , br) a δ-LLL reduced
basis of L for δ = 3/4, and B̃ the GSO of B. Then the following properties are true.

1. det(L) 6
∏r

i=1 ‖bi‖ 6 2r(r−1)/4 det(L)

2. ∀i ∈ J1, rK, ∀1 6 j 6 i, ‖bj‖ 6 2(i−1)/2‖b̃i‖

3. ‖b1‖ 6 2(r−1)/4 p
√

det(L)

4. For any x ∈ L \ {0}, ‖b1‖ 6 2(r−1)/2 ‖x‖.

5. For any free family (x1, . . . , xk) ∈ Lk, ∀j ∈ J1, kK, ‖bj‖ 6 2(r−1)/2 max{‖xi‖ |
i ∈ J1, kK}.

Theorem 2.5 shows that a LLL reduced basis has good properties. It provides
upper bounds related to the norms of the basis vectors. In particular, one can
remark that the norm of shortest basis vectors cannot be too large compared to
λ1(L). Indeed, the fourth point shows that the LLL algorithm solves in determin-
istic polynomial time SVPγ, for γ = 2(r−1)/2. Many improvements and versions
were developed since the original version of LLL. Among many others, one can con-
sider the use of floating-point arithmetic in order to hasten computations [73], the
modification of the Swap operation called LLL with deep insertions [92, 42], or mod-
ifications which allow considering generating families which are not a basis of the
lattice [84].

Theorem 2.6 (Complexity of LLL [74]). Consider L = L(B) ⊆ Rn a lattice of
rank r, and M = max{log2 ‖b‖2 | b ∈ B}. Then for input B, one can compute a
LLL-reduced basis of L in time complexity

O
(
r2n(r +M)MM(r)

)
. (2.5)

Remark 6. When considering a full-rank lattice, i.e. r = n, and a classical com-
plexity for the multiplication – for exampleM(n) = Õ(n) – Equation (2.5) becomes
Õ ((n5 + n4M)M).

Enumerating short vectors

In order to solve the exact SVP or CVP, one can use enumeration techniques. It
was first suggested by Pohst [85] in 1981, and other versions were then developed by
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Kannan or Fincke and Pohst [56, 41] for example. We will present how to enumerate
all short vectors to solve the SVP. Then the ideas can be extended to solve the CVP.

In order to find a shortest vector in a lattice, one could go through all lattice
vectors and recall which one is the shortest. Obviously, we need bound the space of
vectors that we will enumerate. Let us explain how one can do this. First consider
a lattice L given by a basis B = (b1, . . . , br). We will again use the GSO of B in
order to bound the norm of vectors we are interested in. Recall from Equation (2.1)
one has

∀i ∈ J1, rK, bi = b̃i +
i−1∑
j=1

µi,j b̃j.

Thus by inverting these relations, given v =
∑r

i=1 vibi ∈ L, one obtains

v =
r∑
i=1

(
vi +

r∑
j=i+1

vjµj,i

)
b̃i.

Therefore, if we denote by ṽi the i-th coefficient of v expressed in B̃, it is easy to
see that one has

∀k ∈ J1, rK, ‖πk(v)‖2 =
r∑
i=k

|ṽi|2
∥∥∥b̃i∥∥∥2

=
r∑
i=k

(
vi +

r∑
j=i+1

vjµj,i

)2 ∥∥∥b̃i∥∥∥2

. (2.6)

Now if we fix a bound R, we will be able to enumerate vectors v such that ‖v‖ 6 R

using Equation (2.6). Indeed one has

‖v‖2 6 R2 =⇒ R2 > ‖π1(v)‖2 > ‖π2(v)‖2 > · · · > ‖πd(v)‖2

which gives the equations

∀k ∈ J1, rK,
r∑
i=k

(
vi +

r∑
j=i+1

vjµj,i

)2 ∥∥∥b̃i∥∥∥2

6 R2. (2.7)

Then the algorithm works as follows. Equation (2.7) with k = r gives v2
r 6 R2

‖b̃r‖2 .
The algorithm enumerates through all possible values for vr. Then for a fixed value
vr one has

(vr−1 + vrµr,r−1)2
∥∥∥b̃r−1

∥∥∥2

+ v2
r

∥∥∥b̃r∥∥∥2

6 R2
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which gives an interval where vr−1 lies:

−

√
R2 − v2

r

∥∥∥b̃r∥∥∥2

∥∥∥b̃r−1

∥∥∥ − vrµr,r−1 6 vr−1 6

√
R2 − v2

r

∥∥∥b̃r∥∥∥2

∥∥∥b̃r−1

∥∥∥ − vrµr,r−1.

Thus the algorithm can enumerate vr−1 in this interval, and using all conditions in
Equation (2.7) allows finding bounds for all coefficients of v which depend only on
the norms of the GSO vectors, the Gram-Schmidt coefficients µi,j and the radius
R. This process can also be seen as a search through a tree, where the nodes are
vectors, levels correspond to the spaces πr−i+1(L) and the children of a node v at
level i are the vectors in the next space πr−i(L) which are projected onto v when
applying πr−i+1. At each level the number of nodes are given by the bounds obtained
by Equation (2.7).

Theorem 2.7. Let L be a lattice given by a basis B = (b1, . . . , br), R ∈ R+ and
v ∈ L such that ‖v‖ 6 R. Define also the following quantities,

∀i ∈ J1, r − 1K, Ci :=

√
R2 −

∑r
j=i+1

(
vj +

∑r
k=j+1 µk,jvk

)2 ∥∥∥b̃j∥∥∥2

∥∥∥b̃i∥∥∥ .

Then the coefficients of v satisfy the following inequalities,

∀i ∈ J1, r − 1K,−Ci −
r∑

j=i+1

vjµj,i 6 vi 6 Ci −
r∑

j=i+1

vjµj,i.

The enumeration technique can be found in Algorithm 4.

Algorithm 4 The Enumeration Algorithm for SVP
Require: B = (b1, . . . , br) a basis of a lattice L
Ensure: v =

∑r
i=1 vibi such that v = λ1(L)

1: while There is still unexplored nodes do
2: if current node has ‖(0, ..., 0, vi, .., vn)‖ < R then
3: Go down in the tree, explore all possibilities for vi−1

4: else
5: Remove the node, go up a level, search another node
6: end if
7: end while
8: return B

The complexity of an enumeration algorithm like Algorithm 4 is exponential. To
achieve better running time, one usually reduces the basis first, by LLL for example.
Indeed one obtains a bound R on λ1(L) by considering the norm of the shortest
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vector of the basis.

In order to speed-up the computations, one can use a modification called pruning,
first suggested by Schnorr and Hörner [93]. It consistsof excluding parts of the tree
where the probability of finding the shortest vector is very low. Thus enumerating
over the remaining nodes gives a heuristic algorithm which is not guaranteed to find
a shortest vector. However the vector returned will still be reasonably short.

HKZ reduction

As we saw, a LLL-reduced basis can be obtained in polynomial time and have
relatively good properties. However, since the approximation factor obtained with
such basis is exponential in the rank, one can consider that LLL is somehow a weak
reduction. In order to obtained strongly reduced bases, one needs a better condition
than Lovász condition.

Definition 2.20 (Hermite-Korkine-Zolotarev reduction [60]). Consider B a basis of
a lattice of rank r. Then B is Hermite-Korkine-Zolotarev reduced or HKZ reduced
if it satisfies the following conditions.

1. It is size-reduced.

2. For all i ∈ J1, rK,
∥∥∥b̃i∥∥∥ = λ1(πi(L)).

As LLL reduced bases, HKZ reduced bases enjoy nice geometrical properties. In
particular they allow good approximations of the successive minima to be obtained.

Theorem 2.8. Let B = (b1, . . . , br) a HKZ reduced basis of a lattice L. One has

∀i ∈ J1, rK,
4

i+ 3
6

(
‖bi‖
λi(L)

)2

6
i+ 3

4
.

Remark 7. HKZ-reduced bases are LLL-reduced.

Using an oracle O which solves SVP, we can obtain Algorithm 5 – called the KZ
algorithm – which computes a HKZ-reduced basis of a lattice.

Since Algorithm 5 calls an oracle to solve SVP instances, its asymptotic complex-
ity is exponential. Thus it cannot be used for high dimensions. However it can be
called in other processes to reduce blocks of a given basis, allowing the algorithms
to achieve acceptable trade-off between complexity and quality of the reduction. Fi-
nally Algorithm 5 is a simplification of proper algorithms computing HKZ-reduced
bases. Indeed we expressed O as a black-box, and call it on the lattice to obtain
a shortest vector. A better way (and more complex to describe) is as Kannan de-
scribes it [57]. It is an algorithm which projects (b2, . . . , bn) onto π2(L), LLL reduces
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Algorithm 5 KZ reduction algorithm
Require: B = {b1, ...br} a basis of L of rank r
Ensure: B′ a HKZ-reduced basis of L
1: b′1 ← O(B)
2: B′ ← {b′1}
3: for i = 2 to r do
4: Extend B′ into a basis B′′ of L
5: b′′i ← O(πi(B

′′))
6: Lift b′′i to b′i ∈ L
7: B′ ← SizeReduce(B′, b′i)
8: end for
9: return B′

this lattice and recursively calls itself, with some enumeration process. This first
version has been improved afterwards by Helfrich [50], and its complexity analysed
by Hanrot and Stelhé [49] who give a worst-case complexity of 2O(d)d

d
2 .

A reduction by blocks: BKZ

The Block-Korkine-Zolotarev (BKZ) algorithm, was first proposed by Schnorr and
Euchner [94]. It uses the KZ reduction algorithm as a subroutine in blocks. Suppose
the oracle for SVP runs up to dimension k, and the lattice has r > k, then the BKZ
algorithm is described in 6. In general, one denotes by BKZk to specify the block
size used in the algorithm.

Algorithm 6 BKZ basis reduction algorithm
Require: B = {b1, ...br} a basis of L, and a SVP oracle O up to k 6 r
Ensure: B′ a reduced basis of L such that ‖b̃i‖ = λ1(πi(L))
1: while Changes occur do
2: for i = 1 to r − k + 1 do
3: HKZ reduce the block πi({bi, ..., bi+k−1}) then lift it in B
4: Use LLL on B = {b1, ..., br}
5: end for
6: end while
7: return B

The fact that the basis is locally HKZ reduced allows for good trade-offs between
running time and the quality of the basis obtained, which increases with the block
size used.

Theorem 2.9. Consider B a basis of a lattice L, and a SVP oracle O up to di-
mension k 6 r. Then for input B and O, Algorithm 6 outputs a basis (b1, . . . , br)

satisfying the following properties:
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1. ‖b1‖
λ1(L)

6 (k
1+ln k
2k−2 )r−1 ;

2. ‖b1‖
r
√

vol(L)
6
√
γk(k

1+ln k
2k−2 )d−1.

Despite the quality of the basis obtained by BKZ, one does not know a polynomial
bound for the running time of Algorithm 6. Like LLL algorithm, BKZ behaves
better in practice than theoretically. Again, several improvements of BKZ have been
developed, mostly concerning the SVP oracle. For example, Chen and Nguyen [28]
used improved enumerations to obtain faster computations.

Solving the CVP and BDD

We will present some techniques used to solve the BDD, as it is a problem of par-
ticular interest in our research. There are three main processes used, in a variety of
applications and domains. Two are due to L. Babaï and the third has been developed
by R. Kannan.

Babaï’s rounding technique: The first method due to Babaï is simple to de-
scribe and implement. Given a lattice L of Rn given by a basis B = (b1, . . . , br) and
a target vector t ∈ Rn, it consistsof rounding to the nearest integer the coefficients
of t in the B.

Algorithm 7 Babai’s Rounding Off Algorithm - BabaiRounding
Require: B = (b1, . . . , br) a basis of L and t ∈ 〈b1, . . . , br〉R
Ensure: v ∈ L a vector close to t
1: Compute (t1, . . . , tr) such that t =

∑r
i=1 tibi

2: return v =
∑r

i=1btiebi.

Remark 8. If L = L(B) is a full-rank lattice of Rn then B is an invertible square
matrix, and Step 1 of Algorithm 7 can be expressed as tB−1. Thus it is common to
write the output of the algorithm as btB−1eB.

One can apply Babaï’s rounding using any basis of the lattice. However, as often
with lattice problems and related algorithms, the quality of the solution will depend
on the quality of the basis given as input.

Theorem 2.10 ([5]). Consider a rank r lattice L, given by a δ − reduced basis B,
with δ = 3/4. Then for input t and B, Algorithm 7 outputs v ∈ L such that

∀x ∈ L, ‖t− v‖ 6

(
1 + 2r

(
9

2

)r/2)
‖t− u‖ .

Alternatively, Algorithm 7 solves CVPγ for γ = 1 + 2r
(

9
2

)r/2.
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One can remark that the output of Algorithm 7 belongs to the fundamental par-
allelepiped defined by the basis B containing t. Thus the quality of the decoding
depends on the quality of the basis defining this parallelepiped, as shown in Propo-
sition 2.2.

Proposition 2.2. Consider B a basis of a lattice L, and F(B) the fundamental
parallelepiped defined by B. Then for input B, Babaï’s rounding algorithm solves

1. CVPγ with γ being the radius of the smallest enclosing sphere of F(B);

2. BDDγ with γ being the radius of the biggest enclosed sphere of F(B).

The radii of the largest enclosed and smallest enclosing spheres of a parallelepiped
can be expressed with the help of the defining basis. Let us denote by R1(B) and
R2(B) the mentioned radii. Then one has

R1(B) = max{‖1

2

r∑
i=1

xibi‖ | (xi)i∈J1,rK ∈ {−1, 1}r}

and
R2(B) = min{1

2
‖b∨i ‖ | i ∈ J1, rK}.

In particular, a target t = v+ e with v ∈ L will be reduced to v if (e | b∨i ) 6 1
2
for

all i ∈ J1, rK.

(a) A bad basis (b) A better basis

Figure 2.5: Rounding situation with two bases of the same lattice

Babaï’s nearest plane algorithm: The second algorithm is also due to Babaï [5],
and is called the nearest plane algorithm. It outputs similar although different results
from the ones output by Algorithm 7. It is an inductive technique, described in
Algorithm 8. As one can see, it is essentially a process of size-reduction (Alg. 2)
Again the output will depend on the quality of the basis given as input. We can

prove that the output is not too far from the target given the basis is LLL-reduced.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 28

Algorithm 8 Babaï’s Nearest Plane Algorithm

Require: t ∈ Rn, B = (b1, . . . , br) a basis of a lattice L, B̃ the GSO of B
Ensure: v ∈ L a close vector of t
1: v ← t
2: for i = r down to 1 do
3: v ← v −

⌊
(v|b̃i)

‖b̃i‖2
⌉
bi . Make t more orthogonal to bi

4: end for
5: return v − t

Theorem 2.11. Consider a rank r lattice L, given by a δ − reduced basis B, with
δ = 1/4 + 1/

√
2. Then for input t and B, Algorithm 8 outputs v ∈ L such that

∀x ∈ L, ‖t− v‖ 6 2r/4√√
2− 1

‖t− x‖ < 1.6× 2r/4 ‖t− x‖ .

In other words, Algorithm 8 solves CVPγ for γ = 2r/4√√
2−1

.

The output of Babaï’s nearest plane has better quality than the one of the round-
ing technique. In fact one can prove it lies in a parallelepiped defined by the GSO
of the basis given as input and centered on the target t.

Proposition 2.3. Consider a rank r lattice L, given by a basis B. Then for input
t and B, Algorithm 8 outputs v ∈ L lying in t + F(B̃). Thus it solves BDDγ for
γ 6 1

2
min{

∥∥∥b̃i∥∥∥ | i ∈ J1, rK}.

Kannan embedding technique: The last process that we will mention is due to
Kannan [57]. It transforms a CVP instance over a lattice into a SVP instance over
an upper-lattice. Let us consider B = (b1, . . . , br) a basis of a lattice L ⊂ Rn and
t a vector in span(L). Now denote by v a vector of L such that ‖t− v‖ = d(t,L).
Then one can remark that e = t − v is short. The embedding technique consistsof
building a lattice containing e. For this let us fix a constant M ∈ R+ and consider
the matrix 

b1 0
...

...
bn 0

t M

 .
It defines a lattice L′ of Rn+1 which is an upper-lattice of L, or more precisely of
its embedding in Rn+1 under the map (x1, . . . , xn) ∈ Rn ↪→ (x1, . . . , xn, 0) ∈ Rn+1.
Moreover the error vector (t,M)− (v, 0) = (e,M) is in L′. Therefore, depending on
its size compared to the shortest vectors of L, solving the SVP on L′ might allow
us to retrieve this vector and find v. The technique is summed up in Algorithm 9.
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Algorithm 9 Kannan’s embedding technique
Require: B = (b1, . . . , br) a basis of a lattice L ⊂ Rn, t ∈ span(L) and M ∈ R+

Ensure: v ∈ L a close vector of t
1: B′ ← (bi + 0× en+1)i∈J1,rK

2: B′ ← B ∪ (t+Men+1)
3: e′ ← SVP(B′) . SVP solver on L(B′)
4: e← e′ −Men+1

5: return t− e

Theorem 2.12. Consider a lattice L of Rn generated by a basis B = (b1, . . . , br),
t ∈ 〈b1, . . . , br〉R, v a vector of L such that d(t,L) = ‖t− v‖, andM ∈ R+. Moreover
let L′ be the lattice of Rn+1 generated by {(b, 0) | b ∈ B} ∪ {(t,M)}. Then the
following holds(

‖t− v‖ < λ1(L)

2

)
∧ (M = ‖t− v‖) =⇒ ‖(t− v,M)‖ = λ1(L′)

and Algorithm 9 outputs v for input B, t and M .

Remark that Algorithm 9 uses a SVP solver and that the value of M in Theo-
rem 2.12 is the norm of the error vector. In practice and for large dimensions, one
can only solve SVPγ for some γ potentially exponential in the rank of the lattice,
by using an algorithm like LLL. Moreover the norm of the error vector t− v is not
always smaller than λ1(L)/2. In these cases, one cannot certify that Kannan’s em-
bedding technique solves the CVP. Thus one has a heuristic method depending on
the parameters in input.

Remark 9. Since the idea described is to reduce CVP to an instance of SVP,
one usually fixes M to be small. However one can twist it as follows. Fix M =

max{‖b‖ , b ∈ B} and use LLL instead of a SVP solver. Then the output of this
modified Algorithm 9 is the same as Babaï’s nearest plane algorithm.

2.3 Number theory

We refer the reader to [8, 30, 31, 72, 90] for anything related to number fields and
computational number theory.

2.3.1 Number fields

Definition 2.21. A number field K is a field which is a finite extension of Q, i.e. a
finite dimensional Q-vector space.

Notation. Given an extension L/K of number fields, we will call the dimension of
L over K the degree of L/K. It will denoted by [L : K].
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Proposition 2.4. Let L/K be an extension of number fields. Then there is an
irreducible polynomial P (X) ∈ K[X] such that

L ∼=
K[X]

(P (X))
.

and [L : K] = degP (X). Moreover P (X) has [L : K] distinct roots in an algebraic
closure K of K containing L. These roots define [L : K] distinct K− isomorphisms
of L into K. If α is such a root, then the corresponding isomorphism σα is the
following,

σα :
K[X]

(P (X))
−→ K[α] ⊂ K

[L:K]−1∑
i=0

ciX
i 7−→

[L:K]−1∑
i=0

ciα
i.

Remark 10. As a matter of fact Proposition 2.4 is true for any finite field extension
(in characteristic 0). If we consider number fields, their algebraic closure is the set
of algebraic numbers Q ⊂ C.

Notation. Given a number field extension L/K we will denote by Ω one of its
algebraic closure. Then Hom(L/K,Ω) will be the set of the [L : K] distinct K-
isomorphisms of L into Ω. The same way, one can denote by Hom(L,Ω) the set
of field embeddings of L into Ω. Similarly we will denote by Hom(L,C) the set of
[L : Q] field embeddings of L into C. One can then define the set Hom(L/K,C) to
be the set of K-linear field embeddings of L into C. Be aware that one needs to
specify an embedding of K into C for this to be properly defined. It is usual for the
two approaches of field embeddings described above – algebraic or complex – to be
identified, as it the case in [30] for example. We will do the same, and the context
will help determine which objects are considered. We will therefore mainly talk
about “complex embeddings” and use the notations Hom(L/K,C) and Hom(L,C),
even when considering morphisms from a number field into an algebraic closure.

Remark 11. Given any object f for which it makes sense, the result of the action
of σ ∈ Hom(L/K,C) on f will be called a conjugate of f (relative to L/K).

Lemma 2.2. Consider L/K an extension of number fields and S ⊆ Hom(L/K,C).
Then the set {x ∈ L | ∀σ ∈ S, xσ = x} is a subextension of L/K.

Notation. Given an extension of number fields L/K and S ⊆ Hom(L/K,C) we
will denote by Inv(S) or LS the number field fixed by S.

Let us consider a few examples of number fields.
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1. First let us fix P (X) = X2 − 2. Then P (X) is irreducible over Q and K =

Q[X]/(P (X)) is a number field of degree 2. It can also be seen as Q(
√

2), the
smallest field in Q containing Q and

√
2.

2. One important type of number fields are the cyclotomic fields. They are widely
studied and are the most used in cryptography. They are generated by a
fundamental root of unity ζm, with m being called the conductor of the field.
Such a field is then of the form Q(ζm) and its degree is φ(m), where φ is Euler’s
totient function.

3. Consider K = Q(ζm) a cyclotomic field with m = 2n for some n > 1, P (X) =

X2 − ζm ∈ K[X] and L = K[X]/(P (X)). Then a root of P (X) in C is ζ2n+1

so L is isomorphic to the cyclotomic field Q(ζ2m), and [L : K] = 2.

Given several number fields, one can construct a number field containing all of
them.

Definition 2.22. Consider K1 and K2 two number fields. The compositum of K1

and K2 is the smallest number field containing K1 ∪K2. It is denoted by K1K2.

Remark 12. In general [K1K2 : Q] 6= [K1 : Q][K2 : Q], one can only say [K1K2 :

Q] 6 [K1 : Q][K2 : Q]. For example if K1 = Q(
√

2,
√

3) and K2 = Q(
√

2,
√

5) then
K1K2 is equal to K1 = Q(

√
2,
√

3,
√

5). Therefore [K1 : Q][K2 : Q] = 16 is different
from [K1K2 : Q] = 8.

2.3.2 Galois extensions

Definition 2.23 (Galois group). Consider a field extension L/K. Then the Galois
group of L/K, denoted by Gal(L/K), is the group of field automorphisms of L which
are congruent to the identity when restricted to K, i.e.

Gal(L/K) = {σ ∈ Aut(L) | σ ≡ IdK}.

The Galois group Gal(L/K) of an extension can be seen as a subset of Hom(K,C).
It has important properties, especially when the extension itself is Galois.

Definition 2.24 (Galois extension). An extension of number fields L/K is called
a Galois extension when |Gal(L/K)| = [L : K]. If K = Q then we say that L is a
Galois field, or more simply that L is Galois.

For example the cyclotomic fields are Galois number fields as well as the multi-
quadratic fields considered in [6]. However this property is not satisfied by a general
number field K and we have to consider the Galois closure of K which is in fact the
smallest extension containing all the roots of the irreducible polynomial P (X).
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Proposition 2.5 ([90]). Consider a Galois extension L/K. Then there is a bijection
between the set of subextensions of L/K and the subgroups of Gal(L/K). It is realised
by the two following maps:

Φ : M 7−→ Gal(L/M),

and
Ψ : H < G 7−→ LH .

When an extension is not Galois, we might have to consider its Galois closure.

Definition 2.25 (Galois closure). 1. Consider L/K a number field extension.
We call the Galois closure of L/K and denote by L̃ the smallest number field
M containing L such that M/K is Galois.

2. Given a number field L, the Galois closure of L is the Galois closure of the
extension L/Q.

2.3.3 Traces and norms

Definition 2.26. Let L/K be an extension of number fields, and x ∈ L. Then one
defines the trace (resp. the norm) of x relative to L/K to be the trace (resp. the
determinant) of the K−linear map [x] : L→ L. The trace (resp. norm) relative to
L/Q will be called the absolute trace (resp. norm) of x.

Notation. The relative trace (resp. norm) of an extension L/K is denoted TrL/K

(resp. NL/K). The absolute trace (resp. norm) of L is then written Tr (resp. N)
when there is no ambiguity.

One can alternatively describe the trace and norm of an element in terms of its
conjugates, i.e. the elements σ(x) for σ ∈ Hom(L/K,C)

Proposition 2.6 ([90]). Consider a number field extension L/K of degree n, write
Hom(L/K,C) = {σ1, . . . , σn} and fix x ∈ L/K. Then the following are true,

TrL/K(x) =
n∑
i=1

σi(x), NL/K(x) =
n∏
i=1

σi(x).

Following their definition, one can easily deduce some properties of TrL/K and
NL/K . The map TrL/K is K−linear and NL/K is multiplicative. Moreover if a ∈ K
then NL/K = a[L:K].
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An important quantity in number fields is the discriminant. First let us define
the discriminant of a family. We will define the discriminant of an extension L/K
later on.

Definition 2.27 (Discriminant of a family). Consider an extension of number fields
L/K of degree n, and (x1, . . . , xn) ∈ Ln. Then the discriminant of (x1, . . . , xn)

(relative to L/K), denoted by DK(x1, . . . , xn) is the element det
[
TrL/K(xixj)

]
i∈J1,nK
j∈J1,nK

.

Proposition 2.7 ([90]). Consider an extension of number fields L/K of degree n,
and write σ1, . . . , σn the elements of Hom(L/K,C). For any (x1, . . . , xn) ∈ Ln one
has

DK(x1, . . . , xn) = det [σi(xj)]i∈J1,nK
j∈J1,nK

.

Moreover if (x1, . . . , xn) is a basis of L over K then DK(x1, . . . , xn) 6= 0.

2.3.4 Orders

Now let us describe important ring structures attached to number fields.

Definition 2.28. An order of a number field K is a subring of K which is a finitely
generated Z-module and of maximal rank [K : Q].

We can typically consider orders generated by Q-basis of K. In particular, if α
is a root of an irreducible polynomial P (X) defining a number field K, then Z[α] is
an order of K. It is generated by the successive powers of α and is isomorphic to
the quotient ring

Z[X]

(P (X))
.

The most important order is the ring of integers ofK, which generalises the notion
of integers to algebraic numbers.

Definition 2.29 (Ring of integers). Let K a number field. The ring of integers of
K, denoted by OK is the ring of integral elements of K, defined by

OK = {x ∈ K | ∃P (X) ∈ Z[X] monic, P (x) = 0}.

Proposition 2.8 ([31]). The ring of integers of a number field K is a free Z-module
of rank [K : Q]. Moreover any order of K is included in OK.

Because of Proposition 2.8, the ring of integers OK is also called the maximal order
of K. For some number fields K = Q(α), the maximal order OK is isomorphic to
Z[α]. It is the case for cyclotomic fields for example. However we stress that it is
not true in general. For example, the maximal order of the quadratic field Q(

√
5)

is generated by {1, 1+
√

5
2
}.
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Remark 13. Given an extension of number fields L/K, we know that OL and OK
are both free over Z, and that L ∼= K [L:K]. Then one could wonder whether OL is
free over OK , i.e. if OL ∼= O[L:K]

K . While it is the case if OK is a principal ring, it is
not the case in general [90].

Orders can be useful to approximate the ring of integers when it is unknown, and
too complicated to obtain.

Proposition 2.9 ([90]). Consider an extension of number fields L/K of degree n.
The following properties are true.

1. For any x ∈ OL, TrL/K(x) and NL/K(x) are elements of OK.

2. For any family (x1, . . . , xn) ∈ OnL, the discriminant DK(x1, . . . , xn) belongs to
OK.

Moreover the trace and norm maps are transitive, i.e. if M/L/K is a tower of
number fields then TrM/K = TrL/KTrM/L and NM/K = NL/KNM/L.

Definition 2.30 (Discriminants). 1. Let K be a number field. The (absolute)
discriminant of an orderO ofK is the integerDK(b1, . . . , bn), where (b1, . . . , bn)

is any Z-basis of O. The (absolute) discriminant of K is the discriminant of
its ring of integers OK .

2. Given an extension of number fields L/K, its relative discriminant is defined
to be the (well-defined) ideal of OK generated by the discriminants of all bases
of L/K which are contained in OL. It is denoted by d(L/K).

Notation. The absolute discriminant of an order will be denoted by DK(O). The
discriminant of K is simply denoted by DK or D(K).

Remark 14. We need a different way of defining relative discriminants because the
ring of integers OL is not (in general) free over OK , i.e. there is no basis of OL over
OK to consider.

The relation of inclusion for orders can be described by a simple property of their
discriminants.

Proposition 2.10 ([31]). Consider O1 and O2 two orders of a number field K.
Then the following is true:

O1 < O2 ⇐⇒ ∃f ∈ Q, DK(O1) = DK(O2)f 2.
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2.3.5 Ideals

Now let us consider part of the arithmetic of number fields and number field exten-
sions, by considering their ideals.

Definition 2.31. Let K be a number field. An integral ideal of OK is simply an
ideal of the ring OK . A fractional ideal of OK is a Z-submodule J of K such that
there is d ∈ Z satisfying the fact that dJ is an ideal of the ring OK .

Remark 15. We will sometimes refer to ideals of K instead of ideals of OK .

Notation. The set of fractional ideals of a number field K is denoted by I(K).

The first important structural result on the set fractional ideals is that it has a
group structure.

Theorem 2.13 ([90]). Let K be a number field, and denote by P the set of prime
integral ideals of K. Then the following propositions are true.

1. The set I(K) is an abelian group, where the law is the standard ideal product.

2. Every fractional ideal I can be uniquely expressed as a product of prime integral
ideals

I =
∏
p∈P

pvp(I), (2.8)

such that for all p ∈ P, vp(I) ∈ Z, and for almost all p ∈ P, vp(I) = 0.

As it was the case for elements, one can define the trace and the norm of an ideal.
First we can define the absolute norm.

Proposition 2.11 ([90]). Let K be a number field and I an integral ideal of K.
Then I is a submodule of OK of maximal rank. Thus the quotient ring OK/I is
finite. Moreover the map I 7→ |OK/I| is multiplicative over the set of integral ideals.

Definition 2.32 (Absolute norm of an ideal). Let K be a number field. One defines
the (absolute) norm of an ideal as follows:

1. The norm of an integral ideal I is the positive integer |OK/I|;

2. Given I and J two integral ideals, the norm of the fractional ideal I/J is the
quotient of the norm of I by the norm of J .

The norm map is denoted by NK , or N when there is no ambiguity.

An important object in number theory is the class group.
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Definition 2.33 (Class group). Consider K a number field. The class group of
K, denoted by Cl(K) is the quotient group of fractional ideals by the subgroup of
principal ideals (generated by a single element).

We can remark that since a prime ideal p is in fact a maximal ideal of OK then
the quotient ring OK/p is a finite field, so NK(p) = pf for some prime integer p
and f ∈ N∗. We will see below what is f , when looking into the splitting of ideals.
There are several ways of defining the relative norm of an ideal. The most simple is
certainly the following.

Definition 2.34 (Relative norm of ideals). Let L/K be a number field extension.
The norm of an ideal I of L relative to L/K, denoted by NL/K(I), is the fractional
ideal ofK generated by the norms of elements of I relative to L/K. In mathematical
terms, one has NL/K(I) = 〈NL/K(x) | x ∈ I〉OK .

As it is the case for elements of L, the relative norm of an ideal I can be expressed
using the action of Hom(L/K,C) onto I.

Proposition 2.12. Consider L/K an extension of number fields, and I an ideal of
L. Moreover denote by H the set of K−embeddings of L into C. Then the norm of
I relative to L/K satisfies the following equation, where the products are done over
a suitable extension of L.

NL/K(I) =

(∏
σ∈H

σ(I)

)
∩K. (2.9)

As it was the case for elements the relative norm of ideals is transitive. The
relative norm is also involved in a formula concerning relative discriminants.

Proposition 2.13. Let M/L/K be a tower of number fields, and I be an ideal of
M . Then NM/K = NL/KNM/L, and d(M/K) = d(L/K)[M :L]NL/K(d(M/L)).

2.3.6 Representation of elements and structures

First let us describe the structure of orders and ideals.

Proposition 2.14 ([90]). Given ideal I of a number field K, one can find a basis
(b1, . . . , bn) of elements of OK such that K =

⊕n
i=1 Qbi, OK =

⊕n
i=1 Zbi and I =⊕n

i=1 Zdibi with (d1, . . . , dn) ∈ Zn.

Proposition 2.14 shows that the ring of integers as well as its integral ideals are full
rank Z-submodules of K. Therefore, images of OK and of any ideal I of OK under
the action of any embedding of K into Rn are lattices. Then, in the representation
given by said embedding, one can describe the volume of any ideal compared to the
volume of the ring of integers.
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Proposition 2.15. Consider K a number field, I an ideal of K. Then vol(I) =

NK(I)vol(OK).

Let us describe the two main ways of representing elements of a number field,
leading to different geometrical situations.

The standard representation

The usual embedding corresponds to viewing a number field K as a quotient Q[X]
(P (X))

.
Then every element g(X) = g0 + · · ·+gn−1X

n−1 of K can be seen as the vector with
coordinates (g0, . . . , gn−1) in Qn. This defines the coefficient embedding of K into
Rn.

Definition 2.35. Given a number field K defined by a degree n irreducible poly-
nomial P (X), the coefficient embedding or polynomial embedding is defined as

σcoeff :
Q[X]

(P (X))
−→ Qn ↪→ Rn

[K:Q]−1∑
i=0

ciX
i 7−→ (c0, . . . , cn−1).

(2.10)

In this standard representation, one can use the classical Euclidean norm l2 of Rn.

Remark 16. Since this embedding corresponds to the description of a number field
as a quotient of a polynomial ring, we will forget about σcoeff. Thus in general,
the geometrical properties of elements or structures of a number field are considered
under this morphism.

Remark 17. This embedding is not canonical. Indeed, it depends on the basis
chosen forK. We described it with (X i (mod P (X)))i∈J0,n−1K but one could consider
an integral basis of OK . Different bases give different geometries. For example, the
embedding given by an integral basis sends OK to Zn, thus the volume of I is NK(I).

The canonical embedding

The other fundamental embedding is canonical, and uses the complex embeddings
of K. First let us describe this set in more detail. As already mentioned, an element
σα ∈ Hom(K,C) is a field embedding of K into C corresponding a root α of P (X)

in C. Let us denote by R the set of roots of P (X). Then one can remark that R is
globally invariant by the action of the complex conjugation.

Definition 2.36. The signature of a number field K defined by a polynomial P (X)

is the pair (r1, r2) ∈ N2 where:
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• r1 = |{α ∈ R | α ∈ R}|;

• 2r2 = |{α ∈ R | α ∈ C \ R}|.

There are r1 real embeddings and r2 pairs of (strictly) complex embeddings. The
two elements of a given pair are conjugates one from each other. It is usual to
write σ1, . . . , σr1 the real embeddings and to consider that σj+r2 = σj for all j ∈
Jr1 + 1, r1 + r2K.

Definition 2.37 (Minkowski’s embedding). Given a number field K defined by
a degree n irreducible polynomial P (X), the canonical embedding or Minkowski’s
embedding is defined as

σK : K −→ Rr1 × Cr2 ∼= Rn

x 7−→ (σi(x))i∈J1,r1+r2K .
(2.11)

Then K can be seen as embedded in Rn. More precisely it defines an isomorphism
between (KR = K ⊗Q R, T2) and (Rn, l2), where the T2 norm is defined as T2 : x ∈
K 7→

∑n
i=1 σi(x)σi(x).

Proposition 2.16. Let K be a number field defined by a degree n irreducible poly-
nomial P (X) ∈ Q[X]. Then under Minkowski’s embedding, vol(OK) = 2−r2

√
|DK |,

thus leading to vol(I) = 2−r2NK(I)
√
|DK |.

Throughout this thesis, elements in number fields are essentially identified with
their polynomial representation. Moreover, we will often consider σK to be defined
as

σK : x 7−→ (σi(x))i∈J1,nK,

where all complex embeddings are taken into account. Similarly for a field extension
L/K we define σL/K : x 7−→ (σ(x))σ∈Hom(K/L,C). We call this map Minkowski’s
embedding relative to L/K. The maps σK and σL/K will often be used for the
fact that they establish linear bijections between the fields considered and a set of
complex vectors.

2.3.7 Unit group and Log embedding

The group of units of OK written O×K is the set {u ∈ OK | u−1 ∈ OK}. It has a
specific structure that we can take advantage of.

Proposition 2.17. Given a number field K of degree n with n = r1 + 2r2 as before,
we have

O×K
∼=

Z
mZ
× Zr1+r2−1,

where m is the largest integer for which a primitive m-th root of unity belongs to K.
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This isomorphism which allows seeing the units of O×K modulo its torsion group
as a lattice is realised by an important embedding which is the Log-embedding of K.

Definition 2.38. Let K be a number field of degree n, and (r1, r2) be its signature.
Consider (cj)j∈J1,r1+r2K such that cj = 1 if j 6 r1 and cj = 2 otherwise. Then the
Log-embedding of K is defined as

LogK : K∗ −→ Rr1+r2

x 7−→ (ci ln|σi(x)|)i∈J1,r1+r2K .
(2.12)

Theorem 2.14 ([72]). Consider K a number field of degree n and signature (r1, r2).
The set LogK(O×K) is a lattice of the hyperplane orthogonal to the all ones vector.
The volume of LogK(O×K) is

√
r1 + r2RK, where RK is the regulator of K.

Definition 2.39. Given a number field K, the lattice LogK(O×K) is called the Log-
unit lattice of K. We will denote by VK its volume.

One can also define the Log-embedding by using all of the embeddings σi and
forgetting the cj. By doing so the Log-unit lattice is a lattice of rank r1 + r2 − 1 in
Rn and its volume is

√
n

2r2/2
RK . In the rest of the thesis we will use this last form

of the Log-embedding.

2.3.8 Splitting of an ideal in an extension

An important arithmetical phenomenon is the splitting of an ideal in an extension.
More precisely, given I an ideal of K, then J = IOL is an ideal of L. Following
Theorem 2.13 J can be expressed as a product of prime ideals of L. We want to
study this factorisation. Since an integral ideal can always be factored as a product
of prime ideals, it is sufficient to consider prime ideals. First, given such an ideal p
of K, we can characterise the prime ideals of L being factors of p in L.

Lemma 2.3 ([90]). Consider L/K an extension of number fields, p an ideal of K,
and P an ideal of L. Then P divides p in L if, and only if, P ∩K = p.

Definition 2.40. Given an extension of number fields L/K, p an ideal of K and P

an ideal of L, we say that P is above p if P | p.

Remark 18. Following Lemma 2.3 one can see that if P | p then we get the field
embedding OK

p
↪→ OL

P
. As they are both finite fields, one can remark it defines a

finite field extension, and can consider the degree [OL
P

: OK
p

].

Theorem 2.15 ([90]). Consider L/K an extension of number fields, p an ideal of
K, and p =

∏g
i=1 P

vPi (p)

i its factorisation in L. Then the following propositions are
true.
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1.
∑g

i=1 vPi(p)[OL
Pi

: OK
p

] = [L : K].

2. For all i ∈ J1, gK, NL/K(Pi) = p
[
OL
Pi

:
OK
p

].

Definition 2.41 (Residual degree and ramification index). Consider L/K an ex-
tension of number fields, p an ideal of K, and p =

∏g
i=1 P

vPi (p)

i its factorisation in
L. Moreover fix j ∈ J1, gK.

1. The residual degree or inertial degree of Pj over p is the index [OL
Pj

: OK
p

]. It is
denoted by f(Pj|p).

2. The exponent vPj(p) is called the ramification index of Pj over p, and is
denoted by e(Pj|p).

One can rewrite the formulae in Theorem 2.15 as [L : K] =
∑g

i=1 e(Pi|p)f(Pi|p)

and NL/K(Pi) = pf(Pi|p). Moreover the factorisation is even simpler if the extension
is Galois, as shown by Proposition 2.18.

Proposition 2.18 ([90]). Consider L/K an extension of number fields which is
Galois, and p a prime ideal of K. Then the maps e(·|p) and f(·|p) are constants
over the primes of L dividing p. If e and f are the respective constant values and g
the number of prime ideals of L above p, then [L : K] = efg.

Definition 2.42 (Types of splitting). Let L/K be an extension of number fields
and p be a prime ideal of OK . Let p =

∏g
i=1 P

e(Pi|p)
i be the factorisation of p in L.

1. The ideal p ramifies in L/K if there is i ∈ J1, rK with e(Pi|p) > 1.

2. If g = 1 and f(P1|p) = 1, we say that p ramifies completely in L.

3. We say that p is completely split or totally split (or splits completely) in L if
for all i ∈ J1, gK, e(Pi|p) = f(Pi|p) = 1.

4. If g = 1 and e(P1|p) = 1 then p is said to be inert in L.

Now let us state how the discriminant ideal of an extension L/K is related to the
splitting of prime ideals.

Theorem 2.16 ([30]). Given L/K an extension of number fields, a prime ideal p
of K ramifies in L if, and only if, it divides the relative discriminant ideal d(L/K).

Another important object, related to the discriminant is the different.

Definition 2.43 (Different). Consider an extension of number fields L/K. The
relative different D(L/K) is the ideal defined as follows,

D(L/K)−1 = {x ∈ L | TrL/K(xOL) ⊂ OK}.
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As it is the case for norm, the different is transitive.

Proposition 2.19. Let M/L/K be a tower of number field extensions. Then
D(M/K) = D(M/L)D(L/K).

The different is useful because it can be used to compute the discriminant.

Proposition 2.20 ([30]). Let L/K be an extension of number fields. Then the
prime ideals of L dividing D(L/K) are exactly the ones ramified in L/K. Moreover
NL/K(D(L/K)) = d(L/K).

Proposition 2.21 ([87]). Consider L/K an extension of number fields, p an ideal
of K, P and ideal of L above p and p the characteristic of OK/(p). Then if p and
e(P | p) are coprime, one has vP(D(L/K)) = e(P | p)− 1.

2.4 Lattice based cryptography

In this Section we will describe the generic construction of encryption schemes using
Euclidean lattices, then we will describe quickly some of the famous frameworks
using (mainly structured) lattices, or which can been described with lattices. For a
good survey on lattice based cryptography, we refer the reader to [77].

2.4.1 Generic construction of a scheme with lattices

General encryption scheme

The most basic encryption scheme, without added “features”, is usually composed
of three functions:

• Setup() outputs a pair of keys Sk, Pk. Sk is kept secretly and Pk is given
publicly.

• Encrypt(m,Pk) outputs a ciphertext c given a public key Pk and a plaintext
m.

• Decrypt(c,Sk) outputs a plaintext m given a ciphertext c.

Overall, the encryption scheme is deemed correct if the equality

Decrypt(Encrypt(m,Pk), Sk) = m (2.13)

holds for any m from the message space, and any output (Sk,Pk) given by Setup().
Being correct however, does not mean that the scheme is secure. To ensure the
security of the cryptographic schemes, we usually base them on computationally
hard problems.
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Generic scheme with lattices

We will now describe how a general encryption scheme can be designed with lattices.

• The public key is a “bad” basis H of a lattice; typically the HNF.

• The private key is a “good” basis, which is the trapdoor of the problem. In
particular it needs to allowus to solve the problem the system is based on.

• A generic encryption can be done as follows. If m is the plaintext vector one
can encrypt as follows:

c = Encrypt(m,H) = mH + e

where e is a short error vector, typically shorter than λ1(L(H))/2.

• In this configuration, recovering m can be done by solving the BDD. It is
typically the case in the GGH encryption scheme [47]. This gives a decryption
function:

Decrypt(c, B) = BDDsolver(c, B)

Another option for encryption is

Encrypt(m,H) = sH +m = e+m

for some s ∈ Zn. The lattice vector is now e, and m is now short compared to e.
Again, solving a BDD allows retrieving m.

Decrypt(c, B) = c− BDDsolver(c, B).

The BDD solver is typically BabaiRounding (Alg. 7). As we will see, for most sys-
tems which can be viewed as lattice constructions, the decryption phase correspond
to solving a BDD.

Using a GDD solver

Now let us explain how the use of a BDD solver such as those given by Babaï’s
algorithms can be replaced by a GDD solver. First let us remind the reader of the
following property.

Lemma 2.4 (Vector class unicity). Let L be a lattice and a, b ∈ span(L) such that
‖a‖+ ‖b‖ < λ1(L). Then

a ≡ b mod L ⇐⇒ a = b.
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Proof. The difference between a and b must be a vector of L. The only vector of L
that has a norm lower than λ1(L) is the null vector.

Proposition 2.22. Consider a lattice L and (γm, γs) ∈ R+ such that γm + γs < 1.
Then a GDDγs solver is also a BDDγm solver.

Proof. Assume that we have access to a GDDγs solver. This is equivalent to having
a reduction algorithm Reduce which given v outputs w such that w ≡ v mod L
and ‖w‖ 6 γsλ1(L). Now consider v ∈ span(L) such that d(v,L) < γmλ1(L).
Denote by w′ the vector such that v ≡ w′ mod L and ‖w′‖ < γmλ1(L). Then we get
w ≡ w′ mod L and

‖w‖+ ‖w′‖ < (γs + γm)λ1(L) < λ1(L).

Thus, by Lemma 2.4 one has w = w′.

Therefore one can deduce properties which ensure that a decryption function based
on a GDD solver leads to a valid encryption. Indeed, assume that c = sH +m with
m in B(0,M). Then suppose that one has access to Reduce which reduces modulo
L in B(0, R). Following Proposition 2.22 if R+M < λ1(L) then Reduce(c, B) = m.

2.4.2 NTRU construction

One of the first cryptosystems linked to structured lattices is NTRU [54]. Its first
description is as a ring-based system. Let us describe a simple version of the NTRU
framework.

NTRU framework Consider a polynomial ring R = Z[X]
(P (X))

where P (X) ∈ Z[X]

is not necessarily irreducible. The original construction suggests P (X) = Xn − 1.
The advantage of this polynomial is that operations are efficient, especially the
multiplication by the basis elements X i, which correspond to cyclic shifts of the
coefficients. Moreover choose an integer q and denote by R/q the ring Z/qZ[X]

(P (X))
. Then

the system is broadly as follows:

1. the secret key is a pair (f, g) of short polynomials – their coefficients are small
compared to q – such that f is invertible in R/q;

2. the public key is h ∈ R/q such that h ≡ gf−1 in R.

Then the NTRU problem is the following: «Given h, retrieve f and g ». It can
be restated as a lattice problem. If one considers Id to be the identity matrix and H
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to be the matrix of the multiplication in R/q by h, one can define the NTRU lattice
to be generated by the matrix B defined as follows.

B =

[
Id H

0 qId

]
.

Moreover h = gf−1 in R/q is equivalent to the existence of k ∈ A such that fh+kq =

g. Therefore the vector of coefficients of [f, g] is equal to [f, k]B, so belongs to the
NTRU lattice. Then, f and g having small coefficients compared to q, the vector
[f, g] is short in the lattice L(B). For example, if their coefficients are in {−1, 0, 1}
then ‖[f, g]‖2 6

√
2n, and the Gaussian heuristic applied on the NTRU lattice gives

λ1 ∼
√

2nq
2πe

. Thus, [f, g] is expected to be the shortest vector of L(B), and retrieving
the secret key amounts to solving an SVP instance.

Security and modifications Since the original paper, several improvements or
modification have been suggested, in particular to cope with progress made in lattice
reduction [53].

As mentioned the security can be linked to the SVP. It is however over a special
category of structured lattices, which are the NTRU lattices. It is unknown if
these lattices are weaker than general lattices. Moreover it is possible that the ring
structure of A can be used to retrieve the secret key, or speed-up computations. It
has been done in [3, 29], where the authors use the relative trace and norm to map
the problems to subfields. However these do not introduce a security breach in the
NTRU problem with the parameters used in cryptography.

Finally NTRU is a long studied problem, and is believed to be secure despite the
lack of strong security proofs. Its framework has been suggested in several candidates
for the NIST standardisation process [43, 11].

2.4.3 Learning with errors and variants

We will present the cryptosystems based on another problem called Learning With
Errors (LWE), and its structured variants.

Learning With Errors

The Learning With Errors problem was defined by O. Regev in 2005 [86], and several
cryptosystems suggested over the years rely on its hardness [78].

LWE framework For the LWE problem, one fixes integers n, m and q, as well
as two distributions Ds and De over Zn and Zm respectively. Then the system is
broadly as follows:
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1. the secret key is a pair (s, e) ∈ Zn × Zm of vectors, drawn following Ds ×De.

2. the public key is a pair (A, b), where A is uniformly drawn in Mn,m(Z) and
b = sA+ e mod q

Then the LWE problem (search variant) consistsof: «Given (A, b), retrieve s. ».
As for NTRU, it can be linked to lattices. Indeed, if one considers the lattice
Lq(A) = {x ∈ Zm | x ≡ As mod q}, then for typical LWE parameters e is short
compared to the determinant of Lq(A). Thus retrieving (s, e) amounts to solving a
BDD with respect to Lq(A).

Security We saw that the LWE problem can be rephrased as a lattice problem.
Even if it is over a special kind of lattices called the q-ary lattices – which contain qZn

– the LWE problem enjoys worst-case to average-case reductions [78, 86] and is as
hard to solve as problems on lattices. These strong hardness reductions led to several
cryptographic constructions. For example, a candidate to the NIST standardisation
process built following the LWE framework is Frodo [21].

Ring Learning With Errors

In order to improve efficiency, it has been suggested to modify the LWE setup and
place the operations in a polynomial ring [66, 98]. Thus it is usually called Ring
Learning With Errors (RLWE).

RLWE framework In the RLWE setting, one fixes as parameters a polynomial
P (X) and an integer q. Then, as for NTRU, denote by R the polynomial ring Z[X]

(P (X))

and R/q the ring Z/qZ[X]
(P (X))

. Then the system is as follows:

1. the secret key is an small element s ∈ R/q drawn from a distribution Ds,
usually uniform;

2. the public key is a pair (a, b), where a is uniformly drawn in R and b =

sa+ e mod q, with e drawn in R following a distribution De.

Clearly, since the elements handled are in polynomial rings, the storage needed is
smaller and operations (such as multiplications) are way faster than matrix-vector
computations. Again the RLWE problem can be seen as a problem involving lattices,
and more precisely ideal lattices. Indeed, in place of A in LWE, one considers here
the ideal generated by a in R, which can be viewed as a lattice.
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Security It is unclear whether the additional algebraic structure allows faster
attacks. It has to be noticed however that as it is the case for the LWE problem,
the RLWE problem enjoys worst-case to average-case reductions, and is as hard
to solve as problems on ideal lattices [66, 98]. An example of cryptosystem based
on the RLWE framework is NewHope [4], a candidate to the NIST standardisation
process.

Module Learning With Errors

It is possible to obtain a better trade-off between security and efficiency than with
the RLWE setting. The operations will again take place in a polynomial ring, but
one adds a block structure. More precisely the underlying structure can be seen as
a module over the chosen polynomial ring. This leads to the Module Learning With
Errors (MLWE) setting [23, 61]. Let us describe a simple version of it.

MLWE framework In the MLWE setting, we have a polynomial P (X), an integer
q and an integer d. Then denote by R the polynomial ring Z[X]

(P (X))
and R/q the ring

Z/qZ[X]
(P (X))

. Then the system is as follows:

1. the secret key is an short element s ∈ Rd/q, drawn from a distribution Ds;

2. the public key is a pair (a, b), where a is uniformly drawn in Rd and b = (s |
a)Rd + e mod q, with e drawn in R following a distribution De.

As for NTRU and RLWE, the extra algebraic structure allows better storage and
faster computations. The MLWE setting can also be seen as a lattice, defined by
a block matrix where each block corresponds to an ideal lattice. Indeed a ∈ Rd so
each of its coordinates ai ∈ R defines an ideal lattice.

Security Again the MLWE problem enjoys worst-case to average-case reductions,
and is as hard to solve as problems on module lattices [23, 61]. Several systems
suggested as candidates to the NIST standardisation process are based on the MLWE
framework, such as Kyber [20] or Saber [35].

2.4.4 Principal ideal lattices

For a general introduction to ideal lattices and their use in cryptography, one could
refer to the survey of Ducas [37].
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The Principal Ideal Problem

First let us describe the problems related to ideals that are used in some cryptosys-
tems using ideal lattices.

Definition 2.44 (Principal Ideal Problem (PIP)). Given a basis of a principal ideal
I in a number field K, retrieve a generator of I.

The PIP is referred to as one of the main tasks of Computational Number Theory
by H. Cohen in [31]. Generic algorithms solving this problem essentially require
the computation of the ideal class group Cl(K) of the number field K [31]. The
best algorithms run in subexponential time. It was first described over imaginary
quadratic fields [48], then generalised to arbitrary number fields with fixed dimen-
sion [24]. Then several works provided subexponential algorithms to solve the PIP
over arbitrary classes of number fields [15, 12] and improvement over cyclotomic
fields [14, 18]. Even if the best classical algorithms are subexponential, quantum
computing can be used to solve the PIP in polynomial time [13].

Definition 2.45 (Short Principal Ideal Problem (SPIP)). Given a basis of a princi-
pal ideal I in a number field K, generated by a short element g, retrieve g or another
short generator.

Because of the classical hardness of solving the PIP and the hardness of finding
short elements in lattices, several cryptographic constructions were built around the
SPIP.

Cryptosystems based on the SPIP

The simplest cryptosystems using ideal lattices such as in [45, 46, 97] are thus based
on the problem of finding a short generator of a principal ideal. They can be broadly
described as follows.

Consider a number field K and I = gOK a principal ideal with a short g when
I is considered as a lattice, i.e. the Euclidean norm of g is small compared to the
determinant of I. Then the setting is:

1. the secret key is g;

2. the public key is I, given by a “bad” representation such as its HNF.

The private key security relies on the hardness of finding g or another short
generator. We will come back to potential attacks below.
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2.4.5 Diagonally Dominant Matrices

It is still unknown up to what extent lattices with additional algebraic structure are
safe to be used in cryptography. There is no guarantee to that algebraic attacks
known to date cannot be extended to cryptographic constructions such as NTRU,
RLWE or MLWE. However, using random lattices (which would be safer) is difficult
for efficiency reasons. These considerations led some researchers to build cryptosys-
tems linked to less structured lattices. One can mention Middle-Product Learning
With Errors (MPLWE) [89, 52], which is an adaptation of RLWE trying to remove
the structure of quotient ring. Moreover one can consider constructions without any
special arithmetical structure behind it. This is the case of Diagonally Dominant
Matrices.

Definition 2.46 (Diagonally Dominant Matrices). Consider a matrix M = [mi,j] ∈
Mn(R). Then M is said to be diagonally dominant on the rows or row-diagonally
dominant if the following holds,

∀i ∈ J1, nK,mi,i >
n∑
j=1
i6=j

|mi,j|.

It is said to be diagonally dominant on the columns or column-diagonally dominant
matrix if the following holds,

∀j ∈ J1, nK,mj,j >
n∑
i=1
i 6=j

|mi,j|.

Definition 2.47. A lattice L is a diagonally dominant type lattice (of dimension n)
if there is a diagonally dominant matrix B such that L = L(B).

Notation. We will write c.d.d. for column-diagonally dominant and r.d.d. for
row-diagonally dominant.

This structure has been used in several cryptographic constructions. One can
cite [83], which was a candidate of the round 1 and has known some attacks and
variants [101, 96]. The work of [101, 83] relied on the fact that the matrices used
as lattice bases are diagonally dominant (or almost), which allows the GDD to be
solved with an algorithm adapted from [81].

2.4.6 Analysis of structured lattices

We already mentioned that it is unknown up to what point extra algebraic struc-
tures weaken lattice based constructions. Since the NIST call for a post-quantum
standardisation, a lot of research is dedicated to study structured lattices.
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Reduction algorithms

Several works have studied how to reduce ideal or module lattices, and speed-up
computations using said structure. First one can mention an older work [82], which
describes an algorithm using ideal structure to speed-up LLL. However the speed-up
is only linear. Then, as mentioned, it has known a massive interest throughout the
past few years. First let us mention the works of Lee et al. [62] and Mukherjee
and Stephens-Davidowitz [71]. They describe an extension of the notion of basis
reduction to O-modules, where O < OK is an order of a number field K. These
two theoretical works can be completed by the work of Kirchner et al. [59], which
did the same with a focus on cyclotomic fields. Moreover, this last work contains
extensive practical considerations, which allow the computations of LLL-reduced
bases on structured lattices – including ideal lattices – to run considerably faster.

Solving the SVP

In addition to reducing a basis, several works were done to study the possibility of
recovering a short vector of ideal or module lattices using their algebraic structure.
The work of Cramer et al [33] is the first work. Then another article which extends
the former with the use of preprocessing is [62]. This approach has been modified
slightly in [9]. Finally, a recent work [75] showed that the problem can be solved in
polynomial time for prime ideals in Galois extensions, under specific conditions. It
describes a family of ideals over cyclotomic fields for which the ISVP can be solved
in polynomial time.

Solving the SPIP

Consider again a principal ideal I = gOK of a number field K, such that g is short.
A generic way of recovering g is done in two steps:

1. recover a generator h of I, i.e. solve the PIP;

2. find a short generator given h.

As mentioned earlier, the first step is considered a hard problem in classical com-
putational number theory and the best generic algorithm runs in subexponential
time. However it can be efficiently done by using quantum computing. Thus in a
post-quantum perspective, the security relies on the hardness of the second step,
i.e. of retrieving a short generator g from another generator h. This computation is
a reduction phase, which is the kind of task that seems difficult even for quantum
computers. It is an argument which leaves open the possibility of a post-quantum
cryptosystem based on the SPIP. However, as always with structured lattices, one
may wonder if the structure can be used to solve the problem.
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Log-unit lattice and SPIP In order to solve the SPIP, one may use the struc-
ture of the set of generators of I and the Log-unit lattice. First let us describe the
overall strategy.

The set of generators of I is {gu | u ∈ O×K}. Therefore solving the PIP yields
h = gu with u ∈ O×K . It is then possible to retrieve g from h by finding u. This is
where the Log-unit lattice can be used. If we transpose the situation with the Log-
embedding, for every generator h we have LogK(h) = LogK(g) + LogK(u). Using
that remark and finding the element of the Log-unit lattice closest to h it is possible
to retrieve g. This corresponds to solve the CVP with respect to the target h and
the lattice LogK(O×K), and even the BDD because we know the generator g is short.
The success of this method is therefore dependent on the length of LogK(g) and the
particular geometry of the Log-unit lattice meaning that we want to have access to
a somehow good basis, i.e. orthogonal enough. This approach requires:

1. solving the PIP : this is considered hard classically and can be done in quantum
polynomial time;

2. computing O×K : as the PIP this is considered hard classically and can be done
in quantum polynomial time;

3. shortening a generator h by solving the BDD with respect to LogK(O×K) : this
will depend on the basis obtained.

One can remark that since the Log-unit lattice lies in H, the hyperplane orthogo-
nal to 1 = (1, . . . , 1), the last step is to be carried out over H. Thus the attack will
require the retrieval of pH(LogK(g)) from pH(LogK(h)), where pH is the projection
operator on H. We will then call pH(LogK(g)) the target (vector) of the problem.
As a matter of fact, step 3 will correspond to a BDD depending on the norm of the
target.

Existing results This strategy was mentioned in [26] where it was claimed that in
the case of cyclotomic fields the group of cyclotomic units has a good enough geom-
etry in the Log-unit lattice to help recovering a short generator. A proper analysis
over cyclotomic fields has been done by Cramer et al. in [34] where the authors gave
a bound for the norm of the vectors of the dual basis. In [6] Bauch et al. studied
another family of fields, namely the multiquadratic fields, and were able to recover
a short generator of an ideal in classical polynomial time for a wide range of fields.

Motivations to study the SPIP Even though the actual propositions of lattice
based cryptosystems essentially rely on other problems such as the ISVP it is im-
portant to study the SPIP. Indeed such work can help determining which fields or
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structures are weak. Then one could build upon such analysis a successful strategy
for harder problems, or even draw a definitive line between these problems. More-
over one has to remark that one step of the strategy to solve the ISVP [9, 33, 79] is
precisely solving an instance of the SPIP.

Finally from a post-quantum perspective the PIP can be solved in polynomial
time. Indeed all the number theoretical objects needed can be computed efficiently
following [13, 38]. Over general number fields the last unknown is therefore the
possibility of retrieving a short generator using the Log-unit lattice. In order to
study these problems without a quantum computer, it is important to obtain more
efficient algorithms to be able to operate over number fields.



Chapter 3

An encryption using diagonally
dominant matrices

3.1 Motivation

The recent call of the NIST for a post-quantum standardisation aims at selecting the
best protocols resilient to the quantum computer for encryption, key exchange and
digital signature. The third round of this process has been recently completed, and
only a few candidates remain of the 69 initially proposed. The algorithms chosen
at the end of this process are supposed to become cryptographic standards for the
next decade(s).

Meanwhile, research on other cryptographic primitives external to the NIST call
still continue. [83] was a candidate of the round 1 and has known some attacks and
variants [101, 96]. The work of [101, 83] relied on the fact that the matrices used as
secret lattice basis are diagonal-dominant (or almost), as it was often the case for
a lot of lattice-based cryptosystems such as the GGH cryptosystem [47] before the
apparition of the popular cryptosystems based on NTRU [54] or LWE [86].

We propose in this chapter another encryption primitive based on the basis struc-
ture and related reduction algorithms of [81, 83]. While the signature scheme has
been shown to have some minor leak [101], an encryption scheme would not have to
deal with such issues.

The construction is purely theoretical, while it could be easily implemented with
a reasonable efficiency, the goal here is to present a sensible mathematical construc-
tion that could be improved if further research is conducted.

52



CHAPTER 3. DIAGONALLY DOMINANT MATRICES 53

3.2 Background and notations

In this chapter we only consider full-rank integral lattices, i.e. such that their bases
can be represented by a n× n non-singular integral matrix.

3.2.1 Framework

Let us now describe the encryption scheme framework we are considering. It is based
on l∞. We fix as parameters (D,n,M) ∈ N2.

• Setup(): the secret key SK = B ∈ Mn(Z) is a c.d.d. or r.d.d. matrix with
diagonal coefficient D, and the public key PK is H = HNF(B).

• The message space is F(M) = J−M,MKn.

• The encryption function will be Encrypt(m,PK) = sH +m, for some s ∈ Zn.

• The decryption function will be Decrypt(c, SK) = Reduce(c, B). The conver-
gence radius of Reduce will be denoted by R.

Remark that here, Reduce is a GDD solver, not a reduction algorithm like LLL.

In order to obtain a correct scheme we need to determine parameters ensuring the
correctness of the decryption. As mentioned before, they need to satisfy

R +M 6 λ
(∞)
1 (L). (3.1)

We will therefore study λ(∞)
1 and the possibility of reducing vectors within a certain

radius over a diagonally dominant matrix. Moreover, remark that the existence of
such reduction algorithm directly gives an upper bound on the covering radius µ(∞)

of the corresponding lattice.

3.2.2 Specific notations

Let us consider the matrix B = (D × Idn) + N . We will use the following objects
and notations.

• CN(B, j) =
n∑
i=1
i6=j

|bi,j| i.e CN(B, j) is the sum of the non-diagonal absolute

values of the column j of B.

• CN(B) = max
j∈J1,nK

CN(B, j).

• RN(B, i) =
n∑
j=1
i 6=j

|bi,j| i.e RN(B, i) is the sum of the non-diagonal absolute

values of the row i of B.



CHAPTER 3. DIAGONALLY DOMINANT MATRICES 54

• RN(B) = max
i∈J1,nK

RN(B, i).

• D ∈ N∗ is called the diagonal coefficient of the basis B.

• N is called the noise matrix of B and its elements noise values.

• For I ⊂ J1, nK, we note BI ∈ M|I|,|I|(Z) the submatrix of B composed of the
rows and columns of indexes in I. Naturally, if B is a r.d.d/c.d.d matrix, so
is BI .

• S∞(l) is the set of positions i given l ∈ Zn such that |li| = ‖l‖∞

• B(I, B) = min

{
max
j∈I
{|(lB)j| | ‖l‖∞ = 1, S∞(l) = I}

}
given any set of indexes

I. It is simply min{‖lBI‖∞ | l ∈ {−1, 1}|I|}. We denote B(I, B) by BI when
B is implied, and stress that BI 6= λ1(B′).

3.3 Shortest vector and reduction algorithms

In this section we provide generic results on the shortest vector and reduction algo-
rithms regarding diagonal dominant lattices, relative to the infinity norm l∞.

3.3.1 Short vectors and reduction algorithms for c.d.d. ma-

trices

First let us consider c.d.d. matrices. The results proven in this subsection will prove
the following theorem.

Theorem 3.1. Consider B ∈ Zn a c.d.d. matrix and L = L(B). Then λ1(L) >

D − CN(B) and there is an algorithm RSR (Alg. 11) running in polynomial time
such that

∀v ∈ span(L), RSR(v) ≡ v mod L, ‖RSR(v)‖∞ 6
D + CN(B)

2
.

Consequently one has µ(∞)(L) 6 D+CN(B)
2

.

Short vectors

First let us study the norm of a shortest vector.

Lemma 3.1 (Minimal largest value of non-zero combinations). Consider k ∈ Zn \
{0}, j ∈ J1, nK such that |kj| = ‖k‖∞, B be a c.d.d matrix, and v = kB. Then one
has |vj| > ‖k‖∞ × (D − CN(B, j)).
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Proof. Without any loss of generality we can assume vi ≥ 0 and kj > 0. Then

|vi| =

∣∣∣∣∣
n∑
i=1

kibi,j

∣∣∣∣∣ > kjD −
n∑
i=1
i 6=j

|kibi,j| > kj(D −
n∑
i=1
i 6=j

|bi,j|) = kj(D − CN(B, j)).

This directly implies that λ(∞)
1 (L(B)) > D−CN(B). Let us show some additional

results on c.d.d. matrices.

Lemma 3.2 (Submatrix bound on non-zero combinations). Consider B a c.d.d.
matrix, k ∈ Zn, I = S∞(k) and v = kB. Then there is j ∈ I such that |vj| >
B(I, B).

Proof. Clearly if k ∈ {−‖k‖∞ , 0, ‖k‖∞}n then there is j ∈ S∞(k) such that |vj| >
‖k‖∞ × B(S∞(l), B). Now suppose that there is j1 /∈ S∞(k) with kj1 6= 0. One
can assume |kj1| > |kj| for all j /∈ S∞(k). Consider the vectors k′ and k′′ such that
k = k′ + k′′ and

k′j =

{
sign(kj)(|k|∞ − |kj1|), if j ∈ I

0, otherwise.

Therefore we also have

k′′j =

{
sign(kj)(|kj|), if j ∈ I

kj, otherwise.

Remark that for all j ∈ S∞(k) we have sign(k′′j ) = sign(k′j) = sign(ki) and |k′′j | =

|k′′|∞. From what precedes we know that there is j ∈ S∞(k) such that |(k′B)j| >
B(S∞(k), B). Moreover S∞(k) ⊂ S∞(k′′) and the signs are the same, so we have
sign((k′′B)j) = sign((k′B)j). Thus we obtain |(kM)j| > B(S∞(k), B).

This gives us the following theorem.

Theorem 3.2 (Bound by the minimal submatrix). Let B be a c.d.d. matrix. Then
λ

(∞)
1 (L(B)) > min

I⊆J1,nK
BI .

Reduction algorithms for c.d.d. matrices

Popular lattice reduction algorithms such as LLL or Babaï’s algorithms are gen-
eral purpose algorithms that could prove relatively expensive for large dimensions.
Moreover they are targeted on the Euclidean norm l2. A cheaper (in practice) al-
ternative for reducing vectors modulo a lattice generated by a diagonally dominant
matrix was given by Plantard et al. in [81] and successfully applied to their signature
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scheme. We will propose here a different algorithm relying on the c.d.d structure.

Before we present the full algorithm, we first introduce the core part that we de-
note by SingleReduce. It is described in Algorithm 10, and exhibits nice properties.

Algorithm 10 SingleReduce

Require: v ∈ Zn, B a c.d.d matrix, Ri >
D+CN(B,i)

2
.

Ensure: w ≡ v mod L(B) and ‖w‖∞ 6 max(Ri, ‖v‖∞ − (D − CN(B))).
1: w ← v
2: s← [0, ...., 0] ∈ {0, 1}n . Initialise reduction status in all indexes
3: i← 1 . initial index
4: while

∨n
j=1((|wj| > Rj) ∧ (sj = 0)) do

5: if |wi| > Ri and si = 0 then
6: w ← w − wi

|wi|Bi . Reduce |wi|
7: si ← 1 . “Update" the reduction status of index i
8: end if
9: i← (i mod n) + 1

10: end while
11: return w

Lemma 3.3. Consider a vector v ∈ Zn and a c.d.d. matrix B with diagonal coef-
ficient D. Moreover let R ∈ Zn be such that Ri >

D+CN(B,i)
2

. Then SingleReduce

(Alg. 10) transforms v into w ∈ Zn satisfying the following properties.

1. v ≡ w mod L(B).

2. ∀i ∈ J1, nK, |vi| > Ri =⇒ |vi| > |wi|.

3. ∀i ∈ J1, nK, |vi| 6 Ri =⇒ |wi| 6 Ri.

Moreover the algorithm performs at most n additions on vectors.

Proof. First remark that we add or remove at most one time each row vector to the
variable w during the execution of the algorithm. This is ensured by the flag vector
s. Therefore we add at most n vectors to w. Write v = w(0), w(1), . . . , w(r) = w the
two by two distinct values of the variable w with r 6 n. Similarly write s(0), . . . , s(r)

the different values taken by s. Fix some index i ∈ J1, nK. First assume s(r)
i = 0.

Then we know that |w(r)
i | 6 Ri and wi satisfies the claimed properties. Now assume

s
(r)
i = 1. Let us denote by k0 the integer such that w(k0)

i = w
(k0−1)
i ± D. Without

loss of generality we can assume vi > 0. First we consider the case where w(0)
i > Ri.

Then for some J ⊂ J1, nK \ {i} we have

w
(k0−1)
i = w

(0)
i +

∑
j∈J

±bj,i > w
(0)
i −CN(B, i) > Ri−CN(B, i) >

D − CN(B, i)

2
> 0
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therefore wk0i = w
(k0−1)
i −D. We can write

w
(0)
i > w

(n)
i = w

(0)
i −D +

∑
j∈J1,nK
j 6=i

±bj,i > Ri −D − CN(B, i) > −D + CN(B, i)

2

which ensures |w(n)
i | < |w

(0)
i |. Now consider the case where w

(0)
i 6 Ri. From

D+CN(B,i)
2

> CN(B, i) we deduce that w(k0−1)
i > 0 and w(k0)

i = w
(k0−1)
i − D. With

the same reasoning as before we can conclude wni < w0
i and w

(n)
i > w

(k0)
i − D −

CN(B, i) > −D+CN(B,i)
2

which ensures |w(n)
i | 6 Ri. Finally we remark that the

results obtained are independent of the choice of i.

This building block naturally gives us the RSR reduction algorithm, which is guar-
anteed to finish given a c.d.d. lattice basis.

Algorithm 11 RSR

Require: v ∈ Zn, B a c.d.d matrix, Ri >
D+CN(B,i)

2
.

Ensure: w ≡ v mod L(B) and |wi| ≤ Ri.
1: w ← v
2: while

∨n
j=1(|wj| > Rj) do

3: w ←SingleReduce(w,B,R).
4: end while
5: return w

Theoretically, there is no general case algorithm that can provide strictly better
bounds on l∞: the covering radius cannot be lower than half the size of the shortest
vector, and for CN(B) = 0 we do reach this extremity.

Proposition 3.1. Given a vector v ∈ Zn, R ∈ Zn such that Ri >
D+CN(B,i)

2
where

D,CN(B, i) are associated to a c.d.d. matrix B, RSR (Alg. 11) transforms v into
w ∈ Zn satisfying the following properties.

1. v ≡ w mod L(B).

2. w ∈ F(R).

Moreover the algorithm performs at most n ‖v‖∞ additions on vectors.

We want to stress this does not show the algorithm is practically efficient: in-
deed SingleReduce might run a quadratic amount of absolute value comparisons
on scalars in a single call.

Memory-wise, the algorithm only requires an amount of scalars that is linear in
the dimension: this is a significant advantage compared to alternatives that could
require at least quadratic amount of elements whose size could be larger than the
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scalar entries themselves – for example, LLL which requires the computation of the
GSO.

3.3.2 Short vector and reduction algorithm on r.d.d

Now let us consider c.d.d. matrices. Again, the results proven in this subsection
can be grouped in the following theorem.

Theorem 3.3. Consider B ∈ Mn(Z) a r.d.d. matrix and L = L(B). Then λ1(L) >

D − RN(B) and there is an algorithm PSW (Alg. 12) running in polynomial time
such that

∀v ∈ span(L), PSW(v) ≡ v mod L, ‖PSW(v)‖∞ 6
D +RN(B)

2
.

Consequently one has µ(∞)(L) 6 D+RN(B)
2

.

Short vectors

Exposing a simple relationship between RN(B) and λ1 does not seem simple, and
does not seem to have been studied in detail. We proved that for c.d.d. matrices,
a small value of CN(B) enforces the shortest vector to be large. We will show the
same property for r.d.d. matrices.

Lemma 3.4. Let B ∈ Mn(Z) be a r.d.d. matrix. Then λ(∞)
1 (L(B)) > D−RN(B).

Proof. Consider l ∈ Zn, and write v = lB. Then write l′ = (|li|)i∈J1,nK. Clearly there
is B′ ∈ Mn(Z) a matrix such that |B′i,j| = |Bi,j| for any pair (i, j) ∈ J1, nK2, and
for all i ∈ J1, nK, B′i,i = D and vi = ±(l′B′)i. Thus B′ is a r.d.d. matrix such that
RN(B′, i) = RN(B, i) for all i ∈ J1, nK. Now let us show that ‖v‖∞ > D−RN(B).
We will first bound the taxicab norm, and then use

‖v‖∞ 6 ‖v‖1 6 n ‖v‖∞ . (3.2)

First remark that we have the following:

‖v‖1 =
n∑
j=1

|(l′B′)j| >

∣∣∣∣∣
n∑
j=1

n∑
i=1

liB
′
i,j

∣∣∣∣∣ .
Moreover for any i ∈ J1, nK, l′i > 0 and D > RN(B, i), so we have∣∣∣∣∣

n∑
j=1

n∑
i=1

liB
′
i,j

∣∣∣∣∣ =
n∑
j=1

n∑
i=1

liB
′
i,j >

n∑
i=1

l′i(D −RN(B, i)).
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Therefore, if k = |{i ∈ J1, nK | li 6= 0}| we obtain

‖v‖1 > k(D −RN(B)).

If k = n then Equation (3.2) gives

‖v‖∞ > D −RN(B).

Now consider the case with k < n. Without any loss of generality, assume ∀i ∈
J1, kK, li 6= 0. Denote by l′′ the tuple (l′1, . . . , l

′
k) and B′′ the top left k× k submatrix

of B′. Then B′′ is r.d.d. and ∀i ∈ J1, kK, RN(B′′, i) 6 RN(B′, i) = RN(B, i). We
have

∀ ∈ J1, kK, (lB)i = (l′B′)i = (l′′B′′)i.

Then, since |{i ∈ J1, kK | l′′i 6= 0}| = k, we can apply the previous result to l′′ and B′′,
therefore ‖l′′B′′‖∞ > D − RN(B′′) and ∃i0 ∈ J1, kK, |(l′′B′′)i0| = ‖l′′B′′‖∞. Finally
we get

|(lB)i0| = |(l′B′)i0| = |(l′′B′′)i0| > D −RN(B′′) > D −RN(B′) = D −RN(B).

r.d.d-specific reduction algorithm

The PSW reduction algorithm we will describe is not new: it was first introduced in
[81], and is a known approximation of Babaï’s Round-off algorithm [5] in the case
of matrices of the form D −M where MD−1 has a spectral radius lower than 1. It
was then used a second time in cryptography [83] in the case of r.d.d. matrices. The
algorithm was proven to finish for δ = D in [83], but did not take account of the gap
between RN(B) and D. A slight modification of the reduction proof given in [96]
gives us a tighter bound by changing the loop condition in line 3 of the algorithm
to a comparison with a value Ri = D+RN(B,i)

2
for every index i. This gives us the

modified version, described in Algorithm 12.

Algorithm 12 PSW reduction
Require: v ∈ Zn, B a r.d.d matrix, a vector R ∈ Nn

Ensure: w ≡ v mod L(B) and ‖w‖∞ < D.
1: w ← v
2: while

∨n
j=1(|wj| > Rj) do

3: i← any index such that |wi| = ‖w‖∞
4: w ← w − bwi

D
eBi . Reduce |wi|

5: end while
6: return w
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Lemma 3.5 (Tighter bound in PSW-reduction algorithm). For any v ∈ Zn and
a r.d.d. matrix B, the PSW reduction algorithm 12 can output w ≡ v mod L(B)

where ∀i, |wi| ≤ D+RN(B,i)
2

.

Proof. Let f be the function defined on Zn × J1, nK by f : (w, i) 7→ w − bwi
D
eBi. In

order to show that Algorithm 12 ends and outputs a correct vector, we will prove
the following:

n∨
j=1

(|wj| > Rj) =⇒ ∀i ∈ S(w,R), ‖f(w, i)‖1 < ‖w‖1 . (3.3)

First let us show if the left side of (3.3) is satisfied, then f modifies w. Remark
that for all i ∈ J1, nK, f(w, i) = w if, and only if,

⌊
wi
D

⌉
= 0, which is clearly

equivalent to |wi| ∈ J−D
2
, D

2
K. This condition is clearly satisfied for any i ∈ J1, nK

such that |wi| > Ri. Now let us show that (3.3) is true. First assume that there is
i ∈ S(w,R) such that |wi| > D. Then f(w, i)i has the same sign as wi, therefore
|f(w, i)| = |wi| −

⌊
wi
D

⌉
D. Moreover we have

∀j ∈ J1, nK \ {i}, |wj| 6 |wj|+
⌊wi
D

⌉
|Bi,j|,

which gives

‖f(w, i)‖1 6 |f(w, i)i|+
n∑
j=1
j 6=j

|f(w, i)j| 6 |wi| −
⌊wi
D

⌉
D +

n∑
j=1
j 6=i

|wj|+
⌊wi
D

⌉
|Bi,j|.

This leads to

‖f(w, i)‖1 6 ‖w‖1 +
⌊wi
D

⌉
(RN(B, i)−D) 6 ‖w‖1 −

⌊wi
D

⌉
< ‖w‖1 .

Now consider i ∈ S(w,R) such that |wi| < D. Then
⌊
wi
D

⌉
= 1, and the signs of wi

and f(w, i)i are different. Moreover if we write |wi| = Ri + t with t ∈ J1, D−RN(B)
2

K,
we obtain |f(w, i)i| = |Ri −D + t| = D−RN(B,i)

2
− t. Therefore we have

|f(w, i)i| =
D +RN(B, i)

2
− t−RN(B, i) = |wi| −RN(B, i)− 2t.

Following the same reasoning as before to bound ‖f(w, i)‖1 we obtain

‖f(w, i)‖1 6 ‖w‖1 −RN(B, i)− 2t+RN(B, i) < ‖w‖1 .

Note that again, there is no general polynomial-time algorithm that will give
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strictly better bounds on l∞ in every case: by setting RN(B) = 0 we do obtain a
covering radius that is half the size of the shortest vector.

This algorithm like RSR uses a linear memory. The average-case time-complexity
of the algorithm was briefly experimentally hinted in [81], however a proper worst-
case analysis is not as simple here as in RSR and does not seem to have been done
in the literature.

Proposition 3.2. Let B be a r.d.d. matrix and v ∈ Zn, and denote by b the value
nD

nD−(D−RN(B))
. An upper bound on the worst-case vector operations complexity of

PSW is
O

(
logb

(
‖v‖1

D

)
+
nD

2
.

)
Proof. Let us consider the reduction of ‖w‖1 to count the number of reduction steps.
Using the reasoning of the above proof, we will consider two cases: ‖w‖∞ > D and
‖w‖∞ 6 D. Assume first that ‖w‖∞ > D, and denote by w′ the value of the vector
after the update in step 4 of Algorithm 12. Then ‖w‖1 is updated as

‖w′‖1 = ‖w‖1 − qD + qRN(B) = ‖w‖1 − q(D −RN(B))

with q =
⌈
‖w‖∞
D

⌋
> 1. From ‖w‖∞ 6 ‖w‖1 6 n ‖w‖∞ we obtain q > ‖v‖1

nD
. Thus we

get

‖w′‖1 ≤ ‖w‖1 −
‖w‖1

nD
(D −RN(B)) = ‖w‖1

(
nD − (D −RN(B))

nD

)
If we use this inequality and we write k for the number of steps necessary to reach
the condition ‖w‖∞ 6 D, we obtain in the worst case

‖w‖1 =

(
nD − (D −RN(B))

nD

)k
‖v‖1 6 D.

This gives O
(

log nD
nD−(D−RN(B))

(
‖v‖1
D

))
number of vector operations to reach ‖w‖∞ 6

D. When this condition is true, each step reduces ‖w‖1 by at least 2, and the
worst-case scenario would be to reduce until ‖w‖1 = 0. Therefore, it would require
‖w‖1

2
6 nD

2
iterations. Thus, the final worst-case complexity analysis in terms of

vector operations is

O

(
log nD

nD−(D−RN(B))

(
‖v‖1

D

)
+
nD

2

)
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This overestimated complexity does not reflect at all the experimental results re-
ported in [81, 96, 83], which is understandable: the probability to trigger a single
worst-case iteration is 2n−1, i.e as probable as solving a {0, 1}-knapsack problem
randomly. However, our result still proves polynomial operation complexity and
constant memory as far as vector operations (i.e fixed dimension) are concerned.

3.4 DRE: Diagonal Dominant Encryption scheme

We provide in this section an encryption scheme based on our previous results, fol-
lowing the framework described. It is a simple application to demonstrate there
could be some practical use to our earlier study: as diagonal dominant lattices were
successfully used to create the DRS signature scheme [83, 96], we here “create” DRE.

The construction is purely theoretical, while it could be easily implemented with a
reasonable efficiency, the goal here is to present a sensible mathematical construction
that could be improved if further research is conducted.

3.4.1 Correctness of the scheme

Using the previous properties and as little structure as possible, we can deduce
a sufficient (but not necessary) condition for a cryptosystem to be correct. We
showed that a c.d.d. (resp. r.d.d.) matrix B satisfies λ(∞)

1 (L(B)) > D − CN(B)

(resp. D − RN(B)). Moreover we have access to Algorithm 11 (resp. 12) which
reduces any vector v to w ≡ v mod L(B) such that ‖w‖∞ 6 R with R = D+CN(B)

2

(resp. R = D+RN(B)
2

). Therefore, if F(M) is the message space, following Eq. (3.1)
the different parameters have to be such that

M +
D + CN(B)

2
< D − CN(B) (resp. M +

D +RN(B)

2
< D −RN(B))

This leads to

CN(B) <
D − 2M

3
(resp. RN(B) <

D − 2M

3
) (3.4)

which is very easy to construct. It is important to note that a larger shorter vector or
a smaller convergence radius R immediately leads to a weaker condition for CN(B)

(resp. RN(B)). Remark that the choice of M also influences this condition.
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3.4.2 Instantiation of the encryption scheme

To instantiate our encryption scheme, we first need to fix some public parameters
as the diagonal coefficient D, and the dimension n. We assume the message space
is composed of vectors over {−1, 0, 1}n, but we showed earlier that could also be
subject to change. We also have to choose between a r.d.d (RN(B) to be fixed) and
a c.d.d (CN(B) to be fixed).

From an external point of view, our scheme is actually a knapsack problem, such
as the first proposition of Merkle-Hellman [67]. The major difference is within the
setup and the decryption, which are details that are hidden from message senders.

We will describe a possible instantiation of DRE using c.d.d. matrices. Again,
since the bounds proved for c.d.d. and r.d.d. matrices are identical, all of what
follows can be done for r.d.d. matrices. One only has to replace CN(B) by RN(B)

and use the corresponding reduction algorithm.

Setup

The setup is composed of two steps. For the secret key, we generate a diagonal
dominant matrix with our chosen parameters (D,n). Since the message space is
P (1) = J−1, 1Kn, following Equation (3.4), we will fix CN(B) = D−2

3
.

For the public key, we compute the HNF of the secret key, assuming it has perfect
form. If the HNF does not hold a perfect form, we can choose to discard the key or
use a permutation to attempt obtaining a perfect HNF as reported in [96].

The public key is then the resulting HNF, with a small twist: we choose to
remove the determinant of the lattice, to effectively transform our modular knapsack
instance into a knapsack problem. This also removes information about the lattice,
which decreases the success rate of lattice reduction attacks for key recovery, and
leave PK as a set of n− 1 large integers.

Encryption

Since our public key is a knapsack problem, we just sum or subtract the correspond-
ing values of the public key PK according to our message m. The resulting integer
is our ciphertext c.

Because the keys (B,H) are chosen such that H = HNF(B) is perfect and h is
the last column of H minus the last coefficient, the output of Encrypt as described
in Algorithm 14 is the last coefficient of a vector of the form [0, . . . , 0, c] = m + v
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Algorithm 13 Setup

Require: (D,n) ∈ N2.
Ensure: (PK , SK) the public and secret keys
1: CN(B)← D−2

3

2: B ← CDDgen(D,n,CN(B))
3: H ← HNF(B)
4: while IsPerfect(H) = false do
5: B ← CDDgen(D,n,CN(B))
6: H ← HNF(B)
7: end while
8: h← H[1..n− 1, n]
9: return (B, h)

Algorithm 14 Encrypt

Require: A plaintext m ∈ J−1, 1Kn and the public key PK = h ∈ Zn−1.
Ensure: A ciphertext c
1: c← 0
2: for i = 1 to n− 1 do
3: c← c−mihi
4: end for
5: c← c+mn

6: return c

with v ∈ L(B). Indeed, if one reduces the vector m with the HNF H, as follows

m1 . . . . . . mn−1 mn

1 0 . . . 0 h1

0 1
. . . ...

...
... . . . . . . 0

...
0 . . . 0 1 hn−1

0 . . . . . . 0 det(B)


,

then using the first n − 1 rows of H one can remark that the first vector will be
transformed into

[0, . . . , 0,mn −
n−1∑
i=1

mihi] = m−mH +mn[0, . . . , 0, det(B)].

Decryption

We can use the reduction algorithms studied earlier to recover m from c. From our
study, Algorithm 15 will output the correct plaintext m.
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Algorithm 15 Decrypt

Require: A ciphertext c = Encrypt(m,h) ∈ Zn and the secret key SK = B.
Ensure: The plaintext m
1: CN(B)← D−2

3

2: R← [CN(B), . . . , CN(B)]
3: m← c (mod det(B)) . Reduction modulo the determinant
4: m← [0, . . . , 0,m]
5: m← RSR(m,B,R)
6: return m

Further work

The encryption scheme we described previously is essentially a toy example. Before
considering it as usable scheme, one would need to assess the following points.

(i) The first thing to do would be to estimate the security provided by such a
system.

(ii) The key generation is relatively slow as it requires the computation of HNF of
large matrices. One could look into using the structure of diagonally dominant
matrices in order to accelerate HNF computations.

(iii) Then the reduction algorithms might be improved. Experimentally, it is espe-
cially the case of RSR for c.d.d. matrices.



Chapter 4

Practical computations in number
fields

The main goal of this thesis is to study ideal lattices, with a special concern for
high degree number fields. Indeed, cryptographic sizes are large (at least larger
than 256). In order to obtain data for such dimensions, a significant part of our
work has been to implement and improve in practice some computational tasks over
number fields. In particular, in our study of real Kummer extensions of the form
Q( p
√
m1, . . . , p

√
mr) or K( p

√
m1, . . . , p

√
mr) with L = Q( p

√
n1, . . . , p

√
ns), we developed

recursive algorithms (which are generalisations of the work done over multiquadratic
fields by Bauch et al. [6]) to compute the unit group and solve the PIP. These two
main algorithms require two tasks which can be costly over large degree number
fields, even if they run in polynomial time. These are the computation of relative
norms of ideals and the extraction of p-th roots of elements. In this chapter we will
present the practical improvements that we made regarding these two tasks. More
precisely, the chapter is as follows.

• We study in Section 4.1 two methods of computing norms of ideals relative to
extensions L/K. The first one is certified and runs in polynomial time over
extensions such that the Galois closure of L/K satisfies [L̃ : L] = Poly([L : Q]).
This is the case of the Kummer fields considered in this thesis. The second is
heuristic and probabilistic. We were not able to prove an acceptable bound of
its running time, but its practical efficiency is very good compared to our first
method and the implementation of MAGMA [22].

• In Section 4.2 we develop a method to retrieve the roots of a polynomial
f(X) ∈ L[X] where L is a number field. It runs in polynomial time and
uses complex embeddings. Moreover, we show how it can be adapted to take
advantage of an extension structure L/K, in order to decode approximations
relative to K instead of L. This comes at the cost of searching in a large set

66
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which makes this process impractical when [L : K] increases. We also present
several heuristic observations which allow both our methods to compete with
the classical algorithm implemented in PARI/GP [76]. It is particularly the
case over Kummer extensions and small degree polynomial equations.

4.1 Relative norms of ideals

The computation of relative norms of ideals can be computed following several meth-
ods, depending on which characterisation of the norm one considers. In [30], H. Co-
hen shows how one can compute efficiently the relative norm from a pseudo-Hermite
Normal Form (pseudo-HNF) of an ideal. Then if one considers that NL/K(I) can
be expressed through the product of ideals in the Galois extension following Equa-
tion (2.9), it is possible to compute this product. Finally it is possible to use a
compact representation of ideals called the two-elements representation in order to
compute the relative norms more efficiently.

First let us define the two-elements representation of an ideal.

Definition 4.1 (Two-elements representation). Let K be a number field, and I be
an ideal of K. Then a pair (α, β) ∈ I2 is called a two-elements representation of I
if I = αOK + βOK .

Proposition 4.1. 1. Consider a number field K, an ideal I of K and α ∈ I.
Then there is β ∈ I such that (α, β) is a two-elements representation of I.

2. Consider an extension of number fields L/K, an ideal I of L. Then there is
(α, β) ∈ I2 such that (NL/K(α),NL/K(β)) is a two-elements representation of
NL/K(I).

One can find in [30] the following probabilistic algorithm which computes a two-
elements representation of an ideal, from an integral basis.

Notation. We will denote by RandomElement the procedure which given a family
B = (b1, . . . , bn) and a range R ∈ N, outputs an element in the Z-module generated
by B which coefficients are drawn uniformly at random in J−N,NK.

We do not specify the range for the procedure RandomElement used in Algo-
rithm 16, nor the shape of the basis B. In [30], Cohen picks a LLL-reduced basis
and a range equal to 3. This procedure can be costly when the dimension of K is
large, because of the use of LLL. When the determinant (i.e. the absolute norm of
the ideal) is known or easily computable – which is typically the case when the ideal
is given by its HNF – one can replace the reduction by LLL by a reduction modulo
the determinant.
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Algorithm 16 TwoElements
Require: An ideal I of a number field K given by an integral basis matrix B
Ensure: A pair (α, β) being a two-elements representation of I
1: α← RandomElement(B)
2: Hα ← HNF((α))
3: d← detHα

4: while d 6= detB do
5: β ← RandomElement(B)
6: Hβ ← HNF((β))
7: H ← HNF

(
[Hα | Hβ]T

)
8: d← detH
9: end while

10: return (α, β)

Product of two ideals There are several ways of computing the product of two
ideals, depending on the choice of representation. Consider two ideals I and J , each
given by an integral basis. Let us denote by (ei)i and (fi)i these bases. Then IJ

is generated over Z by the products (eifj)i,j. Thus, if I and J are given by their
HNF in a fixed basis, one could recover the HNF of IJ by computing the HNF of
all the products. It amounts to computing the HNF of a n2 × n matrix, where n is
the dimension of the field. This method is clearly polynomial in the dimension, but
can still be long especially if n is large. In order to speed-up this naive process, one
can use the more compact two-elements representation. If I is given by (α, β) and
J by its HNF HJ then IJ is generated over Z by[

αHJ

βHJ

]
.

Then one needs to compute a HNF of a 2n× n matrix with this method.

For the following, let us fix L/K an extension of number fields and write H =

Hom(L/K,C) = {σ1, . . . , σn}. Let N be the absolute degree of L.

4.1.1 Product of the conjugates

We will first present the algorithm computing the product of the σ(I) where σ runs
through H. The global procedure is described in Algorithm 17.

Quick analysis One can see that [L : K] − 1 products are computed in L̃ in
Algorithm 17. However one needs to be careful with the dimension. Indeed the
products can be made in the smallest extension containing J and σi(I). Each step
can multiply the dimension by at most [L : K] = n. Thus in the worst-case, one
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Algorithm 17 NaiveRelativeNorm

Require: An ideal I of a number field extension L/K
Ensure: The relative norm NL/K(I)
1: J ← I
2: for i = 2 to n do . Assuming that σ1 = Id
3: J ← Jσi(I)
4: end for
5: return J ∩K

needs to compute at step i a HNF of a N2ni−2 × Nni−1 matrix. This leads to a
matrix of maximum size N2nn−2 ×Nnn−1, in the worst case. In this situation and
n = O(N) the final matrix size is exponential in N . However if n = O(lnN) then it
is polynomial in N . Finally, if the degree of L̃/L is polynomial in N then the size
of the matrices stays polynomial in N and the final complexity is also polynomial.
This leads to the following result.

Proposition 4.2. Consider F a family of extensions of number fields L/K such
that over F , [L̃ : L] = Poly([L : Q]). Then Algorithm 17 runs in polynomial time
over F .

Remark 19. Given a Kummer extension L/K of exponent n, its Galois closure is in
L(ζn). Thus one has [L̃ : L] 6 [L : K], and following Proposition 4.2 Algorithm 17
runs in Poly([L : Q]).

Speeding-up the computation We will now present heuristic strategies we im-
plemented to speed up the computations. The main idea is to check from time to
time during the computation if we reached our goal. This can be done with the
determinant. Indeed for any ideal I, det HNF(I) = NL/Q(I) = NK/Q(NL/K(I)) =

det HNF(NL/K(I)). Thus at chosen points during the computation, one can check
whether the current ideal – or equivalently current sublattice – has the targeted
determinant. Moreover one can remark that the intersection ∩iσi(I) is an ideal
containing

∏
i σi(L), and faster to compute given access only to the HNF of the

ideals. It is therefore possible to compute the intersection at the beginning of the
computation and then intersect it with the ideal currently computed in hope to find
the desired ideal. These ideas lead to Algorithm 18.
We will report in Subsection 4.1.3 on the practical speed-up these ideas offer.

Notation. We will denote the methods of Algorithm 17 (resp. Algorithm 18) by
NaiveRelativeNorm_hnf (resp. RelativeNorm_hnf) and NaiveRelativeNorm_2el

(resp. RelativeNorm_2el) when only HNF are used for the products, or when
two-elements representations are also used.
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Algorithm 18 RelativeNorm

Require: An ideal I of a number field extension L/K
Ensure: The relative norm NL/K(I)
1: H ← ∩ni=1σi(I)
2: J ← I
3: for i = 2 to n do . Assuming that σ1 = Id
4: J ← Jσi(I)
5: if NK/Q((J ∩H) ∩K) = NL/Q(I) then
6: return J ∩K
7: end if
8: end for
9: return J ∩K

4.1.2 Algorithm 2: probabilistic algorithms

Let us now present two probabilistic algorithms to compute NL/K(I). They follow
two different strategies, but are both inspired by the use of RandomElement in [30].

• The first is using Definition 2.34 of the relative norm.

• The second is inspired by the two-elements representation and Proposition 4.1.

The disadvantage of these two methods is that they are probabilistic. However they
behave well in practice and do not require computations in the Galois closure of
L/K.

A first method Following Definition 2.34, NL/K(I) is the ideal of OK generated
by the elements of the form NL/K(x) where x ∈ I. Thus, provided that one is able to
compute random elements of I, a simple strategy is to compute such elements until
the ideal they generate is the target NL/K(I). This equality can again be tested by
the absolute norm. If the elements x ∈ I are sufficiently random in I, one might
expect their relative norms NL/K(x) to be also random in NL/K(I), thus quickly
generating the relative norm of I. This method is summed up in Algorithm 19.

Computing the two-elements representation The method explained previ-
ously compute an integral basis of NL/K(I). In order to obtain a two-elements repre-
sentation, then one needs to use Algorithm 16 after Algorithm 19. One can however
design a probabilistic and heuristic algorithm to compute it at once. Indeed follow-
ing Proposition 4.1, there is (α, β) ∈ I2 such that NL/K(I) = 〈NL/K(α),NL/K(β)〉OK .
Thus following the same rationale as for Algorithms 16 and 19, one can expect to
find such a pair doing the following. First fix an element α, then compute random
elements β until (NL/K(α),NL/K(β)) generates the ideal NL/K(I). This can be found
in Algorithm 20.
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Algorithm 19 RelativeNormProb

Require: An ideal I of a number field extension L/K given by an integral basis
matrix B

Ensure: An integral basis H of NL/K(I)
1: x← RandomElement(B)
2: a← NL/K(x)
3: H ← HNF ((a))
4: d← detH
5: while d 6= detB do
6: x← RandomElement(B)
7: a← NL/K(x)
8: H ← HNF

(
[H | HNF((a))]T

)
9: d← detH

10: end while
11: return H

Algorithm 20 RelativeNormTwoEl

Require: An ideal I of a number field extension L/K given by an integral basis
matrix B

Ensure: A two-elements representation (NL/K(α),NL/K(β)) of NL/K(I)
1: α← RandomElement(B)
2: Hα ← HNF

(
(NL/K(α))

)
3: d← detHα

4: while d 6= detB do
5: β ← RandomElement(B)
6: Hβ ← HNF

(
(NL/K(β))

)
7: H ← HNF

(
[Hα | Hβ]T

)
8: d← detH
9: end while

10: return
(
NL/K(α),NL/K(β)

)
Analysis As mentioned, Algorithms 19 and 20 are probabilistic (and heuristic)
algorithms, contrary to Algorithm 17. They should however run in polynomial time,
without conditions on the extension L/K. In particular, the degree of the Galois
closure should not impact the running time, since one can compute the relative
norm of an element x ∈ L/K in polynomial time, without needing to compute the
product

∏n
i=1 σi(x) in the Galois closure.

4.1.3 Experimental results

Computation through product of ideals

First let us explore the practical performances of Algorithms 17 and 18. We will
first study the impact of using a two-elements representation to compute the product
of ideals, then compare the naive method of Algorithm 17 with the improved one
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of Algorithm 18. We implemented both algorithms over real Kummer extensions
studied in Section 5.2. Such number field extensions L/K satisfy L = K( p

√
mr) and

K = Q( p
√
m1, . . . , p

√
mr−1), where p is a prime integer and (mi)i∈J1,rK ∈ Zr. We did

experiments for several p. For each p we fixed (mi) to be the first r primes, with
increasing r.

HNF vs two-elements representation As previously mentioned, using a two-
elements representation of an ideal I together with the HNF matrix of a second
ideal J allowsfor the computation of a basis of the product IJ . It reduces a 2n× n
matrix instead of a n2 × n matrix. However in Algorithm 17 the products are done
in the Galois closure of the extension L/K. Thus the rank of the lattice at hand
(generated by the rows of the matrix obtained) is susceptible to increase after each
product of the form Jσi(J) during the computation. If one only uses HNF repre-
sentation as in NaiveRelativeNorm_hnf, then the maximal possible rank after a
product will be min{n2, [L̃ : Q]}. If one uses a two-elements representation as in
NaiveRelativeNorm_2el then it is min{2n, [L̃ : Q]}. This means that the lattices
computed with the two different representations can be different at given steps dur-
ing the computation.

One can find in Table 4.1 the timings obtained for both representations and real
Kummer fields of exponents 3, 5.

Table 4.1: Average timings for NaiveRelativeNorm_hnf and
NaiveRelativeNorm_2el in real Kummer fields Q( p

√
2, p
√
3, . . . , p

√
pr)

(a) p = 3

Sequence length r [L : Q] [L̃ : Q] Time for HNF Time with two-elements
2 9 18 0.2522 0.07860
3 27 54 8.182 1.026

(b) p = 5

Sequence length r [L : Q] [L̃ : Q] Time for HNF Time with two-elements
2 25 100 47.59 5.453

From the data gathered, one can see the influence of the Galois closure, and of the
representation used. When p increases, the Galois closure is larger comparatively
to the field L. Thus one obtains longer computations for fields with similar degrees.
Compare for example L = Q( 3

√
2, 3
√

3, 3
√

5) and L = Q( 5
√

2, 5
√

3). Moreover, one
can clearly remark that using the two-elements representation for the products is
faster than using the HNF for both ideals. From our computations, the rank of J
is maximal in the Galois closure after one product when using only HNF, whereas
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when using a two-elements representation the rank of J is multiplied by two after
each product.

Improved versions Let us now compare the performances of Algorithms 17
and 18, again with both representations for ideals. We will also distinguish two
variants of Algorithm 18: if the intersection ∩ni=1σi(I) is computed or not. Since one
checks after each product Jσi(I) if NL/K(I) has been computed, we also give details
step by step. More precisely, in what follows, “product i” will designate the state
of computation after the i-th product Jσi(I). By extension, “product 0” will be the
state after the first intersection ∩iσi(I) has been computed in Algorithm 18. For
each field with exponent p and any integer i ∈ J1, p− 1K we provide the percentage
of ideals I whose norm has been successfully computed after the i-th product, and
the corresponding average computation times. Moreover we provide the average
computation time for the complete set of ideals considered.

Without the intersection: First we consider the version of Algorithm 18 where
the intersection is not computed. Recall that the matrices representing the ideal is
in HNF so computing the determinant of its intersection with K is fast. The data
gathered can be found in Table 4.2.

Table 4.2: Experimental results for RelativeNorm in real Kummer fields
Q( p
√
2, p
√
3, . . . , p

√
pr), without computing ∩iσi(I)

(a) p = 3

HNF Two-elements
Product # 1 2 Total 1 2 Total

r = 2
Percentage 75.8 24.2 100 0 100 100

Average Time 0.036 0.111 0.054 – 0.081 0.081

r = 3
Percentage 84.2 15.8 100 0 100 100

Average Time 0.568 3.88 1.09 – 1.18 1.18

(b) p = 5

HNF Two-elements
Product # 1 2 3 4 Total 1 2 3 4 Total

r = 2
Percentage 86.8 0.4 4 8.8 100 0 0 37.2 62.8 100

Average Time 1.97 8.43 22.31 35.45 5.74 – – 3.78 5.17 4.65

One can remark that the performances of the naive method and Algorithm 18 are
similar when using a two-elements representation for the products. However Algo-
rithm 18 performs way better when using HNF only. It even outperforms the method
where one uses two-elements representations in some cases. This is due to the fact
that the lattices computed in the intermediate steps are not the same depending on
the choice of ideal representation. Then the targeted ideal is not found at the same
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step. With RelativeNorm_hnf, one can see in Table 4.2 that one finds NL/K(I) in
the first steps with overwhelming probability. However with RelativeNorm_2el it
is generally computed only in the last steps.

With the intersection: Now consider the case where the intersection ideal ∩iσi(I)

is computed at the beginning of Algorithm 18 and used each time we check if we
have already obtained NL/K(I). One can find the results of our computations in
Table 4.3.

Table 4.3: Experimental results for RelativeNorm in real Kummer fields
Q( p
√
2, p
√
3, . . . , p

√
pr), with the computation of ∩iσi(I)

(a) p = 3

HNF Two-elements
Product # 0 1 2 Total 0 1 2 Total

r = 2
Percentage 59.6 14 26.4 100 59.6 0 40.4 100

Average Time 0.003 0.035 0.112 0.037 0.002 – 0.082 0.034

r = 3
Percentage 54.6 26.2 19.2 100 54.6 0 45.4 100

Average Time 0.028 0.892 3.231 0.869 0.028 – 0.973 0.457

(b) p = 5

HNF Two-elements
Product # 0 1 2 3 4 Total 0 1 2 3 4 Total

r = 2
Percentage 79 9.8 0.4 2.8 8 100 79 0 0 8.8 12.2 100

Average Time 0.04 2.02 8.80 23.62 35.44 3.76 0.037 – – 3.81 5.14 0.99

It improves the global performance for one main reason. The intersection ∩iσi(I)

is equal to the norm NL/K(I) with high probability, and one can see in Table 4.3 that
computing this intersection is way faster than computing the subsequent products.
Otherwise, the number of products necessary before finding the norm seems to be
more or less the same.
These observations are made over a specific family of number fields. One may wonder
if the same phenomena would stay true over general extensions.

Global comparisons

Now let us compare the different general methods to compute relative norms: prod-
uct of ideals as in Algorithm 18, by random elements as in Algorithm 19, and by
the implementation in MAGMA.

Remark 20 (MAGMA and PARI/GP). In MAGMA and PARI/GP, the repre-
sentations of objects linked to a relative extension L/K correspond to the ones
described by Cohen in [30]. Moreover the algorithms implemented to compute the
relative norm of an ideal are also found [30]. In particular it requires computing the
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pseudo-HNF of I relative to L/K, which can be time and space consuming, even
if its complexity is polynomial [16]. Moreover in MAGMA, defining an ideal in a
relative order O can be done only if O is a relative order over a maximal order.
Therefore, in order to define I as an ideal in L/K, the process requires the compu-
tation of the maximal order of K. This can be time consuming (subexponential),
thus prohibiting us from using MAGMA method over large degree number fields
such as the ones studied in Chapter 5. However we will see that it behaves nicely
over the small degree number fields considered above.
Thus for the method of MAGMA, we provide two timings. The first is the time taken
by the function Norm, and the second is the time taken to compute an absolute basis
of NL/K(I) from an absolute basis of I. The last allows us to take into account the
creation of the ideal structure with the function ideal<O | · > of MAGMA before
using Norm, and the computation of the absolute basis after.

Real Kummer extensions First let us look at the performances of the function
Norm of MAGMA and Algorithm 19 over the real Kummer extensions considered
above. One can find results of our computations in Table 4.4.

Table 4.4: Average timings for Norm (MAGMA) and RelativeNormProb in real
Kummer fields Q( p

√
2, p
√
3, . . . , p

√
pr)

(a) p = 3

Sequence length r [L : Q] [L̃ : Q] Norm (net) Norm (full) RelativeNormProb
2 9 18 0.011 0.065 0.005
3 27 54 7.39 8.53 0.020

(b) p = 5

Sequence length r [L : Q] [L̃ : Q] Norm (net) Norm (full) RelativeNormProb
2 25 100 0.089 0.220 0.031

(c) p = 7

Sequence length r [L : Q] [L̃ : Q] Norm (net) Norm (full) RelativeNormProb
2 49 294 1.086 1.632 0.2416

From the data gathered, the function Norm of MAGMA seems to be more efficient
than the product method over the majority of the fields considered. However one
can remark that Algorithm 18 is more efficient when using both the intersection and
two-elements representation. Moreover, computing the intersection at the beginning
is also faster than computing Norm. Thus for a non negligible proportion of ideals,
it might be faster to start by this intersection to check if it is NL/K(I). Finally
RelativeNormProb is the most efficient procedure, independently of the field chosen.
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Other extensions We now look at “random” extensions L/K with degrees in the
same range than the extensions already considered. This way, it is still possible to
compute OK in a reasonable amount of time, and we are able to compare Norm and
RelativeNormProb. We computed the time taken to compute NL/K(I) for extension
degrees [L : K] in {3, 5, 7} and random dimensions [K : Q] so that [L : Q] 6 50, as
well as for extension degrees [L : K] in {11, 13} and random dimensions [K : Q] so
that [L : Q] 6 91. One can find the data gathered in Tables 4.5 and 4.6.

Table 4.5: Average timings (in s) for Norm (MAGMA) and RelativeNormProb
in random extensions L/K of degree less than 50

(a) [L : K] = 3

[K : Q] 6 8 11 12 13 13 13 14 15 16
Norm (net) 0.017 0.144 0.785 0.638 1.995 0.620 0.811 1.410 2.998 5.046
Norm (full) 0.026 0.196 1.077 0.947 2.663 1.011 1.299 2.604 4.169 7.215

RelativeNormProb 0.002 0.004 0.015 0.013 0.029 0.018 0.019 0.027 0.035 0.073

(b) [L : K] = 5

[K : Q] 6 7 7 8 8 9 9 9 10 10
Norm (net) 0.245 0.551 0.389 3.154 1.849 3.962 1.871 1.892 3.101 5.337
Norm (full) 0.413 0.898 0.652 7.887 2.986 6.557 3.393 3.644 6.775 8.278

RelativeNormProb 0.008 0.015 0.015 0.039 0.040 0.062 0.047 0.042 0.068 0.097

(c) [L : K] = 7

[K : Q] 5 5 5 6 6 6 6 7 7 7
Norm (net) 0.612 1.167 1.113 2.428 1.239 1.223 2.622 2.704 3.266 5.594
Norm (full) 1.020 1.601 1.557 4.421 1.968 1.894 5.447 5.315 6.054 9.622

RelativeNormProb 0.014 0.025 0.025 0.040 0.034 0.033 0.044 0.062 0.060 0.080

Table 4.6: Average timings (in s) for Norm (MAGMA) and RelativeNormProb
in random extensions L/K of degree less than 81

(a) [L : K] = 11

[K : Q] 4 4 4 5 6 6 7 7 7 7
Norm (net) 2.052 2.834 4.299 11.926 18.066 18.315 52.715 105.66 33.527 69.160
Norm (full) 2.714 3.883 6.401 29.872 42.616 36.462 81.419 162.90 48.040 103.83

RelativeNormProb 0.034 0.041 0.053 0.129 0.189 0.191 0.632 0.754 0.352 0.627

(b) [L : K] = 13

[K : Q] 4 4 5 5 5 5 6 6 6 6
Norm (net) 5.787 6.321 44.520 37.906 31.769 30.503 46.335 50.036 96.253 45.768
Norm (full) 8.223 9.184 74.145 61.903 43.387 42.274 64.560 71.803 140.93 92.144

RelativeNormProb 0.067 0.074 0.347 0.313 0.294 0.292 0.449 0.433 0.797 0.488

One can remark that the function Norm of MAGMA is more influenced by the
dimension. The computation of NL/K(I) increases a lot with [L : Q]. Moreover
its performance can vary from one extension to another with the same parameters.
Finally, even if the time taken by RelativeNormProb to compute relative norms



CHAPTER 4. PRACTICAL COMPUTATIONS IN NUMBER FIELDS 77

increases also when the dimension of the extension increases, it is still very efficient
compared to Norm with average timings smaller than 1 second.

4.1.4 Conclusion

In this section we studied two methods to compute relative norms of ideals in num-
ber field extensions L/K. The first, corresponding to Algorithm 18, computes the
norm as the product

∏
σ σ(I) with σ running through Hom(L/K,C). Over Kummer

extensions this method is proved to be polynomial. Moreover we showed that using
the determinant, one can check during the computation if the norm has already
been reached. Experimental data show that this offers great speed-ups. Despite
these facts, this method can still be quite heavy because it requires computations
in the Galois closure of L/K, which leads to large matrices to handle. The second
method that we explored is described by Algorithm 19. This method is only heuris-
tic and probabilistic. However it behaves very well in practice, and outperforms
greatly both our first method and the implementation of MAGMA [22].

In future work, one could prove the probabilistic complexity of Algorithm 19.

4.2 Roots of a polynomial

We are interested in the following problem. Given K a number field and f(X) ∈
K[X], find the roots of f(X) in K i.e. find ZK(f) = {x ∈ K | f(x) = 0}. In fact
we will only consider the cases such that all the roots can be expressed as integral
combinations of a known basis of K i.e.

∃(bi)i ∈ Kn,∀x ∈ ZK(f),∃(xi)i ∈ Zn | x = x1b1 + · · ·+ xnbn.

First let us describe quickly how the standard computation is done. We will call it
the algebraic method or standard method. It follows the same ideas presented in [40,
7]. The procedure is as follows.

1. Pick a prime ideal p which defines an isomorphism between OK/p and Fps for
some prime p.

2. Determine the roots modulo p by factorising f(X) in Fp[X].

3. Lift these to the solutions modulo a power pk.

4. If pk is large enough compare to the size of the solutions, and if pk is given by
a LLL-reduced basis then we can recover a solution x given y ≡ x mod pk.
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The last step is usually done by using Babaï’s rounding technique [7, 40]. Finally
one can see that this technique can be described by three main steps.

1. Compute first “approximations” of the solutions.

2. Compute a reduced basis of a lattice.

3. Retrieve the solutions from the approximations using the lattice.

Our method follows these three steps, but uses complex embeddings instead of
prime ideals.

4.2.1 A simple algorithm

Our method is pretty simple. First let us describe the part related to steps 2 and 3.

Decoding through LLL

First let us fix the decoding problem we will be interested in. Let K be a number
field, and B = (b1, . . . , bn) be a Q-basis of K. Now consider x ∈ K such that
x ∈ Z[B]. Our problem is the following: «Given an approximation of σi(x) for some
i ∈ J1, nK, retrieve x ».

Decoding with approximations Our decoding method can be directly linked
to the original paper describing the LLL algorithm [63]. A. Lenstra, H. Lenstra
and Lovasz mention several applications of their lattice reduction algorithm, such as
finding short integral relations between algebraic numbers or finding the irreducible
polynomial of an element in a number field. As an example, assume one knows
approximations of real numbers α1, . . . , αn. Now define the embedding

Zn −→ Rn+1

(λi)i∈J1,nK 7−→ (C
n∑
i=1

λiαi, λ1, . . . , λn)

which gives a lattice of Rn+1 represented by the matrix
Cα1 1 0 . . . 0

Cα2 0 1
. . . ...

...
... . . . . . . 0

Cαn 0 . . . 0 1

 .

Here C is a large coefficient used to ensure the shortness of the solution. Reducing
this basis would allow us to retrieve a short vector (λi)i∈J1,nK such that C

∑n
i=1 λiαi
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is small. Similarly it is common to use LLL algorithm to solve knapsack problems.
Assume we are given (α1, . . . , αn) ∈ Zn and S ∈ Z, and that we want to find a short
vector (λ1, . . . , λn) such that

∑n
i=1 λiαi = S. Then one can consider the similar

matrix 

−Cα1 1 0 . . . 0

−Cα2 0 1
. . . ...

...
... . . . . . . 0

−Cαn 0 . . . 0 1

CS 0 . . . . . . 0


.

Again a LLL reduction would yield a small solution of the linear equation. One can
combine both approaches to be able to retrieve the coefficient of x ∈ Z[B] from an
embedding σi(x). For all j ∈ J1, nK, denote by βj an approximation of σi(bj) and
S an approximation if σi(x). Now consider (xi)i∈J1,nK ∈ Zn the coefficients of x in
the basis B. Then one can expect S −

∑n
i=1 xiβi to be close to 0 (or at least small).

Thus reducing the matrix 

−Cβ1 1 0 . . . 0

−Cβ2 0 1
. . . ...

...
... . . . . . . 0

−Cβn 0 . . . 0 1

CS 0 . . . . . . 0


is expected to yield the solution for well-chosen parameters, i.e. high enough pre-
cision for the approximations and large enough C. However this does not ensure
finding the searched for vector, and if one needs to retrieve several elements, it might
be time consuming to reduce such a matrix for each element. Thus we chose to adapt
this approach as follows.

Our technique Before we explain how to use the lattices mentioned before to
retrieve coefficients from approximations or a complex embedding we need to fix
some objects and notations.

Definition 4.2. If x is in R, the approximation of x up to l-bits for l ∈ N is the
integer b2lxe. If x ∈ C then its approximation up to l-bits will be b2l<(x)e +

ib2l=(z)e. In both cases it will be denoted by [x]l.

Remark 21. We commonly identify a complex number x with the pair of real num-
bers (<(x),=(x)). We extend this identification to approximations. In particular,
this is true when such elements are presented in integral matrices.

Definition 4.3. Consider a number field K, B a Q-basis of K, σ ∈ Hom(K,C),
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and l ∈ N. We will call a basis lattice of K up to precision l relative to B and σ and
denote by L(B, σ, l) the lattice generated by the matrix B(B, σ, l) defined as follows:

B(B, σ, l) =


−[σ(b1)]l C 0 . . . 0

−[σ(b2)]l 0 C
. . . ...

...
... . . . . . . 0

−[σ(bn)]l 0 . . . 0 C

 (4.1)

The matrix B(B, σ, l) will be called the basis matrix of L(B, σ, l).

Remark 22. • When there is no ambiguity regarding K, B or σ, we will simply
denote L(B, σ, l) by Ll and call it the lattice basis of K up to precision l.
Similarly the matrix B(B, σ, l) will be written Bl.

• The constant C is used to ensure the validity of the decoding, and accelerate
the reduction algorithm on Bl.

• If the embedding σ is not a real embedding, then the first column of the matrix
in Equation 4.1 is in fact two columns, containing respectively the real and
imaginary parts of the corresponding complex numbers.

Notation. If σ(K) ⊂ R, we will denote by σ(B)l the first column vector of a basis
matrix B(B, σ, l). If σ(K) 6⊂ R, we will write σ(B)l = [< (σ(B)l) ,= (σ(B)l)] for the
matrix composed of the two first column vectors of B(B, σ, l).

As before, consider K a number field, B = (b1, . . . , bn) a Q-basis of K, and x ∈ K
such that there is (xi)i∈J1,nK ∈ Zn with x = x1b1 + · · · + xnbn. Now assume that
[σ(x)]l is known for some σ ∈ Hom(K,C) and l ∈ N. Then one can use Kannan’s
embedding technique using L(B, i, l) and t = ([σ(x)]l, 0, . . . , 0) to obtain the same
result as Babaï’s nearest plane algorithm. It is also better to reduce B(B, σ, l) with
LLL first, and use Algorithm 9 with input this reduced basis and t. This leads to
Algorithm 21.

Notation. Given K a number field, B a Q-basis of K, σ ∈ Hom(K,C) and a
precision l, we will denote by L(B, σ, l) the LLL-reduced basis of B(B, σ, l). Similarly,
we will write Ll when there is no ambiguity.

The output of Algorithm 21 is a vector of coefficients which are expected to be
the coefficients of x in the basis B. The correctness of the outcome will depend on
the parameters chosen, i.e. the precision l and the constant C.
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Algorithm 21 TestDecode

Require: An integer l, the matrix Ll of a reduced basis of L(B, σ, l), an integer
[σ(x)]l for some x ∈ K and a coefficient and a coefficient M .

Ensure: A candidate y = (y1, . . . , yn) for the vector of coefficients of x expressed
in B.

1: t← ([σi(x)]l, 0, . . . , 0) ∈ Zn+1

2: return Kannan(Ll, t,M)/C . Alg. 9

Choice of parameters and correctness of the method Let us now determine
which parameters to choose. First one can determine the determinant of the lattice
basis of K used to decode.

Let us state a classical result that we will use.

Lemma 4.1 (Matrix determinant lemma [44]). Let A be a ring, M∈Mn(A) be an
invertible matrix and U, V ∈ Mn,m(A). Then the following is true:

det(M + UV T) =
(
Idm + V TM−1U

)
det(M). (4.2)

Lemma 4.2. Let K be a number field and Ll = L(B, σ, l) be a basis lattice of K.
Also let m be an integer equal to 1 if σ is real, and 2 otherwise. Then

vol(Ll)2 = C2n det

(
Idm +

1

C2
σ(B)Tl σ(B)l

)
(4.3)

Proof. By definition vol(Ll)2 is the determinant of the matrix B(B, σ, l)B(B, σ, l)T =

C2Idn + σ(B)l × σ(B)Tl . Then by Lemma 4.1 one has

vol(Ll)2 = det

(
Idm + σ(B)Tl ×

1

C2
Idn × σ(B)l

)
det(C2Idn)

which gives the claimed identity.

Then one can deduce from Lemma 4.2 a lower bound on the volume of L(B, σ, l)
which depends on the precision l and the size of σ(B).

Notation. Consider a number fieldK, B a Q-basis ofK, σ ∈ Hom(K,C) and l ∈ N.
Let us define the value ∆(B, σ, l). If σ(K) ⊂ R we set

∆(B, σ, l) = ‖σ(B)‖2
2 −
‖σ(B)‖1

2l
,

and if σ(K) 6⊂ R we set

∆(B, σ, l) = ‖< (σ(B))‖2
2 + ‖= (σ(B))‖2

2 −
‖< (σ(B))‖1

2l
− ‖= (σ(B))‖1

2l
.
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Proposition 4.3. Let K be a number field and Ll = L(B, σ, l) be a basis lattice
of K. Also let m be an integer equal to 1 if σ is real, and 2 otherwise. Then the
following is true,

vol(Ll)2 > C2n

(
1 +

22l

C2
∆(B, σ, l)

)
. (4.4)

Proof. From Equation 4.3 we can write for m = 1

vol(Ll)2 = C2n

(
1 +

1

C2
‖σ(B)l‖2

2

)
= C2n

(
1 +

1

C2

n∑
i=1

[σ(bi)]
2
l

)
.

Then for each i ∈ J1, nK, there is εi ∈ [−1
2
, 1

2
] such that [σ(bi)]l = 2lσ(bi) + εi. Thus

we obtain

vol(Ll)2 = C2n

(
1 +

1

C2

n∑
i=1

(2lσ(bi) + εi)
2

)

= C2n

(
1 +

22l

C2

n∑
i=1

(σ(bi)
2 + 2σ(bi)

εi
22

+
ε2i
22l

)

)
.

Since for all i ∈ J1, nK, one has |εi| 6 1
2
, we obtain the inequality

vol(Ll)2 > C2n

(
1 +

22l

C2

n∑
i=1

(σ(bi)
2 − 2× 1

2
× |σ(bi)|

2l
)

)
.

If σ(K) 6⊂ R then from Equation 4.3 we have

vol(Ll)2 = C2n det

(
Id2 +

1

C2
σ(B)Tl σ(B)l

)
.

If we write M = Id2 + 1
C2σ(B)Tl σ(B)l, then

M =

 1 +
‖<(σ(B)l)‖2

2

C2

(<(σ(B)l) | =(σ(B)l))

C2

(<(σ(B)l) | =(σ(B)l))

C2
1 +
‖=(σ(B)l)‖2

2

C2


so we get

det(M) =1 +
‖<(σ(B)l)‖2

2

C2
+
‖=(σ(B)l)‖2

2

C2
+
‖<(σ(B)l)‖2

2 ‖=(σ(B)l)‖2
2

C4

− (<(σ(B)l) | =(σ(B)l))
2

C4
.

By Cauchy-Schwarz inequality we have

‖<(σ(B)l)‖2
2 ‖=(σ(B)l)‖2

2

C4
− (<(σ(B)l) | =(σ(B)l))

2

C4
> 0,
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therefore

vol(Ll)2 > C2n

(
1 +
‖<(σ(B)l)‖2

2

C2
+
‖=(σ(B)l)‖2

2

C2

)
.

Following the same reasoning that we did for the real case, we can conclude that

‖<(σ(B)l)‖2
2

C2
>

22l

C2

(
‖<(σ(B))‖2

2 −
‖<(σ(B))‖1

2l

)
and

‖=(σ(B)l)‖2
2

C2
>

22l

C2

(
‖=(σ(B))‖2

2 −
‖=(σ(B))‖1

2l

)
,

which gives the desired result.

It is now possible to certify the correctness of the decoding. As Proposition 2.3
states, the output is known to be correct if the distance between the target and the
lattice is smaller than 1

2
min{

∥∥∥b̃i∥∥∥ | i ∈ J1, rK}.

Proposition 4.4. Consider K a number field, Ll = L(B, σ, l) a basis matrix of K,
and x ∈ Z[B]. Let m be an integer such that m = 1 if σ(K) ⊂ R and m = 2

otherwise. Then Algorithm 21 outputs the correct vector of coefficients (x1, . . . , xn)

of x in B if the following holds:

2m−1

4

(
1 + 2 ‖x‖1 + n ‖x‖2

2

)
+ C2 ‖x‖2

2 6
λ1(Ll)2

22n
. (4.5)

Proof. In TestDecode we wish to solve the BDD with input L(B, σ, l) and target
vector t = ([σ(x)]l, 0, . . . , 0). The vector v in Ll which is assumed to be the closest
to t is v = (

∑n
i=1 xi[σ(bi)],−Cx1, . . . ,−Cxn). The error vector is then

e =

(
[σ(x)]l −

n∑
i=1

xi[σ(bi)], Cx1, . . . , Cxn

)
.

Now let us consider the case where m = 1 and look at the first coordinate of e. First
write (η, ε1, . . . , εn) ∈ [−1

2
, 1

2
]n+1 the vector of errors due to the approximations, i.e.

[σ(x)]l = 2lσ(x) + η and for all i ∈ J1, nK, [σ(bi)]l = 2lσ(bi) + εi. Then we have

e1 = 2lσ(x) + η −
n∑
i=1

2lxiσ(bi) + εi = η −
n∑
i=1

xiεi

which gives

e2
1 6

1

4

(
1 +

n∑
i=1

|xi|

)2

=
1

4

(
1 + 2 ‖x‖1 + n ‖x‖2

2

)
.

If m = 2, or equivalently σ(K) 6⊂ R, one needs to consider the real and imaginary
parts. Thus we get e ∈ Rn+2 and (η, ε1, . . . , εn) ∈ [−1

2
, 1

2
]n+2 with η = (η1, η2).
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Following the previous analysis we obtain

e2
1 6

2

4

(
1 +

n∑
i=1

|xi|

)2

=
1

4

(
1 + 2 ‖x‖1 + n ‖x‖2

2

)
.

Thus we obtain the following upper bound for ‖e‖2
2:

‖e‖2
2 6

2m−1

4

(
1 + 2 ‖x‖1 + n ‖x‖2

2

)
+ C2 ‖x‖2

2 .

Finally one has to remark that a LLL-reduced basis (b′1, . . . , b
′
n) of a lattice L (with

δ = 3
4
) satisfies ∥∥∥b̃i∥∥∥2

2
>

∥∥∥b̃1

∥∥∥2

2

2n−1
>
λ1(L)

2n−1
.

Remark 23. • One can also use an expression involving only ‖x‖2 with

1

4

(
1 + 2 ‖x‖2

2 + n ‖x‖2
2

)
+ C2 ‖x‖2

2 6
λ1(Ll)2

22n
.

• If we know a priori that ‖x‖∞ < M for some M , then the inequality can be
written

1

4

(
1 + 2nM + n2M

)
+ C2n2M2 6

λ1(Ll)2

22n
.

Now if one has a lower bound for λ1(Ll) depending on the parameters, one can
deduce from it a condition for the correctness of the output of TestDecode. In
particular it is possible to obtain a lower bound of the precision l for which the
computation is correct. The Gaussian heuristic provides an estimation of λ1(Ll),
which can be used to obtain a heuristic condition for the correctness of the algo-
rithm, as in Theorem 4.1. However it could be that the considered lattices Ll are
special lattices such that their shortest vectors are way shorter than predicted by
the Gaussian heuristic.

Theorem 4.1 (Correctness of decoding). Consider K a number field, B a Q-basis
of K and x ∈ Z[B]. Additionally fix σ ∈ Hom(K,C), C ∈ N, and m ∈ N such that
m = 1 if σ(K) ⊂ R and m = 2 otherwise. If l ∈ N with l > 1 satisfies

2l > n
(2(n− 1) + (m− 1)) ln(2) + ln(‖x‖2

2 (2 + n+ 4C2) + 1)

ln(2)

−
n ln( n

2πe
) + 2(n− 1) lnC + ln (∆(B, σ, 1))

ln(2)

(4.6)

then Algorithm 21 outputs the vector of coefficients of x in the basis B.
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Proof. Let us fix l ∈ N. The Gaussian heuristic states λ1(L) ∼
√

n
2πe

detL1/n

Then one can combine Equation (4.4) to obtain a conditional inequality. In order
to simplify the expression, we will express the above inequality using only ‖x‖2 as
mentioned above. This leads to the following inequality:

2m−1

4
(‖x‖2

2 (2 + n+ 4C2) + 1) 6
1

22n

(
n

2πe
C2 n

√(
1 +

22l

C2
(∆(B, σ, l))

))
.

Remark that l > 1 so we have ∆(B, σ, l) > ∆(B, σ, 1). With a bit more work we can
obtain the condition

22(n−1)+(m−1)(‖x‖2
2 (2 + n+ 4C2) + 1) 6

n

2πe
C2 n

√(
22l

C2
(∆(B, σ, 1))

)
. (4.7)

In order to obtain an inequality involving l directly (instead of 2l) we will apply the
logarithm map. The left side of Equation (4.7) gives (2(n − 1) + (m − 1)) ln(2) +

ln(‖x‖2
2 (2 + n+ 4C2) + 1) while the right side gives

1

n
×
(
n ln(

n

2πe
) + 2(n− 1) lnC + 2l ln 2 + ln (∆(B, σ, 1))

)
.

Putting everything together gives the claimed condition.

One can obviously simplify the expression of the condition given in Equation (4.6)
by removing terms which are not asymptotically relevant. Moreover it can also be
simplified by specifying C. Indeed we can find C such that the right-hand side of
Equation (4.6) is minimal.

Proposition 4.5. The right-hand side of Equation (4.6) is minimal when

C =
1

4

(
(n− 1)(2 + n) +

1

‖x‖2
2

)
.

Remark 24. Remark that the precision l given by Theorem 4.1 is polynomial in
ln ‖x‖2

2 and the dimension n. Therefore the complexity of computing a LLL-reduced
basis of L(B, σ, l) is also polynomial in ln ‖x‖2

2 and n, as well as Kannan. Therefore,
provided one is able to obtain an approximation [σ(x)]l for l high enough, it is
possible to recover the coefficients of x in polynomial time using Algorithm 21.

In order to estimate the correctness of the value given by Theorem 4.1, we verified
if the Gaussian heuristic holds for lattices Ll. We computed the average value of
the quotient λ1(Ll)/λ1(Ll)gauss for increasing values of l, over random number fields
K with fixed degrees. The results can be found in Figure 4.1. One can see that
λ1(Ll) is very close to the value predicted by the Gaussian heuristic. Moreover the
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two values are getting closer when the precision l or the degree n are increasing.
This shows that one can safely consider that Theorem 4.1 provides a good value
certifying the correctness of the output of TestDecode.

Figure 4.1: Average value of λ1(Ll)/λ1(Ll)gauss plotted against the precision l,
for several n = [K : Q].

Heuristic precision While the precision given by Equation (4.6) allowsus to cer-
tify the correctness and the polynomial complexity of the method we described, it
is possible to find a better one by experiments. It can be useful to know better
experimental bounds to hasten the computation.

First, in some cases, one is happy with obtaining the result with some probability
high enough. It is typically the case in cryptanalysis. Therefore if the probability
that an element can be decoded with a smaller precision is high enough, then it is
completely acceptable to use such a value which reduce the computing time. Sec-
ondly, one can have access to a way of verifying that the output of the decoding is
correct. It is typically the case when one is looking for the roots of a polynomial
f(X). Once we get a candidate solution x by TestDecode, we can check if f(x) = 0.
If not we can increase the precision until a solution is found. Such a strategy can be
globally more efficient, especially if one has to decode several elements and that the
probability that a smaller precision is sufficient to decode elements is high enough.

In order to obtain an experimental sufficient precision to decode, we did as fol-
lows. Fix K a number field given by an irreducible polynomial P (X) ∈ Z[X]. Given
B = (b1, . . . , bn) a Q-basis of K, we generated random elements x ∈ Z[B] such that
for all i ∈ J1, nK, xi ∈ J−2s, 2sK for some s. Then increasing precision l (following an
arithmetic progression) we computed [σ(x)]l and used Algorithm 21 until x was re-
trieved. Then we computed the quotient of the final precision by lt = [K : Q]

ln‖x‖22
2 ln(2)

.
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We did such tests making several parameters varying: s, [K : Q] and the bit-size of
the coefficients of P (X).

We chose to test the experimental precision against lt because when K and B are
fixed, it is the term of Equation 4.6 which is asymptotically relevant. Moreover the
algebraic method of Belabas [7] requires the norm NK/Q(pk) to be greater than a
value which is essentially lt, so that the decoding is certified. Finally, this value was
also suggested by experiments we did when we first used our technique in [64] to
compute cube roots in multicubic fields. When comparing this value to (4.6), we
can remark that we gain essentially n(n− ln(n)

ln(2)
).

Increasing the precision As mentioned, one might want or need to increase the
precision to which computations are performed. Recall that the heavier task con-
sistsof finding a reduced basis of L(B, σ, l). Therefore when increasing the precision,
say from l to l′, one has to reduce L(B, σ, l′). One can use the fact that L(B, σ, l)
has already been computed to speed-up the computation of Ll′ in the following way.
When computing Ll, one can also compute Ul ∈ GLn(Z) such that UlBl = Ll. Then,
instead of applying directly LLL to Bl′ , one can first multiply Bl′ by Ul then use
LLL. This is expected to reduce the most significant bits of Bl′ , thus accelerating
the final LLL. With a generic matrix, the downside would be that computing the
transformation matrix Ul together with the LLL-reduced matrix is slower than com-
puting the reduced matrix alone. However the shape of B allows us to retrieve Ul
directly from Ll. Indeed, one has Ll = UlBl = Ul [σ(B)l | CIdn] = [Ulσ(B)l | CUl].

Algorithm 22 LatticeBasisUpdate
Require: A number field K, B a Q-basis of K, Ll and Ul such that Ll = UlBl =

LLL(Bl), l′ > l.
Ensure: Ll′ , Ul′
1: B ← Bl′

2: B ← UlB
3: L,U ← LLL(B)
4: return L,U

Computing roots

We can easily imagine now how to compute roots of a polynomial f(X) ∈ K[X]. We
described which lattice we use, and the decoding method. Obviously the reduced
matrix L(B, σ, l) is computed once and used to retrieve all roots. Therefore we have
the following main steps:

1. fix an embedding σ : K ↪→ C;
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2. compute a precision l ∈ N allowing the decoding to be correct;

3. compute a LLL-reduced basis Ll of the lattice generated by the basis of K;

4. using σ, compute approximations of the roots of f(X) up to a precision l;

5. use Ll to retrieve the roots of f(X) using TestDecode.

We will call PrecisionEvaluation the function returning the needed precision
for input f(X) ∈ K[X]. Following Theorem 4.1, it depends on the Euclidean norms
of the roots of f(X). In order to evaluate an upper bound of these norms, we
can follow [7]. We will denote by FloatPolynomialRoots the procedure computing
the real (resp. complex roots) of a real (resp. complex) polynomial. We obtain
Algorithm 23 describing the method we implemented to compute ZK(f).

Algorithm 23 PolynomialRoots

Require: A number field K, f(X) ∈ K[X], B a Q-basis of K such that ZK(f) ∈
Z[B].

Ensure: The set ZK(f)
1: σ ← ChooseEmbedding(K)
2: l← PrecisionEvaluation(f(X))
3: Ll ← LLL(B(B, σ, l))
4: Z ← FloatPolynomialRoots(fσ, l)
5: S ← ∅
6: for z ∈ Z do
7: y ← TestDecode(Ll, z)
8: if f(y) = 0 then
9: S ← S ∪ {y}

10: end if
11: end for
12: return S

Following the results from the previous section, one can state the following theo-
rem.

Theorem 4.2. Consider a number field K, B a Q-basis of K and f(X) ∈ K[X]

such that ZK(f) ⊂ Z[B]. Then for input (K,B, f(X)), Algorithm 23 outputs ZK(f)

in polynomial time, under the heuristic that states that basis lattices satisfy the
Gaussian heuristic.

Norm of the roots Fix the factorisation of f(X) over K as f(X) = g(X)h(X)

such ZK(g) = ZK(f), ZK(h) = ∅.
As mentioned we can follow [7] to bound ‖x‖2

2 for x ∈ ZK(f) given f(X). One does
essentially as follows.

1. Find Bf,T2 such
∥∥σK/Q(x)

∥∥2

2
6 Bf for all x ∈ ZK(f).
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2. Compute Bσ−1
K

the matrix norm of σ−1
K , expressed relatively to the canonical

basis of σK/Q(K) and B.

3. The value Bf = Bf,T2B
2
σ−1
K

satisfies the desired property.

This bound can be quite large compared to sup{‖x‖2
2 | x ∈ ZK(f)}. It is typically

the case when ‖g‖ � ‖h‖. Indeed, if this the case, Bf will essentially bound the
complex roots of h(X). Without extra-information this is the best one can do.
If one does not need to find all the roots, a general strategy can be to compute
several bounds corresponding to increasing norms. This way if f(X) is of the form
mentioned, it is possible to retrieve some of the roots faster. Moreover one can use
heuristic evaluations for ‖x‖2

2, giving smaller results than Bf . Let us explain how
we do it. Consider σ ∈ Hom(K,C) and x ∈ K. Then one has

|σ(x)|2 =

∣∣∣∣∣
n∑
i=1

xiσ(bi)

∣∣∣∣∣
2

6

(
n∑
i=1

|xiσ(bi)|

)2

6 ‖x‖2
2 ‖σ(B)‖2

2 .

Therefore for any x ∈ K and any σ ∈ Hom(K,C), ‖x‖2
2 > |σ(x)|2

‖σ(B)‖22
. We chose to

define the function NormEvaluation_heur as the max of such quotients, as follows.
For any σ ∈ Hom(K,C), let Bf,σ be such that

∀x ∈ ZK(f), |σ(x)|2 6 Bσ. (4.8)

Then we fix

NormEvaluation_heur(x) = max

{
|σ(x)|2

‖σ(B)‖2
2

| σ ∈ Hom(K,C)

}
. (4.9)

Even if NormEvaluation_heur gives a value which is a lower bound on ‖x‖2
2

instead of an upper bound, it allows a first precision to be obtained. This evaluation
is usually smaller than Bf and gives a good starting point, i.e. we do not need to
increase much the precision to retrieve at least some roots.

Comparison with nfroots If we obtain a good evaluation for the needed preci-
sion, we can pinpoint it with our method. Additionally we will see it can be adapted
to take advantage of the structure of extension L/K. However, the basis that we
reduce is close to a knapsack matrix. These lattices are more difficult to reduce
than most basis matrices of ideals reduced in nfroots. Moreover, Belabas mentions
that over these lattices, one can use a pre-reduction which decreases considerably
the running time of the subsequent LLL algorithm [7].
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4.2.2 Relative method

Let us now describe a method to recover the roots of a polynomial in an extension
of number fields L/K.

Decoding in subfield

First let us describe how one can reduce knowledge of embeddings related to the
extension L/K to decodings in K. We will use the relative Minkowski embedding
σL/K . It defines a K-linear embedding of L ∼= Kn into Ωn where n is the degree
of L/K. More precisely, let us fix E = (e1, . . . , en) a K-basis of L and let x =

x1e1 + · · ·+ xren ∈ L. We assume that the action of each σ ∈ Hom(L/K,Ω) on E is
known. Then σL/K sends Kn into the cartesian product of the conjugates of L/K,

σL/K : Kn −→ L̃n ⊂ Ωn

(xi)i∈J1,nK 7−→ (
∑n

i=1 xiσ(ei))σ∈Hom(L/K,Ω)

However we will need to consider this embedding as an embedding into Cn.
In order to do so, one needs to specify an embedding of K into C. Let us fix
τ ∈ Hom(K,C). Then for any σ ∈ Hom(L/K,C), its action on x ∈ L can be
seen as

∑n
i=1 τ(xi)σ(ei). This way, K is identified with a subfield of C and L is

identified with τ(K)n. We can then express the action of σL/K from τ(K)n into
Cn. It is expressed as a matrix in Mn(C). Let us write ΣL/K this matrix. We have
(ΣL/K)i = σL/K(ei).

Thus we are able to do the following. Given knowledge of σL/K(x) one can apply
Σ−1
L/K to it and obtain (τ(xi))i. Obviously, computations are done up to a given

precision l. Thus knowing σL/K(x) up to l, one can find the the approximations of
(τ(xi))i. Then one can retrieve each xi by the decoding method explained previ-
ously, with TestDecode.

Thus we obtain Algorithm 24 which retrieves coefficients of x knowing its Minkowski
embedding.

An algorithm for polynomial roots

Now we can apply the previous strategy to compute polynomial roots by decoding
in the subfield K. Again, we fix some objects. The extension of number fields
L/K is given by a Q-basis B and and K-basis of L. Then consider a polynomial
f(X) ∈ L[X] such that ZL(f)⊂Z[E ⊗ B]. From what we described previously, in
order to retrieve the coefficients of x ∈ ZL(f), one can compute σL/K and use
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Algorithm 24 Mink2coeff

Require: An extension L/K, given by B a basis of K and E a K-basis of L, an
integer l, the matrix Ll from a reduced basis of L(B, τ, l), M = Σ−1

L/K up to a
precision l + s, and X = [σL/K(x)]l+s for some x ∈ L/K

Ensure: A candidate y = (y1, . . . , yN) for the vector of coefficients of x expressed
in B ⊗ E

1: Y ← XM
2: y = ()
3: for i = 1 to n do
4: y ← [y | TestDecode(Ll, Yi)] . Concatenation of row vectors
5: end for
6: return y

Mink2coeff. One can imagine the following main steps:

1. compute a precision l certifying the correctness of the computation;

2. compute Ll a LLL reduced basis of L(B, τ, l);

3. compute M = Σ−1
L/K up to precision l + s for some s;

4. compute Z =
∏

σ∈Hom(L/K,C) ZC(fσ) up to precision l + s;

5. For each x ∈ Z, use Mink2coeff to obtain a root candidate.

This leads to Algorithm 25 below.

Remark 25. The set Z is the cartesian product of the sets Z(fσ) with σ in
Hom(L/K,C). Each set Z(fσ) has at most d = deg f elements. Therefore, Z
is a set of at most dn complex numbers. Moreover one cannot tell a priori if an
element z ∈ Z(fσ) is of the form [σ(x)]l+s for some x ∈ ZL(f), or even if a vector
(z1, . . . , zn) ∈ Z corresponds to a root x of f(X). Thus one has to call Mink2coeff
dn times in the worst case. Even if f(X) splits in L, this leads to a search of d
vectors in a set of size dn.

A large enumeration cost The cost of Algorithm 25 compared with Algo-
rithm 23 is as follows. The absolute method PolynomialRoots requires at most d =

deg f(x) decodings, while RelativePolynomialRoots_naive requires enumerating
through dn vectors, corresponding to n decodings each. The mere enumeration of
dn elements shows that RelativePolynomialRoots_naive has an exponential cost
when n increases. In addition, several operations on vectors and matrices are done
for each of the dn possibilities. Thus it is quickly impractical.
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Algorithm 25 RelativePolynomialRoots_naive

Require: An extension L/K, given by B a basis of K and E a K-basis of L, and
f(X) ∈ L[X] such that ZL(f) ∈ Z[E ⊗ B]

Ensure: ZL(f)
1: l← PrecisionEvaluation(f(X))
2: Ll ← LLL(B(B, τ, l))
3: M ← Σ−1

L/K . Up to precision l + s

4: Z ←
∏

σ∈Hom(L/K,C) FloatPolynomialRoots(fσ, l + s)

5: S ← ∅
6: for z ∈ Z do
7: y ← Mink2coeff(z,M,Ll) . Compute the inverse and decode
8: if f(y) = 0 then
9: S ← S ∪ {y}

10: end if
11: end for
12: return y

Speed-up for small relative degrees For fixed small n, Algorithm 25 can con-
siderably speed-up the computation of ZK(f). Indeed one has to remember that an
important part of the computation time is dedicated to the reduction of the lattice
used to decode, as is also the case for the algebraic method. Algorithm 23 requires
the reduction of a lattice of rank [L : Q], while the rank of the lattice reduced in
Algorithm 25 is [L:Q]

n
. In addition, the precision needed to certify the computation

shown in Theorem 4.1 involves the dimension. Therefore, dividing the dimension
allows us to do computations at a smaller precision, which also leads to smaller
coefficients in the matrix Bl which is reduced.

Improving the naive algorithm

In order to improve the relative method described above, one has two main direc-
tions to follow. The first is to reduce the number of possibilities, i.e. eliminate as
quickly as possible the branches in the enumeration tree. The second is to speed-up
intermediate computations, in particular the ones related to testing whether a vector
of possible conjugates is a solution or not.

A better search A simple observation can be made. Let us write Z =
∏

σ ZC(fσ)

where σ ranges over Hom(L/K,C). Then one has

∀x ∈ ZK(f), ∀σ ∈ Hom(L/K,C),∃!z ∈ ZC(fσ) | z = [σ(x)]l, (4.10)

which implies that once we found a correct vector in Z we can remove from the
search tree all the nodes where any of its coordinates appears.
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Notation. We will denote by UpdateTree the procedure updating the search space
as described.

Algorithm 26 TestAndUpdate

Require: An extension L/K, given by B a basis of K and E a K-basis of L, and
f(X) ∈ L[X] such that ZL(f) ∈ Z[E ⊗ B], x ∈ L, S a set, Z

Ensure: Tests if x ∈ ZK(f), updates S and Z
1: b← f(x) = 0
2: if b then
3: S ← S ∪ {x}
4: Z ← UpdateTree(Z, x) . Update the search space
5: end if
6: return b, S, Z

Identify vectors more quickly The other way to accelerate the computation is
to decide more quickly if a vector z ∈ Z is equal to [σL/K(x)]l for some x ∈ ZK(f).
The naive method requires applying Mink2coeff to z and check if it is a root of
f(X). As already mentioned, this requires multiplying z by the complex matrix
Σ−1
L/K , then applying TestDecode to n vectors. Even if Σ−1

L/K is precomputed and
TestDecode is generally fast (as it solves BDD), improving these procedures or re-
moving some intermediate parts to reach a conclusion can really improve the overall
performance, as one needs to repeat these operations a large amount of times. Let
us explain how it can be done.

If l is large enough, then a decoding of a true vector is a BDD. This means
that the target vector is very close to a vector of L(B, σ, l). However if z is not a
solution vector, then it does not correspond to σL/K(y) for any y ∈ L. Thus the
vector zΣ−1

L/K should be far from the lattice, or at least far enough so its distance
can be distinguished from a BDD situation. If so, the decoding should yield larger
coefficients. The Euclidean norm of the candidate vector should then be larger than
the one of solutions. Then recall that the decoding is done with respect to the basis
of K. Therefore, one can decode only the first coordinate of zΣ−1

L/K for each z and
compare the norms of the vectors obtained. The ones with smaller norms should be
the first part of the solutions, while the others can be discarded.

First let us define one intermediate procedure, Check1Coord, which compares
the norm of a coefficient Mink2coeff(z,M,Ll) previously computed with the new
vector. It outputs a boolean indicating if the new vector of Z is a potential root
candidate. It is described in Algorithm 27.

Remark 26. The constant C found in Algorithm 27 is the value used as the compar-
ison quotient. Consider two norms n1 and n2. If n2 is known to be the partial norm
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Algorithm 27 Check1Coord

Require: The matrix Ll from a reduced basis of L(B, τ, l), M = Σ−1
L/K up to a

precision l+ s, bt the boolean used to test, nt the norm used to test, I the index
used to test, and z ∈ Z the vector which is checked

Ensure: A boolean indicating if z should be fully decoded
1: y ← (zM)I . Computes coordinate I of zΣ−1

L/K

2: x← TestDecode(Ll, x)
3: n← ‖x‖2

2

4: q ← n/nt
5: b← false
6: if bt then . Check if the vector used for comparison is a solution
7: if q < C then b← true
8: end if
9: else

10: if q < 1/C then b← true
11: end if
12: end if
13: return b

of a solution, we will consider that n1 is the potential norm of a root if n1 < Cn2.
However if n2 is not the partial norm of a solution, then we will consider that the
vector linked to n1 is worth considering if Cn1 < n2. We chose not to put C as
an input for clarity of the exposé. In our implementation we chose C = 10r for
r ∈ {2, 3}.

Another auxiliary function needed consists of initialising the variables used for
Check1Coord (index, norm, and boolean) with the first vector computed. One can
find it described in Algorithm 28. It also verifies if the first element decoded is a
solution, updates the search space Z and the set of solutions found S.

Algorithm 28 InitTest

Require: An extension L/K, given by B a basis of K and E a K-basis of L,
f(X) ∈ L[X] such that ZL(f)⊂Z[E ⊗ B], and y ∈ L

Ensure: b a booelan indicating if f(y) = 0, n the norm of one the coefficient in K
of yΣ−1

L/K , I the index of said coefficient, S and Z the updated sets of solutions
found and search space respectively

1: b, S, Z ← TestAndUpdate(y, ∅, Z)
2: n← 0, I ← 0
3: while n = 0 do
4: I ← I+1
5: n← ‖yI‖2

2

6: end while
7: return b, n, I, S, Z

Now we are all set to write Algorithm 29, which computes the roots of a polynomial
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using the heuristic method we described. We already mentioned that the set Z is
ordered, which allows it to be searched through and updated more efficiently.

Algorithm 29 RelativePolynomialRoots

Require: An extension L/K, given by B a basis of K and E a K-basis of L, and
f(X) ∈ L[X] such that ZL(f) ∈ Z[E ⊗ B]

Ensure: ZL(f)
1: l← PrecisionEvaluation(f(X))
2: Ll ← LLL(B(B, τ, l))
3: M ← Σ−1

L/K . Up to precision l + s

4: Z ←
∏

σ∈Hom(L/K,C) FloatPolynomialRoots(fσ, l + s)

5: S ← ∅
6: y ← Mink2coeff(Z1,M,Ll)
7: bt, nt, I, S, Z ← InitTest(y, f , Z)
8: for z ∈ Z do
9: b← Check1Coord(z, bt, nt, I, Ll,M)

10: if b then
11: x← Mink2coeff(x,M,Ll)
12: b, S, Z ← TestAndUpdate(x, S, Z)
13: end if
14: end for
15: return S

Average cost of the search

Let us study the average cost of the search phase of Algorithm 25 and Algorithm 29.
In particular we will determine the average number of decodings that will occur
before finding all roots. If one denotes by σ1, . . . , σn the elements of Hom(L/K,C),
then the two algorithms can be described as a search without replacement in the set
Z = Z1 × · · · × Zn where Zi = Zσi .

Remark 27. A cartesian product S = S1 × · · · × Sn will be ordered using the
lexicographic order. This means that for all (x, y) ∈ S2, if i(x, y) = min{i ∈ J1, nK |
xi 6= yi}, then we have x < y ⇐⇒ xi(x,y) < yi(x,y).

From now on, let us consider the sets Zi as ordered sets of elements zi,j with
zi,j < zi,j′ ⇐⇒ j < j′. Moreover we consider that we run through Z following
the lexicographic order. Assume that the state of the computation is at the state
with index j = (j1, . . . , jn) ∈ J1, deg f(X)Kn, and that we found a root x. We can
write x = (z1,j1 , . . . , zn,jn). Then the action of UpdateTree on Z is as follows. We
mentioned that it removes zi,ji from Z for all i ∈ J1, nK. This amounts to removing
zi,ji from Z for all i ∈ J2, nK and updating the index by doing j1 ← j1 + 1 and for
all i > 1, ji ← 1.
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Definition 4.4. Let N,M,m be integers satisfying m 6 M 6 N . A random
variable X taking non-negative values follows a negative hypergeometric distribution
with parameters (N, M, m) if it satisfies the following formula:

P(X = k) =

(
k+m−1

k

)(
N−m−k
M−m

)(
N
m

) .

We will write X ∼ NHG(N,M,m).

The negative hypergeometric distribution describes exactly what we want to study.
Indeed, it arises as follows. Consider a set of N elements, containing M “success
elements” and N −m “fail elements”. Then if one draws uniformly in the set without
replacement until m successes are found, then the number of failures drawn follows
a negative hypergeometric situation.

Proposition 4.6 ([55]). Let N,M,m be integers, and X be a random variable such
that X ∼ NHG(N,M,m). Then one has:

E[X] = m
N −M
M + 1

and Var[X] = m
(N −M)(N + 1)

(M + 1)(M + 2)

(
1− m

M + 1

)
.

We are essentially interested in the average cost, so we focused on the expectation.

Proposition 4.7. Let L/K be an extension of number fields such that [L : K] = n.
Consider f(X) ∈ L[X] such that |ZK(f)| = s and write d = deg f(X). Then the
average number of “failed” decodings done in Algorithm 25 before finding one root is
dn+1
s+1

. The average number of “failed” decodings before finding all the roots is sd
n+1
s+1

.

Proof. Let X1 be the random variable representing the number of failures before
finding the first root, and Xs be the random variable of the number of failures before
finding all the roots. Clearly one has X1 ∼ NGH(dn, s, 1) and Xs ∼ NGH(dn, s, 1),
and can apply directly the formula of the expectation from Proposition 4.6 to find
E[X1] and E[Xs].

The study is slightly more complex for the search done in Algorithm 29. One can
remark that the number of elements removed from the search space Z by UpdateTree
depends on the index of state. We will therefore consider the random variables
corresponding to the number of failures between two found solutions.

Notation. Let L/K be an extension of number fields such that [L : K] = n.
Consider f(X) ∈ L[X] such that |ZK(f)| = s. We will denote by x(1) < · · · < x(s)

the elements of ZK(f) ordered in Z. For each k ∈ J1, sK we will consider several
random variables.
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1. X(k) is the random variable corresponding to the number of failures between
the (k − 1)-th solution and the k-th solution.

2. X(k)
1 is the random variable corresponding to the number of failures in the first

coordinate between the (k − 1)-th solution and the k-th solution.

3. X(k)
2 is the random variable corresponding to the number of failures occurred

between the (k − 1)-th solution and the k-th solution such that j1 = x
(k)
1 .

4. Y (k) is the random variable corresponding to the number of failures which
occured before the k-th solution is found.

Lemma 4.3. Let L/K be an extension of number fields such that [L : K] = n.
Consider f(X) ∈ L[X] such that |ZK(f)| = s. Then one has the following:

∀k ∈ J1, sK, Y (k) =
k∑
j=1

(
X

(j)
1 (d− j + 1)n−1 +X

(j)
2

)
.

Proof. Let us fix k ∈ J1, sK. Clearly one has Y (k) =
∑(k)

j=1 X
(j). Now let us denote

by Ck the integer |Z2 × · · · × Zn| after the (k − 1)-th root and before the k-th root
are found. Recall that after each new solution is found, UpdateTree removes one
element of each Zi, i > 1. Therefore, one obtains Ck = (d− k + 1)n−1. Because the
search is done following the lexicographic order, it is easy to see that for each fixed
j1 ∈ Jx(k−1)

1 + 1, x
(k)
1 K there are two possibilities. If j1 < x

(k)
1 then the search will

run through all {z1,j1}×Z2×· · ·×Zn, which contains no solution. This leads to Ck
failures. If j1 = x

(k)
1 then the search will run through {z1,j1} × Z2 × · · · × Zn until

finding the solution. It amounts to X(k)
2 failures. Finally the number of j1 that are

passed such that j1 < x
(k)
1 is X(k)

1 .

Proposition 4.8. Let L/K be an extension of number fields such that [L : K] = n.
Consider f(X) ∈ L[X] such that |ZK(f)| = s. Write d = deg f(X). Then, for
k ∈ J1, sK, the average number of “failed” decodings done in Algorithm 29 before
finding k roots is

2d− s+ 1

2(s+ 1)

k−1∑
j=0

(d− j)n−1 − k

2
. (4.11)

Proof. Using Lemma 4.3 and by linearity of the expectation, one has:

∀k ∈ J1, sK,E[Y (k)] =
k∑
j=1

(
E[X

(j)
1 ](d− j + 1)n−1 + E[X

(j)
2 ]
)
.

Let fix j ∈ J1, kK. Recall that X(j)
2 is the number of failures found during the search

through the set {x(j)
1 }×Z2×· · ·×Zn. We know there is exactly one solution in this
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set. Therefore we have X(j)
2 ∼ NHG((d− j + 1)n−1, 1, 1) and

E[X
(j)
2 ] =

(d− j + 1)n−1 − 1

2
.

Now let us determine X(j)
1 . It is the number of wrong first coordinates visited until

finding x(j)
1 , and after finding x(j−1)

1 . The search is done over the set Z1 minus the
elements visited before x(j−1)

1 included. It is a set with cardinal number

|Z1| −
(j−1)∑
i=1

X
(i)
1 − (j − 1) = d− j + 1−

(j−1)∑
i=1

X
(i)
1

which contains s−(j−1) success elements. Therefore we have E[X
(j)
1 |

∑(j−1)
i=1 X

(i)
1 =

a] ∼ NHG(d − j + 1 − a, s − (j − 1), 1), for all possible a. Using the law of total
expectation E[X] = E[E[X|Y ]] between two variables X and Y , it is easy to see that
we have

E[X
(j)
1 ] =

(d− j + 1)−
∑(j−1)

i=1 E[X
(i)
1 ]− (s− j + 1)

s− j + 2
=

(d− s)−
∑(j−1)

i=1 E[X
(i)
1 ]

s− j + 2
.

It is possible to use this recurrence relation to obtain an expression of E[X
(j)
1 ] in

closed-form. As a matter of fact, we will prove that E[X
(j+1)
1 ] = E[X

(j)
1 ]. Indeed one

has

E[X
(j+1)
1 ] =

(d− s)−
∑(j)

i=1 E[X
(i)
1 ]

s− j + 1
=
d− s− E[X

(i)
1 ]−

∑(j−1)
i=1 E[X

(i)
1 ]

s− j + 1
,

and since

(s− j + 2)E[X
(j)
1 ] = (d− s)−

(j−1)∑
i=1

E[X
(i)
1 ]

we obtain

E[X
(j+1)
1 ] =

d− s− E[X
(i)
1 ] + (s− j + 2)E[X

(j)
1 ]− (d− s)

s− j + 1
= E[X

(j)
1 ].

Then remark that X(1)
1 ∼ NHG(d, s, 1), which gives the desired result.

Remark 28. One can see that the gain of RelativePolynomialRoots compara-
tively to RelativePolynomialRoots_naive increases with s. Indeed if f(X) has
only one root, then the expected number of decodings is the same for both methods.
However, if s = deg f(X) then the expected number of decodings with the naive
search is dd(dn−1−1)

d+1
, whereas it is

∑d−1
i=0

(d−i)n−1−1
2

when using UpdateTree.
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4.2.3 Experimental results

We will now compare the practical performances of the methods described previ-
ously with the generic algebraic method implemented in PARI/GP [76], which is
the function nfroots.

First we will consider two versions of Algorithm 23. First is the certified ver-
sion, for which we will keep writing PolynomialRoots. Then we will denote by
PolynomialRoots_heur the version where NormEvaluation_heur is used, as well
as the formulae

[K : Q]
ln ‖x‖2

2

2 ln(2)
+ 2[K : Q] (4.12)

instead of Equation (4.6).
Then we will compare PolynomialRoots_heur with nfroots in situations where

we assume that some extra information is known about the polynomial f(X), or
where the goal is slightly different from retrieving the full set ZK(f).
Finally, we will do the comparison with RelativePolynomialRoots over relative

extensions L/K.

Recall that we assume that ZK(f) ⊂ Z[B], with B = (b1, . . . , bn) being some Q-
basis of K. Given x ∈ K we will keep denoting by x1, . . . , xn its coefficients relative
to B. In all that follows, we chose B to be Z[θ] with θ = X mod P (X), where P (X)

is a fixed polynomial defining the field K.

Solving a polynomial equation

We are interested here in the generic problem of finding all elements of ZK(f). We
wish to study the practicability of PolynomialRoots and PolynomialRoots_heur

in terms of time efficiency and goal achievability, i.e. if ZK(f) can be fully recov-
ered. We will study the impact of the different parameters of the problems which
are the number field K, the shape of the polynomial f(X), and the size of the roots
log2 ‖x‖2. Each time we focus on a parameter, we fix the others and observe the
data given by experiments. We also differentiated between number fields K such
that r1 > 0 or such that r1 = 0, since the matrices used to decode do not have the
same sizes in these two cases.

Impact of K Let us explore how the choice of a number field K and the way it is
represented can impact the different methods. Classically, K is given by P (X) an
irreducible polynomial of Q[X]. We decided to study the impact of two parameters
linked to P (X), namely degP (X) and the size of its coefficients. Therefore we fixed
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the parameters of the problem linked to f(X) ∈ K[X]. More precisely we considered
f(X) such that:

• deg f(X) = 50;

• f(X) splits in K, i.e. |ZK(f)| = deg f(X);

• ∀x ∈ ZK(f),∀i ∈ J1, nK, |xi| 6 210.

Then we considered P (X) = p0+p1X+· · ·+pn−1X
n−1+Xn ∈ Z[X] for increasing de-

grees n, and several coefficient sizes s(P ). More precisely for sizes s(P ) ∈ {1, 5, 10},
we picked polynomials P (X) such that ∀i ∈ J0, n− 1K, pi ∈ J−2s(P ), 2s(P )K, and this
for n increasing. The data obtained are shown in Figures 4.2 and 4.3.

(a) s(P ) = 1 (b) s(P ) = 5

(c) s(P ) = 10

Figure 4.2: Average timings (s) of nfroots, PolynomialRoots and
PolynomialRoots_heur plotted against degP (X) for randomly generated P (X)
such that r1 > 0, with s(P ) ∈ {1, 5, 10}

One can remark that the time efficiency of all three methods are widely influenced
by the dimension [K : Q]. This is less visible for PolynomialRoots_heur but it is
still the case. It is easily explained by the fact that all three methods require the
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(a) s(P ) = 1 (b) s(P ) = 5

(c) s(P ) = 10

Figure 4.3: Average timings (s) of nfroots, PolynomialRoots and
PolynomialRoots_heur plotted against degP (X) for randomly generated P (X)
such that r1 = 0, with s(P ) ∈ {1, 5, 10}

computation of a LLL-reduced basis of a lattice with rank equal to [K : Q]. More-
over the volume of said lattice depends also on the dimension.

The parameter s(P ), i.e. the coefficient size of the defining polynomial of K, also
influences the performances of all three algorithms. Again our heuristic method
seems to be less impacted by this parameter.

Finally, we also checked the number of roots properly retrieved by our methods.
With the certified one, PolynomialRoots, all roots were found, but we can see from
Figures 4.2 and 4.3 that it is way less efficient than nfroots, at least for the fixed
shape of f(X). Our method PolynomialRoots_heur – using heuristic norm evalua-
tion and formula to compute the precision – is way more efficient than the certified
version, even competing on average with nfroots in a number of cases. This is par-
ticularly the case when using a real embedding. However PolynomialRoots_heur
did not retrieve all the roots. This phenomenon occurs only when r1 > 0. One can
find in Figure 4.4 the ratio of polynomials f(X) for which all roots were retrieved.
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Figure 4.4: Ratios of roots retrieved by PolynomialRoots_heur over fields such
that r1 = 0 plotted against [K : Q], with s(P ) ∈ {1, 5, 10}

The fact that all roots were retrieved when r1 = 0 seems to indicate that the
heuristic norm evaluation NormEvaluation_heur is good, and that the difference
comes from the lattice used to decode. From the data gathered in Figure 4.4, one
can see that the ratio of polynomial equations completely solved is dropping when
the dimension is increasing. This indicates that the formula expressing the precision
needed in function of the norm of the roots needs to be slightly bigger, and should
be taking the degree [K : Q] more into account. For example one could consider

[K : Q]
ln ‖x‖2

2

2 ln 2
+ dln[K : Q]e · [K : Q]. (4.13)

It would still represent a gain of [K : Q]2 compared to the certified precision
given by Theorem 4.1. This indicates that for the fixed shape of f(X) chosen,
PolynomialRoots_heur is efficient, with respect to both time and probability of
success.

Size of roots We will now study how the size of the elements of ZK(f) impacts
the performance of the different functions. To this end we fixed the parameters of
the problem linked to P (X) ∈ Z[X] defining the number field K. More precisely
we considered P (X) and f(X) such that:

• deg f(X) = 50;

• f(X) splits in K, i.e. |ZK(f)| = deg f(X);

• s(P ) = 1;

• degP (X) = 50.

We did experiments for increasing size of roots. Let us denote by sZ this size, i.e.
∀x ∈ ZK(f), log2|xi| ∈ J−2sZ , 2sZK. The results can be found in Figure 4.5.



CHAPTER 4. PRACTICAL COMPUTATIONS IN NUMBER FIELDS 103

(a) [K : Q] = 20 (b) [K : Q] = 50

Figure 4.5: Average timings (s) of nfroots, PolynomialRoots and
PolynomialRoots_heur plotted against sZ for randomly generated P (X) such
that [K : Q], with r1 > 0 and r1 = 0

One can verify that the cost of all methods looks linear in sZ . It seems how-
ever that the slope for nfroots is smaller than the ones of PolynomialRoots

and PolynomialRoots_heur. Again, PolynomialRoots_heur is competitive with
nfroots, especially that almost all roots were retrieved. The only cases where it is
not true are still when r1 > 0. The ratios of roots retrieved in this case are plotted
in Figure 4.6.

Figure 4.6: Ratios of equation for which all roots were retrieved by
PolynomialRoots_heur over fields such that r1 = 0 plotted against sz

The ratio is always very high and does not seem to be influenced by the size of
the roots as much as it is by the dimension of the field.

Shape of f(X) Finally let us look into how the choice of f(X) impacts the per-
formance of the functions. Again we fixed the parameters linked to P (X) ∈ Z[X]

defining the number field. Moreover we fixed sZ = 10. Then we considered f(X)

with different splitting situations. More precisely, f(X) and P (X) are such that:
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• s(P ) = 1;

• degP (X) = 51;

• f(X) = g(X)h(X) with deg g(X) = |ZK(f)|, ZK(g) = ZK(f), ZK(h) = ∅ and
qf = deg g(X)

deg f(X)
∈ {0.25, 0.5};

• sZ = 10;

• the coefficients of the polynomial h(X) are drawn uniformly in the segment
J−210 deg h, 210 deg hK

We did experiments for increasing degrees of f(X). The results can be found in
Figure 4.7

(a) qf = 25% (b) qf = 50%

Figure 4.7: Average timings (s) of nfroots, PolynomialRoots and
PolynomialRoots_heur plotted against deg f(X) for randomly generated P (X)
such that r1 > 0, with qf ∈ {25%, 50%}

(a) qf = 25% (b) qf = 50%

Figure 4.8: Average timings (s) of nfroots, PolynomialRoots and
PolynomialRoots_heur plotted against deg f(X) for randomly generated P (X)
such that r1 > 0, with qf ∈ {25%, 50%}
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We can remark that for the fixed types of number fields K and polynomial f(X),
our method is way more efficient than nfroots. This is a clear difference from the
situations studied previously where f(X) splitted completely, i.e. f(X) = g(X).
Again PolynomialRoots_heur does not allow the retrieval of all the roots when
r1 > 0, and only on this case. The ratios of polynomial f(X) for which all the roots
were recovered can be found in Figure 4.9. This time again, one can see that the
ratios are high and do not seem to be correlated to depend on the degree of f(X).

(a) qf = 25% (b) qf = 50%

Figure 4.9: Ratios of roots retrieved with PolynomialRoots_heur plotted
against deg f(X) for randomly generated P (X) such that r1 > 0, with qf ∈
{25%, 50%}

Remarks From the different situations explored and the data gathered, we can
conclude that the certified version of our method PolynomialRoots is in general less
efficient than the algebraic method implemented in PARI/GP nfroots. However,
it seems to behave better when f(X) does not split completely in K. Then, the
version of our method using a heuristic evaluation of the precision needed is more
efficient, even competing with nfroots in some situations. In most cases it retrives
all the roots, but fails in some circumstances. It is worth noticing that it is always
when using a real embedding.

Relative extensions

Let us now consider relative extensions L/K, and study the efficiency of Algo-
rithm 29. First we will compare the impact of our heuristic strategy. Then we will
compare this method with Algorithm 23, and consider the impact of certain param-
eters on these algorithms.

Let us fix the notations. We will consider L/K together with PK(X) ∈ Q[X] and
PL(X) ∈ K[X] such that K ∼= Q[X]

(PK(X))
and L ∼= K[X]

(PL(X))
.
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Checking one coordinate We considered extensions L/K such that [K : Q] = 30

and [L : K] = 3 with:

• s(PK), s(PL) 6 1;

• deg f(X) = 50;

• f(X) splits in K, i.e. |ZK(f)| = deg f(X);

• ∀x ∈ ZK(f), ‖x‖∞ 6 210.

The timings obtained can be found in Figure 4.10.

Figure 4.10: Average timings (s) of normal and heuristic versions of
RelativePolynomialRoots plotted against deg f(X) for randomly generated
PK(X), PL(X)

One can remark that using the heuristic strategy leads to computations between
two times and three times faster. Moreover we can see that the timings are compet-
itive with the ones presented in Figures 4.2 and 4.3 for example.

Number of roots We now study the influence of the number of roots. Here
we will consider only the heuristic version of RelativePolynomialRoots (precision
and search). We compare its performances with PolynomialRoots_heur. We forget
about nfroots for now because we know from previous tests – Figures 4.7 and 4.8
– that it looses a lot of efficiency when the equation f(X) is not completely split in
the field.

We considered extensions L/K such that [K : Q] = 30 and [L : K] ∈ {2, 3} with:

• ‖PK‖∞ , ‖PL‖∞ 6 21;

• deg f(X) = 50;

• ∀x ∈ ZK(f), ‖x‖∞ 6 210.



CHAPTER 4. PRACTICAL COMPUTATIONS IN NUMBER FIELDS 107

(a) [L : K] = 2 (b) [L : K] = 3

Figure 4.11: Average timings (s) of PolynomialRoots and
RelativePolynomialRoots plotted against qf for randomly generated
PK(X), PL(X) and f(X), such that [K : Q] = 30 and deg f(X) = 50.

The influence of the number of roots can be seen in Figure 4.11. The timings of
the method PolynomialRoots increase with the number of roots, while the ones for
the relative algorithm RelativePolynomialRoots globally decrease.

Kummer extensions

We will concentrate here on real Kummer fields of the form L = Q( p
√
m1, . . . , p

√
mr),

where p > 2 is a prime integer and (m1, . . . ,mr) ∈ Qr such that [K : Q] = pr.
Fix K = Q( p

√
m1, . . . , p

√
mr−1). Then L/K is an extension over which one can take

full advantage of RelativePolynomialRoots. Indeed K can be embedded in R, so
that Hom(L/K,C) has one real embedding and p − 1 complex ones. We will com-
pare PolynomialRoots, RelativePolynomialRoots and nfroots of PARI/GP [76].

The first situation that we will explore will be the same as before: the number of
roots. It will show how computations can be accelerated in good situations. Then we
will study the special case where f(X) has degree p. It is the direct generalisation of
the case where f(X) = Xp−αp with α ∈ L, which is the type of equation that are to
be solved in several tasks involving units or class group [40]. In particular, this task
arose in several works these past few years [6, 64, 17] that we generalise in Chapter 5.

Remark 29 (nfroots). Real Kummer extensions are all “bad” fields for the p-adic
method. Indeed, it is mentioned by Belabas [7] that ideal lattices are usually easy
to reduce – especially when one can use a pre-reduction algorithm – which occurs
when the inertial degree of said ideal is large. Over real Kummer fields of the form
Q( p
√
m1, . . . , p

√
mr), the inertial degree cannot be larger than the exponent p.
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Number of roots We keep the parameters described previously. The only modi-
fication is the shape of the extensions L/K which are Kummer fields, with exponent
p ∈ {3, 5}.

One can find in Figure 4.12 the data collected for multicubic fields, i.e. Kummer
extension with exponent 3. We considered the cases where [K : Q] ∈ {27, 81} and
[L : K] = 3. Moreover each of the elements of the sequences (mi)i defining the fields
are prime integers smaller than 50.

(a) [K : Q] = 27 (b) [K : Q] = 81

Figure 4.12: Average timings (s) of PolynomialRoots and
RelativePolynomialRoots plotted against qf for randomly generated mul-
ticubic fields L/K, such that [K : Q] ∈ {27, 81}.

We can see from Figure 4.12 that the relative method RelativePolynomialRoots

is more efficient than PolynomialRoots, by a factor 5 when [K : Q] = 27 and be-
tween 12 and 15 when [K : Q] = 81. This illustrates the fact that with parameters
similar otherwise, the advantage of reducing a basis lattice L(B, σ, l) in a subfield
increases with the degree of said subfield (and consequently, of the extension).

One can find in Figure 4.13 the data collected for Kummer extensions with expo-
nent 5. We considered extensions such that [K : Q] = 25 and [L : K] = 5. Again,
all elements mi defining the Kummer fields considered are prime integers smaller
than 50.

We can see that RelativePolynomialRoots is between 1.5 and 3 times faster
than PolynomialRoots. Moreover, we remark that when there are few roots, times
for RelativePolynomialRoots are similar to the cases of multicubic fields with
[L : Q] = 243. This is the result of the search space being larger when p = 5.
However one can see that the timings obtained start to drop drastically starting
from qf = 1/2. This drop, which is predicted by Proposition 4.8, could not be
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Figure 4.13: Average timings (s) of PolynomialRoots and
RelativePolynomialRoots plotted against qf for randomly generated Kummer
fields L/K with exponent 5, such that [K : Q] = 25.

observed as clearly from the data gathered previously. This is again because of the
size of the search space.

Small degree equations As mentioned we consider here polynomials f(X) with
small degrees, namely deg f(X) = p over real Kummer fields Q( p

√
m1, . . . , p

√
mr) of

exponent p. This situation generalises the equations we need to solve to compute
unit groups of such fields, and solve the PIP over them. For such degrees, the search
space of Algorithm 29 is small enough to take full advantage of this method. Indeed,
since the complex embeddings in Hom(L/K,C) are all conjugates (except one real
embedding), the cardinality of the search space is p

p+1
2 .

We considered Kummer fields of exponent p in {2, 3, 5, 11}. For this study, we
compared our functions PolynomialsRoots and RelativePolynomialRoots as be-
fore, and we add nfroots as well.

Remark 30 (nfroots). In this configuration, nfroots does not follow the method
described before. Indeed, when 3 deg f(X) < [L : Q], the implementation of
PARI/GP uses Trager’s method [99, 7] for factorising polynomials. We will there-
fore refer to it as Trager, to differentiate it from the p-adic method described at the
beginning of the section.

Here are how the different objects are drawn.

• Each mi is a prime number smaller than 30.

• deg f(X) = p and |ZK(f)| = 1.
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(a) p = 2 and [L : Q] = 128 (b) p = 5 and [L : Q] = 125

(c) p = 3 and [L : Q] = 243 (d) p = 11 and [L : Q] = 121

Figure 4.14: Average timings (s) of PolynomialRoots and
RelativePolynomialRoots and Trager plotted against sZ for randomly
generated Kummer fields L/K with exponent p ∈ {2, 3, 5, 11} and deg f(X) = p.

The data gathered can be found in Figure 4.14.
In most cases our relative method is way more efficient than the two others. It

can go up to 500 times faster for p = 5, and up to 100 times faster for p = 2, 3. The
method Trager implemented in PARI/GP is always worse than both our algorithms.

If one compares the data gathered in Figures 4.14a and 4.14b for p = 2 and p = 5

respectively – for which the degrees [L : Q] and the size of the search space are
similar – one can see that the timings for RelativePolynomialRoots are around
10 times lower for p = 5. This is due to the fact that the dimension of the subfield
K over which decodings are made is smaller in this case. These observations are
confirmed with the timings gathered in Figure 4.14c.

Finally, one can remark in Figure 4.14d that the size of the search space is im-
portant, as RelativePolynomialRoots is less efficient than PolynomialRoots for
p = 11. However in this case as for the others, it seems that the size of the roots is
less of a problem for the relative method than for PolynomialRoots.
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4.2.4 Conclusion

Algorithm 23 is a heuristic polynomial algorithm to retrieve the roots of a polyno-
mial in a number field. Its certified version is slower than the classical algebraic
method implemented in PARI/GP, called nfroots. However we saw that simple
heuristic observations regarding the evaluation of the precision needed for the com-
putation allows our method to be competitive, and even be better on average.

It is important to have in mind that it is only on average. Indeed we mentioned
that nfroots is not stable. First, there are number fields for which its running
time explodes (with constant parameters), most likely because it cannot find a good
prime ideal p (with large ramification index), so reducing the basis of said ideal is
not efficient. Moreover, we saw that nfroots does not cope properly with several
situations, namely when the size of the polynomial defining the number field is large
and over equations which are not split.

Finally our algorithm which takes advantage of a relative extension structure L/K
can improve greatly the running times in some cases, namely when the relative de-
gree [L : K] is small and the degree of the equation considered is also small.

There are several things that could be explored further. Regarding the algebraic
method nfroots, the following points could be assessed.

• One could try to find a heuristic way of evaluating the volume needed to ensure
the correctness of the decoding, as we did for the precision of our method.

• It would be good to study the statistics concerning bad and good number fields
for this method.

• Finally, one can wonder if there is a way of using the structure of a relative
extension, similar to RelativePolynomialRoots.

Concerning our methods, we plan to work on the following directions.

• The main drawback of our method is the time needed to reduce our basis. It
might be possible to speed-up this computation using the special form of our
basis lattice (which is not random).

• Another direction would be to improve the decoding phase. Using Babaï’s
nearest plane algorithm (Alg. 8) instead of Kannan’s embedding technique
should save some steps for each decoding. It would require computing the GSO
of the basis lattice, but this can be done during the reduction of said lattice.
Indeed, Kannan’s technique requires the use of LLL (Alg. 3) for each decoding,
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which computes at least partially the GSO. Finally, using this version to decode
could allow the improvement of the function Check1Coord, and make it more
robust. These improvements would be of more benefit to our relative method
RelativePolynomialRoots.



Chapter 5

Real Kummer extensions

Our contribution: As mentioned earlier, the SPIP is shown to be solvable with
quantum computers over cyclotomic fields [34], and experimental data from [6] indi-
cates that it is also the case over multiquadratic fields. However the methods are not
similar. Over the last family, the algorithms use the strong structure of the set of
subfields and the Galois group. The authors of [6] show that the unit group of high
degree number fields can be computed in a reasonable amount of time (polynomial
in the degree for a wide range of number fields), as well as generators of principal
ideals. We generalised this work to real Kummer extensions of exponent a prime
integer p, i.e. generated by p-th roots of integers. We also considered real Kummer
extensions of Q with two exponents – generated by p-th and q-th roots of integers
where p and q are prime integers – in order to break the structure and see if one can
still solve the SPIP with a good probability. Moreover our implementation allows us
to study the Log-unit lattice of these fields and classify them with respect to their
security level. In this chapter we:

• describe algorithms to compute the unit group and solve the PIP of Kummer
extensions;

• study the hardness of solving the SPIP over real Kummer fields using our
implementation of these algorithms.

In particular we are able to evaluate the probability of success of shortening a
generator with the Log-unit lattice, and study the quality of the basis obtained
for this lattice. Moreover our implementation allows us to study high dimensional
fields, and the data gathered highlights the need for considering such fields to draw
conclusions on asymptotic behaviours. We therefore divide them in two categories:
fields of degree less than 100 are called low dimensional fields and the others are
called high dimensional fields. One can find in Table 5.1 a summary of the results
obtained from our computations.

113
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Table 5.1: Summary of the data obtained, where is shown: the probability of
shortening a generator, the quality of the basis obtained, and for which category
of fields the data is available

Field Dimension achieved Probability of shortening Quality of the basis
Cyclotomics [34] High High Good

Multiquadratics [6] High High Good
Multicubics [64] High High Good
NTRU Prime [11] Low High Good

Simple Kummer of exponent p Low High Good
Most of Kummer of exponent p High High Good
Kummer with two exponents p, q Low High Good

Kummer of degree p2 defined by small integers (2,3) High Low Bad

Conclusion: From the experimental data that we computed, general Kummer
extensions of Q with only one exponent seem to show the same properties as mul-
tiquadratic fields. In particular we obtain high probabilities to retrieve private keys
for a wide range of fields. However, within this family of fields, we are able to
identify a subcategory over which solving the SPIP is more difficult than over other
fields. Indeed the probability of success of solving the SPIP is smaller for fields
with degree p2 and defined by small integers, especially (2,3). Moreover the data
computed on the key and the basis of the Log-unit lattice show that the quality of
the basis obtained is not as good as over cyclotomic fields, and cannot be used to
solve the SPIP over high dimensional fields. This can indicate than Kummer fields
with degree p2 and defined by small integers could be an alternative to cyclotomic
fields for cryptography.

We also stress that these observations can be made only because we are able to
compute the units of such fields for dimensions larger than 121, where significant
differences between the type of fields truly appear. This leads us to think that one
should always consider high dimensional fields (if the computational power at hand
allows it) when studying problems such as the SPIP or the ISVP.

We were not able to compute as much data for Kummer extensions with two ex-
ponents, particularly for high dimensional fields. The data gathered seems to show
that these extensions have the same global properties as Kummer fields with one
exponent, despite behaviours which are less consistent. Better algorithms or imple-
mentations could be necessary to confirm it. One should remark that conclusions
cannot be drawn for Kummer fields of degree p or NTRU Prime fields either, since
we are able to do computations only for low dimensional number fields.

Related work: Biasse et al. generalised in [19] the approach of [6, 17, 64] to
compute the unit group, S-units and the class group to normal fields. They give
necessary and sufficient conditions for the existence of what they call norm relations,
which allow the design of algorithms based on reduction to computations into sub-
fields, in order to compute several number theoretical objects such as the maximal
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order, S-units and the class group. The algorithms we designed can be seen as a
specialisation of their work. We still present them for simplicity and completeness
purposes.

Future work: Further work can consists in studying other important tasks of
computational number theory over these fields such as computing the class group
and S-units. The authors of [17] provide polynomial time algorithms for these over
multiquadratic fields. It could be possible to implement the algorithms presented
and studied in [79, 9] to solve the Ideal Shortest Vector Problem (ISVP), and compare
its performance over Kummer extensions and cyclotomic fields. Moreover the work
of Biasse et al. [19] could be used to extend these considerations to a variety of other
number fields.

Organisation of the chapter: The rest of the chapter is organised as follows,
given L/K a Kummer extension of exponent p and degree p2.

• In Section 5.1 we describe the number field extensions we are interested in,
and we provide general recursive algorithms to compute O×L and solve the PIP,
following the framework of the ones in [6].

• In Section 5.2 we describe heuristic algorithms to compute O×L and solve
the PIP in Poly(ln |DL|)eÕ((lnP )2/3) and Poly(ln |DL|, ln N(I))eÕ((lnP )2/3) respec-
tively, when L is generated over Q by p-th roots and q-th roots of integers,
with p and q prime, where P depends only on the field K and N(I) is the
algebraic norm of I. We also give details on some of the auxiliary procedures
used in our implementation, such as extraction of p-th roots.

• We provide data gathered from our implementation in Section 5.3 and study
the possibility of solving the SPIP over real Kummer extensions. In particular
we are able to evaluate the probability that an attack is successful where Kan-
nan’s embedding technique is used for step 2., and compute several parameters
linked to the basis of the Log-unit to evaluate its quality. We also compare
these values to the ones obtained for cyclotomic fields and fields used in the
NTRU Prime cryptosystem [11], which is has been proposed as an alternative
to cyclotomic fields.

5.1 Structure of Kummer extensions

Notation. Given p a prime integer, we will denote by τp a generator of the Galois
group of the cyclotomic field Q(ζp).



CHAPTER 5. REAL KUMMER EXTENSIONS 116

Definition 5.1. A number field extension L/K is called a Kummer extension of
exponent n if ζn ∈ K and there are elements m1, . . . ,mr of K such that L =

K( n
√
m1, . . . , n

√
mr).

Remark 31. In our work we relax this definition to allow ζn to not belong to
L. We will also only consider extensions of prime exponents p. First let us re-
call some facts and fix some notations about the structure of Kummer extensions,
and Hom(L/K,C). We refer the reader interested in a more general and in-depth
presentation of Kummer extensions to [30].

5.1.1 Complex field embeddings and Galois closure

Simple extensions:

Definition 5.2. Consider L/K an extension of number fields, and prime number
p. Then L/K is called a simple Kummer extension of exponent p if there is m ∈ K
such that p

√
m 6∈ K and L = K( p

√
m).

Proposition 5.1. Consider L = K( p
√
m) a simple Kummer extension. Then the

following properties are true.

1. L/K is a field extension of degree p.

2. The elements of the set Hom(L/K,C) can be fully described by their action on
p
√
m as σ(i) : p

√
m 7−→ ζ ip

p
√
m, i ∈ J0, p− 1K.

3. If ζp ∈ L then L/K is Galois. If ζp 6∈ K then the Galois closure of L/K is
L̃ = L(ζp) and if p is odd then Gal(L̃/K) = 〈τp〉n 〈σ〉 where σ is the extension
of the complex embedding σ(1) which acts trivially on ζp. If p is 2 then L is
Galois.

Proposition 5.2. Let L = K( p
√
m) be a simple Kummer extension of exponent p,

and n ∈ K. Then L = K( p
√
n) if, and only if, there is a ∈ K such that n = map.

General extensions:

The properties described for simple Kummer extensions can be extended to general
extensions.

Proposition 5.3. Consider L = K( p
√
m1, . . . , p

√
mr) a Kummer extension. Then

the following assertions are equivalent.

1. [L : K] = pr;

2. (∀α ∈ Zr), mα1
1 m

α2
2 · · ·mαr

r ∈ (K∗)p ⇐⇒ ∀i ∈ J1, rK, p | αi.
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Definition 5.3. Given a prime p, an integer r ∈ N∗ and a sequence m of rational
numbers m1, . . . ,mr we will say that m is p-reduced for K if it satisfies the condition
of Proposition 5.3.

Proposition 5.4. Consider p a prime number and L = K( p
√
m1, . . . , p

√
mr) a Kum-

mer extension of exponent p. Then L can be described as K( p
√
n1, . . . , p

√
ns) with

n = (n1, . . . , ns) being a p-reduced sequence.

From now on all Kummer extensions are considered to be generated by reduced
sequences.

Notation. Consider m = (m1, . . . ,mr) ∈ Kr such that L = K( p
√
m1, . . . , p

√
mr)

is an extension of degree pr. For i ∈ J1, rK the field Lmi = K( p
√
mi) is a simple

Kummer extension of K of exponent p. Given any j ∈ J0, p − 1K, write σ(j)
mi the

complex embeddings of Lmi following the notation described previously and σjmi the
corresponding element of Gal(L̃mi/K).

The simple extensions of a Kummer extension L/K are important as they allow
the full description of L/K, as we will see later.

Proposition 5.5. Consider L/K which satisfies the equivalent assertions of Propo-
sition 5.3. Then the following assertions are true.

1. L/K has exactly pr−1
2

simple subextensions of degree p over K and they are of
the form Lα := L(

∏r
i=1

p
√
mi

αi) with α ∈ J0, p− 1Kr. Moreover Lα and Lβ are
equal if, and only if, there is an integer λ such that α = λ · β (mod p).

2. Any subextension of L/K can be written as K( p
√
M1, . . . ,

p
√
Mr′) where 0 6

r′ 6 r and Mj =
∏r

i=1
p
√
mi

α
(j)
i with α(j) ∈ J0, p− 1Kr for any j ∈ J1, r′K.

The set of complex embeddings of L and the Galois group of L̃/Q can also be
fully described with the ones of the subfields Lmi .

Proposition 5.6. Consider L/K which satisfies the equivalent assertions of Propo-
sition 5.3. Then the following assertions are true.

• Hom(L/K,C) ∼=
⊗r

i=1 Hom(Lmi/K,C) = {⊗ri=1σ
(βi)
mi | β ∈ J0, p− 1Kr}.

• L(ζp)/K(ζp) is abelian with Galois group isomorphic to 〈σm1〉 × · · · × 〈σmr〉 ;
if ζp ∈ K then the previous extension is L/K.

• If ζp 6∈ K then L(ζp)/K is Galois with Galois group isomorphic to 〈τp〉 n
〈σm1〉 × · · · × 〈σmr〉.

Notation. Given a tuple β we will write σ(β) the complex embedding ⊗ri=1σ
(βi)
mi and

σβ its extension in Gal(K̃/Q). Given a subset S of Hom(K,C) we will denote by S̃
the subset of Gal(K̃/Q) whose elements are the direct extension of elements of S.
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Twisted Fourier transform:

Consider the relative Minkowski’s embedding σL/K . In the case of Kummer exten-
sions this link can be expressed as a twisted Fourier transform. A K−basis of L is
(
∏n

i=1
p
√
mi

αi)α∈J0,p−1Kn . Then the image of the basis element bα =
∏n

i=1
p
√
mi

αi by
the complex embedding σ(β) is ζ(α|β)

p bα. Let x =
∑

α∈J0,p−1Kn xαbα an element ofK. It
can be expressed as the vector y = (xαbα)α∈J0,p−1Kn . The image of x by Minkowski’s
embedding is then the result of the multiplication of y by the matrix

[
ζ(α|β)
p

]
α∈J0,p−1Kn
β∈J0,p−1Kn

=


1 1 1 . . . 1

1 ζp ζ2
p . . . ζp−1

p
...

...
...

...
1 ζp−1

p ζ
2(p−1)
p . . . ζ

(p−1)(p−1)
p


which is the matrix of a discrete Fourier transform. Therefore the vector y can be
retrieved from the vector of complex embeddings of x by multiplying by the matrix
of the inverse Fourier transform. This shows that a twisted Fourier transform links
the vector of coefficients and the Minkowski embedding of x and one can efficiently
go from one representation to another.

5.1.2 Structural result

The main brick of the efficient algorithms in [6, 17, 64] are structural results which
express a power of any field element as a product of relative norms over several
subfields. As the fields studied here are the generalisation of multiquadratic and
multicubic fields, the same structural result appears.

Notation. Given an integer k and a subset S of a field F we will denote by Sk the
set {xk | x ∈ S}.

Proposition 5.7. Let p be an odd prime number. Consider L = K( p
√
m1, p
√
m2)

a Kummer extension such that [L : K] = p2. Let u and v be two elements of
Hom(L/K,C) such that their extensions ũ and ṽ are independent. Then the follow-
ing properties are true.

1. Lp ⊂ LuLuv . . . Lu
p−1vLv;

2. (O×L )p ⊂ O×LuO
×
Luv . . .O

×
Lu

p−1v
O×Lv .

Proof. The proof is similar to the ones of the corresponding results in [6]. Let x ∈ L∗

and u, v be two elements of Hom(L/K,C) such that ũ and ṽ are independent. Then
we have:

xp =

∏p−1
i=0

∏p−1
j=0(ũṽi)j(x)∏p−1

i=0

∏p−1
j=1(ũṽi)j(x)

=

∏p−1
i=0 NL̃/L̃ũṽi (x)∏p−1

j=1 ũ
j
(∏p−1

i=0 ṽ
ij(x)

) . (5.1)
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For any j ∈ J1, p − 1K the sets {i | i ∈ J0, p − 1K} and {ij | i ∈ J0, p − 1K} are the
same, therefore:

xp =

∏p−1
i=0 NL̃/L̃ũṽi (x)∏p−1

j=1 ũ
j
(

NK̃/L̃ṽ(x)
) =

∏p−1
i=0 NL̃/L̃ũṽi (x)

NL̃/L̃ṽ

(∏p−1
j=1 ũ

j(x)
) . (5.2)

Now let us assume first that ζp ∈ K. Then L/K is Galois, u = ũ, v = ṽ and
Equation (5.2) can be written as

xp =

∏p−1
i=0 NL/Luvi (x)

NL/Lv

(∏p−1
j=1 u

j(x)
) .

For any morphism w the relative norm NL/Lw(x) is an element of Lw and if x is
an integer (resp. a unit) then its relative norms are also integers (resp. units).
Therefore one has

xp ∈ LuLuv . . . Lup−1vLv (5.3)

and if x ∈ O×L we can replace the fields by their unit groups. Finally 5.3 is true
for any x different from 0, but it is obviously correct for 0 as well, which proves
that the claimed results are true if ζp ∈ K. Now assume that ζp 6∈ K. Then for
all i, j ∈ J0, p − 1K the action of (ũṽi) on x is the same as the action of u(j) ⊗ v(j).
Therefore for all i ∈ J0, p− 1K the relative norm NL̃/L̃ũṽi (x) is equal to N

L/Lu⊗v
(i) (x)

which is an element of Ku⊗v(i) . The statements about integers and units are again
true. In Equation (5.2) we know that xp belongs to L as well as the numerator, so
the denominator belongs to L̃ṽ ∩ L = Lv. Finally the claimed results are also true
if ζp 6∈ K.

If one removes zero from all of the sets, then the set inclusions in Proposition 5.7
become group inclusions. In fact remark that U = O×LuO

×
Luv . . .O

×
Lu

p−1v
O×Lv is a

full-rank subgroup of O×L such that (O×L )p < U < O×L .

Corollary 5.1. Let p be an odd prime number. Consider L = K( p
√
m1, . . . , p

√
mr)

a Kummer extension such that [L : K] = pr. Then the following hold:

1. Lpr−1 ⊂
∏

α Lα;

2. (O×L )p
r−1

<
∏

αO
×
Lα
.

Definition 5.4. Given a Kummer extension L = K( p
√
m1, . . . , p

√
mr) we will call

simple units of L/K and denote by SU(L/K) the subgroup of O×L defined by the
following equation:

SU(L/K) =
∏
α

O×Lα .



CHAPTER 5. REAL KUMMER EXTENSIONS 120

5.1.3 General algorithms

The general procedures follow the same shape as the ones in [6, 64]. The algorithms
rely on two tasks:

1. detecting non trivial p-powers in the subgroup of L∗ generated by a given set
S;

2. computing the roots of the detected powers.

We will write DetectPowers for the first procedure and ElementsFromPower the sec-
ond. The procedure which finds a basis of a subgroup ofO×L given a generating family
by reducing through the Log-embedding will be written BasisFromGeneratingSet.
They will be described as general procedures in this section and in Algorithms 30
and 31, but we will describe more thoroughly in Subsection 5.2.4 how we imple-
mented them in the case of real Kummer extensions.

Detecting powers

In the general case one can use the Saturation technique mentioned in [12, 17].
For any prime ideal Q such that p | N(Q) − 1 one can construct a “character”
χQ : S → F ∗Q/(F

∗
Q)p where FQ is the residue class field. If u ∈ S is a p−power then

χQ(u) is trivial but the inverse is not true in general. In order to detect proper
powers, one only has to intersect kerχQ for sufficiently many Q. If r = |S| then the
rank of S/(S ∩ (L∗)p) is r′ 6 r. If we consider the χQ to be uniformly distributed
in the dual of S/(S ∩ (L∗)p then one can adapt Lemma 8.2 of [25] to show that
r′ + s characters generate the dual – so the intersection of their kernels is S ∩ (L∗)p

– with probability at least 1− p−s. If B is a bound on the size of the basis elements
generating S then DetectPowers can be computed in Poly(B,maxQ ln(N(Q)), r′+s).
For the case of multiquadratic fields, the authors of [6] give a practical way of
computing these characters and a precise analysis of the cost of the overall procedure,
that we refer to. It can be generalised to the real Kummer extensions that we will
study below.

Computing units

Algorithm 30 describes the recursive algorithm which can be used to compute the
unit group of a Kummer extension L/K. It is the generalisation of the ones for mul-
tiquadratic fields or multicubic fields presented in [6, 64]. We denote by UnitGroup

the general procedure computing the unit group of a number field as input. De-
pending on the number field, different algorithms can be used.
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Algorithm 30 Compute the unit group of a Kummer extension L/K of exponents
p. – KE_Units

Require: A Kummer extension L = K( p
√
m1, . . . , p

√
mr).

Ensure: A basis of the unit group O×L
1: if (r = 1) then
2: return UnitGroup(L).
3: else
4: Choose u, v two independent elements of ˜Hom(L/K).
5: Recursively compute a basis of U = O×LuO

×
Luv . . .O

×
Lu

p−1v
O×Lv

6: V ← DetectPowers(U, p)
7: V ← ElementsFromPower(V, p)
8: U ← BasisFromGeneratingSet(〈U, V 〉)
9: return U

10: end if

Proposition 5.8. Given a Kummer extension L/K, Algorithm 30 is correct, and re-
turns a basis with probability at least 1−p−[L:Q] provided that one computes Poly([L :

Q]) characters for each subfield L′ reached during the algorithm, and that the char-
acters are uniformly distributed.

Proof. By Proposition 5.7 the subgroup U of step 5 is such that (O×L )p < U < O×L .
Therefore O×L is isomorphic to U× U∩(O×L )p

Up
. The only part left to verify is the validity

of the recursion. Clearly each of the fields Li is a Kummer extension of K but such
that [Li : K] = pr−1 so the algorithm can be applied to it. Since the dimension is
strictly decreasing, after r−1 recursion steps the algorithm reaches simple extensions
of L, i.e. the case r = 1. Then following the analysis done during the proof of
Theorem 4.6 in [17], the probability of success is at least (1−p−(s))[L:K] > 1−2[L:K]/ps

where s characters are computed for each field. Therefore if s ∈ Poly([L : Q]) one
can reach the desired probability of success.

We will only do an analysis of complexity for the real Kummer extensions that
we consider latter.

Solving the Principal Ideal Problem:

In order to solve the Principal Ideal Problem, i.e. retrieve a generator of a principal
ideal I, we do as follows. First compute the relative ideal norm of I over subfields of
K. Then recursively compute a generator of these ideals. By using Proposition 5.7
it is easy to see that a combination of these elements is a generator h of Ip (see [6,
64]). The final steps are finding a unit u such that hu is a p-power and computing
its p-th root. This is summarised in Algorithm 31. The relative norm computations
are polynomial with respect to the dimension and the size of the ideal. Moreover
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Algorithms 30 and 31 are very similar in shape. One can easily deduce that the va-
lidity and complexity analysis are also similar. One can see that Algorithm 31 will
go through subextensions of L/K down to simple subextensions, where it will call
the procedure Generator to solve the PIP. As for UnitGroup, different algorithms
depending on the field can be used. In the general case one might need to com-
pute the class group of the field so one cannot hope better than a sub-exponential
complexity.

Algorithm 31 Solve the PIP in a Kummer extension of exponent p – KE_PIP

Require: A principal ideal I of a Kummer extension L = K( p
√
m1, . . . , p

√
mr), the

unit group O×l
Ensure: A generator g of I.
1: if (r = 1) then
2: return Generator(I).
3: else
4: Choose u, v two independent elements of ˜Hom(L/K).
5: Recursively compute generators of NLu(I),NLuv(I), . . . ,NLu

p−1v(I),NLv(I)
and use Equation 5.2 to compute h a generator of Ip.

6: h← DetectPowers(O×L ∪ {h}, p).
7: return ElementsFromPower(h, p).
8: end if

5.2 Real Kummer extensions

In this section we will focus on real Kummer extensions. More precisely we are
interested in fields of the form L = K( p

√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns)

with p and q prime integers. We always consider p
√
mi and q

√
nj to be the real roots

of the polynomials Xp −mi and Xq − nj respectively. Then K is a real Kummer
extension of Q of exponent q and L is a real Kummer extension of K of exponent p.
We will call such fields real Kummer extensions of exponents p, q. For the particular
case of s = 0 the field K is Q. Multiquadratic and multicubic fields studied in [6, 64]
fall in this category. We will call these fields real Kummer extensions with exponent
p.

5.2.1 Field structure

First let us describe the structure of considered extensions.

Proposition 5.9. Consider a Kummer extension L/K as before. Then the following
assertions are true.

1. Hom(L,C) ∼=
⊗r

i=1 Hom(Lmi ,C)
⊗s

j=1 Hom(Knj ,C) = {⊗ri=1σ
(βi)
mi ⊗sj=1 σ

(γj)
nj |

β ∈ J0, p− 1Kr, γ ∈ J0, q − 1Ks}.
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2. L(ζp)/K(ζp) is abelian with Galois group isomorphic to 〈σm1〉 × · · · × 〈σmr〉.

3. L(ζp)/Q(ζp) is abelian with Galois group isomorphic to 〈σm1〉 × · · · × 〈σmr〉 ×
〈σn1〉 × · · · × 〈σns〉.

4. L(ζp)/K is Galois with Galois group isomorphic to a subgroup of τpn 〈σm1〉×
· · · × 〈σmr〉.

Notation. Given tuples β and γ we will denote by σ(γ,β) the complex embedding
⊗ri=1σ

(βi)
mi ⊗sj=1 σ

(γj)
nj . Given a subset S of Hom(L,C) we will write S̃ for the subset

of Gal(L̃/Q) whose elements are the direct extension of elements of S.

Galois correspondence: The Galois correspondence shows there is a bijection
between the set of subfields of L̃/K and the subgroups of its Galois group. Moreover
for the fields which are considered, a subextension M/K of L̃/K is a subextension
of L/K if, and only if, the group associated by the Galois correspondence contains
τp. Therefore when considering a subextension M/K of L/K and their sets of
complex embeddings it is equivalent to consider their extensions ˜Hom(M/K) and

˜Hom(L/K). We can therefore “forget” about the complex part.

Twisted Fourier transform: Given an Kummer extension L/K of exponents
p, q one can see that a twisted Fourier transform links the coefficient of any element
of L to their coefficients in the Q-basis. This transformation is expressed as the
tensor product of the one for L/K and the one for K/Q.

5.2.2 Basis and discriminant

We will establish some facts about Q-bases of real Kummer extensions considered,
as well as their discriminants. Knowing the discriminant of a number field is impor-
tant as it is a measure of the size of the ring of integers, and one usually express
complexities of algorithms in terms of the discriminant. It can be difficult to find a
formulae for it. However it can be done over multiquadratic fields.
Moreover we wish to exhibit a simple Q−basis of real Kummer extensions L such

that [L : Q]OL is included in the order generated by this basis. Again it can be
found over multiquadratic fields.

Extensions with one exponent

First we will study fields of the form K = Q( p
√
m1, . . . , p

√
mr).

Notation. Given a tuple m = (m1, . . . ,mr), we will write P(m) the set {p ∈
P , p |

∏r
i=1 mi}. Given m ∈ Q and an integer n we will denote by PF (m,n)
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the rational number
∏

p∈P m
vp(m) (mod n). Similarly if m ∈ Qr then PF (m,n) =

(PF (m1, n), . . . , PF (mr, n)). We extend PF (·, p) to elements in Q1/p and sequences
in Q1/p with PF (x, p) = PF (xp, p)1/p. Finally, given a tuple m ∈ Qr and α ∈ Zr,
we will write mα to designate the product

∏
i∈J1,rKm

αi
i .

A canonical Q−basis of K One can define two fairly natural bases of K. One
has already been mentioned earlier.

Definition 5.5. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer field. Then the

naive basis of K relative tom is (
∏r

i=1 m
αi/p
i )α∈J0,p−1Kr . It will be denoted byB(p,m).

The power-free basis of K relative to m is PF (B(p,m), p). It will be denoted by
IB(p,m).

Remark 32. Both bases were considered in several work on Kummer fields such
as [17, 100].

The first property that can be proven is that IB(p,m) is somehow independent
of the choice of m.

Lemma 5.1. Let K be a real Kummer field. Consider m and n two sequences
defining K. Then IB(p,m) and IB(p, n) are equal as sets.

Proof. Consider q ∈ P(m). First let us prove that if q 6∈ P(n) then vq(m
α) ≡ 0

(mod p) for all α ∈ J0, p − 1Kr. Let us fix such α. Since m and n define the same
field K, one can use the simple subfields and conclude that Q( p

√
mα) = Q(

p
√
nβ) for

some β. This is equivalent to mα = njβap for some j ∈ J0, p− 1K and a ∈ Q. Then
we obtain the equality

vq(m
α) =

r∑
i=1

αivq(mi) =
r∑
i=1

jβivq(ni) + pvq(a) (5.4)

and taking it modulo p gives
r∑
i=1

αivq(mi) = 0 (mod p), since vq(ni) = 0, for all

i ∈ J1, rK. This is true for all α. Now, fix i0 such that q | mi0 . Then, the equality ap-
plied with α such that αi = 1 if i = i0 and αi = 0 otherwise gives vq(mi0) = 0 mod p.
Thus we obtain that none of q ∈ P(m) ∪ P(n) \ (P(m) ∩ P(n)) can be found in
IB(p,m) nor IB(p,m).

Now let us consider only q ∈ P(m) ∩ P(n). Let α ∈ Frp \ {0}. Then for all
q ∈ P(m) ∩ P(n) and all j ∈ J1, p − 1K, (vq(m

jα)) = jvq(m
α) (mod p). Follow-

ing Equation (5.4), if β is such that nβ defines the same simple field as mα, then
(vq(m

α))q = j(vq(n
β))q for some j ∈ J1, p − 1K. Therefore the sets {(vq(mjα))q |

j ∈ J1, p − 1K} and {(vq(njβ))q | j ∈ J1, p − 1K} are identical. Finally if α and α′
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define distinct simple subfields of K then (vq(m
α))q and (vq(m

α′))q are not colinear
modulo p.

The equality given by Lemma 5.1 shows that the set of power-free basis of a real
Kummer field is a canonical choice of a Q-basis of K.

Definition 5.6. Let K be a real Kummer field with one exponent p defined by a
sequence m. The power-free basis of K is the unordered sequence set IB(p,m). It
will be denoted IB(K).

Now let us prove another simple result on defining sequences, that will be used
later.

Lemma 5.2. Let m ∈ Qr be a sequence defining a real Kummer extension K with
one exponent p, and i0 ∈ J1, rK. Consider q ∈ P(m) such that ∃i ∈ J1, rK, vq(mi) 6≡ 0

(mod p). Then there is m′ ∈ Qr defining K such that

∀i ∈ J1, rK, q | m′i ⇐⇒ i = i0.

Proof. One can always assume vq(mi0) 6≡ 0 (mod 0), modulo a permutation on
m. Then fix m′i0 = PF (mi0 , p), and m′i = PF (mi, p) for all i ∈ J1, rK such that
q - mi. Finally consider i ∈ J1, rK such that q | mi. Let ei > 0 such that ei ≡
−vq(mi)vq(mi0)

−1 (mod p). Then fix m′i = PF (mim
ei
i0
, p).

We will now determine the discriminant of IB(K).

Theorem 5.1. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer field, and q a prime

integer. Moreover write b = δ(p∈P(m)). Then the discriminant DK(IB(K)) satisfies
the following:

vq(DK(IB(K))) =

{
pr−1(p− 1), if q ∈ P(m) \ {p},

pr−1(p− 1)× b+ rpr, if q = p.
(5.5)

Proof. Given a sequence m such that K = Q( p
√
m1, . . . , p

√
mr), let us denote by Mm

the matrix (σi(IB(p,m)j))i,j, where as usual σi : p
√
mi 7−→ ζp p

√
mi. Moreover we

will write MB the matrix [σi(bj)]i,j for any Q−basis B = (b1, . . . , bpr).

First remark that DK(IB(K)) = DK(IB(p,m)) for any sequence m defining K.
Indeed, considering different sequences amounts to applying permutations on the
rows and columns of a fixed matrix Mm. Moreover, if m′ = (m1, . . . ,mr−1) then
B(p,m) = B(mr) ⊗B(m′) and IB(p,m) = PF (IB(p,mr) ⊗ IB(p,m′), p). Let us
denote by B the basis IB(p,mr)⊗ IB(p,m′).
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Now let us start with the proof per se. Let m be a defining sequence of K.
One can assume it is p-reduced and composed of integers. Let q ∈ P(m) \ {p}.
Following Lemma 5.1 and Lemma 5.2, one can also assume that q | mr and for all
i < r, q - mi. We mentioned that IB(p,m) = PF (IB(mr)⊗IB(m′), p). The action
of PF amounts to dividing elements of the basis by an integer. Let us denote by
c1, . . . , cpr these integers. Since q divides only mr and IB(mr) is already reduced,
none of said coefficients is divided by q. Now remark that Mm = MIB(p,m) =

[C1(MB)
c1
| . . . |Cpr (MB)

cpr
], where Cj(MB) is the j-th column of MB. Therefore we have

detMm = detMB

c1c2...cpr
. Consequently we obtain vq(detMm) = vq(detMB), and we

can consider the discriminant of the basis B. Now let us denote by b1, . . . , bp the
elements of IB(mr). Then we have B = [IB(m′)b1|IB(m′)b2| . . . |IB(m′)bp] and
for β ∈ J0, p− 1Kr, σ(β) = σ

(β1)
1 ⊗ · · · ⊗ σ(βr)

r acts on IB(m′)bi as

σ
(β1)
1 ⊗ · · · ⊗ σ(βr−1)

r−1 (IB(m′))σ(βr)
r (bi).

Thus we obtain that MB is equal to

b1MIB(m′) b2MIB(m′) . . . bpMIB(m′)

σ
(1)
r (b1)MIB(m′) σ

(1)
r (b2)MIB(m′) . . . σ

(1)
r (bp)MIB(m′)

...
...

...

σ
(p−1)
r (b1)MIB(m′) σ

(p−1)
r (b2)MIB(m′) . . . σ

(p−1)
r (bp)MIB(m′)


,

which is Mmr ⊗Mm′ . Therefore, we have detMB = detMpr−1

mr detMp
m′ , and

vq(DK(IB(K))) = pr−1vq(detM2
mr) + pvq(detM2

m′).

Westlund showed that vq(detM2
mr) = p− 1 and since q - mi for all i ∈ J1, r− 1K one

has vq(detM2
m′) = 0, by induction and remarking that vq(detM ′

m) = vq(detMm1 ⊗
· · · ⊗Mmr−1) [100]. Finally we obtain vq(DK(IB(K))) = (p− 1)pr−1.

Now consider q = p. As before we have vp(detM2
m) = vp(detM2

m1
⊗· · ·⊗detM2

mr),
and detM2

1⊗detM2
r =

∏r
i=1(detM2

mi
)p
r−1 . If p 6∈ P(m) then vp(detM2

mi
) = p for all

i ∈ J1, rK [100], so vp(DK(IB(K))) =
∑r

i=1 p
r−1vp(detM2

mi
) = rpr. If p ∈ P(m) then

vp(detM2
mi

) = p for all i ∈ J1, r − 1K and vp(detM2
mr) = 2p− 1 [100]. Therefore we

have vp(DK(IB(K))) =
∑r−1

i=1 p
r−1vp(detM2

i )+pr−1(2p−1) = rpr+pr−1(p−1).

We established that IB(K) is a fairly canonical basis for a real Kummer field K,
and determined its discriminant. We will show that the order it generates contains
[K : Q]OK . For this we will study the discriminant of K. Indeed recall that we
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have the following result. Given O1 and O2 two orders of a number field, then
O1 < O2 ⇐⇒ DK(O2) | DK(O1).

Lemma 5.3. Let K ∈ Q( p
√
m1, . . . , p

√
mr) be a real Kummer extension defined by a

p-reduced sequence m. Then q ramifies in K/Q if, and only if, q ∈ P(m) ∪ {p}.

Proof. We know that K = ⊗ri=1Q( p
√
mi), and given two linearly disjoints fields K1

and K2, the discriminant of their compositum DK1K2 divides D[K2:Q]
K1

D
[K1:Q]
K2

. There-
fore we have DK |

∏r
i=1 D(Q( p

√
mi))

pr−1 . Following Westlund [100], q | D(Q( p
√
mi))

if, and only if, q ∈ P(mi) ∪ {p}.

In order to study the q−valuation of DK , we will study the splitting of q in
K/Q. A similar approach has been done over multiquadratic fields [91] and bicubic
fields [27]. We will use some results over dihedral groups, which are stated and
proved in Appendix B.

Splitting of primes in K To study the splitting of primes we will use the different
of the extensions (Def. 2.43). Westlund established the splitting for simple fields.

Proposition 5.10 (Westlund [100]). Let K = Q( p
√
m) be a simple Kummer exten-

sion and q a prime integer. Then one has the following possibilities:

1. q 6= p and q | m =⇒ (q) = qp;

2. p | m =⇒ (p) = pp;

3. p - m and mp−1 ≡ 1 mod p2 =⇒ (p) = pp−1q;

4. p - m and mp−1 6≡ 1 mod p2 =⇒ (p) = pp.

One can see that for simple Kummer field, the splitting of p depends on a condition
satisfied by m: whether mp−1 ≡ 1 mod p or not. The splitting of primes in a general
number field K will then be influenced by their splitting in the simple subfields of
K. We can identify different types of Kummer fields.

Lemma 5.4. Let K = Q( p
√
m1, p
√
m2) be a Kummer extension of degree p2 such that

mi 6≡ 0 mod p and mi 6≡ 1 mod p2, for i ∈ {1, 2}. Then one can find m′ a sequence
defining K such that m′2 ≡ 1 mod p2.

Proof. For i ∈ {1, 2}, since mi 6≡ 0 mod p then mi can be seen as an element of
G = ( Z

p2Z)×. Moreover the order of mi in G is p or p(p − 1), and we want to
prove that we can find a defining sequence m′ such that o(m′2) | p − 1. The group
G is isomorphic to Z

(p−1)Z ×
Z
pZ . Let us denote by φ = (φ1, φ2) this isomorphism.

Then φ(mi) = (φ1(mi), φ2(m2)) with φ2(mi) 6= 0. Let m′ defined by m′1 = m1 and
m′2 = m1m

k
2 with k ∈ J1, p − 1K such that kφ2(m2) = −φ2(m1). Then one has

φ2(m′2) = 0 so o(m′2) | p− 1 in G. Clearly m′ also defines K.
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Using Lemma 5.4, we obtain only a few possibilities for general real Kummer
extensions.

Proposition 5.11. Let K be a real Kummer extension of degree pr for an integer
r > 1. Then one can find a sequence m = (m1, . . . ,mr) defining K and satisfying
one of the following properties.

1. p 6∈ P(m) and ∀i ∈ J1, rK,mp−1
i ≡ 1 mod p2.

2. p 6∈ P(m), mp−1
1 6≡ 1 mod p2 and ∀i ∈ J2, rK,mp−1

i ≡ 1 mod p2.

3. p | m1 and ∀i ∈ J2, rK,mp−1
i ≡ 1 mod p2.

4. p | m1, mp−1
2 6≡ 1 mod p2 and ∀i ∈ J3, rK,mp−1

i ≡ 1 mod p2.

Proof. This is just an application of Lemma 5.2 and Lemma 5.4.

Now we can express how primes split in K depending on which type of Kummer
field it is. However remark than only the splitting of p will be influenced by the
types identified in Proposition 5.11. Therefore, let us start by q 6= p.

Proposition 5.12. Consider K = Q( p
√
m1, . . . , p

√
mr) a real Kummer extension

with one exponent, and q ∈ P(m). Then q splits in K as Qp
1 . . .Q

p
s for s > 1, and

vq(DK) = (p− 1)pr−1.

Proof. By Lemma 5.2, one can suppose that ∀i ∈ J2, rK, q | mi ⇐⇒ i = 1. Let
us fix K1 = Q( p

√
m1) and K2 = Q( p

√
m2, . . . , p

√
mr). By [100] the prime q ramifies

in K1 as qp. Moreover q is unramified in K2 so qOK2 = q1 · · · qs with s > 1. By
multiplicativity of the ramification index, for all i ∈ J1, sK, the ideal qi ramifies
completely in K as Qp

i . Therefore qOK = (Q1 · · ·Qs)
p.

Q
(q)

K1qp

K2 q1 · · · qs

K (Q1 · · ·Qs)
p

Now recall that the different of K/Q satisfies D(K/Q) =
∏

Q QsQ where the product
is over the prime ideals of OK which are ramified over Q. Thus the part of D(K/Q)

above q is
∏s

i=1 Q
si
i for some integers si. For all i ∈ J1, sK we know that e(Qi|q) = p
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and q are coprime. Therefore si is equal to e(Qi|q) − 1 = p − 1. Thus one has for
the discriminant

vq(DK) = vq(NK/Q(D(K/Q))) = vq(NK2/Q(NK/K2(
s∏
i=1

qp−1
i ))).

Finally since NK/K2(Qi) = qi we obtain

vq(DK) = vq(NK2/Q(
s∏
i=1

qp−1
i )) = vq(NK2/Q(qOK2)

2) = (p− 1)pr−1.

With Proposition 5.12 one is able to prove the result we were looking for.

Theorem 5.2. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer extension, and denote

by O the order Z[IB(K)]. Then the following propositions are true:

• ∀q ∈ P(m) \ {p}, O is q−maximal;

• [K : Q]OK < O.

Proof. Proposition 5.12 and Theorem 5.1 show that vq(O) = vq(OK) for all q ∈
P(m) \ {p}, so O is indeed q−maximal. Concerning p one has

vp(DK([K : Q]OK)) > 2[K : Q]vq([K : Q]) = 2rpr > rpr + pr−1(p− 1)

so the second property is also true.

Despite the fact that Theorem 5.2 shows that IB(K) is a basis satisfying the
properties we were looking for, we can still study further the splitting of p in K

in each of the four types of real Kummer fields established in Proposition 5.11. It
allows us to have a finer knowledge of DK . First let us establish a result concerning
extensions of number fields such that the Galois group of their Galois closure is
dihedral.

Lemma 5.5. Let L/K be an extension of number fields. Suppose additionally that
Gal(L̃/K) is isomorphic to 〈τ〉 n 〈σ〉, with 〈τ〉 ∼= Z

(p−1)Z and 〈σ〉 ∼= Z
pZ for some

prime integer p. Any prime ideal p of OK satisfies

pOL̃ = (P1 . . .Pp)
p−1 =⇒ pOL = p1p

p−1
2 ,

where each Pi is a prime ideal of L̃ and each pi is a prime ideal of L.
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It is similar to part of the proof for Proposition 10.1.26 of Cohen’s book [30]. In
fact several facts and their proofs that we will establish are generalisations of this
Proposition.

Proof. Let G = Gal(L̃/K). By hypothesis we are in the following situation :

K
p

K̃

L

L̃ (P1 · · ·Pp)
p−1

p− 1

p

σ p

p− 1

τ

The group G acts transitively on the Pi and by conjugation on the inertia groups
I(Pi | p) for i ∈ J1, pK. Clearly one has |I(Pi/p)| = p − 1. By Lemma B.3 there
are p distinct subgroups of G of order p − 1. Moreover they are of the form 〈τσb〉
with b ∈ J0, p − 1K. Therefore the action of G on the set of such subgroups is
transitive. Thus there is a unique i0 ∈ J1, pK such that I(Pi0 | p) = 〈τ〉, and I(Pi0 |
Pi0 ∩OL) = I(Pi0 | p)∩Gal(L̃/L) = 〈τ〉. Therefore e(Pi0 | Pi0 ∩OL) = p− 1 so by
multiplicativity e(Pi0∩OL | p) = 1. Now consider i 6= i0. Then I(Pi | p) = 〈τσb〉 for
some b ∈ J1, p− 1K, and I(Pi | Pi0 ∩OL) = I(Pi0 | p) ∩Gal(L̃/L) = 〈1〉. Therefore
again by multiplicativity of the ramification index, e(Pi ∩ OL | p) = p− 1.

Theorem 5.3. Consider K = Q( p
√
m1, . . . , p

√
mr) a real Kummer extension with

exponent p. Then depending on the type of field as described in Proposition 5.11 the
splitting of p in K and vp(DK) are as follows :

1. (p) = p(p1 . . . ps)
p−1 for s = pr−1

p−1
, and vp(DK) = pr−1

p−1
(p− 2);

2. (p) = pp(p1 . . . ps)
p(p−1) for s = pr−1−1

p−1
, and vp(DK) = pr + pr−1−1

p−1
(p− 2);

3. (p) = pp(p1 . . . ps)
p(p−1) for s = pr−1−1

p−1
, and vp(DK) = pr−1(2p−1)+ pr−1−1

p−1
(p−

2).

Remark 33. We were not able to prove similar results for the fourth type of field
for a general exponent p. However we did so for p = 3 in [64].

Proof. We will prove the results one type of fields after another.
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Fields of the first type. We will prove the factorisation by induction. For r = 1

K is a simple Kummer extension. Then the splitting is correct, following West-
lund [100]. Now consider r > 1 and assume the result is true for r. Let K =

Q( p
√
m1, . . . , p

√
mr+1) a real Kummer field such that for all i ∈ J1, r + 1K,mp−1

i ≡
1 mod p2. Let us fix K1 = Q( p

√
m1, . . . , p

√
mr) and K2 = Q( p

√
mr+1). If one denotes

pr−1
p−1

by s, one has the following decompositions by using the induction hypothesis,
where the numbers are the dimensions of the respective extensions.

Q
(p)

K1ppp−1
1 · · · pp−1

s

K2 q1q
p−1
2

KK̃1

K̃2

K̃

pr
p

p pr
p− 1

p− 1

p
pr

p

Moreover p is totally ramified as ap−1 in k = Q(ζp). First we consider the splitting
of p in the Galois closure K̃1 and K̃2. We focus on K̃2, and the situation in K̃1 is
similar. First remark that K̃2/Q is Galois with dimension [K̃2 : Q] = p(p−1) so the
decomposition of p satisfies efg = p(p−1) with the functions e(·|p) and f(·|p) being
constant – equal to e and f respectively – over prime ideals q̃ of K̃2 such that q̃ | (p).
Considering the factorisation pOK2 = q1q

p−1
2 we obtain p− 1 | e(q̃|p). Moreover for

the decomposition of qi in K̃2, since K̃2/K2 is Galois, we have eifigi = p − 1.
Since p − 1 | e and e = e1 we have e1 = p − 1, f1 = 1 and g1 = 1. Therefore
q1OK̃2

= q̃p−1. Moreover f = f1 = f2 and e = (p − 1)e2 so e2 = 1 and g2 = p − 1.
Thus q2 splits completely in K̃2 as q̃1q̃2 . . . q̃p−1. Finally we obtain the factorisation
(p) = q̃p−1q̃1

p−1
q̃2
p−1

. . . q̃p−1
p−1 in K̃2. Similarly we have pOK̃1

= p̃p−1 and pi splits
completely in K̃1 for all i ∈ J1, sK. Therefore the factorisations of (p) in K̃1 and K̃2

are as follows:

(p) =

{
q̃p−1(q̃1q̃2 . . . q̃p−1)p−1, in K̃2/Q,

p̃p−1(p̃1p̃2 . . . p̃s)
p−1, in K̃1/Q.

Consequently the splitting of a in the same two fields is

(a) =

{
q̃q̃1q̃2 . . . q̃p−1, in K̃2/Q,

p̃p̃1p̃2 . . . p̃s, in K̃1/Q.

Remark that the residual degree is 1 everywhere. We will now consider the decom-
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position of p in K̃. We will in fact look at the decomposition of a. Consider P̃ a
prime ideal of K̃ above p. Remark it is also above a in K̃/k. For i ∈ {1, 2}, denote
by Di the decomposition group D(P̃ | P̃ ∩ OK̃i). Let us write G = Gal(K̃/k),
G1 = Gal(K̃/K̃1) and G2 = Gal(K̃/K̃2). Each Di is a subgroup of Gi < G. More-
over recall that G1

∼= 〈σr+1〉, G2
∼= 〈σ1〉 × · · · × 〈σr〉 and G ∼= G1 × G2. Remark

also that |D1| = |D2|. Since |G1| = p then one has D1 = 〈1〉 or D1 = G1. Let us
show that D1 = 〈1〉. Suppose that we have D1 = 〈σr+1〉. Then |D2| = p so there
is σ ∈ G2 such that o(σ) = p and D2 = 〈σ〉. Now, since for i ∈ {1, 2} we have
Di = D(P̃ | a) ∩ G, we obtain {σr+1} < D(P̃ | a) and {σ} < D(P̃ | a). Therefore,
{σr+1} × {σ} < D(P̃ | a) which implies that ef = |D(P̃ | a)| > p2. However if
we consider the splitting of a in K̃1 and K̃, we have e1 = f1 = 1 in K̃1/k and
[K̃ : K̃1] = p, so ef 6 p in K̃/k. Thus we have an absurdity so D1 is trivial as
announced, D1 = D2 = 〈1〉 and a splits completely in K̃/k. Finally p splits in K̃/K1

as
(P̃P̃ . . . P̃p)

p−1,

and
Gal(K̃/K1) ∼= 〈τp〉n 〈σr+1〉 ∼=

Z
(p− 1)Z

n
Z
pZ
.

We see that p and K̃/K1 satisfy the hypothesis of Lemma 5.5, so p splits in K/K1

as
P̃P̃p−1

1 .

Moreover, for each i ∈ J1, sK, the ideal pi splits completely in K̃ so it splits completely
in K. We obtain the final decomposition for p in K/Q as

(p) = P(P1 . . .Pt)
p−1

with t = 1 + sp = 1 + pr−1
p−1

p = pr+1−1
p−1

. Thus the decomposition is correct for r + 1,
which ends the proof by induction. Let us now fix K = Q( p

√
m1, . . . , p

√
mr) and look

at the p-valuation of DK . Remark that gcd(1, p) = gcd(p − 1, p) = 1, and that for
any prime ideal Q of K above p we have e(Q | p) = 1 or e(Q | p) = p− 1. Therefore
the part of D(K/Q) above p is

s∏
i=1

Pp−2
i

where s = pr−1
p−1

. Since the inertial degree f(Pi | p) = 1, we have NK/Q(Pi) = p for
all i ∈ J1, sK. Thus we obtain

vp(DK) = vp
(
NK/Q(D(K/Q))

)
= vp

(
s∏
i=1

NK/Q(Pi)
p−2

)
= (p− 2)s,
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which is the required value.

Fields of the second type: Let us now consider a field K = Q( p
√
m1, . . . , p

√
mr)

such that p /∈ P(m), mp−1
1 6≡ 1 mod p2 and ∀i ∈ J2, rK,mp−1

i ≡ 1 mod p2. The proof
is simpler in this case. Fix K1 = Q( p

√
m1) and K2 = Q( p

√
m2, . . . , p

√
mr). Remark

that K2 is a real Kummer field of the first type. Therefore, following Westlund [100]
and the previous result, for s = pr−1−1

p−1
we obtain the following situation.

Q
(p)

K1pp

K2 qqp−1
1 · · · qp−1

s

K

p
pr−1

pr−1
p

By multiplicativity of the ramification index, for any P above p in K, one has
p | e(P | p). Thus the splitting of p in K is as follows:

(p) = Pp(P1 . . .Ps)
p(p−1).

Now let us find vp(DK). We have

DK = D
[K:K1]
K1

NK1/Q(d(K/K1)) = D
[K:K1]
K1

NK1/Q(NK/K1(D(K/K1)))

and the part of D(K/K1) over p is (P1 · · ·Ps)
p−2. Indeed p is coprime to 1 and

p− 1. We know by [100] that vp(DK1) = p so

vp(DK) = [K : K1]p+ vp
(
NK/Q((P1 · · ·Ps))

p−2
)
.

Since the inertial degree is trivial everywhere, NK/Q(Pi) = p for all i ∈ J1, sK. Finally
we obtain

vp(DK) = pr + vp(p
s(p−2)) = pr + s(p− 2).

Fields of the third type: Let us now consider a field K = Q( p
√
m1, . . . , p

√
mr)

such that p ∈ P , and ∀i ∈ J2, rK,mp−1
i ≡ 1 mod p2. Again fix K1 = Q( p

√
m1) and

K2 = Q( p
√
m2, . . . , p

√
mr). Remark that K2 is a real Kummer field of the first type.

Therefore, following Westlund [100] and the previous result, for s = pr−1−1
p−1

we obtain
the decomposition as the previous case. Therefore the proof is identical. The only
thing which changes is vp(DK1). It is equal to 2p− 1 in this case [100].
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Extensions with two exponents

We were not able to prove similar results for general Kummer extensions with two
exponents, but only on a restricted family of them.

Definition 5.7. Let L/K be a real Kummer extension with two exponents p, q. We
will call a power-free basis of L/K and denote by IB(L/K) the basis IB(M) ⊗
IB(K).

Proposition 5.13. Let L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) be a

real Kummer extension with two exponents. Let a ∈ P(m) ∪ P(n). Write δm =

δ(a∈P(m)) and δn = δ(a∈P(n)). If a 6∈ {p, q}, then one has

va(DL(IB(L/K))) = [L : Q]

(
p− 1

p
δm +

q − 1

q
δn

)
.

If a ∈ {p, q} then one has

va(DL(IB(L/K))) =


[L : Q]

(
r +

p− 1

p
δm +

q − 1

q
δn

)
if a = p,

[L : Q]

(
s+

p− 1

p
δm +

q − 1

q
δn

)
if a = q.

Proof. With the notations used during the proof of Theorem 5.1, remark that
MIB(L/K) = MIB(L′) ⊗MIB(K) where L′ = Q( p

√
m1, . . . , p

√
mr). Then apply va to

detM2
IB(L/K) in the different cases.

Remember that to prove Theorem 5.2, one only has to study the splitting of primes
different from the exponent p, as the p-valuation of the discriminant of the order
generated by IB(K) is automatically smaller than the one of the discriminant of
[K : Q]OK . We will see that it is not as simple over extensions with two exponents.

Proposition 5.14. Let L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) be a

real Kummer extension with two exponents. Let a ∈ P(m)∪P(n) \ {p, q}. Then the
splitting of a in L/Q and va(DL) satisfy the following:

1. a ∈ P(m) \ P(n) =⇒ ∃t > 1, (a) = (a1 . . . at)
p and va(DL) = [L : Q]p−1

p
;

2. a ∈ P(n) \ P(m) =⇒ ∃t > 1, (a) = (a1 . . . at)
p and va(DL) = [L : Q] q−1

q
;

3. a ∈ P(m) ∩ P(n) =⇒ ∃t > 1, (a) = (a1 . . . at)
pq and va(DL) = [L : Q]pq−1

pq
.

Proof. The proof is quite similar to the one of Proposition 5.12. Using Lemma 5.2,
one can assume that there is at most one i0 ∈ J1, rK such that a | mi0 and at most
one j0 ∈ J1, sK such that a | nj0 . Assume also that i0 and j0 are equal to 1 when they
exist. Fix l the field equal to the compositum of the simple subfields of L′ and K
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generated by mi0 and ni0 . Depending on the cases, l is equal to Q( p
√
m1), Q( q

√
n1)

or Q( p
√
m1)Q( q

√
n1). Now let k be the field such that lk = L. Now it is easy to see

that a completely ramifies in l and does not ramify in k. Thus there is t > 1 such
that the splitting of a is as follows.

Q
(a)

lp[l:Q]
k p1 · · · pt

L (a1 · · · at)[l:Q]

Since a 6∈ {p, q}, gcd(a, [l : Q]) = 1, therefore the part of the different D(L/Q) above
a is equal to

t∏
i=1

a[l:Q]−1.

One can conclude by using the same arguments than in the proof of Proposition 5.12.

Remark 34. One can remark from Proposition 5.13 and Proposition 5.14 that if
a ∈ P(m)∩P(n) \ {p, q} then va(DK) > va(Z[IB(L)]). Therefore if P(m)∩P(n) \
{p, q} 6= ∅ then the counterpart of Theorem 5.2 for Kummer extension with two
exponents does not hold.

Theorem 5.4. Let L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) be a real

Kummer extension with two exponents. Denote by O the order Z[IB(L)], and A =

(P(m) ∩ P(n)) \ {p, q} and PA =
∏

a∈A a. Then the following properties are true.

• ∀a ∈ P(m) ∪ P(n) \ (A ∪ {p, q}), O is a−maximal.

• PA[L : Q]OL < O.

Proof. Let a ∈ P(m) ∪ P(n) \ (A ∪ {p, q}). From Proposition 5.13 and Proposi-
tion 5.14, va(DL(O)) = va(DL(OL)) so O is indeed a−maximal. Consider a ∈ A.
Then we have va(DL(O)) = [L : Q]

(
p−1
p

+ q−1
q

)
, and

va (DL(PA[L : Q]OL)) = va(P
2[L:Q]
A DL) = 2[L : Q] + va(DL).

Since va(DL) = [L : Q]pq−1
pq

, we obtain

va (DL(PA[L : Q]OL)) = [L : Q](
2pq + pq − 1

pq
) > va(DL(O)).
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Now consider a ∈ {p, q}. Since the situation is the same for p or q, we can choose a =

p for example. First assume that p 6∈ P(m)∪P(n). Then again from Proposition 5.13
we have vp(DL(O)) 6 r[L : Q]. Moreover since vp([L : Q]) = r we get

vp (DL(PA[L : Q]OL)) > 2r[L : Q] > r[L : Q].

Now let us assume that p ∈ P(m) ∪ P(n). Then we have

vp(DL(O)) = [L : Q]

(
r +

p− 1

p
+
q − 1

q

)
6 [L : Q](r + 2).

Since p ∈ P(m) ∪ P(n), there is a subfield l of L of the form Q( p
√∏

imi) (resp.
Q( q
√∏

i ni)), such that p | m (resp. p | n). Consequently, p ramifies completely
in l and we know that vp(Dl) = 2p − 1 (resp. vp(Dl) = p). Recall that DL =

D
[L:l]
l Nl/Q(d(L/l)) > D

[L:l]
l . Thus we obtain

vp (DL(PA[L : Q]OL)) > 2r[L : Q] + [L : Q] > [L : Q](r + 2).

5.2.3 Geometry under LogL

Lemma 5.6. Consider K1 and K2 two number fields, and K = K1K2 their com-
positum. Assume that Hom(K,C) ∼= Hom(K1,C)⊗ Hom(K2,C). Then one has

∀(x1, x2) ∈ K1 ×K2, (LogK(x1) | LogK(x2)) = ln|NK1/Q(x1)| ln|NK2/Q(x2)|.

In particular LogK(O×K1
) is orthogonal to LogK(x2) for any x2 ∈ K2.

Proof. Let us denote by H, H1 and H2 the sets Hom(K,C), Hom(K1,C) and
Hom(K2,C) respectively. Moreover we will write S for (LogK(x1) | LogK(x2)).
Then we have

S =
∑
σ∈H

ln|σ(x1)| ln|σ(x2)| =
∑
σ1∈H1

∑
σ2∈H2

ln|σ1 ⊗ σ2(x1)| ln|σ1 ⊗ σ2(x2)|.

Then for i ∈ {1, 2} we get σ1 ⊗ σ2(xi) = σi(xi). Thus we obtain

S =
∑
σ1∈H1

∑
σ2∈H2

ln|σ1(x1)| ln|σ2(x2)| =
∑
σ1∈H1

ln|σ1(x1)|
∑
σ2∈H2

ln|σ2(x2)|

which gives the first result. The statement about the orthogonality of the units
follows from the fact that their algebraic norm is ±1.
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Corollary 5.2. Let K = Q( p
√
m1, . . . , p

√
mr) be a real Kummer field with one expo-

nent. Then we have

LogK(SU(K)) =
⊥⊕

α∈ Frp\{0}
∼

LogK(O×Kα) (5.6)

Proof. Just remark that for any pair (α, β) ∈ Frp \{0} such that α 6∼ β we can apply
Lemma 5.6 to Kα and Kβ.

We know that SU(K) is a full-rank subgroup of O×K following Corollary 5.1, and
equivalently LogK(SU(K)) is a full-rank sublattice of LogK(O×K). In the case of
multiquadratic and multicubic fields, one can see from Corollary 5.2 that each set
of fundamental units {εα | α ∈

Frp\{0}
∼ } is sent by LogK to an orthogonal basis of

this sublattice. This is the best situation possible when it comes to solving lattice
problems. In particular one could hope to decode respectively to LogK(SU(K)), and
use enumerations like over cyclotomic fields in [34]. However as mentioned in [6] the
index [O×K : SU(K)] is too large for this strategy to be efficient. On the other hand,
Algorithm 30 shows that one can obtain LogK(O×K) from LogK(SU(K)) by doing
simple operations on vectors: additions and division by a scalar (2 or 3 depending
on the case).

For Kummer extensions with one exponent p > 3, we obtain blocks of size p−1
2

orthogonal one to each other, i.e. if we consider a basis matrix M of LogK(SU(K))

then its Gram matrix MMT is a block diagonal matrix
Gα 0 . . . 0

0 Gβ
. . . ...

... . . . . . . 0

0 . . . 0 Gγ


with the diagonal blocks being of the form MαM

T
α , with Mα = LogK(O×Kα). The

basis from which we construct the unit group is therefore not orthogonal anymore.
One can wonder whether it has an impact on the quality of the basis obtained for
LogK(O×K) and on the performance of the SPIP procedure.

For Kummer extensions with two exponents, we cannot apply Lemma 5.6 to the
minimal subfields reached by the recursion of the version of Algorithm 30 adapted
to these type of extensions, i.e. Algorithm 35. Indeed, we will see that they are of
the form Q( p

√
Mα

q
√
Nβ), which do not satisfy the required properties of Lemma 5.6.

The reunion of their unit groups will still generate a full-rank sublattice, but not



CHAPTER 5. REAL KUMMER EXTENSIONS 138

as a direct sum anymore. Thus we obtain a situation more entangled than with
real Kummer extensions with one exponent. Again one may ask how it impacts the
possibility of recovering a short generator through the Log-unit lattice.

5.2.4 Auxiliary algorithms

First we will describe the procedures used in Algorithm 30 when applied to real
Kummer extensions, as well as how we compute the final reduction step to solve
the SPIP. In the following we will denote by N the absolute dimension of L. As
in [6, 64] we will always assume that an element x is represented together with
an approximation of LogL(x), that we will denote by ApproxLogL(x). Moreover,
we used the power-free basis defined and studied in Subsection 5.2.2 to represent
elements x. This way we know that there is a coefficient dL such that the coefficients
of dLx are integers.

Finding Good Primes

As in [6] we will need to be able to find primes satisfying fixed conditions with
respect to the mi’s.

Definition 5.8. Consider m = (m1, . . . ,mr), C = (c1, . . . , cr) ∈ {0, 1}n and a prime
number p. A good prime relative to (m,C, p) is a prime Q such that:

∀i ∈ J1, rK,∃ai | mi ≡ api mod Q ⇐⇒ ci = 1.

In particular we need to find good primes Q for the condition sequence (1, . . . , 1)

in order to construct morphisms from K∗ into finite fields FQ. Remark that the
primes should not divide any of the integers mi. Now if we fix a prime Q > 3 we
have the following situation:

• if Q ≡ 1 mod p then FQ contains a primitive p-th root of unity and
F∗Q

(F∗Q)p
' Fp;

• if Q 6≡ 1 mod p then FQ does not contain a primitive p-th root of unity and
F∗Q

(F∗Q)p
' {1}.

Therefore we can have different strategies depending on our goal. If we want the
condition (1, . . . , 1) to be satisfied we might consider primes which are not congruent
to 1 modulo p as long as we do not need a non-trivial p-th root of 1 to be in the
field FQ.

Let us now describe how the algorithm operates to find a good primeQ ≡ 1 mod p.
First we have to draw a prime Q and verify that it is congruent to 1 modulo p. This
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happens with probability 1
p−1

. Then we have to check whether the sequence of

conditions C is satisfied by (m1, . . . ,mr) and Q. We know that m
Q−1
p

i mod Q has
order 1 or p which is equivalent to mi being a power or not. We have therefore
Algorithm 32 where we make use of two functions: CheckPowerCondition which
has been explained, and DrawPrime which corresponds to the way we select the
candidates for the prime numbers. One can follow [6] and generate a random prime
number in a range given as argument. We could also generate a random prime first
and then draw the next prime each time we need a new one.

Algorithm 32 Finding a good prime for a sequence d and a condition sequence C
- OneGoodPrime
Require: A reduced sequence (m1, . . . ,mr), C = (c1, . . . , cr) ∈ {0, 1}r and a prime

p
Ensure: A good prime Q relative to (m,C, p) which does not divide any of the mi.
1: b← 0
2: while b = 0 do
3: Q← DrawPrime
4: while Q 6≡ 1 mod p do
5: Q← DrawPrime
6: end while
7: b←

∏r
i=1 CheckPowerCondition(mi, ci, Q, p)

8: end while
9: return Q

For a random prime Q ≡ 1 mod p the probability that the power condition is true
is equal to p−1

p
if ci = 0 and 1

p
if ci = 1. Therefore if Hw(C) designates the Hamming

weight of C we have

P

(
r∏
i=1

CheckPowerCondition(mi, c1, Q, p) = 1

)
= (

1

p
)Hw(C) × (

p− 1

p
)r−Hw(C).

On average the algorithm will try pr

(p−1)r−Hw(C) primes before finding one satisfying
the condition sequence C. In particular the probability that each mi is equal to

a p-th power in FQ is
1

pr
and the algorithm will try O(pr) primes before finding

one satisfying the condition sequence C = (1, . . . , 1). Moreover we check if a mi

is a power or not modulo Q by doing a modular exponentiation. Therefore if Q is
polynomial in N as it is expected, the complexity of CheckCubeCondition will be
polynomial in log(N).

If we need to find good primes for a given sequence C – as it will be the case to
detect non trivial cubes of units – we repeat Algorithm 32 until obtaining enough



CHAPTER 5. REAL KUMMER EXTENSIONS 140

primes. The only thing to be careful with is the function DrawPrime in the case we
generate random primes in a given range. It needs to be large enough so that the
time taken before generating the desired number of “good” primes is low enough. If
DrawPrime generates primes by finding the next one then we repeat this process.

Complexity : We obtain a complexity in Õ(N).

Detecting powers

As mentioned earlier the authors of [6] showed how to realise the characters in the
case of multiquadratic fields. It can be adapted to real Kummer extensions, as we
did to multicubic fields in [64]. Consider L/K a Kummer extension of exponents
p, q and S = 〈s1, . . . , sn〉 a subgroup of L∗. In order to obtain a non trivial character
χQ : S → Fp one can do as follows. First select a prime Q such that one can con-
struct a ring morphism from Z[ p

√
m1, . . . , p

√
mr, q
√
n1, . . . , q

√
ns] to FQ. The prime Q

must be such that for all i ∈ J1, rK the rational mi has a p-th-root in FQ, and that
for all j ∈ J1, sK the rational ni has a q-th-root in FQ. Moreover since the character
needs to be non trivial, FQ has to contain a primitive p-th root of unity, i.e. Q = 1

(mod p). After the reduction modulo Q, one can verify if φQ(si) is a p-power by
computing an exponentiation with exponent p−1

Q
. The composition of this and φQ

will be the character χQ. Following the analysis of [6], such a prime Q can be found
in time Poly(N) so finding R good primes can be done in Poly(NR) with the max-
imum of the Q to be also in Poly(NR). Finally if B is an upper bound for the size
of the coefficients of s1, . . . , sn then one can construct and apply the characters in
time Poly(BNRn). Then detecting the powers can be done using Algorithm 33 in
polynomial time with respect to the entries.

Algorithm 33 Compute non trivial p-powers of a subgroup of K∗ – DetectPowers

Require: A real Kummer extension L/K of exponents p, q, S = 〈s1, . . . , sn〉 a
subgroup of K∗

Ensure: λ1, . . . , λn′ ∈ J0, p − 1Kn such that
∏n

i=1 s
λj,i
i is a p-power in K, for all

j ∈ J1, n′K.
1: Generate sufficiently enough characters χQ1 , . . . , χQR . . Use OneGoodPrime
2: M ← [χQj(si)]i,j ∈Mn,R(Fp)
3: N ← ker(M) . Left Kernel in Fp
4: return N as a matrix in Z

Remark that Algorithm 33 returns exponents corresponding to true p−powers
with probability at least 1 − p−(R−n) under assumption that the characters con-
structed are uniformly distributed in the dual of S/(S ∩Kp). We never encountered
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failure during our computations.

Heuristic 5.1. Let S < K∗ with L/K a real Kummer extension of exponents p, q.
Then the characters χQ described previously are uniformly distributed in Hom(S/(S∩
Kp),Fp).

Reducing a basis subgroup

In order to find a basis of a subgroup U < O×K one can use Pohst’s modified LLL
[84] algorithm on the matrix ApproxLogL(U). In order to find a transformation
matrix with small coefficients, one can follow [6] and compute a LLL on a matrix
of the form

[
Id|C · ApproxLogL(U)

]
. This leads to a reduction in Poly(NB) if B

is a bound on the size of the elements of ApproxLogL(U), as we take C with size
polynomial in N . Moreover, the use of a reducing algorithm allows us to find a
basis of better quality. One can choose to use another reducing algorithm such as
BKZ [94].

Reducing an element with respect to a lattice

In order to retrieve a short generator g of a principal ideal from another generator
h, we mentioned that one can try to solve a CVP with respect to the Log-unit
lattice. In order to do so, we followed [64] and computed the result of Babaï’s
nearest plane algorithm using Kannan’s embedding technique. This technique can
be used more generally to reduce an element [h,ApproxLogL(h)] with respect to a
sublattice ApproxLogL(U) of ApproxLogL(O×L ), in order to control the size of the
elements which are handled. Recall that if B is an upper bound of the norm of the
vectors of the basis of ApproxLogL(U) then one can consider the matrix

[
ApproxLogL(U) 0

ApproxLogL(h) B

]
=



ApproxLogL(u1) 0

ApproxLogL(u2) 0
...

...
ApproxLogL(um) 0

ApproxLogL(h) B


.

Reducing it with a LLL algorithm is expected to reduce the last row to the Log-
embedding of a shorter element in the same coset. In order to obtain again a
transformation matrix with small coefficients, we consider a matrix of the form[

Id |
C × ApproxLogK(U) 0

C × ApproxLogK(h) B

]
.

We will denote by RKEBabai(U, h) this procedure.
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Computing p-th roots

The authors of [6] were able to exhibit a recursive algorithm in order to compute
square roots in a multiquadratic field. The method cannot be adapted to Kummer
extensions of exponents bigger than 3. We then developed the method using the
LLL algorithm that we presented in Chapter 4. Fix y = xp in a real Kummer exten-
sion L/K. Remark that since L/K is real, ζp 6∈ L and the polynomial Xp − y has
exactly one root in L. Moreover in a given extension we usually have to compute
several roots. Thus we can use the same reduced basis lattice Ll for several ele-
ments or update the precision as needed. This strategy is efficient because one can
evaluate the logarithm of ‖x‖2 quite accurately (experimentally) with the formulae
EvaluteNorm(x) =

ln‖y‖2
p

. Therefore one can evaluate the norms of all the roots to
be computed, and sort the elements by increasing norms. Let us denote by Sort

this sorting procedure.

Finally, in order to reduce the time of computation, one can try to bound the
norm of the powers. Let y be one of the powers outputted by DetectPowers, and
S = 〈s1, . . . , sn〉 the subgroup of K∗ given as input. Then one can reduce y with
respect to ApproxLog(Sp) using Kannan as explained above. Experimentally, it al-
lows the computations to run considerably faster.

Implementing these ideas, we obtain Algorithm 34 which computes roots of powers
such as outputted by DetectPowers. In this context, we will write InitBasisLatt
and UpdateBasisLatt the procedures which respectively initialise and update to a
larger precision the basis lattice matrix of L/K (as defined in Section 4.2).

Algorithm 34 Compute the p-th roots in L/K – ElementsFromPower

Require: A Kummer extension L = K( p
√
m1, . . . , p

√
mr) with K =

Q( q
√
n1, . . . , q

√
ns), a subgroup S = 〈s1, . . . , sn〉 of K∗ and V = 〈y1, . . . , yt〉 < Sp

non-trivial p-th powers
Ensure: A basis 〈x1, . . . , xt〉 of V 1/p

1: Y ← RKEBabai(Sp, V ) . Reduce in the Log-representation
2: Y ← Sort(X)
3: X ← ∅
4: [L,U, l]← InitBasisLatt(L/K)
5: for i = 1 to n do
6: [L,U, l]← UpdateBasisLatt(L/K, PrecisionEvaluation(yi), U)
7: x← [xi]l
8: x← TestDecode(L, t)
9: X ← X ∪ {x}

10: end for
11: return X
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5.2.5 Computing the unit group:

In order to compute the unit group of a real Kummer extension of exponents p, q we
are able to use Algorithm 30 several times. Indeed if L/K is a Kummer extension
of exponents p, q then each of the minimal subextensions L( p

√
Mα) can be written

as Q( p
√
Mα)( q

√
n1, . . . , q

√
ns), i.e. a Kummer extension of Q( p

√
Mα) of exponent q.

Therefore if one applies Algorithm 30 to L/K, when it reaches the simple subexten-
sions L( p

√
Mα) in step 2, one can again apply KE_Units instead of UnitGroup. This

leads to Algorithm 35.

Algorithm 35 Compute the unit group of a Kummer extension L/K of exponents
p, q. – RKE_Units

Require: A Kummer extension L = K( p
√
m1, . . . , p

√
mr) with K =

Q( q
√
n1, . . . , q

√
ns).

Ensure: A basis of the torsion-free part of the unit group O×K .
1: if (r = 1 and s 6 1) then
2: return UnitGroup(L).
3: end if
4: if (r = 1 and s > 1) then
5: return KE_Units(L/Q( p

√
m1)). . Compute a basis of U = O×L by

considering L as a Kummer extension of Q( p
√
m1).

6: else
7: Choose u, v two independent elements of ˜Hom(L/K).
8: Recursively compute a basis of U = O×LuO

×
Luv . . .O

×
Lu

p−1v
O×Lv

9: V ← DetectPowers(U, p)
10: V ← ElementsFromPower(V, p)
11: U ← BasisFromGeneratingSet(〈U, V 〉)
12: return U
13: end if

Theorem 5.5. Consider L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) a real

Kummer extension with p and q prime integers such that [L : Q] = prqs. Under the
assumption of Heuristic 5.1 and GRH Algorithm 35 heuristically computes O×L in
Poly(ln(|DL|))LP (2/3 + ε, c) for some c > 0 and ε > 0 as small as desired, with
probability at least 1− (pq)−N , where P is the product of all primes dividing the mi

and nj.

Proof. Let us study the running time of the algorithm. The analysis is very similar
to the one of the S−units computations done in [17]. Assume we obtained the
unit groups of the p + 1 subfields, with elements given in compact representation.
Denote by U1, . . . , Up+1 these groups. Their union is a generating family of U . Then
in order to compute O×L , one needs to reduce this family to a basis of U , apply the
characters and detect powers, compute the associated roots and finally reduce the
obtained family to a basis of O×L .
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First let us remark that from the simple subextensions of L/K, there are only
Poly(ln(|DL|) calls to BasisFromGeneratingSet. Each implies a loss in precision
of Poly(NB) where B is the actual precision in the Log representation. Therefore
given we obtain a certain precision in Poly(ln |DL|) for the approximate logarithm
of the units of the simple subextensions of L/K it is possible to finish the algorithm
with also a precision in Poly(ln |DL|) for the Log-unit lattice. Since the reasoning
will be the same for the recursive part of step 5, we can assume that at each step
the precision in the Log representation is in Poly(ln |DL|).
Now assume that we reduce a family of elements which are all in compact repre-

sentation. As we saw the coefficients of the transformation matrix of the LLL will
all have their logarithms in Poly(ln |DL|). Moreover the rank of the families we will
reduce will also be in Poly(ln |DL|), as well as the length of the product defining each
element. Therefore one can compute the compact representation of the elements of
the basis in Poly(ln |DL|).
Once we have a basis 〈u1, . . . , un〉 of U in compact representation, we need to

apply DetectPowers. But each ui is given as ui,0upi,1 . . . u
pk

i,k with each ui,j of size
polynomial in the logarithm of the discriminant. Thus the image of ui by a character
χQ is χQ(ui0), which can be computed in polynomial time. We saw in the discussion
for the general case that we ensure the searched probability of success by choosing
a number of characters polynomial in N , assuming Heuristic 5.1. Therefore the cost
of applying is in Poly(ln |DL|).
The exponents found by DetectPowers are less than p − 1 so one can easily

compute the compact representation of any of the powers detected. Given a power
v = v0v

p
1 . . . v

pk

k in compact representation, its p-th root is p
√
v0v1v

p
2 . . . v

pk−1

k . One
only has to compute the root of v0 whose size is in Poly(ln |DL|). This will be done in
time Poly(ln |DL|). Since there are only O(N) roots to compute, the overall running
time of the roots extraction together with the last call to BasisFromGeneratingSet

is also in Poly(ln |DL|). During the descent to the simple subextension of L/K the
algorithm reaches O([L : K]) number of subextensions so the cost of the algorithm
will be in O([L : K]) maxα TU(Lα) + O([L : K])Poly(ln |DL|), where the Lα are
the simple subextensions of L/K and TU(Lα) is the running time of Algorithm 35
when applied to Lα. The whole analysis done above can been applied to this part
of the algorithm. Therefore we obtain a complexity in Poly(lnDL) × SU where
SU designates the maximum running time on the minimal subfields reached by the
algorithm to compute the unit group. These fields are of the form Q( p

√
M)⊗Q( q

√
N)

with M being a product of mi and N a product of nj. Given the discriminant of
such fields [100], one obtains SU to be in eÕ((lnP )2/3) by applying the algorithm of
Biasse and Fieker [15].
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5.2.6 Solving the PIP

As we saw the procedure to find a generator of a principal ideal is very similar
to the one to compute the unit group. Therefore we obtain easily Algorithm 36.
The analysis of the running time is similar to the one of Algorithm 35 which gives
the same complexity since solving the PIP on the subfields of dimension pq is also
sub-exponential.

Theorem 5.6. Consider L = K( p
√
m1, . . . , p

√
mr) with K = Q( q

√
n1, . . . , q

√
ns) a

real Kummer extension with p and q prime integers such that [L : Q] = prqs and
a principal ideal I. Under the assumption of Heuristic 5.1 and GRH Algorithm 36
heuristically computes a generator of I in Poly(ln(NL/Q(I)), ln(|DL|))LP (2/3 + ε, c)

for some c > 0 and ε > 0 as small as desired, with probability at least 1 − (pq)−N ,
where P is the product of all primes dividing the mi and nj.

Algorithm 36 Solve the PIP in a Kummer extension of exponents p, q – RKE_PIP

Require: A principal ideal I of a Kummer extension L = K( p
√
m1, . . . , p

√
mr) with

K = Q( q
√
n1, . . . , q

√
ns), the unit group O×L .

Ensure: A generator g of I.
1: if (r = 1 and s 6 1) then
2: return Generator(I).
3: end if
4: if (r = 1 and s > 1) then
5: return KE_PIP(L/Q( p

√
m1)). . Compute a generator of I by considering L

as a Kummer extension of Q( p
√
m1).

6: else
7: Choose u, v two independent elements of ˜Hom(L/K).
8: Recursively compute generators of NLu(I)NLuv(I), . . . ,NLu

p−1v(I),NLv(I)
and use Equation 5.2 to have h a generator of Ip.

9: return ElementsFromPower([O×L , h], p).
10: end if

5.3 Experimental results

We implemented the algorithms for real Kummer extensions in MAGMA [22], with
the procedures described but without the compact representation of elements, which
leads to exponential algorithms.

• We study in Subsection 5.3.1 the probability to retrieve a short generator of a
principal ideal through an attack using the algorithms presented in Section 5.2
; we computed data for Kummer extensions with one and two exponents, and
compare the results to the ones of [6, 64]. This allows us to identify Kummer
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fields with degree p2 and defined by small integers to be fields over which the
SPIP is more difficult to solve.

• Finally in Subsection 5.3.2 we study further the geometrical situation. In par-
ticular we compute the size of the target vector normalised by the volume of the
Log-unit lattice and the quality of the basis obtained for the Log-unit lattice
through Algorithm 35. We focus on Kummer extensions with one exponent
with degree p2 and compare them with other number fields.

5.3.1 Probability of solving the SPIP

The first way we studied the possibility of real Kummer extensions was to launch
attacks with Algorithm 36. As a matter of fact, we did not do proper attacks because
computing ideal norms can be quite long even though the theoretical complexity is
polynomial. However the knowledge of the secret key allows us to compute the
HNF of the norms efficiently, and the rest of the attack is unchanged. We tried to
retrieve generators of principal ideals (g) such that the coefficients of the generators
g are drawn uniformly in {−1, 0, 1}. The previous observations in [6, 64] seemed to
show two phenomena. Given a sequence m = (m1, . . . ,mr) defining the fields, the
probability of retrieving a generator increased when :

• the length r of the sequence defining the field was increasing;

• the global size of the entries of the sequence, i.e.
∏r

i=1mi, was increasing,

Part of our work has been to verify that it happens on all Kummer extensions.

Kummer extensions with one exponent

First let us consider fields of the form K = Q( p
√
m1, . . . , p

√
mr). We present the

results obtained in Tables 5.2, 5.3, 5.4 and 5.5. There is one table for each exponent
p defining the field, except for Table 5.5 which presents the results for the three
exponents (11, 13, 17). For each exponent we computed attacks for fields defined by
sequences of increasing length and increasing coefficients ; moreover the coefficients
are consecutive prime numbers. For each field we provide the probability of retriev-
ing a generator when LLL or BKZ20 is used to reduce the different bases during the
algorithms.
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Table 5.2: Experimental results for Kummer extension of Q with exponent 3

(a) r = 2 and 3

Sequence length r 2 3
Rank of the lattice r1 + r2 − 1 4 13

First coefficient m1 2 3 5 7 11 2 3 5 7 11
Success LLL (%) 32 89.2 98 97.6 99.99 43.6 98 100 100 100
Success BKZ (%) 29.4 92.2 98.4 98 100 47.4 99.4 100 100 100

(b) r = 4 and 5

Sequence length r 4 5
Rank of lattice r1 + r2 − 1 40 121

First coefficient m1 2 3 5 7 11 2 3 5 7 11
Success LLL (%) 58.6 100 100 100 100 77.6 100 100 100 100
Success BKZ (%) 64.6 100 100 100 100 74.3 100 100 100 100

Table 5.3: Experimental results for Kummer extension of Q with exponent 5

Sequence length r 2 3
Rank of lattice r1 + r2 − 1 12 62

First coefficient m1 2 3 5 7 11 2 3 5 7 11

Success LLL (%) 53.6 74.8 100 100 100 71.6 97.2 100 100 100
Success BKZ (%) 54.6 69.6 100 100 100 68.6 95.8 100 100 100

Table 5.4: Experimental results for Kummer extension of Q with exponent 7

Sequence length r 2 3
Rank of lattice r1 + r2 − 1 24 171

First coefficient m1 2 3 5 7 11 2 3 5 7 11
Success LLL (%) 86.6 100 100 100 100 80.6 100 100 100 –
Success BKZ (%) 84.9 100 100 100 100 98.7 100 100 100 –

Table 5.5: Experimental results for Kummer extension of Q with degree p2 and
exponents 11, 13 and 17.

Field exponent 11 13 17
Rank of lattice 60 84 144

First coefficient m1 2 3 5 7 11 2 3 5 7 11 2 3
Success LLL (%) 77.6 100 100 100 100 19.3 99.6 100 100 100 0 29.1
Success BKZ (%) 90.7 100 100 100 100 70.0 100 100 100 100 12.4 100

We can remark that the two phenomena described before seem to be true for all
exponents p. Moreover the probability of success seems to converge quickly to one.
For similar degrees and rank of LogK(OK) we can remark that we obtain a better
probability of success with fields defined by longer sequences and smaller exponents.
Compare for instance fields of degree 73 in Table 5.4 and fields of degree 132 or 172

in Table 5.5.
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Fields with degree p2 : Let us now focus our attention on the subclass of fields
of the form K = Q( p

√
m1, p
√
m2). First we see that again the probability of success

converges quickly to 1 when m1 increases. Now fix (m1,m2) = (2, 3) and let p vary.
One can find the percentages of success plotted in Figure 5.1.

Figure 5.1: Percentage of success of an attack with LLL or BKZ for fields
K = Q( p

√
2, p
√
3) plotted against the rank r1 + r2 − 1 of LogK(OK)

We can notice that for one or the other method used as a reduction algorithm
throughout the procedures, the probability of retrieving a short generator starts to
increase but decreases when p is larger than 11. It converges to 0 when using LLL
and is bigger when using BKZ20 but is still quickly decreasing.

Remark 35 (Importance of studying high degree number fields). One important
observation is that computations on high degree number fields were required to ob-
serve meaningful data. Indeed when restricted to fields with degree less than 121,
i.e. to primes strictly smaller than 11, the probability of success of an attack is
quickly increasing and there is no difference between using LLL or BKZ20. This
highlights the need to work over high degree number fields.

Finally one could consider Kummer fields of degree p2 defined by small integers
as an alternative to number fields already used in cryptography such as cyclotomic
fields. Indeed, in addition to the data gathered here, their structure could be used
to build an efficient arithmetic as done over multiquadratic fields in [6]. One could
also consider Kummer fields of degree p if the pattern concerning the probability
of success (decreasing with the length of the sequence) is still valid. However we
cannot confirm or invalidate it. We only have access to the classical algorithms to
do computations on these fields, thus preventing examining fields with high degree.
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Kummer extensions with two exponents

Consider now real Kummer extensions of the form L = K( p
√
m1, . . . , p

√
mr) with

K = Q( q
√
n1, . . . , q

√
ns). We tried to verify whether the phenomena observed in [6, 64]

and mentioned earlier were still true over such fields or not. To do so, we computed
data for several fixed ground fields K and varying parameters for the extension L.
Because of efficiency reasons, we were restricted in our choice of parameters. Indeed,
our implementation is way slower over Kummer extensions with two exponents than
extensions with one exponent. We only present the probabilities with LLL because
the ones with BKZ20 are very similar, due to the fact that the ranks of the Log-unit
lattices manipulated are small.

Simple Kummer field as ground field: First let us consider fields such that K
is a simple Kummer field Q( q

√
n) and L = K( p

√
p1, p
√
p2) with p1, p2 being consecutive

prime numbers. The data gathered can be found in Tables 5.6, 5.7 and 5.8.

Table 5.6: Success of an attack (in %) over Kummer extensions of the form
L = K( p

√
p1, p
√
p2) with K = Q( 2

√
n)

Exponent p 3 5 7
r1 + r2 − 1 9 25 49

Coefficient p1 2 3 5 7 11 2 3 5 7 11 2 3 5 7 11
n = 2 – 59 71.6 66.2 58 – 68.6 74.6 72.8 65.6 – 82.6 77.6 71.2 71.9
n = 5 10 56.3 – 47.7 51.7 13.7 59 – 63.4 54.7 74 65 – 62 52
n = 13 27.3 80.4 90.3 88.7 87.7 – 68.4 86.3 87.3 90.6 83.3 90.3 89 86 79.8

Table 5.7: Success of an attack (in %) over Kummer extensions of the form
L = K( p

√
p1, p
√
p2) with K = Q( 3

√
n)

Exponent p 5
r1 + r2 − 1 37

Coefficient p1 2 3 5 7 11
n = 2 – 78.1 82 79.3 81.3
n = 5 35.4 98 – 100 98.6
n = 13 55.4 78 98.3 99.7 –

Table 5.8: Success of an attack (in %) with over Kummer extensions of the form
L = K( p

√
p1, p
√
p2) with K = Q( 5

√
n)

Exponent p 3
r1 + r2 − 1 22

Coefficient p1 2 3 5 7 11
n = 2 – 77 78.6 73.9 69.9
n = 5 50.7 95.3 – 98.3 98
n = 13 55 93 98 99.7 100
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We can see that the results are different for these fields than for Kummer ex-
tensions with one exponent. For each pair (p, q) it seems that the probability of
success does not converge to 1 when the coefficients (p1, p2) increase ; for some pairs
the probability is even decreasing. We are still able to retrieve a high percentage
of generators, but one should remark that the dimensions are all relatively low.
We mentioned in Remark 35 the importance of studying high dimensional number
fields i.e. with dimension at least greater than 100, and we stress that the data
we were able to produce regarding Kummer extensions with two exponents do not
meet this requirement. Thus the observations made from these data might not be
representative of the asymptotic behaviours.

Increasing [L : K] with constant exponent: Now let us consider extensions
L = K( p

√
m1, . . . , p

√
mr) with fixed K and p, with increasing length sequence r of

consecutive prime numbers.

Table 5.9: Success of an attack over Kummer extensions of the form L =
K( 3
√
p1, . . . , 3

√
pr) with K = Q( q

√
n)

Length r 2 3 4

Exponent q 2 5 2 5 2 5
r1 + r2 − 1 9 22 27 67 81 202

Success with LLL (%) 61.4 79.6 85.4 94.7 81.2 –

The data in Table 5.9 seems to show that again, the phenomena observed over
Kummer fields with one exponent cannot be seen as clearly over Kummer extensions
with two exponents, at least for q = 2.

Conclusion: The probabilities of successfully retrieving the private key seem to
be smaller and to differ much more than for the previous type of fields. It could
be an indication that breaking the regularity of the field structure makes the attack
more difficult. However one has to remark that we lack data, and that the ones we
obtained are essentially over fields with relatively low degrees.

5.3.2 Analysis of the geometrical situation

Let us now focus on Kummer extensions with one exponent, since we are able
to compute data for high dimensional fields. Moreover recall that we identified
Kummer extensions of degree p2 defined by the sequence (2, 3) as fields for which
recovering a short generator through the Log-unit lattice could be more difficult
than over other number fields. Thus all Kummer extensions considered further
are defined by sequences of the first prime integers. In order to study further the
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situation we looked into the possibility of recovering a short generator through an
enumeration process. In order to evaluate the cost of enumerations, we used the
function EnumerationCost(L,m2) of MAGMA. It computes an estimation of the
number of nodes to visit during an enumeration process of short vectors of a lattice
L within the ball B(0,m). Moreover we studied the quality of the basis obtained
by computing several parameters. Given a basis B (whose vectors are sorted by
increasing norms), evaluating its orthogonality can be difficult. Let us denote by r
and V respectively the rank and the volume of the lattice generated by B. We chose
to compute:

1. the Hermite factor δ0 = ‖b1‖
r√V which is used to evaluate the quality of basis

reduction on random lattices;

2. the orthogonality defect δ = r

√∏r
i=1 ‖bi‖
V

which expresses the overall orthogo-
nality of the basis.

We gathered data of cyclotomic fields, NTRU Prime fields and Kummer fields.
We computed the unit group of the first two categories using the generic algorithm
of MAGMA UnitGroup up to degree 60. In order to obtain data on cyclotomic
fields of larger degree we used the subgroup C of cyclotomic units, which has a very
small index [34]. For some fields they are even equal, for example for power-of-2
cyclotomics (under GRH). Even if C is not OK one can argue that it is close to it
and is used by the authors of [34] to solve the SPIP over cyclotomic fields.

Norm of the target vector

One important geometrical parameter is the size of the target when compared to
the volume of the Log-unit lattice, in order to know if retrieving it through a CVP
computation or an enumeration process is conceivable. In addition to the size of the
target vector we studied the cost one would obtain for an enumeration.

Let us recall a quick result which can be found in [9, 34].

Lemma 5.7. Let K be a number field, H be the subspace of Rn orthogonal to
1 = (1, . . . , 1) and pH be the orthogonal projection on H. Then for any g ∈ K one
has LogK(g) = pH(LogK(g)) +

ln |NK/Q(g)|
n

1.

One can conclude from Lemma 5.7 that if g is the secret key, then the norm of
the target is √√√√ n∑

i=1

(
ln |σi(g)| − ‖LogK(g)‖1

n

)2

.
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For each field we computed the ratio of the norm of pH(LogK(g)) by the scaled
volume of the Log-unit lattice r

√
VK where r = r1 +r2−1. We computed the median

value of this ratio for each set of keys, and the corresponding enumeration cost. Let
us denote by MK said median value, and ECK the bit-size of the corresponding
enumeration cost.

Prime degree fields: First consider fields with prime degree – or conductor for
cyclotomic fields – smaller than 60. The data can be found in Table 5.10. We
show the enumeration cost only after LLL because for those dimensions the values
obtained after BKZ20 are the same.

Table 5.10: Data concerning the target pH(LogK(g)) for Kummer extensions,
cyclotomic fields and NTRU Prime fields with prime degree or conductor

Degree p 11 13 17 19 23 29 31 37 41 43 47 53 59

Kummer field Q( p
√

2)
MK 0.48 0.46 0.42 0.42 0.43 0.39 0.38 0.37 0.35 0.35 0.34 0.32 0.31
ECK 1.172 0.89 0.61 0.55 0.82 0.47 0.80 0.77 0.53 0.85 0.81 0.49 0.89

NTRU Prime MK 1.34 1.32 1.17 1.11 1.05 0.97 0.96 0.91 0.88 0.84 0.84 0.77 0.74
ECK 4.93 5.27 4.58 4.10 3.63 2.56 2.82 2.38 1.77 2.09 2.88 2.05 2.50

Cyclotomics MK 0.81 0.83 0.82 0.84 0.83 0.84 0.85 0.85 0.86 0.86 0.86 0.86 0.87
ECK 3.14 3.55 3.89 4.19 4.39 4.90 4.77 485 5.30 5.69 5.50 5.11 6.29

From the data gathered, the targets are bigger over NTRU Prime fields than over
cyclotomic or Kummer fields for very small primes, but the values decrease quickly.
The targets seem to have a relatively stable size over cyclotomic fields, which ends
up being the largest for bigger prime numbers. Kummer fields present the smallest
target vectors. This leads to the same phenomenon for the corresponding enumera-
tion cost. However these are still quite small but it was to be expected over lattices
with small ranks. One can find the plot of the minimum and maximum value of
the ratio ‖pH(LogK(g))‖2 /V

1/r
K in Figure 5.2. We can remark that the values over

cyclotomic fields and NTRU prime fields are getting closer with p increasing. The
targets over Kummer fields are again smaller. If this trend remains true asymptot-
ically it would indicate that Kummer extensions of prime degrees are weaker than
fields of the two other types. However it should be noted that the difference is quite
small, as well as the rank of the lattices considered.
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Figure 5.2: Minimal and maximal values of ‖pH(LogK(g))‖2 /V
1/r
K plotted

against the rank of LogK(O×K) over fields of prime degree or conductor

Kummer fields with degree p2: The attacks showed that the SPIP seems to be
more resistant over fields of the form Q( p

√
2, p
√

3), so we will focus on them. In order
to have a better idea of the situation, let us compare them with:

• cyclotomic fields of prime conductor p;

• cyclotomic fields of the form Q(ζ2n);

• Kummer fields of degree p3 and Kummer fields of exponent 3 and defined by
successive primes i.e. of the form Q( 3

√
2, 3
√

3, . . . , 3
√
pr).

Remember that in order to compute data for high degree cyclotomic fields, we con-
sidered C the subgroup of cyclotomic units. Again we computed the median values
of the quotients ‖pH(LogK(g))‖2 /V

1/r
K and the corresponding enumeration costs.

One can find the values corresponding to the first parameter plotted in Figure 5.3.
We can remark that the values for Kummer extensions of square degrees are close

to the ones for cyclotomic fields, in particular the ones of the form Q(ζ2n). Moreover
the values for cyclotomic fields with conductor of the form pk with k > 2 are also
similar, even if we did not plot them for clarity purposes. For Kummer fields of
degree p3, the plot suggests that the values could asymptotically be close to the
ones over the previous fields. However we cannot confirm this because the state of
our implementation does not allow us to compute the units for the following prime
p = 11, which corresponds to a field of degree 1331. We can see that the size
of targets over multicubic fields is decreasing quickly, which is consistent with the
probability of success already observed. This also confirms the differences between
fields with increasing exponents such that the defining sequence has a constant
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Figure 5.3: Median values MK plotted against r1 + r2 − 1 over Kummer fields
of degrees p2 and p3, and over different types of cyclotomic fields

length, and fields with a constant exponent such that the length of the defining
sequence is increasing.

With these observations and the ones regarding number fields with prime degrees,
one could expect to obtain similar enumeration costs for cyclotomic and Kummer
fields. However we can see in Figures 5.4 and 5.5 – which show the corresponding
enumeration costs with the use of LLL and BKZ20 respectively – that the costs
are low over cyclotomic fields (and close one to each other) but asymptotically
bigger over Kummer fields of degree p2 and p3. Again the situation is worse for
Kummer fields of degree p2 than p3. Regarding the influence of BKZ20, it has again
a positive and noticeable impact for ranks greater than 80 i.e. degrees greater 160,
and only over Kummer fields of degree p2. These observations coupled with the
values of the enumeration cost obtained seem to indicate that Kummer extensions
of degree p2 could be better options than cyclotomic fields when it comes to building
a cryptosystem whose security relies on the hardness of solving the PIP. Indeed for
the field Q( 17

√
2, 17
√

3), the enumeration cost after BKZ20 is still large enough to
prevent an enumeration process.

Basis of Log-unit lattice

As mentioned before, we studied further the situation by computing several param-
eters to evaluate the quality of the basis of LogK(OK) for the fields K considered.
Results of these computations are gathered in Table 5.11 for fields with prime degree
or conductor less than 60, and in Figures 5.6, 5.7 and 5.8 for the same type of fields
considered in the previous analysis. Again, we will denote by EC the bit-size of the
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Figure 5.4: Median values of enumeration cost ECK plotted against r1 + r2 − 1
over Kummer fields of degrees p2 and p3, and over cyclotomic fields, after LLL
reductions

enumeration cost considered.

Table 5.11: Data concerning the Log-unit lattice of Kummer extensions, cyclo-
tomic fields and NTRU Prime fields with prime degree or conductor

Degree p 11 13 17 19 23 29 31 37 41 43 47 53 59

Kummer fields Q( p
√

2)

δ0 0.81 0.76 0.722 0.70 0.66 0.62 0.59 0.56 0.54 0.53 0.51 0.49 0.47
δ 1.08 1.08 1.12 1.11 1.15 1.21 1.22 1.27 1.26 1.36 1.38 1.43 1.48

EC for V 1/r
K 4.11 4.33 4.61 4.60 4.73 4.74 4.95 5.42 5.03 5.97 6.02 6.42 7.27

NTRU Prime fields

δ0 0.15 0.12 0.08 0.07 0.05 0.04 0.04 0.03 0.3 0.02 0.02 0.02 0.01
δ 1.05 1.06 1.09 1.10 1.13 1.16 1.14 1.72 1.20 1.17 1.29 1.24 1.32

EC for V 1/r
K 3.20 3.38 3.30 3.24 3.26 3.78 3.05 2.83 2.38 2.85 3.99 3.14 4.10

Cyclotomic fields Q(ζp)

δ0 1.12 1.13 1.14 1.15 1.16 1.17 1.17 1.18 1.19 1.20 1.21 1.20 1.22
δ 1.14 1.17 1.22 1.22 1.26 1.25 1.26 1.31 1.30 1.31 1.34 1.36 1.32

EC for V 1/r
K 3.94 4.43 5.07 5.33 5.73 6.21 6.12 6.28 6.69 6.89 6.89 6.57 7.64

Hermite factor: One can see in Table 5.11 that fields of all three types have
short smallest vector, especially NTRU Prime fields. Moreover their orthogonality
defect are similarly small, indicating that the basis obtained for the Log-unit lattice
is relatively well reduced. This is also supported by the fact that the values are
the same with LLL or BKZ20, which is why we present only one set of data. The
situation is very similar over Kummer fields of degree p2, cyclotomic fields of prime
conductor with higher degrees and power-of-2 cyclotomics as shown in Figure 5.6,
where the δ0 is plotted. Again there is only one plot because the values are not
modified by BKZ20. We can remark that the different plots for different types of
number fields look like the ones found in Figure 5.3.

Orthogonality defect: Now let us look at the orthogonality defect δ for high
degree number fields. We plotted the values obtained after LLL in Figure 5.7 and
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Figure 5.5: Median values of enumeration cost ECK plotted against r1 + r2 − 1
over Kummer fields of degrees p2 and p3, and over cyclotomic fields after BKZ20

reductions

Figure 5.6: Values of δ0 plotted against r1+r2−1 over Kummer fields of degrees
p2 and p3, and over cyclotomic fields after LLL reductions

after BKZ20 in Figure 5.8. One can notice that the only fields for which BKZ20 has
a significant impact are Kummer fields with degree p2, as it was the case for the
enumeration cost shown in Figures 5.4 and 5.5. This indicates that for these fields,
the basis of the Log-unit lattice obtained by our procedures is not well reduced, and
better reduction algorithms modify the basis. This is completely different from cy-
clotomic fields where the basis formed by cyclotomic units are massively orthogonal
and are not modified by reduction algorithms. We can also conclude from the values
for Kummer extensions of degree p3 that it is possible to obtain reduced basis of
Log-unit lattices which are not as orthogonal as over cyclotomic units, but are not
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reduced further by BKZ20.

Figure 5.7: Values of δ plotted against r1 + r2−1 over Kummer fields of degrees
p2 and p3, and over cyclotomic fields after LLL reductions

Figure 5.8: Values of δ plotted against r1 + r2−1 over Kummer fields of degrees
p2 and p3, and over cyclotomic fields after BKZ reductions



Chapter 6

Conclusion

6.1 Diagonally dominant matrices

In Chapter 3 we explored the possibility of building an encryption based on diago-
nally dominant matrices, inspired by the signature scheme DRS [83]. To show that
a correct scheme could be constructed, we studied λ1 for c.d.d. and r.d.d. matrices
and exhibited a lower bound. Moreover we showed that one could construct algo-
rithms running in polynomial time and solving GDDγ for γ depending on the noise
matrix of the diagonally dominant matrix considered. From these, one can deduce
an upper bound on the covering radius of diagonally dominant lattices.

Even if the cryptosystem DRE that we gave as an example of scheme using diag-
onally dominant matrices is correct, much work is left to be done. In particular, the
security of such a cryptosystem needs to be assessed. Moreover, the algorithms that
we described are not proven to be efficient in their current form. Therefore, a more
in-depth study of these algorithms with implementation work have to be undertaken
if one hopes to obtain acceptable enough efficiency.

6.2 Computations in number fields

We studied practical improvements for two tasks in Chapter 4.

We first studied two different methods to compute the norm of an ideal I relative
to an extension of number fields L/K. The first one is certified to run in polynomial
time when the Galois closure of the extension is small enough. It computes the
norm as the product of all conjugates of the ideal I. Even if one can hasten the
computations by checking at some points during the process if the norm has been
reached, it is still not very efficient because of the size of the matrices handled. The

158
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second method that we studied is only heuristic and probabilistic. We were not able
to find an upper bound on its running time. However, it behaves very well in prac-
tice and outperforms both our first method and the implementation of MAGMA [22].

The second task that we studied is the computation of polynomial roots in num-
ber fields. We described a method which can be linked to the paper originally
describing the LLL algorithm [63]. It computes the roots of a polynomial through
approximations of conjugates. We showed that this method runs in heuristic poly-
nomial time. Moreover we described how to take advantage of the structure of
an extension L/K in order to do a decoding phase with respect to K instead of L.
Moreover we made several heuristic observations allowing us to speed-up both meth-
ods. Finally, experimental data shows that the absolute method can be competitive
with PARI/GP [76] in some cases, and that the relative offers great speed-ups when
the relative degree [L : K] and the degree of the polynomial that we study are small.

Further improvements can be explored. Regarding the computation of ideal
norms, one should find an upper bound on the running time of our probabilistic
method. Then concerning the extraction of polynomial roots, one could try to im-
prove the classical method implemented in PARI/GP. One could find a heuristic way
of evaluating the volume needed to ensure the correctness of the decoding, as we
did for the precision of our method. Moreover, finding a way of using the structure
of an extension such as we described could improve massively the running time of
this algorithm. Our methods could be more efficient by using Babaï’s nearest plane
algorithm to solve BDD instead of Kannan’s as we described.

6.3 Real Kummer extensions

In Chapter 5 we studied some real Kummer extensions, namely number fields of the
form L = K( p

√
m1, . . . , p

√
mr) with K = Q or K = Q( q

√
n1, . . . , q

√
ns), where p, q are

prime integers. Our goal was to assess the possibility of solving the SPIP through
the Log-unit lattice. To this end, we generalised the work of Bauch et al. done
over multiquadratic fields [6]. In particular we showed that general real Kummer
fields enjoy similar properties to multiquadratic fields, which can be exploited to
design efficient algorithms computing the unit group and solving the PIP over these
fields. Our implementation of these algorithms allowed us to try to solve the SPIP
in practice over some real Kummer extensions. Experimental data showed that the
probability of success is very high over most of fields studied. However some fields
seem to be more resistant, namely fields of the form Q( p

√
m1, p
√
m2) with small m1

and m2 (especially m1 = 2 and m2 = 3). Moreover, we studied the geometry of the
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Log-unit lattice of these real Kummer fields and compared it to the one of cyclo-
tomic fields. We were able to highlight the fact the geometries are really different.
In particular, the basis of Log(O×K) computed by our algorithms are far from orthog-
onal, which is completely different than for cyclotomic fields. Our work indicates
that the structure of the Log-unit lattice can be different from one number field to
another. In particular, the SPIP is more difficult to solve over some real Kummer
fields than over cyclotomic fields. Consequently, such fields could be an alternative
to cyclotomic fields when building cryptosystems based on structured lattices such
as ideal lattices or module lattices. Another fact that our work highlights is the
importance of studying large degree number fields. Indeed, we were able to detect
that fields of the form Q( p

√
2, p
√

3) had different properties than other Kummer fields
only because we computed data for degree larger than 120.

The first direction that we could explore further would be to build and cryptanal-
yse a cryptosystem based on the hardness of solving the SPIP over Kummer fields.
Then one could implement algorithms solving the ISVP [79, 9] over such fields, and
compare the quality of the output compared to cyclotomic fields. Finally, the work
of Biasse et al. [19] shows that other number fields enjoy a structure allowing us to
compute the unit group and solve the PIP more efficiently than with generic algo-
rithms. Implementing such algorithms could help in studying more number fields.
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Appendix A

Alternative structures for DRE

As we mentioned earlier, there are no better general results that the ones we already
provided as the bounds are reached in practice. However additional structures could
reach better bounds. We will explore some possibilities and their influence on the
length of the shortest vector and the covering radius.

A.1 All positive, all negative

This subsection considers the case where every mi,j is positive or negative.

Negative case

The negative case offers properties that are not necessarily useful by themselves,
but could help in the creation of novel structures for cryptography or in the general
understanding of diagonal dominant matrices.

Lemma A.1 (Shortest vector of the negative case). Let B be a c.d.d. matrix where
bi,j 6 0 for all i 6= j. Then v =

∑n
i=1Bi is a shortest non-zero vector of L(B).

Proof. vi = D − CN(B, i), thus reaching the minimal bound for shortest non-zero
vectors in every position.

The advantage of this lemma is to be able to use our worst-case assumption as
the general case, however as far as we are concerned we do not see a practical usage
for it.

Positive case

The positive case gives an interesting intuition for reduction algorithms: they give a
very attractive graphical intuition as every vector operation moves every coefficient
in the same “direction” (go up or down), i.e the vector’s coefficient interval range is
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guaranteed to be shrinking in each iteration until convergence.

As far as the length of the shortest vector is concerned, there is no guarantee it
will be higher than the minimal bound. In fact, the example below shows we can
reach the general bound:

Example. The matrix

D D − 1 0 0 0 0

0 D D − 1 0 0 0

0 0 D D − 1 0 0

0 0 0 D D − 1 0

0 0 0 0 D D − 1

D − 1 0 0 0 0 D


generates the vector [1,−1, 1,−1, 1,−1]

Some constructions with bounded noise coefficients and specific distributions can
force limitations on how small the shortest vector can be, however those are very
specific cases and it is unclear if we should expand on it in this paper.

A.2 Polarity-circular blocks

This section deals with matrices that have specific distribution on positive and
negative noise coefficients.

2× 2 blocks

Here we consider the case where the noise matrix M takes the following form:[
0 A

B 0

]

where every coefficient of A is strictly positive and B strictly negative. (A and B
can be reversed and are square). In that case, D > CN(M) > n/2 and the shortest
vector is large. In dimension 2, it is clear that the shortest vector is a vector of the
basis. In larger dimension, it is not that simple.

Lemma A.2 (Shortest vector of 2 × 2 sign-blocks). Let B ∈ Zn×n be c.d.d and as
described above. Then λ1(L(B)) > D.
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3× 3 blocks

Now consider the case where the noise matrix M takes the following form: 0 A12 B13

B21 0 A23

A31 B32 0


where every coefficient of Aij is strictly negative and Bij strictly positive (signs of
Aij and Bij can be reversed and are square). We assume further the following:

∀j ∈ J1, nK,
n∑
i=1

mi,j = 0.

Let us fix some notation. We will write:

• I = J1, nK;

• Ik = J (k−1)n
3

+ 1, kn
3

K for k ∈ {1, 2, 3}.

Lemma A.3. LetM = [mi,j] i∈J1,nK
j∈J1,nK

∈ Mn(Z) a c.d.d. matrix with a structure such as
defined above and n ∈ 3N, and three different values k1, k2, k3 ∈ {1, 2, 3}. Consider
l ∈ {−1, 0, 1}n \ {0} such that li > 0 for all i ∈ Ik1 or li60 for all i ∈ Ik1. Then the
following statements are true.

(i) (∀i ∈ Ik1 ∪ Ik2 , li = 0) =⇒ ‖lM‖∞ > D ‖l‖∞; (same for Ik1∪Ik3 and Ik2∪Ik3).

(ii) ∃k ∈ {k2, k3} | ∀j ∈ Ik, lj = 0 =⇒ ‖lM‖∞ > D.

(iii) ∀k ∈ {k2, k3},∃ik ∈ Ik | lik 6= 0 =⇒ ‖lM‖∞ > D − CN(M)
2

+ 1.

Proof. Without any loss of generality, we can assume that li > 0 for all i ∈ I1 and
mij > 0 for all (i, j) ∈ I2 × I1. The sign matrix of M is as follows:0 − +

+ 0 −
− + 0

 .
The first statement is clear. Now let us prove statement 2.. It corresponds to proving
Lemma A.2. Without loss of generality assume lj = 0 for all j ∈ I3 (i.e k = 3). If
there is j ∈ I2 such that lj < 0, then since li > 0 and mi,j 6 0 for all i ∈ I1, we have

(lM)j = −|lj|D −
n/3∑
i=1

li|mi,j| 6 −D − 1,
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thus ‖lM‖∞ > D. If lj > 0 for all j ∈ I2 then ‖(lM)i‖∞ > D for all i ∈ I1.
Let us now prove (iii). Following the same reasoning as before, one can see that if
li2 < 0 then

(lM)i2 = −|lj|D −
∑
i∈I1

li|mi,j|+
∑
i∈I3

limi,j 6 −D − 1 +
∑
i∈I3

limi,j < 0

thus |(lM)i2| > D + 1− CN(M)
2

. Similarly if li3 > 0 then |(lM)i3| > D + 1− CN(M)
2

.
Finally if li > 0 for all i ∈ I2 and li 6 0 for all i ∈ I3 then ‖lM‖∞ > D and (iii) is
true.
Since all of the above can be adapted to the cases where li 6 0 for all i ∈ I1, or
where we replace I1 by I2 or I3 we proved that if there is k ∈ {1, 2, 3} such that all
of the coefficients li with i ∈ Ik have the same sign, then ‖lM‖∞ > D− CN(M)

2
.

Lemma A.4. Let M ∈ Mn(Z) with a structure such as defined above and n ∈ 3N.
Then for l ∈ {−1, 0, 1}n, v = lM has ‖v‖∞ ≥ min{D− CN(M)

2
, D−CN(M)+ n

3
+2}.

Proof. The previous lemma dealt with the case where ∃k ∈ {1, 2, 3} such that
∀i ∈ Ik, li > 0 or ∀i ∈ Ik, li 6 0. Now assume the following:

∀k ∈ {1, 2, 3},∃(ik, jk) ∈ I2
k , (lik > 0) ∧ (ljk < 0).

Remark that it implies n > 6. With no loss of generality, let us fix k = 1 and define

A = {i ∈ I2 | li > 0} and B = {i ∈ I3 | li 6 0}

First assume that |A| > n
6
and |B| > n

6
. Then we have

(lM)i1 = D +
∑
i∈A∪B

|limi,i1| −
∑

i∈I2∪I3\A∪B

|limi,i1|

> D + 2− 2(
CN(M)

2
− n

6
)

> D − CN(M) +
n

3
+ 2.

Now assume |A| 6 n
6
and |B| 6 n

6
. Then similarly as before we obtain

(lM)j1 = −D +
∑
i∈A∪B

|limi,j1| −
∑

i∈I2∪I3\A∪B

|limi,j1| 6 −D + CN(M)− n

3
− 2.
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Finally, assume |A| > n
6
and |B| 6 n

6
. This means that |I3 \B| > n

6
so we obtain

(lM)j1 = −D +
∑
i∈A∪B

|limi,j1| −
∑

i∈I2∪I3\A∪B

|limi,j1|

6 −D − 1− n

6
+ (

CN(M)

2
− 1) + (

CN(M)

2
− n

6
)

6 −D + CN(M)− n

3
− 2.

The case #A > n
6
and #B < n

6
follows a similar reasoning.

Finally, using Theorem 3.2 one can deduce from the results over l ∈ Zn with
‖l‖∞ = 1 a lower bound for λ1.

Corollary A.1. Consider M a c.d.d. matrix by blocks as described above. Then it
verifies λ(∞)

1 (L(B)) > min{D − CN(M) + n
3

+ 2, D − CN(M)
2
}.

Note that those bounds are reached in the very worst case, and we present below
an example that was built to reach the bound.

Example. Set D = 19, CN(M) = 18, n = 6. This gives λ(∞)
1 > 5. Consider the

matrix

M =



D 0 −1 1− β
2

1 β
2
− 1

0 D 1− β
2
−1 β

2
− 1 1

β
2
− 1 1 D 0 −1 1− β

2

1 β
2
− 1 0 D 1− β

2
−1

1− β
2
−1 β

2
− 1 1 D 0

−1 1− β
2

1 β
2
− 1 0 D


=



19 0 −1 −8 1 8

0 19 −8 −1 8 1

8 1 19 0 −1 −8

1 8 0 19 −8 −1

−8 −1 8 1 19 0

−1 −8 1 8 0 19


and l =

[
−1 1 1 −1 −1 1

]
. This gives v = lM =

[
−5 5 5 −5 −5 5

]
which has a norm of 5.

Note that unlike the example above, for large dimensions (and large diagonal value
D) it is very unlikely that the maximum noise with absolute value (CN(M)

2
− n

3
+ 1)

is picked for uniform distributions. Bounding the maximum noise coefficient will
further increase the minimum possible length of the shortest vector.



Appendix B

Proofs of some result on dihedral
groups

Here we consider a prime p, t a generator of the multiplicative group F∗p and the semi-
direct product G ∼= 〈τ, σ | τ p−1 = σp = 1, τστ−1 = σt〉. Recall that for any u ∈ 〈σ〉
and any a ∈ J0, p− 1K one has τauτ−a = ut

a so any element of G can be written in
the form τaσb or σcτ d for some a, b, c, d. Remark further that if g =

∏
i τ

aiσbi ∈ G
then the corresponding a and d are equal to

∑
i ai.

Lemma B.1. The subgroups of G are of the form 〈τa, σ〉 with a ∈ J0, p − 2K or of
the form 〈τaσb〉 with a ∈ J1, p− 2K and b ∈ J0, p− 1K

Proof. Consider a subgroup H = 〈g1, . . . , gr〉 = 〈τa1σb1 , . . . , τarσbr〉 with (ai, bi) ∈
J0, p− 2K× J0, p− 1K. First assume τ ∈ H. Then one can write H = 〈τ, σb1 , . . . , σbr〉
i.e. H is either 〈τ〉 or 〈τ, σ〉. Now assume σ ∈ H instead. Then H = 〈σ, τa1 , . . . , σar〉
and there is d ∈ J0, p− 2K such that H is 〈τ d, σ〉. Finally assume that neither τ nor
σ belongs to H. One can see that for i 6= j two integers in J1, rK

(ai = aj) ∧ (bi 6= bj) =⇒ ∃b 6= 0 | σb ∈ H =⇒ σ ∈ H

from which we deduce

∀(i, j) ∈ J1, rK, i 6= j =⇒ ai 6= aj.

Let d = gcd(a1, . . . , ar). Using Bézout’s identity one can see that there is b ∈
J0, p − 1K such that τ dσb is an element of H. Let us show that H is in fact equal
to 〈τ dσb〉. Consider i ∈ J1, rK and write hi = (τ dσb)

ai
d . There is ci ∈ J0, p− 1K such

that hi = τaiσci . Following a previous reasoning we conclude that hi = gi. This is
true for all i ∈ J1, rK so H = 〈τ dσb〉.

Lemma B.2. The subgroups of G of the form 〈τaσb〉 with (a, b) ∈ J1, p−2K×{0, 1}
have order o(τa) = o(ta).
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Proof. Given an integer k one has (τaσb)k = σeτak with

e = bta + bt2a + · · ·+ btka = bta
1− tka

1− ta
.

thus

σeτa = 1 ⇐⇒ (ak ≡ 0 mod (p− 1)) ∧ (e = bta
1− tka

1− ta
≡ 0 mod p).

Then remark that one has also

ak ≡ 0 mod (p− 1) =⇒ tak = 1 mod p =⇒ e ≡ 0 mod p.

Lemma B.3. The subgroups of G with order p − 1 are the p groups of the form
〈τσb〉 with b ∈ J0, p− 1K.

Proof. A subgroup of G of order p− 1 does not contain σ so it is necessarily of the
form 〈τaσb〉. Since o(τaσb) = o(τa) one has

o(τaσb) = p− 1 =⇒ 〈τa〉 = 〈τ〉

therefore there is c ∈ J0, p− 1K such that τσc ∈ 〈τaσb〉.
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