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Abstract

Lattice-based cryptography is an excellent candidate for post-quantum cryptogra-
phy, i.e. cryptosystems which are resistant to attacks run on quantum computers.
For efficiency reason, most of the constructions explored nowadays are based on
structured lattices, such as module lattices or ideal lattices. The security of most
constructions can be related to the hardness of retrieving a short element in such lat-
tices, and one does not know yet to what extent these additional structures weaken
the cryptosystems. A related problem — which is an extension of a classical prob-
lem in computational number theory — called the Short Principal Ideal Problem
(or SPIP), consists of finding a short generator of a principal ideal. Its assumed
hardness has been used to build some cryptographic schemes. However it has been
shown to be solvable in quantum polynomial time over cyclotomic fields, through
an attack which uses the Log-unit lattice of the field considered. Later, practical

results showed that multiquadratic fields were also weak to this strategy.

The main general question that we study in this thesis is

To what extent can structured lattices be used to build a post-quantum

cryptography?

Such a question encompass two dimensions: practicability and security. To study

this general question, one can follow several directions.

1. Study algebraically structured lattices such as ideal lattices, especially in terms

of security.

2. In case algebraically structured lattices reveal themselves to be problematic,
study lattices based on structures which cannot be linked to algebraic or arith-

metical constructions such as number fields.

3. Improve computations over number fields, to help following the previous di-

rection especially in a practical point of view.

We follow these main ideas, and this thesis is as follows.

v



We study the possibility of constructing an encryption scheme based on matrices
called diagonally dominant matrices. The structure of these matrices is based on
standard linear algebra properties. It is not linked to an underlying algebraic con-

struction such as a polynomial ring or a number field.

We follow the first direction by studying the SPIP over some real Kummer exten-
sions, and generalise the work done over multiquadratic fields. We show that these
fields have a structure which allowsus to compute their unit group and retrieve a
generator of a principal ideal efficiently. Our implementation of these algorithms
allows us to evaluate in practice the possibility of solving the SPIP through the
Log-unit lattice. We are also able to study the geometrical properties of the situa-
tion and compare it to the one over cyclotomic fields. In particular we are able to
exhibit a subfamily of Kummer fields over which solving the SPIP is more difficult
than over cyclotomic or multiquadratic fields. Our work also highlights the need of
considering large degree number fields to be able to draw meaningful conclusions

from practical results.

To study Kummer fields, we need to design and implement efficient algorithms.
It was particularly necessary to study number fields of degree as large as possible.
To this end, we develop practical algorithms to compute two important tasks over
number fields: computing norms of ideals relative to an extension, and computing
roots of polynomials. In both cases, we study certified algorithms running in poly-
nomial time, and heuristic algorithms allowingfaster computations. We compare the
efficiency of our implementations with the methods implemented in the softwares
MAGMA or PARI/GP, and show that we obtain speed-ups for both tasks.
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Chapter 1

Introduction

1.1 Cryptography: history and context

History of cryptology

The word cryptology etymologically means “knowledge of secret”, and designates the
science dealing with secure data communication. It can be divided in two subcate-
gories. First is cryptography which is the study on how to hide information, how to
build processes — called cryptosystems or schemes — allowing data to be exchanged in
a secure way. The cryptanalysis is the part of cryptology which deals with analysing
said constructions to determine up to which point they are secure.

Cryptology has a long history. Indeed, one of the most famous cryptosystems is
Caesar’s cipher used by Julius Caesar which is a shift cipher where each letter in
a text is shifted by a fixed number of ranks in the alphabet. More recently one
can cite the example of Enigma, the machine used by the German army during
WWII to encrypt data. The underlying scheme was notoriously broken by a team
assembled by the British military force which included a father of computer science,
Alan Turing.

Despite this long interest in secure communication, cryptology truly became a
science during the twentieth century with its mathematical conceptualisation intro-
duced by Shannon in 1975. Nowadays, it lives a massive boom with the numerical
revolution. Indeed, we use remote communication and online transactions daily. A
few examples of such tasks are using our mobile phone, secure e-mails, or contactless
payment. As individuals, we need these exchanges to be done in a secure way, i.e.
such that nobody can eavesdrop or steal our identity.

The advances in computer science and numerical technologies allows us to com-
municate among each other way faster than humans used to, but it also brings some
downsides. One of them is the possibility of malicious entities collecting data with-

out individual consent. Thus a developed cryptography publicly available is needed
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in order to allow individuals to hide and protect data as much as possible.

Modern cryptography

Modern cryptography is usually separated into two types. The first is called secret
key cryptography or symmetric cryptography, and corresponds to the cryptography
which has been used historically. In secret key cryptosystems, two people wishing
to communicate safely have to agree on a secret key which will allow them to both
encrypt and decrypt the information they will exchange. They have to be the only
ones to know the key, which is then secret to the outside world, especially to ma-
licious entities. However, to agree on a key, they need to meet or go through a
trusted third-party. These constraints are not compatible with our everyday use of
cryptography.

The second type is called public key cryptography or asymmetric cryptography, and
is relatively recent since it was introduced in 1976 by W. Diffie and M. Hellman [36].
With such schemes, if one entity wishes to be able to receive secure communications,
it generates a secret and a public key and publicly reveals the public key. This way,
anyone can encrypt data using it, and only the secret key holder is able to decrypt.
Note that such a cryptosystem allows two parties to securely exchange a key for
later use in a secret key cryptosystem. Generally speaking, the security of public
key protocols rely on the supposition that some underlying mathematical problem
is hard to solve. The most common problems are integer factorisation as in the
RSA protocol [88] and discrete logarithm [36]. Despite extensive research, the best
classical algorithms solving these problems are subexponential in the size of the
entry. They are also widely used because of their simplicity and efficiency. These

qualities are essential for an everyday usage of cryptography.

Post-quantum cryptography

However the security of public-key cryptography is now under threat from a rela-
tively new tool, namely quantum computers. They follow different laws of compu-
tation than classical computers — that are called quantum computing — and they
can solve efficiently some mathematical problems that we still do not know how to
solve with a classical computer. In particular, P. Shor proved in its breakthrough pa-
per |95] that a quantum computer can solve in polynomial time the factorisation and
the discrete logarithm problems. Until recently we could still consider schemes based
on these problems to be safe since we are not yet successful in building such a quan-
tum computer. However the progress made in the last decades led the U.S. National
Security Agency (NSA) to declare in 2015 that it considered quantum computing

as an upcoming threat. It also called for a change in the orientation of research to
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focus on developing a cryptography which could be resistant to quantum computers,
and that is commonly called post-quantum cryptography [10]. Subsequently the U.S.
National Institute of Standards and Technology (NIST) announced in 2016 a call for
standardisation for post-quantum cryptography [1], which is at the time of writing
in its Round 3.

Lattice-based cryptography

Several techniques have been considered to build a post-quantum cryptography
upon. Among them are error-correcting codes, multivariate polynomials, hash-
functions and Euclidean lattices [10]. The last one is among the most popular
options. To give an idea, five of seven of the final candidates for Round 3 of the
NIST process are based on lattices.

A Euclidean lattice is a discrete subgroup of R™. It can always be described as
the integral linear combinations of a set of linearly independent vectors (by,...,b,),
which is called a basis of the lattice. The classical problems on lattices are the
Shortest Vector Problem (SVP) which consists of finding a non zero lattice vector
with minimal norm and the Closest Vector Problem for which, given a vector t
of R™, one has to find the vector closest to ¢ in the lattice. These problems are
known to be NP-hard over random instances [2, |39]. Usually in cryptography, one
is more interested in their approximate versions. Hence the following definition of
the approximation problems. The vy-approzimate Shortest Vector Problem (SVP.)
consists of finding a lattice vector whose norm is smaller than + times the minimal
norm of a lattice vector. The y-approzimate Closest Vector Problem (CVP.,) consists
of finding a lattice vector which is at a distance to ¢ smaller than v times the distance
of t to the lattice. The complexities of SVP., and CVP,, decrease when 7 is increasing,
going from NP-hard for constant v to P for 7 exponential in the rank of the lattice.

The complexities mentioned are true over random lattices, which is mostly not
the case of lattices used in cryptography. One typically wants a trapdoor to exist in
order to be able to decrypt. In cryptosystems based on lattices, the private key is
generally a “good” basis, i.e. composed by relatively short vectors which are almost
orthogonal to each other. The public key is then a “bad” basis, for example the
Hermite Normal Form (HNF) representing the lattice. The private key then allows
to decrypt efficiently and the security of the scheme relies on the assumed hardness
to retrieve a good basis from the bad one.

The drawback of general lattices is their efficiency, which is an important parame-
ter for public key cryptography. They are represented by matrices therefore both the
storage and the computation cost are expensive. In order to cope with this, one can
use special lattices with an extra algebraic structure. Several cryptosystems based

on different structures have been proposed and studied over the years. One can cite
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the work of C. Gentry [45] for a fully homomorphic scheme, of N. Smart and F.
Vercauteren [97], the NTRU cryptosystem [54], and the more recent Ring-Learning
With Errors (RLWE) [66] or Module-Learning With Errors (MLWE) [61} 23]. The
two first schemes consider lattices which are also principal ideals of a number field.
Their security relies on the supposed hardness of retrieving a short generator of
said ideal. This problem is called the Short Principal Ideal Problem (SPIP).The
RLWE and RSIS primitives are based on ideal lattices and their security is linked to
the SVP problem restricted to such lattices, i.e. the Ideal Shortest Vector Problem
(ISVP). Finally the NTRU, MLWE and MSIS primitives rely on module lattices.
The hardness of the two last can be linked to the one of the SVP restricted to them
namely the Module Shortest Vector Problem (MSVP). Module lattices are lattices
represented by block matrices such that each block is a basis matrix of an ideal

lattice.

1.2 Goal and organisation of the research and thesis

General questions and directions

The main question that we consider regarding lattices and post-quantum cryptog-

raphy is the following.

“Determine to what extent structured lattices can be used to build a

post-quantum cryptography.”

The first direction that one can follow to answer this question would be the fol-

lowing.

“Study algebraically structured lattices such as ideal lattices or module lattices,

especially in terms of security.”.
Then one can consider a second direction.

“Consider less structured lattices — which cannot be linked to an underlying
algebraic structure such as a number field — and explore the possibility of building

efficient schemes.”.

Main objectives of the thesis

Regarding the first direction — which is the one mostly followed by the community —
even though most of propositions discussed nowadays such as the candidates to the
NIST process use the more complex structures (module lattices) it is still important
to study the Short Principal Ideal Problem. First the SPIP is a classical problem

in computational number theory [31], and is interesting in itself. Secondly, even
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though it is simpler than the ISVP, these two problems are linked. In particular,
the SPIP is an intermediate task in some algorithms to solve the ISVP [9, 33} [79].
Then the techniques used to analyse this problem could be extended to analyse the
ISVP. One could determine if some of the structures are weaker than others. Finally,
as we mentioned, some cryptographic constructions rely directly on the supposed
hardness of the SPIP.

A generic way of solving the SPIP is done in two steps. First find a generator of
the ideal, then reduce this generator to recover a short generator. The first step can
be done in quantum polynomial time 13|, while the best classical algorithms run in
subexponential time [31]. Moreover one can rewrite the second step as a reduction
phase with respect to a lattice depending only on the chosen number field K, namely
the Log-unit lattice of K. This lattice can also be computed in quantum polynomial
time [38]. Thus, from a post-quantum perspective, the only interrogation is whether
the second step can be carried out, i.e. if a given lattice problem can be solved. This
strategy has been mentioned by Campbell et al. in [26]. Cramer et al. showed it
can be efficiently and successfully performed over cyclotomic fields [34], then Bauch
et al. studied multiquadratic fields and exhibited efficient classical (as opposed to
quantum) algorithms allowing them to retrieve a generator of principal ideal with

high probability [6].

Therefore, we focused on studying the SPIP for the reasons mentioned above, and

more precisely we fixed the following goal.

G1: “Determine to what extent the choice of number field influences the success of

a recovering a short generator from another generator”.

Moreover we believe that since it can be difficult to analyse number theoretical
problems; it is important to be able to do efficient computations. This way, we could
study how some algorithms — which can be computed in quantum polynomial time
— behave in practice. Finally, we aimed to study high dimensional number fields, i.e.
dimensions of interest in cryptography. Such dimensions are out of reach of generic
algorithms computing the main number theoretical objects that are needed for the

study of the SPIP. That is why we focus on our second goal.

G2: “Design and implement efficient algorithms allowing the study of high degree

number fields.”.

Real Kummer extensions For all these reasons we extended the work done over
multiquadratic fields to Kummer extensions of exponent p, where p is a prime integer.
In particular we designed algorithms to compute the unit group of such number

fields, retrieve a generator of a principal ideal and shorten it. We implemented
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these procedures in MAGMA [22] for real Kummer extensions of Q of exponent p,
i.e. generated by p-th roots of integers, and real Kummer extensions of Q with
two exponents — generated by p-th and ¢-th roots of integers where p and ¢ are
prime integers — in order to break the structure and discover if one can still solve
the SPIP with a good probability. Moreover our implementation allows us to study
the Log-unit lattice of these fields and classify them with respect to their security
level. In particular we were able to exhibit a class of fields — real Kummer fields of
dimension p? — over which the SPIP seems to be more difficult to solve than number
fields already studied.

Faster computations in number fields Then as mentioned, part of the work is
to improve computations over number fields to be able to handle high dimensions.
During our study of Kummer extensions we had to design a procedure to compute
p-th roots in these fields. It is inspired by an application of the LLL algorithm men-
tioned in the original paper [63]. We then extended our method to the computation
of polynomial roots in number fields and compared it to the performance of the
generic algebraic algorithm of K. Belabas [7]. Comparisons are made over different
types of polynomials and number fields. Our implementation is in PARI/GP [76].
Another important task needed for our work on Kummer extensions is the compu-
tation of relative norms of ideals. We implemented two simple algorithms, one of
which is inspired by algorithms of Cohen [31]. We compare their performances to
the procedure implemented in MAGMA.

Finally, we mentioned that it is unknown to what extent extra algebraic structures
can be used to solve problems over lattices, and that it is still important to consider

more general lattices. This leads to our third goal.

G3: “Study lattices without underlying algebraic structure to build efficient

encryption schemes.”.

Diagonally dominant matrices An example of scheme based on lattices without
a link to algebraic structures such as number fields is DRS [83]. It is a signature
scheme which uses diagonally dominant matrices. We studied such matrices and
showed that they can be used to construct an encryption scheme. In particular, we
design reduction algorithms which can be more efficient than using LLL if properly

implemented.

Organisation of the thesis

The rest of the thesis is organised as follows.
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— Chapter [2|is dedicated to the description of the background and preliminaries.

— Chapter [3| deals with our work on diagonally dominant matrices and the ex-

tension of the DRS signature scheme to DRE encryption scheme.

— We describe in Chapter (4] the improvements we developed for computational

tasks in number fields.

— We then develop our work on Kummer extensions in Chapter[5l It corresponds
to the paper [64].
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Chapter 2

Background and preliminaries

2.1 Notations and recalls

First let us mention that vectors are considered to be row-vectors throughout this

thesis.

e For any p € N* U {oo}, we denote classically the [, norm on R™ to be [,(z) =

/>y |zi|P if pis an integer and [,(x) = max{|z;| | i € [1,n]} if p = co. We

also denote [, by || - ||,

e Given (a,b) € Z* we will denote by [a,b] the corresponding segment of Z.
Concerning intervals, we follow the convention (common in french literature)
which uses only square brackets. As an example, [a, b] is the same as {x € R |
a<x<b}.

e Given a ring A and a matrix M in M,,,,(A), M; will designate the i-th row of
M. The matrix will be generally defined as M = [m; ;] icpi..p . When it is not
je1,m]
the case, the elements of M will be denoted by M; ;. ’

e Given a morphism o : A — B, and x an object which can be identified with
a vector of A", we will write 27 for the image of x under the action of o. In
particular if f(X) = fo+ -+ f,X™ € A[X] then f is the polynomial of
B[X] equal to o(fo) + -+ o(fn) X"

e Given A, B two rings and f(X) € A[X], we will denote by Zg(f) the set of
roots of f(X) which belong to B, i.e.

Zp(f) ={x e B| f(z) =0}

10
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Given A a ring and when it makes sense, we will write (by,...,b,) 4 for Ab; +

..., Ab,. When there is no ambiguity, we will simply use (by,...,b,)

Given S C R", we will write span(.S) for the minimal sub-vector space of R”

containing S.

Let G be a group and S C GG. We denote by (S) the subgroup of G generated
by S.

Given a function f : N — R, one defines O(f(n)) as O(f(n)|log f(n)|¢) for

some ¢ > 0.

Complexities are often expressed by mean of the L-notation. Given a variable

N and two constants « and ¢ with a € [0, 1] and ¢ > 0, Ly(«, ¢) is defined by

exp ((c + o(1)) log(N)*(loglog N)' ) .

Gram-Schmidt orthogonalisation

An important and classical computation in linear algebra is the Gram-Schmidt or-

thogonalisation (GSO). It allows transforming a free family of a vector space (with

a scalar product) into in an orthogonal family. The naive algorithm can be found
in Algorithm [1]

Algorithm 1 GSO

Require: A free family B = {by, .., b} of R” o
Ensure: A family B = {by,..,b,} with by = by and (b; | b;) = 0 for i # j

: B ~— B
:fori=1tordo
for j=1toi—1do
Ei — 62 — ({)Z | [Zj)i)j
(b; | by)
end for
end for
return B

Let B be a family represented by a matrix B, B the orthogonal family returned by

the GSO process and B its representative matrix. For any (i, j) € [1,7] x [1,n] one

(bilb;)

usually denotes by p;; the coefficient =% occurring in Algorith First remark

(b;1b;)
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that the process depends on the order of B. Then we have the relation

1 0
H2.1
B=|pz1 p32 1 B. (2.1)
. . 0
| Hr1 o fr2 oo o1 1

We will designate by GG the unnamed matrix above. We also consider that G can
be returned by Algorithm Moreover we will also denote by m; the orthogonal
projection onto (by,...,bi_1)g = (by,...,bi_1)&, the orthogonal supplement of the

sub-vector space spanned by the (i — 1)-th first elements of the basis.

Definition 2.1 (GSO). Given a basis B, we will call the basis B outputted by
Algorithm [I] the GSO of B.

2.2 Lattices

We refer the reader interested in more in-depth presentations on Euclidean lattices
to 69, [32].

2.2.1 First meeting with lattices

Definition 2.2. A Fuclidean lattice is a discrete subgroup of R” where n is a positive
integer. We say a lattice is an integral lattice when it is a subgroup of Z™ or rational
when it is in Q". A basis of a lattice L is a basis of £ as a Z-module. The cardinal

of said basis is called the rank of the lattice.

Notation. Given a matrix B we will write £(B) the lattice generated by its row

vectors.

Definition 2.3 (Span of a lattice). Let £ be a lattice generated by a basis B =
(b1,...,b.). We call span of L and write span(L) the vector space generated by 15,
i.e. <B>R = Rbl +---+ Rbr

As for vector spaces, a lattice has an infinite number of bases, at least when its
rank r is greater than 2. More precisely, consider r < n two integers, together with
B and B’ two matrices in M, ,,(R) which row vectors are independent. Then one

has
L(B)=L(B") < 3U € GL.(R) | B =UB.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 13

Figure 2.1: Two bases of the same lattice

This is illustrated in Figure where two bases of the same lattice of R? are
plotted.
There are invariants independent from the choice of the basis. They are mainly

geometrical parameters of the lattice.

Lemma 2.1. Consider a matriz B, U € GL,(R) and B' = UB. Then the following
equality holds: det(BBT) = det(B'B'T).

Definition 2.4. Consider a Euclidean lattice £ with basis matrix B. Then the
determinant of £, denoted by det(L), is the value /det(BBT).

Notation. The determinant of a lattice £ is also called its volume because it is the
volume of the fundamental domain defined by the vectors of one of its bases. Thus

it is also written vol(L).

Figure 2.2: Two bases, same volume

One can see in Figure 2.2] that the two bases define two different fundamental
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domains, which however have the same volume. These two geometrical situations
induce two different hardness of solving problems over the same lattice.
Dual lattice

Attached to any lattice is another lattice called the dual lattice.

Definition 2.5 (Dual basis). 1. Consider a free family B = (by,...b,) C R™
The dual family of B denoted by B" is the family (b),...,b/) C R" defined by

(i, 5) € [L,r[*, (b | b;) = b (2.2)

2. Given a lattice L = L(B), the dual lattice of L is the lattice generated by B".
It is denoted by LY.

Remark 1. Given a lattice £, it follows directly from Definition [2.5] that the dual
lattice verifies £LY = {x € R" | Vy € L, (z | y) € Z}. This characterisation can be

used as an alternative definition.
The dual lattice has special properties linked to the lattice.

Proposition 2.1. Let L be a lattice and B the matriz of a basis of L. The following

are true.

1. The matriz (BBT)™'B is the matriz of a basis of LY. When L is full-rank,

this matriz becomes B~T= (BT)~!,

2. det(ﬁv) = #(C)'

Hermite Normal Form

Despite an infinite number of bases, there is a canonical way of representing rational
lattices. The presentation will be done over integral lattices, but the results from the
last type can be used on the former. Given a rational lattice £, simply remark that

there is a minimal d € Z — called the denominator of £ — such that d£ is integral.

Definition 2.6 (Hermite Normal Form [31]). Consider H = [h;;](j) € Mmn(Q).
We say that H is in Hermite Normal Form (HNF) if there is r € [1,n] and a strictly
increasing map f : [1,7] — [1, n] which satisfy the following conditions.

1. For all 4y € [1,r],

hd hi07f(l'0) > 0;
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e for all i € [[1,m]] \ {i()}, hi,f(io) =0if7 > 10 and 0 < hi,f('io) < hio,f(’io)

otherwise.
2. The last m — r rows are equal to 0.

Remark 2. One important case is when m = n = r, so for all ¢ € [1,n], f(i) = 1.
Then H in HNF is an upper triangular matrix with non zero coefficients on the

diagonal.

One can show that any integral lattice basis is equivalent to a unique matrix in

Hermite Normal Form.

Theorem 2.1 (|31]). Consider M € M,, ,(Z). Then there are U € GL,,(Z) and a
unique H in HNF such that H = UM.

Definition 2.7. Given a lattice £ we will call Hermite Normal Form of £ or HNF
of £ the matrix H in HNF equivalent to a basis B of L. It is denoted by HNF(L).

The HNF of a basis is particularly useful for several computations on lattices. One
can use it to compare them (inclusion), solve linear systems, test if an element is
in a lattice [31] for example. Moreover it can be computed in polynomial time [58|,
and is still an active area of research [0, 65].

Because of these properties, the HNF of a full rank lattice is a good candidate for

a public key in lattice based cryptography [68].

Geometrical properties, size and volumes

As we will see later, important properties and problems over lattices are geometrical
ones. They essentially are about norms of vectors and volumes. Let us state some

results in order to set the overall context.
Definition 2.8 (Minima). Consider £ a lattice of rank . Then for any i € [1,r],
its 1—th minimum is

inf {R € Ry | dimspan(£ N B(0, R)) > i}

and is denoted by \;(L).

Remark 3. First, the first minimum A;(£) is the norm of a vector in £ \ {0} with
minimal norm. Then the definition depends on the choice for a norm. We mostly use

the standard Euclidean norm. If another /, norm is considered, the -th minimum
will be denoted by A% (L).

We can give a minimal bound of A; using the Gram-Schmidt orthogonalisation of

a basis we have at hand.
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Theorem 2.2. Let B = (b;)iei, be a basis of a lattice £. Then \y(£) > min{||b;] |
i€ 1,r]}.

Then one can analyse further the geometry to obtain approximate values on ;.

Theorem 2.3 (Minkowski’s convex body theorem [70|). Let L be lattice of R" of
rank r, and S a conver subset of R™ such that vol(S) > 2" - det L. Then there is
reLnS\{0}.

Now considering that an approximate value of the volume of a hyperball B,.(0, R)

is V.(R) ~ ﬁ(m)”/ 2R"™. one obtains the following approximation of ;.

r

Heuristic 2.1 (Gaussian heuristic). Given a lattice L of rank r, an approzimate
value for M\ (L) is

A (L) gauss = ,/2%3 x ¢/vol(L). (2.3)

Definition 2.9 (Hermite’s factors). The r-th Hermite’s factor is

2
7, = max { (\i\oll((i))) | £ is a lattice of rank 7"}

Another important value attached to a lattice is its covering radius.

Definition 2.10 (Covering radius). Let £ be a lattice of rank r. Then its covering
radius p(L) is defined as follows.

w(L) = max{d(z, L) | v € span(L)}

Alternatively one can define the covering radius as the minimal value R such that

the ambient space is fully covered by balls of radius R and centered in lattice points.

Remark 4. As it is the case for lattice minima, the covering radius depends on
the choice of norm. We will therefore denote the covering radius by p® when we

consider the norm [,,.

2.2.2 Hard problems on lattices

Let us now describe the major computational problems over lattices. We have
seen that questions arising when studying lattices concern short vectors. It is then

coherent that the first problem concerns the shortest one.

Definition 2.11 (SVP: Shortest Vector Problem). Given a basis B of a lattice £
of rank r, find u € £\ {0} such that ||u|| = A\ (L).
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The problem is NP-hard |2, 39] over general lattices. Usually in cryptography, one
does not need to find the shortest vector but a close approximation. How close that
approximation can be in practice is one of the central points of research in lattice-
based cryptography. Hence the following definition of the approximate version of
the problem.

Definition 2.12 (SVP,: v-approximate Shortest Vector Problem). Given a basis
B of a lattice £ of rank r and an approximation factor ~, find w € £\ {0} such that
[ul] <7 x A (L)

T A i T A

(a) SVP | (b) SVP,

Figure 2.3: SVP and SVP,

The second important problem on lattices is the Closest Vector Problem.

Definition 2.13 (CVP: Closest Vector Problem). Given a basis B of a lattice £
of rank r and ¢t € R", find u € £ such that Vv € L, ||t — u|| < ||t —v].

The CVP is also known to be NP-hard [39]. As there is an approximate version
of SVP, the same exists for CVP.

Definition 2.14 (CVP,: y-Approximate Closest Vector Problem). Given a basis
B of a lattice £ of rank r, an approximation factor v and ¢t € R", find u € L such
that Vo € L, ||t — ul| < v||t —v]|.

T A i T A

~
o~
ne

(é;) Ccvp | (b-) CVP,

Figure 2.4: CVP and CVP,
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The last problems that we will be interested in are the Bounded Distance Decoding

with it approximate version, as well as the Guaranteed Distance Decoding.

Definition 2.15 (BDD: Bounded Distance Decoding). Given a basis B of a lattice
L and a point x such that d(z, L) < A\ (B)/2, find the lattice vector v € L closest

to x.

Definition 2.16 (BDD.: y-Approximate Bounded Distance Decoding). Given a
basis B of a lattice £, a point = and a approximation factor v ensuring d(z, £) <
~vA1(B) find the lattice vector v € L closest to x.

In practice, one considers BDD,, for v < % This ensures that there is only one

lattice vector v satisfying d(z,v) < yA1(B).

One can remark that the BDD is a version of the CVP with the knowledge that
the target is close to the lattice. These problems depend on two parameters. First the
basis given as an input and second the approximation factor « for the approximate
versions. The complexity is decreasing when v increases, except for BDD,, which is
in fact harder. Moreover a better basis, i.e. with short vectors and relatively or-
thogonal one to each other allows the problems to be solved faster or up to a better

approximation factor.

A last problem close to the BDD is the Guaranteed Distance Decoding.

Definition 2.17 (GDD,,: y-Guaranteed Distance Decoding). Given a basis B of a
lattice £, any vector v in span(L£) and an approximation factor v, find w € £ such
that [|jw — v|| < v 1 (L).

Remark the differences between the BDD and the GDD. The vector given as input
of the latest can be any vector of the ambient space, not just the ones particularly

close to L.

2.2.3 Algorithms for lattices

We already saw that lattice problems are geometrical in nature, and that some of
a lattice’s properties can be linked to the GSO of a given basis. Moreover remark
that if £ = L£(B) with B being an orthogonal basis, then the problems can be easily
solved. Finally, intuitively if a basis B is composed by vectors globally more orthog-
onal to each other than the vectors of another basis matrix B’ are, then the vectors
of B will be globally shorter than the vectors of B’. This is due to the fact that

the volume of the fundamental domains defined by both bases are equal to vol(L).
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Therefore, given a basis it is natural to orthogonalise it as much as possible to solve
problems on lattices. Since it likely results in a basis with shorter vectors, we will

call such a process a reduction process or reduction algorithm.

First let us define a weak notion of basis reduction due to Hermite [51].

Definition 2.18 (Size-reduce). A basis B = (by,...,b,) of a lattice is said to be

size-reduced if its GSO satisfies the following condition:

1
Vi € [[1,7’]],V1 g] < iv',“i,j’ < 5
Geometrically speaking, if one recalls that p;; = (‘fg‘—""g), a size-reduced basis is
J
such that the projection of b; onto (by,...,b;_1)g is in the domain

11 i—1 R
2°2 jell,i—1]

One can find the simple algorithm computing a size-reduced basis in Algorithm 2]

which is essentially an approximation of the GSO algorithm (Alg. .

Algorithm 2 SizeReduce

Require: A free family B = {by,..,b;} of £ such that |u; ;| < 1/2 for all i # j , the
matrix G containing all j; j, an element b ¢ L.

Ensure: An element by, such that [y, ;| <1/2 fori#k+1

: bk+1 —b

. B,G « GS0(B)

3: fori=Fktoldo

[N

begr | bs
4: i1 < b1 — %w b;
5: Update G
6: end for
7. return BU {by41}, G

Theorem 2.4 (Complexity of size reduction). Consider B = (by,...,b.) CR" and
b € R", and denote by M = max{log, ||z|, | x € BU{b}}. Then one can compute
the output of Algorithm[3 in bit-complexity

O (rnM(rM)). (2.4)

Remark 5. When considering a full-rank lattice, i.e. » = n, and a classical com-
plexity for the multiplication — for example M (n) = O(n) — Equation (2.4) becomes

O(n>M).
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A first reduction algorithm: LLL [63]

A fairly natural way of reducing a basis would be to follow Algorithm [I] and replace
all coefficients p; ; by their closest integers. This way one could obtain a basis close
to the GSO of the starting matrix, i.e. which is size-reduced. In order to obtain
a polynomial time algorithm outputting a basis which is proven to be reduced for
varying dimension, one has to introduce a new reduction condition. This is the
result of the ground breaking work by A. K. Lenstra, H. W. Lenstra and L. Lovész
in [63]. They define a new notion of reduced basis, that is then called LLL-reduced.

Definition 2.19. Consider a lattice £ defined by a basis B = (by,...,b,) and
) E]%, 1[. Then B is called LLL-reduced with parameter § (or §-LLL reduced) if it

satisfies the following conditions.

1. Tt is size-reduced: Vi € [1,7],V1 < j <1, |p | < 3.

2. It satisfies the Lovdsz conditions:
Vi € [2,7], 6[|bir]] < 1B + piim1bia | = [10:l]% + gy || bis ||

Then the LLL algorithm shown in Algorithm (3| essentially consistsof applying
SizeReduce to new vector basis incrementally, verify if Lovasz condition is true and

continue if so. Otherwise we swap the two last vectors and reduce again.

Algorithm 3 LLL
Require: B, a basis of £ of rank r, and a constant E]}l, 1].
Ensure: B’, a §—LLL reduced basis of L.

1: 74 2

2: B« {bl}

3: while i <r do

4: B« (by,...,b_4)

5 B',G < SizeReduce(B', b;)

6 if Lovasz condition is satisfied for 9,7 then
T 141+ 1

8 else

9 Swap(b;, b;_;)
10: i ¢ max{2,i — 1}
11: end if

12: end while

13: return B
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Remark that each time the family is modified, one needs to update its GSO. It is
done in SizeReduce where the whole GSO is computed. However since at a given
step i, only b; and eventually b;_; (because of the swap) are modified only a few

coefficients need to be updated.

Theorem 2.5. Consider L a lattice of rank r, B = (by,...,b.) a §-LLL reduced
basis of L for § = 3/4, and B the GSO of B. Then the following properties are true.

1. det(L) < [Toy Ibsll < 270=D/ det (L)

2. Vi€ [1,7],V1 < § <, ||b;]| < 207972 1b]

3. ||by]| < 20D/ 3/det(L)

4. For any x € L\{0}, [|bu] <207D72 2.

5. For any free family (xy,...,zy) € £*, Vj € [1, k], ||b;]] < 20~Y/2 max{||z;]| |
i€ [1,k]}.

Theorem shows that a LLL reduced basis has good properties. It provides
upper bounds related to the norms of the basis vectors. In particular, one can
remark that the norm of shortest basis vectors cannot be too large compared to
A1(L). Indeed, the fourth point shows that the LLL algorithm solves in determin-

istic polynomial time SVP,, for v = 2r=/2,

Many improvements and versions
were developed since the original version of LLL. Among many others, one can con-
sider the use of floating-point arithmetic in order to hasten computations [73|, the
modification of the Swap operation called LLL with deep insertions |92} |42], or mod-
ifications which allow considering generating families which are not a basis of the

lattice [84].

Theorem 2.6 (Complexity of LLL [74]). Consider L = L(B) C R™ a lattice of
rank v, and M = max{log, ||b||, | b € B}. Then for input B, one can compute a
LLL-reduced basis of L in time complexity

O (r’n(r+ M)MM(r)). (2.5)

Remark 6. When considering a full-rank lattice, i.e. r = n, and a classical com-
plexity for the multiplication — for example M (n) = O(n) — Equation (2.5) becomes

O ((n® +n*M)M).

Enumerating short vectors

In order to solve the exact SVP or CVP, one can use enumeration techniques. It

was first suggested by Pohst [85] in 1981, and other versions were then developed by



CHAPTER 2. BACKGROUND AND PRELIMINARIES 22

Kannan or Fincke and Pohst [56, 41| for example. We will present how to enumerate
all short vectors to solve the SVP. Then the ideas can be extended to solve the CVP.

In order to find a shortest vector in a lattice, one could go through all lattice
vectors and recall which one is the shortest. Obviously, we need bound the space of
vectors that we will enumerate. Let us explain how one can do this. First consider
a lattice £ given by a basis B = (b1,...,b.). We will again use the GSO of B in
order to bound the norm of vectors we are interested in. Recall from Equation ([2.1)

one has

i—1
Vi € [[1, ’I"]], bz = l;z + Z;ui,j[;j
Thus by inverting these relations, given v = »;_, v;b; € L, one obtains
V= Z (vz + Z vj,uﬂ> ~z~.
Jj=i+1

Therefore, if we denote by @; the i-th coefficient of v expressed in B, it is easy to

see that one has

2

Yk e [1,r], |me(v Zm (2.6)

l

_ Z ( ' Z M)

i=k =i+1

Now if we fix a bound R, we will be able to enumerate vectors v such that ||v|| < R
using Equation (2.6). Indeed one has

I B = R’ > |m@)]” 2 [lm@)]” = - = |Im)|”
which gives the equations

2

b|| <R (2.7)

Vk e [1,7], Z (vl—l— Z v]p,],)

Jj=i+1

Then the algorithm works as follows. Equation 1} with k& = r gives v? < ﬁ.

The algorithm enumerates through all possible values for v,. Then for a fixed value

v, one has
2

2
(Urfl + vr,ur,rfl)2 brfl < R2
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which gives an interval where v,_; lies:

2 2

2 2|7
R% —v2 (b,
- /U’I‘,LL’V‘,'I‘—I < UT‘—I < — - ,UT'/JLr,'r'—l-

br—l

by

2 _ 42
R? —v?

br—l

Thus the algorithm can enumerate v,_; in this interval, and using all conditions in
Equation (2.7)) allows finding bounds for all coefficients of v which depend only on
the norms of the GSO vectors, the Gram-Schmidt coefficients p; ; and the radius
R. This process can also be seen as a search through a tree, where the nodes are
vectors, levels correspond to the spaces m,_;11(£) and the children of a node v at
level i are the vectors in the next space m,._;(£) which are projected onto v when

applying m._; 1. At each level the number of nodes are given by the bounds obtained
by Equation (2.7]).

Theorem 2.7. Let L be a lattice given by a basis B = (by,...,b.), R € R, and
v € L such that ||v]] < R. Define also the following quantities,

21 112
R? — Zj:i+1 (Uj + Zk:jJrl Nk,jvk) b

b

Vie[l,r—1],C;:=

Then the coefficients of v satisfy the following inequalities,

Vie[l,r—1],-C; — Z Vi < v < O — Z Vg

Jj=i+1 J=i+1

The enumeration technique can be found in Algorithm [4]

Algorithm 4 The Enumeration Algorithm for SVP

Require: B = (by,...,b,) a basis of a lattice £
Ensure: v =), v;b; such that v = \(£)
1: while There is still unexplored nodes do
2: if current node has ||(0,...,0,v;,..,v,)|| < R then
3 Go down in the tree, explore all possibilities for v;
4: else
)
6

Remove the node, go up a level, search another node
end if

7: end while

8 return B

The complexity of an enumeration algorithm like Algorithm 4] is exponential. To
achieve better running time, one usually reduces the basis first, by LLL for example.

Indeed one obtains a bound R on A{(£) by considering the norm of the shortest
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vector of the basis.

In order to speed-up the computations, one can use a modification called pruning,
first suggested by Schnorr and Horner [93|. It consistsof excluding parts of the tree
where the probability of finding the shortest vector is very low. Thus enumerating
over the remaining nodes gives a heuristic algorithm which is not guaranteed to find

a shortest vector. However the vector returned will still be reasonably short.

HKZ reduction

As we saw, a LLL-reduced basis can be obtained in polynomial time and have
relatively good properties. However, since the approximation factor obtained with
such basis is exponential in the rank, one can consider that LLL is somehow a weak
reduction. In order to obtained strongly reduced bases, one needs a better condition

than Lovész condition.

Definition 2.20 (Hermite-Korkine-Zolotarev reduction |60]). Consider B a basis of
a lattice of rank r. Then B is Hermite-Korkine-Zolotarev reduced or HKZ reduced
if it satisfies the following conditions.

1. Tt is size-reduced.
b;

2. For all i € [1,r], = A (m(L)).

As LLL reduced bases, HKZ reduced bases enjoy nice geometrical properties. In

particular they allow good approximations of the successive minima to be obtained.

Theorem 2.8. Let B = (by,...,b,) a HKZ reduced basis of a lattice L. One has

. 4 i \° _i+3
1 < < .
We[[’r]]’i—l—?) ()\i(ﬁ) 1

Remark 7. HKZ-reduced bases are LLL-reduced.

Using an oracle O which solves SVP, we can obtain Algorithm [5|— called the KZ
algorithm — which computes a HKZ-reduced basis of a lattice.

Since Algorithm [5] calls an oracle to solve SVP instances, its asymptotic complex-
ity is exponential. Thus it cannot be used for high dimensions. However it can be
called in other processes to reduce blocks of a given basis, allowing the algorithms
to achieve acceptable trade-off between complexity and quality of the reduction. Fi-
nally Algorithm [5]is a simplification of proper algorithms computing HKZ-reduced
bases. Indeed we expressed O as a black-box, and call it on the lattice to obtain
a shortest vector. A better way (and more complex to describe) is as Kannan de-

scribes it [57]. It is an algorithm which projects (b, . .., b,) onto me (L), LLL reduces
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Algorithm 5 KZ reduction algorithm

Require: B = {by,...b,} a basis of L of rank r
Ensure: B’ a HKZ-reduced basis of £
: bll — O(B)
. B+ {bll}
: fori=2tor do
Extend B’ into a basis B” of £
b < O(mi(B"))
Lift b/ to b, € L
B’ < SizeReduce(B', V)
end for
return B’

© P> T Wy

this lattice and recursively calls itself, with some enumeration process. This first
version has been improved afterwards by Helfrich [50|, and its complexity analysed

by Hanrot and Stelhé [49] who give a worst-case complexity of 20(@)d%.

A reduction by blocks: BKZ

The Block-Korkine-Zolotarev (BKZ) algorithm, was first proposed by Schnorr and
Euchner [94]. It uses the KZ reduction algorithm as a subroutine in blocks. Suppose
the oracle for SVP runs up to dimension k, and the lattice has » > k, then the BKZ
algorithm is described in [6] In general, one denotes by BKZ to specify the block

size used in the algorithm.

Algorithm 6 BKZ basis reduction algorithm
Require: B = {b;,...b,} a basis of £, and a SVP oracle O up to k <r
Ensure: B’ a reduced basis of £ such that [|b;]| = A\ (m;(L))

1: while Changes occur do

2: fori=1tor—k+1do

3: HKZ reduce the block m;({b;, ..., birr—1}) then lift it in B
4: Use LLL on B = {by,...,b,}
5 end for

6: end while
7. return B

The fact that the basis is locally HKZ reduced allows for good trade-offs between
running time and the quality of the basis obtained, which increases with the block

size used.

Theorem 2.9. Consider B a basis of a lattice L, and a SVP oracle O up to di-
mension k < r. Then for input B and O, Algorithm [0 outputs a basis (by, ..., b,)
satisfying the following properties:
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b 1+Ilnk r— .
Losidy < (k== )t
1+lnk -
23 H\f)oll‘(‘ﬁ) < VAR

Despite the quality of the basis obtained by BKZ, one does not know a polynomial
bound for the running time of Algorithm [6] Like LLL algorithm, BKZ behaves
better in practice than theoretically. Again, several improvements of BKZ have been
developed, mostly concerning the SVP oracle. For example, Chen and Nguyen [28§]

used improved enumerations to obtain faster computations.

Solving the CVP and BDD

We will present some techniques used to solve the BDD, as it is a problem of par-
ticular interest in our research. There are three main processes used, in a variety of
applications and domains. Two are due to L. Babai and the third has been developed

by R. Kannan.

Babai’s rounding technique: The first method due to Babal is simple to de-
scribe and implement. Given a lattice £ of R™ given by a basis B = (b1, ..., b,) and
a target vector t € R", it consistsof rounding to the nearest integer the coefficients
of t in the B.

Algorithm 7 Babai’s Rounding Off Algorithm - BabaiRounding

Require: B = (by,...,b.) abasisof L and t € (by,...,b.)r
Ensure: v € L a vector close to ¢

1: Compute (t1,...,t,) such that t =3, t;b;

2: return v =y ., [t;]b;.

Remark 8. If £ = £(B) is a full-rank lattice of R™ then B is an invertible square
matrix, and Step 1 of Algorithm [7] can be expressed as tB~*. Thus it is common to
write the output of the algorithm as [tB~'] B.

One can apply Babal’s rounding using any basis of the lattice. However, as often
with lattice problems and related algorithms, the quality of the solution will depend

on the quality of the basis given as input.

Theorem 2.10 (|5]). Consider a rank r lattice L, given by a § — reduced basis B,
with 6 = 3/4. Then for input t and B, Algorithm @ outputs v € L such that

9 r/2
Vo e L,||t —v| < <1+2r <§) > |t — ull .

Alternatively, Algorithm@ solves CVP, forv=1+2r (%)rﬂ.
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One can remark that the output of Algorithm [7] belongs to the fundamental par-
allelepiped defined by the basis B containing . Thus the quality of the decoding
depends on the quality of the basis defining this parallelepiped, as shown in Propo-
sition 2.2

Proposition 2.2. Consider B a basis of a lattice L, and F(B) the fundamental
parallelepiped defined by B. Then for input B, Babai’s rounding algorithm solves

1. CVP, with v being the radius of the smallest enclosing sphere of F(B);

2. BDD.,, with ~ being the radius of the biggest enclosed sphere of F(B).

The radii of the largest enclosed and smallest enclosing spheres of a parallelepiped
can be expressed with the help of the defining basis. Let us denote by R;(B) and
Ry(B) the mentioned radii. Then one has

1 T
Ryi(B) = maX{\\§Z$z‘biH | (i)ienay € {=1,1}"}
=1
and .
By (B) = min{3 111 14 € [L, 7]}

In particular, a target ¢t = v+ e with v € £ will be reduced to v if (e | b)) < 3 for
all i € [1,7].

(a) A bad basis (b) A better basis

Figure 2.5: Rounding situation with two bases of the same lattice

Babai’s nearest plane algorithm: The second algorithm is also due to Babai [5],
and is called the nearest plane algorithm. It outputs similar although different results
from the ones output by Algorithm [7] It is an inductive technique, described in
Algorithm 8| As one can see, it is essentially a process of size-reduction (Alg.
Again the output will depend on the quality of the basis given as input. We can
prove that the output is not too far from the target given the basis is LLL-reduced.
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Algorithm 8 Babai’s Nearest Plane Algorithm

Require: t € R", B = (by,...,b,) a basis of a lattice £, B the GSO of B
Ensure: v € £ a close vector of ¢

1: v+t

2: for i = r down to 1 do

VU — (fﬁ”% b; > Make ¢ more orthogonal to b;

7

w

4: end for
5 return v —t

Theorem 2.11. Consider a rank r lattice L, given by a 6 — reduced basis B, with
§=1/4+1/V2. Then for input t and B, Algorithm @ outputs v € L such that

2r/4

VV2 -1

In other words, Algom'thmﬁ solves CVP, for v = 2R

Vo € L, ||t — || < It — ]| < 1.6 x 2774 ||t — 2.

V2-1
The output of Babai’s nearest plane has better quality than the one of the round-
ing technique. In fact one can prove it lies in a parallelepiped defined by the GSO

of the basis given as input and centered on the target t.

Proposition 2.3. Consider a rank r lattice L, given by a basis B. Then for input
t cmd B, Algorithm @ outputs v € L lying in t + ]:(l’;’) Thus it solves BDD,, for

|ie[1,r]}.

Kannan embedding technique: The last process that we will mention is due to
Kannan [57]. It transforms a CVP instance over a lattice into a SVP instance over
an upper-lattice. Let us consider B = (by,...,b,) a basis of a lattice £ C R™ and
t a vector in span(L£). Now denote by v a vector of £ such that ||t —v| = d(¢, £).
Then one can remark that e =t — v is short. The embedding technique consistsof

building a lattice containing e. For this let us fix a constant M € R, and consider

the matrix
by 0
b, O
t M

It defines a lattice £’ of R"*! which is an upper-lattice of £, or more precisely of
its embedding in R™™! under the map (z1,...,2,) € R® < (z1,...,7,,0) € R*"L,
Moreover the error vector (t, M) — (v,0) = (e, M) is in L'. Therefore, depending on
its size compared to the shortest vectors of £, solving the SVP on £’ might allow

us to retrieve this vector and find v. The technique is summed up in Algorithm [9]
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Algorithm 9 Kannan’s embedding technique

Require: B = (by,...,b,) a basis of a lattice £L C R", t € span(£) and M € R,
Ensure: v € L a close vector of ¢

B« (b +0 x 6n+1>ie[[1,rﬂ

B +— BU (t + M€n+1)

e/ « SVP(B') > SVP solver on L(B')
e+ e —Me,iq

returnt —e

Theorem 2.12. Consider a lattice L of R™ generated by a basis B = (by,...,b.),
t € (by,...,b)r, v avector of L such that d(t, L) = ||t —v||, and M € Ry. Moreover
let £ be the lattice of R™™ generated by {(b,0) | b € B} U {(t,M)}. Then the
following holds

(1= oll < 252 ) A1 == ol = e = w200 = (8

and Algorithm[9 outputs v for input B,t and M.

Remark that Algorithm [J] uses a SVP solver and that the value of M in Theo-
rem is the norm of the error vector. In practice and for large dimensions, one
can only solve SVP, for some 7 potentially exponential in the rank of the lattice,
by using an algorithm like LLL. Moreover the norm of the error vector ¢ — v is not
always smaller than A;(£)/2. In these cases, one cannot certify that Kannan’s em-
bedding technique solves the CVP. Thus one has a heuristic method depending on

the parameters in input.

Remark 9. Since the idea described is to reduce CVP to an instance of SVP,
one usually fixes M to be small. However one can twist it as follows. Fix M =
max{|[|b]|,b € B} and use LLL instead of a SVP solver. Then the output of this

modified Algorithm [J]is the same as Babal’s nearest plane algorithm.

2.3 Number theory

We refer the reader to |8} 30, |31} 72, |90] for anything related to number fields and

computational number theory.

2.3.1 Number fields

Definition 2.21. A number field K is a field which is a finite extension of Q, i.e. a

finite dimensional Q-vector space.

Notation. Given an extension L/K of number fields, we will call the dimension of

L over K the degree of L/K. It will denoted by [L : K].
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Proposition 2.4. Let L/K be an extension of number fields. Then there is an
irreducible polynomial P(X) € K[X] such that

and [L : K] = deg P(X). Moreover P(X) has [L : K] distinct roots in an algebraic
closure K of K containing L. These roots define [L : K| distinct K —isomorphisms

of L into K. If o is such a root, then the corresponding isomorphism o, is the

following,
K[X] _
o — KloJC K
(P(X))
[L:K]-1 [L:K]-1
Z Xt — Z cal.
i=0 i=0

Remark 10. As a matter of fact Proposition [2.4)is true for any finite field extension
(in characteristic 0). If we consider number fields, their algebraic closure is the set

of algebraic numbers Q C C.

Notation. Given a number field extension L/K we will denote by € one of its
algebraic closure. Then Hom(L/K, ) will be the set of the [L : K| distinct K-
isomorphisms of L into 2. The same way, one can denote by Hom(L, ) the set
of field embeddings of L into Q. Similarly we will denote by Hom(L, C) the set of
[L : Q) field embeddings of L into C. One can then define the set Hom(L/K, C) to
be the set of K-linear field embeddings of L into C. Be aware that one needs to
specify an embedding of K into C for this to be properly defined. It is usual for the
two approaches of field embeddings described above — algebraic or complex — to be
identified, as it the case in [30] for example. We will do the same, and the context
will help determine which objects are considered. We will therefore mainly talk
about “complex embeddings” and use the notations Hom(L/K,C) and Hom(L, C),

even when considering morphisms from a number field into an algebraic closure.
Remark 11. Given any object f for which it makes sense, the result of the action
of 0 € Hom(L/K,C) on f will be called a conjugate of f (relative to L/K).

Lemma 2.2. Consider L/K an extension of number fields and S C Hom(L/K,C).
Then the set {x € L |Vo € S,x2° =z} is a subextension of L/K.

Notation. Given an extension of number fields L/K and S C Hom(L/K,C) we
will denote by Inv(S) or L° the number field fixed by S.

Let us consider a few examples of number fields.
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1. First let us fix P(X) = X? — 2. Then P(X) is irreducible over Q and K =
Q[X]/(P(X)) is a number field of degree 2. It can also be seen as Q(v/2), the
smallest field in @) containing Q and v/2.

2. One important type of number fields are the cyclotomic fields. They are widely
studied and are the most used in cryptography. They are generated by a
fundamental root of unity (,,, with m being called the conductor of the field.
Such a field is then of the form Q((,,) and its degree is ¢(m), where ¢ is Euler’s

totient function.

3. Consider K = Q((y,) a cyclotomic field with m = 2™ for some n > 1, P(X) =
X? —(, € K[X] and L = K[X]/(P(X)). Then a root of P(X) in C is (3n+1
so L is isomorphic to the cyclotomic field Q({s,), and [L : K] = 2.

Given several number fields, one can construct a number field containing all of
them.

Definition 2.22. Consider K; and K5 two number fields. The compositum of K;
and K is the smallest number field containing K; U Ks. It is denoted by K K.

Remark 12. In general [K K, : Q] # [K; : Q][Ks : Q], one can only say [K; K5 :
Q] < [K: : Q[K, : Q]. For example if K; = Q(v/2,v/3) and K, = Q(v/2,+/5) then
KK, is equal to K; = Q(\/E, V3, \/5) Therefore [K : Q|[Ks : Q] = 16 is different
from [K1 K, : Q] = 8.

2.3.2 Galois extensions

Definition 2.23 (Galois group). Consider a field extension L/K. Then the Galois
group of L/ K, denoted by Gal(L/K), is the group of field automorphisms of L which

are congruent to the identity when restricted to K, i.e.
Gal(L/K) ={oc € Aut(L) | 0 =Idg}.

The Galois group Gal(L/K) of an extension can be seen as a subset of Hom (K, C).

It has important properties, especially when the extension itself is Galois.

Definition 2.24 (Galois extension). An extension of number fields L/K is called
a Galois extension when |Gal(L/K)| = [L : K]. If K = Q then we say that L is a
Galois field, or more simply that L is Galois.

For example the cyclotomic fields are Galois number fields as well as the multi-
quadratic fields considered in [6]. However this property is not satisfied by a general
number field K and we have to consider the Galois closure of K which is in fact the

smallest extension containing all the roots of the irreducible polynomial P(X).
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Proposition 2.5 (|90]). Consider a Galois extension L/ K. Then there is a bijection
between the set of subextensions of L/ K and the subgroups of Gal(L/K). It is realised
by the two following maps:

¢ M+— Gal(L/M),

and
U:H<G+— LY.

When an extension is not Galois, we might have to consider its Galois closure.

Definition 2.25 (Galois closure). 1. Consider L/K a number field extension.
We call the Galois closure of L/K and denote by L the smallest number field
M containing L such that M/K is Galois.

2. Given a number field L, the Galois closure of L is the Galois closure of the
extension L/Q.

2.3.3 Traces and norms

Definition 2.26. Let L/K be an extension of number fields, and € L. Then one
defines the trace (resp. the norm) of x relative to L/K to be the trace (resp. the
determinant) of the K —linear map [z] : L — L. The trace (resp. norm) relative to

L/Q will be called the absolute trace (resp. norm) of z.

Notation. The relative trace (resp. norm) of an extension L/K is denoted Try
(resp. Ny k). The absolute trace (resp. norm) of L is then written Tr (resp. N)

when there is no ambiguity.

One can alternatively describe the trace and norm of an element in terms of its

conjugates, i.e. the elements o(x) for o € Hom(L/K,C)

Proposition 2.6 (|90]). Consider a number field extension L/K of degree n, write
Hom(L/K,C) = {o1,...,0,} and fir x € L/K. Then the following are true,

n

Tr () = oi(x), Np/(z) = Hai(az).

i=1
Following their definition, one can easily deduce some properties of Try,x and
Nz/k. The map Try g is K—linear and N,k is multiplicative. Moreover if a € K

then Nz /x = allKl,



CHAPTER 2. BACKGROUND AND PRELIMINARIES 33

An important quantity in number fields is the discriminant. First let us define
the discriminant of a family. We will define the discriminant of an extension L/K

later on.

Definition 2.27 (Discriminant of a family). Consider an extension of number fields
L/K of degree n, and (z1,...,z,) € L". Then the discriminant of (x1,...,z,)
(relative to L/K ), denoted by Dy (1, ..., z,) is the element det [Trz/x (252;)] sefing-

jelin]
Proposition 2.7 ([|90]). Consider an extension of number fields L/K of degree n,
and write oy, . ..,0, the elements of Hom(L/K,C). For any (z1,...,x,) € L™ one

has

DK('Ilv s axn) = det [O-i(xj)]ie[[l,n]] '
jelin]

Moreover if (z1,...,x,) is a basis of L over K then Dy (xq,...,x,) # 0.

2.3.4 Orders

Now let us describe important ring structures attached to number fields.

Definition 2.28. An order of a number field K is a subring of K which is a finitely

generated Z-module and of maximal rank [K : Q].

We can typically consider orders generated by Q-basis of K. In particular, if «
is a root of an irreducible polynomial P(X) defining a number field K, then Z[o] is
an order of K. It is generated by the successive powers of a and is isomorphic to

the quotient ring
Z[X]
(P(X))

The most important order is the ring of integers of K, which generalises the notion

of integers to algebraic numbers.

Definition 2.29 (Ring of integers). Let K a number field. The ring of integers of
K, denoted by Of is the ring of integral elements of K, defined by

Ok ={r € K |3P(X) € Z[X] monic, P(z) = 0}.

Proposition 2.8 (|31]). The ring of integers of a number field K is a free Z-module
of rank [K : Q|. Moreover any order of K is included in Ok.

Because of Proposition[2.8] the ring of integers O is also called the mazimal order
of K. For some number fields K = Q(«), the maximal order O is isomorphic to
Zla]. It is the case for cyclotomic fields for example. However we stress that it is
not true in general. For example, the maximal order of the quadratic field Q(+v/5)

is generated by {1, %5}
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Remark 13. Given an extension of number fields L/K, we know that O and O
are both free over Z, and that L = KXl Then one could wonder whether Oy, is
free over Ok, i.e. if Op = O[I?:K]. While it is the case if Ok is a principal ring, it is

not the case in general [90].

Orders can be useful to approximate the ring of integers when it is unknown, and

too complicated to obtain.

Proposition 2.9 (|90]). Consider an extension of number fields L/K of degree n.

The following properties are true.
1. For any x € O, Trp k(x) and Ny k(x) are elements of Ok-.

2. For any family (z1,...,x,) € O}, the discriminant Dk (x1,...,x,) belongs to
Ok.

Moreover the trace and norm maps are transitive, i.e. if M/L/K is a tower of

number fields then Try i = Trp g Tryy and Nyyx = NpjgNoyy .

Definition 2.30 (Discriminants). 1. Let K be a number field. The (absolute)
discriminant of an order O of K is the integer Dy (b1, ..., b,), where (by, ..., b,)
is any Z-basis of O. The (absolute) discriminant of K is the discriminant of

its ring of integers Ok.

2. Given an extension of number fields L/ K, its relative discriminant is defined
to be the (well-defined) ideal of Ok generated by the discriminants of all bases
of L/K which are contained in Oy. It is denoted by d(L/K).

Notation. The absolute discriminant of an order will be denoted by Dk (O). The
discriminant of K is simply denoted by Dy or D(K).

Remark 14. We need a different way of defining relative discriminants because the
ring of integers Oy, is not (in general) free over Ok, i.e. there is no basis of Oy, over

Ogk to consider.

The relation of inclusion for orders can be described by a simple property of their

discriminants.

Proposition 2.10 (|31]). Consider Oy and Oy two orders of a number field K.
Then the following is true:

01 < Oy <= 3f € Q, Dx(01) = D(0o) f*.
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2.3.5 Ideals

Now let us consider part of the arithmetic of number fields and number field exten-

sions, by considering their ideals.

Definition 2.31. Let K be a number field. An integral ideal of O is simply an
ideal of the ring Ok. A fractional ideal of Ok is a Z-submodule J of K such that
there is d € Z satisfying the fact that d.J is an ideal of the ring Of.

Remark 15. We will sometimes refer to ideals of K instead of ideals of O.
Notation. The set of fractional ideals of a number field K is denoted by Z(K).

The first important structural result on the set fractional ideals is that it has a

group structure.

Theorem 2.13 (|90]). Let K be a number field, and denote by P the set of prime

integral ideals of K. Then the following propositions are true.
1. The set Z(K) is an abelian group, where the law is the standard ideal product.

2. Every fractional ideal I can be uniquely expressed as a product of prime integral

1deals

=TI, (2.8)

peP

such that for allp € P, v,(I) € Z, and for almost all p € P, v,(I) = 0.

As it was the case for elements, one can define the trace and the norm of an ideal.

First we can define the absolute norm.

Proposition 2.11 (|90]). Let K be a number field and I an integral ideal of K.
Then I is a submodule of Ok of mazimal rank. Thus the quotient ring O /1 is

finite. Moreover the map I — |Ok /1| is multiplicative over the set of integral ideals.

Definition 2.32 (Absolute norm of an ideal). Let K be a number field. One defines

the (absolute) norm of an ideal as follows:
1. The norm of an integral ideal [ is the positive integer |Of/I|;

2. Given [ and J two integral ideals, the norm of the fractional ideal I/.J is the
quotient of the norm of I by the norm of J.

The norm map is denoted by N, or N when there is no ambiguity.

An important object in number theory is the class group.
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Definition 2.33 (Class group). Consider K a number field. The class group of
K, denoted by CI(K) is the quotient group of fractional ideals by the subgroup of

principal ideals (generated by a single element).

We can remark that since a prime ideal p is in fact a maximal ideal of Ok then
the quotient ring Ok /p is a finite field, so Ng(p) = p/ for some prime integer p
and f € N*. We will see below what is f, when looking into the splitting of ideals.
There are several ways of defining the relative norm of an ideal. The most simple is

certainly the following.

Definition 2.34 (Relative norm of ideals). Let L/K be a number field extension.
The norm of an ideal I of L relative to L/K, denoted by N,k (1), is the fractional
ideal of K generated by the norms of elements of I relative to L/K. In mathematical

terms, one has Ny /x(I) = (N (x) | v € I)o-

As it is the case for elements of L, the relative norm of an ideal I can be expressed
using the action of Hom(L/K, C) onto I.

Proposition 2.12. Consider L/K an extension of number fields, and I an ideal of
L. Moreover denote by H the set of K—embeddings of L into C. Then the norm of
I relative to L]/ K satisfies the following equation, where the products are done over

a suitable extension of L.

Np/x(I) = (H a(z)> NK. (2.9)

As it was the case for elements the relative norm of ideals is transitive. The

relative norm is also involved in a formula concerning relative discriminants.

Proposition 2.13. Let M/L/K be a tower of number fields, and I be an ideal of
M. Then Ny = NpyNayr, and 9(M/K) = d(L/K)MENp i (0(M/L)).

2.3.6 Representation of elements and structures

First let us describe the structure of orders and ideals.

Proposition 2.14 (|90]). Given ideal I of a number field K, one can find a basis
(bi,...,bn) of elements of O such that K = @._, Qb;, O = @;_, Zb; and I =
@?:1 Zdlbz with (dl, Ce ,dn> e 7Z".

Proposition shows that the ring of integers as well as its integral ideals are full
rank Z-submodules of K. Therefore, images of Ok and of any ideal I of O under
the action of any embedding of K into R™ are lattices. Then, in the representation
given by said embedding, one can describe the volume of any ideal compared to the

volume of the ring of integers.
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Proposition 2.15. Consider K a number field, I an ideal of K. Then vol(l) =
NK(I)Vol(OK)

Let us describe the two main ways of representing elements of a number field,

leading to different geometrical situations.

The standard representation

The usual embedding corresponds to viewing a number field K as a quotient %.
Then every element g(X) = go+- -+ ¢g,_1 X" ! of K can be seen as the vector with
coordinates (go, ..., gn—1) in Q™. This defines the coefficient embedding of K into

R™.

Definition 2.35. Given a number field K defined by a degree n irreducible poly-
nomial P(X), the coefficient embedding or polynomial embedding is defined as

. _QlX] n s mon
Ocoeff - (P(X)) — @ — R
Q)1 (2.10)
Z CZ‘Xi — (Co,...,cn_l).
=0

In this standard representation, one can use the classical Euclidean norm [y of R™.

Remark 16. Since this embedding corresponds to the description of a number field
as a quotient of a polynomial ring, we will forget about o.ers. Thus in general,
the geometrical properties of elements or structures of a number field are considered

under this morphism.

Remark 17. This embedding is not canonical. Indeed, it depends on the basis
chosen for K. We described it with (X* (mod P(X)))efo,n—1] but one could consider
an integral basis of Og. Different bases give different geometries. For example, the

embedding given by an integral basis sends Ok to Z", thus the volume of I is N (7).

The canonical embedding

The other fundamental embedding is canonical, and uses the complex embeddings
of K. First let us describe this set in more detail. As already mentioned, an element
0, € Hom(K,C) is a field embedding of K into C corresponding a root o of P(X)
in C. Let us denote by R the set of roots of P(X). Then one can remark that R is

globally invariant by the action of the complex conjugation.

Definition 2.36. The signature of a number field K defined by a polynomial P(X)
is the pair (r1,72) € N? where:
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e =|{a € R|acR}
e 2ry=[{a € R|acC\R}.

There are r; real embeddings and 7, pairs of (strictly) complex embeddings. The
two elements of a given pair are conjugates one from each other. It is usual to
write oq,...,0,, the real embeddings and to consider that o;,,, = o; for all j €
[ri + 1,71 + 73]

Definition 2.37 (Minkowski’s embedding). Given a number field K defined by
a degree n irreducible polynomial P(X), the canonical embedding or Minkowski’s

embedding is defined as

oxk: K — R'xC?=R"

v (o)) (2.11)

iElIl,T‘1+T2H :

Then K can be seen as embedded in R™. More precisely it defines an isomorphism
between (Kg = K ®¢ R, T3) and (R™,[5), where the T, norm is defined as T : = €
K~ " oi(x)oi(x).

Proposition 2.16. Let K be a number field defined by a degree n irreducible poly-
nomial P(X) € Q[X]. Then under Minkowski’s embedding, vol(Ok) = 27"4/|Dk]|,
thus leading to vol(I) = 272Nk (I)\/|Dk]|-

Throughout this thesis, elements in number fields are essentially identified with
their polynomial representation. Moreover, we will often consider o to be defined

as

OK : L +—— (Ui(@)ie[[l,n}]a

where all complex embeddings are taken into account. Similarly for a field extension
L/K we define o)k : * — (0(2))octom(k/L,c)- We call this map Minkowski’s
embedding relative to L/K. The maps ox and op/x will often be used for the
fact that they establish linear bijections between the fields considered and a set of

complex vectors.

2.3.7 Unit group and Log embedding

The group of units of Ok written O is the set {u € Ok | u™' € Og}. It has a

specific structure that we can take advantage of.

Proposition 2.17. Given a number field K of degree n with n = ry + 2ry as before,

we have 7
Of = — x 7zt
m

where m is the largest integer for which a primitive m-th root of unity belongs to K.
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This isomorphism which allows seeing the units of O modulo its torsion group

as a lattice is realised by an important embedding which is the Log-embedding of K.

Definition 2.38. Let K be a number field of degree n, and (r1,73) be its signature.
Consider (¢;)jeqi,ri4r2 such that ¢; = 1if j < 7 and ¢; = 2 otherwise. Then the

Log-embedding of K is defined as

Logg : K* — R

2.12
x  — (¢;ln|oy(x)]) ( )

iE[[l,Tl-f—TQ]] '

Theorem 2.14 (|72|). Consider K a number field of degree n and signature (r1,73).
The set Logy (O ) is a lattice of the hyperplane orthogonal to the all ones vector.
The volume of Logy (Oj) is \/r1 + roRk, where Ry is the regulator of K.

Definition 2.39. Given a number field K, the lattice Log, (Oj) is called the Log-
unit lattice of K. We will denote by Vi its volume.

One can also define the Log-embedding by using all of the embeddings o; and
forgetting the c;. By doing so the Log-unit lattice is a lattice of rank 1 + 79 — 1 in
R™ and its volume is \/QZI/QRK In the rest of the thesis we will use this last form
of the Log-embedding.

2.3.8 Splitting of an ideal in an extension

An important arithmetical phenomenon is the splitting of an ideal in an extension.
More precisely, given I an ideal of K, then J = IO is an ideal of L. Following
Theorem J can be expressed as a product of prime ideals of L. We want to
study this factorisation. Since an integral ideal can always be factored as a product
of prime ideals, it is sufficient to consider prime ideals. First, given such an ideal p

of K, we can characterise the prime ideals of L being factors of p in L.

Lemma 2.3 (|90]). Consider L/K an extension of number fields, p an ideal of K,
and P an ideal of L. Then B divides p in L if, and only if, PN K = p.

Definition 2.40. Given an extension of number fields L/K, p an ideal of K and B
an ideal of L, we say that B is above p if P | p.

Remark 18. Following Lemma one can see that if P | p then we get the field
o

o
finite field extension, and can consider the degree |

As they are both finite fields, one can remark it defines a
Bop

embedding OTK —

Theorem 2.15 (|90]). Consider L/K an extension of number fields, p an ideal of
K, andp =1], m?‘ni(t’) its factorisation in L. Then the following propositions are

true.
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132 vy (0)[G : SF] = (L K.

@L.%]
=]

2. Forallie[1,9], Nox(B:) = P[i

Definition 2.41 (Residual degree and ramification index). Consider L/K an ex-
tension of number fields, p an ideal of K, and p = [[7_, &B?mi(p) its factorisation in
L. Moreover fix j € [1, g].

1. The residual degree or inertial degree of P; over p is the index [% : OTK] It is
denoted by f(B;|p).

2. The exponent vy, (p) is called the ramification index of B; over p, and is
denoted by e(;[p).

One can rewrite the formulae in Theorem as [L: K] =>7_ e(PBilp) f(Bilp)
and Nz x('B;) = p/F:lp) - Moreover the factorisation is even simpler if the extension

is Galois, as shown by Proposition [2.18

Proposition 2.18 (|90|). Consider L/K an extension of number fields which is
Galois, and p a prime ideal of K. Then the maps e(-|p) and f(-|p) are constants
over the primes of L dividing p. If e and f are the respective constant values and g

the number of prime ideals of L above p, then [L : K| =efg.

Definition 2.42 (Types of splitting). Let L/K be an extension of number fields
and p be a prime ideal of Ok. Let p =]}, 2]35("]3”’3) be the factorisation of p in L.

1. The ideal p ramifies in L/K if there is i € [1, 7] with e(*B;|p) > 1.
2. If g=1and f(Pi|p) = 1, we say that p ramifies completely in L.

3. We say that p is completely split or totally split (or splits completely) in L if
for all 7 € [1, g], e(Pilp) = f(Bilp) = 1.

4. If g =1 and e(P;|p) = 1 then p is said to be inert in L.

Now let us state how the discriminant ideal of an extension L/K is related to the

splitting of prime ideals.

Theorem 2.16 ([30]). Given L/K an extension of number fields, a prime ideal p
of K ramifies in L if, and only if, it divides the relative discriminant ideal 9(L/K).

Another important object, related to the discriminant is the different.

Definition 2.43 (Different). Consider an extension of number fields L/K. The
relative different ®(L/K) is the ideal defined as follows,

D(L/K) ' = {x € L| Try x(201) C O }.
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As it is the case for norm, the different is transitive.

Proposition 2.19. Let M/L/K be a tower of number field extensions. Then
DM/K)=2(M/L)D(L/K).

The different is useful because it can be used to compute the discriminant.

Proposition 2.20 (|30]). Let L/K be an extension of number fields. Then the
prime ideals of L dividing ©(L/K) are exactly the ones ramified in L/ K. Moreover
Ny (D(L/K)) = o(L/K).

Proposition 2.21 ([87]). Consider L/K an extension of number fields, p an ideal
of K, B and ideal of L above p and p the characteristic of O /(p). Then if p and
e(B | p) are coprime, one has v(D(L/K)) =e(P | p) — 1.

2.4 Lattice based cryptography

In this Section we will describe the generic construction of encryption schemes using
Euclidean lattices, then we will describe quickly some of the famous frameworks
using (mainly structured) lattices, or which can been described with lattices. For a

good survey on lattice based cryptography, we refer the reader to |77].

2.4.1 Generic construction of a scheme with lattices
General encryption scheme

The most basic encryption scheme, without added “features”, is usually composed

of three functions:

e Setup() outputs a pair of keys Sk, Pr. Sk is kept secretly and Py is given
publicly.

e Encrypt(m,F;) outputs a ciphertext ¢ given a public key P, and a plaintext

m.

e Decrypt(c,Sk) outputs a plaintext m given a ciphertext c.

Overall, the encryption scheme is deemed correct if the equality
Decrypt(Encrypt(m, Py), Si) =m (2.13)

holds for any m from the message space, and any output (Sy,Px) given by Setup().
Being correct however, does not mean that the scheme is secure. To ensure the
security of the cryptographic schemes, we usually base them on computationally

hard problems.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 42

Generic scheme with lattices
We will now describe how a general encryption scheme can be designed with lattices.
e The public key is a “bad” basis H of a lattice; typically the HNF.

e The private key is a “good” basis, which is the trapdoor of the problem. In

particular it needs to allowus to solve the problem the system is based on.

e A generic encryption can be done as follows. If m is the plaintext vector one

can encrypt as follows:
¢ = Encrypt(m, H) =mH + e

where e is a short error vector, typically shorter than A, (L(H))/2.

e In this configuration, recovering m can be done by solving the BDD. It is
typically the case in the GGH encryption scheme [47]. This gives a decryption
function:

Decrypt(c, B) = BDDsolver(c, B)

Another option for encryption is
Encrypt(m,H) =sH +m=e+m

for some s € Z". The lattice vector is now e, and m is now short compared to e.

Again, solving a BDD allows retrieving m.
Decrypt(c, B) = ¢ — BDDsolver(c, B).

The BDD solver is typically BabaiRounding (Alg.[7). As we will see, for most sys-
tems which can be viewed as lattice constructions, the decryption phase correspond
to solving a BDD.

Using a GDD solver

Now let us explain how the use of a BDD solver such as those given by Babai’s
algorithms can be replaced by a GDD solver. First let us remind the reader of the
following property.

Lemma 2.4 (Vector class unicity). Let £ be a lattice and a,b € span(L) such that
lla|l + 1|6l < Ai(L). Then

a=bmod L < a=0.
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Proof. The difference between a and b must be a vector of L. The only vector of £

that has a norm lower than A\;(£) is the null vector. O

Proposition 2.22. Consider a lattice L and (Ym,Vs) € Ry such that v, + vs < 1.
Then a GDD,, solver is also a BDD,, solver.

Proof. Assume that we have access to a GDD,,, solver. This is equivalent to having
a reduction algorithm Reduce which given v outputs w such that w = v mod L
and |lw|] < YA (£). Now consider v € span(L) such that d(v, L) < v (L).
Denote by w’ the vector such that v = w’ mod £ and ||w'|| < ymA1(L). Then we get

w = w' mod L and
Jwll + [[w'] < (7s +ym) A (L) < A (L).

Thus, by Lemma [2.4 one has w = w’. O

Therefore one can deduce properties which ensure that a decryption function based
on a GDD solver leads to a valid encryption. Indeed, assume that ¢ = sH +m with
m in B(0, M). Then suppose that one has access to Reduce which reduces modulo
L in B(0, R). Following Proposition if R+ M < A\ (L) then Reduce(c, B) = m.

2.4.2 NTRU construction

One of the first cryptosystems linked to structured lattices is NTRU [54]. Its first
description is as a ring-based system. Let us describe a simple version of the NTRU

framework.

NTRU framework Consider a polynomial ring R = % where P(X) € Z[X]
is not necessarily irreducible. The original construction suggests P(X) = X™ — 1.
The advantage of this polynomial is that operations are efficient, especially the
multiplication by the basis elements X*, which correspond to cyclic shifts of the
coefficients. Moreover choose an integer ¢ and denote by R/q the ring %. Then
the system is broadly as follows:

1. the secret key is a pair (f, g) of short polynomials — their coefficients are small

compared to ¢ — such that f is invertible in R/g;

2. the public key is h € R/q such that h = gf~!in R.

Then the NTRU problem is the following: «Given h, retrieve f and g ». It can

be restated as a lattice problem. If one considers Id to be the identity matrix and H
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to be the matrix of the multiplication in R/q by h, one can define the NTRU lattice
to be generated by the matrix B defined as follows.

. [Id H] |
0 gqld
Moreover h = gf~! in R/q is equivalent to the existence of k € A such that fh+kq =
g. Therefore the vector of coefficients of [f, g| is equal to [f, k]| B, so belongs to the
NTRU lattice. Then, f and ¢ having small coefficients compared to ¢, the vector
[f,g] is short in the lattice L(B). For example, if their coefficients are in {—1,0, 1}
then ||[f, 9]l < v2n, and the Gaussian heuristic applied on the NTRU lattice gives

A1~ 4/ %. Thus, [f, g] is expected to be the shortest vector of £(B), and retrieving

the secret key amounts to solving an SVP instance.

Security and modifications Since the original paper, several improvements or
modification have been suggested, in particular to cope with progress made in lattice
reduction [53].

As mentioned the security can be linked to the SVP. It is however over a special
category of structured lattices, which are the NTRU lattices. It is unknown if
these lattices are weaker than general lattices. Moreover it is possible that the ring
structure of A can be used to retrieve the secret key, or speed-up computations. It
has been done in [3, 29|, where the authors use the relative trace and norm to map
the problems to subfields. However these do not introduce a security breach in the
NTRU problem with the parameters used in cryptography.

Finally NTRU is a long studied problem, and is believed to be secure despite the
lack of strong security proofs. Its framework has been suggested in several candidates
for the NIST standardisation process |43} |11].

2.4.3 Learning with errors and variants

We will present the cryptosystems based on another problem called Learning With

Errors (LWE), and its structured variants.

Learning With Errors

The Learning With Errors problem was defined by O. Regev in 2005 [86], and several

cryptosystems suggested over the years rely on its hardness [78].

LWE framework For the LWE problem, one fixes integers n, m and ¢, as well
as two distributions Ds and D, over Z" and Z™ respectively. Then the system is

broadly as follows:
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1. the secret key is a pair (s,e) € Z™ x Z™ of vectors, drawn following D, x D,.

2. the public key is a pair (A,b), where A is uniformly drawn in M,,,,(Z) and
b=sA+emodq

Then the LWE problem (search variant) consistsof: «Given (A,b), retrieve s. ».

As for NTRU, it can be linked to lattices. Indeed, if one considers the lattice
L,(A) ={x € Z™ | x = Asmod ¢}, then for typical LWE parameters e is short
compared to the determinant of £,(A). Thus retrieving (s, e) amounts to solving a
BDD with respect to £,(A).

Security We saw that the LWE problem can be rephrased as a lattice problem.
Even if it is over a special kind of lattices called the q-ary lattices — which contain gZ™
— the LWE problem enjoys worst-case to average-case reductions [78] 86| and is as
hard to solve as problems on lattices. These strong hardness reductions led to several
cryptographic constructions. For example, a candidate to the NIST standardisation

process built following the LWE framework is Frodo [21].

Ring Learning With Errors

In order to improve efficiency, it has been suggested to modify the LWE setup and
place the operations in a polynomial ring |66 98|. Thus it is usually called Ring
Learning With Errors (RLWE).

RLWE framework In the RLWE setting, one fixes as parameters a polynomial

P(X) and an integer gq. Then, as for NTRU, denote by R the polynomial ring %
and R/q the ring %. Then the system is as follows:

1. the secret key is an small element s € R/q drawn from a distribution Dy,

usually uniform;

2. the public key is a pair (a,b), where a is uniformly drawn in R and b =

sa 4+ e mod ¢, with e drawn in R following a distribution D..

Clearly, since the elements handled are in polynomial rings, the storage needed is
smaller and operations (such as multiplications) are way faster than matrix-vector
computations. Again the RLWE problem can be seen as a problem involving lattices,
and more precisely ideal lattices. Indeed, in place of A in LWE, one considers here

the ideal generated by a in R, which can be viewed as a lattice.
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Security It is unclear whether the additional algebraic structure allows faster
attacks. It has to be noticed however that as it is the case for the LWE problem,
the RLWE problem enjoys worst-case to average-case reductions, and is as hard
to solve as problems on ideal lattices |66, 98]. An example of cryptosystem based
on the RLWE framework is NewHope [4], a candidate to the NIST standardisation

process.

Module Learning With Errors

It is possible to obtain a better trade-off between security and efficiency than with
the RLWE setting. The operations will again take place in a polynomial ring, but
one adds a block structure. More precisely the underlying structure can be seen as
a module over the chosen polynomial ring. This leads to the Module Learning With
Errors (MLWE) setting [23, 61]. Let us describe a simple version of it.

MLWE framework Inthe MLWE setting, we have a polynomial P(X), an integer

q and an integer d. Then denote by R the polynomial ring % and R/q the ring
Z(Q(Z)g{)]. Then the system is as follows:

1. the secret key is an short element s € R?/q, drawn from a distribution Dj;

2. the public key is a pair (a,b), where a is uniformly drawn in R¢ and b = (s |

a)re + € mod ¢, with e drawn in R following a distribution D,.

As for NTRU and RLWE;, the extra algebraic structure allows better storage and
faster computations. The MLWE setting can also be seen as a lattice, defined by
a block matrix where each block corresponds to an ideal lattice. Indeed a € R? so

each of its coordinates a; € R defines an ideal lattice.

Security Again the MLWE problem enjoys worst-case to average-case reductions,
and is as hard to solve as problems on module lattices |23, 61]. Several systems
suggested as candidates to the NIST standardisation process are based on the MLWE
framework, such as Kyber [20]| or Saber [35].

2.4.4 Principal ideal lattices

For a general introduction to ideal lattices and their use in cryptography, one could

refer to the survey of Ducas [37].
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The Principal Ideal Problem

First let us describe the problems related to ideals that are used in some cryptosys-

tems using ideal lattices.

Definition 2.44 (Principal Ideal Problem (PIP)). Given a basis of a principal ideal

I in a number field K, retrieve a generator of I.

The PIP is referred to as one of the main tasks of Computational Number Theory
by H. Cohen in [31]. Generic algorithms solving this problem essentially require
the computation of the ideal class group CI(K) of the number field K [31]. The
best algorithms run in subexponential time. It was first described over imaginary
quadratic fields [48], then generalised to arbitrary number fields with fixed dimen-
sion [24]. Then several works provided subexponential algorithms to solve the PIP
over arbitrary classes of number fields [15, [12] and improvement over cyclotomic
fields |14} |18]. Even if the best classical algorithms are subexponential, quantum

computing can be used to solve the PIP in polynomial time [13].

Definition 2.45 (Short Principal Ideal Problem (SPIP)). Given a basis of a princi-
pal ideal I in a number field K, generated by a short element g, retrieve g or another

short generator.

Because of the classical hardness of solving the PIP and the hardness of finding

short elements in lattices, several cryptographic constructions were built around the
SPIP.
Cryptosystems based on the SPIP

The simplest cryptosystems using ideal lattices such as in [45] 46, 97| are thus based
on the problem of finding a short generator of a principal ideal. They can be broadly

described as follows.

Consider a number field K and I = gOg a principal ideal with a short g when
I is considered as a lattice, i.e. the Euclidean norm of ¢ is small compared to the

determinant of I. Then the setting is:
1. the secret key is g;
2. the public key is I, given by a “bad” representation such as its HNF.

The private key security relies on the hardness of finding g or another short

generator. We will come back to potential attacks below.
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2.4.5 Diagonally Dominant Matrices

It is still unknown up to what extent lattices with additional algebraic structure are
safe to be used in cryptography. There is no guarantee to that algebraic attacks
known to date cannot be extended to cryptographic constructions such as NTRU,
RLWE or MLWE. However, using random lattices (which would be safer) is difficult
for efficiency reasons. These considerations led some researchers to build cryptosys-
tems linked to less structured lattices. One can mention Middle-Product Learning
With Errors (MPLWE) [89, [52], which is an adaptation of RLWE trying to remove
the structure of quotient ring. Moreover one can consider constructions without any
special arithmetical structure behind it. This is the case of Diagonally Dominant

Matrices.

Definition 2.46 (Diagonally Dominant Matrices). Consider a matrix M = [m; ;] €
M, (R). Then M is said to be diagonally dominant on the rows or row-diagonally

dominant if the following holds,

n
Vi € ﬂl,n]],mi,i 2 Z]mm\
%
It is said to be diagonally dominant on the columns or column-diagonally dominant

matrix if the following holds,

Vi€ [Lnl,ms; =Y magl.
i=1

i#]

Definition 2.47. A lattice £ is a diagonally dominant type lattice (of dimension n)
if there is a diagonally dominant matrix B such that £ = £(B).

Notation. We will write c.d.d. for column-diagonally dominant and r.d.d. for

row-diagonally dominant.

This structure has been used in several cryptographic constructions. One can
cite [83], which was a candidate of the round 1 and has known some attacks and
variants [101} |96]. The work of [101], 83| relied on the fact that the matrices used
as lattice bases are diagonally dominant (or almost), which allows the GDD to be

solved with an algorithm adapted from [81].

2.4.6 Analysis of structured lattices

We already mentioned that it is unknown up to what point extra algebraic struc-
tures weaken lattice based constructions. Since the NIST call for a post-quantum

standardisation, a lot of research is dedicated to study structured lattices.
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Reduction algorithms

Several works have studied how to reduce ideal or module lattices, and speed-up
computations using said structure. First one can mention an older work [82], which
describes an algorithm using ideal structure to speed-up LLL. However the speed-up
is only linear. Then, as mentioned, it has known a massive interest throughout the
past few years. First let us mention the works of Lee et al. [62] and Mukherjee
and Stephens-Davidowitz |71]. They describe an extension of the notion of basis
reduction to O-modules, where O < Ok is an order of a number field K. These
two theoretical works can be completed by the work of Kirchner et al. [59], which
did the same with a focus on cyclotomic fields. Moreover, this last work contains
extensive practical considerations, which allow the computations of LLL-reduced

bases on structured lattices — including ideal lattices — to run considerably faster.

Solving the SVP

In addition to reducing a basis, several works were done to study the possibility of
recovering a short vector of ideal or module lattices using their algebraic structure.
The work of Cramer et al [33] is the first work. Then another article which extends
the former with the use of preprocessing is [62]. This approach has been modified
slightly in [9]. Finally, a recent work [75] showed that the problem can be solved in
polynomial time for prime ideals in Galois extensions, under specific conditions. It
describes a family of ideals over cyclotomic fields for which the ISVP can be solved

in polynomial time.

Solving the SPIP

Consider again a principal ideal I = gOg of a number field K, such that ¢ is short.

A generic way of recovering ¢ is done in two steps:

1. recover a generator h of I, i.e. solve the PIP;

2. find a short generator given h.

As mentioned earlier, the first step is considered a hard problem in classical com-
putational number theory and the best generic algorithm runs in subexponential
time. However it can be efficiently done by using quantum computing. Thus in a
post-quantum perspective, the security relies on the hardness of the second step,
i.e. of retrieving a short generator g from another generator hA. This computation is
a reduction phase, which is the kind of task that seems difficult even for quantum
computers. It is an argument which leaves open the possibility of a post-quantum
cryptosystem based on the SPIP. However, as always with structured lattices, one

may wonder if the structure can be used to solve the problem.
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Log-unit lattice and SPIP In order to solve the SPIP, one may use the struc-
ture of the set of generators of I and the Log-unit lattice. First let us describe the

overall strategy.

The set of generators of I is {gu | u € Ok}. Therefore solving the PIP yields
h = gu with u € O%. It is then possible to retrieve ¢ from h by finding w. This is
where the Log-unit lattice can be used. If we transpose the situation with the Log-
embedding, for every generator h we have Logy(h) = Logx(g) + Log(u). Using
that remark and finding the element of the Log-unit lattice closest to h it is possible
to retrieve g. This corresponds to solve the CVP with respect to the target h and
the lattice Logx (Oj ), and even the BDD because we know the generator g is short.
The success of this method is therefore dependent on the length of Log,(g) and the
particular geometry of the Log-unit lattice meaning that we want to have access to

a somehow good basis, i.e. orthogonal enough. This approach requires:

1. solving the PIP : this is considered hard classically and can be done in quantum

polynomial time;

2. computing Oy, : as the PIP this is considered hard classically and can be done

in quantum polynomial time;

3. shortening a generator h by solving the BDD with respect to Log, (O ) : this
will depend on the basis obtained.

One can remark that since the Log-unit lattice lies in H, the hyperplane orthogo-
nal to 1 = (1,...,1), the last step is to be carried out over H. Thus the attack will
require the retrieval of py(Logg(g)) from py(Logy(h)), where py is the projection
operator on H. We will then call py(Logk(g)) the target (vector) of the problem.
As a matter of fact, step 3 will correspond to a BDD depending on the norm of the
target.

FEzisting results This strategy was mentioned in [26] where it was claimed that in
the case of cyclotomic fields the group of cyclotomic units has a good enough geom-
etry in the Log-unit lattice to help recovering a short generator. A proper analysis
over cyclotomic fields has been done by Cramer et al. in [34] where the authors gave
a bound for the norm of the vectors of the dual basis. In [6] Bauch et al. studied
another family of fields, namely the multiquadratic fields, and were able to recover

a short generator of an ideal in classical polynomial time for a wide range of fields.

Motivations to study the SPIP Even though the actual propositions of lattice
based cryptosystems essentially rely on other problems such as the ISVP it is im-
portant to study the SPIP. Indeed such work can help determining which fields or
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structures are weak. Then one could build upon such analysis a successful strategy
for harder problems, or even draw a definitive line between these problems. More-
over one has to remark that one step of the strategy to solve the ISVP |9, |33} |79] is
precisely solving an instance of the SPIP.

Finally from a post-quantum perspective the PIP can be solved in polynomial
time. Indeed all the number theoretical objects needed can be computed efficiently
following [13] 138]. Over general number fields the last unknown is therefore the
possibility of retrieving a short generator using the Log-unit lattice. In order to
study these problems without a quantum computer, it is important to obtain more

efficient algorithms to be able to operate over number fields.



Chapter 3

An encryption using diagonally

dominant matrices

3.1 Motivation

The recent call of the NIST for a post-quantum standardisation aims at selecting the
best protocols resilient to the quantum computer for encryption, key exchange and
digital signature. The third round of this process has been recently completed, and
only a few candidates remain of the 69 initially proposed. The algorithms chosen
at the end of this process are supposed to become cryptographic standards for the

next decade(s).

Meanwhile, research on other cryptographic primitives external to the NIST call
still continue. [83| was a candidate of the round 1 and has known some attacks and
variants [101, 96]. The work of [101} [83] relied on the fact that the matrices used as
secret lattice basis are diagonal-dominant (or almost), as it was often the case for
a lot of lattice-based cryptosystems such as the GGH cryptosystem [47] before the
apparition of the popular cryptosystems based on NTRU [54] or LWE [86].

We propose in this chapter another encryption primitive based on the basis struc-
ture and related reduction algorithms of |81}, |83]. While the signature scheme has
been shown to have some minor leak [101], an encryption scheme would not have to

deal with such issues.
The construction is purely theoretical, while it could be easily implemented with

a reasonable efficiency, the goal here is to present a sensible mathematical construc-

tion that could be improved if further research is conducted.

52
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3.2 Background and notations

In this chapter we only consider full-rank integral lattices, i.e. such that their bases

can be represented by a n X n non-singular integral matrix.

3.2.1 Framework

Let us now describe the encryption scheme framework we are considering. It is based

on lo. We fix as parameters (D,n, M) € N2
e Setup(): the secret key Sk = B € M, (Z) is a c.d.d. or r.d.d. matrix with
diagonal coefficient D, and the public key Py is H = HNF(DB).
e The message space is F(M) = [-M, M]".
e The encryption function will be Encrypt(m, Px) = sH + m, for some s € Z".
e The decryption function will be Decrypt(c, Sx) = Reduce(c, B). The conver-
gence radius of Reduce will be denoted by R.

Remark that here, Reduce is a GDD solver, not a reduction algorithm like LLL.

In order to obtain a correct scheme we need to determine parameters ensuring the

correctness of the decryption. As mentioned before, they need to satisfy
R+ M <M (0). (3.1)

We will therefore study AS‘”) and the possibility of reducing vectors within a certain
radius over a diagonally dominant matrix. Moreover, remark that the existence of
such reduction algorithm directly gives an upper bound on the covering radius (>

of the corresponding lattice.

3.2.2 Specific notations

Let us consider the matrix B = (D x Id,) + N. We will use the following objects

and notations.

e CN(B,j) = > |bi;| i.e CN(B,j) is the sum of the non-diagonal absolute
i)
values of the coiumn j of B.

e UN(B) = max CN(B,j).
jeltn]
e RN(B,i) = > |b;;| i.e RN(B,i) is the sum of the non-diagonal absolute

i£]
values of the row 7 of B.
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e RN(B) = max RN(B,1).

i€1,n]

e D € N* is called the diagonal coefficient of the basis B.
e N is called the noise matriz of B and its elements noise values.

e For I C [1,n], we note By € My 1/(Z) the submatrix of B composed of the

rows and columns of indexes in I. Naturally, if B is a r.d.d/c.d.d matrix, so
is B[.

o S.(1) is the set of positions i given [ € Z™ such that |/;| = ||{||,

e 3(I,B) = min {malx{|(lB)j| ], =1, 9c(1) = ]}} given any set of indexes
je

I. Tt is simply min{|[{B;||, |l € {~1,1}/!}. We denote B(I, B) by B; when
B is implied, and stress that By # A\ (B’).

3.3 Shortest vector and reduction algorithms

In this section we provide generic results on the shortest vector and reduction algo-

rithms regarding diagonal dominant lattices, relative to the infinity norm /.

3.3.1 Short vectors and reduction algorithms for c.d.d. ma-

trices

First let us consider c.d.d. matrices. The results proven in this subsection will prove

the following theorem.

Theorem 3.1. Consider B € Z" a c.d.d. matriz and L = L(B). Then M\ (L) >
D — CN(B) and there is an algorithm RSR (Alg. running in polynomial time
such that

D+ CN(B)

Vv € span(L),RSR(v) = v mod L, ||[RSR(v)||, < 5

D+CN(B)
.

Consequently one has > (L) <
Short vectors

First let us study the norm of a shortest vector.

Lemma 3.1 (Minimal largest value of non-zero combinations). Consider k € 7"\
{0}, 7 € [1,n] such that |k;| = || k||, B be a c.d.d matriz, and v = kB. Then one
has |vj| = [kl x (D = CN(B, j))-
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Proof. Without any loss of generality we can assume v; > 0 and k; > 0. Then

i kib;
i=1

n

> kiD= |kibij| = k(D = |bij]) = k;(D — CN(B, j)).

i i

|vi| =

]

This directly implies that A§°°) (L(B)) > D—CN(B). Let us show some additional

results on c.d.d. matrices.

Lemma 3.2 (Submatrix bound on non-zero combinations). Consider B a c.d.d.
matriz, k € Z", I = Sx(k) and v = kB. Then there is j € I such that |v;| >
B(I, B).

Proof. Clearly if k € {—||k||.,0,| k|| }" then there is j € Se(k) such that |v;| >
k|l % B(Sx(l),B). Now suppose that there is j; ¢ S (k) with k; # 0. One
can assume |k;, | > |k;| for all j ¢ S (k). Consider the vectors k&’ and k” such that
k =k + k" and

o {Sign(/fj)(\k\oo —lkpl), itjel

j

0, otherwise.

Therefore we also have

) {sign(kj)ukjl), ifjel

k; otherwise.

Remark that for all j € S, (k) we have sign(k}) = sign(k}) = sign(k;) and |k}| =
|k”|oo. From what precedes we know that there is j € S (k) such that |(k'B);| >
B(Sw(k), B). Moreover Sy (k) C So(k”) and the signs are the same, so we have
sign((k"B);) = sign((k'B);). Thus we obtain |(kM);| > B(S«(k), B).

[

This gives us the following theorem.

Theorem 3.2 (Bound by the minimal submatrix). Let B be a c.d.d. matriz. Then
AN (£(B)) > min B.

Reduction algorithms for c.d.d. matrices

Popular lattice reduction algorithms such as LLL or Babai’s algorithms are gen-
eral purpose algorithms that could prove relatively expensive for large dimensions.
Moreover they are targeted on the Euclidean norm /. A cheaper (in practice) al-
ternative for reducing vectors modulo a lattice generated by a diagonally dominant

matrix was given by Plantard et al. in [81] and successfully applied to their signature
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scheme. We will propose here a different algorithm relying on the c.d.d structure.

Before we present the full algorithm, we first introduce the core part that we de-

note by SingleReduce. It is described in Algorithm[I0] and exhibits nice properties.

Algorithm 10 SingleReduce

Require: v € Z", B a c.d.d matrix, R; > %N(B’i),

Ensure: w = v mod £(B) and ||w||, < max(R;,||v|, — (D — CN(B))).

1: w4

2: s« [0,....,0] € {0, 1}" > Initialise reduction status in all indexes
31+ 1 > initial index
4: Whlle \/;lzl((|wj\ > RJ) A (Sj == O)) dO

5: if |w;| > R; and s; = 0 then

6: W 4— W — |’le_1‘B7’ > Reduce |w;|
7: s; 1 > “Update" the reduction status of index 7
8: end if

9: i < (imodn)+1

10: end while

11: return w

Lemma 3.3. Consider a vector v € Z™ and a c.d.d. matrix B with diagonal coef-
ficient D. Moreover let R € Z" be such that R; > %N(B’i). Then SingleReduce
Alg. transforms v into w € Z" satisfying the following properties.
g

1. v=wmod L(B).
2. Vi€ [1,n],|v] > R = |v;| > |wil.
3. Vie[1,n],|v| < Ry = |w;| <R;.
Moreover the algorithm performs at most n additions on vectors.

Proof. First remark that we add or remove at most one time each row vector to the
variable w during the execution of the algorithm. This is ensured by the flag vector
0 w®, ... w" =w the

two by two distinct values of the variable w with r < n. Similarly write s© ... s

s. Therefore we add at most n vectors to w. Write v = w!

the different values taken by s. Fix some index i € [1,n]. First assume sz(»r) = 0.
Then we know that |wi(r)| < R; and w; satisfies the claimed properties. Now assume
s = 1. Let us denote by ko the integer such that w!* = w* ™ + D. Without
loss of generality we can assume v; > 0. First we consider the case where wz@ > R;.
Then for some J C [1,n] \ {i} we have

D — CN(B,4)
2

w ™ = w® +3 " by > w” — CN(B,i) > Ri— CN(B,i) > >0

jedJ
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therefore w}® = wgko_l) — D. We can write
n , D+ CN(B,i

jei,n]
J#

which ensures |w(™| < [w\”]. Now consider the case where w” < R;. From
%N(B’i) > CN(B,i) we deduce that w!* " > 0 and w{* = w*™" — D. With
the same reasoning as before we can conclude w? < w? and w!™ > w* — D —
CN(B,i) > —%N(B’i) which ensures |w!™| < R;. Finally we remark that the

results obtained are independent of the choice of i. O

This building block naturally gives us the RSR reduction algorithm, which is guar-

anteed to finish given a c.d.d. lattice basis.

Algorithm 11 RSR

Require: v € Z", B a c.d.d matrix, R; > —D+C]2V(B’i)_

Ensure: w = v mod £(B) and |w;| < R;.
w4 v
while \/?:1(|wj| > R]) do
w <—SingleReduce(w,B,R).
end while
return w

Theoretically, there is no general case algorithm that can provide strictly better
bounds on [,: the covering radius cannot be lower than half the size of the shortest

vector, and for CN(B) = 0 we do reach this extremity.

D+CN(B,i
2

Proposition 3.1. Given a vector v € Z", R € Z" such that R; > ) where

D,CN(B,i) are associated to a c.d.d. matriz B, RSR (Alg. transforms v into
w € Z" satisfying the following properties.

1. v=wmod L(B).
2. we F(R).
Moreover the algorithm performs at most n |jv|| additions on vectors.

We want to stress this does not show the algorithm is practically efficient: in-
deed SingleReduce might run a quadratic amount of absolute value comparisons

on scalars in a single call.

Memory-wise, the algorithm only requires an amount of scalars that is linear in
the dimension: this is a significant advantage compared to alternatives that could

require at least quadratic amount of elements whose size could be larger than the
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scalar entries themselves — for example, LLL which requires the computation of the

GSO.

3.3.2 Short vector and reduction algorithm on r.d.d

Now let us consider c.d.d. matrices. Again, the results proven in this subsection

can be grouped in the following theorem.

Theorem 3.3. Consider B € M,(Z) a r.d.d. matriz and L = L(B). Then A\ (L) >
D — RN(B) and there is an algorithm PSW (Alg. running in polynomial time
such that

D+ RN(B)

Vo € span(L),PSW(v) = v mod L, ||[PSW(v)||, < 5

D+RN(B)

Consequently one has > (L) < 5

Short vectors

Exposing a simple relationship between RN (B) and A; does not seem simple, and
does not seem to have been studied in detail. We proved that for c.d.d. matrices,
a small value of C'N(B) enforces the shortest vector to be large. We will show the

same property for r.d.d. matrices.
Lemma 3.4. Let B € M, (Z) be a r.d.d. matriz. Then \*(L(B)) > D — RN(B).

Proof. Consider [ € Z", and write v = [B. Then write I’ = (|l;|)icp1,n). Clearly there
is B" € M,(Z) a matrix such that |Bj;| = |B;;| for any pair (i,7) € [1,n]* and
for all i € [1,n], B, = D and v; = £(I'B’);. Thus B’ is a r.d.d. matrix such that

RN(B',i) = RN(B,i) for all i € [1,n]. Now let us show that |[v|| . > D — RN(B).

We will first bound the taxicab norm, and then use
0]l < llvlly <ol - (3.2)

First remark that we have the following:

Sy

j=1 i=1

loll, =Y _I('B");| =
j=1

Moreover for any i € [1,n], Il > 0 and D > RN (B, i), so we have

S B\ = S LB = YD - BN(B.D).

=1 i=1 j=1 i=1 i=1
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Therefore, if k = |{i € [1,n] | ; # 0}| we obtain
[oll, = k(D — RN(B)).
If k& = n then Equation (3.2)) gives
loll. > D — RN(B).

Now consider the case with k& < n. Without any loss of generality, assume Vi €
[1,k],1; # 0. Denote by I” the tuple (I1,...,1}) and B” the top left k x k submatrix
of B'. Then B” is r.d.d. and Vi € [1,k], RN(B",i) < RN(B',i) = RN(B,i). We
have

Ve [1,k], (B); = (B = (I"B").

Then, since [{i € [1,k] | I/ # 0}| = k, we can apply the previous result to I"” and B”,
therefore ||I"B"||, > D — RN(B") and i € [1,k],|(I"B");,| = ||I"B"||,- Finally

we get
UB)io| = |(I'B")io| = |(1"B")is| = D — RN(B") 2 D — RN(B') = D — RN(B).
[

r.d.d-specific reduction algorithm

The PSW reduction algorithm we will describe is not new: it was first introduced in
[81], and is a known approximation of Babai’s Round-off algorithm [5] in the case
of matrices of the form D — M where M D~ has a spectral radius lower than 1. It
was then used a second time in cryptography [83] in the case of r.d.d. matrices. The
algorithm was proven to finish for § = D in 83|, but did not take account of the gap
between RN (B) and D. A slight modification of the reduction proof given in |96]
gives us a tighter bound by changing the loop condition in line 3 of the algorithm

D+RN(B,i
2

to a comparison with a value R; = ) for every index ¢. This gives us the

modified version, described in Algorithm

Algorithm 12 PSW reduction

Require: v € 2", B a r.d.d matrix, a vector R € N”
Ensure: w = v mod £(B) and ||w||_ < D.

1. w<«w

2: while \/;l:l(le| > RJ) do

3: i < any index such that |w;| = ||w||

4: w<—w— |'F|B; > Reduce |w;|
5: end while

6: return w
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Lemma 3.5 (Tighter bound in PSW-reduction algorithm). For any v € Z" and
a r.d.d. matriz B, the PSW reduction algorithm can output w = v mod L(B)

: D+RN(B,i
where Vi, |w;| < %(2)

Proof. Let f be the function defined on Z" x [1,n] by f: (w,i) — w — |%]B5;. In
order to show that Algorithm [12| ends and outputs a correct vector, we will prove

the following;:
\/ lwj| > Rj) = Vi€ S(w,R), |[f(w,d)ll; <wl,- (3.3)

First let us show if the left side of (3.3 is satisfied, then f modifies w. Remark
that for all ¢ € [1,n], f(w i) = w if, and only if, [%] = 0, which is clearly

equivalent to |w;| € [-2,2]. This condition is clearly satisfied for any i € [1,7]

202
such that |w;| > R;. Now let us show that (3.3) is true. First assume that there is

i € S(w, R) such that |w;| > D. Then f(w,1); has the same sign as w;, therefore
| f(w,i)] = |w;] — | %] D. Moreover we have

vj € [Lnl \{ih sl < sl + | 3 | 1B,

which gives

I (o, )y < [f (i |+erwz |w1|—L“’ﬂD+Z|wy|+[ 1Bl
J#z

J#J

This leads to

1)l < lleolly + | 5| (BN (Bi) = D) < fwlly = | 5| < Il

Now consider i € S(w, R) such that |w;| < D. Then |%] =1, and the signs of w;

D
and f(w,1); are different. Moreover if we write |w;| = R; +t with ¢ € [1, %N(B)]],
we obtain |f(w,i);| = |R; — D +t| = %N(B’i) — t. Therefore we have
D+ RN(B,i
|f(w,i);] = + RN ’2)—t—RN(B,i):|wi|—RN(B,i)—2t.

2

Following the same reasoning as before to bound || f(w,%)||; we obtain
1f (w, )y < [lwlly = RN(B, 1) = 2t + RN(B, 1) < [lw]]; .

]

Note that again, there is no general polynomial-time algorithm that will give
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strictly better bounds on [, in every case: by setting RN(B) = 0 we do obtain a

covering radius that is half the size of the shortest vector.

This algorithm like RSR uses a linear memory. The average-case time-complexity
of the algorithm was briefly experimentally hinted in [81], however a proper worst-
case analysis is not as simple here as in RSR and does not seem to have been done

in the literature.

Proposition 3.2. Let B be a r.d.d. matrix and v € Z™, and denote by b the value

nD
nD—(D—RN(B)) "

PSW is

An upper bound on the worst-case vector operations complexity of

0 (o, (121 + 2)

Proof. Let us consider the reduction of ||w||, to count the number of reduction steps.
Using the reasoning of the above proof, we will consider two cases: ||w||,, > D and
|w|l, < D. Assume first that ||w||_ > D, and denote by w’ the value of the vector
after the update in step 4 of Algorithm [12] Then [jw]|; is updated as

lw'lly = llwlly = ¢D + ¢RN(B) = [Jwll, — ¢(D — RN(B))

with ¢ = {%J > 1. From |lw|| < ||w|l; < n|lw|, we obtain ¢ >

lolly

- Thus we

get

]l
l'lly < flwlly = 5D = RN(B)) = ],

nD — (D — RN(B))
nD )

If we use this inequality and we write k for the number of steps necessary to reach

the condition ||wl|| , < D, we obtain in the worst case

nD — (D — RN(B))\"
o, = (“2EZEEDY oy, < .

This gives O <10gan(anDRN(B)) ( 5 >> number of vector operations to reach ||w|| <
D. When this condition is true, each step reduces ||w]||, by at least 2, and the
worst-case scenario would be to reduce until |jw||, = 0. Therefore, it would require
el < 22 jterations. Thus, the final worst-case complexity analysis in terms of

2 2
o]l nD
0 (logw—w’iDRmn ( D)o

vector operations is
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This overestimated complexity does not reflect at all the experimental results re-
ported in [81], 96, 83|, which is understandable: the probability to trigger a single
worst-case iteration is 2”71, i.e as probable as solving a {0, 1}-knapsack problem
randomly. However, our result still proves polynomial operation complexity and

constant memory as far as vector operations (i.e fixed dimension) are concerned.

3.4 DRE: Diagonal Dominant Encryption scheme

We provide in this section an encryption scheme based on our previous results, fol-
lowing the framework described. It is a simple application to demonstrate there
could be some practical use to our earlier study: as diagonal dominant lattices were

successfully used to create the DRS signature scheme [83, 96|, we here “create” DRE.

The construction is purely theoretical, while it could be easily implemented with a
reasonable efficiency, the goal here is to present a sensible mathematical construction

that could be improved if further research is conducted.

3.4.1 Correctness of the scheme

Using the previous properties and as little structure as possible, we can deduce
a sufficient (but not necessary) condition for a cryptosystem to be correct. We
showed that a c.d.d. (resp. r.d.d.) matrix B satisfies A§°°>(£(B)) > D — CN(B)

(resp. D — RN(B)). Moreover we have access to Algorithm [11] (resp. which
D+CN(B)
2

(resp. R = %N(B)). Therefore, if (M) is the message space, following Eq. (3.1

the different parameters have to be such that

reduces any vector v to w = v mod £(B) such that ||w|| ., < R with R =

D+ CN(B D+ RN(B
M++() <D—CN(B) (resp. M++<) < D — RN(B))
This leads to

D —2M D —2M
—5 (resp. RN(B) < —

CN(B) < ) (3.4)
which is very easy to construct. It is important to note that a larger shorter vector or
a smaller convergence radius R immediately leads to a weaker condition for CN(B)

(resp. RN(B)). Remark that the choice of M also influences this condition.



CHAPTER 3. DIAGONALLY DOMINANT MATRICES 63

3.4.2 Instantiation of the encryption scheme

To instantiate our encryption scheme, we first need to fix some public parameters
as the diagonal coefficient D, and the dimension n. We assume the message space
is composed of vectors over {—1,0,1}", but we showed earlier that could also be
subject to change. We also have to choose between a r.d.d (RN (B) to be fixed) and
a c.d.d (CN(B) to be fixed).

From an external point of view, our scheme is actually a knapsack problem, such
as the first proposition of Merkle-Hellman [67]. The major difference is within the

setup and the decryption, which are details that are hidden from message senders.

We will describe a possible instantiation of DRE using c.d.d. matrices. Again,
since the bounds proved for c.d.d. and r.d.d. matrices are identical, all of what
follows can be done for r.d.d. matrices. One only has to replace CN(B) by RN (B)

and use the corresponding reduction algorithm.

Setup

The setup is composed of two steps. For the secret key, we generate a diagonal

dominant matrix with our chosen parameters (D,n). Since the message space is
P(1) = [-1,1]", following Equation (3.4)), we will fix CN(B) = 22,

For the public key, we compute the HNF of the secret key, assuming it has perfect
form. If the HNF does not hold a perfect form, we can choose to discard the key or

use a permutation to attempt obtaining a perfect HNF as reported in [96].

The public key is then the resulting HNF, with a small twist: we choose to
remove the determinant of the lattice, to effectively transform our modular knapsack
instance into a knapsack problem. This also removes information about the lattice,
which decreases the success rate of lattice reduction attacks for key recovery, and

leave P as a set of n — 1 large integers.

Encryption

Since our public key is a knapsack problem, we just sum or subtract the correspond-
ing values of the public key Pgx according to our message m. The resulting integer
is our ciphertext c.

Because the keys (B, H) are chosen such that H = HNF(B) is perfect and h is
the last column of H minus the last coefficient, the output of Encrypt as described
in Algorithm [14] is the last coefficient of a vector of the form [0,...,0,¢] = m + v
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Algorithm 13 Setup

Require: (D,n) € N2,

Ensure: (Pg,Sk) the public and secret keys

CN(B) « 222

B <+ CDDgen(D, n,CN(B))

H <+ HNF(B)

while IsPerfect(H) = false do
B < CDDgen(D,n,CN(B))
H + HNF(B)

end while

h <+ H[l.n—1,n]

return (B, h)

Algorithm 14 Encrypt

Require: A plaintext m € [—1,1]" and the public key Px = h € Z"L.
Ensure: A ciphertext ¢
1: ¢+ 0

2: fori=1ton—1do
3: c <4 c—m;h;

4: end for
)
6

Cc<—c+my,
: return c

with v € £(B). Indeed, if one reduces the vector m with the HNF H, as follows

_ml Mp—1 My ]
1 0 0 hy
0 1 :
0 : |
0 1 Po—1
i 0 det(B)

then using the first n — 1 rows of H one can remark that the first vector will be

transformed into

n—1
0,...,0,m, — Zm,hz] =m—mH +m,[0,...,0,det(B)].
i=1

Decryption

We can use the reduction algorithms studied earlier to recover m from c. From our
study, Algorithm [15] will output the correct plaintext m.
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Algorithm 15 Decrypt

Require: A ciphertext ¢ = Encrypt(m,h) € Z" and the secret key Sx = B.
Ensure: The plaintext m

CN(B) « 222

R+ [CN(B),...,CN(B)]

m < ¢ (mod det(B)) > Reduction modulo the determinant
m <+ [0,...,0,m]

m < RSR(m, B, R)

return m

Further work

The encryption scheme we described previously is essentially a toy example. Before

considering it as usable scheme, one would need to assess the following points.

(1) The first thing to do would be to estimate the security provided by such a

system.

(#7) The key generation is relatively slow as it requires the computation of HNF of
large matrices. One could look into using the structure of diagonally dominant

matrices in order to accelerate HNF computations.

(737) Then the reduction algorithms might be improved. Experimentally, it is espe-

cially the case of RSR for c.d.d. matrices.



Chapter 4

Practical computations in number

fields

The main goal of this thesis is to study ideal lattices, with a special concern for
high degree number fields. Indeed, cryptographic sizes are large (at least larger
than 256). In order to obtain data for such dimensions, a significant part of our
work has been to implement and improve in practice some computational tasks over
number fields. In particular, in our study of real Kummer extensions of the form
Q(¢ma,...,¥ymy) or K(¥/ma,...,¢m,) with L = Q(y/n1,..., ¢/n,), we developed
recursive algorithms (which are generalisations of the work done over multiquadratic
fields by Bauch et al. [6]) to compute the unit group and solve the PIP. These two
main algorithms require two tasks which can be costly over large degree number
fields, even if they run in polynomial time. These are the computation of relative
norms of ideals and the extraction of p-th roots of elements. In this chapter we will
present the practical improvements that we made regarding these two tasks. More

precisely, the chapter is as follows.

e We study in Section two methods of computing norms of ideals relative to
extensions L/K. The first one is certified and runs in polynomial time over
extensions such that the Galois closure of L/K satisfies [L : L] = Poly([L : Q]).
This is the case of the Kummer fields considered in this thesis. The second is
heuristic and probabilistic. We were not able to prove an acceptable bound of
its running time, but its practical efficiency is very good compared to our first
method and the implementation of MAGMA [22].

e In Section we develop a method to retrieve the roots of a polynomial
f(X) € L[X] where L is a number field. It runs in polynomial time and
uses complex embeddings. Moreover, we show how it can be adapted to take
advantage of an extension structure L/K, in order to decode approximations

relative to K instead of L. This comes at the cost of searching in a large set

66
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which makes this process impractical when [L : K| increases. We also present
several heuristic observations which allow both our methods to compete with
the classical algorithm implemented in PARI/GP [76]. It is particularly the

case over Kummer extensions and small degree polynomial equations.

4.1 Relative norms of ideals

The computation of relative norms of ideals can be computed following several meth-
ods, depending on which characterisation of the norm one considers. In 30|, H. Co-
hen shows how one can compute efficiently the relative norm from a pseudo-Hermite
Normal Form (pseudo-HNF) of an ideal. Then if one considers that N (/) can
be expressed through the product of ideals in the Galois extension following Equa-
tion , it is possible to compute this product. Finally it is possible to use a
compact representation of ideals called the two-elements representation in order to

compute the relative norms more efficiently.

First let us define the two-elements representation of an ideal.

Definition 4.1 (Two-elements representation). Let K be a number field, and I be

an ideal of K. Then a pair (a, 3) € I? is called a two-elements representation of I

if I = CYOK + 50]{

Proposition 4.1. 1. Consider a number field K, an ideal I of K and o € 1.

Then there is € I such that (c, 5) is a two-elements representation of I.

2. Consider an extension of number fields L/K, an ideal I of L. Then there is
(o, B) € I? such that (N k(a), Nk (B)) is a two-elements representation of
Np/r(1).

One can find in [30] the following probabilistic algorithm which computes a two-

elements representation of an ideal, from an integral basis.

Notation. We will denote by RandomElement the procedure which given a family
B = (b,...,b,) and a range R € N, outputs an element in the Z-module generated

by B which coefficients are drawn uniformly at random in [-N, N].

We do not specify the range for the procedure RandomElement used in Algo-
rithm nor the shape of the basis B. In [30]|, Cohen picks a LLL-reduced basis
and a range equal to 3. This procedure can be costly when the dimension of K is
large, because of the use of LLL. When the determinant (i.e. the absolute norm of
the ideal) is known or easily computable — which is typically the case when the ideal
is given by its HNF — one can replace the reduction by LLL by a reduction modulo

the determinant.
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Algorithm 16 TwoElements

Require: An ideal I of a number field K given by an integral basis matrix B
Ensure: A pair (a, ) being a two-elements representation of [
« < RandomElement(DB)
H, < HNF((«))
d < det H,
while d # det B do
[ < RandomElement(DB)
Hg « HNF((5))
H «+ HNF ([H, | Hs]")
d < det H
end while
return (o, f3)

,_.
@

Product of two ideals There are several ways of computing the product of two
ideals, depending on the choice of representation. Consider two ideals I and J, each
given by an integral basis. Let us denote by (e;); and (f;); these bases. Then I.J
is generated over Z by the products (e;f;); ;. Thus, if I and J are given by their
HNF in a fixed basis, one could recover the HNF of IJ by computing the HNF of
all the products. It amounts to computing the HNF of a n? x n matrix, where n is
the dimension of the field. This method is clearly polynomial in the dimension, but
can still be long especially if n is large. In order to speed-up this naive process, one
can use the more compact two-elements representation. If I is given by («, ) and
J by its HNF H; then [.J is generated over Z by

O{HJ
BH;|
Then one needs to compute a HNF of a 2n x n matrix with this method.

For the following, let us fix L/K an extension of number fields and write H =
Hom(L/K,C) = {o1,...,0,}. Let N be the absolute degree of L.

4.1.1 Product of the conjugates

We will first present the algorithm computing the product of the o(I) where o runs
through H. The global procedure is described in Algorithm [I7]

Quick analysis One can see that [L : K| — 1 products are computed in L in
Algorithm [I7, However one needs to be careful with the dimension. Indeed the
products can be made in the smallest extension containing J and o;(I). Each step

can multiply the dimension by at most [L : K] = n. Thus in the worst-case, one
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Algorithm 17 NaiveRelativeNorm

Require: An ideal I of a number field extension L/K

Ensure: The relative norm Ny, k(1)

J <1

for i =2 ton do > Assuming that o, = Id
J «— Jo;(I)

end for

return JN K

needs to compute at step i a HNF of a N?n"2 x Nn'~! matrix. This leads to a
matrix of maximum size N?n"2 x Nn""!, in the worst case. In this situation and
n = O(N) the final matrix size is exponential in N. However if n = O(In N) then it
is polynomial in N. Finally, if the degree of E/ L is polynomial in N then the size
of the matrices stays polynomial in N and the final complexity is also polynomial.

This leads to the following result.

Proposition 4.2. Consider F a family of extensions of number fields L/ K such
that over F, [L : L] = Poly([L : Q]). Then Algom'thm runs in polynomial time

over F.

Remark 19. Given a Kummer extension L/K of exponent n, its Galois closure is in
L(¢,). Thus one has [L : L] < [L : K], and following Proposition Algorithm
runs in Poly([L : Q).

Speeding-up the computation We will now present heuristic strategies we im-
plemented to speed up the computations. The main idea is to check from time to
time during the computation if we reached our goal. This can be done with the
determinant. Indeed for any ideal I, det HNF(/) = Ny ,o(I) = Ng/o(Np/k(1)) =
det HNF(Nz/k(I)). Thus at chosen points during the computation, one can check
whether the current ideal — or equivalently current sublattice — has the targeted
determinant. Moreover one can remark that the intersection N;o;(I) is an ideal
containing [], 0;(L), and faster to compute given access only to the HNF of the
ideals. It is therefore possible to compute the intersection at the beginning of the
computation and then intersect it with the ideal currently computed in hope to find
the desired ideal. These ideas lead to Algorithm [I§|
We will report in Subsection [4.1.3] on the practical speed-up these ideas offer.

Notation. We will denote the methods of Algorithm (resp. Algorithm by
NaiveRelativeNorm_hnf (resp. RelativeNorm_hnf) and NaiveRelativeNorm_2el
(resp. RelativeNorm_2el) when only HNF are used for the products, or when

two-elements representations are also used.
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Algorithm 18 RelativeNorm

Require: An ideal I of a number field extension L/K
Ensure: The relative norm Ny, k(1)

1. H + ﬂ?:ﬂfi(f)

2. J+ 1

3: for i =2 ton do > Assuming that o; = Id

4 J < Jo;(I)

5: if NK/Q((JQH)OK) :NL/@([) then

6 return J N K

7 end if

8: end for

9: return J N K

4.1.2 Algorithm 2: probabilistic algorithms

Let us now present two probabilistic algorithms to compute Ny i (1). They follow

two different strategies, but are both inspired by the use of RandomElement in [30].
e The first is using Definition of the relative norm.
e The second is inspired by the two-elements representation and Proposition [4.1]

The disadvantage of these two methods is that they are probabilistic. However they
behave well in practice and do not require computations in the Galois closure of
L/K.

A first method Following Definition , N k(1) is the ideal of Ok generated
by the elements of the form Ny x (x) where # € I. Thus, provided that one is able to
compute random elements of I, a simple strategy is to compute such elements until
the ideal they generate is the target Ny (). This equality can again be tested by
the absolute norm. If the elements x € I are sufficiently random in I, one might
expect their relative norms Ny k(x) to be also random in Ny k([), thus quickly

generating the relative norm of I. This method is summed up in Algorithm [19]

Computing the two-elements representation The method explained previ-
ously compute an integral basis of N7,k (/). In order to obtain a two-elements repre-
sentation, then one needs to use Algorithm [16] after Algorithm [I9] One can however
design a probabilistic and heuristic algorithm to compute it at once. Indeed follow-
ing Proposition, there is (o, ) € I? such that Ny /(1) = (N x(a), Nk (8)) ok -
Thus following the same rationale as for Algorithms [I6] and [19] one can expect to
find such a pair doing the following. First fix an element «, then compute random
elements 3 until (Nz/x (o), Nz x(3)) generates the ideal Nz x(1). This can be found
in Algorithm [20]
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Algorithm 19 RelativeNormProb

Require: An ideal I of a number field extension L/K given by an integral basis
matrix B
Ensure: An integral basis H of Ny k(1)
x < RandomElement(B)
a < NL/K (27)
H <+ HNF ((a))
d <+ det H
while d # det B do
x < RandomElement(B)
a < NL/K(JT)
H + HNF ([H ] HNF((a))]T)
d < det H
end while
: return H

—_ =
= O

Algorithm 20 RelativeNormTwoEl

Require: An ideal I of a number field extension L/K given by an integral basis
matrix B

Ensure: A two-elements representation (N x (), Np,x(8)) of Nk (1)

« < RandomElement(B)

H, + HNF (N x(a)))

d < det H,

while d # det B do
f < RandomElement(B)
Hg « HNF ((Nz/x(8)))
H «+ HNF ([H, | Hs]")
d < det H

end while

return (NL/K(a), NL/K(ﬁ))

,_.
@

Analysis As mentioned, Algorithms [19] and [20] are probabilistic (and heuristic)
algorithms, contrary to Algorithm [I7] They should however run in polynomial time,
without conditions on the extension L/K. In particular, the degree of the Galois
closure should not impact the running time, since one can compute the relative
norm of an element z € L/K in polynomial time, without needing to compute the

product []", o;(x) in the Galois closure.

4.1.3 Experimental results
Computation through product of ideals

First let us explore the practical performances of Algorithms and [18, We will
first study the impact of using a two-elements representation to compute the product

of ideals, then compare the naive method of Algorithm with the improved one
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of Algorithm We implemented both algorithms over real Kummer extensions
studied in Section [5.2] Such number field extensions L/K satisfy L = K (y/m,) and
K = Q(y¢/mu, ..., ym.—1), where p is a prime integer and (m;);c,,] € Z". We did
experiments for several p. For each p we fixed (m;) to be the first r primes, with

increasing 7.

HNF vs two-elements representation As previously mentioned, using a two-
elements representation of an ideal I together with the HNF matrix of a second
ideal J allowsfor the computation of a basis of the product I.J. It reduces a 2n x n
matrix instead of a n? x n matrix. However in Algorithm [17|the products are done
in the Galois closure of the extension L/K. Thus the rank of the lattice at hand
(generated by the rows of the matrix obtained) is susceptible to increase after each
product of the form Jo;(J) during the computation. If one only uses HNF repre-
sentation as in NaiveRelativeNorm_hnf, then the maximal possible rank after a

product will be min{n?, [L : Q]}. If one uses a two-elements representation as in
NaiveRelativeNorm_2el then it is min{2n,[L : Q]}. This means that the lattices
computed with the two different representations can be different at given steps dur-

ing the computation.

One can find in Table the timings obtained for both representations and real

Kummer fields of exponents 3, 5.

Table 4.1: Average timings for NaiveRelativeNorm_hnf and
NaiveRelativeNorm_2el in real Kummer fields Q(¥/2, ¥/3, ..., /Pr)

(a) p=3
Sequence length r ‘ [L: Q) ‘ [L: Q] H Time for HNF ‘ Time with two-elements
2 9 18 0.2522 0.07860
3 27 o4 8.182 1.026
(b) p=5
‘ Sequence length r ‘ [L: Q) ‘ [L: Q] H Time for HNF ‘ Time with two-elements ‘
| 2 | 25 | 100 [ 4759 | 5.453 |

From the data gathered, one can see the influence of the Galois closure, and of the
representation used. When p increases, the Galois closure is larger comparatively
to the field L. Thus one obtains longer computations for fields with similar degrees.
Compare for example L = Q(+/2,v/3,V/5) and L = Q(+/2,v/3). Moreover, one
can clearly remark that using the two-elements representation for the products is
faster than using the HNF for both ideals. From our computations, the rank of J

is maximal in the Galois closure after one product when using only HNF, whereas



CHAPTER 4. PRACTICAL COMPUTATIONS IN NUMBER FIELDS 73

when using a two-elements representation the rank of J is multiplied by two after

each product.

Improved versions Let us now compare the performances of Algorithms
and [I8] again with both representations for ideals. We will also distinguish two
variants of Algorithm 18 if the intersection N}, 0;([) is computed or not. Since one
checks after each product Jo;(1) if N7k (I) has been computed, we also give details
step by step. More precisely, in what follows, “product ¢” will designate the state
of computation after the i-th product Jo;(I). By extension, “product 0” will be the
state after the first intersection M;o;(I) has been computed in Algorithm [18] For
cach field with exponent p and any integer ¢ € [1,p — 1] we provide the percentage
of ideals I whose norm has been successfully computed after the i-th product, and
the corresponding average computation times. Moreover we provide the average

computation time for the complete set of ideals considered.

Without the intersection: First we consider the version of Algorithm where
the intersection is not computed. Recall that the matrices representing the ideal is

in HNF so computing the determinant of its intersection with K is fast. The data

gathered can be found in Table [4.2]

Table 4.2: Experimental results for RelativeNorm in real Kummer fields

Q(¥2,%/3,..., ¢/pr), without computing N;o;(I)

(@) p=3
HNF Two-elements
Product # 1 2 Total || 1 2 Total
;=9 Percentage 75.8 | 24.2 100 (| O | 100 100
N Average Time | 0.036 | 0.111 | 0.054 || — | 0.081 | 0.081
,—3 Percentage 84.2 | 15.8 100 (| 0| 100 100
~ 7 | Average Time | 0.568 | 3.88 | 1.09 || - | 1.18 | 1.18
(b) p=5
HNF Two-elements
Product # 1 2 3 4 Total | 12| 3 4 | Total
_y Percentage | 86.8 | 0.4 4 8.8 100 || 0] 0372|628 | 100
"= Average Time | 1.97 | 8.43 | 22.31 | 3545 | 5.74 || —| — | 3.78 | 5.17 | 4.65

One can remark that the performances of the naive method and Algorithm [1§] are
similar when using a two-elements representation for the products. However Algo-
rithm [18| performs way better when using HNF only. It even outperforms the method
where one uses two-elements representations in some cases. This is due to the fact
that the lattices computed in the intermediate steps are not the same depending on

the choice of ideal representation. Then the targeted ideal is not found at the same
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step. With RelativeNorm_hnf, one can see in Table that one finds Ny /x (/) in
the first steps with overwhelming probability. However with RelativeNorm_2el it

is generally computed only in the last steps.

With the intersection: Now consider the case where the intersection ideal N;o; (/)
is computed at the beginning of Algorithm [I18] and used each time we check if we
have already obtained Ny (/). One can find the results of our computations in
Table (4.3

Table 4.3: Experimental results for RelativeNorm in real Kummer fields
Q(¥2,Y3,..., ¢/Pr), with the computation of N;o; (1)

(@) p=3
HNF Two-elements
Product # 0 1 2 Total 0 1 2 Total
r 9 Percentage 59.6 14 26.4 | 100 59.6 | 0] 404 | 100
N Average Time | 0.003 | 0.035 | 0.112 | 0.037 || 0.002 | — | 0.082 | 0.034
r—3 Percentage 54.6 | 26.2 | 19.2 | 100 54.6 | 0] 454 | 100
N Average Time | 0.028 | 0.892 | 3.231 | 0.869 || 0.028 | — | 0.973 | 0.457
(b) p=5
HNF Two-elements
Product # 0 1 2 3 4 Total 0 112 3 4 | Total
_9 Percentage 79 | 98 | 04 2.8 8 100 79 |00 88 |12.2| 100
"= Average Time | 0.04 | 2.02 | 8.80 | 23.62 | 35.44 | 3.76 | 0.037 3.81 | 5.14 | 0.99

It improves the global performance for one main reason. The intersection N;o;(1)
is equal to the norm Ny (1) with high probability, and one can see in Table that
computing this intersection is way faster than computing the subsequent products.
Otherwise, the number of products necessary before finding the norm seems to be
more or less the same.

These observations are made over a specific family of number fields. One may wonder

if the same phenomena would stay true over general extensions.

Global comparisons

Now let us compare the different general methods to compute relative norms: prod-
uct of ideals as in Algorithm [I8 by random elements as in Algorithm [19] and by
the implementation in MAGMA.

Remark 20 (MAGMA and PARI/GP). In MAGMA and PARI/GP, the repre-
sentations of objects linked to a relative extension L/K correspond to the ones
described by Cohen in [30]. Moreover the algorithms implemented to compute the

relative norm of an ideal are also found [30]. In particular it requires computing the
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pseudo-HNF of I relative to L/K, which can be time and space consuming, even
if its complexity is polynomial [16]. Moreover in MAGMA, defining an ideal in a
relative order O can be done only if O is a relative order over a maximal order.
Therefore, in order to define I as an ideal in L/K, the process requires the compu-
tation of the maximal order of K. This can be time consuming (subexponential),
thus prohibiting us from using MAGMA method over large degree number fields
such as the ones studied in Chapter [f] However we will see that it behaves nicely
over the small degree number fields considered above.

Thus for the method of MAGMA, we provide two timings. The first is the time taken
by the function Norm, and the second is the time taken to compute an absolute basis
of Np k(1) from an absolute basis of I. The last allows us to take into account the
creation of the ideal structure with the function ideal<0 | - > of MAGMA before

using Norm, and the computation of the absolute basis after.

Real Kummer extensions First let us look at the performances of the function
Norm of MAGMA and Algorithm over the real Kummer extensions considered
above. One can find results of our computations in Table [1.4]

Table 4.4: Average timings for Norm (MAGMA) and RelativeNormProb in real

Kummer fields Q(¥/2, ¥/3,..., ¢/pr)

(a)p=3
Sequence length ‘ [L:Q] ‘ [L:Q] H Norm (net) ‘ Norm (full) ‘ RelativeNormProb
2 9 18 0.011 0.065 0.005
3 27 54 7.39 8.53 0.020
(b) p=5
‘ Sequence length ‘ [L: Q] ‘ [L: Q] H Norm (net) ‘ Norm (full) ‘ RelativeNormProb ‘
| 2 | 25 | 100 [ 0.089 | 0220 | 0.031 |
(c)p=7
‘ Sequence length ‘ [L:Q] ‘ [L:Q] H Norm (net) ‘ Norm (full) ‘ RelativeNormProb ‘
| 2 | 49 [ 204 || 108 | 1.632 | 0.2416 |

From the data gathered, the function Norm of MAGMA seems to be more efficient
than the product method over the majority of the fields considered. However one
can remark that Algorithm [18]is more efficient when using both the intersection and
two-elements representation. Moreover, computing the intersection at the beginning
is also faster than computing Norm. Thus for a non negligible proportion of ideals,
it might be faster to start by this intersection to check if it is Ny (/). Finally

RelativeNormProb is the most efficient procedure, independently of the field chosen.
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Other extensions We now look at “random” extensions L/K with degrees in the
same range than the extensions already considered. This way, it is still possible to
compute O in a reasonable amount of time, and we are able to compare Norm and
RelativeNormProb. We computed the time taken to compute Ny (1) for extension
degrees [L : K] in {3,5,7} and random dimensions [K : Q] so that [L : Q] < 50, as
well as for extension degrees [L : K] in {11, 13} and random dimensions [K : Q] so
that [L : Q] < 91. One can find the data gathered in Tables |4.5/ and

Table 4.5: Average timings (in s) for Norm (MAGMA) and RelativeNormProb
in random extensions L/K of degree less than 50

(a) [L: K]=3
\ (K : Q] [ 6 8 | 11 [ 12 ] 13 [ 13 ] 13 ] 14 ] 15 [ 16 |
Norm (net) 0.017 [ 0.144 [ 0.785 [ 0.638 [ 1.995 | 0.620 [ 0.811 | 1.410 [ 2.998 | 5.046
Norm (full) 0.026 | 0.196 | 1.077 | 0.947 | 2.663 | 1.011 | 1.299 | 2.604 | 4.169 | 7.215

| RelativeNormProb [ 0.002 | 0.004 [ 0.015 | 0.013 [ 0.029 | 0.018 [ 0.019 | 0.027 [ 0.035 | 0.073 |

(b) [L:K]=5
(K : Q] [ 6 7 7 8 8 9 9 9 [ 10 [ 10 |
Norm (net) 0.245 [ 0.551 | 0.389 [ 3.154 [ 1.849 [ 3.962 [ 1.871 | 1.892 [ 3.101 | 5.337
Norm (full) 0.413]0.898 | 0.652 | 7.887 | 2.986 | 6.557 | 3.393 | 3.644 [ 6.775 | 8.278

| RelativeNormProb [ 0.008 | 0.015 [ 0.015 | 0.039 [ 0.040 | 0.062 [ 0.047 | 0.042 [ 0.068 | 0.097 |

(c) [L:K]=7

| [K:Q] Il 5 [ 5 [ 5 ] 6 [ 6 [6 |6 [ 7 [ 7 ][ 7|
Norm (net) 0.612 | 1.167 | 1.113 | 2.428 | 1.239 | 1.223 | 2.622 | 2.704 | 3.266 | 5.594
Norm (full) 1.020 | 1.601 | 1.557 | 4.421 | 1.968 | 1.894 | 5.447 | 5.315 | 6.054 | 9.622

| RelativeNormProb [ 0.014 | 0.025 [ 0.025 | 0.040 [ 0.034 | 0.033 ] 0.044 | 0.062 [ 0.060 | 0.080 |

Table 4.6: Average timings (in s) for Norm (MAGMA) and RelativeNormProb
in random extensions L/K of degree less than 81

(a) [L: K] =11

[ Ko [ a4 [ 4T 4[5 [ 6 [ 6 [ 7 [ 7 [ 7 [ 7]
Norm (net) 2.052 | 2.834 | 4.299 | 11.926 | 18.066 | 18.315 | 52.715 | 105.66 | 33.527 | 69.160
Norm (full) 2.714 | 3.883 | 6.401 | 29.872 | 42.616 | 36.462 | 81.419 | 162.90 | 48.040 | 103.83

| RelativeNormProb [ 0.034 | 0.041 [ 0.053 [ 0.129 | 0.189 [ 0.191 | 0.632 | 0.754 [ 0.352 | 0.627 |

(b) [L: K] =13

[ K@ [ 4[4[ 5 [ 5 [ 5 [ 5 [ 6 [ 6 [ 6 [ 6 |
Norm (net) 5.787 | 6.321 | 44.520 | 37.906 | 31.769 | 30.503 | 46.335 | 50.036 | 96.253 | 45.768
Norm (full) 8.223 | 9.184 | 74.145 | 61.903 | 43.387 | 42.274 | 64.560 | 71.803 | 140.93 | 92.144

| RelativeNormProb [[ 0.067 [ 0.074 [ 0.347 | 0.313 [ 0.294 | 0.292 | 0.449 [ 0.433 | 0.797 [ 0.488 |

One can remark that the function Norm of MAGMA is more influenced by the
dimension. The computation of N,k (/) increases a lot with [L : Q]. Moreover
its performance can vary from one extension to another with the same parameters.

Finally, even if the time taken by RelativeNormProb to compute relative norms
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increases also when the dimension of the extension increases, it is still very efficient

compared to Norm with average timings smaller than 1 second.

4.1.4 Conclusion

In this section we studied two methods to compute relative norms of ideals in num-
ber field extensions L/K. The first, corresponding to Algorithm , computes the
norm as the product [[, o([) with ¢ running through Hom(L/K, C). Over Kummer
extensions this method is proved to be polynomial. Moreover we showed that using
the determinant, one can check during the computation if the norm has already
been reached. Experimental data show that this offers great speed-ups. Despite
these facts, this method can still be quite heavy because it requires computations
in the Galois closure of L/K, which leads to large matrices to handle. The second
method that we explored is described by Algorithm [I9} This method is only heuris-
tic and probabilistic. However it behaves very well in practice, and outperforms
greatly both our first method and the implementation of MAGMA [22].

In future work, one could prove the probabilistic complexity of Algorithm [19]

4.2 Roots of a polynomial

We are interested in the following problem. Given K a number field and f(X) €
K[X], find the roots of f(X) in K ie. find Zx(f) = {x € K | f(z) = 0}. In fact
we will only consider the cases such that all the roots can be expressed as integral

combinations of a known basis of K i.e.

First let us describe quickly how the standard computation is done. We will call it
the algebraic method or standard method. 1t follows the same ideas presented in [40),

7]. The procedure is as follows.

1. Pick a prime ideal p which defines an isomorphism between Ok /p and F,. for

some prime p.
2. Determine the roots modulo p by factorising f(X) in F,[X].
3. Lift these to the solutions modulo a power p*.

4. If p* is large enough compare to the size of the solutions, and if p* is given by

a LLL-reduced basis then we can recover a solution x given y = x mod p*.
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The last step is usually done by using Babai’s rounding technique |7} |40]. Finally

one can see that this technique can be described by three main steps.
1. Compute first “approximations” of the solutions.
2. Compute a reduced basis of a lattice.
3. Retrieve the solutions from the approximations using the lattice.

Our method follows these three steps, but uses complex embeddings instead of

prime ideals.

4.2.1 A simple algorithm

Our method is pretty simple. First let us describe the part related to steps 2 and 3.

Decoding through LLL

First let us fix the decoding problem we will be interested in. Let K be a number
field, and B = (by,...,b,) be a Q-basis of K. Now consider z € K such that
x € Z[B]. Our problem is the following: «Given an approximation of o;(x) for some

i € [1,n], retrieve x ».

Decoding with approximations Our decoding method can be directly linked
to the original paper describing the LLL algorithm [63]. A. Lenstra, H. Lenstra
and Lovasz mention several applications of their lattice reduction algorithm, such as
finding short integral relations between algebraic numbers or finding the irreducible
polynomial of an element in a number field. As an example, assume one knows

approximations of real numbers aq, ..., a,. Now define the embedding
7" — R

(/\i)ie[[l,n]] L (CZ i, ALy -y An)
i=1

which gives a lattice of R"*! represented by the matrix

Cay 1 0 ... 0
Cas 0 1 :

. .0
Ca, 0 ... 0 1

Here C' is a large coefficient used to ensure the shortness of the solution. Reducing

this basis would allow us to retrieve a short vector (\;)iepi,ny such that C' )" | Aoy
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is small. Similarly it is common to use LLL algorithm to solve knapsack problems.

Assume we are given (aq,...,q,) € Z" and S € Z, and that we want to find a short
vector (Aj,...,A,) such that > "  N\;a; = S. Then one can consider the similar
matrix ) )
—Ca; 1 0 ... 0
—Cas 0 1 :
: : 0
—Ca, 0 ... 0 1
¢S 0 ... ... 0

Again a LLL reduction would yield a small solution of the linear equation. One can
combine both approaches to be able to retrieve the coefficient of z € Z[B] from an
embedding o;(z). For all j € [1,n], denote by /3; an approximation of o;(b;) and
S an approximation if o;(x). Now consider (z;)icpi,n] € Z" the coeflicients of x in
the basis B. Then one can expect S — ", z;5; to be close to 0 (or at least small).

Thus reducing the matrix

—CcB 1 0 ... 0
—CBy 0 1 :

S |
—CB, 0 ... 0 1
S 0 ... ... 0

is expected to yield the solution for well-chosen parameters, i.e. high enough pre-
cision for the approximations and large enough C. However this does not ensure
finding the searched for vector, and if one needs to retrieve several elements, it might
be time consuming to reduce such a matrix for each element. Thus we chose to adapt

this approach as follows.

Our technique Before we explain how to use the lattices mentioned before to
retrieve coefficients from approximations or a complex embedding we need to fix

some objects and notations.

Definition 4.2. If z is in R, the approzimation of x up to [-bits for [ € N is the
integer |2'x]. If x € C then its approzimation up to [-bits will be [2!R(x)] +
i|2!S(2)]. In both cases it will be denoted by [x];.

Remark 21. We commonly identify a complex number x with the pair of real num-
bers (R(x),3(x)). We extend this identification to approximations. In particular,

this is true when such elements are presented in integral matrices.

Definition 4.3. Consider a number field K, B a Q-basis of K, ¢ € Hom(K,C),
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and [ € N. We will call a basis lattice of K up to precision | relative to B and o and
denote by L(B, o,1) the lattice generated by the matrix B(B, ,1) defined as follows:

[ o(b), C 0 0]
BB.op < | 70l 0 C (4.1)

0

_—[O'(bn>]l 0 0 C’_

The matrix B(B,o,l) will be called the basis matriz of L(B,o,l).

Remark 22. e When there is no ambiguity regarding K, B or o, we will simply
denote L(B,o0,l) by L; and call it the lattice basis of K up to precision l.
Similarly the matrix B(B,o,1) will be written B;.

e The constant C'is used to ensure the validity of the decoding, and accelerate

the reduction algorithm on B;.

e If the embedding o is not a real embedding, then the first column of the matrix
in Equation is in fact two columns, containing respectively the real and

imaginary parts of the corresponding complex numbers.

Notation. If o(K) C R, we will denote by o(B); the first column vector of a basis
matrix B(B,0,1). If o(K) ¢ R, we will write o(B); = [R(¢(B);), S (0(B),)] for the

matrix composed of the two first column vectors of B(B,o,1).

As before, consider K a number field, B = (b,...,b,) a Q-basis of K, and z € K
such that there is (2;)icpn) € Z" with = 16y + --- + 2,0,. Now assume that
[0(2)]; is known for some ¢ € Hom(K,C) and [ € N. Then one can use Kannan’s
embedding technique using £(B,14,1) and t = ([o(z)];,0,...,0) to obtain the same
result as Babai’s nearest plane algorithm. It is also better to reduce B(B,0,l) with
LLL first, and use Algorithm [ with input this reduced basis and ¢. This leads to
Algorithm [21]

Notation. Given K a number field, B a Q-basis of K, ¢ € Hom(K,C) and a
precision [, we will denote by L(B, o, () the LLL-reduced basis of B(B, o,[). Similarly,

we will write I; when there is no ambiguity.

The output of Algorithm [21] is a vector of coefficients which are expected to be
the coefficients of = in the basis B. The correctness of the outcome will depend on

the parameters chosen, i.e. the precision [ and the constant C'.
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Algorithm 21 TestDecode

Require: An integer [, the matrix L; of a reduced basis of L(B,0,[), an integer
[o(x)]; for some x € K and a coefficient and a coefficient M.

Ensure: A candidate y = (y1,...,¥y,) for the vector of coefficients of x expressed
in B.
1 t < ([o4(2)];,0,...,0) € Z"H
2: return Kannan(L,,t,M)/C > Alg. [9]

Choice of parameters and correctness of the method Let us now determine
which parameters to choose. First one can determine the determinant of the lattice
basis of K used to decode.

Let us state a classical result that we will use.

Lemma 4.1 (Matrix determinant lemma [44]). Let A be a ring, MeM,(A) be an
invertible matriz and U,V € M,, ;,(A). Then the following is true:

det(M + UVT) = (Id,, + VT M 'U) det(M). (4.2)

Lemma 4.2. Let K be a number field and L, = L(B,0,l) be a basis lattice of K.

Also let m be an integer equal to 1 if o is real, and 2 otherwise. Then

vol(£;)?* = C?" det (Idm + %U(B);O’(B)l) (4.3)

Proof. By definition vol(£;)? is the determinant of the matrix B(B, 0,1)B(B,0,1)T =
C?1d,, + o(B); x o(B)[. Then by Lemma [4.1| one has

vol(£;)? = det <Idm +0(B)] x %Idn X J(B)l> det(C*1d,,)

which gives the claimed identity. O

Then one can deduce from Lemma [4.2] a lower bound on the volume of £(B,a,1)

which depends on the precision [ and the size of o(B).

Notation. Consider a number field K, B a Q-basis of K, ¢ € Hom(K,C) and [ € N.
Let us define the value A(B,0,1). If 0(K) C R we set

AB.o.1) = lo(B)13 ~ 17D,

and if o(K) ¢ R we set

A(B,o,1) = [|R (¢(B)|2 + IS (¢(B)|)? - H%(az(lB))Hl B H%<a2(ll’>’>>\|1_
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Proposition 4.3. Let K be a number field and L, = L(B,o0,l) be a basis lattice
of K. Also let m be an integer equal to 1 if o is real, and 2 otherwise. Then the

following is true,
21

2
vol(L£y)? = C*" (1 + EA(B, o, l)) : (4.4)

Proof. From Equation [1.3] we can write for m = 1

n

vol(£;)? = C*" (1 + % HU(B)ng) =% (1 + % Z[J(bﬁ]?) .

i=1

Then for each i € [1,n], there is ¢; € [—1, 1] such that [o(b;)]; = 2'0(b;) + €. Thus

we obtain
1 n
vol(£;)? = C?n (1 + = > (@o(b) + ei)2)
=1
2n 22 & 2 € 612
=" {1+ 55 D (o(b)* + 20(bi) 55 + o) |
=1

Since for all i € [1,n], one has |¢;| < %, we obtain the inequality

2

=1

2 Z" 1 o(b)]
2 2n 2 i
VOl(;Cl) = C (1 + E (U(bl) —2 X 5 X ol ) .
If o(K) ¢ R then from Equation 4.3 we have
1
vol(£))? = C*" det (1012 + EU(B)ZU(B)Z) :

If we write M = Idy + gz0(B) o(B);, then

L+ IREBl; — R(a(B)) | S(a(B)))
M — 2 2 ,
R(e(B)) | S(eB)) | [SeB))l;
C? C?
so we get
det(A) =1 + ||a%<aéz§>z>||§ . ||%<o—éz§>l>||§ .\ ||éR<a<B>l>||§C IS (B

_ (R(e(B)) | S(a(B),))?
c4 '

By Cauchy-Schwarz inequality we have

IRE@B, [S(eB))ll; _ (R(a(B)) | S(o(B))*
c4 ct
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therefore

wol(L)? > O (1 . H%(o—élj)z)\@ . H%ézj)l)\li) |

Following the same reasoning that we did for the real case, we can conclude that

R(e(B))IE 2 . IRG(B)],
IR > 22 (meopis - )

C 2!
and )
ISeBllz < 2% (1 2 [IS(eB)I;
2 = H ( ( ))HQ 1 ’
C C? 2
which gives the desired result. O

It is now possible to certify the correctness of the decoding. As Proposition

states, the output is known to be correct if the distance between the target and the
|ie[1,r]}

Proposition 4.4. Consider K a number field, £, = L(B,0,1) a basis matriz of K,
and © € Z[B]. Let m be an integer such that m = 1 if o(K) C R and m = 2

lattice is smaller than £ min{||b

otherwise. Then Algorithm |21 outputs the correct vector of coefficients (1, ..., x,)
of x in B if the following holds:

2m—1 2 s M(L)?
(12l +n al3) + 2 ol < 2UEL

(4.5)

Proof. In TestDecode we wish to solve the BDD with input £(B,0,l) and target
vector t = ([o(x)];,0,...,0). The vector v in £; which is assumed to be the closest
totisv= (> xo(b;)],—Cxy,...,—Cxy,). The error vector is then

e-( zn:xl C’xl,...,C’xn>.
i=1

Now let us consider the case where m = 1 and look at the first coordinate of e. First

write (1, €1, ...,€6,) € [—3, 3] the vector of errors due to the approximations, i.e.

[o0(2)]; = 2'o(z) +n and for all i € [1,n], [o(b;)]; = 2!0(b;) + €;. Then we have

x)+n— 22%, )+ €6 =mn— leez
which gives

<1+Z\xz> ~ (142l 4 x]f3) -

If m = 2, or equivalently o(K) ¢ R, one needs to consider the real and imaginary

parts. Thus we get ¢ € R™™ and (n,€1,...,€6,) € [—3,3]"" with n = (1, m).
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Following the previous analysis we obtain

1
<1+z|xz) Lol +nlol).

Thus we obtain the following upper bound for |le||3:

m—1

2 2 2
lelly < (14 2]zl +nllzllz) + C* [l2ll; -

Finally one has to remark that a LLL-reduced basis (b}, ...,0,) of a lattice £ (with
§ = 3) satisfies

-2
o[l | nie

9 = on—1 = on—1 '

b

Remark 23. e One can also use an expression involving only ||z||, with

A(Ly)?
22n '

1 2 2 2
7 (U 2llzlly +nlellz) + € flell; <

o If we know a priori that ||z||, < M for some M, then the inequality can be

written )
A (L)
22n :

Now if one has a lower bound for A\(L£;) depending on the parameters, one can

1
1 (1 +2nM+n2M) + C?*n?2M? <

deduce from it a condition for the correctness of the output of TestDecode. In
particular it is possible to obtain a lower bound of the precision [ for which the
computation is correct. The Gaussian heuristic provides an estimation of Ai(L;),
which can be used to obtain a heuristic condition for the correctness of the algo-
rithm, as in Theorem [£.1] However it could be that the considered lattices £; are
special lattices such that their shortest vectors are way shorter than predicted by

the Gaussian heuristic.

Theorem 4.1 (Correctness of decoding). Consider K a number field, B a Q-basis
of K and x € Z[B]. Additionally fir 0 € Hom(K,C), C € N, and m € N such that
m=11ifo(K) CR and m = 2 otherwise. If | € N with | > 1 satisfies

(2(n — 1)+ (m — 1)) In(2) + In(||2[3 (2 +n + 4C?) + 1)
In(2)
nin(z=) +2(n—1)InC +In (A(B,o,1))
a In(2)

then Algorithm |21] outputs the vector of coefficients of x in the basis B.

20> n

(4.6)
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Proof. Let us fix [ € N. The Gaussian heuristic states A\(£) ~ /5% det £Y/"
Then one can combine Equation (4.4)) to obtain a conditional inequality. In order
to simplify the expression, we will express the above inequality using only ||z||, as

mentioned above. This leads to the following inequality:

2m71

2 2 1 n 2 221
i O Z )
1 (lz]l5 2+ n+4C%) +1) < 5o <27T€C’ \/(1 + CQ(A<B,O', 1))

Remark that [ > 1 so we have A(B,0,1) > A(B,0,1). With a bit more work we can

obtain the condition

21
2(n—1)+(m—1) 2 2 < N0 2
2 (lz]l5(2+n+4C%) +1) < _27rec \/<—02(A(B, 0,1))). (4.7)

In order to obtain an inequality involving [ directly (instead of 2') we will apply the
logarithm map. The left side of Equation (4.7) gives (2(n — 1) + (m — 1)) In(2) +
In([|z]|2 (2 + n + 4C?) + 1) while the right side gives

1
= x (n 1n(2l) +2(n—1)InC +20In2 + In (A(B, o, 1))) .

Putting everything together gives the claimed condition. O]

One can obviously simplify the expression of the condition given in Equation (4.6
by removing terms which are not asymptotically relevant. Moreover it can also be

simplified by specifying C'. Indeed we can find C' such that the right-hand side of
Equation (4.6|) is minimal.

Proposition 4.5. The right-hand side of Equation @ 1s minimal when

1 1

Remark 24. Remark that the precision [ given by Theorem is polynomial in
In ||:1:||; and the dimension n. Therefore the complexity of computing a LLL-reduced
basis of £(B,c,1) is also polynomial in In ||z||5 and n, as well as Kannan. Therefore,
provided one is able to obtain an approximation [o(z)]; for { high enough, it is

possible to recover the coefficients of x in polynomial time using Algorithm [21]

In order to estimate the correctness of the value given by Theorem we verified
if the Gaussian heuristic holds for lattices £;. We computed the average value of
the quotient Ay (L£;)/A1(L;)gauss for increasing values of I, over random number fields
K with fixed degrees. The results can be found in Figure [f.1 One can see that

A1(L;) is very close to the value predicted by the Gaussian heuristic. Moreover the
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two values are getting closer when the precision [ or the degree n are increasing.
This shows that one can safely consider that Theorem provides a good value

certifying the correctness of the output of TestDecode.

1.2 T T T T T T T T T
1.15-/—’/'\‘/—’—”-
l_l-j)"'"_'__-__ﬂi 4
1.05 R
l_ -
0.951 .

0.9 1 1 1 1 1 1 1 1 1

0 200 400 600 800 10001200 1400 1600 1800 200t

n=15—— n=25 n =35 n=45 ——
n=20 —— n=30 n=40 —— n =50 ——

Figure 4.1: Average value of \{(L;)/A1(L;)gauss Plotted against the precision [,
for several n = [K : QJ.

Heuristic precision While the precision given by Equation allowsus to cer-
tify the correctness and the polynomial complexity of the method we described, it
is possible to find a better one by experiments. It can be useful to know better
experimental bounds to hasten the computation.

First, in some cases, one is happy with obtaining the result with some probability
high enough. It is typically the case in cryptanalysis. Therefore if the probability
that an element can be decoded with a smaller precision is high enough, then it is
completely acceptable to use such a value which reduce the computing time. Sec-
ondly, one can have access to a way of verifying that the output of the decoding is
correct. It is typically the case when one is looking for the roots of a polynomial
f(X). Once we get a candidate solution = by TestDecode, we can check if f(z) = 0.
If not we can increase the precision until a solution is found. Such a strategy can be
globally more efficient, especially if one has to decode several elements and that the

probability that a smaller precision is sufficient to decode elements is high enough.

In order to obtain an experimental sufficient precision to decode, we did as fol-
lows. Fix K a number field given by an irreducible polynomial P(X) € Z[X]. Given
B = (by,...,b,) a Q-basis of K, we generated random elements = € Z[] such that
for all i € [[1,n],z; € [-2°,2°] for some s. Then increasing precision [ (following an

arithmetic progression) we computed [o(z)]; and used Algorithm 21| until x was re-
In|z3
22

trieved. Then we computed the quotient of the final precision by [, = [K : Q]
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We did such tests making several parameters varying: s, [K : Q] and the bit-size of
the coefficients of P(X).

We chose to test the experimental precision against [, because when K and B are
fixed, it is the term of Equation which is asymptotically relevant. Moreover the
algebraic method of Belabas |7] requires the norm Ny o(p*) to be greater than a
value which is essentially [;, so that the decoding is certified. Finally, this value was
also suggested by experiments we did when we first used our technique in [64] to

compute cube roots in multicubic fields. When comparing this value to (4.6), we

In(n)
In(2) )

can remark that we gain essentially n(n —

Increasing the precision As mentioned, one might want or need to increase the
precision to which computations are performed. Recall that the heavier task con-
sistsof finding a reduced basis of L(B, o,1). Therefore when increasing the precision,
say from [ to I’, one has to reduce L£(B,0,l'). One can use the fact that £(B,0,1)
has already been computed to speed-up the computation of L; in the following way.
When computing L;, one can also compute U; € GL,(Z) such that U; B, = L;. Then,
instead of applying directly LLL to By, one can first multiply By by U; then use
LLL. This is expected to reduce the most significant bits of By, thus accelerating
the final LLL. With a generic matrix, the downside would be that computing the
transformation matrix U; together with the LLL-reduced matrix is slower than com-
puting the reduced matrix alone. However the shape of B allows us to retrieve U,
directly from L;. Indeed, one has L; = U;B; = U, [o(B), | C1d,,] = [Uie(B), | CU;).

Algorithm 22 LatticeBasisUpdate

Require: A number field K, B a Q-basis of K, L; and U; such that L, = U/ B, =
LLL(By), I" > 1.
Ensure: Ly, Uy
1: B+ By
2. B+ UB
3: L,U + LLL(B)
4: return L, U

Computing roots

We can easily imagine now how to compute roots of a polynomial f(X) € K[X]. We
described which lattice we use, and the decoding method. Obviously the reduced
matrix L(B,o,1) is computed once and used to retrieve all roots. Therefore we have

the following main steps:

1. fix an embedding ¢ : K — C;
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2. compute a precision [ € N allowing the decoding to be correct;
3. compute a LLL-reduced basis L; of the lattice generated by the basis of K
4. using o, compute approximations of the roots of f(X) up to a precision [;

5. use L, to retrieve the roots of f(X) using TestDecode.

We will call PrecisionEvaluation the function returning the needed precision
for input f(X) € K[X]. Following Theorem it depends on the Euclidean norms
of the roots of f(X). In order to evaluate an upper bound of these norms, we
can follow [7]. We will denote by FloatPolynomialRoots the procedure computing
the real (resp. complex roots) of a real (resp. complex) polynomial. We obtain
Algorithm [23| describing the method we implemented to compute Zx (f).

Algorithm 23 PolynomialRoots

Require: A number field K, f(X) € K[X], B a Q-basis of K such that Zx(f) €
Z18].
Ensure: The set Zk(f)
0 < ChooseEmbedding(K)
| < PrecisionEvaluation(f(X))
L + LLL(B(B,0,1))
Z < FloatPolynomialRoots(f7,1)
S0
for z € Z do
y < TestDecode(Ly, 2)
if f(y) =0 then
S+ Su{y}
end if
: end for
: return S

— = =

Following the results from the previous section, one can state the following theo-

rem.

Theorem 4.2. Consider a number field K, B a Q-basis of K and f(X) € K[X]
such that Zy (f) C Z[B). Then for input (K, B, f(X)), Algorithm |25 outputs Zx (f)
i polynomaal time, under the heuristic that states that basis lattices satisfy the

Gaussian heuristic.

Norm of the roots Fix the factorisation of f(X) over K as f(X) = g(X)h(X)
such Zk(9) = Zk(f), Zx(h) = 0.
As mentioned we can follow 7] to bound |||} for € Zx(f) given f(X). One does

essentially as follows.

1. Find By, such ||ow/q(2)||s < By for all z € Zi(f).
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2. Compute BU; the matrix norm of a;{l, expressed relatively to the canonical
basis of o /q(K) and B.

3. The value By = By, B?

—1
Ok

satisfies the desired property.

This bound can be quite large compared to sup{||z||3 | z € Zx(f)}. It is typically
the case when ||g|| < [|h||. Indeed, if this the case, B; will essentially bound the
complex roots of h(X). Without extra-information this is the best one can do.
If one does not need to find all the roots, a general strategy can be to compute
several bounds corresponding to increasing norms. This way if f(X) is of the form
mentioned, it is possible to retrieve some of the roots faster. Moreover one can use
heuristic evaluations for ||m\|§, giving smaller results than By. Let us explain how
we do it. Consider o € Hom(K,C) and x € K. Then one has

o ()] =

< (Z!%a(@)!) < Jallz lo(B)ll;-

i=1

Therefore for any # € K and any o € Hom(K,C), |z|} > %. We chose to
2

llo
define the function NormEvaluation_heur as the max of such quotients, as follows.

For any o € Hom(K, C), let By, be such that

Vo € Zi(f), |o(x)]* < B,. (4.8)
Then we fix
2
NormEvaluation_heur(z) = max {M)’Q | o € Hom(K, (C)} . (4.9)
lo(B)ll;

Even if NormEvaluation_heur gives a value which is a lower bound on ||z
instead of an upper bound, it allows a first precision to be obtained. This evaluation
is usually smaller than By and gives a good starting point, i.e. we do not need to

increase much the precision to retrieve at least some roots.

Comparison with nfroots If we obtain a good evaluation for the needed preci-
sion, we can pinpoint it with our method. Additionally we will see it can be adapted
to take advantage of the structure of extension L/K. However, the basis that we
reduce is close to a knapsack matrix. These lattices are more difficult to reduce
than most basis matrices of ideals reduced in nfroots. Moreover, Belabas mentions
that over these lattices, one can use a pre-reduction which decreases considerably

the running time of the subsequent LLL algorithm [7].
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4.2.2 Relative method

Let us now describe a method to recover the roots of a polynomial in an extension

of number fields L/K.

Decoding in subfield

First let us describe how one can reduce knowledge of embeddings related to the
extension L/K to decodings in K. We will use the relative Minkowski embedding
or k- It defines a K-linear embedding of L = K™ into (1" where n is the degree
of L/K. More precisely, let us fix & = (ey,...,e,) a K-basis of L and let x =
rie1 + -+ a6, € L. We assume that the action of each ¢ € Hom(L/K, Q) on & is

known. Then ok sends K" into the cartesian product of the conjugates of L/K,

OL/K : K" — anQn

(zi)iening — (Ooiy 2i0(€;))oeHom(L/K.0)

However we will need to consider this embedding as an embedding into C".
In order to do so, one needs to specify an embedding of K into C. Let us fix
7 € Hom(K,C). Then for any ¢ € Hom(L/K,C), its action on x € L can be
seen as y ., 7(x;)o(e;). This way, K is identified with a subfield of C and L is

identified with 7(K)". We can then express the action of o7/ from 7(K)" into

C™. It is expressed as a matrix in M,(C). Let us write ¥,k this matrix. We have

(EL/K)i = UL/K(ei)-

Thus we are able to do the following. Given knowledge of o,k (x) one can apply
EE}K to it and obtain (7(x;));. Obviously, computations are done up to a given
precision [. Thus knowing oy k(x) up to [, one can find the the approximations of
(7(z;));- Then one can retrieve each x; by the decoding method explained previ-

ously, with TestDecode.

Thus we obtain Algorithm [24]which retrieves coefficients of = knowing its Minkowski
embedding.

An algorithm for polynomial roots

Now we can apply the previous strategy to compute polynomial roots by decoding
in the subfield K. Again, we fix some objects. The extension of number fields
L/K is given by a Q-basis B and and K-basis of L. Then consider a polynomial
f(X) € L[X] such that Z,(f)CZ[E ® B]. From what we described previously, in

order to retrieve the coefficients of x € Zy(f), one can compute o,k and use
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Algorithm 24 Mink2coeff

Require: An extension L/K, given by B a basis of K and £ a K-basis of L, an
integer [, the matrix L, from a reduced basis of L(B,7,l), M = EZ}K up to a

precision [ + s, and X = [0,k ()14, for some x € L/K

Ensure: A candidate y = (y1,...,yn) for the vector of coefficients of x expressed
in BE
1. Y+ XM
2: y=()
3: fort=1ton do
4: y < |y | TestDecode(L;,Y;)] > Concatenation of row vectors
5. end for
6: return y

Mink2coeff. One can imagine the following main steps:
1. compute a precision [ certifying the correctness of the computation;
2. compute L; a LLL reduced basis of L(B,T,);
3. compute M = EZ}K up to precision [ 4 s for some s;
4. compute Z = ngHom(L/K’@ Zc(f7) up to precision [ + s;
5. For each x € Z, use Mink2coeff to obtain a root candidate.

This leads to Algorithm [25] below.

Remark 25. The set Z is the cartesian product of the sets Z(f?) with o in
Hom(L/K,C). Each set Z(f?) has at most d = deg f elements. Therefore, Z
is a set of at most d” complex numbers. Moreover one cannot tell a priori if an
element z € Z(f7) is of the form [0(z)];4s for some z € Z.(f), or even if a vector
(z1,...,2n) € Z corresponds to a root x of f(X). Thus one has to call Mink2coeff
d" times in the worst case. Even if f(X) splits in L, this leads to a search of d

vectors in a set of size d".

A large enumeration cost The cost of Algorithm compared with Algo-
rithm [23|is as follows. The absolute method PolynomialRoots requires at most d =
deg f(x) decodings, while RelativePolynomialRoots_naive requires enumerating
through d™ vectors, corresponding to n decodings each. The mere enumeration of
d" elements shows that RelativePolynomialRoots_naive has an exponential cost
when n increases. In addition, several operations on vectors and matrices are done

for each of the d" possibilities. Thus it is quickly impractical.
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Algorithm 25 RelativePolynomialRoots_naive

Require: An extension L/K, given by B a basis of K and £ a K-basis of L, and
f(X) € L[X] such that Z(f) € Z[€ ® B]
Ensure: Z.(f)
| < PrecisionEvaluation(f(X))
L, + LLL(B(B,1,1))
M X7,
Z < [ cnom(r/x c) FloatPolynomialRoots(f7, 1 + s)
S0
for z € Z do
y < Mink2coeff(z, M, L;) > Compute the inverse and decode
if f(y) =0 then
S+ Su{y}
end if
: end for
: return y

> Up to precision [ + s

— = =

Speed-up for small relative degrees For fixed small n, Algorithm [25| can con-
siderably speed-up the computation of Zx(f). Indeed one has to remember that an
important part of the computation time is dedicated to the reduction of the lattice
used to decode, as is also the case for the algebraic method. Algorithm [23| requires
the reduction of a lattice of rank [L : @], while the rank of the lattice reduced in
Algorithm [25| is [L—P In addition, the precision needed to certify the computation
shown in Theorem involves the dimension. Therefore, dividing the dimension
allows us to do computations at a smaller precision, which also leads to smaller

coeflicients in the matrix B; which is reduced.

Improving the naive algorithm

In order to improve the relative method described above, one has two main direc-
tions to follow. The first is to reduce the number of possibilities, i.e. eliminate as
quickly as possible the branches in the enumeration tree. The second is to speed-up
intermediate computations, in particular the ones related to testing whether a vector

of possible conjugates is a solution or not.

A better search A simple observation can be made. Let us write Z = [[, Zc(f7)

where o ranges over Hom(L/K, C). Then one has
Vo € Zk(f),Yo € Hom(L/K,C),3'z € Zc(f7) | z = [o(x)];, (4.10)

which implies that once we found a correct vector in Z we can remove from the

search tree all the nodes where any of its coordinates appears.
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Notation. We will denote by UpdateTree the procedure updating the search space

as described.

Algorithm 26 TestAndUpdate

Require: An extension L/K, given by B a basis of K and £ a K-basis of L, and
f(X) € LIX] such that Z,(f) €e ZIE® B|, x € L, S a set, Z
Ensure: Tests if x € Zk(f), updates S and Z
1: b+ f(:L“) =0
2: if b then
3 S+ Su{x}
4: Z < UpdateTree(Z, ) > Update the search space
)
6

. end if
: return b, S, 7

Identify vectors more quickly The other way to accelerate the computation is
to decide more quickly if a vector z € Z is equal to [0,k (x)]; for some x € Zg(f).
The naive method requires applying Mink2coeff to z and check if it is a root of
f(X). As already mentioned, this requires multiplying z by the complex matrix
ZZ}K, then applying TestDecode to n vectors. Even if EZ}K is precomputed and
TestDecode is generally fast (as it solves BDD), improving these procedures or re-
moving some intermediate parts to reach a conclusion can really improve the overall
performance, as one needs to repeat these operations a large amount of times. Let

us explain how it can be done.

If | is large enough, then a decoding of a true vector is a BDD. This means
that the target vector is very close to a vector of £(B,0,1). However if z is not a
solution vector, then it does not correspond to ok (y) for any y € L. Thus the
vector ZZZ}K should be far from the lattice, or at least far enough so its distance
can be distinguished from a BDD situation. If so, the decoding should yield larger
coefficients. The Euclidean norm of the candidate vector should then be larger than
the one of solutions. Then recall that the decoding is done with respect to the basis
of K. Therefore, one can decode only the first coordinate of ZEZ}K for each 2z and
compare the norms of the vectors obtained. The ones with smaller norms should be
the first part of the solutions, while the others can be discarded.

First let us define one intermediate procedure, Check1Coord, which compares
the norm of a coefficient Mink2coeff(z, M, L;) previously computed with the new
vector. It outputs a boolean indicating if the new vector of Z is a potential root
candidate. It is described in Algorithm [27]

Remark 26. The constant C' found in Algorithm [27)is the value used as the compar-

ison quotient. Consider two norms n; and ny. If ny is known to be the partial norm



CHAPTER 4. PRACTICAL COMPUTATIONS IN NUMBER FIELDS 94

Algorithm 27 Check1Coord

Require: The matrix L; from a reduced basis of L(B,7,l), M = EZ/IK up to a
precision [ + s, b; the boolean used to test, n; the norm used to test, I the index
used to test, and z € Z the vector which is checked

Ensure: A boolean indicating if z should be fully decoded

y < (zM); > Computes coordinate I of zEZ}K

x < TestDecode(L;, z)

n o [all

q < n/ny

b < false

if b, then > Check if the vector used for comparison is a solution
if ¢ < C then b < true
end if

else
if ¢ < 1/C then b < true
end if

. end if

: return b

— = e

of a solution, we will consider that n; is the potential norm of a root if n; < Cna.
However if ny is not the partial norm of a solution, then we will consider that the
vector linked to n; is worth considering if Cn; < n,. We chose not to put C' as
an input for clarity of the exposé. In our implementation we chose C' = 10" for
r e {2,3}.

Another auxiliary function needed consists of initialising the variables used for
Check1Coord (index, norm, and boolean) with the first vector computed. One can
find it described in Algorithm It also verifies if the first element decoded is a

solution, updates the search space Z and the set of solutions found S.

Algorithm 28 InitTest

Require: An extension L/K, given by B a basis of K and £ a K-basis of L,
f(X) € LIX] such that Z(f)CZ[E ® B], and y € L
Ensure: b a booelan indicating if f(y) = 0, n the norm of one the coefficient in K
of yZZ}K, I the index of said coefficient, S and Z the updated sets of solutions
found and search space respectively
b, S, 7 < TestAndUpdate(y, 0, Z)
n<0,1<+0
while n = 0 do
[+ I+1
n < |yl
end while
return b, n, I, S, Z

Now we are all set to write Algorithm 29 which computes the roots of a polynomial
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using the heuristic method we described. We already mentioned that the set 7 is

ordered, which allows it to be searched through and updated more efficiently.

Algorithm 29 RelativePolynomialRoots

Require: An extension L/K, given by B a basis of K and £ a K-basis of L, and
f(X) € L[X] such that Z.(f) € Z|E ® B]
Ensure: Z,(f)
| + PrecisionEvaluation(f(X))
L, « LLL(B(B, 1))
M %7
Z < [l enom(r/x c) FloatPolynomialRoots(f7, 1 + s)
S0
y < Mink2coeff(Zy, M, L)
by, ng, 1, S, Z < InitTest(y, f,2)
for z € Z do
b < Check1Coord(z, by, ny, I, Ly, M)
if b then
x < Mink2coeff(z, M, L;)
b, S, 7 < TestAndUpdate(z, S, 7)
end if
: end for
: return S

> Up to precision [ + s

[ T
A o S .

Average cost of the search

Let us study the average cost of the search phase of Algorithm [25]and Algorithm [29]
In particular we will determine the average number of decodings that will occur
before finding all roots. If one denotes by oy, ..., 0, the elements of Hom(L/K,C),
then the two algorithms can be described as a search without replacement in the set
Z =2y XX Z, where Z; = Z,,.

Remark 27. A cartesian product S = S; x --- x S, will be ordered using the
lexicographic order. This means that for all (x,y) € S?, if i(z,y) = min{i € [1,n] |
x; # i}, then we have <y <= Ziwy) < Yi(wy)-

From now on, let us consider the sets Z; as ordered sets of elements z; ; with
2 < %y <= j < j'. Moreover we consider that we run through Z following
the lexicographic order. Assume that the state of the computation is at the state
with index j = (j1,...,7n) € [1,deg f(X)]", and that we found a root x. We can
write * = (214, ..., %n4,)- Lhen the action of UpdateTree on Z is as follows. We
mentioned that it removes z; ;, from Z for all ¢ € [[1,n]. This amounts to removing
z;.j, from Z for all ¢ € [2,n] and updating the index by doing j; < j; + 1 and for
alli > 1,7, < L.
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Definition 4.4. Let N, M, m be integers satisfying m < M < N. A random
variable X taking non-negative values follows a negative hypergeometric distribution

with parameters (N, M, m) if it satisfies the following formula:

(e )

(m)

P(X = k) =

We will write X ~ NHG(N, M, m).

The negative hypergeometric distribution describes exactly what we want to study.
Indeed, it arises as follows. Consider a set of N elements, containing M ‘“success
elements” and N —m “fail elements”. Then if one draws uniformly in the set without
replacement until m successes are found, then the number of failures drawn follows

a negative hypergeometric situation.

Proposition 4.6 ([55]). Let N, M, m be integers, and X be a random variable such
that X ~ NHG(N, M, m). Then one has:

N-M (N — M)(N +1) <1 m )

E[X]:mM—i—l and Var[X]:m(M+1)<M+2) T M1

We are essentially interested in the average cost, so we focused on the expectation.

Proposition 4.7. Let L/K be an extension of number fields such that [L : K] = n.
Consider f(X) € L[X] such that |Zk(f)| = s and write d = deg f(X). Then the
average number of “failed” decodings done in Algorithm |25 before finding one root is
a+1 dn+1

<1 - The average number of “failed” decodings before finding all the roots is s

Proof. Let X, be the random variable representing the number of failures before
finding the first root, and X, be the random variable of the number of failures before
finding all the roots. Clearly one has X; ~ NGH(d",s,1) and X; ~ NGH(d", s, 1),
and can apply directly the formula of the expectation from Proposition to find
E[X;] and E[X]. O

The study is slightly more complex for the search done in Algorithm [29] One can
remark that the number of elements removed from the search space Z by UpdateTree
depends on the index of state. We will therefore consider the random variables

corresponding to the number of failures between two found solutions.

Notation. Let L/K be an extension of number fields such that [L : K] = n.
Consider f(X) € L[X] such that |Zg(f)| = s. We will denote by (V) < ... < 2(®)
the elements of Zk(f) ordered in Z. For each k € [1,s] we will consider several

random variables.
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1. X® is the random variable corresponding to the number of failures between
the (k — 1)-th solution and the k-th solution.

2. X fk) is the random variable corresponding to the number of failures in the first
coordinate between the (k — 1)-th solution and the k-th solution.

3. Xék) is the random variable corresponding to the number of failures occurred
between the (k — 1)-th solution and the k-th solution such that j; = xgk).

4. Y® is the random variable corresponding to the number of failures which

occured before the k-th solution is found.

Lemma 4.3. Let L/K be an extension of number fields such that [L : K| = n.
Consider f(X) € L[X] such that |Zk(f)| = s. Then one has the following:

B

Vke[[ls]]Y(k:Z( (d—j+1)" Xgﬁ).

Jj=1

Proof. Let us fix k € [1,s]. Clearly one has Y*) = Z§li)1 XU, Now let us denote
by Cy the integer |Zy x - -+ x Z,| after the (k — 1)-th root and before the k-th root
are found. Recall that after each new solution is found, UpdateTree removes one
element of each Z;,i > 1. Therefore, one obtains Cj, = (d — k + 1)"~!. Because the
search is done following the lexicographic order, it is easy to see that for each fixed
Ji1 € [[x )41 :L‘l ]] there are two possibilities. If j; < 23 ") then the search will
run through all {z; ;,} X Z x - -+ x Z,,, which contains no solution. This leads to Cj
failures. If j; = :vgk) then the search will run through {z;;,} X Zy x --- x Z, until
finding the solution. It amounts to Xék) failures. Finally the number of j; that are

passed such that j; < argk) is ka). [

Proposition 4.8. Let L/K be an extension of number fields such that [L : K] = n.
Consider f(X) € L[X] such that |Zk(f)| = s. Write d = deg f(X). Then, for
k € [1,s], the average number of “failed” decodings done in Algorithm before
finding k roots is

??‘
,_.

2d —s+1

2(s + 1) (4.11)

(@) -

NN

<.
Il
=)

Proof. Using Lemma and by linearity of the expectation, one has:

VEk € [1,s], E[y®)] =

M-

(BIXP)(@ = 5+ 1" + ELxP))

7j=1

Let fix j € [1,k]. Recall that XQ(j ) is the number of failures found during the search

through the set {xgj )} X Zy X -+ X Z,. We know there is exactly one solution in this
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set. Therefore we have X' ~ NHG((d — j 4+ 1)"',1,1) and

Cd—j+n)mt -1
_ 5 ,

Now let us determine X fj ). It is the number of wrong first coordinates visited until
finding a:'gj ), and after finding :cgj b
elements visited before x? Y included. It is a set with cardinal number

. The search is done over the set Z; minus the

(3-1) (4-1)

yzly—ZX G-D=d—j+1-> X\

=1

which contains s — (j—1) success elements. Therefore we have E[X " | >l U1 x ()
al] ~ NHG(d—j+1—a,s —(j —1),1), for all possible a. Using the law of total
expectation E[X] = E[E[X|Y]] between two variables X and Y, it is easy to see that

we have

. o S R @) g G-1) gy 0)
E[X1<J>]:(d j+1) ngl_jEf;] (s—j+1) _(d- )S_Zj+2[ ]'

It is possible to use this recurrence relation to obtain an expression of ]E[ij )] in
closed-form. As a matter of fact, we will prove that E[X fj +1)] =E[X fj )]. Indeed one
has

E[Xl(j-i-l)] _ (d—s)— 2521 E[Xfl)] B d—s— [ ] Z(] 1) E[X )]

s—7+1 s—7+1

Y

and since

we obtain
- d—s5—E[X"] + (s —j+2)E[X] — (d — -
E[Xl(jH)] _ S [X3 ]+<3_ ?"‘ JE[XT"] = (d—s) :E[Xl(])].
s—7+1
Then remark that X 1(1) ~ NHG(d, s, 1), which gives the desired result. O

Remark 28. One can see that the gain of RelativePolynomialRoots compara-
tively to RelativePolynomialRoots_naive increases with s. Indeed if f(X) has
only one root, then the expected number of decodings is the same for both methods.

However, if s = deg f(X) then the expected number of decodings with the naive
search is 44 =1  whereas it is Zf;ol (dfi);_lfl

a1 when using UpdateTree.
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4.2.3 Experimental results

We will now compare the practical performances of the methods described previ-
ously with the generic algebraic method implemented in PARI/GP [76], which is

the function nfroots.

First we will consider two versions of Algorithm [23] First is the certified ver-
sion, for which we will keep writing PolynomialRoots. Then we will denote by
PolynomialRoots_heur the version where NormEvaluation_heur is used, as well

as the formulae
2
In [|z||;

K Qo)

+2[K : Q] (4.12)

instead of Equation (4.6)).

Then we will compare PolynomialRoots_heur with nfroots in situations where
we assume that some extra information is known about the polynomial f(X), or
where the goal is slightly different from retrieving the full set Zx(f).

Finally, we will do the comparison with RelativePolynomialRoots over relative

extensions L/K.

Recall that we assume that Zx(f) C Z[B], with B = (b1, ...,b,) being some Q-
basis of K. Given x € K we will keep denoting by z1, ..., x, its coefficients relative
to B. In all that follows, we chose B to be Z[f] with # = X mod P(X), where P(X)
is a fixed polynomial defining the field K.

Solving a polynomial equation

We are interested here in the generic problem of finding all elements of Zx(f). We
wish to study the practicability of PolynomialRoots and PolynomialRoots_heur
in terms of time efficiency and goal achievability, i.e. if Zx(f) can be fully recov-
ered. We will study the impact of the different parameters of the problems which
are the number field K, the shape of the polynomial f(X), and the size of the roots
log, ||z||,- Each time we focus on a parameter, we fix the others and observe the
data given by experiments. We also differentiated between number fields K such
that ; > 0 or such that r; = 0, since the matrices used to decode do not have the

same sizes in these two cases.

Impact of K Let us explore how the choice of a number field K and the way it is
represented can impact the different methods. Classically, K is given by P(X) an
irreducible polynomial of Q[X]. We decided to study the impact of two parameters
linked to P(X), namely deg P(X) and the size of its coefficients. Therefore we fixed
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the parameters of the problem linked to f(X) € K[X]. More precisely we considered
f(X) such that:

o deg f(X) = 50;
o f(X) splitsin K, i.e. |Zxk(f)| = deg f(X);
o Vo € Zg(f),Vi € [1,n], || < 2'°.

Then we considered P(X) = po+p1 X+ - -+pp1 X" ' +X" € Z[X] for increasing de-
grees n, and several coefficient sizes s(P). More precisely for sizes s(P) € {1,5,10},
we picked polynomials P(X) such that Vi € [0,n — 1],p; € [-2%),25(")] and this
for n increasing. The data obtained are shown in Figures [£.2] and [4.3]
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Figure 4.2: Average timings (s) of nfroots, PolynomialRoots and

PolynomialRoots_heur plotted against deg P(X) for randomly generated P(X)
such that r; > 0, with s(P) € {1,5,10}

One can remark that the time efficiency of all three methods are widely influenced
by the dimension [K : Q]. This is less visible for PolynomialRoots_heur but it is
still the case. It is easily explained by the fact that all three methods require the
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PolynomialRoots_heur plotted against deg P(X) for randomly generated P(X)

80

PolynomialRoots and

computation of a LLL-reduced basis of a lattice with rank equal to [K : Q]. More-

over the volume of said lattice depends also on the dimension.

The parameter s(P), i.e. the coefficient size of the defining polynomial of K, also

influences the performances of all three algorithms. Again our heuristic method

seems to be less impacted by this parameter.

Finally, we also checked the number of roots properly retrieved by our methods.

With the certified one, PolynomialRoots, all roots were found, but we can see from
Figures and that it is way less efficient than nfroots, at least for the fixed

shape of f(X). Our method PolynomialRoots_heur — using heuristic norm evalua-

tion and formula to compute the precision — is way more efficient than the certified

version, even competing on average with nfroots in a number of cases. This is par-

ticularly the case when using a real embedding. However PolynomialRoots_heur

did not retrieve all the roots. This phenomenon occurs only when r; > 0. One can
find in Figure [4.4] the ratio of polynomials f(X) for which all roots were retrieved.
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Figure 4.4: Ratios of roots retrieved by PolynomialRoots_heur over fields such
that 7 = 0 plotted against [K : Q], with s(P) € {1,5,10}

The fact that all roots were retrieved when 7, = 0 seems to indicate that the
heuristic norm evaluation NormEvaluation_heur is good, and that the difference
comes from the lattice used to decode. From the data gathered in Figure 4.4 one
can see that the ratio of polynomial equations completely solved is dropping when
the dimension is increasing. This indicates that the formula expressing the precision
needed in function of the norm of the roots needs to be slightly bigger, and should

be taking the degree [K : Q] more into account. For example one could consider

— 2 L miK Q) [K Q). (4.13)

It would still represent a gain of [K : Q]*> compared to the certified precision
given by Theorem This indicates that for the fixed shape of f(X) chosen,
PolynomialRoots_heur is efficient, with respect to both time and probability of

Success.

Size of roots We will now study how the size of the elements of Zx(f) impacts
the performance of the different functions. To this end we fixed the parameters of
the problem linked to P(X) € Z[X] defining the number field K. More precisely
we considered P(X) and f(X) such that:

e deg f(X) = 50;

e f(X) splits in K, i.e. |Zg(f)| = deg f(X);

e deg P(X) = 50.

We did experiments for increasing size of roots. Let us denote by s this size, i.e.

Vo € Zg(f),logy|z;| € [—2%2,252]. The results can be found in Figure [£.5
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Figure 4.5: Average timings (s) of nfroots, PolynomialRoots and
PolynomialRoots_heur plotted against sz for randomly generated P(X) such
that [K : Q], with r; >0 and r; =0

One can verify that the cost of all methods looks linear in sz. It seems how-
ever that the slope for nfroots is smaller than the ones of PolynomialRoots
and PolynomialRoots_heur. Again, PolynomialRoots_heur is competitive with
nfroots, especially that almost all roots were retrieved. The only cases where it is
not true are still when r; > 0. The ratios of roots retrieved in this case are plotted
in Figure [4.6]
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Figure 4.6: Ratios of equation for which all roots were retrieved by
PolynomialRoots_heur over fields such that r; = 0 plotted against s,

The ratio is always very high and does not seem to be influenced by the size of

the roots as much as it is by the dimension of the field.

Shape of f(X)
formance of the functions. Again we fixed the parameters linked to P(X) € Z[X]
defining the number field. Moreover we fixed sz = 10. Then we considered f(X)
with different splitting situations. More precisely, f(X) and P(X) are such that:

Finally let us look into how the choice of f(X) impacts the per-
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o deg P(X) = 51;

o f(X)=g(X)n(X) with deg g(X) = |Zx(f)|, Zx(9) = Zk(f), Zx(h) =0 and
g = $24S € {0.25,0.5};

o s, =10;

e the coefficients of the polynomial h(X) are drawn uniformly in the segment

[—2' deg I, 2'° deg h]

We did experiments for increasing degrees of f(X). The results can be found in
Figure 4.7

1000 1000
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PolynomialRoots_heur ---s-- PolynomialRoots_heur ---s--

100

10|

(a) a5 = 25% (b) g5 = 50%

Figure 4.7: Average timings (s) of nfroots, PolynomialRoots and
PolynomialRoots_heur plotted against deg f(X) for randomly generated P(X)
such that r > 0, with ¢y € {25%,50%}
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Figure 4.8: Average timings (s) of nfroots, PolynomialRoots and
PolynomialRoots_heur plotted against deg f(X) for randomly generated P(X)
such that r1 > 0, with ¢y € {25%,50%}



CHAPTER 4. PRACTICAL COMPUTATIONS IN NUMBER FIELDS 105

We can remark that for the fixed types of number fields K and polynomial f(X),
our method is way more efficient than nfroots. This is a clear difference from the
situations studied previously where f(X) splitted completely, i.e. f(X) = g(X).
Again PolynomialRoots_heur does not allow the retrieval of all the roots when
r1 > 0, and only on this case. The ratios of polynomial f(X) for which all the roots
were recovered can be found in Figure 4.9 This time again, one can see that the

ratios are high and do not seem to be correlated to depend on the degree of f(X).
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(a) g5 = 25% (b) q5 = 50%

Figure 4.9: Ratios of roots retrieved with PolynomialRoots_heur plotted
against deg f(X) for randomly generated P(X) such that r; > 0, with ¢; €
{25%, 50%}

Remarks From the different situations explored and the data gathered, we can
conclude that the certified version of our method PolynomialRoots is in general less
efficient than the algebraic method implemented in PARI/GP nfroots. However,
it seems to behave better when f(X) does not split completely in K. Then, the
version of our method using a heuristic evaluation of the precision needed is more
efficient, even competing with nfroots in some situations. In most cases it retrives
all the roots, but fails in some circumstances. It is worth noticing that it is always

when using a real embedding.

Relative extensions

Let us now consider relative extensions L/K, and study the efficiency of Algo-
rithm First we will compare the impact of our heuristic strategy. Then we will
compare this method with Algorithm 23] and consider the impact of certain param-

eters on these algorithms.

Let us fix the notations. We will consider L/K together with Px(X) € Q[X]| and

~  0X] ~ KIX]
Pr(X) € K[X] such that K = 55 and L = 555
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Checking one coordinate We considered extensions L/K such that [K : Q] = 30
and [L : K] = 3 with:

o s(Px),s(P) < 1;

e deg f(X) = 50;

o f(X) splits in K, ie. |Zx(f)| = deg f(X);
o Vo€ Zk(f), ]|, < 2.

The timings obtained can be found in Figure [£.10]
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Figure 4.10: Average timings (s) of normal and heuristic versions of
RelativePolynomialRoots plotted against deg f(X) for randomly generated
Pg(X), PL(X)

One can remark that using the heuristic strategy leads to computations between
two times and three times faster. Moreover we can see that the timings are compet-
itive with the ones presented in Figures [4.2] and [4.3] for example.

Number of roots We now study the influence of the number of roots. Here
we will consider only the heuristic version of RelativePolynomialRoots (precision
and search). We compare its performances with PolynomialRoots_heur. We forget
about nfroots for now because we know from previous tests — Figures [4.7] and
— that it looses a lot of efficiency when the equation f(X) is not completely split in
the field.

We considered extensions L/K such that [K : Q] = 30 and [L : K] € {2,3} with:

o [Pkl 1Pl <24
o deg f(X) = 50;

o V€ Zi(f). 7], < 2
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Figure 4.11: Average  timings (s) of PolynomialRoots and
RelativePolynomialRoots plotted against ¢y for randomly generated

Pr(X), P(X) and f(X), such that [K : Q] = 30 and deg f(X) = 50.

The influence of the number of roots can be seen in Figure [4.11] The timings of
the method PolynomialRoots increase with the number of roots, while the ones for

the relative algorithm RelativePolynomialRoots globally decrease.

Kummer extensions

We will concentrate here on real Kummer fields of the form L = Q(¢/ma, ..., y/m,),
where p > 2 is a prime integer and (mq,...,m,) € Q" such that [K : Q] = p".
Fix K = Q(y/m1,...,¢/m,—1). Then L/K is an extension over which one can take
full advantage of RelativePolynomialRoots. Indeed K can be embedded in R, so
that Hom(L/K, C) has one real embedding and p — 1 complex ones. We will com-
pare PolynomialRoots, RelativePolynomialRoots and nfroots of PARI/GP [76].

The first situation that we will explore will be the same as before: the number of
roots. It will show how computations can be accelerated in good situations. Then we
will study the special case where f(X) has degree p. It is the direct generalisation of
the case where f(X) = X? —a” with o € L, which is the type of equation that are to
be solved in several tasks involving units or class group [40]. In particular, this task

arose in several works these past few years [6, 64, |17| that we generalise in Chapter .

Remark 29 (nfroots). Real Kummer extensions are all “bad” fields for the p-adic
method. Indeed, it is mentioned by Belabas |7] that ideal lattices are usually easy
to reduce — especially when one can use a pre-reduction algorithm — which occurs
when the inertial degree of said ideal is large. Over real Kummer fields of the form

Qi -

., ¥/m;), the inertial degree cannot be larger than the exponent p.
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Number of roots We keep the parameters described previously. The only modi-

fication is the shape of the extensions L/K which are Kummer fields, with exponent
p € {3,5}.

One can find in Figure the data collected for multicubic fields, i.e. Kummer
extension with exponent 3. We considered the cases where [K : Q] € {27,81} and
[L : K] = 3. Moreover each of the elements of the sequences (m;); defining the fields

are prime integers smaller than 50.

22 1600
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(a) [K:Q] =27 (b) [K:Q] =381
Figure 4.12: Average  timings (s) of PolynomialRoots and

RelativePolynomialRoots plotted against gy for randomly generated mul-

ticubic fields L/ K, such that [K : Q] € {27,81}.

We can see from Figure that the relative method RelativePolynomialRoots
is more efficient than PolynomialRoots, by a factor 5 when [K : Q] = 27 and be-
tween 12 and 15 when [K : Q] = 81. This illustrates the fact that with parameters
similar otherwise, the advantage of reducing a basis lattice £(B,0,!) in a subfield

increases with the degree of said subfield (and consequently, of the extension).

One can find in Figure the data collected for Kummer extensions with expo-
nent 5. We considered extensions such that [K : Q] = 25 and [L : K] = 5. Again,
all elements m; defining the Kummer fields considered are prime integers smaller
than 50.

We can see that RelativePolynomialRoots is between 1.5 and 3 times faster
than PolynomialRoots. Moreover, we remark that when there are few roots, times
for RelativePolynomialRoots are similar to the cases of multicubic fields with
[L : Q] = 243. This is the result of the search space being larger when p = 5.
However one can see that the timings obtained start to drop drastically starting
from ¢y = 1/2. This drop, which is predicted by Proposition , could not be



CHAPTER 4. PRACTICAL COMPUTATIONS IN NUMBER FIELDS 109

120 T T T — — S S :
----- L i -~
110 w=="""
100} -
Q0|
80}
PREEY
_____ ~.
70 =" '-‘\‘
"\~.‘-
o,
60} .
\h
\'\
50} i
\.\‘
40| \‘\
.
\-
30r PolynomialRoots ---s-- ~
RelativePolynomialRoots —-a--
20 L L L 1 \ ;

0 10 20 30 40 50 60 70 80 90 100

Figure 4.13: Average  timings (s) of PolynomialRoots and
RelativePolynomialRoots plotted against gy for randomly generated Kummer
fields L/K with exponent 5, such that [K : Q] = 25.

observed as clearly from the data gathered previously. This is again because of the

size of the search space.

Small degree equations As mentioned we consider here polynomials f(X) with
small degrees, namely deg f(X) = p over real Kummer fields Q(y¢/my, ..., ¢/m,) of
exponent p. This situation generalises the equations we need to solve to compute
unit groups of such fields, and solve the PIP over them. For such degrees, the search
space of Algorithm [29is small enough to take full advantage of this method. Indeed,
since the complex embeddings in Hom(L/K, C) are all conjugates (except one real

embedding), the cardinality of the search space is ppTH.

We considered Kummer fields of exponent p in {2,3,5,11}. For this study, we
compared our functions PolynomialsRoots and RelativePolynomialRoots as be-

fore, and we add nfroots as well.

Remark 30 (nfroots). In this configuration, nfroots does not follow the method
described before. Indeed, when 3deg f(X) < [L : Q], the implementation of
PARI/GP uses Trager’s method [99, 7] for factorising polynomials. We will there-
fore refer to it as Trager, to differentiate it from the p-adic method described at the

beginning of the section.
Here are how the different objects are drawn.
e Each m; is a prime number smaller than 30.

e deg f(X)=pand | Zk(f)|=1.
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Figure 4.14: Average  timings (s) of PolynomialRoots and

RelativePolynomialRoots and Trager plotted against sz for randomly
generated Kummer fields L/K with exponent p € {2,3,5,11} and deg f(X) = p.

The data gathered can be found in Figure [4.14]

In most cases our relative method is way more efficient than the two others. It
can go up to 500 times faster for p = 5, and up to 100 times faster for p = 2, 3. The
method Trager implemented in PARI/GP is always worse than both our algorithms.

If one compares the data gathered in Figures [4.14a] and [4.14b|for p =2 and p =5

respectively — for which the degrees [L : Q] and the size of the search space are
similar — one can see that the timings for RelativePolynomialRoots are around
10 times lower for p = 5. This is due to the fact that the dimension of the subfield
K over which decodings are made is smaller in this case. These observations are
confirmed with the timings gathered in Figure [4.14d

Finally, one can remark in Figure that the size of the search space is im-
portant, as RelativePolynomialRoots is less efficient than PolynomialRoots for
p = 11. However in this case as for the others, it seems that the size of the roots is

less of a problem for the relative method than for PolynomialRoots.
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4.2.4 Conclusion

Algorithm [23] is a heuristic polynomial algorithm to retrieve the roots of a polyno-
mial in a number field. Its certified version is slower than the classical algebraic
method implemented in PARI/GP, called nfroots. However we saw that simple
heuristic observations regarding the evaluation of the precision needed for the com-

putation allows our method to be competitive, and even be better on average.

It is important to have in mind that it is only on average. Indeed we mentioned
that nfroots is not stable. First, there are number fields for which its running
time explodes (with constant parameters), most likely because it cannot find a good
prime ideal p (with large ramification index), so reducing the basis of said ideal is
not efficient. Moreover, we saw that nfroots does not cope properly with several
situations, namely when the size of the polynomial defining the number field is large

and over equations which are not split.

Finally our algorithm which takes advantage of a relative extension structure L/K
can improve greatly the running times in some cases, namely when the relative de-

gree [L : K] is small and the degree of the equation considered is also small.

There are several things that could be explored further. Regarding the algebraic

method nfroots, the following points could be assessed.

e One could try to find a heuristic way of evaluating the volume needed to ensure

the correctness of the decoding, as we did for the precision of our method.

e It would be good to study the statistics concerning bad and good number fields
for this method.

e Finally, one can wonder if there is a way of using the structure of a relative

extension, similar to RelativePolynomialRoots.
Concerning our methods, we plan to work on the following directions.

e The main drawback of our method is the time needed to reduce our basis. It
might be possible to speed-up this computation using the special form of our

basis lattice (which is not random).

e Another direction would be to improve the decoding phase. Using Babai’s
nearest plane algorithm (Alg. instead of Kannan’s embedding technique
should save some steps for each decoding. It would require computing the GSO
of the basis lattice, but this can be done during the reduction of said lattice.
Indeed, Kannan’s technique requires the use of LLL (Alg. [3)) for each decoding,
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which computes at least partially the GSO. Finally, using this version to decode
could allow the improvement of the function Check1Coord, and make it more
robust. These improvements would be of more benefit to our relative method

RelativePolynomialRoots.



Chapter 5
Real Kummer extensions

Our contribution: As mentioned earlier, the SPIP is shown to be solvable with
quantum computers over cyclotomic fields |34], and experimental data from [6] indi-
cates that it is also the case over multiquadratic fields. However the methods are not
similar. Over the last family, the algorithms use the strong structure of the set of
subfields and the Galois group. The authors of [6] show that the unit group of high
degree number fields can be computed in a reasonable amount of time (polynomial
in the degree for a wide range of number fields), as well as generators of principal
ideals. We generalised this work to real Kummer extensions of exponent a prime
integer p, i.e. generated by p-th roots of integers. We also considered real Kummer
extensions of Q with two exponents — generated by p-th and ¢-th roots of integers
where p and ¢ are prime integers — in order to break the structure and see if one can
still solve the SPIP with a good probability. Moreover our implementation allows us
to study the Log-unit lattice of these fields and classify them with respect to their

security level. In this chapter we:

e describe algorithms to compute the unit group and solve the PIP of Kummer

extensions;

e study the hardness of solving the SPIP over real Kummer fields using our

implementation of these algorithms.

In particular we are able to evaluate the probability of success of shortening a
generator with the Log-unit lattice, and study the quality of the basis obtained
for this lattice. Moreover our implementation allows us to study high dimensional
fields, and the data gathered highlights the need for considering such fields to draw
conclusions on asymptotic behaviours. We therefore divide them in two categories:
fields of degree less than 100 are called low dimensional fields and the others are
called high dimensional fields. One can find in Table a summary of the results

obtained from our computations.

113
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Table 5.1: Summary of the data obtained, where is shown: the probability of
shortening a generator, the quality of the basis obtained, and for which category
of fields the data is available

‘ Field | Dimension achieved | Probability of shortening | Quality of the basis |
Cyclotomics |34 High High Good
Multiquadratics |6 High High Good
Multicubics [64 High High Good
NTRU Prime |11 Low High Good
Simple Kummer of exponent p Low High Good
Most of Kummer of exponent p High High Good
Kummer with two exponents p, ¢ Low High Good
Kummer of degree p? defined by small integers (2,3) High Low Bad

Conclusion: From the experimental data that we computed, general Kummer
extensions of Q with only one exponent seem to show the same properties as mul-
tiquadratic fields. In particular we obtain high probabilities to retrieve private keys
for a wide range of fields. However, within this family of fields, we are able to
identify a subcategory over which solving the SPIP is more difficult than over other
fields. Indeed the probability of success of solving the SPIP is smaller for fields
with degree p? and defined by small integers, especially (2,3). Moreover the data
computed on the key and the basis of the Log-unit lattice show that the quality of
the basis obtained is not as good as over cyclotomic fields, and cannot be used to
solve the SPIP over high dimensional fields. This can indicate than Kummer fields
with degree p? and defined by small integers could be an alternative to cyclotomic
fields for cryptography.

We also stress that these observations can be made only because we are able to
compute the units of such fields for dimensions larger than 121, where significant
differences between the type of fields truly appear. This leads us to think that one
should always consider high dimensional fields (if the computational power at hand
allows it) when studying problems such as the SPIP or the ISVP.

We were not able to compute as much data for Kummer extensions with two ex-
ponents, particularly for high dimensional fields. The data gathered seems to show
that these extensions have the same global properties as Kummer fields with one
exponent, despite behaviours which are less consistent. Better algorithms or imple-
mentations could be necessary to confirm it. One should remark that conclusions
cannot be drawn for Kummer fields of degree p or NTRU Prime fields either, since

we are able to do computations only for low dimensional number fields.

Related work: Biasse et al. generalised in [19] the approach of [6], |17, 64] to
compute the unit group, S-units and the class group to normal fields. They give
necessary and sufficient conditions for the existence of what they call norm relations,
which allow the design of algorithms based on reduction to computations into sub-

fields, in order to compute several number theoretical objects such as the maximal
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order, S-units and the class group. The algorithms we designed can be seen as a
specialisation of their work. We still present them for simplicity and completeness

purposes.

Future work: Further work can consists in studying other important tasks of
computational number theory over these fields such as computing the class group
and S-units. The authors of [17] provide polynomial time algorithms for these over
multiquadratic fields. It could be possible to implement the algorithms presented
and studied in |79, 9] to solve the Ideal Shortest Vector Problem (ISVP), and compare
its performance over Kummer extensions and cyclotomic fields. Moreover the work
of Biasse et al. [19] could be used to extend these considerations to a variety of other

number fields.

Organisation of the chapter: The rest of the chapter is organised as follows,

given L/ K a Kummer extension of exponent p and degree p2.

e In Section we describe the number field extensions we are interested in,
and we provide general recursive algorithms to compute O} and solve the PIP,

following the framework of the ones in [6].

e In Section we describe heuristic algorithms to compute OF and solve
the PTP in Poly(In | Dy |)e®™P**) and Poly(In | Dy|, In N(I))e(™ P)**) respec-
tively, when L is generated over Q by p-th roots and ¢-th roots of integers,
with p and ¢ prime, where P depends only on the field K and N(/) is the
algebraic norm of I. We also give details on some of the auxiliary procedures

used in our implementation, such as extraction of p-th roots.

e We provide data gathered from our implementation in Section and study
the possibility of solving the SPIP over real Kummer extensions. In particular
we are able to evaluate the probability that an attack is successful where Kan-
nan’s embedding technique is used for step 2., and compute several parameters
linked to the basis of the Log-unit to evaluate its quality. We also compare
these values to the ones obtained for cyclotomic fields and fields used in the
NTRU Prime cryptosystem [11], which is has been proposed as an alternative

to cyclotomic fields.

5.1 Structure of Kummer extensions

Notation. Given p a prime integer, we will denote by 7, a generator of the Galois

group of the cyclotomic field Q(¢,).
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Definition 5.1. A number field extension L/K is called a Kummer extension of

exponent n if (, € K and there are elements my,...,m, of K such that L =
K(y/my, ..., y/m,).

Remark 31. In our work we relax this definition to allow (, to not belong to
L. We will also only consider extensions of prime exponents p. First let us re-
call some facts and fix some notations about the structure of Kummer extensions,
and Hom(L/K,C). We refer the reader interested in a more general and in-depth

presentation of Kummer extensions to [30].

5.1.1 Complex field embeddings and Galois closure
Simple extensions:

Definition 5.2. Consider L/K an extension of number fields, and prime number

p. Then L/K is called a simple Kummer extension of exponent p if there is m € K
such that ¢/m ¢ K and L = K(¥/m).

Proposition 5.1. Consider L = K({/m) a simple Kummer extension. Then the

following properties are true.
1. L/K is a field extension of degree p.

2. The elements of the set Hom(L/K,C) can be fully described by their action on

Ym as o yYm— ¢ y/m,i € [0,p—1].

3. If ¢, € L then L/K is Galois. If ¢, ¢ K then the Galois closure of L/ K is
L = L(¢,) and if p is odd then Gal(L/K) = (1,) x (¢) where o is the extension
of the complex embedding o) which acts trivially on Cp- If p is 2 then L is

Galois.

Proposition 5.2. Let L = K(¥/m) be a simple Kummer extension of exponent p,
andn € K. Then L = K(¥/n) if, and only if, there is a € K such that n = maP.
General extensions:

The properties described for simple Kummer extensions can be extended to general

extensions.

Proposition 5.3. Consider L = K(¢/my,...,¢/m,) a Kummer extension. Then

the following assertions are equivalent.
1. [L:K]=p";

2. VaeZ), mi'my?---mir € (K*)P <= Vie[l,r],p| .
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Definition 5.3. Given a prime p, an integer » € N* and a sequence m of rational
numbers my, ..., m, we will say that m is p-reduced for K if it satisfies the condition
of Proposition [5.3]

Proposition 5.4. Consider p a prime number and L = K(¢/my, ..., ¥/m;) a Kum-
mer extension of exponent p. Then L can be described as K(¢/ny, ..., ¢/ns) with

n=(ny,...,ns) being a p-reduced sequence.

From now on all Kummer extensions are considered to be generated by reduced

sequemnces.

Notation. Consider m = (m4,...,m,) € K" such that L = K(ym1,...,y/m,)
is an extension of degree p”. For i € [1,r] the field L,,, = K(y/m;) is a simple
Kummer extension of K of exponent p. Given any j € [0,p — 1], write O'(J) the
complex embeddings of L,,, following the notation described previously and O’fni the

corresponding element of Gal(L,,, /K).

The simple extensions of a Kummer extension L/K are important as they allow

the full description of L/ K, as we will see later.

Proposition 5.5. Consider L/ K which satisfies the equivalent assertions of Propo-

sition[5.3 Then the following assertions are true.

1. L/K has ezactly ’% simple subextensions of degree p over K and they are of
the form L, == L([[;_, ¢/m:"") with o € [0,p — 1]". Moreover L, and Lg are
equal if, and only if, there is an integer \ such that « = X - (mod p).

2. Any subextension of LK can be written as K (/M ,Y/M,,) where 0 <
<roand M; =T[_, vm® wztha])e[[O,p—l]] foranyje[[l,r]].

The set of complex embeddings of L and the Galois group of Z/ Q@ can also be
fully described with the ones of the subfields L,,,

Proposition 5.6. Consider L/K which satisfies the equivalent assertions of Propo-

sition[5.3. Then the following assertions are true.
e Hom(L/K,C) = Q._, Hom(L,,, /K,C) = {®]_ o — 1]}

o L(Cy)/K((p) is abelian with Galois group isomorphic to (op,) X -+ X (Opm,.) ;
if ¢, € K then the previous extension is L/ K.

o If ¢, & K then L((,)/K is Galois with Galois group isomorphic to (1,) X
(Omy) X - X {om,).-

Notation. Given a tuple 3 we will write 0¥ the complex embedding ®7_ 105,11 and

o? its extension in Gal(K /Q). Given a subset S of Hom(K, C) we will denote by S

the subset of Gal(K /Q) whose elements are the direct extension of elements of S.
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Twisted Fourier transform:

Consider the relative Minkowski’s embedding o,/k. In the case of Kummer exten-
sions this link can be expressed as a twisted Fourier transform. A K—basis of L is
(IT—; ¥/mi*)acop-17»- Then the image of the basis element b, = [[ | ¢/m;"* by
the complex embedding o® is C,(,al’g) by. Let x = Zae[[o,p—l}]n ZTobo an element of K. Tt
can be expressed as the vector y = (240a)acfop-1»- The image of « by Minkowski’s

embedding is then the result of the multiplication of y by the matrix

1 1 1 . 1
2 1
(al) I S
[Cp i| a€f0,p—1]" . . . .
gelo,p—1]m : : : :
1 Cp—l g(pfl) C}()pfl)(pfl)
P .

which is the matrix of a discrete Fourier transform. Therefore the vector y can be
retrieved from the vector of complex embeddings of x by multiplying by the matrix
of the inverse Fourier transform. This shows that a twisted Fourier transform links
the vector of coefficients and the Minkowski embedding of x and one can efficiently

go from one representation to another.

5.1.2 Structural result

The main brick of the efficient algorithms in |6, |17, |64] are structural results which
express a power of any field element as a product of relative norms over several
subfields. As the fields studied here are the generalisation of multiquadratic and

multicubic fields, the same structural result appears.

Notation. Given an integer k and a subset S of a field F' we will denote by S* the
set {zF |z € S}.

Proposition 5.7. Let p be an odd prime number. Consider L = K (y/mi, 3/m2)
a Kummer extension such that [L : K| = p*. Let u and v be two elements of
Hom(L/K,C) such that their extensions @ and v are independent. Then the follow-

g properties are true.

1. LP C LeLw  [wlve.

)

2. (OF) C O%O%, ...O

Lupflv OZU °
Proof. The proof is similar to the ones of the corresponding results in [6]. Let x € L*
and u, v be two elements of Hom(L /K, C) such that @ and ¥ are independent. Then
we have: . . .
L ye—1(m~iyg p— .
p f:o ?:o (av’) () ITis NE/DW (2)

TR @) T @ (I 09()

(5.1)
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For any j € [1,p — 1] the sets {7 | i € [0,p — 1]} and {ij | ¢ € [0,p — 1]} are the
same, therefore:

pfl p—1
N ant xr i=0 N~ 7 avt A
P = b (1) pie ) (5.2)

[T (Nijio(@)  Npjpe (B2 @)

Now let us assume first that ¢, € K. Then L/K is Galois, © = @, v = 0 and
Equation (5.2)) can be written as

Hf;ol NL/LW (z)
NL/LU (H?;i u (IE))

P =

For any morphism w the relative norm Ny pw(x) is an element of L* and if x is
an integer (resp. a unit) then its relative norms are also integers (resp. units).
Therefore one has

Pe LMLW . LYTULY (5.3)

and if z € Of we can replace the fields by their unit groups. Finally is true
for any x different from 0, but it is obviously correct for 0 as well, which proves
that the claimed results are true if ¢, € K. Now assume that (, ¢ K. Then for
all i,j € [0,p — 1] the action of (%%°) on x is the same as the action of u\) @ v,
Therefore for all i € [0, p — 1] the relative norm Nj ;a0 (2) is equal to N,/ Luwut (x)
which is an element of K“®*"”. The statements about integers and units are again
true. In Equation (5.2) we know that z? belongs to L as well as the numerator, so
the denominator belongs to L? N L = L. Finally the claimed results are also true

if ¢, & K. 0

If one removes zero from all of the sets, then the set inclusions in Proposition
become group inclusions. In fact remark that U = Of.Ofu ... O

Of. 1
Lr-1,0L0 18 @
full-rank subgroup of O] such that (O;)? < U < OF.

Corollary 5.1. Let p be an odd prime number. Consider L = K(¢/my, ..., ¢/m;)
a Kummer extension such that [L : K] = p". Then the following hold:

1. 77 1, La;
2. (05 <I1.0}..

Definition 5.4. Given a Kummer extension L = K(y/mi, ..., ¢/m,) we will call
simple units of L/K and denote by SU(L/K’) the subgroup of OF defined by the

following equation:

U(L/K) = IICV
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5.1.3 General algorithms

The general procedures follow the same shape as the ones in |6} |64]. The algorithms

rely on two tasks:

1. detecting non trivial p-powers in the subgroup of L* generated by a given set

S;
2. computing the roots of the detected powers.

We will write DetectPowers for the first procedure and ElementsFromPower the sec-
ond. The procedure which finds a basis of a subgroup of Of given a generating family
by reducing through the Log-embedding will be written BasisFromGeneratingSet.
They will be described as general procedures in this section and in Algorithms
and [3I] but we will describe more thoroughly in Subsection how we imple-

mented them in the case of real Kummer extensions.

Detecting powers

In the general case one can use the Saturation technigue mentioned in [12, [17].
For any prime ideal 9 such that p | N(Q) — 1 one can construct a “character”
Xa @ S — F3/(F3)P where Fy is the residue class field. If u € S is a p—power then
Xa(u) is trivial but the inverse is not true in general. In order to detect proper
powers, one only has to intersect ker yq for sufficiently many Q. If » = |S| then the
rank of S/(S N (L*)?) is ' < r. If we consider the xq to be uniformly distributed
in the dual of S/(S N (L*)? then one can adapt Lemma 8.2 of [25] to show that
r’ + s characters generate the dual — so the intersection of their kernels is S N (L*)?
— with probability at least 1 — p~®. If B is a bound on the size of the basis elements
generating S then DetectPowers can be computed in Poly (B, maxgq In(N(Q)), r'+s).
For the case of multiquadratic fields, the authors of [6] give a practical way of
computing these characters and a precise analysis of the cost of the overall procedure,
that we refer to. It can be generalised to the real Kummer extensions that we will

study below.

Computing units

Algorithm [30] describes the recursive algorithm which can be used to compute the
unit group of a Kummer extension L/K. It is the generalisation of the ones for mul-
tiquadratic fields or multicubic fields presented in [6, [64]. We denote by UnitGroup
the general procedure computing the unit group of a number field as input. De-

pending on the number field, different algorithms can be used.
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Algorithm 30 Compute the unit group of a Kummer extension L/K of exponents
p. — KE_Units
Require: A Kummer extension L = K(¢/my4, ..., ¥/m,).
Ensure: A basis of the unit group Of
1. if (r=1) then
2: return UnitGroup(L).
: else

Choose u, v two independent elements of Hom(L/K).
Recursively compute a basis of U = OF.Ofuw ... OF 1,070

V < ElementsFromPower(V,p)

U < BasisFromGeneratingSet((U,V))
9: return U
10: end if

3
4
o:
6: V' <« DetectPowers(U, p)
7
8

Proposition 5.8. Given a Kummer extension L/ K, Algom'thm 15 correct, and re-
turns a basis with probability at least 1 —p~“Y provided that one computes Poly([L :
Q]) characters for each subfield L' reached during the algorithm, and that the char-

acters are uniformly distributed.

Proof. By Proposition the subgroup U of step 5 is such that (O; )’ < U < Of.
Un(ox)p
o7
of the recursion. Clearly each of the fields L; is a Kummer extension of K but such

Therefore O; is isomorphic to U x . The only part left to verify is the validity
that [L; : K] = p"! so the algorithm can be applied to it. Since the dimension is
strictly decreasing, after r—1 recursion steps the algorithm reaches simple extensions
of L, i.e. the case r = 1. Then following the analysis done during the proof of
Theorem 4.6 in [17], the probability of success is at least (1—p~())EK] > 1 2lE:K] /s
where s characters are computed for each field. Therefore if s € Poly([L : Q]) one

can reach the desired probability of success. O

We will only do an analysis of complexity for the real Kummer extensions that

we consider latter.

Solving the Principal Ideal Problem:

In order to solve the Principal Ideal Problem, i.e. retrieve a generator of a principal
ideal I, we do as follows. First compute the relative ideal norm of I over subfields of
K. Then recursively compute a generator of these ideals. By using Proposition
it is easy to see that a combination of these elements is a generator h of I? (see [6),
64]). The final steps are finding a unit u such that hu is a p-power and computing
its p-th root. This is summarised in Algorithm [3I] The relative norm computations

are polynomial with respect to the dimension and the size of the ideal. Moreover
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Algorithms [30] and [31] are very similar in shape. One can easily deduce that the va-
lidity and complexity analysis are also similar. One can see that Algorithm [31] will
go through subextensions of L/K down to simple subextensions, where it will call
the procedure Generator to solve the PIP. As for UnitGroup, different algorithms
depending on the field can be used. In the general case one might need to com-
pute the class group of the field so one cannot hope better than a sub-exponential

complexity.

Algorithm 31 Solve the PIP in a Kummer extension of exponent p — KE_PIP

Require: A principal ideal I of a Kummer extension L = K(¢/my, ..., ¢/m,), the
unit group O/
Ensure: A generator g of I.
1. if (r =1) then
2: return Generator(I).
3: else o
4: Choose u, v two independent elements of Hom(L/K).
5 Recursively compute generators of Npu(I),Npw([l),...,N,p-1,(I),Ngo(I)
and use Equation to compute h a generator of I7.
6: h < DetectPowers(O; U {h},p).
7 return ElementsFromPower(h,p).
8: end if

5.2 Real Kummer extensions

In this section we will focus on real Kummer extensions. More precisely we are
interested in fields of the form L = K(¢/my, ..., y/m,) with K = Q(¢/n4, ..., ¢/n;)
with p and ¢ prime integers. We always consider ¢/m; and ¢/nj to be the real roots
of the polynomials X? — m; and X — n; respectively. Then K is a real Kummer
extension of Q of exponent ¢ and L is a real Kummer extension of K of exponent p.
We will call such fields real Kummer extensions of exponents p,q. For the particular
case of s = 0 the field K is Q. Multiquadratic and multicubic fields studied in |6} |64]

fall in this category. We will call these fields real Kummer extensions with exponent

D

5.2.1 Field structure

First let us describe the structure of considered extensions.

Proposition 5.9. Consider a Kummer extension L/ K as before. Then the following
assertions are true.
1. Hom(L,C) = @]_, Hom(Ly,, C) ®;_, Hom(K,,, C) = {&_0% @5, o |
g efo,p—1]",v € [0,q—1]°}.
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2. L(¢y)/ K((p) is abelian with Galois group isomorphic to (0, ) X -+ X (o, ).

3. L(¢,)/Q(¢) is abelian with Galois group isomorphic to (o, ) X -+ X (O, ) X

(Ony) X -+ X {0n,).

4. L((,)/ K is Galois with Galois group isomorphic to a subgroup of 7, X (o, ) X

X {om,).

Notation. Given tuples § and v we will denote by ¢(*%) the complex embedding
®§:10§r€f) ®5_4 agzj). Given a subset S of Hom(L,C) we will write S for the subset

of Gal(L/Q) whose elements are the direct extension of elements of S.

Galois correspondence: The Galois correspondence shows there is a bijection
between the set of subfields of L /K and the subgroups of its Galois group. Moreover
for the fields which are considered, a subextension M /K of L /K is a subextension
of L/K if, and only if, the group associated by the Galois correspondence contains
7,. Therefore when considering a subextension M/K of L/K and their sets of

e~

complex embeddings it is equivalent to consider their extensions Hom(M/K) and

—_——

Hom(L/K). We can therefore “forget” about the complex part.

Twisted Fourier transform: Given an Kummer extension L/K of exponents
p, q one can see that a twisted Fourier transform links the coefficient of any element
of L to their coefficients in the Q-basis. This transformation is expressed as the
tensor product of the one for L/K and the one for K/Q.

5.2.2 Basis and discriminant

We will establish some facts about Q-bases of real Kummer extensions considered,
as well as their discriminants. Knowing the discriminant of a number field is impor-
tant as it is a measure of the size of the ring of integers, and one usually express
complexities of algorithms in terms of the discriminant. It can be difficult to find a
formulae for it. However it can be done over multiquadratic fields.

Moreover we wish to exhibit a simple QQ—basis of real Kummer extensions L such
that [L : Q]Oy is included in the order generated by this basis. Again it can be

found over multiquadratic fields.

Extensions with one exponent

First we will study fields of the form K = Q(y¢/my, ..., ¢/m,).

Notation. Given a tuple m = (my,...,m,), we will write P(m) the set {p €

P.p | T[i—;mi}. Given m € Q and an integer n we will denote by PF(m,n)
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the rational number [] cp mve(m) (medn) — Gimilarly if m € Q" then PF(m,n) =
(PF(my,n),..., PF(m,,n)). We extend PF(-, p) to elements in Q'/? and sequences
in Q'/? with PF(x,p) = PF(z?,p)"/?. Finally, given a tuple m € Q" and a € Z,

we will write m® to designate the product [[,cp, 4 m;i".

A canonical Q—basis of K One can define two fairly natural bases of K. One

has already been mentioned earlier.

Definition 5.5. Let K = Q(¢/my,..., ¥/m,) be a real Kummer field. Then the
naive basis of K relative tomis ([];_, m?i/p)ae[m’p,lﬂr. It will be denoted by B (p, m).
The power-free basis of K relative to m is PF(®B(p, m),p). It will be denoted by
IB(p,m).

Remark 32. Both bases were considered in several work on Kummer fields such
as |17, |100].

The first property that can be proven is that 3B (p, m) is somehow independent

of the choice of m.

Lemma 5.1. Let K be a real Kummer field. Consider m and n two sequences
defining K. Then 3B (p,m) and IB(p,n) are equal as sets.

Proof. Consider ¢ € P(m). First let us prove that if ¢ ¢ P(n) then v,(m*) = 0
(mod p) for all @ € [0,p — 1]". Let us fix such a. Since m and n define the same
field K, one can use the simple subfields and conclude that Q(¢/m®) = Q(/n?) for
some 3. This is equivalent to m® = n/?a? for some j € [0,p — 1] and a € Q. Then

we obtain the equality
V(M) = Z ajvg(m;) = Z]ﬂwq(nz‘) + pug(a) (5.4)
i=1 i=1

and taking it modulo p gives iaivq(mi) = 0 (mod p), since v,(n;) = 0, for all
i € [[1,r]. This is true for all a.ZT\Tlow, fix i such that ¢ | m;,. Then, the equality ap-
plied with « such that a; = 1if i = iy and «; = 0 otherwise gives v,(m;,) = 0 mod p.
Thus we obtain that none of ¢ € P(m) U P(n) \ (P(m) N P(n)) can be found in
JIB(p, m) nor IB(p,m).

Now let us consider only ¢ € P(m) N P(n). Let a € F, \ {0}. Then for all
q € P(m)NP(n) and all j € [1,p — 1], (v,(m'®)) = ju,(m®) (mod p). Follow-
ing Equation (5.4), if 8 is such that n® defines the same simple field as m®, then
(vg(m®)), = j(vy(n?)), for some j € [1,p — 1]. Therefore the sets {(v,(m’®)), |
j € [1,p — 1]} and {(v,(n??)), | 5 € [1,p — 1]} are identical. Finally if o and o
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define distinct simple subfields of K then (v,(m®)), and (v,(m®")), are not colinear

modulo p. O

The equality given by Lemma [5.1] shows that the set of power-free basis of a real

Kummer field is a canonical choice of a Q-basis of K.

Definition 5.6. Let K be a real Kummer field with one exponent p defined by a
sequence m. The power-free basis of K is the unordered sequence set 3B (p, m). It
will be denoted JB(K).

Now let us prove another simple result on defining sequences, that will be used

later.

Lemma 5.2. Let m € Q" be a sequence defining a real Kummer extension K with
one exponent p, and ig € [1,7]. Consider ¢ € P(m) such that 3i € [1,7],v,(m;) 0
(mod p). Then there ism’ € Q" defining K such that

Vi e [1,7],q | m;, < i=1i.

Proof. One can always assume v,(m;,) # 0 (mod 0), modulo a permutation on
m. Then fix mj, = PF(m;,,p), and m; = PF(m;,p) for all i € [1,7] such that
g 1 m;. Finally consider i € [1,r] such that ¢ | m;. Let ¢; > 0 such that e; =
—vg(m;)vy(miy)~! (mod p). Then fix m; = PF(m;m,p). O

20

We will now determine the discriminant of 3B (K).

Theorem 5.1. Let K = Q(¢/my, ..., ¥/my) be a real Kummer field, and q a prime
integer. Moreover write b = dpep(my). Then the discriminant D (IB(K)) satisfies
the following:

r—1 :
N pP(p-1), if g € P(m)\ {p},
0Dk (3IB(K))) = { o (55)
pPrip—1)xb+rp’, ifq=p.
Proof. Given a sequence m such that K = Q(y¢/my, ..., ¢/m,), let us denote by M,,
the matrix (o;(3B(p, m);)):;, where as usual o; : ¢/m; — (,¥/m;. Moreover we
will write Mp the matrix [0;(b;)];; for any Q—basis B = (by, ..., byr).

First remark that Dy (3B(K)) = Dg(I3B(p,m)) for any sequence m defining K.
Indeed, considering different sequences amounts to applying permutations on the
rows and columns of a fixed matrix M,,. Moreover, if m" = (my,...,m,_1) then
B(p,m) =B(m,) ® B(m') and IB(p,m) = PF(IB(p,m,) @ IB(p,m’),p). Let us
denote by B the basis 3B (p,m,) ® IB(p,m’).



CHAPTER 5. REAL KUMMER EXTENSIONS 126

Now let us start with the proof per se. Let m be a defining sequence of K.
One can assume it is p-reduced and composed of integers. Let ¢ € P(m) \ {p}.
Following Lemma and Lemma one can also assume that ¢ | m, and for all
i <r,q{m;. We mentioned that 3B (p, m) = PF(I3B(m,) @ IB(m'),p). The action
of PF amounts to dividing elements of the basis by an integer. Let us denote by
c1,...,Cyr these integers. Since ¢ divides only m, and I8 (m,) is already reduced,
none of said coefficients is divided by ¢. Now remark that M,, = Msypm) =
[%| . |%], where C;(My) is the j-th column of Myg. Therefore we have
det M,,, = c(j(f;]\{:? Consequently we obtain v,(det M,,) = v,(det My), and we
can consider the discriminant of the basis 8. Now let us denote by by,...,b, the
elements of JB(m,). Then we have B = [IB(m')b;|IB(m/)by|. .. |IB(m')b,| and

for g€ [0,p —1]", o) = 0§'81) @@ acts on IB(m')b; as

J%’Bl) Q- ® O_(,Br—l) (’J%(m’)) U(’BT) (bz)

r—1 r

Thus we obtain that Mgy is equal to

b1 My (m)

b My ()

by M ()

o) (by) Moy )

Uv('l)(bQ)Mm(m/)

Uﬁl)(bp)MﬁiB(m’)

Uv("p_l)(bl)Mm(m/)

Uﬁp_l)(bQ)MJ%(m')

o™ (by) Maos

which is M,, ® M, . Therefore, we have det My = det M,f;l det M?,  and
vg(Dr (IB(K))) = p" v, (det M;T) + pg(det M2,).

Westlund showed that v,(det M2, ) = p— 1 and since ¢ { m; for all ¢ € [1,r — 1] one
has v,(det M?2,) = 0, by induction and remarking that v,(det M) = v,(det M,,, ®
-+ ® My, ) |100]. Finally we obtain v,(Dx(IB(K))) = (p—1)p"*.

Now consider ¢ = p. As before we have v,(det M2) = v,(det M2, ®---@det M2, ),
and det M2®@det M2 = []_, (det M2 )*"". If p & P(m) then v,(det M2, ) = p for all
i € [1,7] [100], so v,(Dg (IB(K))) = 37 p" 'wp(det M2 ) = rp". If p € P(m) then
vp(det M7, ) = p for all i € [1,r — 1] and v,(det M7, ) = 2p — 1 [100]. Therefore we
have v,(Dg (IB(K))) = 201 p Lo, (det M2 +p" 1 (2p—1) = rp' +p"Hp—1). O

We established that 3B (K) is a fairly canonical basis for a real Kummer field K,
and determined its discriminant. We will show that the order it generates contains
[K : Q)Ok. For this we will study the discriminant of K. Indeed recall that we
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have the following result. Given O; and O, two orders of a number field, then
0, <0y — DK(OQ) | DK(Ol)

Lemma 5.3. Let K € Q(y¢/mq,..., ¢/m,) be a real Kummer extension defined by a
p-reduced sequence m. Then q ramifies in K/Q if, and only if, ¢ € P(m) U {p}.

Proof. We know that K = ®!_,Q(¢/m;), and given two linearly disjoints fields K
and K5, the discriminant of their compositum Dy, , divides D%Zi@] D%(;:Q}. There-
fore we have Dg | [[/—, D(Q(y/m:))”" . Following Westlund [100], ¢ | D(Q(¢/m;))
if, and only if, ¢ € P(m;) U {p}. O

In order to study the g—valuation of Dy, we will study the splitting of ¢ in
K/Q. A similar approach has been done over multiquadratic fields [91] and bicubic
fields [27]. We will use some results over dihedral groups, which are stated and

proved in Appendix B.

Splitting of primes in K To study the splitting of primes we will use the different
of the extensions (Def. 2.43]). Westlund established the splitting for simple fields.

Proposition 5.10 (Westlund [100]). Let K = Q(¥/m) be a simple Kummer exten-

ston and q a prime integer. Then one has the following possibilities:
L.g#pandq|m = (¢) =
2.plm = (p)=»";
3. ptm and mP~' =1 mod p* = (p) = pP g,
4. ptm and mP~' # 1 mod p? = (p) = p*.

One can see that for simple Kummer field, the splitting of p depends on a condition
satisfied by m: whether mP~! = 1 mod p or not. The splitting of primes in a general
number field K will then be influenced by their splitting in the simple subfields of
K. We can identify different types of Kummer fields.

Lemma 5.4. Let K = Q(¢/m1, ¥/m3) be a Kummer extension of degree p* such that
m; #Z 0 mod p and m; #Z 1 mod p?, for i € {1,2}. Then one can find m' a sequence
defining K such that m/, = 1 mod p?.

Proof. For i € {1,2}, since m; Z 0 mod p then m; can be seen as an element of
G = (%)X. Moreover the order of m; in G is p or p(p — 1), and we want to

prove that we can find a defining sequence m’ such that o(m}) | p — 1. The group

G is isomorphic to 7 ?1)2 X p%. Let us denote by ¢ = (¢1, ¢2) this isomorphism.
Then ¢(m;) = (¢1(m;), p2(ms)) with ¢a(m;) # 0. Let m’ defined by m) = m; and
mly = mymb with k € [1,p — 1] such that kgo(ms) = —@a(my). Then one has

pa(mf) = 0 so o(mf) | p—1in G. Clearly m’ also defines K. O
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Using Lemma [5.4] we obtain only a few possibilities for general real Kummer

extensions.

Proposition 5.11. Let K be a real Kummer extension of degree p" for an integer
r > 1. Then one can find a sequence m = (myq,...,m,) defining K and satisfying

one of the following properties.
1. p & P(m) and Vi € [1,7],m’" = 1 mod p>.
2. p & P(m), m" # 1 mod p* and Vi € [2,7],m’" =1 mod p?.
3. p|my and Vi € [2,r],m’"" =1 mod p?.
4. p|my, mb' # 1 mod p? and Vi € [3,7],m’™" = 1 mod p?.
Proof. This is just an application of Lemma [5.2] and Lemma [5.4] n

Now we can express how primes split in K depending on which type of Kummer
field it is. However remark than only the splitting of p will be influenced by the
types identified in Proposition [5.11} Therefore, let us start by g # p.

Proposition 5.12. Consider K = Q(¢/mi,..., ¢/m,) a real Kummer extension
with one exponent, and q € P(m). Then q splits in K as Q... QF for s > 1, and

ve(Dx) = (p—1)p"~".

Proof. By Lemma [5.2] one can suppose that Vi € [2,7],q | m; <= i = 1. Let
us fix K1 = Q(¢/m1) and Ky = Q(¢/ma, ..., ¥/m,). By [100] the prime ¢ ramifies
in K as g°. Moreover ¢ is unramified in K3 so ¢qOk, = q1---qs with s > 1. By
multiplicativity of the ramification index, for all i € [1,s], the ideal g; ramifies
completely in K as QF. Therefore ¢qOx = (Q; - - Q,)P.

Now recall that the different of K/Q satisfies ®(K/Q) = [ [, Q°* where the product
is over the prime ideals of O which are ramified over Q. Thus the part of ©(K/Q)
above ¢ is [[_, Q" for some integers s;. For all i € [1, s] we know that e(Q;]q) = p
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and ¢ are coprime. Therefore s; is equal to €(Q;|¢) — 1 = p — 1. Thus one has for

the discriminant
vg( D) = v4(Nigjo(D(K/Q))) = vy(Niey jo(Niyseo (] [ a7 7))
i—1
Finally since Nk, (Q;) = g, we obtain

vo(Dx) = vs(Nieyo(J [ a2 ) = v4(Nip 0(qOx,)?) = (0 — 1)p" ™.

=1

With Proposition [5.12] one is able to prove the result we were looking for.

Theorem 5.2. Let K = Q(¢/myq, ..., ¥/m;) be a real Kummer extension, and denote
by O the order Z|IB(K)|. Then the following propositions are true:

e Vg€ P(m)\ {p}, O is g—mazimal;
° [K : @]OK < O.

Proof. Proposition and Theorem show that v,(O) = v,(Ok) for all ¢ €

P(m)\ {p}, so O is indeed g—maximal. Concerning p one has

u(Dx (K : QIOk)) > 2[K : Qlug([K : Q]) = 2rp" Zrp" +p" ' (p— 1)

so the second property is also true. O

Despite the fact that Theorem shows that JB(K) is a basis satisfying the
properties we were looking for, we can still study further the splitting of p in K
in each of the four types of real Kummer fields established in Proposition [5.11] It
allows us to have a finer knowledge of Dg. First let us establish a result concerning

extensions of number fields such that the Galois group of their Galois closure is
dihedral.

Lemma 5.5. Let L/K be an extension of number fields. Suppose additionally that

Gal(L/K) is isomorphic to (1) x (o), with (1) = ﬁ and (o) = z% for some

prime integer p. Any prime ideal p of O satisfies

pO; = (Pr... W) = pOL =piph ",

where each *P; s a prime ideal of L and each p; is a prime ideal of L.
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It is similar to part of the proof for Proposition 10.1.26 of Cohen’s book [30]. In
fact several facts and their proofs that we will establish are generalisations of this

Proposition.
Proof. Let G = Gal(L/K). By hypothesis we are in the following situation :
L (BB

p—1
7

L o\|p

The group G acts transitively on the B; and by conjugation on the inertia groups
I(B; | p) for i € [1,p]. Clearly one has |I(B;/p)] = p — 1. By Lemma [B.3] there
are p distinct subgroups of G of order p — 1. Moreover they are of the form (ra®)
with b € [0,p — 1]. Therefore the action of G on the set of such subgroups is
transitive. Thus there is a unique i € [1,p] such that I(B,, | p) = (7), and (B, |
Pi, NOL) = I(Py, | p) N Gal(L/L) = (7). Therefore e(P;, | Pi, NOL) = p— 150 by
multiplicativity e(3;,N Oy, | p) = 1. Now consider i # iy. Then I(B; | p) = (10?) for
some b € [1,p — 1], and I(B; | B, N OL) = I(Pi, | p) N Gal(L/L) = (1). Therefore
again by multiplicativity of the ramification index, e(3; N O | p) =p — 1. O

Theorem 5.3. Consider K = Q(¢/my, ..., ¢/m,) a real Kummer extension with
exponent p. Then depending on the type of field as described in Proposition the
splitting of p in K and v,(Dg) are as follows :

1. (p) =p(p:.. -ps)p_l Jor s = ﬁ: and vy(Dy) = pr_11(p —2);

p—

2. (p) = p"(pr. . p?®Y for s = TF and vy(Dg) = p’ + Pt (p - 2);

p

3. (p) = PP (pr - PPV fors = Pl and vy, (Dic) = p= (2p— 1)+ L (-

Remark 33. We were not able to prove similar results for the fourth type of field

for a general exponent p. However we did so for p = 3 in [64].

Proof. We will prove the results one type of fields after another.
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Fields of the first type. We will prove the factorisation by induction. For r = 1
K is a simple Kummer extension. Then the splitting is correct, following West-
lund [100]. Now consider r > 1 and assume the result is true for r. Let K =
Q(¢/mr, ..., ¢YMr41) a real Kummer field such that for all i € [1,7 + 1],m{™! =

1 mod p?. Let us fix Ky = Q(¢/my,..., ¢/m,) and Ky = Q(¢/m,;1). If one denotes

% by s, one has the following decompositions by using the induction hypothesis,

where the numbers are the dimensions of the respective extensions.
/ ‘ <
/ é
pp 1 Kl /
Ky quah
4 /
p
Q

(p)

ppi-

Moreover p is totally ramified as a?~! in k = Q((,). First we consider the splitting
of p in the Galois closure IA(; and ?2 We focus on I?Q, and the situation in IA(/l is
similar. First remark that Ko /Q is Galois with dimension [I?; : Q] =p(p—1) so the
decomposition of p satisfies efg = p(p— 1) with the functions e(-|p) and f(:|p) being
constant — equal to e and f respectively — over prime ideals g of K, such that q | (p).
Considering the factorisation pOg, = q1q5 " we obtain p — 1 | e(q|p). Moreover for
the decomposition of g; in [?/2, since E/ Ky is Galois, we have e;f;g; = p — 1.
Since p—1 | e and e = e; we have e; = p— 1, f; = 1 and g; = 1. Therefore
10z, = q”'. Moreover f = f1 = fyand e = (p — 1)ez s0 e; = 1 and g» = p — 1.
Thus gy splits completely in K as g1z ... q,_1. Finally we obtain the factorisation
(p) =a'a" @
completely in K, foralli € [1,s]. Therefore the factorisations of (p) in K, and Ko

4" " in K,. Similarly we have pOr =p’~" and p; splits

are as follows: _
@ (@dz. - qp)" ' in K3/Q,
) T
PP pe PP i K0 /Q
Consequently the splitting of a in the same two fields is

o {aq:qz T i Ka/Q,
BB i K1/Q

Remark that the residual degree is 1 everywhere. We will now consider the decom-
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position of p in K. We will in fact look at the decomposition of a. Consider P a
prime ideal of K above p. Remark it is also above a in }N(/k; For i € {1,2}, denote
by D; the decomposition group D(P | P N Og,). Let us write G = Gal([?/k),
G, = Gal(K/Kl) and Gy = Gal(K/KQ) Each D; is a subgroup of G; < G. More-
over recall that G; = (0,41), Ga = (01) X -+ X {0,) and G = G; x G5. Remark
also that |Dy| = |Ds|. Since |G| = p then one has D; = (1) or D; = G;. Let us
show that D; = (1). Suppose that we have Dy = (0,41). Then |Dsy| = p so there
is 0 € G such that o(c) = p and Dy = (o). Now, since for i € {1,2} we have
D; = D(P | a) NG, we obtain {0,411} < D(P | a) and {0} < D(P | a). Therefore,
{0,41} x {0} < D(P | a) which implies that ef = |D(P | a)| > p?>. However if
we consider the splitting of a in K, and I? we have e; = f; = 1 in [?1 /k and
[K : Ki] = p, so ef < pin K/k. Thus we have an absurdity so D, is trivial as
announced, D; = Dy = (1) and a splits completely in K /k. Finally p splits in K /K4

as
(BB B,

and

7z Z
—_—— X —.
(p—1DZ  pZ
We see that p and K /K satisfy the hypothesis of Lemma , so p splits in K/K;

as

Gal(K /Ky) = (1,) X (0y11) &

= =1

PP
Moreover, for each ¢ € [1, s], the ideal p; splits completely in K so it splits completely
in K. We obtain the final decomposition for p in K/Q as

(p) = B(PB1... PP

41

witht=14+sp=1+ p — Ly = p 1. Thus the decomposition is correct for r + 1,
which ends the proof by 1nduct10n. Let us now fix K = Q(¢/mq, ..., ¢/m,) and look
at the p-valuation of Dg. Remark that ged(1,p) = ged(p — 1,p) = 1, and that for
any prime ideal  of K above p we have e(Q | p) = 1 or e(Q | p) = p— 1. Therefore
the part of ®(K/Q) above p is

I3

i=1
where s = Z . Since the inertial degree f(B; | p) = 1, we have Ny o(B;) = p for
all i € [1, s]. Thus we obtain

vp(Dx) = vy (Ni/o(D(K/Q))) (H Nx/o(Bi)"~ ) (p—2)s,
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which is the required value.

Fields of the second type: Let us now consider a field K = Q(y/ma, ..., ¢m,)
such that p ¢ P(m), m?™" # 1 mod p* and Vi € [2,7],m’" = 1 mod p?>. The proof
is simpler in this case. Fix K; = Q(y¢/m1) and Ky = Q(y/ma, ..., ¢/m,). Remark
that K3 is a real Kummer field of the first type. Therefore, following Westlund [100)]

and the previous result, for s = p;_ll_ L we obtain the following situation.

K
p
pfr—l

Ky qof "o qp!

pr K
\ pr—l
b
Q

(p)

By multiplicativity of the ramification index, for any f above p in K, one has

p | e(P | p). Thus the splitting of p in K is as follows:

(p) = PP (P ... [P,
Now let us find v,(Dg). We have
D = DIt INg, jo(0(K /K1) = DS INg, 10 (N /i, (D(K/K1)))

and the part of D(K/K;) over p is (P1---P,)P"2. Indeed p is coprime to 1 and
p — 1. We know by [100] that v,(Dg,) = p so

vp(Di) = [K : Kalp + v, (Ngjo(Br---B))" ) -

Since the inertial degree is trivial everywhere, N /q(9;) = p for all 7 € [1, s]. Finally

we obtain
Up(DK) =p" + Up<p8(p72)) =p" +s(p—2).

Fields of the third type: Let us now consider a field K = Q(¢/mq, ..., ¢/m;)
such that p € P, and Vi € [2,7],m’" = 1 mod p®>. Again fix K| = Q(¢/m1) and
Ky = Q(¢/ma, ..., ¢/m,). Remark that K5 is a real Kummer field of the first type.

r—1__ .
pp,1 L we obtain

the decomposition as the previous case. Therefore the proof is identical. The only

Therefore, following Westlund [100] and the previous result, for s =

thing which changes is v,(Dg, ). It is equal to 2p — 1 in this case [100]. O
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Extensions with two exponents

We were not able to prove similar results for general Kummer extensions with two

exponents, but only on a restricted family of them.

Definition 5.7. Let L/K be a real Kummer extension with two exponents p, q. We
will call a power-free basis of L/K and denote by IJB(L/K) the basis IB(M) ®
IB(K).

Proposition 5.13. Let L = K(y/mi,...,¢/m,) with K = Q(yn4,...,yn,) be a

real Kummer extension with two exponents. Let a € P(m) U P(n). Write 6, =

S(aep(m)) and 0n = Saepmy)- If a & {p,q}, then one has

DB/ = 5] (226, + 110, )

If a € {p,q} then one has

[L:Q] (r+uém+u(5n> if a=p,
va(DL(IB(L/K))) = P I

L:Q) (5—1—1%15,714—%5”) ifa=q.

Proof. With the notations used during the proof of Theorem [5.1 remark that

Mj%(L/K) = MJ%(L’) X Mj&B(K) where L/ = Q(mel, cey {ymr) Then apply Va to
det M;f%( 1K) in the different cases. m

Remember that to prove Theorem[5.2] one only has to study the splitting of primes
different from the exponent p, as the p-valuation of the discriminant of the order
generated by JB(K) is automatically smaller than the one of the discriminant of

[K : Q]Ok. We will see that it is not as simple over extensions with two exponents.

Proposition 5.14. Let L = K(y/mi,...,¢/m,) with K = Q(yn4,...,yn;) be a
real Kummer extension with two exponents. Let a € P(m)UP(n)\{p,q}. Then the
splitting of a in L/Q and v,(Dy) satisfy the following:

1.aeP(m)\Pn) = 3t >1,(a) = (ar...a)" and ve(Dr) = [L : Q]
2.a€Pn)\Plm) = It>1,(a)=(ar...a)° and v (D) = [L: QL;

q

3. acPm)NPn) = It >1,(a)=(ar...a4)" and vy(Dy) = [L : Q]2LL,

pq

Proof. The proof is quite similar to the one of Proposition [5.12} Using Lemma [5.2]
one can assume that there is at most one iy € [1,7] such that a | m;, and at most
one jo € [1, s] such that a | n;,. Assume also that i and jy are equal to 1 when they

exist. Fix [ the field equal to the compositum of the simple subfields of L' and K



CHAPTER 5. REAL KUMMER EXTENSIONS 135

generated by m;, and n;,. Depending on the cases, [ is equal to Q(y¢/my), Q(¥n;)
or Q(¢/m1)Q(¢/ny). Now let k be the field such that [k = L. Now it is easy to see
that a completely ramifies in [ and does not ramify in k. Thus there is ¢ > 1 such

that the splitting of a is as follows.

L (ay-- ZQ]

© P

Since a & {p, q}, ged(a, [l : Q]) = 1, therefore the part of the different ©(L/Q) above

a is equal to
t

H Q-1

i=1
One can conclude by using the same arguments than in the proof of Proposition [5.12]

]

Remark 34. One can remark from Proposition and Proposition that if
a € P(m)NPn)\{p,q} then v,(Dg) = v,(Z[IB(L)]). Therefore if P(m) NP (n)\
{p,q} # 0 then the counterpart of Theorem for Kummer extension with two

exponents does not hold.

Theorem 5.4. Let L = K(g/my,...,ym,;) with K = Q(¢ni,...,yns) be a real

Kummer extension with two exponents. Denote by O the order Z[IB(L)], and A =
(P(m)NP(n)) \ {p.q} and Py =T],.4a. Then the following properties are true.

e Vo€ P(m)UP(n)\ (AU{p,q}), O is a—mazimal.
° PA[ Q]OL < O.

Proof. Let a € P(m)UP(n)\ (AU{p,q}). From Proposition and Proposi-
tion Va(Dr(0)) = v,(D ( 1)) so O is indeed a—maximal. Consider a € A.

Vg
Then we have v,(Dr(0)) = [L: Q] <’%1 + %), and

Vo (Dr(PalL : Q|OL)) = Ua(Pj[L:Q}DL) =2[L: Q] +va(Dr).

Since v,(Dy) = [L : Q]¥L=, we obtain

ve (DL(PAIL - QIOL) = [L @](%»MDL(@)).
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Now consider a € {p, ¢}. Since the situation is the same for p or ¢, we can choose a =
p for example. First assume that p & P(m)UP(n). Then again from Proposition[5.13]
we have v,(Dr(0)) < r[L : Q]. Moreover since v,([L : Q]) = r we get

Uy (DL (Pa[L : Q]OL)) 2 2r[L: Q] > r[L : Q).

Now let us assume that p € P(m) U P(n). Then we have

(D) = [:0) (r+ 22+ =0 < L+ 2)

Since p € P(m) U P(n), there is a subfield [ of L of the form Q({/T]; mi) (resp.

Q(¥/11;m)), such that p | m (resp. p | n). Consequently, p ramifies completely
in [ and we know that v,(D;) = 2p — 1 (resp. wv,(D;) = p). Recall that Dy =

Di*!Nyg(a(L/1)) > DI Thus we obtain

vp (DL(PAIL:QIOL)) > 2r[L: Q1+ [L: Q] = [L: Q|(r +2).

5.2.3 Geometry under Log;
Lemma 5.6. Consider K, and Ky two number fields, and K = KKy their com-
positum. Assume that Hom(K, C) = Hom(K, C) ® Hom(K>, C). Then one has

V(x1,29) € Ky x Ko, (Log (21) | Logg (22)) = In|Ng, jo(21)| In|Ng, sq(22)].

In particular Logy (O, ) is orthogonal to Logg(x2) for any x» € K.

Proof. Let us denote by H, H; and Hy the sets Hom(K,C), Hom(K;,C) and
Hom(K5, C) respectively. Moreover we will write S for (Logg(z1) | Logg(x2)).

Then we have

S=Y Info(z)|njo(z) = Y D Injor @ oa(x1)|Infor @ oa(a2)|-

oceH o1€H) 09€H>

Then for i € {1,2} we get 01 ® o9(x;) = 0;(z;). Thus we obtain

S= " Inloy(ar)|Infoa(z)] = Y Infor(zi)] Y Inoa(zs)]

o1€H; 02€H2 o1€H, o2€H>2

which gives the first result. The statement about the orthogonality of the units
follows from the fact that their algebraic norm is +1. O
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Corollary 5.2. Let K = Q(¢/my, ..., ¥/m;) be a real Kummer field with one expo-

nent. Then we have

Logk(SU(K)) = @D Logk(OF,) (5.6)

AN

~

Proof. Just remark that for any pair (a, 8) € I} \ {0} such that a % 3 we can apply
Lemma [5.6) to K, and Kj. O

We know that SU(K) is a full-rank subgroup of O} following Corollary and
equivalently Logy(SU(K)) is a full-rank sublattice of Logy(Oj). In the case of
multiquadratic and multicubic fields, one can see from Corollary that each set
of fundamental units {¢, | a € w} is sent by Logj to an orthogonal basis of
this sublattice. This is the best situation possible when it comes to solving lattice
problems. In particular one could hope to decode respectively to Logx (SU(K)), and
use enumerations like over cyclotomic fields in [34]. However as mentioned in [6] the
index [0 : SU(K)]| is too large for this strategy to be efficient. On the other hand,
Algorithm [30| shows that one can obtain Logy(Oj:) from Log,(SU(K)) by doing
simple operations on vectors: additions and division by a scalar (2 or 3 depending

on the case).

p=1
2

orthogonal one to each other, i.e. if we consider a basis matrix M of Log (SU(K))

For Kummer extensions with one exponent p > 3, we obtain blocks of size

then its Gram matrix M M7 is a block diagonal matrix

G, 0 ... 0]
0 Gy

: 0
0 ... 0 G,

with the diagonal blocks being of the form MM, , with M, = Log (O ). The
basis from which we construct the unit group is therefore not orthogonal anymore.
One can wonder whether it has an impact on the quality of the basis obtained for

Log (Oj) and on the performance of the SPIP procedure.

For Kummer extensions with two exponents, we cannot apply Lemma to the
minimal subfields reached by the recursion of the version of Algorithm [30] adapted
to these type of extensions, i.e. Algorithm [35 Indeed, we will see that they are of
the form Q(/M,, \q/ﬁﬁ), which do not satisfy the required properties of Lemma .

The reunion of their unit groups will still generate a full-rank sublattice, but not
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as a direct sum anymore. Thus we obtain a situation more entangled than with
real Kummer extensions with one exponent. Again one may ask how it impacts the

possibility of recovering a short generator through the Log-unit lattice.

5.2.4 Auxiliary algorithms

First we will describe the procedures used in Algorithm when applied to real
Kummer extensions, as well as how we compute the final reduction step to solve
the SPIP. In the following we will denote by N the absolute dimension of L. As
in |6, 64] we will always assume that an element x is represented together with
an approximation of Log; (x), that we will denote by ApproxLog,(x). Moreover,
we used the power-free basis defined and studied in Subsection to represent
elements z. This way we know that there is a coefficient dj, such that the coefficients

of dyx are integers.

Finding Good Primes

As in [6] we will need to be able to find primes satisfying fixed conditions with

respect to the m;’s.

Definition 5.8. Consider m = (my,...,m,), C = (c¢1,...,¢.) € {0,1}" and a prime
number p. A good prime relative to (m,C,p) is a prime @ such that:

Vi € [1,7],3a; | m; = af mod Q < ¢; = 1.

In particular we need to find good primes @ for the condition sequence (1,...,1)
in order to construct morphisms from K™ into finite fields Fg. Remark that the
primes should not divide any of the integers m;. Now if we fix a prime ) > 3 we

have the following situation:

. . ... . F?
e if ) = 1 mod p then Fy contains a primitive p-th root of unity and ﬁ ~ [Fp;

o if Q # 1 mod p then Fg does not contain a primitive p-th root of unity and
o~ {1},

Therefore we can have different strategies depending on our goal. If we want the
condition (1,...,1) to be satisfied we might consider primes which are not congruent

to 1 modulo p as long as we do not need a non-trivial p-th root of 1 to be in the
field Fg.

Let us now describe how the algorithm operates to find a good prime ) = 1 mod p.

First we have to draw a prime () and verify that it is congruent to 1 modulo p. This
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happens with probability Iﬁ. Then we have to check whether the sequence of
Q-1
conditions C' is satisfied by (mq,...,m,) and Q. We know that m,” mod @ has

order 1 or p which is equivalent to m; being a power or not. We have therefore
Algorithm where we make use of two functions: CheckPowerCondition which
has been explained, and DrawPrime which corresponds to the way we select the
candidates for the prime numbers. One can follow [6] and generate a random prime
number in a range given as argument. We could also generate a random prime first

and then draw the next prime each time we need a new one.

Algorithm 32 Finding a good prime for a sequence d and a condition sequence C
- OneGoodPrime

Require: A reduced sequence (my,...,m,), C = (c,...,¢.) € {0,1}" and a prime
p
Ensure: A good prime @ relative to (m, C, p) which does not divide any of the m;.
1: b+ 0
2: while b =0 do
3: () < DrawPrime

4: while ) # 1 mod p do

5: () < DrawPrime

6: end while

7: b < [[;_, CheckPowerCondition(m;,¢;, @, p)
8: end while

9: return )

For a random prime ) = 1 mod p the probability that the power condition is true
is equal to ’%1 if ¢; = 0 and % if ¢; = 1. Therefore if Hw(C') designates the Hamming

weight of C' we have

T 1 B 1
P (l | CheckPowerCondition(m;, ci, @, p) = 1) = (_)Hw(C) > (p_)r—Hw(C’)'
' p p

i=1

On average the algorithm will try #THW@ primes before finding one satisfying

(
the condition sequence C. In particular the probability that each m; is equal to

1

a p-th power in Fy is — and the algorithm will try O(p") primes before finding
pT’

one satisfying the condition sequence C' = (1,...,1). Moreover we check if a m;

is a power or not modulo () by doing a modular exponentiation. Therefore if () is
polynomial in N as it is expected, the complexity of CheckCubeCondition will be

polynomial in log(N).

If we need to find good primes for a given sequence C' — as it will be the case to

detect non trivial cubes of units — we repeat Algorithm [32] until obtaining enough
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primes. The only thing to be careful with is the function DrawPrime in the case we
generate random primes in a given range. It needs to be large enough so that the
time taken before generating the desired number of “good” primes is low enough. If

DrawPrime generates primes by finding the next one then we repeat this process.
Complexity : We obtain a complexity in (~)(N ).

Detecting powers

As mentioned earlier the authors of [6] showed how to realise the characters in the
case of multiquadratic fields. It can be adapted to real Kummer extensions, as we
did to multicubic fields in [64]. Consider L/K a Kummer extension of exponents
p,qand S = (s1,...,S,) asubgroup of L*. In order to obtain a non trivial character
Xq : S — I, one can do as follows. First select a prime () such that one can con-
struct a ring morphism from Z[y/my1, ..., /My, /01, ..., ¥ng) to Fo. The prime @
must be such that for all ¢ € [1,7] the rational m; has a p-th-root in F¢, and that
for all j € [1, s| the rational n; has a g-th-root in Fg. Moreover since the character
needs to be non trivial, Fg has to contain a primitive p-th root of unity, i.e. @ =1
(mod p). After the reduction modulo @, one can verify if ¢q(s;) is a p-power by
computing an exponentiation with exponent %. The composition of this and ¢g
will be the character yq. Following the analysis of [6], such a prime @) can be found
in time Poly(N) so finding R good primes can be done in Poly(N R) with the max-
imum of the @ to be also in Poly(NR). Finally if B is an upper bound for the size
of the coefficients of sq,...,s, then one can construct and apply the characters in
time Poly(BNRn). Then detecting the powers can be done using Algorithm [33] in

polynomial time with respect to the entries.

Algorithm 33 Compute non trivial p-powers of a subgroup of K* — DetectPowers

Require: A real Kummer extension L/K of exponents p,q, S = (s1,...,8,) a
subgroup of K*

Ensure: Ai,...,\y € [0,p — 1] such that []_, s;\j’i is a p-power in K, for all
J € [1,n].

1: Generate sufficiently enough characters xq,, ..., XQx- > Use OneGoodPrime
2 M [xq,(si)]i; € Mn r(Fp)
3: N < ker(M) > Left Kernel in I,
4: return N as a matrix in Z

Remark that Algorithm returns exponents corresponding to true p—powers

R—n

with probability at least 1 — p~ (%~ under assumption that the characters con-

structed are uniformly distributed in the dual of S/(S N K?). We never encountered
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failure during our computations.

Heuristic 5.1. Let S < K* with L/K a real Kummer extension of exponents p, q.
Then the characters xq described previously are uniformly distributed in Hom(S/(SN
K7),F,).

Reducing a basis subgroup

In order to find a basis of a subgroup U < O one can use Pohst’s modified LLL
[84] algorithm on the matrix ApproxLog;(U). In order to find a transformation
matrix with small coefficients, one can follow [6] and compute a LLL on a matrix
of the form [Id]C’ - ApproxLog, (U )} This leads to a reduction in Poly(NB) if B
is a bound on the size of the elements of ApproxLog, (U), as we take C' with size
polynomial in N. Moreover, the use of a reducing algorithm allows us to find a

basis of better quality. One can choose to use another reducing algorithm such as
BKZ [94].

Reducing an element with respect to a lattice

In order to retrieve a short generator g of a principal ideal from another generator
h, we mentioned that one can try to solve a CVP with respect to the Log-unit
lattice. In order to do so, we followed [64] and computed the result of Babai’s
nearest plane algorithm using Kannan’s embedding technique. This technique can
be used more generally to reduce an element [h, ApproxLog; (h)] with respect to a
sublattice ApproxLog; (U) of ApproxLog;(O;), in order to control the size of the
elements which are handled. Recall that if B is an upper bound of the norm of the

vectors of the basis of ApproxLog; (U) then one can consider the matrix

[ ApproxLog; (uy)

ApproxLog; (u
ApproxLog; (U) ‘ 0 ' 1 (2)

ApproxLog; (h) ‘ B

ApproxLog; () | 0

ApproxLog; (h)

Reducing it with a LLL algorithm is expected to reduce the last row to the Log-
embedding of a shorter element in the same coset. In order to obtain again a

transformation matrix with small coefficients, we consider a matrix of the form

C' x ApproxLog (U) ‘ 0

Id
| C' x ApproxLog (h) ‘ B

We will denote by RKEBabai(U, h) this procedure.
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Computing p-th roots

The authors of [6] were able to exhibit a recursive algorithm in order to compute
square roots in a multiquadratic field. The method cannot be adapted to Kummer
extensions of exponents bigger than 3. We then developed the method using the
LLL algorithm that we presented in Chapter [} Fix y = 2” in a real Kummer exten-
sion L/K. Remark that since L/K is real, (, ¢ L and the polynomial X? — y has
exactly one root in L. Moreover in a given extension we usually have to compute
several roots. Thus we can use the same reduced basis lattice L; for several ele-
ments or update the precision as needed. This strategy is efficient because one can
evaluate the logarithm of ||z||, quite accurately (experimentally) with the formulae

— Inllylly Therefore one can evaluate the norms of all the roots to

EvaluteNorm(x)
be computed, and sort the elements by increasing norms. Let us denote by Sort

this sorting procedure.

Finally, in order to reduce the time of computation, one can try to bound the
norm of the powers. Let y be one of the powers outputted by DetectPowers, and
S = (s1,...,5,) the subgroup of K* given as input. Then one can reduce y with
respect to ApproxLog(S?) using Kannan as explained above. Experimentally, it al-

lows the computations to run considerably faster.

Implementing these ideas, we obtain Algorithm [34]which computes roots of powers
such as outputted by DetectPowers. In this context, we will write InitBasisLatt
and UpdateBasisLatt the procedures which respectively initialise and update to a
larger precision the basis lattice matrix of L/K (as defined in Section .

Algorithm 34 Compute the p-th roots in L/K — ElementsFromPower

Require: A Kummer extension L = K(ymi,...,¢m,) with K =
Q(yni,...,¥ns), asubgroup S = (s1,...,s,) of K* and V = (y1,...,y) <SP
non-trivial p-th powers

Ensure: A basis (r1,...,2,) of V1/P

Y < RKEBabai(S?, V) > Reduce in the Log-representation

Y < Sort(X)

X« 0

[L,U,l] + InitBasisLatt(L/K)

fori=1ton do
[L,U,l] < UpdateBasisLatt(L/K,PrecisionEvaluation(y;),U)

T < [z
x < TestDecode(L,t)
X — XU{z}

end for

: return X

—_ =
= O
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5.2.5 Computing the unit group:

In order to compute the unit group of a real Kummer extension of exponents p, ¢ we
are able to use Algorithm [30] several times. Indeed if L/K is a Kummer extension
of exponents p, ¢ then each of the minimal subextensions L({/M,) can be written
as Q(YM,)(¢/n1, ..., ny), i.e. a Kummer extension of Q({/M,) of exponent g.
Therefore if one applies Algorithm [30[to L/K, when it reaches the simple subexten-
sions L({¥/M,) in step 2, one can again apply KE_Units instead of UnitGroup. This
leads to Algorithm [35]

Algorithm 35 Compute the unit group of a Kummer extension L/K of exponents
p,q. — RKE_Units

Require: A Kummer extension L = K(¢my,...,¢m,) with K =
Q(,‘I/nl, RN \q/n_s)

Ensure: A basis of the torsion-free part of the unit group Oj.
1. if (r=1and s < 1) then

2: return UnitGroup(L).

3: end if

4: if (r=1and s > 1) then

5 return KE_Units(L/Q(¢/m1)). > Compute a basis of U = O] by
considering L as a Kummer extension of Q(¢/my1).

6: else o

7 Choose u, v two independent elements of Hom(L/K).

8: Recursively compute a basis of U = OO ... O ,1,010

9: V' < DetectPowers(U, p)

10: V' < ElementsFromPower(V, p)

11: U < BasisFromGeneratingSet((U,V))

12: return U

13: end if

Theorem 5.5. Consider L = K(y/mq, ..., ¢m,) with K = Q(y/n1, ..., ¥ns) areal
Kummer extension with p and q prime integers such that [L : Q] = p"q¢®. Under the
assumption of Heuristic and GRH Algorithm heuristically computes OF in
Poly(In(|Dr|))Lp(2/3 + €,¢) for some ¢ > 0 and € > 0 as small as desired, with
)N

probability at least 1 — (pq)~", where P is the product of all primes dividing the m;

and n;.

Proof. Let us study the running time of the algorithm. The analysis is very similar
to the one of the S—units computations done in [17]. Assume we obtained the
unit groups of the p + 1 subfields, with elements given in compact representation.
Denote by Uy, ..., Uyt these groups. Their union is a generating family of U. Then
in order to compute Oj, one needs to reduce this family to a basis of U, apply the
characters and detect powers, compute the associated roots and finally reduce the

obtained family to a basis of O} .
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First let us remark that from the simple subextensions of L/K, there are only
Poly(In(|Dp|) calls to BasisFromGeneratingSet. Fach implies a loss in precision
of Poly(NB) where B is the actual precision in the Log representation. Therefore
given we obtain a certain precision in Poly(In|Dy|) for the approximate logarithm
of the units of the simple subextensions of L/K it is possible to finish the algorithm
with also a precision in Poly(In|Dy|) for the Log-unit lattice. Since the reasoning
will be the same for the recursive part of step 5, we can assume that at each step
the precision in the Log representation is in Poly(In |Dy|).

Now assume that we reduce a family of elements which are all in compact repre-
sentation. As we saw the coefficients of the transformation matrix of the LLL will
all have their logarithms in Poly(In |Dp|). Moreover the rank of the families we will
reduce will also be in Poly(In |Dy|), as well as the length of the product defining each
element. Therefore one can compute the compact representation of the elements of
the basis in Poly(In |Dp|).

Once we have a basis (uy,...,u,) of U in compact representation, we need to
apply DetectPowers. But each u; is given as w;ouf; .. uf; with each u; ; of size
polynomial in the logarithm of the discriminant. Thus the image of u; by a character
Xq 18 xo(u;, ), which can be computed in polynomial time. We saw in the discussion
for the general case that we ensure the searched probability of success by choosing
a number of characters polynomial in N, assuming Heuristic[5.1] Therefore the cost
of applying is in Poly(In |Dy|).

The exponents found by DetectPowers are less than p — 1 so one can easily
compute the compact representation of any of the powers detected. Given a power
v = v} .. .vik in compact representation, its p-th root is ¢/vovyv5 .. .Uﬁkil. One
only has to compute the root of vy whose size is in Poly(In |Dy|). This will be done in
time Poly(In |Dy|). Since there are only O(N) roots to compute, the overall running
time of the roots extraction together with the last call to BasisFromGeneratingSet
is also in Poly(In|Dy|). During the descent to the simple subextension of L/K the
algorithm reaches O([L : K]) number of subextensions so the cost of the algorithm
will be in O([L : K])max, Ty(Ls) + O([L : K])Poly(In|Dy|), where the L, are
the simple subextensions of L/K and Ty(L,) is the running time of Algorithm
when applied to L,. The whole analysis done above can been applied to this part
of the algorithm. Therefore we obtain a complexity in Poly(ln Dy) x Sy where
Sy designates the maximum running time on the minimal subfields reached by the
algorithm to compute the unit group. These fields are of the form Q(¥/M)®Q(v/N)
with M being a product of m; and N a product of n;. Given the discriminant of
such fields [100|, one obtains Sy to be in eO(n P)?/%) by applying the algorithm of
Biasse and Fieker |15]. O
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5.2.6 Solving the PIP

As we saw the procedure to find a generator of a principal ideal is very similar
to the one to compute the unit group. Therefore we obtain easily Algorithm [36]
The analysis of the running time is similar to the one of Algorithm [35| which gives
the same complexity since solving the PIP on the subfields of dimension pq is also

sub-exponential.

Theorem 5.6. Consider L = K(¢/mq,...,¢ym,) with K = Q(¢ny,...,¥ns) a
real Kummer extension with p and q prime integers such that [L : Q] = p"¢* and

a principal ideal I. Under the assumption of Heuristic [5.1] and GRH Algorithm

heuristically computes a generator of I in Poly(In(Nz (1)), In(|Dr|))Lp(2/3 +¢€,¢)

for some ¢ > 0 and € > 0 as small as desired, with probability at least 1 — (pq)™N

)

where P is the product of all primes dividing the m; and n;.

Algorithm 36 Solve the PIP in a Kummer extension of exponents p,q — RKE_PIP

Require: A principal ideal I of a Kummer extension L = K(¢/my,..., ¢/m,) with
K =Q(yn1,. .., ¥ns), the unit group O7.

Ensure: A generator g of I.

if (r=1and s <1) then
return Generator(I).

end if

if (r=1and s > 1) then
return KE_PIP(L/Q(¢/m1)). > Compute a generator of I by considering L

as a Kummer extension of Q(¢/my1).

else o

7 Choose u, v two independent elements of Hom(L/K).

8: Recursively compute generators of Nzu(/)Npw([l),...,N,p-1,(I),Ngo(I)
and use Equation to have h a generator of IP.

9:  return ElementsFromPower([OF,h],p).

10: end if

b

5.3 Experimental results

We implemented the algorithms for real Kummer extensions in MAGMA [22], with
the procedures described but without the compact representation of elements, which

leads to exponential algorithms.

e We study in Subsection the probability to retrieve a short generator of a
principal ideal through an attack using the algorithms presented in Section
; we computed data for Kummer extensions with one and two exponents, and

compare the results to the ones of 6l |64]. This allows us to identify Kummer
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fields with degree p? and defined by small integers to be fields over which the
SPIP is more difficult to solve.

e Finally in Subsection we study further the geometrical situation. In par-
ticular we compute the size of the target vector normalised by the volume of the
Log-unit lattice and the quality of the basis obtained for the Log-unit lattice
through Algorithm We focus on Kummer extensions with one exponent

with degree p? and compare them with other number fields.

5.3.1 Probability of solving the SPIP

The first way we studied the possibility of real Kummer extensions was to launch
attacks with Algorithm [36] As a matter of fact, we did not do proper attacks because
computing ideal norms can be quite long even though the theoretical complexity is
polynomial. However the knowledge of the secret key allows us to compute the
HNF of the norms efficiently, and the rest of the attack is unchanged. We tried to
retrieve generators of principal ideals (¢) such that the coefficients of the generators
g are drawn uniformly in {—1,0,1}. The previous observations in [6], 64] seemed to
show two phenomena. Given a sequence m = (my,...,m,) defining the fields, the

probability of retrieving a generator increased when :
e the length r of the sequence defining the field was increasing;
e the global size of the entries of the sequence, i.e. [];_, m;, was increasing,

Part of our work has been to verify that it happens on all Kummer extensions.

Kummer extensions with one exponent

First let us consider fields of the form K = Q(y¢/my,...,¢/m,). We present the
results obtained in Tables[5.2] [5.3] and There is one table for each exponent
p defining the field, except for Table [5.5] which presents the results for the three
exponents (11, 13, 17). For each exponent we computed attacks for fields defined by
sequences of increasing length and increasing coefficients ; moreover the coefficients
are consecutive prime numbers. For each field we provide the probability of retriev-
ing a generator when LLL or BKZsyq is used to reduce the different bases during the

algorithms.
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Table 5.2: Experimental results for Kummer extension of Q with exponent 3

(a) r=2and 3
Sequence length r 2 3
Rank of the lattice r; + 1 — 1 4 13
First coefficient m, 2 [ 3] 5 [ 7] 11 2 [ 3 ][5 ][ 711
Success LLL (%) 32 1892 98 |97.6|99.99 || 43.6 | 98 | 100 | 100 | 100
Success BKZ (%) 29419221984 | 98 100 || 47.4 | 99.4 | 100 | 100 | 100
(b) r=4and5
Sequence length r 4 5
Rank of lattice r{ +7ry — 1 40 121
First coefficient my 2 [3 s [ 7] 2 3]5]7]1
Success LLL (%) 58.6 | 100 | 100 | 100 | 100 || 77.6 | 100 | 100 | 100 | 100
Success BKZ (%) 64.6 | 100 | 100 | 100 | 100 || 74.3 | 100 | 100 | 100 | 100

Table 5.3: Experimental results for Kummer extension of Q with exponent 5

Sequence length r 2 3

Rank of lattice r{ +1ro — 1 12 62
First coefficient m, 2 ‘ 3 ‘ 5 ‘ 7 ‘ 11 2 ‘ 3 ‘ 5 ‘ 7 ‘ 11
Success LLL (%) 53.6 | 74.8 | 100 | 100 | 100 || 71.6 | 97.2 | 100 | 100 | 100
Success BKZ (%) 54.6 | 69.6 | 100 | 100 | 100 || 68.6 | 95.8 | 100 | 100 | 100

Table 5.4: Experimental results for Kummer extension of Q with exponent 7

Sequence length r 2 3
Rank of lattice 7y + 79 — 1 24 171
First coeflicient m; 2 ‘ 3 ‘ 5 ‘ 7 ‘ 11 2 ‘ 3 ‘ 5 ‘ 7 ‘ 11
Success LLL (%) 86.6 | 100 | 100 | 100 | 100 || 80.6 | 100 | 100 | 100 | —
Success BKZ (%) 84.9 | 100 | 100 | 100 | 100 || 98.7 | 100 | 100 | 100 | —

Table 5.5: Experimental results for Kummer extension of Q with degree p? and
exponents 11, 13 and 17.

Field exponent 11 13 17

Rank of lattice 60 84 144
First coefficient my | 2 [ 3 [ 5 [ 7 [11 [ 2 [ 3 [ 5 [ 7 1] 2 ]3
Success LLL (%) 77.6 | 100 | 100 | 100 | 100 || 19.3 | 99.6 | 100 | 100 | 100 0 |[29.1
Success BKZ (%) | 90.7 | 100 | 100 | 100 | 100 || 70.0 | 100 | 100 | 100 | 100 || 12.4 | 100

We can remark that the two phenomena described before seem to be true for all
exponents p. Moreover the probability of success seems to converge quickly to one.
For similar degrees and rank of Log,(Ok) we can remark that we obtain a better
probability of success with fields defined by longer sequences and smaller exponents.
Compare for instance fields of degree 73 in Table and fields of degree 132 or 172
in Table 5.5



CHAPTER 5. REAL KUMMER EXTENSIONS 148

Fields with degree p?: Let us now focus our attention on the subclass of fields
of the form K = Q(y/m1, ¥/ms). First we see that again the probability of success
converges quickly to 1 when m; increases. Now fix (ms, ms) = (2,3) and let p vary.

One can find the percentages of success plotted in Figure [5.1]
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Figure 5.1: Percentage of success of an attack with LLL or BKZ for fields
K = Q(%/2, ¥/3) plotted against the rank 71 + 72 — 1 of Log (Ox)

We can notice that for one or the other method used as a reduction algorithm
throughout the procedures, the probability of retrieving a short generator starts to
increase but decreases when p is larger than 11. It converges to 0 when using LLL

and is bigger when using BKZy, but is still quickly decreasing.

Remark 35 (Importance of studying high degree number fields). One important
observation is that computations on high degree number fields were required to ob-
serve meaningful data. Indeed when restricted to fields with degree less than 121,
i.e. to primes strictly smaller than 11, the probability of success of an attack is
quickly increasing and there is no difference between using LLL or BKZsyy. This

highlights the need to work over high degree number fields.

Finally one could consider Kummer fields of degree p? defined by small integers
as an alternative to number fields already used in cryptography such as cyclotomic
fields. Indeed, in addition to the data gathered here, their structure could be used
to build an efficient arithmetic as done over multiquadratic fields in [6]. One could
also consider Kummer fields of degree p if the pattern concerning the probability
of success (decreasing with the length of the sequence) is still valid. However we
cannot confirm or invalidate it. We only have access to the classical algorithms to

do computations on these fields, thus preventing examining fields with high degree.
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Kummer extensions with two exponents

Consider now real Kummer extensions of the form L = K(y/mi,...,/m,) with
K =Q(yn1, ..., ns). We tried to verify whether the phenomena observed in |6, 64
and mentioned earlier were still true over such fields or not. To do so, we computed
data for several fixed ground fields K and varying parameters for the extension L.
Because of efficiency reasons, we were restricted in our choice of parameters. Indeed,
our implementation is way slower over Kummer extensions with two exponents than
extensions with one exponent. We only present the probabilities with LLL because
the ones with BKZ4g are very similar, due to the fact that the ranks of the Log-unit

lattices manipulated are small.

Simple Kummer field as ground field: First let us consider fields such that K
is a simple Kummer field Q(/n) and L = K (y/p1, ¥/p2) with p1, ps being consecutive
prime numbers. The data gathered can be found in Tables and [5.8

Table 5.6: Success of an attack (in %) over Kummer extensions of the form

L = K(/p1, ¢/p2) with K = Q(¥/n)

Exponent p 3 5 7

riry—1 9 25 49

Coeficientp; | 2 [ 3 [ 5 [ 7 [ 23 [5s[r7nunf]2]3]s5]]7][1
n=2 59 [71.6]66.2 [ 58 68.6 [ 74.6 [ 72.8 [ 65.6 82.6 [ 77.6 [ 71.2 [ 719
n=>5 10 [563 | — [47.7[51.7 | 137] 59 | — [634[547] 74 | 65 | — | 62 | 52
n=13 27.3 804903887877 68.486.3|87.3[90.6 ] 833[90.3] 89 | 8 |79.8

Table 5.7: Success of an attack (in %) over Kummer extensions of the form

L = K(/p1, ¢/p2) with K = Q(/n)

Exponent p D
(&1 + o — 1 37
Coefficient p; | 2 ‘ 3 ‘ 5 ‘ 7 ‘ 11
n=2 - | 781 ] 82 | 79.3 | 81.3
n=> 35.4 | 98 - 100 | 98.6
n=13 554 | 78 | 98.31|99.7 | -

Table 5.8: Success of an attack (in %) with over Kummer extensions of the form

L = K(¢/p1, ¢/p2) with K = Q(/n)

Exponent p 3
ri+ro—1 22
Coefficient p; | 2 \ 3 \ 5 \ 7 \ 11
n=2 - 77 | 78.6 | 73.9 | 69.9
n=>5 50.7 1953 | - |983 | 98
n=13 55 93 98 |99.7 | 100
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We can see that the results are different for these fields than for Kummer ex-
tensions with one exponent. For each pair (p,q) it seems that the probability of
success does not converge to 1 when the coefficients (py, po) increase ; for some pairs
the probability is even decreasing. We are still able to retrieve a high percentage
of generators, but one should remark that the dimensions are all relatively low.
We mentioned in Remark [35] the importance of studying high dimensional number
fields i.e. with dimension at least greater than 100, and we stress that the data
we were able to produce regarding Kummer extensions with two exponents do not
meet this requirement. Thus the observations made from these data might not be

representative of the asymptotic behaviours.

Increasing [L : K| with constant exponent: Now let us consider extensions
L = K(y/mi,...,¢m,) with fixed K and p, with increasing length sequence r of

consecutive prime numbers.

Table 5.9: Success of an attack over Kummer extensions of the form L =

K (Y1, .. ., pr) with K = Q(¢/n)

‘ Length r H 2 H 3 H 4 ‘
Exponent ¢ 2 ) 2 5) 2 )
ri+ro—1 9 22 27 67 81 | 202

| Success with LLL (%) [[ 61.4 [ 79.6 [ 85.4 [ 94.7 [[81.2 [ - ]

The data in Table [5.9) seems to show that again, the phenomena observed over
Kummer fields with one exponent cannot be seen as clearly over Kummer extensions

with two exponents, at least for ¢ = 2.

Conclusion: The probabilities of successfully retrieving the private key seem to
be smaller and to differ much more than for the previous type of fields. It could
be an indication that breaking the regularity of the field structure makes the attack
more difficult. However one has to remark that we lack data, and that the ones we

obtained are essentially over fields with relatively low degrees.

5.3.2 Analysis of the geometrical situation

Let us now focus on Kummer extensions with one exponent, since we are able
to compute data for high dimensional fields. Moreover recall that we identified
Kummer extensions of degree p? defined by the sequence (2,3) as fields for which
recovering a short generator through the Log-unit lattice could be more difficult
than over other number fields. Thus all Kummer extensions considered further

are defined by sequences of the first prime integers. In order to study further the
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situation we looked into the possibility of recovering a short generator through an
enumeration process. In order to evaluate the cost of enumerations, we used the
function EnumerationCost(L,m?) of MAGMA. It computes an estimation of the
number of nodes to visit during an enumeration process of short vectors of a lattice
L within the ball B(0,m). Moreover we studied the quality of the basis obtained
by computing several parameters. Given a basis B (whose vectors are sorted by
increasing norms), evaluating its orthogonality can be difficult. Let us denote by r
and V respectively the rank and the volume of the lattice generated by B. We chose

to compute:

1. the Hermite factor g = % which is used to evaluate the quality of basis

reduction on random lattices;

2. the orthogonality defect o = 1, H:ﬁ/”bi” which expresses the overall orthogo-

nality of the basis.

We gathered data of cyclotomic fields, NTRU Prime fields and Kummer fields.
We computed the unit group of the first two categories using the generic algorithm
of MAGMA UnitGroup up to degree 60. In order to obtain data on cyclotomic
fields of larger degree we used the subgroup C' of cyclotomic units, which has a very
small index [34]. For some fields they are even equal, for example for power-of-2
cyclotomics (under GRH). Even if C' is not O one can argue that it is close to it

and is used by the authors of [34] to solve the SPIP over cyclotomic fields.

Norm of the target vector

One important geometrical parameter is the size of the target when compared to
the volume of the Log-unit lattice, in order to know if retrieving it through a CVP
computation or an enumeration process is conceivable. In addition to the size of the

target vector we studied the cost one would obtain for an enumeration.

Let us recall a quick result which can be found in |9, 34].

Lemma 5.7. Let K be a number field, H be the subspace of R"™ orthogonal to

1=(1,...,1) and py be the orthogonal projection on H. Then for any g € K one
In |N

has Logi(g) = pu(Logx (g)) + 5221,

One can conclude from Lemma [5.7] that if g is the secret key, then the norm of
the target is

5 (il - HLogK<g>ul)2_

i=1
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For each field we computed the ratio of the norm of py(Logk(g)) by the scaled
volume of the Log-unit lattice v/Vx where r = r; +75 — 1. We computed the median
value of this ratio for each set of keys, and the corresponding enumeration cost. Let
us denote by M said median value, and ECY the bit-size of the corresponding

enumeration cost.

Prime degree fields: First consider fields with prime degree — or conductor for
cyclotomic fields — smaller than 60. The data can be found in Table [5.10, We
show the enumeration cost only after LLL because for those dimensions the values

obtained after BKZsy, are the same.

Table 5.10: Data concerning the target pg(Logk(g)) for Kummer extensions,
cyclotomic fields and NTRU Prime fields with prime degree or conductor

Degree p | 11 13 17 19 23 29 31 37 41 43 47 53 59
My 0.48 | 0.46 | 0.42 | 0.42 ] 0.43]0.39 | 0.38 | 0.37 | 0.35 | 0.35 | 0.34 | 0.32 | 0.31
ECk 1.172 | 0.89 | 0.61 | 0.55 | 0.82 | 0.47 | 0.80 | 0.77 | 0.53 | 0.85 | 0.81 | 0.49 | 0.89
My 1.34 | 1.32 | 1.17 | 1.11 | 1.05 [ 0.97 | 0.96 | 0.91 | 0.88 | 0.84 | 0.84 | 0.77 | 0.74
ECk 4.93 | 527 | 4.58 | 4.10 | 3.63 | 2.56 | 2.82 | 2.38 | 1.77 | 2.09 | 2.88 | 2.05 | 2.50
My 0.81 | 0.83|0.82|0.84 | 0.83|0.84 | 0.85| 0.85 | 0.86 | 0.86 | 0.86 | 0.86 | 0.87
ECk 3.14 | 3.55 | 3.89 | 4.19 | 4.39 | 4.90 | 4.77 | 485 | 5.30 | 5.69 | 5.50 | 5.11 | 6.29

Kummer field Q({/2)

NTRU Prime

Cyclotomics

From the data gathered, the targets are bigger over NTRU Prime fields than over
cyclotomic or Kummer fields for very small primes, but the values decrease quickly.
The targets seem to have a relatively stable size over cyclotomic fields, which ends
up being the largest for bigger prime numbers. Kummer fields present the smallest
target vectors. This leads to the same phenomenon for the corresponding enumera-
tion cost. However these are still quite small but it was to be expected over lattices
with small ranks. One can find the plot of the minimum and maximum value of
the ratio ||py(Logk(g))ll, /Vlyr in Figure . We can remark that the values over
cyclotomic fields and NTRU prime fields are getting closer with p increasing. The
targets over Kummer fields are again smaller. If this trend remains true asymptot-
ically it would indicate that Kummer extensions of prime degrees are weaker than
fields of the two other types. However it should be noted that the difference is quite

small, as well as the rank of the lattices considered.



CHAPTER 5. REAL KUMMER EXTENSIONS 153
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NTRU Prime ——
Kummer ——-

Figure 5.2: Minimal and maximal values of ||pH(L0gK(g))||2/Vé/T plotted

against the rank of Logy (O} ) over fields of prime degree or conductor

Kummer fields with degree p?: The attacks showed that the SPIP seems to be
more resistant over fields of the form Q(\'/ﬁ, \’/g), so we will focus on them. In order

to have a better idea of the situation, let us compare them with:
e cyclotomic fields of prime conductor p;
e cyclotomic fields of the form Q((an);

e Kummer fields of degree p* and Kummer fields of exponent 3 and defined by
successive primes i.e. of the form Q(v/2,V/3, .. ., D).

Remember that in order to compute data for high degree cyclotomic fields, we con-
sidered C' the subgroup of cyclotomic units. Again we computed the median values
of the quotients ||py(Logk(g))ll,/ v;(/ " and the corresponding enumeration costs.
One can find the values corresponding to the first parameter plotted in Figure [5.3|

We can remark that the values for Kummer extensions of square degrees are close
to the ones for cyclotomic fields, in particular the ones of the form Q((zn). Moreover
the values for cyclotomic fields with conductor of the form p* with k& > 2 are also
similar, even if we did not plot them for clarity purposes. For Kummer fields of
degree p?®, the plot suggests that the values could asymptotically be close to the
ones over the previous fields. However we cannot confirm this because the state of
our implementation does not allow us to compute the units for the following prime
p = 11, which corresponds to a field of degree 1331. We can see that the size
of targets over multicubic fields is decreasing quickly, which is consistent with the
probability of success already observed. This also confirms the differences between

fields with increasing exponents such that the defining sequence has a constant
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Figure 5.3: Median values Mg plotted against r; + ro — 1 over Kummer fields
of degrees p? and p?, and over different types of cyclotomic fields

length, and fields with a constant exponent such that the length of the defining

sequence is increasing.

With these observations and the ones regarding number fields with prime degrees,
one could expect to obtain similar enumeration costs for cyclotomic and Kummer
fields. However we can see in Figures and — which show the corresponding
enumeration costs with the use of LLL and BKZs, respectively — that the costs
are low over cyclotomic fields (and close one to each other) but asymptotically
bigger over Kummer fields of degree p? and p3. Again the situation is worse for
Kummer fields of degree p? than p®. Regarding the influence of BKZs, it has again
a positive and noticeable impact for ranks greater than 80 i.e. degrees greater 160,
and only over Kummer fields of degree p?. These observations coupled with the
values of the enumeration cost obtained seem to indicate that Kummer extensions
of degree p? could be better options than cyclotomic fields when it comes to building
a cryptosystem whose security relies on the hardness of solving the PIP. Indeed for
the field Q( V2, 1\7/§), the enumeration cost after BKZy, is still large enough to

prevent an enumeration process.

Basis of Log-unit lattice

As mentioned before, we studied further the situation by computing several param-
eters to evaluate the quality of the basis of Log, (Ok) for the fields K considered.
Results of these computations are gathered in Table for fields with prime degree
or conductor less than 60, and in Figures[5.6] [5.7 and [5.§] for the same type of fields

considered in the previous analysis. Again, we will denote by FC' the bit-size of the
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enumeration cost considered.
Table 5.11: Data concerning the Log-unit lattice of Kummer extensions, cyclo-
tomic fields and NTRU Prime fields with prime degree or conductor
Degreep | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59
% 0.81 [ 0.76 | 0.722 [ 0.70 [ 0.66 | 0.62 | 0.59 | 0.56 | 0.54 | 0.53 | 0.51 | 0.49 | 0.47
Kunmer fields Q(/3) 9 JLOSTLOS | LI2 111115 121122 [1.27 [1.26 | 136 | 138 [ 143 ] 1.8
EC for Vi/" [ 4.11 [ 4.33 | 4.61 | 4.60 | 4.73 | 4.74 | 4.95 | 542 | 5.03 | 5.97 | 6.02 | 6.42 | 7.27
5 0.15 ] 0.12 | 0.08 | 0.07 | 0.05 | 0.04 | 0.04 | 0.03 | 0.3 | 0.02 | 0.02 | 0.02 | 0.01
NTRU Prime ficlds o 105 [106] 109 [ 110|113 LIG | 114|172 120 | 117|129 [ 124|152
EC for V" [3.20 [ 338 ] 3.30 [ 3.24]3.26 | 3.78 | 3.05 | 2.83 | 2.38 [ 2.85 | 3.99 | 3.14 [ 4.10
3 T12] 113 ] L.14 | 1.15 ] 1.16 | L.17 | 1.17 | LI8 ] 1.19 | 1.20 | 1.21 | 1.20 | 1.22
Cyclotomic fields Q(¢,) o | L1]117 7122 [1.22 /126|125 126 | 131|130 | 131 | L34 ] 136 | L.32
EC for V" [ 3.94 | 4.43] 5.07 [ 533|573 | 6.21 | 6.12 | 6.28 | 6.69 | 6.89 | 6.89 | 6.57 | 7.64

Hermite factor:

One can see in Table that fields of all three types have
short smallest vector, especially NTRU Prime fields. Moreover their orthogonality

defect are similarly small, indicating that the basis obtained for the Log-unit lattice

is relatively well reduced. This is also supported by the fact that the values are

the same with LLL or BKZsyy, which is why we present only one set of data. The

situation is very similar over Kummer fields of degree p?, cyclotomic fields of prime

conductor with higher degrees and power-of-2 cyclotomics as shown in Figure [5.6),

where the dy is plotted. Again there is only one plot because the values are not

modified by BKZs. We can remark that the different plots for different types of

number fields look like the ones found in Figure 5.3

Orthogonality defect:

Now let us look at the orthogonality defect § for high

degree number fields. We plotted the values obtained after LLL in Figure [5.7] and
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after BKZy in Figure 5.8} One can notice that the only fields for which BKZy has
a significant impact are Kummer fields with degree p?, as it was the case for the
enumeration cost shown in Figures[5.4) and [5.5] This indicates that for these fields,
the basis of the Log-unit lattice obtained by our procedures is not well reduced, and
better reduction algorithms modify the basis. This is completely different from cy-
clotomic fields where the basis formed by cyclotomic units are massively orthogonal
and are not modified by reduction algorithms. We can also conclude from the values
for Kummer extensions of degree p® that it is possible to obtain reduced basis of

Log-unit lattices which are not as orthogonal as over cyclotomic units, but are not
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reduced further by BKZsy.
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Figure 5.7: Values of § plotted against r; +ro — 1 over Kummer fields of degrees
p? and p?, and over cyclotomic fields after LLL reductions
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Figure 5.8: Values of § plotted against r; +ro — 1 over Kummer fields of degrees
p? and p?, and over cyclotomic fields after BKZ reductions



Chapter 6

Conclusion

6.1 Diagonally dominant matrices

In Chapter |3| we explored the possibility of building an encryption based on diago-
nally dominant matrices, inspired by the signature scheme DRS [83]. To show that
a correct scheme could be constructed, we studied A\; for c.d.d. and r.d.d. matrices
and exhibited a lower bound. Moreover we showed that one could construct algo-
rithms running in polynomial time and solving GDD,, for v depending on the noise
matrix of the diagonally dominant matrix considered. From these, one can deduce

an upper bound on the covering radius of diagonally dominant lattices.

Even if the cryptosystem DRE that we gave as an example of scheme using diag-
onally dominant matrices is correct, much work is left to be done. In particular, the
security of such a cryptosystem needs to be assessed. Moreover, the algorithms that
we described are not proven to be efficient in their current form. Therefore, a more
in-depth study of these algorithms with implementation work have to be undertaken

if one hopes to obtain acceptable enough efficiency.

6.2 Computations in number fields

We studied practical improvements for two tasks in Chapter [4]

We first studied two different methods to compute the norm of an ideal I relative
to an extension of number fields L/ K. The first one is certified to run in polynomial
time when the Galois closure of the extension is small enough. It computes the
norm as the product of all conjugates of the ideal /. Even if one can hasten the
computations by checking at some points during the process if the norm has been

reached, it is still not very efficient because of the size of the matrices handled. The

158
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second method that we studied is only heuristic and probabilistic. We were not able
to find an upper bound on its running time. However, it behaves very well in prac-
tice and outperforms both our first method and the implementation of MAGMA [22].

The second task that we studied is the computation of polynomial roots in num-
ber fields. We described a method which can be linked to the paper originally
describing the LLL algorithm [63|. It computes the roots of a polynomial through
approximations of conjugates. We showed that this method runs in heuristic poly-
nomial time. Moreover we described how to take advantage of the structure of
an extension L/K in order to do a decoding phase with respect to K instead of L.
Moreover we made several heuristic observations allowing us to speed-up both meth-
ods. Finally, experimental data shows that the absolute method can be competitive
with PARI/GP [76] in some cases, and that the relative offers great speed-ups when
the relative degree [L : K] and the degree of the polynomial that we study are small.

Further improvements can be explored. Regarding the computation of ideal
norms, one should find an upper bound on the running time of our probabilistic
method. Then concerning the extraction of polynomial roots, one could try to im-
prove the classical method implemented in PARI/GP. One could find a heuristic way
of evaluating the volume needed to ensure the correctness of the decoding, as we
did for the precision of our method. Moreover, finding a way of using the structure
of an extension such as we described could improve massively the running time of
this algorithm. Our methods could be more efficient by using Babai’s nearest plane

algorithm to solve BDD instead of Kannan’s as we described.

6.3 Real Kummer extensions

In Chapter [5| we studied some real Kummer extensions, namely number fields of the
form L = K(y/ma, ..., ¢/m,) with K = Q or K = Q(¢/n1, ..., yn,), where p, q are
prime integers. Our goal was to assess the possibility of solving the SPIP through
the Log-unit lattice. To this end, we generalised the work of Bauch et al. done
over multiquadratic fields [6]. In particular we showed that general real Kummer
fields enjoy similar properties to multiquadratic fields, which can be exploited to
design efficient algorithms computing the unit group and solving the PIP over these
fields. Our implementation of these algorithms allowed us to try to solve the SPIP
in practice over some real Kummer extensions. Experimental data showed that the
probability of success is very high over most of fields studied. However some fields
seem to be more resistant, namely fields of the form Q(y/m1, ¥/m2) with small m4

and my (especially m; = 2 and my = 3). Moreover, we studied the geometry of the
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Log-unit lattice of these real Kummer fields and compared it to the one of cyclo-
tomic fields. We were able to highlight the fact the geometries are really different.
In particular, the basis of Log(O% ) computed by our algorithms are far from orthog-
onal, which is completely different than for cyclotomic fields. Our work indicates
that the structure of the Log-unit lattice can be different from one number field to
another. In particular, the SPIP is more difficult to solve over some real Kummer
fields than over cyclotomic fields. Consequently, such fields could be an alternative
to cyclotomic fields when building cryptosystems based on structured lattices such
as ideal lattices or module lattices. Another fact that our work highlights is the
importance of studying large degree number fields. Indeed, we were able to detect
that fields of the form Q(¥/2, ¢/3) had different properties than other Kummer fields

only because we computed data for degree larger than 120.

The first direction that we could explore further would be to build and cryptanal-
yse a cryptosystem based on the hardness of solving the SPIP over Kummer fields.
Then one could implement algorithms solving the ISVP |79, 9] over such fields, and
compare the quality of the output compared to cyclotomic fields. Finally, the work
of Biasse et al. [19] shows that other number fields enjoy a structure allowing us to
compute the unit group and solve the PIP more efficiently than with generic algo-

rithms. Implementing such algorithms could help in studying more number fields.
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Appendix A

Alternative structures for DRE

As we mentioned earlier, there are no better general results that the ones we already
provided as the bounds are reached in practice. However additional structures could
reach better bounds. We will explore some possibilities and their influence on the

length of the shortest vector and the covering radius.

A.1 All positive, all negative

This subsection considers the case where every m, ; is positive or negative.

Negative case

The negative case offers properties that are not necessarily useful by themselves,
but could help in the creation of novel structures for cryptography or in the general

understanding of diagonal dominant matrices.

Lemma A.1 (Shortest vector of the negative case). Let B be a c.d.d. matriz where
bi; <0 foralli#j. Thenv=>"" B;is a shortest non-zero vector of L(B).

Proof. v; = D — CN(B, 1), thus reaching the minimal bound for shortest non-zero

vectors in every position. O

The advantage of this lemma is to be able to use our worst-case assumption as
the general case, however as far as we are concerned we do not see a practical usage

for it.

Positive case

The positive case gives an interesting intuition for reduction algorithms: they give a
very attractive graphical intuition as every vector operation moves every coefficient

in the same “direction” (go up or down), i.e the vector’s coefficient interval range is
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guaranteed to be shrinking in each iteration until convergence.

As far as the length of the shortest vector is concerned, there is no guarantee it
will be higher than the minimal bound. In fact, the example below shows we can

reach the general bound:

Example. The matrix

D -1 0

D
0
0
0
0

D
0
0
0
| D-1 0 |

generates the vector [1,—1,1,—1,1, —1]

Some constructions with bounded noise coefficients and specific distributions can
force limitations on how small the shortest vector can be, however those are very

specific cases and it is unclear if we should expand on it in this paper.

A.2 Polarity-circular blocks

This section deals with matrices that have specific distribution on positive and

negative noise coefficients.
2 x 2 blocks
Here we consider the case where the noise matrix M takes the following form:

0 A
B 0

where every coefficient of A is strictly positive and B strictly negative. (A and B
can be reversed and are square). In that case, D > CN(M) > n/2 and the shortest
vector is large. In dimension 2, it is clear that the shortest vector is a vector of the

basis. In larger dimension, it is not that simple.

Lemma A.2 (Shortest vector of 2 x 2 sign-blocks). Let B € Z"*" be c.d.d and as
described above. Then A\ (L(B)) = D.
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3 x 3 blocks

Now consider the case where the noise matrix M takes the following form:

0 A12 B13
B21 0 A23
A31 332 0

where every coefficient of A;; is strictly negative and B;; strictly positive (signs of

A;; and B;; can be reversed and are square). We assume further the following:

Vi€ [1,n],Y mi;=0.
=1

Let us fix some notation. We will write:
o [ =11,n];
o I =[E12 41,50 for k€ {1,2,3}.

Lemma A.3. Let M = [m; ;| ey € My (Z) a c.d.d. matriz with a structure such as
j€1,n]

defined above and n € 3N, and three different values ki, ko, ks € {1,2,3}. Consider

[ €{—1,0,1}"\ {0} such thatl; >0 for all i € I}, or ;<0 for alli € Iy,. Then the

following statements are true.
(1) (Vi€ I, Uly,,l; =0) = |[IM]|| = DIl (same for I, Uly, and I}, I}, ).
(i) 3k € {ko, ks} | Vj € I}, l; =0 = |[IM] > D.

Proof. Without any loss of generality, we can assume that [; > 0 for all 7 € I; and

m;; > 0 for all (1,7) € Is x I;. The sign matrix of M is as follows:

0o — +
+ 0 -
-+ 0

The first statement is clear. Now let us prove statement 2.. It corresponds to proving
Lemma . Without loss of generality assume [; = 0 for all j € I3 (i.e k = 3). If
there is j € I, such that [; < 0, then since l; > 0 and m;; < 0 for all « € I;, we have

n/3
(IM); = =|l;|D = " Limiy| < =D -1,
=1
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thus [[IM||,, > D. If [; > 0 for all j € I, then ||(IM);||,, = D for all i € I.
Let us now prove (iii). Following the same reasoning as before, one can see that if
li, <0 then

i€lq i€l3 i€l3

D+1— <M Similarly if I;, > 0 then |(IM);,| > D +1— <520,

thus |[(IM)s, | =
li >0 forall i € I, and [; <O for all ¢ € I3 then ||IM]|_ > D and (i) is

Finally if [;
true.

Since all of the above can be adapted to the cases where [; < 0 for all i € I, or
where we replace I; by Iy or I3 we proved that if there is k € {1,2,3} such that all
of the coefficients [; with ¢ € I}, have the same sign, then |[[M]|_ > D — CNT(M) O

Lemma A.4. Let M € M, (Z) with a structure such as defined above and n € 3N.
Then forl € {—1,0,1}", v = IM has ||v||cc > min{D — CNQ(M),D—C'N(M)+§+2}.

Proof. The previous lemma dealt with the case where 3k € {1,2,3} such that
Vi € I, l; > 0 or Vi € I, l; <0. Now assume the following:

vk € {1,2,3}, 3(ix, jr) € I3, (i, > 0) A (I, < 0).
Remark that it implies n > 6. With no loss of generality, let us fix £ = 1 and define

First assume that [A| > & and [B| > §. Then we have

(IM)i, =D+ > flmig| = > |limig,]

iI€AUB i€I,UIs\AUB
CN(M) n
>pyo_g W) 7
+ (— 5
>D—(JN(M)+g+2.

Now assume |A| < § and |B| < §. Then similarly as before we obtain

n
(IM);, ==D+ > |lmigl— > |limi,| < =D+ CN(M) - 32

i€AUB i€I,UIs\AUB
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Finally, assume |A| > ¢ and |B| < §. This means that |I3\ B| > § so we obtain

(M), ==D+ > limiz|— Y
i€AUB i€I,UIs\AUB
N(M
<_D_1_E+(C—<)_1)+
6 2
< —D+ CN(M) —%-2.

[l j, |

The case #A > ¢ and #B < g follows a similar reasoning.

]

Finally, using Theorem one can deduce from the results over [ € Z" with

Illl, =1 a lower bound for A;.

Corollary A.1. Consider M a c.d.d. matriz by blocks as described above. Then it

verifies )\goo)(ﬁ(B)) > min{D - CN(M) + 3 +2,D — CT

Note that those bounds are reached in the very worst case, and we present below

an example that was built to reach the bound.

Example. Set D = 19,CN (M)

matrix
] ; .
0 -1 1-2 1 23
B B
0 D 1-2 -1 -1 1
B 8
y_li-1 1 Db 0 -1 1-g)
5 5
1 -1 0 -2
8 5
1-2 -1 2-1 1 D 0
8 B
-1 1-2 1 £4-1 0 D |
andl:[—l 1 1 —1 —1 1. Thisgivesv=IM =

which has a norm of 5.

19 0 -1
19 -8

1 19

8 0

-8 -1 8
-1 -8 1
-5 95 5

-5

)

= 18,n = 6. This gives A§°°) > 5. Consider the

Note that unlike the example above, for large dimensions (and large diagonal value

D) it is very unlikely that the maximum noise with absolute value (

CN(M)

2

—n4)

is picked for uniform distributions. Bounding the maximum noise coefficient will

further increase the minimum possible length of the shortest vector.



Appendix B

Proofs of some result on dihedral

groups

Here we consider a prime p, ¢ a generator of the multiplicative group F, and the semi-
direct product G = (1,0 | 777! = 0P = 1,707 ! = ¢'). Recall that for any u € (o)

¢ =y so any element of G can be written in

and any a € [0,p — 1] one has 7%ur™
the form 7%0® or o¢7¢ for some a, b, c,d. Remark further that if g = [], 7%c" € G

then the corresponding a and d are equal to ), a;.

Lemma B.1. The subgroups of G are of the form (1% o) with a € [0,p — 2] or of
the form (t%0®) with a € [1,p — 2] and b € [0,p — 1]

Proof. Consider a subgroup H = {(gi,...,g,) = (%%, ... 7% c") with (a;,b;) €
[0,p—2] x [0,p—1]. First assume 7 € H. Then one can write H = (1,0%,..., o")
i.e. H iseither (1) or (7,0). Now assume ¢ € H instead. Then H = (o, 7",...,0%)
and there is d € [0,p — 2] such that H is (7%, 5). Finally assume that neither 7 nor

o belongs to H. One can see that for i # j two integers in [1, 7]
(a;=a;) AN (b #b) = #0|0’ € H = o€ H
from which we deduce

V(i,j) € [1,r],i #j = a; # qj.

Let d = ged(ayq,...,a.). Using Bézout’s identity one can see that there is b €
[0,p — 1] such that 790" is an element of H. Let us show that H is in fact equal
to (r%"). Consider i € [1,r] and write h; = (7%?)7. There is ¢; € [0, p — 1] such
that h; = 7% 0. Following a previous reasoning we conclude that h; = g;. This is
true for all i € [1,7] so H = (r¢0?). O
Lemma B.2. The subgroups of G of the form (t%c®) with (a,b) € [1,p—2] x {0,1}

have order o(T%) = o(t%).
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Proof. Given an integer k one has (7%¢°)* = o¢7% with

a 2a ka al_tka
e=0t"+0t""+-- -+ bt =0t o
thus
1— ka
o't =1 = (ak;EOmod(p—l))/\(e:bt“1 m = 0 mod p).

Then remark that one has also
ak=0mod (p—1) = t" = 1modp = e=0mod p.

]

Lemma B.3. The subgroups of G with order p — 1 are the p groups of the form
(ta®) with b € [0,p — 1].

Proof. A subgroup of GG of order p — 1 does not contain o so it is necessarily of the

form (7%¢?). Since o(7%?) = o(7?) one has

o(t%") =p—1 = (1% = (1)

therefore there is ¢ € [0, p — 1] such that 70¢ € (7%0?). O
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