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Abstract

Ever since the human race developed consciousness we have battled against the elements

to bring about prosperity and health. For millennia we closely observed the natural

phenomena that seemed to influence future outcomes, gradually building and refining

our conceptions of reality, our mental models. We refined the process of observation

and discovery with the scientific method, and from that point on our power to control

our environment grew immensely. Now our greatest foe is not only Mother Nature, but

ourselves. We still act impulsively, and make decisions which seem irrational. We may

guiltily watch hour after hour of Antiques Road Show, instead of spending a mere 30

minutes finishing off the final thesis chapter.

The tradition of model development is continued herein, with a focus on holistic socio-

ecological models. The first part of this thesis examines the pre-existing Limits to Growth

model, originally developed by Meadows et. al. in 1972. Uncertainty analysis was per-

formed on this model to develop a better understanding of its reliability. This model is

also used to better understand the trade-off relationships between common goals humans

wish to achieve in the future. A genetic algorithm was used to determine the Pareto front

of the seven examined goals. The final part of the thesis presents a novel model designed

to allow many simulated human actors to make purchasing decisions in a self determining

fashion, based on the cost of various goods. The new model simulates multi-item market-

places, floating prices on goods, and spacial effects on trading and resource extraction. A

preliminary version of the model is tested under eight different conditions, and the results

are presented and discussed.
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Quotes

“All models are wrong, but some are useful.”

George Box - Statistics for Experimenters

“The Fundamental cause of the trouble is that in the modern world the stupid are cocksure

while the intelligent are full of doubt.”

Bertrand Russell - Mortals and Others: American Essays [“The Triumph of Stupidit”]

“In short, one may say anything about the history of the world, anything that might

enter the most disordered imagination. The only thing one can’t say is that it’s rational.

The very word sticks in one’s throat. And, indeed, this is the odd thing that is continually

happening: there are continually turning up in life moral and rational persons, sages and

lovers of humanity who make it their object to live all their lives as morally and rationally

as possible, to be, so to speak, a light to their neighbours simply in order to show them

that it is possible to live morally and rationally in this world. And yet we all know that

those very people sooner or later have been false to themselves, playing some queer trick,

often a most unseemly one. Now I ask you: what can be expected of man since he is a

being endowed with strange qualities? Shower upon him every earthly blessing, drown

him in a sea of happiness, so that nothing but bubbles of bliss can be seen on the surface;

give him economic prosperity, such that he should have nothing else to do but sleep, eat

cakes and busy himself with the continuation of his species, and even then out of sheer

ingratitude, sheer spite, man would play you some nasty trick. He would even risk his

cakes and would deliberately desire the most fatal rubbish, the most uneconomical absur-

dity, simply to introduce into all this positive good sense his fatal fantastic element. It

is just his fantastic dreams, his vulgar folly that he will desire to retain, simply in order

to prove to himself, as though that were so necessary, that men still are men and not

the keys of a piano, which the laws of nature threaten to control so completely that soon

one will be able to desire nothing but by the calendar. And that is not all: even if man

really were nothing but a piano-key, even if this were proved to him by natural science

and mathematics, even then he would not become reasonable, but would purposely do

something perverse out of simple ingratitude, simply to gain his point. And if he does

not find means he will contrive destruction and chaos, will contrive sufferings of all sorts,

only to gain his point! He will launch a curse upon the world, and as only man can curse

ix
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(it is his privilege, the primary distinction between him and other animals), may be by

his curse alone he will attain his object, that is, convince himself that he is a man and

not a piano-key! If you say that all this, too, can be calculated and tabulated, chaos and

darkness and curses, so that the mere possibility of calculating it all beforehand would

stop it all, and reason would reassert itself, then man would purposely go mad in order

to be rid of reason and gain his point! I believe in it, I answer for it, for the whole work

of man really seems to consist in nothing but proving to himself every minute that he is

a man and not a piano-key! It may be at the cost of his skin, it may be by cannibalism!

And this being so, can one help being tempted to rejoice that it has not yet come off, and

that desire still depends on something we don’t know?

You will scream at me (that is, if you condescend to do so) that no one is touching my

free will, that all they are concerned with is that my will should of itself, of its own free

will, coincide with my own normal interests, with the laws of nature and arithmetic.

Good heavens, gentlemen, what sort of free will is left when we come to tabulation

and arithmetic, when it will all be a case of twice two make four? Twice two makes four

without my will. As if free will meant that!”

Fyodor Dostoyevsky - Notes from Underground [ch. 8]
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Preface

The purpose of this thesis is to further investigate global sustainability issues from a

holistic perspective on a macro, rather than micro, scale. Although there is significant

and valuable work being done within specific disciplines, it is crucial to also examine the

relationships between these areas of study and how each impacts the other. For example,

in order to engage in useful projections of the future impact of carbon emissions, a study

of the ecological impact of climate change should also include an understanding of how

economic factors drive carbon emissions.

The interplay between these issues creates complex and multifaceted problems when

studying and making recommendations about issues of sustainability. A common method

for approaching and understanding these complex issues is socio-ecological modelling. This

thesis seeks to extract further information from existing models, and to develop a novel

model to help discover new insights into socio-ecological systems.

This objective has been achieved in three broad ways:

1. increasing the understanding of uncertainty surrounding the Limits to Growth Model;

2. increasing the understanding of the trade-off relationships between sustainability

objectives based on the Limits to Growth model; and

3. the development of a novel framework to allow for the investigation of non-homogeneous

agents actions in a socio-ecological model.

Chapter 1 begins with a broad overview of the issues of sustainability. This is then

followed by two sections, one on the creation process of models, the other on the role

models are playing in policy production. The final section of the chapter provides an

overview of the Limits to Growth model, as this model forms the foundation of the research

conducted in chapters 2 and 4.

Chapter 2 is an examination of the uncertainty surrounding the Limits to Growth model.

The chapter begins with an introduction to the importance of uncertainty analysis and its

previous application to the Limits to Growth model. It then moves into a description of

the goals of the research, methodology and results. The chapter closes with a discussion

on the uncertainty of the Limits to Growth model. The Limits to Growth Model is used to

analyse trade-offs between real world objectives in Chapter 4. The research conducted in

this chapter is important for solidifying the stability of the World3 model, as the research

conducted in Chapter 4 is moot if it is founded on an unreliable model.

xxvii
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Chapter 3 describes the graphical user interface that was developed to analyse multi-

dimensional Pareto fronts. This software was used to display and analyse the Pareto front

data generated in Chapter 4.

Chapter 4 is an examination of the trade-off relationships between desired objectives of

human kind going into a future with constrains on its resources. The World3 model used

to derive the relationships. The chapter opens with a overview of multi-objective decision

making and the tools used to discover solutions. This flows into a section regarding

past optimisation analysis of the Limits to Growth model. The methodology used to

conduct the research is presented followed by the results. The trade-off relationships of

the objectives are noted and the implications discussed.

Chapter 5 presents a novel model for investigating human behaviour within socio-

ecological systems. The model was developed with the hopes of addressing some of the

shortcomings of models (such as the World3 model) that aggregate populations, resources,

or goods, into a single entity. The model is also designed to address spacial effects on pop-

ulations. The chapter begins by examining the broad spectrum of models which have

been used to investigate sustainability issues. This examination looks at the various types

of models that exist, their purpose for existing (be it analytical or some other reason),

the theories that underpin some models, and the issues that have been examined using

models. The proposed novel model is then presented, followed by the results of eight trial

runs. The trials were conducted to examine the behaviour of the model and demonstrate

its ability to investigate a wide variety of issues. The chapter closes with a discussion on

validating the model.

Chapter 6 gives a summary of the thesis, outlining its significance to the field of socio-

ecological modelling. This chapter ends with a discussion on future directions the work

presented could take.



Chapter 1

Background Of Thesis

1.1 Sustainability

As the world’s population has grown over time, so too has our ability to address hu-

mankind’s basic requirements. In developed countries, those basic requirements – reliable

clean water, clothing and shelter, food, treatment for injury and disease – have been far

surpassed through tremendous leaps in technology over the 19th and 20th Centuries. The

challenge before the world now lies in closing the standard of living gulf between develop-

ing and developed countries, and managing the enormous impact on the world’s natural

resources.

The modern notion of managing that impact in a sustainable way arose from data sug-

gesting that the earth’s carrying capacity was being outpaced by human population and

resource consumption. Since the mid-20th Century, studies across scientific and other aca-

demic fields have confirmed that current trends cannot be maintained without significant

and irreversible damage to the earth’s biosphere. Today sustainability is widely regarded

by the public as a key area of concern.

1.1.1 How is Sustainability Defined

There is a wide variety of definitions for the concept of sustainability. A widely used and

very popular definition of sustainability is:

Sustainability - “meet[ing] the needs of the present without compromising the ability of

future generations to meet their own needs” [175].

This definition of sustainability appeared in the United Nations (UN) 1987 report “Our

Common Future”. Since the Brundtland Report, as it became more widely known, the

definition gained widespread use in academic literature and the public arena [80, 120].

The essence of this definition is that the activities of today’s generations do not burden

the generations to come, i.e. a kind of intergenerational equality is achieved.

The concept of sustainability has been long debated and refined. Today there is a

general consensus that the term refers to the interlinking of three core dimensions of

human activity. These dimensions are environmental, social, and economic [1, 96]. Each

1
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dimension is dependent on the other and for the system to survive indefinitely into the

future, all three must remain intact [80, 160]. Systems of this type are frequently referred

to as socio-ecological1 systems.

This idea was illustrated in the International Union for Conservation of Nature (IUCN)

Council’s report ‘The Future of Sustainability’, as shown in Figure 1.1 [1]. This report

neatly depicts the notion that for sustainability to be upheld the three dimensions, or

“pillars”, must all be present, i.e. economic health (often defined as economic growth),

environmental protection, and social progress all must be maintained to ensure sustain-

ability.

Some of the earliest discussions on the topic of sustainability date back to 1969 when

the International Union for Conservation of Nature integrated it into their mandate. The

UN raised the issue again in 1972 at the Human Environment Conference [1]. In 1972 the

book ‘The Limits to Growth’ was published which generated much debate on the issue of

continual growth [1]. Since the book, a string of conventions have repeatedly raised the

issue, the most notable of which being the ‘World Conservation Strategy’ 1980 [1], ‘The

Brundland Report’ 1987 [1, 80], Rio ‘Earth Summit’ 1992 [120, 1, 80], ‘Kyoto Protocol’

1997 [4], ‘Rio+20’ 2012 [81], and the Paris ‘Climate Change Conference’ 2015 [153]. These,

along with many other smaller events, have slowly developed the ideas of sustainability

[177].

Over many years the definition of sustainability has been built upon, and edited [1]

by academics who have created their own definitions. A paper by Hjorth and Bagheri

[80] mentioned several definitions of sustainability developed by various academics. These

examples defined sustainability as:

� “preserving the production capacity for a long future” - Solow [80],

� “a vector of desired social goals which the society tries to maximise by working on its

components. The components of the vector are: increase in real per capita income,

improvement in hygiene and nutrition, educational successes, access to resources,

equitable distribution of wealth, and increase in liberty. Sustainable development is

a condition in which the vector of development does not decrease” - Pearce et al.

[80],

1We include economic systems under the socio term as economics is a societal construct.

Figure 1.1: Sustainability represented as “The three pillars of sustainable development”, economic
growth, environmental protection, and social progress. Figure sourced from [1].



1.1. SUSTAINABILITY 3

� “preserving or improving the integrity of the life supporting systems on the earth”

- Fuwa [80],

� “preserving a condition” - Klauer [80],

� “adapting to the frequencies of oscillation of natural capital that perform best” -

Odum [80],

� “economic development (that) keeps ... demands clearly within biological and phys-

ical limits” - Woodwell [188].

Varied definitions of sustainability also abound outside of academic circles, as it be-

comes a buzzword in political, economic, and social circles. Each definition is unique to

its author’s priorities and knowledge of the various aspects of sustainability. The manage-

ment of competing priorities makes political action on climate change and sustainability

a particularly difficult task.

The scientific consensus that current overconsumption of resources and methods of waste

management cannot be sustained long term is slowly becoming publicly accepted knowl-

edge [1, 4]. Leaders at all levels of politics, whether local, national, or international, are

finding that their constituents expect sustainability to be accounted for in policy decisions

[4, 175, 66, 1, 120]. That trend is also reflected across the private economy, where busi-

nesses and consumers are also becoming aware of their role in facilitating change [152].

According to Todorov and Marinova [160] the gravity of the issue is enhanced by three

factors. These are:

1. the scale of globalisation and its effects;

2. the complexity of the man-made world and its governing laws;

3. and that the policy making tools developed thus far have only been capable of dealing

with the short to medium term.

Presently most of the worlds resources are consumed by a minor fraction of the worlds

population. Turner has calculated that for a sustainable and equitable lifestyle to be

reached for all humans on the planet, current consumption rates in the affluent countries

would have to decrease by 1/6 [129]. This represents a dramatic shift in living patterns

for almost all affluent peoples. The enormity of this shift is a major challenge for political

leaders to coordinate, and for wealthy individuals to adapt to.

1.1.2 Issues and Past Progress

Striving for “sustainability” is high on the agenda for many leaders and policy makers

around the world, as evident from the United Nations Conferences on Sustainable Devel-

opment in Rio (2012) [81] and Paris (2015) [153]. However, while on the agenda since the

Brundtland Report, the effects of change have since been slow moving and the subject

of significant controversy. The IUCN’s 2006 report ‘The Future of Sustainability’ sum-

marised the findings of the Millennium Ecosystem Assessment, as shown in Figure A.1 in
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Appendix A [1]. The findings were that many key sustainability issues were not making

progress, or even going backwards. The UN’s 2014 report ‘Prototype’ again found similar

trends. The summary of the reports findings are shown in Figure A.2 in appendix A [174].

It can be noted from the 2014 report that all categories had mixed results (with the excep-

tion of ‘nature’ which had only negative results). For example, the economy had doubled

in the past two decades, however income inequality had increased in many countries. The

latest reports from the UN still indicate that there are many issues left to overcome [170].

Some of the issues facing humanity include, climate change, loss of biodiversity, fresh

water availability, ocean acidification, soil saturation of nitrogen/phosphorus, ozone de-

pletion, arable land degradation, chemical pollution, population growth, poverty, resource

distribution, urbanisation, illiteracy, access to health services, wealth inequality, and hu-

man rights injustices [160, 36].

To date, no country has met all sustainability targets [81], and many have a long way

to go as shown in Figure 1.2 [81]. This figure gives the impression that some countries are

meeting ecological footprint targets, however China and India are rapidly increasing their

ecological footprint as they rapidly become wealthier and will potentially move above the

ecological threshold.

Another issue confronting anyone developing policies relating to sustainability is how to

decide what value to place on different outcomes [131]. Even once a decision is made about

which factors or outcomes should be incorporated into a policy, subjective questions of

value are difficult to adequately model across populations. That task is made harder again

for any model attempting to project the long-term impact of a policy (intergenerational)

[131, 20]; accounting for the costs and benefits over time means taking into consideration

a complex network of competing factors.

Figure 1.2: Ecological footprint index with respect to human development index. The shaded
bottom right corner indicates countries meeting both criteria for sustainability. Figure sourced
from [81].
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1.1.3 Commentary

There is often a misunderstanding around the concept of sustainable development. Hjorth

and Bagheri [80] believe that many scientists perceive it as a project that has a clear finish

point and that due to reductionist thinking of the science community it could become a

“meaningless buzzword”. Meadows believes that the term is “widely abused” by people

who do not fully comprehend the idea [80, 81].

The concise definition of sustainability cited above from the Brundtland Report became

a foundation for a variety of interpretations and definitions by governments, environmen-

talists, economists and private businesses [1]. Those interpretations often overlooked two

caveats also present in the Report, which clarified key concepts in the original definition:

1. “the concept of ‘needs’, in particular the essential needs of the world’s poor, to which

overriding priority should be given,” [175, 2.I.1]

2. “the idea of limitations imposed by the state of technology and social organization

on the environment’s ability to meet present and future needs.” [175, 2.I.1]

In relation to the first caveat, the idea of ‘needs’ is often not viewed as the ‘basic needs’

of the poor. This allows for interpretations to come about that permit highly developed

countries to continue pushing their own economic growth.

The ‘Three Pillar’ model of sustainability has been criticised for “imply(ing) that trade-

offs can always be made” between the three socio-ecological dimensions. The term ‘strong

sustainability’ was coined to denote when no trade-offs are made, and ‘weak sustainability’

when trade-offs are made. It is thought that the idea of weak sustainability is a reason

why environmental quality is still declining and economic growth remains key [1].

It has been believed by many that technology will continually find new ways to overcome

resource scarcity and environmental damage. However, this confidence is slowly beginning

to disappear [80]. The idea was first challenged in the book ‘The Limits to Growth’ which

demonstrated that unbounded technological increase could only delay the degradation of

human society, if current consumption and growth trends continued [120].

The notion that humans will be able to decouple economic production from environ-

mental impact [74] persists today among academics. Other academics however, question

the notion that technology will solve our future problems [162, 164, 163, 104, 32]. Some

commentators have noted that due to our past exposure to great technical advances, we

may have over inflated expectations of what can be achieved by technology [35]. It is often

feared that renewable energies are going to be too insufficient or too costly to be able to

meet the ever rising global energy demand.

The mood of these authors is neatly captured in the following quote; “Unfortunately,

our collective dream of a technological salvation beyond peak oil tends to rest on such frail

foundations. With all due respects to light bulbs, after fifty years of rhetoric about solar

power it would be fortifying to finally see locomotives, tractors, or bulldozers propelled by

the sun” [82].

A tough challenge for people pushing sustainable initiatives is that in democratic coun-

tries the will of the government is in principle derived from the will of the people. Therefore
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sustainability initiatives produced by governments can only be enacted if the population

desires it. If sustainability goals are not met, a potential point of hope is that much of

the developed world’s consumption of goods is going towards luxury items, and that the

basics of human welfare will hopefully still be met comfortably if we are willing to reduce

our consumption of these luxuries.

1.2 Modelling

Human beings are problem solving creatures. Whenever we identify a problem, we toil

away at the issue until we have generated a solution. Before the scientific revolution we

looked to sacred texts for guidance, now we try and solve problems through the study of

the natural world [71]. To solve the problem, it is broken down into many smaller parts

(i.e. reductionism) and then each individual part is studied independently to understand

the working of the whole system [80].

An important aspect the study of the natural world is the development and testing of

models and theories. We can define models as a formalised representation of our conception

of the workings of the natural world [88]. Once a model has been established, it can be

used to generate hypotheses, which are subsequently tested in order to try and invalidate

the model. A model is kept until a problematic discrepancy between model and reality is

observed, at which point the model is either edited or completely re-invented [99].

Models are a tool to help humans analyse and understand the world around them. In

terms of sustainability, they can increase our understanding of the workings behind the

complex problems facing mankind [160], and produce possible avenues for intervention.

This manipulation of models removes the huge barrier of conducting real world experi-

mentation. Using a model removes much of the time and monetary costs of real world

experimentation as well as ethical barriers of human examination [109]. However, a draw

back associated with models is their inability to perfectly replicate the real world.

All models are different, however they often share common traits. Two key character-

istics of models are: they give a simplified version of reality with only critical aspects

included, and they can be tested and validated [160].

Many researchers have devoted much time and effort to developing models that capture

the dynamic nature of an entity or entities over time. The entities modelled could be

(but not limited to) economic, environmental, resource, human, or a combination of these.

These models are designed to further the knowledge of how the entities behave in the real

world and how they can be better controlled or understood.

1.2.1 Model Development Steps

There are many steps in the process of creating a model. In this case we are using the

term step to signify a part of the general process in model creation. The first step is the

formalisation of the theory believed to explain some sort of real world phenomena. This

will usually involve a written description of the model and can involve the production of

mathematical equations to describe the interactions of objects. In this form the model
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is still relatively conceptual, however it has materialised to the point of being able to be

communicated to other people. At this point it can also be used to generate hypothesis

about the behaviour of real world.

Another step in the creation process is the evaluation of model parameters. This involves

the collection of real world data to calculate the values assigned to the model’s parameters.

This can sometimes be a difficult task as often data from the real world does not perfectly

map onto the parameters. For example, it would be difficult to find data to evaluate a

parameter that signified the rate of food consumption to house hold income.

A further step in the model creation process is the comparison of the models output to

real world data. This is the validation step and it is very important. If the model does

not accurately represent the real world, then it’s usefulness in informing future decisions

is low. If the model is found to be unable to account for real world behaviour, the model

creator will either go back to the first conceptual step and modify the original theory, or

potentially start a new theory from scratch. If the model predicts real world behaviour

for some cases, it might be kept and some caveat will be attached to the model to signify

under what circumstances the model is acceptable for use [99].

Once trust has been established in the model, the final step in the model’s life cycle is

its application to predict or examine hypothetical scenarios. This stage can be thought

of as the probing stage, where users of the model can query it and mine information or

knowledge out of the model in the form of predicted outcomes.

Validity

Validating a model is of great importance [17] as it allows the user to have confidence in

the output of the model. All model output will contain error, as no model can perfectly

represent the real world. This is particularly prominent in complex socio-ecological models

[96] due to the simplified nature of these models compared to the real world. Knowing the

magnitude of this error is of great importance for understanding the level of trust one can

put in the output of the model [17]. It is important for policy makers to understand the

potential for error in their decisions which may have been informed by a model [57, 17, 176].

Error can be introduced into a model in three different ways. These are model structure,

parametrisation of the model, and the assumed initial conditions or input variables [96,

176, 20]. The first is through errors in its formulation. A model may knowingly or

unknowingly exclude or include a feature, or poorly represent a feature of the system being

studied. This is a tough issue to analyse using current standard statistical approaches for

examining model error [20]. Another way is through errors in the calibration of parameters.

The final way error can enter into the output of a model is through error in the assumed

initial conditions or input variables. These three error types are depicted in Figure 1.3. In

some cases error may be tolerable if the purpose of the model is not for forecasting, but

rather demonstration or educational purposes [96].

The most basic and important method of investigating model validity is by qualita-

tively comparing the models output to real world data [17]. Sometimes this data may

be unavailable, or will not be know until future events have occurred [96], in which case



8 CHAPTER 1. OVERVIEW

Figure 1.3: Different ways error can enter a model. (A) A real world phenomenon which follows
the function y = aebt. (B) Real world data measured through experimentation. (C) Example of
parametrisation error such that y = aeλbt. (D) Example of initialisation error such that y = λaebt.
(E) Example of structural error such that y = c+ dt2. In this example a = 1, b = 1, c = 1, d = 2,
and the error fraction λ = 1.1.

verification can be effectively impossible. While this form of validation will give a starting

foundation for confidence in the model structure and its calibration, there are still many

other questions left unanswered by this method. For example, the sensitivity of the out-

put to any one particular parameter is left unknown by this method. When it comes to

calibration, it should be considered weather the model has been trained to fit a single set

of data, and if it can match another set of real world data accurately [17]. This aspect of

model validation comes under the headings of cross-validation and bootstrapping.

Two common analytical methods used to examine parametrisation and initial condi-

tion error are uncertainty analysis and sensitivity analysis [17]. Both are very similar in

nature, however, uncertainty analysis is focused on the output error of a solution, while

sensitivity analysis is concerned about the sensitivity of the output to error from each in-

put or parameter. Uncertainty analysis is of particular concern for decision makers using

a model as they are generally only interested in how much error might be in their decision.

Sensitivity analysis is important for model creators and developers as they are interested

in producing more accurate predictions and refining the model where possible.

Sensitivity analysis is performed for a large variety of reasons. Sensitivity analysis can be

used to determine the sensitivity of the model to parameter changes, importance of input

variables, the accuracy of the model, and redundant parameters [145, 11, 135], all of which

are important aspects of the model creation process. Careful sensitivity analysis reveals

the error attributed to each input, thus showing which inputs should receive attention in

refinement [134]. In some cases, sensitivity analysis coupled with a small extension of the

model can produce a risk analysis [177] if the cost of all outcomes is known.

There are many methods for analysing the sensitivity of a model. These can be grouped

into three categories [145]: factor screening - each input variable is varied by an “extreme”

amount and based on the outputs, a ranking of importance of input variables is established;

local sensitivity analysis - each input variable is varied (one at a time) by a set fraction of its

nominal value, which is then compared to the fractional change of the output; and global

sensitivity analysis - a large set of input variable values (usually dictated by a probability

density function) are put through the model to establish the range of uncertainty for the
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outputs.

The major difference between local and global sensitivity analysis is the extent to which

the input parameters are varied. In local sensitivity analysis, each parameter is changed

and its effects measured while holding all others to their nominal value. In global sensi-

tivity analysis all input parameters are changed at once and the effects on the output are

recorded. This process is repeated until a clear probability distribution of the output(s)

is generated [145].

Because global sensitivity analysis is the most time consuming [134], most investigations

are limited to factor screening2 or local sensitivity analysis. Local sensitivity analysis

produces a basic understanding of a model’s sensitivity to input parameters. For non-

linear models, it is particularly important to perform global sensitivity analysis to obtain

the most accurate understanding of the model’s error [176].

Uncertainty analysis is very similar to sensitivity analysis, the only real difference being

the level of concern about the source of the error. The main purpose of uncertainty analysis

is the assessment of how much error is expected to be in a solution produced by a model.

The most common technique for achieving this is the Monte Carlo method. This method

involves running the model many times, each time picking the inputs and parameters based

upon probability density functions of the inputs and parameters [176]. The output of each

model run is collated and then converted into probability density functions [176]. The

major hurdle in performing a Monte Carlo analysis is the identification of the probability

density functions of the inputs and parameters. If these are easy to calculate then the

analysis is relatively straight forward [177].

Uncertainty analysis can also involve the altering of the model’s structure to investigate

how the structure affects the error in the model’s output [96]. This approach, however,

appears to be rarely performed as it requires large amounts of time and effort to conduct.

Thus the model structure must be judged by the creator as being the best it can be given

the constraints of the model creator [17].

The sampling of the parameter/input space can be more complex than pure random

sampling. If simulation runs are computationally heavy and time demanding then quasi-

random sampling methods may be required to help ensure good coverage of the sample

space. Some quasi-random sampling methods include; fractional factorial sampling, Latin

hypercube sampling, and multi-variate stratified sampling. Another consideration may be

influential parameters, i.e. the value of one input parameter may be influential on another

parameter, thus the two parameters cannot be sampled as if they are fully independent

[144].

Probing

The ultimate aim of most models is to use them to discover insights into the issue it

was designed to investigate. The insights might be new understanding of how the system

behaves, or it might be to identify the best arrangement of parameters to achieve a set

of goals. There are two primary ways in which this can be accomplished. The first

2Factor screening is very similar in nature to scenario testing.
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way is by manually changing parameters and input conditions and observing the changes

in the results. This approach is the most common when the aim is to learn how the

system behaves. The other method is to use computer algorithms to test combinations of

parameters and inputs to find some optimal arrangements to meet predefined goals. This

practice is called optimisation analysis.

Optimisation analysis can be time consuming, as it requires another level of analytical

work to be put into the modelling process. It should be noted that setting up optimisation

analysis requires a modeller to define functions which describe objectives. This is a valuable

practice as it can refocus the modeller’s attention back onto the objectives of their research

(i.e. the issues the model was likely to be created to investigate). These objectives can

become obscured or lost during the model creating process, and thus defining objectives

can help ground a research project.

As we become more computer literate, the amount of real world problems being con-

verted into computational optimisation problems has increased. A few examples include:

the selection of regions for forest habitat creation (to minimising costs and distance be-

tween connected reserves) [10], catchment rehabilitation plans [78], optimal power gener-

ation blends (to minimise energy generation costs and environmental impact) [15], and

pandemic modelling [current life]. Probably the most ubiquitous (and often unnoticed)

optimisation problem that has been computerised is that of path finding between two

locations in a city. This is performed millions of times each day by people using GPS

directions through either their mobile phone or car navigation system.

Optimisation can aim to optimise a single objective or multiple objectives. The algo-

rithm will often (especially if the number of potential inputs is large) attempt to find

quasi-optimal solutions. The solutions are often quasi-optimal because the true global

optimal solution may be too computationally expensive to compute. The field of opti-

misation algorithms is large and diverse. Various techniques have been developed such

as: particle swarm, differential evolution, gradient (hill climbing), ant colony, simulated

annealing, genetic algorithm, and bio-geographical-based [151]. Optimisation algorithms

are very popular for solving complex optimisation problems as they are often more suit-

able to use than analytical or brute force approaches [40]. While not guaranteed (unlike

analytical and brute force approaches), multi-objective optimisation algorithms are usu-

ally effective at discovering converged (close to true) and diversified (mostly discovered)

Pareto fronts [75, 40]. A more comprehensive covering of genetic algorithm optimisation

analysis is given in Chapter 4.

In some circumstances, the structure of the model is changed to examine how the model

reacts under a different set of assumptions. This is vary rarely done, as changing the

structure of a model can be a cumbersome process. This is why most examination involves

simply the varying of parameters and inputs.

1.3 Policy Making Based on Models

To evaluate is to make a judgement. Everyday, humans have to evaluate aspects of their

lives and make decisions about what to do next. Some decisions are relatively trivial and
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thus require minimal evaluation, such as deciding what to eat for dinner. Others however,

have far greater consequences and thus require highly detailed evaluations. The decision

of moving to a new town to find employment brings with it many considerations. How

will the cost of living differ? Will there be work available in the long term? Will it limit

contact with family? These questions, and more, have to be evaluated before an educated

decision can be made on the most appropriate course of action.

Today, governments and organisations are increasingly evaluating their policies in the

context of sustainability. Evaluating sustainability requires special assessment which takes

into account economic, social, and environmental dimensions [150, 7, 4, 175, 66, 152, 1,

120, 160, 20]. Sustainability issues “[represent] a global, collective decision-making problem

unprecedented in scale and complexity” [61]. For policies to be effective in all three di-

mensions, they must be well informed. Models are excellent tools for helping governments

and organisations analyse the complex problems facing mankind [160, 176, 20]. Models

can help guide predictions of future trends and investigate avenues for intervention. This

in turn develops better informed policies [160, 88, 176, 96, 98].

It is of great importance to have accurate knowledge of how to best solve a problem.

Sometimes we may implement plans which we believe are the correct course of action,

however this may be a false belief. An archaic and extreme example of this would be the

sacrificing of people to bring about a good harvest. This point is made by Wynes and

Nicholas in [189], and is demonstrated through Figure 1.4. The impact various courses of

action have on the reducing CO2 emissions is presented in (A). How prolific these issues

are in high school science textbooks is presented in (B). It can be noted that the efficacy

of the emissions reduction activity does not correlate with the prevalence to which the

activity is discussed (high impact solutions are often overlooked), hinting that students

may develop false ideas about the most effective reduction strategies or become overly

focussed on low impact solutions.

The value of modelling depends on a simple question, “what is the best alternative to

understanding the problem or making a decision?”. If the alternative is expert opinion,

modelling may look attractive if the issue is complex, as it is very difficult for one person

to account for many factors and mentally compute future scenarios [98].

Van den Bergh and Nijkamp have noted that “there is a strange relationship between

time and uncertainty. Over both very short and very long time periods the final outcome

is, by and large, more predictable than for periods of intermediate length” [177]. They also

note that “long-term uncertainty is usually perceived with reservation. Faith and hope

for intermediate solutions and favourable turns will support this stance” [177]. Given the

gravity of the current sustainability issues facing the world, it is important that the likeli-

hood of long-term prospects is well understood. If models show a high level of uncertainty

in long term predictions, then having faith and hope could possibly be justified. However

if the long term solutions are relatively certain then serious consideration needs to be made

as to whether actions need to be taken or not.
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Figure 1.4: (A) Reductions in yearly CO2 emissions for various activities. (B) Frequency at
which the activity is discussed, and number of unique textbooks which discuss the activity (based
on a sample of ten Canadian high school science textbooks). Figure sourced from [189].
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1.3.1 Importance of Holistic Approaches for Policy

Many models in the sustainability domain focus on a very niche problem or area of concern,

e.g. optimal mangrove and fish management [63], product uptake of carbon labelled

products [191], efficient trading heuristics within a local economy [194], or factors effecting

farmers land management decisions [158]. Others such as the Limits to Growth model

[111] take a far more holistic perspective. While specific studies are very important in

developing a very clear understanding of a niche problem, in the context of sustainability,

they are unable to account for the wider context of which the problem is a part. A life

cycle analysis can indicate better products for development, however the analysis cannot

place the product in the broader context of the entire world economy or its potential

over-all impact on the environment if all consumers purchased it. Life cycle analysis also

assumes no large structural changes to the economy; it’s relevance is for marginal change.

Because of these limitations it is important to undergo efforts to create models which aim

at taking a holistic perspective of our society and the wider environment [80].

Meadows et al. in their book “The Limits to Growth” [111] commented on the issues

most people thought about. This was depicted in Figure 1.5. It illustrates how as time

span or scale increase, the number of people concerned with the issue decreases. They posit

that most people in the world are focused on small issues that affect themselves or maybe

their local community within the next week to few years. This is a reasonable proposition

as large scale and long time horizon issues can feel largely outside of the control of most

individuals. This graphic encapsulates how large complex issues can go addressed for long

periods of time, often sitting in the ‘too hard basket’.

The issues defined as “sustainability issues” are often very broad and complex. Thus the

widest scope should be used to understand the issues facing our world. Much knowledge

is very niche and occupies a small space of all worldly knowledge, and so collaboration is

important to understand sustainability issues [48]. As Herman Daly and Joshua Farley

noted, “real problems in complex systems do not respect academic boundaries” [169].

Sustainability is a highly complex subject to study when viewed holistically. It can

be studied through multiple academic disciplines and thus from very varied perspectives.

Simpler models such as Ehrlich and Holdren’s IPAT model fail to capture the full com-

plexity and thus have to make way for more detailed analysis on longer time scales e.g.

system dynamics modelling [129]. System dynamics models (see section 5.1.2 for a descrip-

tion of system dynamics modelling) are thus well suited for the study of sustainability as

they handle complexity with relative ease and can be applied to numerous disciplines

[20, 66, 80].

The combining of different academic disciplines into a single model can be defined as

“cognitive integration” [20]. Numerous authors have called for greater cognitive integra-

tion in sustainability modelling [80, 160, 177, 129] thus increasing the appeal of system

dynamics as a preferable method of modelling. Because the system dynamics modelling

process is relatively easy to understand a model can be collaborated on by multiple parties

(even individuals outside academia). Another benefit is that the assumptions that produce

the base equations are formulated independent of the model’s behaviour. It is therefore
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Figure 1.5: Illustration of the number of people concerned with various issues with differing
magnitudes of time and scale. Figure sourced from [111].

easier to get agreement between parties on the merit of the model [7].

Cognitive integration is often a tricky task, as our beliefs and biases shape our views

on the world, and when different people collaborate often their views may not mesh.

The opinions on what should be done to help humanity and what will happen in the

future are very wide ranging. Proponents of free markets and enterprise will argue that

a free market can solve our problems through encouraging entrepreneurial developments

and product substitution. Environmentalists will claim we need to place restrictions on

corporations to limit their waste generation, and invest in renewable energy or processes.

Climate sceptics will say their is nothing wrong and claim the climate has always been

changing. Technologists will claim that scientists will discover new technologies and means

to resolve the issues we come up against. It is very hard to tell to what degree each view

point is correct. Knock-on effects are very difficult to foresee. An example of knock-

on effects was The Dust Bowl created in the US in the 1930’s. Rapid growth in the

agricultural sector triggered by the First World War [56] followed by drought meant that

many new and heavily indebted farms had to foreclose, leaving huge areas of land bare.

This created the perfect conditions for wide spread dust storms and is regarded as a

disaster caused by knock-on effects of human decision making coupled with unforeseen

ecological consequences.

No single person has a complete understanding of the world [154] and thus we cannot

hope to forecast into the future without the aid of computational models [5]. Even then
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models can only ever be a crude approximation of the world. However, they can be far

superior than even the most intellectual person speculating3, as people are incapable of

calculating in their mind the evolution of a system with many feedback loops and layers

[92]. This idea is captured in the quote, “the march of history is really more like a

drunkard’s rambling walk. No matter what the wisest and most powerful leaders carefully

plan, history has a habit of going it’s own way” [56]. While physical and environmental

systems are far more predictable than human history (revolts, wars, etc.), the quote is

still generally applicable as we cannot know exactly what technological breakthroughs are

going to be encountered in the future.

Currently many socio-ecological models do not consider the decision making processes

undertaken by people, and that people are not always logical. To take these processes into

account requires a great deal of collaboration between economists and ecologists with social

scientists [5]. Because the course of history is shaped by our decisions, it is important to

examine the choices people will make of their own free will, given various conditions of their

surroundings. With the integration of many disciplines in the creation of socio-ecological

models, there needs to be a corollary integration of disciplines in the interpretation and

examination of results [20].

Van den Bergh and Nijkamp neatly summarised in [177] the key features a model must

include if it is to come close to accurately depicting our socio-ecological world. These

features were laid out in 9 key points and were described as minimum requirements. They

have been summarised here as follows:

1. A full description of the economic structure as well as the environment.

2. Economic activities must be linked to extraction of renewable and non-renewable

resources as well as the releasing of wastes to all spheres of the environment.

3. Feedback to the economy from perceptions of ecological health, i.e. governments

enacting regulations based upon ecological health indicators.

4. Wherever possible the model should take into account non-material measures for the

environment (e.g. soil quality) and human development (e.g. human development

index).

5. Inclusion of multiple generations.

6. A long time frame.

7. Non-linearities must be able to be represented, for example irreversibilities, tipping

points and time delays.

8. Physical realities about the production of items must not violated. Substitution of

materials in product production must be kept within reasonable bounds.

9. Consideration of human welfare should be explicitly taken into account.

3As well as other benefits, such as providing a means for rigorous and quantitative exposure of assump-
tions and relationships.
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We can see that it is quite an extensive list and creates a demanding job for anyone

attempting to generate a model that adequately cover all of the aspects.

1.4 The Limits to Growth Model

Since the beginning of the modern environmental movement, computer modelling has

played a role in examining socio-ecological problems [54]. The advent of the computer

gave humankind the ability to test models which require many calculations over a large

number of iterations. One of the first and most influential models was Forrester’s “Limits

to Growth” model (often referred to as World3) [111]. Since the publication of the Limits

to Growth book in 1972, many more models have been developed that advance the work

of Meadows and his MIT team.

Forrester’s World Dynamics Model which formed the basis of Meadows’ book “The

Limits to Growth” has received much attention since the books publication in 1972. Some

consider it the “most important work of Neo-Malthusian4 literature” [147]. The model

combines “concepts from demography, economics, agriculture and technology” [11]. The

model’s primary objective is to analysis the dynamic relationships between global human

population and it’s resources; where the definition of resources is extended to man-made

capital [112]. The model can be broken up into five main sections: population, capital,

agriculture, resources, and pollution. Each sector is connected via feedback loops, making

the model dynamic over time. The interrelationships between these sectors can be seen in

Figure 1.6 [112, p. 29].

The Limits to Growth model is a type of model falling under the category of system dy-

namics modelling. System dynamics is a modelling technique that allows for a structured

representation of complex systems [96]. This method allows for the study of real world

systems through the representation of stocks/amount (system variables), that have in and

out flows (e.g., births and deaths of a population) that are dependent on other variables

and external parameters [37, 20, 96]. System dynamics modelling allows for analysis of

highly complex systems without complicated theory or mathematical equations [80]. Very

simple and linear relationships, when combined, can create highly complicated behaviour.

System dynamics models can be easily expanded to give a holistic representation of a

system [80]. Through the development of a holistic representation, a better understanding

can be gained of the represented system. The simplistic nature of system dynamics models

allows them to be communicated to a wide audience including academics outside the field

being studied, political leaders, and the general public.

The purpose of the Limits to Growth model was to provide “imprecise projections”

of the dynamic behaviour of the world system. This is due to the unpredictable nature

of social systems and also the lack of data available to the researchers. However, while

imprecise, the knowledge gained about the behaviour of the system is valuable for policy

makers. Decisions regarding “population control, energy consumption, and investment in

new technologies” can better informed through the studying of the model [112].

4Malthusian philosophy is based around the theory of inevitable scarcity due to population growth
during bountiful periods of time.
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The parameters in the model were derived through the collection and analysis of a large

amount of published data. The details of the data, analysis process, and justifications used

in the parameter selection can all be found in the book “Dynamics of Growth in a Finite

World” [112]. While great efforts were taken to get the most accurate data, sometimes this

Figure 1.6: Diagram showing the interrelationships between the 5 key sectors. Figure sourced
from [112].
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Figure 1.7: Diagram showing four possible modes of population growth into the future. Figure
sourced from [112].

data was scarce, of low quality, or hard to find due to the peculiar nature of some model

parameters (e.g., desired complete family size, initial non-renewable resources, persistent

pollution decay rate) [44, 112, 133].

Meadows and his team produced the illustration shown in Figure 1.7 [112, p. 8] high-

lighting some possible trajectories for the worlds population and the Earth’s long-term

carrying capacity. These were classed into two groups: stable and unstable. If the popu-

lation does not exceed the carrying capacity then the growth of the population is classed

as stable, otherwise it is unstable.

The results of the model showed that current trends (standard run) would lead to sharp

deterioration of the global communities welfare. Resources would become scarce and the

carrying capacity would decline, in turn bringing about a sharp reduction in the human

population as depicted in the bottom right scenario of Figure 1.7 [111]. This scenario was

dubbed the “standard run” or “business as usual”.

To test the behaviour of the model, parameters were changed, e.g. to simulate different

social behaviours, resource conditions, environmental policies or technological advances.

A set of ten scenarios were presented in the book “The Limits to Growth”. While each set

of changes in parameters brought about a different result, the general shape of trajectories

and outcomes were similar to the “standard run”, unless drastic changes were made in a

large set of parameters covering technological and social factors. An example of a drastic

change was to limit family size to two children and capital investment be equal to capital

depreciation [111].

The output of the “standard run” of the original World3 model is shown in Figure 1.8.

The simulation shows that population, food per capita, and industrial output per capita

would all rise as crude birth and death rate both fell. As industrial capital grows, the
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Figure 1.8: Output from the “standard run” of the World3 model. Figure sourced from [112].

rate of consumption of non-renewable resources increases and persistent pollution grows.

Eventually these trends reverse (around the year 2010), as the amount of industrial capital

rapidly declines due to constraints on industrial capital investment. This is due to an in-

creasing difficulty in extracting non-renewable resources (as only lower grade materials are

accessible), and the ever increasing needs of industrial output in the service and agriculture

sector. Beyond this point, the previous trends reverse. Food per capita and population

both begin to decline as the crude birth and death rate begin to rise. Persistent pollution

eventually begins to fall approximately 30 years after the peak in industrial output.

The World3 model underwent severe scrutiny when it was first published. Bardi de-

scribes the reaction to the study as “harsh” [13], with many critics dismissing it as a

flawed study. The debate surrounding the model quickly turned from scientific to political

and emotional [92], and the model had a difficult time gaining respect [147]. Often the

sensitivity of the model would be called into question as small changes to parameters could

produce large changes in the output [44].

Forester was one of the first to use system dynamics models in terms of sustainable

development. This work was published in the book ‘The Limits to Growth’ [120]. Unfor-

tunately the work published in the book was taken as a prediction of what would happen,

rather then a description of what could possibly happen [80]. At the time, this misunder-

standing fuelled much backlash from mainstream economists and thus system dynamics
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fell out of favour with economists and political science [20].

Criticism of the model has died down as more data becomes available to validate the

model. The work of Graham Turner showed that data collected from 1970 to 2010 matched

the standard run scenario of the model well, with a further note that “there do not appear

to be other economy environment models that have demonstrated such comprehensive and

long-term data agreement” [167].

Interest in the Limits to Growth model has been long lasting. It has been noted that

there has been a renewal in interest in the Limits to Growth model [167], even after 40

year after its initial publication. Examples of this renewed interest include [69, 169, 167,

133, 13, 97].



Chapter 2

Uncertainty Analysis of the

World3 Model

Abstract

Uncertainty analysis is an important step in determining the reliability of a model. Models

which are used to determine policies or guide decisions must be reliable to ensure sound

choices are made. The “Limits to Growth” model by Donella Meadows and colleagues

was one of the first computer models to investigate global issues of population growth

and resource constraints. The model received much attention and criticism, sometimes

being accused of being too sensitive to variations in input parameters. This paper studies

the model’s sensitivity to input error through an uncertainty analysis, and examines if

this sort of analysis could have affected the debate surrounding the model’s reliability and

usefulness. Results showed that given the data used to calibrate the model, the output

was susceptible to large variations, with the population variable returning a normalised

standard deviation of 0.43. However, despite input error, the trends of the variables remain

predictable.

21
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2.1 Introduction

2.1.1 Uncertainty Analysis

Given that socio-ecological models are aimed at informing policy makers, it is important to

ensure the sensitivity of each model is well understood [98, 96, 176]. Most socio-ecological

models are non-linear, involving many feedback loops, thus small perturbations in param-

eters can induce large changes in the outputs [145, p. 68]. This property exacerbates the

need for a global sensitivity analysis when working with socio-ecological models.

2.1.2 Previous Uncertainty Analysis and the World3 Model

There have been several sensitivity studies performed on the World3 model. The team

that developed the World3 model, lead by D. L. Meadows, intuitively tested it by man-

ually varying parameters and inspecting the changes in output. Many other researchers

conducted their own tests in the same fashion as Meadows’ team [31]. The work of Austin

and Cottler [11], Vermeulen [182] and De Jongh [44] are clear examples of methodical and

rigorous analysis. However, all of the analyses to date1 have been local sensitivity analy-

sis studies which have only provided a basic understanding of the models behaviour and

characteristics. The reason for limiting the sensitivity analysis to simple local sensitivity

analysis is due to the “enormity and laboriousness” of global sensitivity analysis [31, 76].

A study performed by Vermeulen and De Jongh [182] found that some of the most

sensitive variables were Life Expectancy Normal (LEN), Reproduction Lifetime (RL), De-

sired Completed Family Size Normal (DCFSN), Industrial Capital-Output Ratio (ICOR),

Average Lifetime of Industrial Capital (ALIC), Fraction of Industrial Output Allocated

to Consumption (FIOAC), Non-renewable Resource Using Fraction (NRUF), Land Yield

Factor (LYF), Land Fraction Harvested (LFH), Inherent Land Fertility (ILF), Persistent

Pollution Transmutation Delay (PPTD). This was achieved through local sensitivity anal-

ysis, i.e. altering each parameter by a small percentage and comparing the percentage

change of the main variables.

These variables were then changed in combination and by 10% to examine plausible

responses of the model. Figure 2.1 shows some of the results obtained by [182]. From

these results, Vermeulen and De Jongh claim that “[b]y changing three parameters by

10% each in 1975 the world population collapse predicted by the model is averted” [182].

Two years later, a continuation of the study was published but had rephrased their

statement to say “(b)y changing three economic parameters by 10% each in 1975 it is

possible to postpone the population collapse to beyond the simulation interval, i.e. to

beyond the year 2100” [44]. It is quite evident from Figure 2.1 that the collapse was

not conclusively averted as claimed by the Vermeulen and De Jongh in their original

statement. It also seems that the combination of parameter changes effectively constitutes

an alternative scenario, similar to others published in the Limits to Growth work. This

1[41] tests sensitivity analysis features of OpenModelica software, and uses the World3 as it’s dummy
model. This paper was published in December of 2017 and was only discovered recently (post publication
of our paper).
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Figure 2.1: Sensitivity analysis performed by [182]. Edit A: ICOR and FIOAC increased by 10%,
and ALIC decreased by 10%. Edit B: Edit A plus RLT decreased by 10%, and DCFSN increased
by 10%. Edit C: ICOR and FIOAC decreased by 10%, and ALIC increased by 10%. Edit D: Edit
C plus RLT increased by 10%, and DCFSN decreased by 10%.

also points to the importance of ‘direction’ of change in parameters i.e., weather positive

or negative when made in combinations.

Austin and Cottler argue that if a model (or system) is sensitive to small variations in

input parameters then the output is of “little practical interest” [11]. However, if the real

world system, from which the model is based, is sensitive to small changes then, so too

should the model. If it was not sensitive then the model would not accurately represent the

real system. Thus it can be said the sensitivity to perturbations in inputs is not indicative

of a model’s validity.

As Turner points out, despite the sensitivity of the model the outcomes of overshoot

and collapse are not averted as claimed by many critics [166]. He also raised the question

that if the model was as sensitive as claimed, how could the data from 1972 to 2012 [167]

resemble any alignment with the World3 standard run [166]. This question points out that

a more holistic uncertainty analysis should be performed to better understand the models

apparent alignment with real data.

While the results of previous studies gave some insight into the accuracy and behaviour

of the model, the question of the model’s true uncertainty was largely unknown. An

uncertainty analysis was required to fully understand the model’s susceptibility to input

error.

A literature review, along with comments by Turner [166] indicate that to date, an

uncertainty analysis has not been performed on the World3 model. The purpose of this

study is to undertake an uncertainty analysis of the World 3 model to better ascertain its

sensitivity to input error, and investigate the validity of past concerns about the models

sensitivity.

2.1.3 Monte Carlo Analysis

One of the most established and well used methods for uncertainty analysis is the Monte

Carlo method. A model is run multiple times using randomly selected input data. The

output of each run is combined to form either a probability distribution function (PDF) or

statistical data (e.g. mean and standard deviation). With further analysis the uncertainty
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of an output can be apportioned to each input variable [145].

The Monte Carlo process can be broken into 5 steps:

1. development of PDF for input variables;

2. generation of sets of input values;

3. running of the model using input sets;

4. analysis of the uncertainty of the output PDF;

5. sensitivity analysis of the models output with respect to input variables [145].

There are several variations of the Monte Carlo method. The variation in these methods

is derived from their sampling process. Sampling can be random, stratified, or quasi-

random. An example of stratified sampling is Latin hypercube sampling. An example of

a quasi-random sample is the Sobol sequence [145]. While stratified and quasi-random

sampling generally outperform random sampling, they do have drawbacks in some cases.

Often the major challenge with Monte Carlo analysis is the development of PDFs for the

input variables. If the probability density functions are known, then the analysis is simple

to implement [177]. Although, often the confidence of input data is largely unknown or

widely varied and thus the error associated with each input is also unknown. However,“a

crude characterisation may be adequate, especially if the analysis is primarily exploratory.

... [P]lausible arguments might be used to establish the ranges (of input variables)” [145].

It can also be noted that the ranges of the input variables often has a larger effect than

the distribution type of the PDF [145].

An interesting addition to the Monte Carlo analysis is the comparison of solutions to

historical data. If a solution trajectory deviated significantly from the historic data then

it can be discarded as improbable and removed from the analysis [76].

2.2 Aims

The aim of this research is to evaluate the uncertainty of the World3 model due to input

error. The results allow us to examine what could have been learnt by Meadows and his

team in 1970 if the analysis had been conducted at that time. A major criticism of the

model is its sensitivity to input changes, and so an uncertainty analysis is useful to inform

modellers and users about the inherent characteristics of the model.

2.3 Justification

Some experts in the field believe that this study is worthy of pursuit. Turner wrote

that “it would be valuable to have a complete sensitivity analysis performed on World3

outputs, if this complements broader understanding of the model behaviour and real-

world developments. Since an exhaustive sensitivity analysis hasn’t been undertaken and

the implications of the [standard] scenario are considerable, it is appropriate that both the
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Figure 2.2: Validation of reproduced model operating correctly. Reproduced results (black),
published results from Dynamics of Growth in a Finite World [112] (red). Error is largely due to
low resolution of the original published graphs. ‘Y-axis’ values can be found in later figures.

close of my paper and Castro’s critique advocate a “risk-based approach” [166]. Castro

has explicitly stated that the sensitivity analysis of the World3 model is “incomplete”

and that due to the uncertainties in the input value of the World3 model, sensitivity

analysis is a “crucial property” [31]. As the World3 model is non-linear, it will undergo

substantial changes in output values given small perturbations in parameters [31]. Shifts

in the nominal values can therefore produce utterly different sensitivity analysis results

[145]. This exacerbates the need for a global sensitivity analysis.

Given the comments of Turner and Castro, along with Turner’s extensive modelling

research [168], as well as this literature review, it appears that to date no global sensitivity

analysis of the World3 model (or any other similar models) has been conducted. All

previous studies have been local sensitivity analysis, leaving a gap in our understanding

of the model’s behaviour and allowing vast room for debate. While the results of previous

local sensitivity analysis are interesting, they still leave many questions about the model’s

behaviour unanswered; for example, how much variation could be reasonably expected?

Are the cases shown likely to happen? Are worse cases possible/probable? This is due to

the inability of local sensitivity analysis to assess different variations of input parameters

methodically [145].

2.4 Method

The World3 model was taken from the book “Dynamics of Growth in a Finite World” [112,

p. 549]. The code was rewritten in the C++ language. To ensure the model was replicated

correctly the Standard Run was executed and then plotted against the published results

for the Standard Run [112, p. 501] as shown in Figure 2.2. The error between the results

can be attributed to the low quality of the published plots and extracting this data to a

digital form. From this plot it was concluded that the model had been reproduced to an

acceptable standard for the purpose of this thesis.

A Monte-Carlo analysis was used to conduct the uncertainty analysis. The input Proba-

bility Density Functions (PDFs) were sampled and passed to the model one million times.

Independence is assumed between all parameters. The PDFs for the World3 model pa-
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rameters were derived through analysis of the data presented in [112], as this data was

used to calibrate the model. Where possible, the standard deviation was calculated using

the same data. The distributions were assumed to be normal or log normal for simplicity.

The calculation of the standard error of the mean (SEM) followed the basic methods of

calculation. However, some of the data needed to calibrate the World3 model was sparse

or not available, making it difficult to calculate the standard deviation. For these cases

a reasonable standard deviation was assigned to the parameter.2 For parameters based

on intuition or a single source of data, a SD of 15-20% of the parameter’s nominal value

would be allocated. Parameters based on two or three sources received 10-15%, and those

based on three or more sources received 5-10%.

An important aspect of the World3 model is its inclusion of some parameters as table

functions, i.e. a parameter depends on an input variable according to a predefined static

transfer function. Tables are defined by a set of points T on a graph. Linear interpolation

is used to determine intermediate points. This presents a major challenge when conducting

a global SA, as the tables need to be easily changed with each simulation run.

For tabular variables the standard deviation SDdata was calculated according to equa-

tion 2.1, given a set of data points D = {(x1, y1), (x2, y2), ..., (xn, yn)}.

SDdata(x) =

√√√√ n∑
i=1

(yi − T (xi))2Wi(x) (2.1)

Wi(x) =
exp(ln(λ)|xi−xxd

|)∑n
j=1 exp(ln(λ)|xj−xxd

|)
(2.2)

Here n equals the number of data points, λ is the shape factor for which we set to 1
10

3,

and xd = max(x) −min(x). Wi represents a weighting factor for each data point. The

further away a data point is from x the smaller it’s effect on the standard deviation at x.

T is a table function.

Figure 2.3 shows the calculated standard deviation for the table input ISOPC (indicated

service output per capita).

To assign a PDF to a table variable, a set of standard deviations (SD) was created. The

ith element of SD corresponds to the ith element of T . Figure 2.4 shows a hypothetical

table variable T = {(2, 0), (4, 100), (5, 200), (5.5, 300)} with standard deviation of SD =

{0.2, 0.3, 0.5, 0.6}. The four bell shaped curves show the probability density functions

assigned to each element of T . In this example we can see that y increases with x, and

the standard deviation assigned to this table variable also increases with x.

To sample the table variables PDF and generate a new table T̄ , a number P is chosen

at random from the set (0, 1). If the ith element of T is Ti = (yi, xi) then the ith element

2The assigned standard deviation of these parameters is essentially arbitrary. The values were chosen to
ensure variation in parameters without changing them by orders of magnitude. To illustrate the quandary,
imagine trying to assign a standard deviation to a set of data containing only one data point.

3A value of 1
10

signifies that a variable with a distance xd from x will contribute 1
10

of it’s value compared
to a variable at x. This relationship is exponential with respect to x. The weighting function is an attempt
to better describe the SD of the table function, and is not meant to be a rigorous formulation. In the
future we want to apply a suitable confidence measure for these GAM models.
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Figure 2.3: Example of the calculated standard deviation for a table variable. Plot (A) shows
the location of data points (circles) along with the trend line used in the World3 model. Plot (B)
shows how the standard deviation of the data changes with respect to x, calculated from equation
2.1.

Figure 2.4: Assigning a probability density function to a table function. T (solid) indicates the
original table function, T̄ (dashed) indicates the altered table function. Bell shaped lines indicate
the probability of T̄ ’s position.

of T̄ is defined as,

T̄i = (C−1(P |yi,SDi), xi) (2.3)

where C is the cumulative distribution function,

P = C(x|µ,σ) (2.4)

with µ and σ denoting mean and standard deviation. C−1 is the inverse of C.

An example T̄ was generated with P equal to 0.2. The new table has been plotted in

Figure 2.4 as a dashed line. We can see that this new table is similar to the original table

T but has been shifted slightly. As x increases T̄ deviates from T due to the increase in

SD. For every simulation, a new T̄ is generated.

Because the number of data samples affects the standard deviation of the mean of the

sample, the standard deviation of each World3 input SDinput was calculated according to

equation 2.5,
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SDinput =
SDdata√

N
(2.5)

where N represents the number of data samples taken.

Table B.1 of Appendix B summarises the standard deviations assigned to each variable,

as a percentage of its nominal value. For World3 table variables the average standard

deviation is reported. The data for each variable can be found at the indicated page

number in the book “Dynamics of Growth in a Finite World” [112].

For copies of the software please contact the author at aheath@uow.edu.au.

2.5 Results

In this section the data from the study will be presented in a variety of methods, that is,

trajectory lines, probability density maps, probability density functions, percentiles and

averages, and standard deviation. Each method allows for a different understanding of

the results.

The main variables examined from the World3 model were human population (POP),

fraction remaining of non-renewable resources (NRFR), industrial output per capita (IOPC),

food per capita (FPC), crude birth rate (CBR), crude death rate (CDR), and persistent

pollution normalised with 1970 levels (PPOLX). The units for these variables respec-

tively are; people, unit-less, US dollars per person-year, vegetable equivalent kilograms

per person, births per 1000 people-year, deaths per 1000 people-year, and unit-less. These

variables will be the main focus of discussion.

2.5.1 Trajectories

Firstly, to understand the variety of outcomes, the trajectories of 100 randomly sampled

simulations were plotted. This allows for a clear representation of how each trajectory

behaves. This is limited to a relatively small number of examples (100 of the 1 million

simulations) as the plot becomes overly crowded with the addition of more simulation

trajectories.

Figure 2.5 shows the trajectory of the population in the World3 model for 100 runs. It

can be seen that there is a wide variation of trajectories, however most follow a similar

path to that of the “standard run” shown by the grey line. Some trajectories manage to

reach a maximum in excess of 10 billion people. This is approximately 3 billion greater

then the maximum of the “standard run”. Some trajectories have very high values in the

year 2100 compared to the “standard run”.

One trajectory stays low for all years, showing how the model can react dramatically for

some permutations of the variables. Two trajectories can be seen very slowly increasing

for the whole simulation. This would indicate a favourable and stable future for humanity

for the period simulated, that is, no sudden fall in population in the 21st century.
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Figure 2.5: Population trajectories for 100 simulation runs of the Monte Carlo analysis.

Figure 2.6: (A) - Probability density of population against time. Units of /(1e9POP) (B)
- Probability density of remaining fraction of non-renewable resources against time. Units of
/NRFR. Darker regions indicate a higher probability of a trajectory passing through that point.
White indicates zero probability. Thin black line indicates the “standard run”.

2.5.2 Probability Density Maps

To overcome the crowding of the trajectory plot, probability density maps were produced.

These maps show the concentration of trajectory lines, thus darker areas of the plot

represent a higher probability of a trajectory passing through that point.

Figure 2.6 (A) shows the probability density of the population variable. In Figure

2.5, areas with a high density of lines correlate to darker areas in Figure 2.6 (A). The

probability is spread thinly after the year 2010, denoted by the lightening of the grey.

The probability remains thinly spread for the first half of the 21st century. We can note

a slight converging after about 2070, denoted by a darkening, as most trajectories fall to

lower levels of around 3.5 billion.

Figure 2.6 (B) shows the probability density of the fraction remaining of non-renewable

resources. It is evident that the probability is spread thinly between the years 2000

and 2030. There is a clear increase in probability density for the final decades of the

simulation for low values of remaining resources. The darker regions follow the trajectory

of the “standard run” denoted by the thin black line.



30 CHAPTER 2. UNCERTAINTY ANALYSIS

2.5.3 Probability Density Functions

To better understand the evolution of the probability density it was plotted for individual

times, that is, the initial year (1970) and each subsequent 20 years. Figure 2.7 (A) shows

the progression of the population’s PDF over time. We can see a very concentrated PDF

in 1970. This is representative of the limited uncertainty of world population data which

was used to initialise the model. The PDFs widen with time, accompanied by a fall in peak

probability. The year 2050 has the lowest peak and greatest distribution of probability

indicating the least amount of certainty for the population.

The certainty of the model begins to increase after 2050 as evidenced by the peak

probability increasing. The PDFs maintain a log normal shape for all times. We can see

that the peak of each PDF loosely follows the “standard run” indicated by the vertical

dashed line.

Figure 2.7 (B) shows the PDF over time for the fraction remaining of non-renewable

resources variable. Again, there is a concentrated PDF for the year 1970. As the model

progresses through time the certainty quickly diminishes with the lowest peak in 2010. The

peak begins to increase after 2010 as the fraction remaining of non-renewable resources

variable converges to a low of around 0.2. Again the peak of the PDF follows the “standard

run”.

2.5.4 Percentiles

A useful approach to analyse the results is with the use of percentiles. The percentiles

chosen were the 5th, 25th, 50th (median), 75th and 95th. By examining the 5th and 95th

percentiles the range of 90% of all trajectories can be easily determined. Likewise, the

25th and 75th percentiles show the range of 50% of all trajectories.

Figure 2.8 shows the percentiles, mean and “standard run” for six of the main variables

of the World3 model. In plot (A) we can observe that the percentile lines begin very

close together, showing a high certainty of the population value. The percentile lines then

“fan out” as time progresses, indicating the increasing uncertainty. The lines reach a wide

spread by 2030. At this point, 50% of all trajectories are contained within a range of 1.5

billion, 90% within 3.76 billion. Beyond 2030 the percentile lines remain approximately the

same width apart. The percentile lines retain a similar trajectory to that of the “standard

run”. For the other variables we see that the percentile lines also follow similar paths to

that of the “standard run”.

Fraction remaining of non-renewable resources and industrial output per capita both

undergo an increase in uncertainty in the early decades, followed by a convergence in later

years. The increase in certainty comes from the fall of non-renewable resources and collapse

in industrial output towards their limit of zero. The variables food per capita, crude birth

rate, and crude death rate have a more consistent level of uncertainty as indicated by the

consistent spacing between percentile lines.

It is interesting to note the average and median of the population remains well below

the “standard run”. This suggests that population is more likely to stay at a level lower

than that of the “standard run”.
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Figure 2.7: (A) Probability density functions of the population (POP) at various times during the
simulation. (B) Probability density functions of the fraction remaining of non-renewable resources
(NRFR) at various times during the simulation. Dashed line indicates the position of the variables
during the standard run.

Figure 2.8: Graphs of percentiles, mean and standard run for (A) population (POP)(people), (B)
fraction remaining of non-renewable resources (NRFR)(unit less), (C) industrial output per capita
(IOPC)(1970 $US), (D) food per capita (FPC)(vegetable kg), (E) crude birth rate (CBR) (births
per 1000 people), and (F) crude death rate (CDR) (deaths per 1000 people). Percentiles (5, 25,
50, 75, 95) (dotted lines), mean (dashed line), standard run (solid line), and real world data (red
line). There are two red lines in plot (B), as an upper and lower estimate for total fuel reserves.
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2.5.5 Standard Deviation

To fully understand how the uncertainty of the output varies with time, the standard

deviation of the PDFs at each time interval was calculated. Figure 2.9 shows the SD

of the population (A), fraction remaining of non-renewable resources (B), and industrial

output per capita (C). We can see that the population’s SD gradually increases to a

maximum of approximately 1.5 billion. This is a large value considering the maximum

population of the standard run is approximately 7 billion. It begins to decrease after 2070

as most trajectories fall to lower values.

The SD of the fraction remaining of non-renewable resource quickly climbs to a maxi-

mum of 0.18 by 2020. This is a large SD given the variable’s bounds of 0 to 1. After 2020

the SD begins to fall as trajectories converge as seen in Figure 2.8 (B). Industrial output

per capita likewise has a very sharp increase in SD. It peaks at around 110 dollars per

person in the year 2000, a significant value compared to the 300 dollars per person of the

“standard run” at the same point in time.

Figure 2.10 shows the standard deviation of each variable normalised by its 1970 “stan-

dard run” value. The normalised SDs of the variables food per capita, fraction remaining

of non-renewable resources, and crude birth rate remain reasonably steady for the years

simulated, reaching maxima of 0.25, 0.20, and 0.16 respectively. Crude death rate is steady

at approximately 0.2, for the first 5 decades and then experiences a sharp spike reaching

0.41 in the year 2040. This period corresponds to the beginning of the population decline

in the model.

We can see from this that the severity of the decline varies strongly between simulation

runs. The normalised SD of industrial output per capita quickly rises to a high of 0.54

around the turn of the millennium. It then proceeds to decline to a comparable level to

that of food per capita, fraction remaining of non-renewable resources, and crude birth

rate. The normalised SD of population continually rises to a maximum 0.43 and then

declines slowly. Normalised persistent pollution normalised SD reaches a high of around

3.6 between the years 2030 to 2060. This is the most uncertain variable as the modelling

of pollution is very difficult, and due to the large increase in pollution from 1970 levels.

2.5.6 Real World Comparison

Figure 2.11 zooms into the comparison of the standard run with real world data from

1970 to 2017 as indicated in Figure 2.8. The data for population (POP), deaths (CDR),

and births (CBR) were obtained from the United Nations’ (UN) Department of Economic

and Social Affairs’ (DESA) Population Division (UN DESA Population Division, 2017).

Industrial output per capita (IOPC) data were approximated using global GDP data and

the population data. GDP data were taken from the UN DESA Statistics Division (2018).

This was scaled to align with the 1970 standard run value, allowing for easy comparison of

trends. Fraction remaining of non-renewable resources data were taken from the British

Petroleum Energy Outlook [22]. An exponential function was fitted to the data to estimate

missing data (i.e. pre-1970 records). An upper (150 zettajoule) and lower (60 zettajoule)

estimate for total fuel reserves was used to mimic Turner’s [167] estimates. Food per
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Figure 2.9: Standard deviation of population (A), fraction remaining of non-renewable resources
(B), and industrial output per capita (C) over time.

Figure 2.10: Standard deviation normalised with 1970 “standard run” value. Variables are
population (POP), fraction remaining of non-renewable resources (NRFR), industrial output per
capita (IOPC), food per capita (FPC), crude birth rate (CBR), crude death rate (CDR), and
normalised persistent pollution (PPOLX).
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Figure 2.11: Comparison of the standard run of the World3 model (black) against real world
data (red). (A) population (POP) (people), (B) fraction remaining of non-renewable resources
(NRFR) (unit less), (C) industrial output per capita (IOPC) (1970 $US), (D) food per capita
(FPC)(vegetable kg), (E) crude birth rate (CBR) (births per 1000 people), and (F) crude death
rate (CDR)(deaths per 1000 people).

capita data were taken from calories/capita/day data from the Food and Agricultural

Organisation [58]. This too was scaled to align with the 1970 standard run value.

The real world data for industrial output per capita and food per capital align very well.

However, industrial output per capita is now (in the last few years) beginning to exceed

the standard run values. Real world birth rates and even more so death rates have been

lower than predicted, and significantly lower for death rates. These two deviations between

predicted and realised trajectories, however, partially neutralise each other, resulting in

the real world population now being slightly higher (≈11%) than predicted. The fraction

of non-renewable resources remaining in the real world is well above that predicted by

the standard run. In the World3 model, the dwindling resource pool is what prompts the

down turn of the industrial output. As the real world data have not reached such a level

by now, the World3 model would suggest that the decline in industrial output is yet to

come, as evident in the real world data of GDP per capita, or IOPC.

It should be noted that data agreement is not conclusive of model validity. Many dif-

ferent models could produce similar alignment. An ordinary exponential function (simply

calibrated to fit real world data) would also align nicely with population and industrial

output per capita development to date. However, it would offer little insight into the

actual mechanics to the phenomenon behind the data. The only way to begin to validate

the standard run simulation is to actually observe a collapse (by which point it is too late

to avoid it) in the real world. This is a very hard test to satisfy as the data and variables

used to calibrate the model have most likely changed as our society has progressed, e.g.

concerning efficiencies in material usage or the introduction of unconventional fossil fuels.

Thus the collapse would most likely be different to that shown in the standard run.

Meadows and his team understood this issue very well. The World3 model was also

used to examine other transitions into the future. The model has mechanisms that allow

for modifications in parameters to be made at a particular point in time. This was de-

signed to enable the simulation of events like government policy changes or technological
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advancements. The standard run can only represent a society trapped in 1970’s behaviour

and technology.

An issue regarding the model is the exclusion of an explicit renewable resource sector.

Because of this the model is nearly guaranteed to produce a “collapse”. While the addition

of a renewable energy or resource pool would allow for a greater chance of a sustainable

future (one in which variables plateau), it would potentially still result in a “collapse”.

For example, the energy study of Dale et al. (2012), which investigated the futures of non-

renewable and renewable energy production, showed a sharp downturn in total energy

production after the year 2060, despite strong growth in the renewable energy sector.

Another issue is that energy and material resources are lumped together in a single

variable. This limits the complexity of the possible scenarios. It is clear that many

intricacies of the world have been consolidated into single variables in the World3 model.

This causes many issues regarding model usability and structural accuracy and could cause

larger errors than parameter uncertainty.

Other investigations have been made into the relationship of the World3 scenarios and

real world data. Examples include [167] and [133] .

2.6 Discussion

After performing the uncertainty analysis, our knowledge of the World3 model has greatly

improved. While past local sensitivity analysis studies allowed sensitive parameters to be

identified and then hypothetical scenarios tested, this uncertainty analysis identifies more

accurately the model’s sensitivity to input errors.

Key variables of the model diverge for the first half of the simulation. This is unsur-

prising given the complexity of the World3 model. This divergence however reverses in

the second half of the simulation. This finding is in keeping with many of the notes made

by the original authors on the behaviour of the model (i.e. simulations tend to end in the

same manner).

It is evident that the model as such is sensitive to the input error assumed in this study,

however the trends, i.e. the shapes of the trajectories, are less so. Thus, while the exact

numbers produced by the model maybe of little practical use, the behaviours exhibited by

the model would still be of interest.

This study does highlight the need for concern about the future welfare of human kind,

as the World3 model has thus far shown considerable agreement with past data. This

statement will remain true until the World3 model is proven to be incorrect.

2.7 Limitations

One of the main limitations of this study is the assessment of standard deviation of inputs

with a small number of data points. If the magnitude of the standard deviation is changed,

then so to will the spread of results in the final analysis. This must be keep in mind when

evaluating this body of work. The reader should consider if the standard deviations

selected are realistic, and what the consequences of unrealistic assumptions might be.
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Another issue is the assumption of normal and log-normal distributions. These distri-

butions were chosen for convenience, rather than through a rigorous examination of the

data sources. The independence between input variables, and the effect of the weight-

ing factors (used in the establishment of standard deviation for table functions) on the

assumed PDFs.

The results presented in this chapter demonstrate the error in the “standard run” sce-

nario. The results are only relevant for a situation in which the parameters stay fixed to

their initial values, that is, as they were in the first half of the 20th century. An addi-

tion to this study would be to allow “stabilising policies” to be implemented at a certain

year in the simulation. The year in which the policies are implemented would be given a

PDF to illustrate the uncertainty of when society would make a significant change to its

behaviour. This addition could improve our understanding of uncertainties in the World3

model.

This study only investigates uncertainty caused by model input errors. The question

of the accuracy of the model itself is still open for debate. While the model captures

many economic and ecological relationships in our world, it still omits or aggregates most

aspects.

The removal of trajectories which drastically diverge from historic data, e.g. the lowest

trajectory in Figure 2.5, would improve the accuracy of the results. However, as they

contribute a low proportion of all simulation runs their effect on the results are negligible,

thus it was deemed unnecessary to remove them for this study.

Another limitation of this study is that only one set of standard deviation values was

examined. The results of the study may give an overestimation of variance if the standard

deviation values are likewise overestimated. To fully understand the expected variance of

the model, further tests should be conducted which take other standard deviation values

into consideration. Given that the standard deviation values (that had to be approxi-

mated) were selected to be overestimates, it is most likely the case that the data presented

in this study has a higher variance then in reality. If this is the case, then it can be noted

that the trends seen in the output would be more consistent then stated previously.

2.8 Conclusion

The results show that the unpredictability of the model is noteworthy. The variables pop-

ulation (POP), industrial output per capita (IOPC), fraction remaining of non-renewable

resources (NRFR), and normalised persistent pollution (PPOLX) produced normalised

standard deviations of 0.43, 0.54, 0.20, and 3.6 respectively. The general trends of the

variables are predictable, with more then 95% of simulation runs producing nearly identi-

cally shaped trend lines. This is evident by the similar shape of each percentile line, and

that these lines do not drastically diverge as time progresses.

It is evident that trajectories can be found that indicate a favourable future for humanity,

i.e. no sudden downturn in population or access to resources, without policy intervention

for the time period modelled. However these trajectories reside in areas of low probability,

and thus should not be considered as likely outcomes.
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For the authors of the “The Limits to Growth”, a study such as this might have proved

useful in defining the models behaviour to its critics, and demonstrating it’s main purpose

i.e., allowing the study of possible trends, not producing precise predictions.
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Chapter 3

Creation Process of GUI for High

Dimensional Pareto Front Analysis

Abstract

To analyse the data (a Pareto front1) generated in Chapter 4 a graphical user interface

(GUI) was developed to display and navigate the data. This chapter summarises the

importance of data visualisation in decision making problems and gives a description of

the developed GUI. This is not a major component of the overall thesis, but is important

for clarifying some of the figures presented in Chapter 4 as there were generated using the

GUI.

1A Pareto front is a set of data points which represent the best possible solutions in a multi-objective
problem. Each point has its own strengths and weaknesses in terms of the problem objectives.

39



40 CHAPTER 3. GUI

Problem Statement

To frame this chapter we will take a hypothetical situation and consider how it could be

approached. This will help give context to the following sections.

� Imagine a large group of people who are faced with a problem. This problem has

many objectives which need to be maximised / minimised. The group has developed

a model2 and have used it to discover all of the best (Pareto optimal) options available

to them. The group now has to select one option to pursue from the wide selection

of options generated by the model.

3.0.1 Group Decision Making

Group decision making is the process by which a group of people select a course of action to

pursue [138, 101]. Due to increases in information technology, it is now possible to involve

many more people in the decision making process, thus creating a new class of group

decision making, namely large scale group decision making [101]. The theory behind large

scale group decision making is that by involving greater numbers of stakeholders in the

decision making process, the final decision will be better accepted [119, 101], producing

greater follow through and support for the decided actions post decision. An example of

this shift in group decision making is the attempt of a research team in Hamburg, Germany

to involve more people in an urban planning project through gamification of the planning

problem [137]. There are still many issues to be addressed in large scale decision making

problems, e.g. added human resources costs and time [101].

With traditional group decision making processes the group attempts to reach unanimity

[79] in their opinion through a series of negotiations and discussions [138, 79] which will

often be guided by a mediator [79]. However, in large groups the opinions are likely to be

more diverse and thus unanimity is harder to achieve. Because of this other criteria may

have to be used to determine when consensus has been achieved. This might be unanimity

minus n, i.e. everyone except for n people agree on the decision. Other methods include

ensuring a majority agree, or some fraction of the group agree [79].

A non-traditional method is emerging in which “soft consensus” is used to decide if an

option is supported enough to be accepted [79]. Soft consensus examines the “degree” [79]

to which each individual supports an option, rather than a binary aye or nay degree of

support.

The problem of selecting the best solution (from our hypothetical set) can be addressed

in two ways:

1. The solution set can be reduced to a small set of options (< 10) by a subset of the

group, i.e. experts of elected representatives. The group at large can then select an

option from the small set of options; or

2. Each group member examines the large set of options for a solution they most prefer.

This information is then used in the decision making process.

2We will assume the people have agreed that the model is reliable.
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Method one has the advantage that the reduced data set (potential options) is easier to

examine (for the group at large) as the number of data points is small. If the number of

points is small then the data could conceivably be placed on a single table with a row for

each solution, and columns for each objective.

If method two is selected then the data has to be presented in an easy to interpret way.

High dimensional data (note that this hypothetical problem has many objectives and thus

many dimensions) is often “difficult for experts to navigate let alone non-experts” [110],

and so making the data easy to interpret is not a simple task.

Once each group member has selected an option, soft consensus could be used to decide

on an ultimate option, i.e. the one that aligns most closely to every group members most

desired option. The other approach is to use the selection process (the exploring of the

data) as a mechanism for informing the individual [110]. This then gives them knowledge

which they can use in the discussion and negotiation stages of a traditional group decision

making process.

3.1 Information Encoding

There are many different ways researchers can present data. This ‘presenting’ of data can

be thought of as information encoding. Humans use their senses to decode the information

into mental representations/thoughts. In Figure 3.1 [84] three dimensions of data have

been encoded onto a 3D plot. In this case, position is the encoding format. In Figure

3.2 [84] four more dimensions have been encoded into the graphic by replacing the dots

with a special marker. The markers have a direction (in which they point), size, colour

and transparency. Other possible types of encoding include, length, pattern (spotted,

stripped), shape (number of corners), or focus.

While the primary method of data absorption is sight (the previous encoding examples

were all sight based), there are many other ways the human body can receive information.

For example we are able to acquire information through our sense of:

� hearing - e.g.: pitch, volume, direction;

� smell - e.g.: floral, rotten;

� taste - e.g.: sweet, sour, salty;

� touch - e.g.: pressure, pain, temperature, resistance;

� spacial awareness - e.g.: location, time, direction, speed; and

� emotional state - e.g.: hungry, sleepy, nauseous, muscle fatigue, intoxication.

While these senses are hard to incorporate in traditional data representation forms (i.e.

print media), future technologies might be able to exploit these senses for data exploration.
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Figure 3.1: A typical three dimensional plot with information encoded by position. Figure
sourced from [84].

Same Data, Different Encoding

To explore how the same piece of data can be encoded in different formats, let’s take an ex-

ample of a doctor checking a patient’s heart. The doctor could take an electrocardiograph

and examine the printed results by eye, or they could use a stethoscope to listen with their

ear, to hear the beat of the heart. Both tests would then give the doctor knowledge of the

heart which they can use to give a diagnosis.

From this example it is easy to understand that the same piece of data can be encoded

in many different ways. Some data, e.g. households income per year, can be represented in

table (numbers), bar chart (length), or plot (position) format. The speech of a politician

could be recorded in print (text) or in an audio file (sound). Theories can be explained

with descriptions and example diagrams (text and imagery) or mathematically (equations).

This concept is important to remember when trying to create a method for transferring

information from the real world into human consciousness.

3.2 Information Absorption

The act of making a decision has two stages. In the first stage a person absorbs information

about the world around them, and then generates a mental representation. This process is

not error free (especially in the case of large complex systems). This can be due to: errors

of the sensors, errors in the information, and our inability to hold a perfect representation

of complex systems in our minds. In the second stage, a person then acts based upon

assessments of their mental representation. This concept is depicted in Figure 3.3.

It is important to be able to easily understand and interpret information. By having

easy to understand information the time it takes to develop a mental model and then pick

a course of action is reduced [49]. The process of absorbing information falls into the field

of visual analytics. This field examines how computer programs can aid in the process of

knowledge development when working with large data sets [165].
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Figure 3.2: Examples of multiple information encoding. Information is encoded in; position (in
three axis) plus (1) arrow direction, (2) arrow size, (3) arrow colour, and (4) transparency. Figure
sourced from [84].
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Figure 3.3: The causal chain of events in a decision making process. Information about the
world is absorbed through sensory inputs. This produces a mental representation which is then
examined. The resulting action as based off the mental understanding of the real world. In this
illustration the mental image is blurred to represent the error associated with interpreting the real
world.

Figure 3.4: The concept of visual analysis. Figure sourced from [95].

The visual analytic process is outlined in [95] (adapted from [180]) and shown in Figure

3.4. It is a cyclical process by which the user is informed by some initial visualisation of

the data. Once this knowledge has been acquired the user updates the specifications of the

program to produce new visuals which are then interpreted to produce further knowledge.

Based upon these descriptions of visual analytics, the GUI developed in this section would

be classed as a visual analytics tool.

Information Impact

Increasing participation in decision making process requires information to be conveyed

in an easy to understand way [105], otherwise some participants may be alienated from

the process if they are unable to understand the information.

Morseletto [105] asserts that there are three key features to making information im-

pactful. These features are: understandable; meaningful; and engaging. Information that

meets these three criteria will be absorbed more readily. The concept of ‘understandable’

covers the ease of which the information is absorbed. ‘Meaningful’ denotes the relatability

of the information to the audience, e.g. a kilogram figure of CO2 may be meaningless



3.2. INFORMATION ABSORPTION 45

to most people, however if it is converted to a metric like eco-time3 [149] it may have

more meaningfulness. ‘Engaging’ encompasses how “eye catching” and memorable the

information is.

Images can be very useful in increasing the ease at which information is absorbed [124].

Three examples of this are given in figures 3.5, 3.6, and 3.7 [173, 105]. These figures have

combined traditional information encoding methods (numbers, size, and line plotting re-

spectively) with images to make the data easier to interpret. In Figure 3.5 the information

has been represented in number / text form and has been paired with a graphic to denote

the thing being examined. For Figure 3.6 the information about the size of the fish is

indicated by the size of the image of the fish. The fish image immediately gives context

to the subject matter of the graphic. In Figure 3.7 the end point of each line plot has a

small image to denote the thing being plotted. This again cuts down mental load when

viewing the plots as no time is spent analysing legends/keys or text to understand what

each line denotes.

Another option is to have all of the information displayed in image form [148]. In Figure

3.8 all of the information is in pure image form. The image represents possible social

arrangements. The raw information about population density, agricultural productivity,

environmental health, wealth, consumption habits and waste generation has been depicted

in the images.

With the advent of virtual reality, and augmented reality technologies, we can begin

exploring other methods of information acquisition. These technologies may help us exploit

our other senses to increase our information absorption abilities.

3Eco-time is the measure of CO2 given in terms of time (seconds, minutes, hours), such that a person
should not “spend” eco-time faster than time moves, i.e. they should spend less than one day of eco-time
per day.
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Figure 3.5: Graphic which blends numbers and images. Figure sourced from [173].

Figure 3.6: Graphic which blends size and images. Figure sourced from [105].

Figure 3.7: Graphic which blends line plots and images. Figure sourced from [173].
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Figure 3.8: Graphic in which all information is encoded in image form. Figure sourced from
[148].
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3.3 Visualisation Techniques and Dimension Reduction

There are many techniques that have been developed to represent highly dimensional data.

Walker et al. presented several of these in [183]. The types presented were: 2/3D scatter

plots, parallel coordinate (textile) plots, pairwise plotting, heatmaps, principal component

analysis plots, self-organising maps, generative topographical maps, and neuroscale plots.

Figure 3.9 shows each of these plot types.

Scatter plots are a very common occurrence in scientific literature. Most often the

plot will be two dimensional as no information is lost, unlike when a three dimensional

plot is printed on a two dimensional piece of paper. In [55] a three dimensional plot is

used along with two dimensional plots (pairwise) to examine the data of a three objective

optimisation problem (the problem construction work sequencing). This paper has been

selected simply to demonstrate this standard method of data representation.

Parallel coordinate / textile plots are graphics in which a data point is represented by a

Figure 3.9: Examples of data representation for optimisation problems. (a) 2D plot, (b) 3D plot,
(c) 5D parallel coordinate (textile) plot (1 line = 1 solution), (d) pairwise plots, (e) 5D heatmap (y
axis denotes solution number, colour denotes dimension value), (f) principal component analysis
plot, (g) self-organising map, (h) generative topographical map, (i) neuroscale plot. Figure sourced
from [183].
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line which zigzags horizontally across the plot, passing over vertical dimension lines. The

point at which each line crosses a dimension line denotes its value in that dimension. When

examining the data on a textile plot, patterns can be deduced. Two kinds of patterns are

“knots and parallel wefts” [100]. Knots indicate dimensions which are in conflict (i.e.

increases in one dimension produce decreases in the other), while wefts indicate harmony

(i.e. where an increase in one dimension produces an increase in the other) [42]. Figure

3.10 [100] shows measurement data of human body parts presented in textile plot format.

Each grey line represents an individual who was measured. To assist in analysing the plot,

dimensions which are the most similar are placed together. The hierarchical clustering

process is depicted by the dendrogram above the plot. This is analogous to the branches

of the evolution tree. In this sense pairs further along the branches of the tree are closer

in similarity.

Examples of parallel / textile plotting can be found in [107, 42]. In [107] the data

(calibration options for an engine) is grouped into clusters and colour-coded accordingly

(shown in Figure 3.11). The clustering was achieved via k-mean clustering. In the study

principle component analysis was used on each cluster to try to reduce the complexity of

each cluster. In [42] hierarchical clustering is used to finding harmony and conflict between

the objectives. This is done to aid in visualisation and analysis of the data.

Pairwise plotting uses many simple 2D scatter plots to represent the data. With this

method, a plot is produced for every pair of dimensions. This is a simple technique,

however the number of plots needed to display each dimension pair grows rapidly as

dimensions increase. Another detracting factor is that information can only be shown in

two dimensions at a time, meaning that all other information (about the other dimensions

not shown in the sub-plot) is lost.

Heatmaps are simple to understand as they are similar to table data, with solutions

organised by the row, objective dimensions by column, and colour denoting the values in

the table. Heat maps can appear noisy if left unsorted. To help with the interpretation of

heatmaps hierarchical clustering is used to arrange the solutions so that similar solutions

(and solution clusters) are close together. A dendrogram may or may not be included in

the figure.

Principle component analysis is frequently used to reduce the dimensions of a high

dimensional data set. Finding the first principal requires finding the vector which most

closely aligns with the data, i.e the average squared distance from each data point to the

principal vector is minimised. Once the first principal component is found, the second

principal component can be found. The second vector must be perpendicular to the first.

Figure 3.12 [187] shows an example of the principal components of a data set.

The process of finding principal components can be repeated continually, however a point

will come where the number of principal components is equal to the number of dimensions

of the original data set. The amount of information retained by the analysis depends on

the number of principal components calculated. The more principal components used, the

higher the information retention. The first component always retains the greatest amount

of information, followed by the second, etc. [49]. If the number of principal components
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is equal to the number of data dimensions, then the information contained in the data is

fully retained.

Principle component analysis is a major component in “GAIA plane” representation

[49]. In this method the solutions and objective axes are projected onto the first and

second principle components. If weightings are given to the objectives/criteria (i.e. varying

importance given to each objective) then a “decision stick” can also be mapped onto the

GAIA plane to indicate the direction in which the most desirable solutions will occur. An

indicator may also be given to describe the degree of information loss in the projection

process [49]. A GAIA plane example is shown in Figure 3.13 [49].

Dimensional reduction is a feature of self-organising maps, generative topographical

maps, and neuroscale plots. These approaches are designed to transfer data points from

a highly dimensional data space onto a 2D surface, while retaining information about the

closeness of data points, i.e. close points in the data space should remain close in the 2D

space [183]. For example, the neuroscale algorithm trains a neural network to map points

from the data space onto a 2D space (called the feature space). The goal of the network

is to minimise the difference in the distance between points in the data space and the

distance between points in the feature space. This is illustrated in Figure 3.14.

Level diagrams [19, 140] are another method that have been proposed for representing

data. Following this method, a solution is scored by calculating its distance from an ideal

point. This score is then plotted against the control variables to allow the user to quickly

select optimal control settings.

While GAIA planes and level diagrams do seem to make data visualisation easier, they

both suffer from the fact that a value judgement must be made at the beginning of the

process as to what constitutes an ideal solution. This is similar to applying a weighting

function to an optimisation problem to reduce it into a single objective problem. This in

a way runs counter to the reasons to conduct a multi-objective optimisation analysis. It

also introduced the issue of normalising each dimension so that scales of magnitude do

not bias the results.

Another data analysis method is correlation analysis. In this process the correlation

between objectives is calculated and thus an understanding of which objectives are in

conflict and which are in harmony can be determined. An example of this is given in

Figure 3.15 [49].
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Figure 3.10: Human body part measure-
ments plotted on a textile plot. A dendrogram
is positioned above the plot to record the hier-
archy clustering. Figure sourced from [100].

Figure 3.11: Engine performance metrics
plotted on a parallel coordinate plot. Colour
denotes clusters of similar solutions. Figure
sourced from [107].

Figure 3.12: Example showing the first (large vector) and second (small vector) principal com-
ponents of a set of data points. Figure sourced from [187].
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Figure 3.13: The GAIA plane has solutions plotted on the first and second principal components.
Figure sourced from [49].

Figure 3.14: NeuroScale error measurement. A neural network (W ) transfers points (x) in the
data space to points (y) in the feature space for viewing. The aim of the neural network is to
minimise the discrepancy of the distance between points in the data space and the feature space.
Figure sourced from [106].

Figure 3.15: Correlation between five objectives. Green indicates a positive correlation, red a
negative correlation. Figure sourced from [49].
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3.4 Purpose of GUI

A critical question of this chapter is “how can someone examine a highly dimensional

Pareto front, such that the information is easily absorbed to allow for a decision to be

made within a reasonable time frame?”

To try to solve this problem a GUI was created that facilitates the exploration of highly

dimensioned Pareto fronts. While many data visualisation methods aim to reduce the

dimensionality of the data (so it can be displayed statically), the developed GUI focuses

on improving the rate to which a decision maker can absorb the Pareto front data and

come to a decision. This GUI leaves the data in a relatively raw form, and allows a decision

maker to experiment with the data (in real time) to see how it behaves, rather than being

“told” how it behaves.

The GUI was made for the purpose of exploring the data of this thesis and for future

experimentations regrading knowledge acquisition with student subjects. This meant the

GUI had to be accessible to most people and therefore easy to understand.

3.5 GUI Description

Figure 3.16 shows this interface4. The GUI allows the user to set up minimum criteria

for each objective. If a solution is to be considered valid, and thus allowed to be printed

on a graph, it must pass the criteria for each objective. The objectives name (A) and

its minimum criteria (B) are displayed on the GUI. The number of solutions meeting all

criteria (G) is shown in the top left corner. Suggested new criteria (b1-6) are displayed

along with the change in the number of options, if the suggestion was selected. The criteria

can be changed by clicking these buttons, or they can be changed by manually typing in

a number. Criteria can be saved and reset (C) in the bottom left corner. The criteria set

saved in the bottom location (D) is used as a reference set. Any solutions meeting this

criteria set are displayed as grey circles on graphs. Pairwise graphs can be printed (to the

screen) (E) and saved (F) along with a text file containing the model input values for each

viable solution. The “release” button and jump percentage are located at (x). The release

buttons allow the user to quickly release (relax) the criteria placed on the objective, i.e. the

criteria value is as non-restrictive as possible. The jump percentage changes the difference

between the values of the suggested criteria (based upon a predefined normalising value),

i.e. the smaller the percentage, the smaller the jumps in values will be.

The suggested new criteria buttons allows the user to quickly and easily change criteria

to find a set of solutions they find optimal. The change in options number can guide the

user to where the most gains or losses can be made by changing the criteria.

The print button was added because plotting the pairwise graphs takes a couple of

seconds to execute. If the graphs are automatically updated every time the criteria are

altered, then the process of altering the criteria is slowed dramatically, as producing the

detailed pairwise plots it computationally heavy.

4For copies of the software please contact the author at aheath@uow.edu.au.
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Figure 3.16: The main control panel of the Pareto front exploring graphical user interface.

The procedure for reducing the options to a few solutions begins by releasing each

objective criteria. Then the most lacking criteria5 are increased by a small amount. The

decision maker can now produce an overview plot to examine how these changes have

altered the available options. They can again make small changes to the most lacking

criteria and reproduce the overview graph. This process is repeated until a single solution

remains. Decision makers with different goals will arrive at different final solutions.

Figure 3.17 shows the ‘simple’ plot. This plot is designed to give the user a crude sense

of how the objectives behave in relation to each other. The plot is always visible so the

user can receive real time feedback. This plot is used to show the state of each objective.

The blue bars represent the level guaranteed for each objective given the criteria currently

set by the user. The black lines above each of the bar represent the best possible level

available to the decision maker for each objective if no gains are to be expected for any

other criteria. The red lines mark the best and worst levels of the reference set.

By examining the movement of the black bars in relationship to the top red bars, the

user can sense how quickly other objectives deteriorate as they improve a specific objective.

This gives the user a crude sense of how the objectives are related to each other through

experimentation.

Figure 3.18 is an example of a printed overview graph. Each sub plot shows the rela-

tionship between two objectives. The objective plotted on the y axis is identical across

rows, the x axis along columns. Grey circles represent solutions which meet the refer-

ence criteria. Green dots represent solutions which passed the current criteria. Red lines

show the current criteria values. The axes of each graph are oriented (based on if it is

a maximisation or minimisation objective) such that the upper right corner is the most

desirable position. By plotting the reference set in grey, the user can easily see how the

changes they make to the criteria affect the remaining possibilities. Enlarged plots of each

sub-plot can be viewed on a computer monitor in real time by clicking an enlarge button

at the top right hand corner of each sub-plot. This is shown in Figure 3.19.

The enlarged plot can be split into four sections based on the red lines. The bottom

5According to the decision maker.
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Figure 3.17: Simple plot - a plot of the state of each objective. The blue bars represents the
level guaranteed for each objective by the criteria currently set by the user. The black line above
each bar represents the best possible level available to the decision maker for each objective. The
red lines mark the best and worst options of the reference set.

left section contains points which have failed to meet the criteria set for both objectives6.

The top right section contains solutions that pass both criteria. The green dots represent

solutions that have passed all criteria (not just the two axis of this particular plot). Grey

dots in this section represent solutions which have passed the criteria of the two objectives

that form the axes of the graph, but not all of the current criteria. Points in the top left

and bottom right sections have passed one of the axes criteria, but not the other.

Once several decision makers have finished picking their most desirable solution, a sum-

mary chart could be produced and taken to a larger audience for discussion, debate, and

final decision. An example is shown in Figure 3.20. Each decision maker is represented by

a different colour. This form of representation is simple and well establish with the wider

public. Further processing could produce even more appealing graphics, e.g. pictorial

notation.

6Both of these objectives are to be maximised.
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Figure 3.18: Overview plot - every combination of two objectives plotted against each other.
Allows for easy identification of relationships between variables. This is produced when the print
button is pressed. Red lines indicate the current criteria.
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Figure 3.19: An enlarged version of one of the sub-plots in Figure 3.18.

Figure 3.20: Simple bar charts of each objective comparing each final solution.
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3.6 Overall Effect of Using the GUI

This GUI does not explicitly show the user the location of the Pareto front, but rather

allows the user to discover it by navigating the space with the GUI, i.e. changing criteria

and examining the number of solutions meeting the criteria. This concept is shown in

Figure 3.21.

Figure 3.21: An example of someone discovering a Pareto front using the graphical user interface.
The Pareto front is not explicitly shown in the GUI and so is denoted with a dashed line. The
user begins by setting the criteria such that they are at point o. The user moves through the space
trying to reach an ideal point (of their own imagination) X, Y , or Z by changing the criteria. As
they move through the space towards the Pareto front the number of solutions meeting the criteria
diminishes. This diminishing is denoted by the lighter colour nearer the Pareto front. The user
knows they have reached the Pareto front once their criteria set excludes all of the solutions, as is
the case at points a, b, c, d, or e.



Chapter 4

Pareto Front Discovery of the

World3 Model

Abstract

Probing a model is an important step in generating new knowledge about an issue1.

Two mechanisms for extracting knowledge are manual experimentation and optimisation

analysis. Optimisation analysis is the process of discovering the best potential options a

decision maker can choose from, given a set of constraints. We have applied an evolutionary

optimisation algorithm (NSGA-II) to the Meadows et. al. World3 model [111]. This

was done to examine the trade-offs between seven real world optimisation objectives.

The objectives examined are; minimise persistent pollution, maximise desired complete

family size, maximise industrial output per capita consumed, maximise service output

per capita, maximise food per capita, maximise potentially arable land (i.e. conserved

land which has not been converted to agricultural land), and maximise life expectancy.

The most obstructive objective (i.e. diminishes options of other objectives) appears to be

maximising desired complete family size, followed by maximising food per capita. The

least obstructive objective appears to be minimising persistent pollution.

1Assuming the model accurately depicts the issue / real world phenomenon.

59
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4.1 Introduction

Optimisation is a common part of every day human life [151, p. 11]. It is the selection of

variables to produce the greatest desired result, i.e. the optimal solution. There are several

ways in which we can search for the optimal solution. One method is to solve the problem

analytically, e.g. using the Hamiltonian function to derive the optimal solution [62, 30].

This gives the exact solution, however it is not always possible. Alternatively the problem

can be solved numerically. An answer can be found either through scenario testing, or

executing an optimisation algorithm. Scenario testing is the process by which the model

user manually changes inputs and studies the outcomes. The use of an optimisation

algorithm removes the task of changing the inputs from the user, and returns the best

solutions to the user.

Some problems only have a single objective to optimise; of course most real world

problems have more then one objective [176]. As objectives are often conflicting, it is

thus hard to determine the best solution. The renewable energy sector has received some

attention in regards to optimisation [85, 9] and thus is a good example of the importance

of optimisation. There are many variables that can be optimised in a renewable energy

system: costs, energy output, reliability, profits, life span, and many others [85]. With

so many variables, it can become complicated to find a good solution without the help of

optimisation algorithms.

To illustrate some aspects of optimisation, the age old problem of path finding will

be used. The task of moving from point A to point B in a large building is a simple

example of path finding. Often the desired goal is to get from A to B in the quickest

time possible. There are often numerous paths (solutions) for getting from A to B; some

will be almost the quickest path (quasi-optimal) however only one path will be the fastest

(optimal solution). For simple every day problems, humans will often derive quasi-optimal

solutions intuitively.

For larger more complex problems intuition may not suffice. In these cases other meth-

ods for optimisation need to be applied to find a solution. Heuristic techniques (colloquially

known as ”rules of thumb”) are methods used to find quasi-optimal solutions to optimi-

sation problems. Finding the fastest path from point A to point B across a large city is

a problem with thousands of solutions and no clear optimal solution. In this case the use

of a heuristic can facilitate in deriving a suitable solution. In this example a heuristic

(rule) could be to follow the most direct roads and predominately taking major roads.

However if traffic conditions (e.g. traffic jams or road works) need to be accounted for

then the problem becomes even more complicated. Highly complex problems generally

require computers to generate optimal solutions.

4.1.1 Multi-objective Analysis

A single objective problem is one in which there is only one output to optimise, e.g. finding

a path that requires the least time to get from point A to B. In this example the objective

is to minimise travel time. A multi-objective problem is one in which there is more the



4.1. INTRODUCTION 61

one objective to optimise. Almost all real world optimisation problems are multi-objective

[151, p. 16]. Most multi-objective problems have conflicting objectives, i.e. a gain in one

objective means a decline in another objective [184]. Economic, social, and environmental

objects are often clear examples of conflicting view points.

Let us consider an optimisation problem with n objectives f which form a vector y =

(f1, f2, ..., fn). Each objective function f is to maximised, i.e. we wish to find max(fi)∀i|i ∈
1, 2, ..., n. It should be noted that any minimisation problem can be converted into a

maximisation problem and vis versa, as min(fi) = max(−fi). The model/problem has m

inputs/controls s which form a vector x = (s1, s2, ..., sm). In terms of modelling x is the

input space (domain), while y is the output space (range).

One approach to simplify multi-objective problems is to aggregate the objectives using

a weighting system, thus bringing the problem back to a single objective problem [151].

This can be done by assigning a weighting scheme to each objective and summing the

combined “scores” of each objective, there by giving each solution a single score. We can

call this value g and then attempt to maximise g. A simple example of aggregation is

g = w1f1 +w2f2 +w3f3 + ...+wnfn, where wi represents the weightings assigned to each

function. The function g could also be evaluated via some other function h, such that

g = h(f1, f2, ..., fn). This function h could be the Euclidian distance from the solutions

position to a fixed position in the output space.

While aggregating simplifies the problem, it does restrict the designers freedom in ex-

ploring many possible solutions and can beg the question of how the weightings were chosen

along with extra communication difficulties. Decision makers have been increasingly em-

ploying multi objective approaches which avoid the myopia of an aggregated objective

[184].

Another option is to find the Edgeworth-Pareto (Pareto) optimality [40]. A solution

that is Pareto optimal is one by which no other solution dominates it. For a solution to

dominate another solution it must be better than or equal to the other solution for all

objectives, and at least better for one objective. The solutions which satisfy the Pareto

optimality condition are called the Pareto set [151, p. 18]. It is up to the designer to

choose a solution from the set to be the optimal solution. This is done by considering the

trade-offs between all objectives and thus another designer may choose a different solution

as personal views dictate trade-off judgements.

The Pareto set is called a non-dominant set because no solution in the set is better then

another for all objectives, i.e. no solution dominates another solution (within the Pareto

set). A succinct way to describe this is that “For each one of the Pareto arrangements,

it is impossible to improve one objective without worsening another” [15]. In this way

each solution in a set of Pareto optimal solutions has it’s own strengths and weaknesses

in regards to the objectives [40]. Formally, if solution xb is dominated by solution xa then

for all i, fi(xa) ≥ fi(xb), and2 there exists an i such that fi(xa) > fi(xb). Because b is

dominated by a it is excluded from the Pareto set.

Once the Pareto set has been established, a Pareto front can be determined [184]. The

2The previous condition does not exclude the possibility that all for all i fi(xa) = fi(xb)
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Pareto front is the output of the objective functions when the Pareto set is applied to

them. Plotting the Pareto front allows a designer to easily visualise (for < 4 objectives)

the set of options [184]. It is then up to the decision maker to choose a solution from

the Pareto set to be the optimal solution. This is done by analysing the Pareto front and

considering the trade-offs between all objectives. Thus another decision maker may choose

a different solution as personal views dictate trade-off judgements [151, p. 18].

In the literature there is a tendency to create a distinction between the number of

objective functions a problem has. Problems with 2 to 5 functions are defined as multi-

objective, while problems with more then 5 are defined as many-objective [75]. As the

number of objective dimensions increase a performance drop is noticed with standard

algorithms. Because of this improved algorithms have been developed to combat this

issue [75].

Not only does the performance of standard algorithms drop as dimensions increase,

but computational demands increase and interpretation of data also becomes increasingly

difficult [75]. For example a three dimensioned problem could have it’s objectives plotted

on a single 3 axis graph. Another dimension could be added to this graph through the use

of colour, however beyond this visualisation becomes complex.

4.1.2 Genetic Algorithm Optimisation

Genetic Algorithms mimic the process of Darwin’s natural selection and are one of the most

commonly used optimisation methods [40, 151, p. 35]. They were originally developed to

study the evolutionary process of species, however have now been developed into a large

class of optimisation algorithms. They have proven to be simple to implement, while also

being effective and reliable [40]. They can be applied to a broad set of problems, including

multi-objective problems for which a Pareto front is of interest [40]. They also appeal to

researchers because no special knowledge is required to implement them [40].

Genetic optimisation algorithms are very popular for multi-objective optimisation prob-

lems. A genetic optimisation algorithm is implemented by taking a set of possible input

parameters (solutions) and inputting them into the model. The output of each solution

is evaluated to determine its suitability as an optimal solution. This optimality is often

refereed to as fitness. New solutions are created through combination and mutation of

the fittest solutions [151]. The new solutions are then input into the model and the cycle

is repeated. This process is repeated many times until a set of quasi-optimal solutions is

discovered.

Terminology

In genetic algorithms the “population” is analogous to a group of animals from one type of

species. As the genetic algorithm updates the population with each iteration, the process

of evolution is simulated. After many iterations the characteristics of the population will

change in a positive manner.

The process of evolution requires a “pressure” to be placed on the population. For

animals this pressure comes from the hazards of the environment they live in. “Fitness”
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refers to how suited an animal is to its environmental pressure. In genetic algorithms,

fitness is simulated by comparing how well individuals of the population compare to each

other in terms of the problem’s objectives [40].

In nature, the most fit individuals are usually the ones to pass on their genes to the next

generation. To simulate this a genetic algorithm will probabilistically select individuals

form the population to go into a “mating pool” based on their fitness [40]. This is done

such that individuals with greater fitness are more likely to be selected and thus more

likely to pass on their properties.

One simple way to determine an individual’s probability of being selected into the mating

pool is to create a fraction based on the fitness of the population. This can be expressed

as Pq =
Fq∑N
q=1 Fq

where Pq is the probability of individual q with fitness F being selected

for the mating pool out of all N individuals in the population [40].

The process of selecting individuals is of great importance to the development of the

population. If the population experiences too much pressure it could converge quickly

on what might be a local optimal solution (but not globally optimal) and then become

trapped. If the pressure is weak the population will be able to better explore the search

domain but will take a longer time to find an appropriate solution [40].

To generate a new “offspring” solution two individual “parents” are selected from the

mating pool. Their solution properties (i.e. the values of their input parameters) are then

mixed together to form a new solution [40]. While this process allows the population to

explore the domain it does restrict the number of possible variations to a maximum of

Nn combinations. To help jump the populations to new regions of the domain, mutations

are allowed to occur. In this process a new solution’s variables will change with a low

probability to a random value [40].

Holland, a pioneer of genetic algorithms, developed a method for accomplishing the

process of crossover (mixing) and mutation on a bit string input vector, as shown in

figures 4.1 and 4.2 respectively [40]. The crossover cutting point is randomly selected for

each pairing of parents. This technique of mutating inputs is not the only technique that

can be used, however it neatly demonstrates the main concepts of crossover and mutation.

“Elitism” is a process where the most fit individuals always survive to the next iteration

of the algorithm. Some earlier genetic algorithms would replace the entire population with

offspring. However it can be shown that it is favourable to keep the fittest portion of the

old population, i.e. elitism. Keeping the best individuals guarantees the top of the next

generation will be equally fit if not more fit [40].

Figure 4.3 [151] illustrates the performance of genetic algorithm with and without

elitism. It is clearly shown the performance of the elitism population always improves,

while the non-elitism population can perform worse from one iteration to the next.

In nature, animal species differ significantly and exhibit a large variety of behaviour.

Diet is one example of how species can wildly differ. The process of differing ones attributes

to gain an advantage is called “niching”, i.e. niching causes species to change their be-

haviour to take advantage of under-utilised resources. For example: a set of species could

all be competing for a food source A, thus a species could gain an advantage by adapting
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Figure 4.1: The process of mixing parents to produce two offspring. Figure sourced from [40].

Figure 4.2: The process of mutating an input variable. Figure sourced from [40].

Figure 4.3: The improved performance of a genetic algorithm due to elitism. Figure sourced
from [151].
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to eat the plentiful food source B.

The application of niching in genetic algorithms forces individuals to spread themselves

more sparsely in the search domain [151, p. 194]. For a multi-objective problem, niching

could be achieved by forcing individuals in a Pareto set to share their fitness if they are

close together [40]. This has the effect of favouring individuals in less populated regions

of output space and thus encourages diversity in the population.

“Archiving” is a term which is sometimes used in the evolutionary algorithm literature.

It refers to the process of storing all of the best known solutions found by the algorithm.

The importance of this can be realised when we consider a population in which more than

half of the population are Pareto optimal solutions. If the algorithm has a fixed population

size and each generation half of the population is replace by offspring, then we have the

condition where some Pareto optimal solutions will be lost from memory. The purpose of

implementing an archive is to ensure that these Pareto optimal individuals are not lost

from memory.

4.1.3 Types of Genetic Algorithms

Over the past two decades many multi-objective evolutionary algorithms have been de-

veloped [184, 192] to improve the process of finding Pareto fronts and sets. Some of these

include the Borg multi-objective evolutionary algorithm (MOEA), the Non-dominated

Sorting Genetic Algorith (NSGA), the Generalised Differential Evolution 3 (GDE3), the

Strength Pareto Evolutionary Algorithm (SPEA), the Pareto Archived Evolution Strat-

egy (PAES), the Pareto Envelope-based Selection Algorithm (PESA), and the Grid based

Evolutionary Algorithms (GrEA). Most of these have several different variants, such as

MOEA/D, ε-MOEA, NSGA-II, FD-NSGA-II, MO-NSGA-II, SPEA2, and PESA2 [184,

40, 75]. Newer versions are often designed to address issues of selection pressure in many

objective problems. The newer techniques all follow the basic structure of evolutionary

optimisation algorithms, but include slight adjustments to help improve the diversity and

niching of the population when searching for the Pareto front in high dimensions (many

objective problems) [75].

Basic Genetic Algorithm Structure

As genetic algorithms are executed on computers, it is necessary to know the programming

behind them. The pseudo code used to implement a genetic algorithm is outlined below

in Figure 4.4 [40]. This outline forms the basis for all evolutionary algorithms, with minor

changes to the calculation of fitness or offspring generation separating most algorithms.

NSGA II

The NSGA-II is the most widely used genetic algorithm in the fields of science and engi-

neering [40]. This is due to “its elitism, efficient non-dominated sorting, and parameter

free diversity maintenance” [40]. The algorithm is very easy to set up and understand,

and thus makes it accessible to anyone with basic programming skills.
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GA{
Initialize population;
Evaluate population, i.e. run the inputs of each solution through

the model and record the output;
while( termination condition not met ){

Calculate the fitness of each member of the population
and create a mating pool from the fittest members;

Remove the least fit members from the population;
Create offspring from the mating pool and add them

to the population;
Evaluate the offspring;

};
};

Figure 4.4: Pseudo code of a genetic algorithm

Two major components of the algorithm are shown in figures 4.5 and 4.6. In Figure 4.5

we can see how the algorithm selects a mating pool. First of all the population is sorted

into non-dominance ranked groups. All Pareto optimal solutions found are placed into the

group F1. This group is then removed from the population and the procedure is repeated

to find the new non-dominated group F2. This is repeated until there are no individuals

left in the population [45].

Once the population is divided into non-dominated groups, the crowding distance is

calculated for each solution of that group (crowding distance is based on the position of

other group members). This is done by summing the distances (in one dimension) to the

adjacent solutions for each objective dimension. The crowding distance is the average

side length of the cuboid as illustrated in 4.6. For points on the outer edge, a crowding

distance of infinity is given. The crowding distance is then used to sort the members of

each group, with a large crowding distance being more desirable [45].

Once the population has been fully sorted the bottom fraction of population is removed

and replaced by new offspring spawned from the remaining population (the top fraction),

i.e. the mating pool.

4.1.4 Multi-objective Analysis of the World3 Model

Despite the scrutiny applied to the “Limits to Growth” work, it has only had minimal

attention in terms of optimisation. There are many cases of parameters being changed

“manually” to find solutions that avoid population collapse (e.g. [111, 182, 11]). In the

process of this literature review, only one article by Hearne [76] was found that presented

a methodical analysis. This analysis however was limited in scope and contained only a

vague outline of key results.

The study by Hearne converted the “Limits to Growth” model into a single objective

optimisation problem, which can be succinctly described as min(
∫ t

exp(dPNdt )), where PN

is the normalised population and t is time. The domain of the input parameters x was

restricted to deviations of no more then 20% from their nominal values x∗, i.e. 0.8x∗ ≤
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Figure 4.5: The process of selecting a mating pool in NSGA-II. Figure sourced from [45].

Figure 4.6: Method for calculating crowding in NSGA-II. Figure sourced from [45].



68 CHAPTER 4. OPTIMISATION ANALYSIS

x ≤ 1.2x∗.

The optimisation was performed using the FORTRAN - NAG (Numerical Algorithms

Group) Library routine EO4JAF. The routine employs the quasi-Newton method for find-

ing the minimum of a function, which falls into the gradient based class of optimisation

algorithms. The simulation found that “at the optimum, ten parameters were on their

bounds (20% change from their nominal values) while the remaining four parameters dif-

fered from their nominal values in a range from 12% to 4% ... [The optimal] population

trajectory does not decline until about 15 years from the turn of the century and the

decrease over this period is less than 1%” [76]. The summary quote provided encapsulates

the entirety of the study’s findings. No figures showing the new trajectory are provided

nor are the exact values of the parameters, making it difficult to draw useful knowledge

from this paper.
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4.2 Aim

The aim of the study was to determine the Pareto front of competing objectives in the

Limits to Growth model. By determining the Pareto front, a thorough understanding of

how different objectives compete with each other can be obtained.

4.3 Justification

There had been very few attempts to apply optimisation algorithms to the World3 model

(or other similar models). Almost all attempts so far have been done by observing sen-

sitive parameters and then “manually” altering these to produce an improved solution

(compared to the nominal solution). Additionally, most papers have only been concerned

with optimising the trajectory of the population. While this does provide some insights, it

does leave many questions unanswered about the optimal parameters. What if there were

other objectives to be achieve, e.g.: minimise pollution, maximise services per capita, max-

imise food per capita, minimise crowding, minimise resources depletion, or maximise jobs?

What would the Pareto front look like for a multi-objective problem? What outcomes are

mutually exclusive? To answer these questions, it is proposed that a multi-objective opti-

misation analysis be performed on the World3 model.

By performing a multi-objective optimisation analysis of World3, a richer understand-

ing of the model can be achieved, and greater insights into the working of the real world.

Insights gained through studies such as this can give future decision makers a broader

knowledge of the trade-offs between objectives, and hence lead to better informed policies.

Leaders are increasingly making decisions and crafting policies based on sustainability

goals. Knowledge gained from optimisation analysis of socio-ecological models can give

leaders a clearer understanding of potential outcomes of policies in relation to sustainabil-

ity. Without thorough analysis there is less certainty of whether a policy will bring about

the outcomes it is intended to produce.

4.4 Method

As described in Section 2.4 The Limits to Growth model was reproduced in the C++

language. To ensure the models was performing correctly, results from the model were

compared to the “standard run” results published in “Dynamics of Growth in a Finite

World” [112]. Once it was established that the model was running correctly3, some minor

changes were made to the model to better simulate a society conscious of meeting social

objectives. In the original model, consumption rates of consumables, services, and food

were all functions of industrial output per capita. Giving the “people” in the model the

ability to choose their consumption levels (so they can explore different options) meant

that some modifications to the code were made. The largest of these changes was the

calculation of the industrial capital investment rate (ICIR). The modified equations can

be found in Appendix C.

3See chapter 2 for validation.
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To establish potential objectives, issues appearing in several UN reports were examined

[175, 1, 174, 171, 170]. These texts were chosen due to their broad nature and inclination

to examine global issues.

The objectives investigated in the study were: minimise persistent pollution (PPOL),

maximise industrial output per capita consumed in 2100 (IOPCC), maximise service out-

put per capita in 2100 (SOPC), maximise desired complete family size after 1975 (DCFS),

maximise food per capita in 2100 (FPC), life expectancy in 2100 (LE), and maximise

potentially arable land in 2100 (PAL). The objective of minimising persistent pollution

represents humanity’s desire to keep pollution and wastes in the environment to a mini-

mum to conserve biodiversity and soil productivity, as well as keep toxic materials out of

food chains. Maximising industrial output per capita consumed, and service output per

capita represents humankind’s desire to consume items such as cars, washing machines,

houses, and other service based commodities such as health and education. To maximise

desired complete family size represents our desire not to be restricted with respects to

family planning. Maximising food per capita represents our desire to consume not just

grains and vegetables, but also animal proteins that can in some cases require far more

grain calories to produce than they provide. Maximising life expectancy represents our

desire to live as long as possible and as healthily as possible. Maximising potentially

arable land represent our desire to keep some habitat on earth untouched to allow other

species to continue roaming around in the wild, e.g. elephants in Africa or bison in North

America.

Variables that could be changed were: desired industrial output consumed per capita

(IOPCCD), desired service output per capita (SOPCD), health services allocations per

capita multiplier (HSAPCM), indicated food per capita (IFPC), desired complete family

size (DCFS), fraction of inputs allocated to land maintenance multiplier (FALMM), and

fraction of inputs allocated to land development multiplier (FIALDM). It should be noted

that many more input variables could have been altered, however these left unaltered to

simplify the analysis.

Figure 4.7 shows the output of two simulation runs. The inputs have been selected

to produce a stable and an unstable outcome until the final year of the simulation. The

simulation period of 1900 to 2100 has been kept from the original model. The output of

the stable solution shows that the consumption of industrial output, service output, and

food remains steady until the end of the simulation. The unstable solution however shows

a dramatic decline of these variables after the year 2060 due to dwindling non-renewable

resource levels. This is due to diminishing returns on investment as higher quality stocks

are removed first, leaving expensive to extract material for later consumption.

The algorithm used to search for the Pareto Front was the NSGA-II algorithm [45].

NSGA-II was chosen for its simplicity and ease of use. The NSGA-II algorithm operates

by sorting a set of solutions by non-domination rank. Each rank is then sorted by crowding

distance, i.e. “the perimeter of the cuboid formed by using it’s nearest neighbours” [45].

Solutions were normalised to the maximum and minimum of each dimension, so that

output was between 0 and 1. This was important to avoid output dimensions with large
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Figure 4.7: Stable solution (solid). Unstable solution (dashed). In the unstable solution the
desired consumption of consumables, services, and food were increase by approximately 1/3 from
the levels desired in the stable solution.

magnitudes4 dominating performance indicators. The bottom half of the solutions (once

ordered by rank and crowding distance) are discarded, and subsequently replaced using

crossover and mutation from the remaining solutions [45].

An ε-box dominance [68] archive was maintained during each run of the NSGA-II.

Each generation of solutions was compared with this archive of best solutions. If a new

solution was found that ε-box dominated an archive solution, this solution would replace

the archive solution. If no archive solution dominated the new solution it would be added

to the archive. The ε-box archive minimises number of solutions that have to be kept in

memory, at the cost of some detail in the Pareto front.

The algorithm was run with a population of 500 solutions for 250 generations. The

ε-box archive was saved at the end of the process. After the first 50 generations the

objective space was constrained to concentrate the search to solutions of interest (the

Minimum Set discussed later). The objective space had to initially be unconstrained to

help the algorithm get started. The algorithm was run 20 times to minimise the chance

of convergence to a local optimum and help reduce the effects of random chance results

(i.e. repeating the experiment to develop confidence in the results). The 20 saved archives

A1−20 were then combined to determine the best Pareto set A.

The data points shown in later sections were generated by the 20 runs of the NASGA-II

algorithm. Each point represents a solution found by the algorithm that is a dominant

solution, i.e part of the Pareto set. The data points were passed to the GUI (described in

4An objective which ranges in values from 0 to 1000 could drown out the effects of an objective ranging
0 to 5.
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Chapter 3) for visualisation.

Figure 4.8 shows the ε-progress of the NSGA-II algorithm with respect to each gener-

ation. Each time a better solution is found, the ε-progress counter is incremented, thus

keeping a record of the progress the algorithm is making. Each line represents a different

run of the algorithm. The ε-progress counter slows to < 0.1 progressions per generation

by the 200th generation (after being constrained). This shows that the rate at which new

Pareto optimal solutions are being discovered slows dramatically by the end of the run.

This means that continuing the run for more generations is a waste of computing time.

To measure the performance of the NSGA-II for each of its runs, three measures were

taken, namely average minimum Euclidean distance (often referred to as generational dis-

tance), ε-indicator and hypervolume5. These indicators were calculated to help determine

the reliability of the algorithm’s results. The indicators help evaluate the convergence and

diversity of a set.

In this study, generational distance [181] is the average Euclidean distance from each

element of an archive set Ai to the best Pareto set A. Figure 4.9 shows the average distance

of each optimisation run along with the standard deviation. The average distance for all

runs was < 0.06 with a standard deviation ≈ 0.02. This indicates that each run of the

algorithm produced a set Ai of solutions which were on average less than 0.06 normalised

units away from the best Pareto set A.

An epsilon indicator [193] was used to establish the size of gaps (sections of a Pareto

front with no solutions) within each of the archive sets. This indicator denotes the degree

to which the solutions of a run Ai need to be inflated for the set to dominate the best Pareto

set A. Figure 4.10 shows the ε-indicator of each run. The ε-indicator / 1.5 indicates that

most Ai sets would have to be inflated by 50% to make them dominate the best Pareto set

A. This indicates that there are substantial holes (or possibly only one hole) in each set

Ai. This indicates that it was necessary to repeatedly run the algorithm to get a clearer

Pareto front with fewer holes.

Hypervolume of each run was also calculated to measure the convergence and diversity

of each run. The hypervolume was normalised using the best Pareto sets hypervolume.

Figure 4.11 shows the hypervolume fraction H in grey, and a scale factor6 H
1
d in black.

Hypervolume fraction is ≈ 0.75 and shrinkage factor of ≈ 0.95 for all runs. This means

that each run of the algorithm discovers 75% of the best Pareto set’s hypervolume. If the

volume was a 7 dimensional square box, the length of a side would be 95% of the best

Pareto set’s box.

Given the indicators shown in figures 4.8 to 4.11, the likely hood that a decent approx-

imation of the true Pareto front has been found is high. This is largely confirmed by the

hypervolume indicator scale factor, which suggests that each run gets approximately 95%

of the way to reaching the best Pareto set. As 20 runs were conducted, it is reasonable to

5The same indicators as those used by Ward et al. [184]
6This represents the length of each side of a hypercube with D dimensions and hypervolume H. This

study investigated 7 objectives, thus d = 7. This is important as increases in dimensions affect the
relationship of side length and hypervolume. If a 2D box has its sides doubled in length its volume
increased 4 fold. If a 3D box has its sides doubled in length its volume increased 8 fold. 4D box, 16 fold,
etc.
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assume a diverse and converged front has been found.

For copies of the software please contact the author at aheath@uow.edu.au.

Figure 4.8: ε-progress counter with respect
to each generation. Fine grey lines show a
smoothed result of a single run. Thick black
line is the average of all 20 runs.

Figure 4.9: Average minimum Euclidean dis-
tance (black), and standard deviation (grey) of
each run with respect to the reference set. The
black horizontal line indicate the average dis-
tance of each point in the best approximate set
to its closest neighbour. The grey horizontal
line indicates the standard deviation.

Figure 4.10: ε-indicator of each run. Figure 4.11: Hypervolume (grey), and scale
factor (black) for each run.
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4.5 Results

Before exploring the results, the author wishes to state that this study has been conducted

in a retrospective fashion, i.e. what are some possible conclusions the Limits to Growth

team could have reached if a study of this type was conducted around the time of their first

publication. Care should be taken when inferring potential policies as the accuracy of any

model can never be certain. Dollar values used are consistent with the values used in the

model, i.e. 1970 US dollar values, hence they appear small due to inflation and are global

averages. An obvious question to raise when critiquing this work is, “why was the model

left in its original form?” Or “why were the variables not recalibrated to represent the

situation of today?” The main point of the study is to find the relationship between the

objectives, not to find the exact options available to human kind. If we were to try to find

exact answers, the next question would be, is the World3 model a perfect representation

of the real world? Given its broad nature, it cannot perfectly capture the exact workings

of the world (nor can any other model). Taking the results from [133] and re-calibrating

the model would be a very laborious task, with minimal benefit to the utility of the study.

The relationships between variables are still the same as they used to be. For example, an

increase in the production of industrial capital still today produces an increase in wastes

and pollution. The exact degree of affect may have changed but the general relationship

has not [179].

4.5.1 Minimal Set

To begin the analysis of the data a base criteria set was created. This set was used to

show the full range of possible solutions given a very loose set of constraints. This set was

termed the minimal set to denote its minimal constraint on the objectives.

The minimal criteria was selected based on the values from the model in the year 1970.

The values were chosen to narrow down the options to those that are potentially realistic7.

This was done to remove solutions that would broadly be considered intolerable, e.g. allow-

ing food per capita to fall to almost zero. To give perspective, in the year 1970 of the simu-

lation the values of the variables were as such: persistent pollution (PPOL) = 1, industrial

output per capita consumed (IOPCC) ≈ 85US$/person · year, service output per capita

(SOPC) ≈ 300US$/person · year, food per capita (FPC) ≈ 400kgv/person · year, life ex-

pectancy (LE) ≈ 45years, and desired complete family size (DCFS) > 2children/family.

At the beginning of the simulation potential arable land (PAL) = 2.3G ·Ha. Using this

information, the criteria for persistent pollution was set to 10, i.e. not allowing pollution

levels to elevate to over 10 times the 1970 level. Industrial output per capita was set at

90US$/person ·year, service output per capita to 325US$/person ·year, and food output

per capita to 400kgv/person · year, corresponding to very slight improvements on the val-

ues of the time. Desired complete family size was set to 1children/family, implying one

child per family. Potentially arable land was arbitrarily set to 0.5G ·Ha, around a quarter

of it’s initial value. Life expectancy was slightly improved to 55years. With the minimum

7Who can say what is a realistic expectation or not.



4.5. RESULTS 75

Minimal Set Alteration

PPOL 10 -6
IOPCC (US$/person · year) 90 +25
SOPC (US$/person · year) 325 +375
DCFS (children/family) 1.0 +0.3
FPC (kgv/person · year) 400 +250
PAL (G ·Ha) 0.5 +0.7
LE (years) 55 +10

Table 4.1: Table showing the values used for the minimal set and the amount each variable was
shifted to explore its effect on the Pareto Front.

criteria as such, 543 solutions remained of the initial 2642 Pareto optimal solutions. The

exact values chosen for the minimum criteria are not of great importance. What is im-

portant is that there are still many solutions remaining so that the relationships between

objectives can be explored, i.e. if only 3 solutions remained after the minimum criteria

was applied, it would then be hard to derive relationships based on 3 data points.

Table 4.1 lists the values of each objective used for the minimal set. Also included in

the table are the amount each objective criteria will be altered to study its relationship to

other objectives. This is explored in later sections.

4.5.2 Pairwise Relationships

Description of types of relationships

To begin the analysis of the Pareto front, scatter plots of each pair of objectives were

created8. This was done to determine the nature of the trade-offs of the minimum set.

Depending on the relationship objectives have with each other, various patterns can be

observed. Figure 4.12 shows seven different categories of potential relationships that ob-

jectives can have with each other.

The plots shown in Figure 4.12 are pairwise scatter plots of two objectives, f1 and

f2, of a Pareto front with three or more objectives. The f1 and f2 objectives are to be

maximised. There are four broad ways in which the relationships between two objectives

can appear.

The first variant is the linear trade-off relationship. In this mode the trade-off ratio of

the objectives (i.e. how much one objective must be sacrificed for a gain in the other) is

constant. This produces a linear line on the outer-most edge9. This is shown in plots C

and Y of Figure 4.12.

The next is the small (weak) trade-off. In this case, a small reduction in best outcomes of

one objectives gives a large improvement in the other. This is a more desirable relationship

for decision makers compared to a linear trade-off, as less of each objective needs to be

sacrificed to reach a highly desirable point (a point close to the top right hand corner).

This relationship is shown in B and X of Figure 4.12.

8Plots have been presented such that most desirable outcome is located in the top right corner. This
means that for objectives that are to be minimised, the axis is reversed.

9When we speak of trade-offs in this section we are referring to the Pareto front of the two objectives
f1 and f2, not of the Pareto front of all objectives.
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The next is the large (strong) trade-off. This relationship is characterised by the fact

that a large reduction in the best options of one objective, gives a small improvement of

the other. This is an undesirable property for decision makers. It is shown in D and Z of

Figure 4.12.

The final trade-off variant is the zero trade-off. Here, little to no sacrifice needs to

be made of the best option of one objective to achieve large gains in the other. This is

the ultimate outcome for a decision maker as no compromises need to be made. This is

demonstrated in A, L, and W of Figure 4.12.

Another feature is the spread of points that lay behind the f1-f2 Pareto front. In

plots W, X, Y, Z, and L of Figure 4.12 we can see significant separation of points from

the Pareto front. This signifies that the f1-f2 Pareto front is dependent on the other

objectives. For the points behind the Pareto front to exist, they must have an advantage

in another objective compared to those on the outer front.

Another feature is how correlated the two objectives are to each other. For highly

correlated objectives, if the value of one objective is fixed, then the range of the other

variable is small. This is shown in figures A, B, C, D, and L.

Table 4.3 defines a list of short-hand notation that describes relationships exhibited

between objectives.
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Figure 4.12: Diagrams of possible relationships between two objectives in Pareto front with more
than two (3+) objectives. (A) Zero Trade-off. (B) Small Trade-off, Strong Correlation. (C) Linear
Trade-off, Strong Correlation. (D) Large Trade-off, Strong Correlation. (L) Zero Trade-off, Strong
Correlation, Strongly Affected by Others. (W) Zero Trade-off, Strongly Affected by Others. (X)
Small Trade-off, Strongly Affected by Others. (Y) Linear Trade-off, Strongly Affected by Others.
(Z) Large Trade-off, Strongly Affected by Others.
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Figure 4.13: A simple three objective Pareto front reduced to show only two objectives. The
Pareto front follows the formula f21 + f22 + f23 = 1, i.e. the surface of a sphere. In plot (A) the
value of the third objective f3 is denoted by the shade of grey (light being a low value, dark a
high value). In plot (B) the information about the third objective has been removed due to the
singular colour. Using a singular colour is necessary when plotting a Pareto front with more than
three objectives (4+).

4.5.3 Hidden relationships

To get a clearer understanding of the pairwise plots, it is important to understand how

other objectives might be behaving. In Figure 4.13 a simple three dimensional Pareto front

is shown. This front follows the formula f2
1 +f2

2 +f2
3 = 1. In plot (A) the value of the third

objective is denoted by the shade of grey, with darker shades indicating a larger value. In

plot (B) this information has been removed. A solution that appears to be dominated in

plot (B) (i.e. there are solutions that are better in terms of the two objectives that have

been plotted) must be superior in the third objective. This is an important feature to

understand when examining pairwise plots.

While it may be noted that a relationship is linear, this may not actually be the case

if another variable is held constant. Figure 4.14 shows two different shaped Pareto fronts

with three objectives. Both appear to have a linear relationship (when looking at the

outer most edge). The shade of grey in plots (A) and (C) again indicates the value of the

third objective. In plots (A) and (B) if the f3 objective is held constant the relationship

between the objectives f1 and f2 is linear. In plots (C) and (D) if the f3 objective is held

constant the relationship between the objectives f1 and f2 is non-linear (curved). This is

an example of how the outer edge may appear linear, and hence it would be called a linear

relationship, but in reality the relationship between the two objectives is not actually

linear. This is an important feature to understand when examining pairwise plots.

A similar variant of this property is shown in Figure 4.15. In plot (B) the relationship

would be classified as a small trade-off (based on the outer most edge). However in plot

(A) it can be noted that this relationship changes depending on the criteria applied to f3.

As the criteria for f3 is increased the relationship between f1 and f2 goes from small, to

linear, to large. This highlights the need to be mindful of generalised claims about the

relationship between objectives as these relationships can change depending on the criteria

applied to other objective.
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Figure 4.14: An example of a linear relationship deception. Plots (A) and (B) are examples of
a true linear relationship between f1 and f2. Plots (C) shows (D) show an example of a Pareto
front which appears linear in plot (D), however is clearly non-linear in plot (C).

Figure 4.15: The influence another objective can have on the Pareto front shape. Changing the
minimum criteria of f3 alters the outer most edge.
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Pairwise example from the study

Figure 4.16 shows the relationship between consumed industrial output per capita and

desired complete family size. There is a clear linear trade-off between the two objectives.

Being linear, the trade-off is linear for any point along its outer front. The large spread of

solutions behind the Pareto-Front of these two objectives indicates a dependency on other

objectives.

Figure 4.17 shows the relationship between life expectancy and persistent pollution. In

this example we can see that there is a very small trade-off between the two objectives, i.e.

there are solutions that can be reached through minor reductions of the objectives maximal

values. This is a good outcome for decision makers as there is little compromising.

Figure 4.18 shows the relationship between potential arable land and food per capita.

The trade-off between these objectives is linear and strongly correlated. The strong cor-

relation means that by knowing the value of one of the objectives, the value of the other

objective is known with a fair degree of accuracy.

Figure 4.19 shows the relationship between potential arable land and persistent pollu-

tion. There is no trade-off between the two objectives. A constriction in the criteria of

one objective does not remove the best option for the other objective. There is a strong

correlation between the two objectives and this must be linked to improvements of other

objectives, otherwise the points closer to the bottom left corner could not exist.

Figure 4.16: Industrial output per capita
consumed vs. desired complete family size.
A linear trade-off relationship can be seen
between the two objectives.

Figure 4.17: Life expectancy vs. persistent
pollution. A small trade-off relationship can
be seen between the two objectives.
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Figure 4.18: Potentially arable land vs.
food per capita. A linear trade-off relation-
ship can be seen between the two objectives
with a strong correlation.

Figure 4.19: Potentially arable land vs.
persistent pollution. Zero trade-off relation-
ship can be seen between the two objectives
with a strong correlation.
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Summary of minimum set relationships

Table 4.2 summarises the relationship between each pair of objectives when examining

the minimum set. To help categorise each pair, four statistics were measured10, T , C, V ,

and R11. T gives a measure of the trade-off between variables (i.e. none, small, linear, or

large). This is done by comparing the size of the smallest box able to contain the data

points, with the size of dominated space of those points. C represents the correlation

between the two objectives, V is the area created by the domains of the objectives and

can represent the reliability/sample size. R is the trade-off ratio between the objectives,

i.e. the ratio between the maximums of each objective.

To begin we will examine the relationships each objective has to the other objectives.

This will largely involve examining the degree to which one objective adversely restricts

another (large trade-offs being the most adversely restrictive). If one objective restricts

most of the other objectives, it can be said that it is an intrusive12 objective, i.e. small

improvements of this objective quickly remove the most desirable solutions of other ob-

jectives.

Persistent pollution has only a small trade-off with all other objectives, apart from the

linear trade-off with food per capita. There is a strong correlation between persistent

pollution and food per capita, and potentially arable land. The zero trade-off and strong

correlation between potentially arable land and persistent pollution mean that excluding

poorer results in one of these objectives will naturally exclude poorer results in the other.

This is a great relationship to have between two objective functions.

After examining the table, persistent pollution appears to be the least intrusive objective

as it competes with only one other objective. Potentially arable land is close to persistent

pollution in terms of intrusiveness. It has a linear trade-off with food per capita and a

small trade-off with life expectancy.

Life expectancy is not very intrusive. It has a linear trade-off with desired complete

family size. All other objectives have a small trade-off with life expectancy, except for

food per capita which has a zero trade-off relationship.

Desired complete family size is the most intrusive objective. It has a linear trade-off with

consumed industrial output per capita, service output per capita, food per capita, and life

expectancy. This is problematic for a decision maker, as an increase in the constraint of

this objective will rapidly remove the best options of the other four objectives. It does

however not appear to affect persistent pollution or potentially arable land.

Another very intrusive objective is food per capita. It has a linear trade off with per-

sistent pollution, service output per capita, desired complete family size, and potentially

10The final decision of which category the relationship fell into was ultimately made by the author.
11T = 1 −H(A)/V , C = E(P(A), A), R = max(Ay)/max(Ax), and V = max(Ax) ·max(Ay). A is the

set of solutions meeting the current criteria reduced to just the x and y objectives. To deduce Ax we take
the x-objective values minus the x-criteria divided by the x-normalisation value. H is the hypervolume, P
the Pareto front points, E(A,B) the average minimum Euclidean distance from each element of a set B to
a reference set A, and max is the maximum.

12We do not have a statistical measurement for this property, and have not identified one during the
literature review. A possible avenue for measuring this is by studying the correlation or curl between
objectives.
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PP’ IO’ SO’ DC’ FP’ PA’ LE

PPOL NA X X X \ / !)
IOPCC X NA !\ !\ !) X !)
SOPC X !\ NA !\ !\ X !)
DCFS X !\ !\ NA !\ X !\
FPC \ !) !\ !\ NA \ X
PAL / X X X \ NA !)
LE !) !) !) !\ X !) NA

Table 4.2: Shorthand notation describing the relationship between objectives. See Table 4.3 for
notation definition.

Symbol Plot Description
* A Zero Trade-off
) B Small Trade-off, Strong Correlation
\ C Linear Trade-off, Strong Correlation
( D Large Trade-off, Strong Correlation
/ L Zero Trade-off, Strong Correlation,

Strongly Affected by Others
X W Zero Trade-off, Strongly Affected by Others
!) X Small Trade-off, Strongly Affected by Others
!\ Y Linear Trade-off, Strongly Affected by Others
!( Z Large Trade-off, Strongly Affected by Others

Table 4.3: Short-hand relationship notation. Plots are shown in Figure 4.12.

arable land. The only objective not impinged on by food per capita, is life expectancy.

Industrial output per capita consumed has only a small trade-off.

Service output per capita and industrial output per capita consumed both have mild

restrictions on other objectives. They have a linear relationship with each other and with

desired complete family size. All other objectives are small or zero trade-offs.

The small trade-off noted between life expectancy and persistent pollution is unexpected,

for in the model persistent pollution reduces life expectancy. The cause of this is probably

due to the fact that the positive effects of increasing food per capita (which increases

persistent pollution) on life expectancy outweigh the negative consequences of increased

pollution. It was assumed before the analysis that life expectancy would have zero trade

off with pollution, as it was expected that reducing pollution would naturally increase life

expectancy.

Explanations for pairwise relationships

Explanations for each of the observed pairwise relationships are given in Appendix E.

4.5.4 Alterations

To analyse the impact each objective has on the Pareto Front, the criteria for a single

objective would be altered by the amount shown in table 4.1. The alteration amount chosen

would reduce the number of options by approximately half. New plots were produced to
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show the resulting reduction in options. Solutions that no longer meet the criteria set

are depicted with grey circles. As before, solutions meeting the criteria were marked with

green dots. Figures 4.20 to 4.34 show some noteworthy graphs that give us insight into

how the objectives react when the criteria of one objective (noted in the title of the figure)

is restricted.

Figure 4.23 shows the effect of increasing the criteria for food per capita from 400kgv/person·
year to 650kgv/person·year. It shows that this has a strong effect on the industrial output

per capita consumed and service output per capita. The outer Pareto front of industrial

output per capita and service output per capita has been pushed inwards removing the

best combinations of these two objectives. It indicates the strong relationship these three

objectives have to each other13. This strong relationship is also demonstrated in Figure

4.30, however in this case the criteria for service output per capita is increased. This

is however of little surprise as the output of industrial capital must be divided between

between these three sectors14.

We can also see in Figure 4.24 the very strong effect food per capita has on persistent

pollution and potentially arable land. Its increase quickly removes best options for both

objectives. This shows there is a very clear relationship between food per capita, persistent

pollution and potentially arable land. A decision maker should keep this in mind when

increasing the criteria for food per capita.

The effects of increasing the criteria for desired complete family size from 1.0children/family

to 1.3children/family are shown in figures 4.20, 4.21, and 4.22. It can be observed that

this increase has a notable effect on the food per capita, service output per capita and

industrial output per capita consumed. Interestingly the desired complete family size does

not appear to hinder persistent pollution or potentially arable land. This was a surprise

as it was expected that persistent pollution and potentially arable land would, like the

other objectives, also be heavily influenced by desired complete family size.

Increasing life expectancy from 55years to 65years has minimal impact on other ob-

jectives, apart from the desired complete family size and industrial output per capita

consumed, as shown in Figure 4.26. In this figure we can see the removal of the best

combinations of these two objectives. Due to higher life expectancy the global population

will increase, therefore, either less resources are consumed per person, or the birth rate

must be reduced to offset the population increase.

We can see some interesting effects occurring when service output per capita is increased

from 325US$/person ·year to 700US$/person ·year. We know that this will heavily effect

food per capita and industrial output per capita consumed due to their strong relationship.

This is clearly marked in Figure 4.30.

A peculiar feature regarding service output per capita’s relationship to life expectancy,

food per capita and potentially arable land is presented in figures 4.32, and 4.33. This is

13That is an increase in one objective has adverse effects on the others
14One may wonder, if we already know the relationships between some variables, what is the worth

of analysis such as this? The problem with analysing the formula/model structure is that sometimes
unforeseen relationships can arise, which would require a lot of very close and careful study of formulas
to reveal. This method (i.e. performing an optimisation analysis and examining the output) however is
much quicker, easier, and requires no special mathematical knowledge to perform.
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attributed to the characteristics of life expectancy and service output per capita shown in

Figure 4.34. Strangely, as service output per capita is increased to above approximately

700US$/person · year the lower values of life expectancy disappear.

Figure 4.32 shows a well correlated zero trade-off relationship between food per capita

and life expectancy. This is a good relationship to have as no compromises need to be

made between these two objectives.

It can be noted from Figure 4.29 that an alteration that removes the best food per

capita solutions (such as decreasing persistent pollution) produces reduction in the best

life expectancy solutions. Unfortunately, a restriction in the criteria of almost all other

objectives creates a reduction in the best food per capita solutions, thus also reducing life

expectancy.

Figure 4.27 shows that an increase in the potentially arable land criteria removes the

best options of food per capita, however it does remove the worst solutions in terms of

persistent pollution. This effect is similarly seen when the persistent pollution criteria

is decreased. In this case the best food per capita are again removed however the worst

potentially arable land solutions are also removed.

Figure 4.20: The effect
of increasing desired com-
plete family size on food per
capita and industrial output
per capita.

Figure 4.21: The effect of
increasing desired complete
family size on food per capita
and service output per capita.

Figure 4.22: The effect of
increasing desired complete
family size on persistent pol-
lution and potentially arable
land.
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Figure 4.23: The effect of
increasing food per capita on
industrial output per capita
consumed and service output
per capita.

Figure 4.24: The effect of
increasing food per capita on
persistent pollution and po-
tentially arable land.

Figure 4.25: The effect of
increasing industrial output
per capita consumed on po-
tentially arable land and ser-
vice output per capita.

Figure 4.26: The effect
of increasing life expectancy
on desired complete family
size and industrial output per
capita.

Figure 4.27: The effect of
increasing life expectancy on
food per capita and persistent
pollution.

Figure 4.28: The effect of
decreasing persistent pollu-
tion on desired complete fam-
ily size and food per capita.

Figure 4.29: The effect
of decreasing persistent pol-
lution on life expectancy and
food per capita.

Figure 4.30: The effect of
increasing service output per
capita on food per capita and
industrial output per capita
consumed.

Figure 4.31: The effect of
increasing service output per
capita on industrial output
per capita consumed and per-
sistent pollution.
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Figure 4.32: The effect of
increasing service output per
capita on life expectancy and
food per capita.

Figure 4.33: The effect of
increasing service output per
capita on life expectancy and
potentially arable land.

Figure 4.34: The effect of
increasing service output per
capita on life expectancy and
service output per capita.
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4.6 Discussion

To begin, it must be noted that it is not the intention to prescribe value judgements on the

objects being explored here. We will be attempting to discuss potential options decision

makers have at their disposal without judgement as to their ethics.

A possibly contentious objective in this analysis is the desired complete family size,

as family planning is a very personal and emotionally charged issue for some people.

Most people have a strong aversion to the idea of an outside party having control over

another persons ability to have a family. Unfortunately, family size provides a large source

of impingement on most other objectives. There have been many unforeseen negative

consequences of China’s one child policy [33, 28], one of which being some female children

being hidden from the government at birth, and thus not having any birth certificate or

other identifying documentation. It is also very hard to imagine how a policy affecting

this would even be implemented in a democratic society. So far birth rates have been

naturally falling as higher standards of living are allowing for better education and access

to birth control for women.

The fact that food per capita is linked with potentially arable land (i.e. virgin land) is

not overly surprising as most people understand that farming requires land. However, the

fact that consumption levels of industrial output and services output per capita appears

to have minimal impact on potentially arable land is more interesting as many people

are concerned with urban sprawl (which is linked to industrial development). This model

suggests that these issues are of minimal importance in the protection of untouched land.

One way to improve potentially arable land and persistent pollution could involve encour-

aging people to eat a more plant based diet, which would naturally reduce the food per

capita variable. This is because livestock grown in feed-lots require large amounts of grain

to produce the meat, and for every calorie of grain put into a feed-lot a small fraction of

that calorie is returned in terms of meat [112].

One way of invoking change is to push policies that have a direct affect on the objectives.

The other is to produce an indirect effect through indirect consequence. An example

of a direct policy would be taxing pollution generation to encourage reduced pollution

production. Another more indirect way to produce the same effect could be to reduce

the cost of public transportation which would also have a reduction in pollution (due to a

presumed increase in public transport use).

Pushing for an increase of peoples’ consumption of services will help solve some other

issues such as pollution and life expectancy. By increasing the portion of the industrial

output directed to services, the amount of capital funnelled to agriculture and industry

is reduced (as illustrated by the relationship between service output per capita desired

and food per capita in Figure 4.35), thus decreasing the waste products and pollution

produced by these activities (as illustrated by the relationship between service output per

capita desired and persistent pollution in Figure 4.36).

Many unforeseen interactions (or lack there of) appeared between the objectives. There

was an unforeseen interaction between life expectancy and persistent pollution. It was

originally expected that there would be a zero trade-off relationship between these two
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Figure 4.35: The relationship between ser-
vice output per capita desired (normalised by
1000US$/person · year) and food per person
(kgv/person · year). As service output per
capita increases food per capita decreases.

Figure 4.36: The relationship between ser-
vice output per capita desired (normalised by
1000US$/person · year) and persistent pollu-
tion. As service output per capita increases
pollution decreases.

objectives, i.e. as persistent pollution decreased life expectancy would increase, as this is

predicted by examining the Lifetime Multiplier from Persistent Pollution Table (LMPT).

This however was not the case, and to the contrary increasing pollution increased life

expectancy, presumably due to a greater abundance of food facilitated by the increased

pesticides etc.. It was also expected that there would be a linear trade-off between desired

complete family size and the objectives persistent pollution and potentially arable land,

however this was not found to be the case. The non-trade off of persistent pollution

with the objectives industrial output per capita consumed, service output per capita,

desired complete family size and potentially arable land was also unexpected, as these were

assumed to be factors which would increase persistent pollution. The strong correlation

between potentially arable land and persistent pollution was also a surprising revelation.

This study highlights the complexity of the trade-offs humans face, both now and into

the future. Without examining our values, we may inadvertently end-up cornering our-

selves into a space with only a few options. The trade-offs should be examined, followed

by carefully crafted policies to try and steer us towards the future we desire.

4.7 Conclusion

This study has examined the relationships embedded in World3 between some common

global objectives, these being minimising pollution (persistent pollution), maximising

material wealth (industrial output per capita), maximising services (service output per

capita), minimising restrictions on family size (desired complete family size), maximising

food consumption (food per capita), maximising wilderness reserves (potentially arable

land), and maximising life expectancy (life expectancy).

The persistent pollution and and life expectancy objectives were found to have minimal

intrusiveness on most other objectives. Desired complete family size was found to be the

most restrictive objective. This objective displayed a linear trade-off with industrial and

service output per capita, food per capita, and life expectancy. It had minimal trade-offs

with persistent pollution and potentially arable land.
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The remaining objectives (industrial and service output per capita, food per capita, and

potentially arable land) showed moderate intrusiveness. Understanding the relationship

each objective has to the others, allows for more informed policy decisions, and a better

understanding of the limits of possible outcomes.

To the authors knowledge, assessment of objective trade-offs (in terms of macro sustain-

ability issues) using a multi-dimensional Pareto front has never before been undertaken.



Chapter 5

Novel Agent Based

Socio-ecological Model

Abstract

While models such as World3 are very helpful for understanding our world, they often

suffer from extensive aggregation. For example, the population in World3 has no links to

regions (different continents or countries), nor are there any variations in wealth among

the population. Human decision making is often seen as key to understanding how future

scenarios will play out, and because of this it is important that the models we develop

try to accommodate this aspect. In this chapter we present a novel model designed to

better examine complex socio-ecological issues. A major component of this is the inclusion

of many autonomous human agents, capable of making consumption choices based on

their unique circumstances. Other important components are the inclusion of multi-item

marketplaces (so the people have choices), floating prices on goods (i.e. prices are not

predefined), and spacial effects (e.g. transportation and natural resource availability).

The model is described and the results of eight preliminary tests are discussed. The model

appears to produce reasonable behaviour and proves itself to be capable of examining a

wide variety of scenarios.1

1Please note that this body of work is not meant to directly link back to previous chapters.
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5.1 Introduction

Before any researcher can contribute to a field of study, they must have a solid under-

standing of the state of the field. The current problems being tackled by the researchers

and the methods employed to study them should be known. In the case of socio-ecological

modelling, the two main questions which must first be answered are: what issues are being

modelled (both now and in the past), and how have these issues been modelled?

There is an enormous amount of literature surrounding the modelling of sustainability

issues. This is because of two factors: 1) the plethora of issues that can be tagged as

sustainability issues2, and 2) the numerous ways a set of sustainability issues can be

conceptualised and modelled.

The following is an attempt to document and describe the relevant aspects and theories

pertaining to the practice of sustainability modelling. The major sections are:

� Purpose of Modelling- investigation of the various reasons models are created.

� Modelling Techniques- outline of the various techniques which are employed to model

an issue.

� Theories, Algorithms, and Concepts- discussion of some of the theories (economic,

cognitive, natural science) that underpin, and some of the algorithms that are em-

bedded in some models.

� Issues Explored and Components of Models- details of the different issues that have

been modelled in the past.

2Because sustainability can refer to the viability of our socio-ecological systems, almost any social or
natural system falls into this category.
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5.1.1 Purpose of Modelling

Here we will explore some of the reasons models are created.

Toy Models / Model Behaviour Examination

It is easy to assume that every model created to explore a sustainability issue is intended

to derive an exact answer. This is not the case. A toy model is one in which the purpose

for its creation is to investigate the behaviour of a system. These models are used to

answer questions such as, if I change parameter x, what is the change in outcome for

variable y. In these cases the magnitude of values is of minor importance, compared to

models that have been designed for analytical purposes. Any model which is going to be

used for analytical purposes but is yet to be calibrated, can be considered a toy model.

Once the model’s creator has calibrated the model’s parameters with real world data, it

transitions from a toy model to an analytical model.

Often if the model produces behaviour which is deemed commensurate with expected

or observed real world phenomenon, then the model creator will deem the model a useful

tool for exploring further behaviours. This can be justified if the models purpose is to

conduct preliminary investigation into possible behaviour [126].

Sometimes the model may be set in an entirely fictitious world with all parameters

selected based on the developers intuition [88, 184]. In other cases it may be an extremely

simplified scenario designed to examine course behaviour of a system [125].

The advantage of working with a toy model is that it reduces the amount of time needed

in the creation process. This is primarily due to the developer not having to invest time

towards tracking down real world data to calibrate the model. Time spent figuring out

how to calibrate the variables is also saved. This process can take time as most real world

data does not always neatly map onto all model parameters. This advantage is also a

great danger, as checking the agreement with real world data is of importance in ensuring

model accuracy and reliability. It also means that the output does not directly translate

into real world equivalents.

A toy model can be thought of as a prototype for a fully developed model. The basics of

the model and initial results can be published and then critiqued by others. If it is deemed

to have potential it can be further refined and potentially turned into an analytical model

[52].

Analytical Examination

An analytical model can be thought of as a fully developed and calibrated toy model.

An analytical model is one in which the model is attempting to directly describe the real

world. This means that the parameters and variables used in the model must be calibrated

to ensure that the output produced is meaningful.

Calibration can be achieved in two ways. One way is to assign values to parameters

based on data specific to the parameter. This was the case in the World3 model [112]. The

other is to compute the value of the parameter based upon curve fitting of a secondary
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variable. This type of calibration can be seen in [133]. In this study some of the World3

parameters were recalibrated so that the model’s output matched as closely as possible

to historical data from the years 1995 to 2012. The variables matched were; population,

birth rate, life expectancy, industrial output, service output, and arable land. Data for

these variables was sourced from the UN population division, the world bank national

accounts, and the UN food and agriculture organisation.

Examples of models, in which efforts have been taken to ensure the model correlates

with real world data, can be found in [38, 190, 136, 159, 168, 39, 65, 66]. The purpose of

these models is to help guide real world policy.

While comparison analysis of model output with real world data does help validate the

model, there still remains the subjective matter of what level of agreement (between the

model and real world data) constitutes a valid representation of the real world. In [65]

a relative error of less than 10% was deemed as verification that the model was correct,

while in [66] 5% was used as the measure for validity. The allowable amount of error

appears to be dependent on the judgement of the model creator/user.

Conceptualising, Learning, Education

Sometimes a model is created in the course of an educational experience. In some cases,

a collection of stakeholders will come together and work out a conceptual model of a

relevant issue. This process has been termed participatory modelling3 [52]. In the process

of constructing the model the participants gain a better understanding of the issue they

are facing, and can learn new approaches to tackling the problem [7]. During the process

of model development participants may learn new points of view about the issue at hand,

and develop stronger ties with other stakeholders. The likelihood that participants of the

model building exercise will commit to the drawn conclusions increases due to the fact

that the stakeholders should all have the same conceptual model at the end of the process

[7].

Because system dynamics modelling is relatively easy to understand, it is often the

modelling type of choice for participatory modelling [52]. A model can be constructed and

collaborated on by multiple parties, including individuals outside of academia. Another

benefit is that the assumptions that produce the base equations are formulated indepen-

dent of the models behaviour. Thus it is easier to get agreement between parties on the

merit of the model [7]. The equations used in the model can be generated through subjec-

tive means, i.e. “anecdotal information”, or more rigorous empirical means, i.e. “empirical

data, survey data, [or] literature” [52]. The downsides of participatory modelling are the

extensive time costs (of the stakeholders) and the need for a systems dynamics modelling

expert to help guide the creation of the model [52].

The process by which a mental model is turned into a system dynamics model was

well documented by Colin Eden [50]. The process of creating a mental model of the world

begins when we are born. We usually call this process “learning”, and often do not imagine

3Other names given to this process have been; mediated modelling, system dynamics learning, and
group model building [52].
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it as part of a model building process. Figure 5.1 [50] shows the process by which a person

views the world and develops an understanding of a problem. First, events in the real

world are picked up through our sensory system, which “filters in” information, i.e. our

conscious mind receives only a small fraction of the total information being delivered to

the brain (think mild traffic noises outside of an office that go unnoticed). We then take

this information and make sense of what it means. Our interpretation of this information

is based upon our belief system, belief being our understanding of causality. Once we have

an understanding of the situation we can apply our value system to the situation to create

an assessment of the problem and decide what should be done to address it [50].

The next step in developing a formalised model is the creation of an influence diagram.

This is shown in Figure 5.2 [50]. Influence diagrams allow a person to sketch out the

elements in a model (in this diagram they are denoted with a letter, however they could

be descriptions or short sentences) and their influence on each other (denoted by arrows).

These diagrams allow the creator(s) to get an overall sense of the system they are modelling

and easily see where feedbacks exist in the system by identifying loops in the diagram.

As the model develops more detail can be added as shown on the right hand side of the

diagram.

The final step involves codifying the influence diagrams into mathematical expressions.

This step requires the help of someone knowledgeable in developing system dynamics

models. The overall process is shown in Figure 5.3 [50]. We can see that the conceptual

model informs the creation of the influence diagram, which leads to the system dynamics

model. In the process of creating and testing the system dynamics model and influence

diagram, new insights are fed back into previous steps.

Sometimes a simple model is created and turned into a game (often computer based)

to help educate people or students about a complex topic [123, 94]. Serious games aim to

be immersive, educational, and engaging [137, 108, 94]. Some examples of serious games

have had the user pretend to; run a local government [148], be a business owner [12], be a

water resource manager [46], or be an urban planner [137]. With a serious game, the act

of playing the game educates the student about the issue. This can be done in conjunction

with the classical learning of equations and theories.

While serious games are an interesting new development (in terms of computer mediated

games), more research still needs to be conducted in order to validated their usefulness as

an educational tool [94, 108]. Gamification is also not a universal principle that can be

applied to all models [108].

In other scenarios the model is described and produced for the task of disseminating

the ideas or theory thought to be driving a particular issue. In these cases the model

may never actually be run through a computer as it is simply created to formally describe

the relationships between objects in the real world for educational purposes. An example

of this is presented in [80], where a model is formulated but not turned into a computer

simulation.
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Figure 5.1: A theory of perception and problem formulation. Figure sourced from [50].

Figure 5.2: A generic influence diagram. Left - a simple mental model. Right - the same model
but with greater detail. Figure sourced from [50].

Figure 5.3: The general process of converting a mental model into a system dynamics model.
Figure sourced from [50].
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The issue of complexity

There is a wide variety of issues which researchers attempt to model. For some researchers,

different aspects (of the world) are of greater interest than others, and hence these aspects

receive a detailed description in the model. Other factors which are of less interest are

described in a more simplistic way [52]. Some aspects may even be ignored or omitted

for simplicity or due to a lack of relevance. Concepts such as Occam’s razor are often

applied to ensure a model remains as simple as possible while still performing it’s required

function.

The tension of including enough detail and keeping a model simple is a large part of

designing a model [109]. This can be thought of as a balance between completeness and

cumbersomeness. It is often guided by intuition and experience as every issue that is

modelled is unique [168], and so there are no clear rules for defining what should be

included or excluded. Unfortunately socio-ecological issues are highly complex, and much

detail has to be kept in order for the model to be representative of the real world [109].

This creates a tough situation for modellers who have to decide on an appropriate level of

detail for their model.

While including fine details can broaden the knowledge of how a system works, it can

also have draw backs. These drawbacks can be due to an increase in complexity of: the

model’s set-up, experimental study4, time required to run a simulation5, interpretation of

results, and the communication of the model and its results to others. Thus a balance

needs to be struck between complexity and simplification, to allow a model to be both

insightful, useful, and practical.

4The ease at which inputs and parameters can be changed and managed.
5Sometimes simulation time is a non-issue.
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5.1.2 Modelling Techniques

There are many types of models researchers can select from to analyse socio-ecological

systems [96]. Two commonly used types are system dynamics and agent-based models.

However, there are many other model types. The type chosen by a researcher depends

on the specifics of the issue they are studying and the objectives of the research [17]. It

should be noted that the model a researcher develops may not neatly fall into a predefined

category. In many cases the model will exhibit aspects of multiple types.

Conceptual

This type of model exists only in the mind of an individual. It is a theory of how something

works. It can be communicated to others either through speech or text. Philosophical

models of how the world works would fall under this category. There is often no underlying

mathematical formulations to these models. These are of a philosophical flavour, as is the

case in a paper by Hjorth and Bagheri [80]. In this paper they give a describe of a6

conceptualisation of the world, and also provide an influence diagram with stocks and

flows.

Pictorial

Of all the methods for examining sustainability, pictorial models are the simplest and

easiest to interpret. Examples include Venn diagrams, pictures/drawings, and flow charts

[160]. This makes them suitable for reaching the general public but unsuitable for in

depth assessment [160]. An example of a pictorial model is shown in Figure 5.4 [186].

Pictorial models are similar to conceptual models, in that they may not necessarily have

any mathematical underpinning. The main purpose of the picture is to communicate the

ideas of a theory about the workings of the world.

6Presumably their own.

Figure 5.4: The nitrogen cycle. Figure sourced from [186].
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Figure 5.5: Stocks, Flows, and Parameters concept primarily used in System Dynamics. Figure
sourced from [37].

Physical Models

Physical models are models which physically exist. Scale models (e.g. vehicle aerodynamic

testing in a wind tunnel) are a clear example of this. While physical models can be highly

accurate, they can also be costly, resource intensive, time consuming, or unsuited to the

phenomenon being modelled.

Input and Output Models

Input/Output models are widely used in economics to determine the relationships between

economic sectors [4, 3]. The core of the input/output model is a matrix which records

the amount of products required to produce other products. These ratios are fixed and

so these models are static [120]. The amount of product produced by the system can be

specified (i.e. consumer demand). The required production rates of each economic sector

can then be determined. Varying the economic output of the system (demands), will cause

shifts in the production rates of each sector, and hence consumption habit effects can be

observed.

System Dynamics

System Dynamics is the study of real world systems through the representation of stocks

(system variables), which change with time due to inflows and outflows. The inflows and

outflows vary over time depending on stock levels and external parameters [37, 20]. A

graphical representation of this can be seen in Figure 5.5 [37] which depicts a single stock

with one outflow.

System dynamics modelling allows for analysis of highly complex systems without com-

plicated theory or mathematical equations [80]. Very simple and linear relationships, when

combined, can create highly complicated behaviour. System dynamics models can be eas-

ily expanded to give a holistic representation of a system [80]. Through the development

of a holistic representation, a deeper knowledge can be formed of the represented system.
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System dynamics analysis is based around the study of non-linear systems and control

theory [7]. The behaviour/output of a system dynamics model derives predominately from

the systems structure i.e. the links between variables [7, 80]. Thus an analyst of systems

is interested in the structure of a system and the resulting behaviour [76, 16].

Feedback is a major component of many system dynamics models. A simple example

is population growth, i.e. people have babies, babies increase the population, the larger

the population the greater the number of babies born each year. This is an example of a

positive feedback loop, i.e. where growth of a stock produces an increase in that stocks

growth rate. Negative feedback occurs when growth of a stock reduces it growth rate.

Positive and negative feedback loops can also be referred to as ‘amplifying’ and ‘damping’

loops respectively [39]. These loops can also be thought of as reinforcing (drive the system

to an extreme) or balancing (drive the system to equilibrium) [80].

The field of system dynamics has allowed for a simple graphical representation of com-

plicated systems and thus communication of a system to wider audiences [80]. This wider

audience includes academics outside the field being studied, political leaders, and even

to the general public. Figure 5.6 [80] shows an example of an influence diagram. These

are easy to understand and can be effectively communicated. Many software packages

have been created to aid in the construction process of system dynamics models. Some

of the more notable packages are Stella, Powersim, Geonamica, Simile, Vensim [52], and

OpenModelica [41]

Agent Based Models

A multiple agent model (often referred to as agent based modelling (ABM)) simulates

many entities interacting with each other and their surroundings/environment [20, 96].

The entities follow simple rules that dictate how they behave, and will adjust their actions

or strategies based on their awareness of the environment [5]. By having many entities

interacting the global behaviour of the entities can be simulated and studied. This global

behaviour is referred to as the emergent behaviour [96, 5]. The emergence of macro-level

behaviour from micro-level behaviour is the key focus of agent based models [96].

A model of a colony of ants searching for food is a simple agent-based model to imagine.

The agents (the ants) follow simple rules that dictate their behaviour. By having many

agents interacting with each other the global behaviour of the agents can be simulated

and studied. In the ant colony model, the global behaviour of interest is the path most

travelled by the ants as this is usually a quasi-optimal path.

In other modelling methods, agents are generally summed (aggregated) into one large

homogeneous agent to simplify the model [96, 179]. This however removes many fine

details. Agent based modelling allows for these details (heterogeneous actors and actor

interactions), and hence can be used for more complex systems [88, 12].

The main advantage of agent based modelling is it’s ability to represent collective be-

haviour given different assumptions about micro level behaviour (i.e. the rule agents follow

when reacting to their environment [96]) [16]. It can take into account aspects such as evo-

lutionary learning (i.e. agents adapting their behaviour based on analysis of past failings
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Figure 5.6: A generic example of a system dynamics model. This model gives an overview of
the connections between the economy, the ecosystem, and the human population. Figure sourced
from [80].

and successes), spacial effects, and non-equilibrium dynamics [57, 96]. These properties

mean that agent based modelling is able to analyse “complex adaptive systems such as

economies” and governmental “public policy impacts” [179, 16].

The assumptions made about the behaviour of agents (human agents) can vary greatly

from one model to the next. Some models may base the behaviour of the agent on

behavioural theories (e.g. behavioural theories from psychology [57]), while others may

ignore these theories and attempt to replicate (at the macro level) real world empirical

data [57].

Decision making can be broken into two major categories, namely rational and heuristic.

Rational behaviour models assume that agents will choose the action which maximises

their utility based on full access to knowledge. In reality, humans are more likely to

follow heuristics rather than calculate the utility of all possible options. This is due

to limitations that are placed on real world humans, e.g. time constraints, bounded

rationality, information error, and social norms [88, 51, 6]. It is important for policy
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makers to understand “how [people] actually make decisions”, as opposed to “how people

should” [51], as the differences in behaviour can have significant effects.

While multi agent models are a great tool for modelling complex systems, the laws used

to control the agents are often hard to validate with empirical data [61]; thus often the

model is validated by comparing the macro “emergent” behaviour of the group to empirical

information [88]. The difficulty in validation forms a major weakness of the method [6],

as any model should have its predictive power validated [57]. While the underlying laws

that govern the agents behaviour might be easy to communicate to others with minimal

technical knowledge, however often the results (emergent behaviour) are harder to express

[96].

There are many methodological issues that must be addressed before agent based mod-

elling can be used in policy development [20]. A major issue is the lack of standardisation

between reporting and transparency of model structure, making it hard to compare and

critique various models. Attempts have been made to create a standard set of questions

that guide the reporting of an agent based model’s structure. This standardisation process

is examined in [118].

Agent based modelling is a relatively new technique. It has been pushed forward by the

social science, game theory, and psychology fields, which are continually striving to make

more realistic representations of social phenomena [8, 6]. These fields have adopted the

modelling practice as it is well suited to the study of cognitive processes and their effects

on the macro social outcomes [96]. The use of agent based models has grown due to the

ever increasing ease at which computer programs can be written and managed, as well

as the development of software packages [20]. Agent based modelling is beginning to be

used more often in economic models [29]. In these models all transactions are tracked at

an individual level. This newer approach is termed the flows of funds method. It is an

approach that better represents the economy and financial system and can be valuable in

identifying fragility in these systems [29].

Mathematical Formulations

A mathematical model is one in which the model is designed to be solved and examined

analytically, as opposed to numerically. This means that the model focuses on a small

number of equations and variables as opposed to a large set (e.g. World3 model) that

require a computer to process [73]. The analysis of a mathematical model will often involve

examining transition diagrams to establish the location of critical points, e.g. saddle points

and stable nodes. A transition diagram is shown in Figure 5.7 [23]. Mathematical models

may be used to calculate optimal outcomes. In these cases the Hamiltonian function is

applied to find the optimal conditions, e.g. in [30]. Some models could be classed as

mathematical representations can be found in [125, 130, 34, 23].

Para-modelling Techniques

While the content of the following sections cannot be described as modelling techniques

(in the same way mathematical, system dynamics, and agent based models are), it is of
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Figure 5.7: Transition diagram. Figure sourced from [23].

prominence within the sustainability literature and thus has been given a place in this

literature review.

Indicators

While indicators are not models, they are a prolific component of research work based

around sustainability. An indicator is a measure of the current state of an item, which is

of concern [86]. Indicators can be easily applied across a wide variety of fields. The simple

output of indicators makes them easy to interpret and analyse [152] and thus are often

used by policy makers and for the informing of the general public [152].

Much research has been directed towards generating and improving indicators [160].

This is partially due to the role indicators play in measuring sustainability [120]. By

defining a reference value, to which the indicator can be compared, the ‘health’ of an issue

can be determined. Without a reference value an indicator is merely a number [152]. This

is a simple method for determining if something is on a sustainable course or not [152].

As Meadows notes, “indicators arise from values, and they create values” [152], i.e.

matters of interest are measured and what is measured becomes a matter of interest. This

statement proposes that the creation of an indicator can prompt concern for the object of

measurement.

Most indicators (and all composite indicators) perform aggregation to give a final

“score”. Composite indicators are derived by aggregating multiple indices into one, in

an attempt to produce a more holistic indicator. While composite indicators do sum-

marise more information into a single value, they open up many avenues for subjectivity.

Subjectivity can be introduced via the: selection and quality of data, selection of indica-

tors, normalising schemes, weightings, and aggregation methods [152].

A paper produced by Singh et [152] lists a large collection (approximately 41) of indica-

tors that have been developed over the years. Some well known indicators are “Ecological

Footprint, Human Development Index [172], and Genuine Progress Indicator” [168].

While indicators are simple to use and interpret, they can only give retrospective as-
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sessments, hence they cannot be used for making predictions on a long term scale [120].

Indicators offer little “explanation of the phenomena” they represent and have been criti-

cised for “distract[ing] from the real phenomenon”. Policy makers can become fixated on

a target number rather then understanding and fixing the underlying phenomenon causing

the issue [160]. Another drawback of indicators is that they need to be kept updated to

remain accurate [83], and establishing data banks can take a large amount of time and

resources [83].

General Equilibrium Models

General equilibrium models are economic models which assumes that all markets have

reached an equilibrium state. This draws from the theory that in the long run an economy

will reach a steady state if no technological changes or other disruptions occur. This means

that supply and demand are balanced [120] and that prices will have come to rest at their

appropriate level according to a supply demand curve. A basic supply and demand curve

is shown in Figure 5.8 [26]. These assumptions are often applied out of necessity to make

solving the problem possible with a certain technique [169].

The simplifying assumption of general equilibrium removes many aspects of the real

world from these models. Some of these aspects are; feedback loops, agent interactions,

agents short term behaviours, trends in fashion, technological change, financial specu-

lation, or transaction costs [115, 120]. Because of these disadvantages, some economic

modellers have begun encouraging a shift away from the general equilibrium models to

other out-of-equilibrium models [169], such as system dynamics and agent based models.

Impact Analysis

Product-related assessment is focused on analysing the amount of energy, materials, or

money consumed in the life cycle of a product [128]. This is an important aspect in the

Figure 5.8: A simple supply and demand curve. S - supply, D - demand. As price increases
the quantity of product demanded decreases and the quantity of the product supplied increases.
Figure sourced from [26].
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design of products, as improvements in these factors can help reduce the impact of humans

on the environment. The downside to these techniques is that they examine a very small

and niche portion of the global system, i.e. the product being examined is removed from

the global context. This analysis can only tell us information about the product, not the

global system as a whole [128].

Integrated Assessment Models

Integrated assessment models include representations of both environmental elements (nat-

ural world) and social elements (man made world). This means that integrated assessment

is not a modelling technique, but rather a category of model which depicts both the social

and natural elements of the real world and the relations these have with each other [61].

The level of detail in an integrated assessment model can vary dramatically, with some us-

ing very simple representation, while others combine specific knowledge from many fields,

e.g. economics, chemistry, biology, and physics [103]. The World3 model [111] is relatively

simple, while the GUMBO model [21] contains far more detail. Integrated assessment

may involve combining two or more pre-existing models into a meta-model, with minor

adjustments made to link the variables of each model together, i.e. the output of one

sub-model is used as input for the other sub-models, and vis versa.

Multi-Criteria Assessment

While not an actual model, it is important to mention multi-criteria assessment as it is

widely used by policy makers as a tool for deciding courses of action given a list of criteria

[7]. A decision maker will have a number of options and a list of criteria. Each option

is rated with respect to each criteria. The ratings are aggregated, often with weightings,

to give a final score for each of the options. The option with the highest score should

theoretically correspond to the most suitable of the options.
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5.1.3 Theories, Algorithms, and Concepts

The following will cover some theories, algorithms, and concepts that appear in the liter-

ature surrounding socio-ecological modelling.

Endogenous and exogenous factors

The distinction between endogenous and exogenous variables and parameters in a model

is very important. An exogenous variable is a value that is controlled from outside the

modelled system. An example of this would be a production efficiency coefficient that is

either held constant or varies with time according to a set function [121]. An endogenous

variable is controlled by the system. To use the example from before, if the efficiency is

dependent on investment from within the model, then the change in efficiency would be

endogenous. In the model presented in [61] “prices, wages, energy use, and technological

change are determined endogenously”.

Production functions

The way production of goods and services is handled in models can vary significantly. One

method is the Douglas-Cobb production function, which assumes that factors of production

can be substituted with diminishing returns [188]. For example, if the production rate of

product (p) depends on a flow of resources (r) and human labour (l), then production

is calculated by p = ralb, where a and b sum to 1. The advantage of the Cobb-Douglas

function is that it does not require conditionals to determine if a flow is being under-

supplied. While this function is simple to implement and analyse [169] it can bring about

assumptions that can be unrealistic. Models which have employed this function can be

found in [188], [66], [126], and [169].

Another production function is the Leontief function. This function assumes that no

substitutions can be made between inputs. To use the example before, the production

rate would follow p = min(r, l). This type of production function can be found in [121],

and [38].

Figure 5.9 [116] shows a comparison of a linear, Leontief, and Cobb-Douglas substitu-

tion of production function. Another expression is the constant elasticity of substitution

function, which takes the form of p = (rλ+lλ)
1
λ , where λ is a constant [116]. This produces

a curve similar to the Cobb-Douglas or the linear function depending on the value of λ.

Tipping Points, Irreversibilities, and Non-linear Functions

A tipping point is a point at which a system rapidly changes its characteristics. This is

demonstrated in Figure 5.10 [93]. Defining when a system has “tipped” over a threshold is

difficult, as it is not a clearly defined state [93]. An irreversible system is one in which the

process path taken to one point cannot be traversed in reverse to get back to the starting

state. This property is called hysteresis. This is demonstrated in Figure 5.11 [117]. These

two features can appear in systems that are non-linear in nature, which is often the case

for complex socio-ecological systems.
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Figure 5.9: Three different forms of production functions. y - production output rate, K - capital,
L - labour. Figure sourced from [116].
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Figure 5.10: An example of a threshold. In
this case the point at which population size
rapidly decreases with small increases in habi-
tat loss. Figure sourced from [93].

Figure 5.11: An example of a two regime sys-
tem. The blue line represents the path when
most people in a commons game cooperate,
red when they mostly follow uncooperative be-
haviour. Figure sourced from [117].

Tipping points are often observed in models which examine economic stability, such as

[64]. They can also appear in common resource scenarios, especially in “the lake problem”

[184]. Irreversibilities and hysteresis cycles are demonstrated in the cooperation/defection

resource scenario described in [117].

Beliefs, Desires, Intentions

One way of conceptualising the human mental model is through the beliefs, desires, and

intentions paradigm. In this conception, actors in a model form beliefs about their en-

vironment by acquiring knowledge (either partial or complete). Agents in the model are

also inbuilt with desires, which represent the outcomes the agent wishes to achieve. Inten-

tions signify the actions the agent tries to pursue after examining their beliefs and desires

[12, 159].

Bounded Rationality

Bounded rationality is the assumption that humans make choices based upon limited

information. In some models an actor in the model might consider every option and

then choose the best option. This is an erroneous assumption from the perspective of

bounded rationality [142]. Agents with bounded rationality are given partial access to

the full array of information. The fraction of this information can be varied to simulated

different degrees of bounded rationality [57]. Humans are also unable compute all possible

combinations of options available to them [142, 61]. This is due to time and resources

limits, and so humans are often forced to use heuristics to make a decision, as opposed to

perfectly calculated expected utility [131].
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Repetition, Deliberation, Imitation, and Social Comparison

The repetition, deliberation, imitation, and social comparison paradigm is used to describe

possible modes of deliberation in which a agent can make a decision. Repetition is the case

in which an action is simply repeated from one time step to another. An agent which is

content and doesn’t feel compelled to change will engage in repetition. Deliberation is the

choice mechanism by which the agent examines possible options and calculates the utility

of each option. Imitation refers to a choice making process where the agent imitates the

action choices of another actor (usually an actor which is doing well). Social comparison

refers to when people compare themselves to others to evaluate their feelings of fulfilment

[88].

Keynese/Frediman Economic

Keynesian economics posits that the economy is driven by demand [47]. By this theory,

economic activity and job creation can be produced by increasing the demand for prod-

ucts. In Friedmanesque economics, consumers base their consumption habits on expected

lifetime income and will prepare for unexpected shocks to income flow. Individuals with a

permanent income will also base spending on the expectation that their income will remain

stable. This is the basis of buffer stock saving models (precautionary saving motive) [47].

The model in [121] is both a demand driven model, and one in which the agents operate

under buffer stock savings theory.

Complexity Theory

Complexity theory examines the emergence of unforeseen behaviour of a system, due

to the interaction of multiple parts or agents, which when examined individually would

not predict the resulting global behaviour. This field has emerged from the field of sys-

tems theory, and is now an umbrella term linking principles in a mixture of fields such

as mathematics, social science, and economics [8, 6]. Complex systems often contain a

large number of self-determining actors. Complexity can emerge in a variety of forms,

e.g. chaotic behaviour, tipping points, self-organisation (i.e. many uncoordinated agents

forming coordinated behaviour), and hysteresis (path-dependency) [6]. Many real world

issues need to be examined with complex system theory in mind (e.g. climate change and

economic depressions) [57]. Correctly modelling a complex system is important because

simple assumption (e.g. a single homogeneous actor, or general equilibrium) may produce

misleading output [57, 16, 115].

Aggregation

Aggregation is an important part of any model. To produce a model that had no aggre-

gation would require modelling every individual element of the real world (every person,

dog, tree, car, building). Thus to make any model usable there must be some aggregation

of similar elements to reduce the complexity of the model. The extent of this aggregation

depends largely on the model designer’s discretion. Having more components in a model
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means more time has to be dedicated to setting up the model, more data has to be found

to calibrate variables, and more effort has to be put in to analyse the output of the model.

The World3 model is a complex model with many variables and parameters, but is highly

aggregated compared to the real world [92]. For example, there is a single resource supply

in the model. This resource is extracted to produce all industrial capital and consumables.

In the real world, the economy if fuelled by many different resources, and the depletion of

one can upset parts of the economy.

Pollution can be aggregated into a single variable, as is the case in the World3 model

[112], or it can be disaggregated as is the case for the models in [65], [66], and [120].

Differentiating between pollutants can be important, as different pollutants have varying

roles in the economic system and produce different impacts on the environment. In the

latter models pollution has been disaggregated into components such as carbon dioxide and

monoxide, sulphur dioxide, nitrous oxides, soot (particulates), volatile organic components,

heavy metals, solid wastes, radioactive wastes, chemical and biological oxygen demanding

wastes (water), suspended solids (water), and hydrocarbons.

Another example of disaggregation can be found in the splitting of land and industries

into different types. In the World3 model three types of land are depicted: undisturbed,

cultivated, and urban. Production falls into three sectors: industry, agriculture, and

services [112]. In the GUMBO model, energy and material flows are tracked through five

different spheres (bio-, litho-, hydro-, atmo-, and enthropo-), and eleven different biomes

(“open ocean, coastal ocean, forests, grasslands, wetlands, lakes/rivers, deserts, tundra,

ice/rock, crop-lands, and urban) [21]. In the Australian Stock and Flows Framework,

industry is not only broken down into primary and secondary industries, but primary

industry is split into “agriculture, forestry, fisheries and mining” [168].

Thneed

Occasionally a “thneed” will be used to represent a unit of consumption. Thneed stands

for “Total Household Normalized Energy Expenditure Division” [61]. It represents an

amalgam of cars, white-goods, and other energy consuming goods. The number of thneeds

a household in the model has, the greater its energy consumption. This allows the energy

expenditure of individual households to be greatly simplified.

Price Setting

Setting prices is a complicated matter. In the real world factors such as input costs,

advertisement costs, consumer lock-in, and staff salaries [12] will go into a business owner’s

pricing decision. The prices in a model might be estimated using a constant value (e.g. for

an exogenous good imported into a region), a mark-up value based on input costs (e.g. [61]

and [121]), exogenous functions, demand curves (e.g. [16]), or evolutionary learning [179].

In some models (e.g. housing markets) bidding algorithms may be used to find the market

price. In these formulations buyers will put in an initial bid. If the buyer is unsuccessful

in obtaining an item they increase their bid. For sellers, if they are unsuccessful in making

a sale they decrease their asking price (e.g. [60]).
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Figure 5.12: The concept of decoupling. Figure sourced from [173].

Labour Pay

Determining the price of an item is always difficult when operating within an artificial

market (i.e. in a model). For a product, the price can be estimated based on a mark-up

of input costs. However, this cannot be applied to labour prices as there are no monetary

inputs in the production of human labour. Wages might change over time depending

on labour productivity [61], or unemployment rates [121]. A skill level factor may also

contribute to wage pricing [121].

Decoupling

The concept of decoupling is based on the goal of maintaining economic growth and the

production of services while simultaneously reducing environmental impacts [179]. This

concept is illustrated in Figure 5.12 [173].

Market Share

Often when modelling businesses competing with each other, the demand for a product

is aggregated and the sales are shared between the businesses according to market share.

Changes in market share are determined by the competitiveness of the businesses. Com-

petitiveness can be a function of factors such as price, advertisement, and quality. Market

share is a component in models [12], and [61].

Harvesting

Harvesting is an important aspect of any socio-ecological model because the extraction of

resources is the first step in many economic processes. When modelling the harvesting of

fish, the rate at which fish are removed can depend upon factors such as fish population

density, the amount of time put into catching fish, and the type of technology used to

catch the fish [16].

Human Needs/Driving Forces

Human needs and driving forces are critical in understanding the decisions people make.

The decisions people make end up affecting the economy and environment. Maslow’s



112 CHAPTER 5. NOVEL MODEL

hierarchy of needs is the best known theory of human action preferences [132]. In this

formulation, people will fulfil their most basic needs first before trying to fulfil higher order

needs. The first order needs include basic objectives such as shelter and food, while higher

order needs include, education, health, and art. This is often used as a starting point for

understanding human actions, however the theory does not fully match reality.

Another theory is that people have two reasoning systems. The first system is informed

through emotions and ‘gut’ feelings. It is fast acting and automatically operates with little

conscious awareness. The second system operates as a more rational agent and tries to

work logically. It is slower operating and is under conscious control [114]. It is difficult

to model the first system as it operates under emotional influence, emotions which are

numerous (20+) and difficult to quantify [43].

People are found to often use heuristics over optimisation calculations [77]. While many

models assume that humans act as “rational, self-interested economic agents termed homo

economicus” [77], that assumption can prove incorrect. It has been shown that people are

risk averse, not solely self-regarding, strong reciprocates and will punish defectors (selfish

agents) at their own expense [77]. Another formulation of the homo economicus idea is

that of homo politicus. This agent will favour morally responsible actions rather than

acting in a purely material wealth-maximising fashion [53].

In [141] the decision making process is conceptualised as a five step process. The first

step is recognising the existence of a need. After this, information is gathered on how the

need could be fulfilled, followed by an evaluation of options and purchasing of a product.

The final step is an examination of how well the product performed. Another aspect of

this concept is the actual and desired state of a need, and the tolerance threshold (the

difference between the actual and desired state) which must be reached before the decision

making process begins.

When a person is in the evaluation stage of the decision making process, many factors

may be considered. Some factors may include price, quality, status, branding, popular

opinion, social pressures, or moral concerns [18]. When a course of action is being decided,

factors such as the potential for social ostracisation may come into play (if the action is

seen as socially unacceptable) [117]. The litany of factors that can affect a decision makes

the process very difficult to model.

Some researchers have found that material wealth above a basic level fails to bring about

greater levels of happiness [156]. Over long run time periods, there is also no increase of

happiness with material wealth. This finding is known as the Easterlin paradox [139].

This may indicate that the happiness is dependent on the “gap between aspiration and

realized income” [139], i.e. as average wealth rises, expectations rise negating the growth

of wealth. These observations should also give us pause to consider other factors that

affect happiness and mood, such as physical health [30], personal relationships, and other

non-material assets.
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Preferences

Preferences represent the difference each human has in terms of taste or goals. This can

be expressed as a set of weights which an actor applies to a utility function when deciding

on a course of action [142]. Sometimes it is possible that a consumer will become locked

into a preference due to circumstance [146], e.g. a different product that is cheaper to use

in the long run, maybe have a high initial cost which the person can never afford to pay.

Human Behaviour and the Environment

It is understood that the impacts on the environment can be traced back to the individual

actions and decisions made by every person on the planet [5, 83, 88]. From this logic, it is

considered crucial that models simulating socio-ecological systems contain agents equipped

with the ability to learn and pursue their own self-interests [88, 54]. This must be done so

that the flow-on effects of individuals decisions can be examined. This type of modelling

is often used in commons scenarios, as the interest of a single actor may not align with

the interests of the global community.

Debt

In some models, when businesses or individuals are unable to purchase items with their

own savings, banks will lend out money. In the model presented in [61], money is lent to

businesses at a maximum debt to sales ratio.

Self-defeating systems

A self defeating system is a scenario in which the winning strategy (the strategy that

derives the most utility) becomes the losing strategy, and vis versa. This creates a cyclical

process where the best strategy continually changing. Self defeating systems are examined

in [25] and [14].

Learning behaviour

In an agent based model the agents can be equipped with the ability to learn and adapt

to their situation. This requires the agent to keep a record of past information. Neural

networks and machine learning algorithms can be trained to find quasi-optimal behaviour

[142]. In the model in [60] agents examine past housing prices and speculate on future

housing prices.
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5.1.4 Issues Explored and Components of Models

The following section will highlight some issues that have been examined using models.

Population

Population is an important aspect of some socio-ecological systems. Any model that wishes

to explore gross consumption levels of resources needs to take into account population, as

greater numbers of people will consume greater levels of resources. The two main reasons

a population will change is through births and deaths, however immigration or emigration

may also need to be taken into account in some cases. For animals, births and deaths are

largely a function of food supply and predator population levels. For humans, the greatest

determining factors for birth rates and death rates (in the absence of famine) appear to be

education (decreases crude birth rate), contraception availability (decreases crude birth

rate), and health services (increases crude birth rate and decreases crude death rate), all

of which correlate with material wealth [112]. Example of models in which population is

an important factor can be found in [111, 188, 168];

Resource Depletion and Extraction Efficiency

An aspect of resource extraction is the efficiency at which resources can be extracted,

either in terms of energy costs, material costs, or capital costs7. Energy efficiency is tied

into the concept of energy return on investment. Energy return on investment is the ratio

of energy that is produced for every unit of energy that is spent in the manufacturing

process and the creation of the extraction capital.

Historically, standards of living have been very closely knit with increased energy con-

sumption [102]. The effects of declining energy return on investment are still “uncertain,

but probably adverse” [102]. Lambert et al. [102] propose a theory of social condition

based upon energy return on investment. They imagine that energy expenditure is spent

according to a hierarchy (see Figure 5.13), with the initial energy going into the produc-

tion of energy (reinvestment) and basic essentials such as growing food. At the pinnacle

of the hierarchy sits medicine and art.

Most conventional fuels (coal and oil) have a very large energy return on investment

(i.e. a small energy investment for a large energy return). Non-conventional (renewable

energy) sources have “substantially lower” returns [70]. If energy return on investment is

high (say 50), then a small change (-1) in energy return on investment has a small effect

on the energy being delivered to the wider society. However, if returns are low (say 5)

then the same reduction will have a significant impact. This is described as the energy cliff

and is represented in Figure 5.15 [102]. The energy cliff indicates that energy return on

investment is an issue which should be monitored, as approaching “the cliff” could have

significant impacts on energy production.

7A distinction has been made between capital and material, as one method of extraction may need low
levels of capital to set up but will have high levels of consumable material, and for another method the
reverse will be true.
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An energy model produced by Dale et al. [39] examined future energy production as

technologies transition from conventional to renewable energies. The model output is

shown in Figure 5.16 [39]. The model predicts a continued increase in energy production

until the year 2060, by which point an equally rapid decline occurs.

Two models that include resource depletion and extraction and their effects on human

welfare can be found in [111, 125].

Production Efficiency

The efficiency of production is an important aspect of a socio-ecological model. This is

because the efficiency of material conversion alters the rate at which natural resources

need to be extracted to produce a desired level of consumption. Efficiency can vary with

time in a model, based upon endogenous variables or exogenous functions [127]. The

change in efficiency can either be stochastic or non-stochastic [61]. The Jevons paradox

(or rebound effect) is the paradox that despite increases in production efficiency, resource

consumption remains the same, but consumption increases [125, 164]. Examples of models

with production efficiency [103, 178].

Commons Scenarios

A commons scenario is one in which a large group of people exploit a common resource.

A scenario where the resource ends up being over exploited is termed the tragedy of the

commons and was first coined by Hardin [72].

The over-exploitation of a resource can be the result of many actors perusing actions

which are most profitable to themselves, but not for the overall profitability of the group

[88]. A well studied commons resource is fish stocks [16]. Other examples include lake

problems, in which a lake is used as a reservoir for waste [184], and the management of

red deer presented in [161].

Cooperation and defection can play a large part in a system’s functioning [16]. The lake

problem presented in [87] shows cyclical behaviour of the system as due to shifting levels

of cooperation and defection [87].

The fishing commons can potentially be thought of as a self-defeating system [14]. This

is due to the fact one species of fish will be the most profitable to harvest until it has

been over exploited, at which point another species will become more profitable. At this

point another species becomes the most profitable species to harvest and hence the catch

strategy changes. This process however can only continue if the total harvest level is below

the replenishing rate of the total fish stocks.

Uncertainty Effects

Uncertainty is a common element in many real world problems. Things such as the

weather, market prices, government policy, and technology changes are often very unpre-

dictable. “It is also unclear whether climate policies may influence access to food, water

and energy, and - if so - how” [115].
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Figure 5.13: Hierarchy of energy needs. Fig-
ure sourced from [102].

Figure 5.14: Quality of life verse energy re-
turn on investment. Figure sourced from [102].

Figure 5.15: The net energy cliff. As energy return on investment (EROI) decreases to lower
levels, the energy delivered by the system (per energy unit invested) dramatically decreases. Figure
sourced from [102].

Figure 5.16: Potential energy production outlook. Figure sourced from [39].
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In [184] a lake is modelled, and phosphorous enters into the lake via two methods. The

first method is via pollution generation due to economic activity, the second is through

stochastic natural releases of phosphorous. The citizens living next to the lake wish to

maximise their economic activity without crossing a critical tipping point. This natural

release adds a uncertain element into the model.

Uncertainty can also exist in the minds of the actors of the model [89]. The actors might

be uncertain as to how well their actions will pay-off later on. This uncertainty can effect

their choices and hence have an impact of the simulation results [89].

Government Policy

Some models are designed to investigate how government policy effects a socio-ecological

systems. The model presented in [61] shows the effects of taxation expenditure policy on

development of green technology. [136] studies the effects of tariff policies on investment

in renewable energy production. The models in [27] and [150] examine the affects of

agricultural and land use policies. In one model [122] agents could vote in and out different

types of government which would effect the policies.

Financial Stability, Lending Practices, and Minsky Moments

One important aspect often studies by economists is financial stability and lending prac-

tices. The financial sector can often cause large shocks to economic systems which have

major consequences on the lives of ordinary people.

The model described in [47] investigates the effect inequality of income distribution

has on economic stability. The study concluded that inequality adversely affected eco-

nomic and financial stability due to “higher credit demands, higher unemployment rates,

economic volatility, and financial fragility”.

Another model [60], investigated the effect leniency in loan lending has on housing

prices. Some parameters in the model include maximum debt-to-income, and minimum

down payment. A two different runs of the model are shown in 5.17. The left plot shows

in which banks have low leniency when lending money, while the other plot shows high

leniency. The price of housing in shown by the black line, while the red shows foreclosures.

It is clear that the system is far more stable when low leniency is practised by the banks.

Minsky moments are the turning point of the value of an asset. They are named after

the economist Hyman Minsky [47]. Economic booms and busts are continually occurring,

the basic premiss being that as an economy comes out of a slump, banks begin lending

money to businesses. As the economy begins moving again confidence begins to grow and

banks gain more confidence in lending, creating more economic activity. When investors

see high economic activity, they begin heavily investing, and can over-estimate the value of

an asset. As soon as the economy stabilises and growth slows, investors can lose confidence

in some assets and their value rapidly decreases causing a bust. This type of behaviour is

common of housing bubbles [60]
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Figure 5.17: Housing price volatility under two lending practices. Gray line - prices. Red line -
foreclosures Figure sourced from [60].

Inequalities

Economic inequality is a concern for many people, and so some models have been developed

to try and examine the driving forces behind it.

In the model presented in [121], there are two classes of individuals. A working class

individual earns their money solely by selling labour for a wage, while capitalist agents

earn money through government bonds and dividends. In [47] the model depicts inequality

through varying the productivity of the individual in the model. A shape factor allows

the inequality to be varied for different scenarios.

Climate Change and Natural Shocks to Economies

Climate change is predicted to have many adverse effects. Some of these are: damages

to infrastructure and crops due to extreme weather, relocation of low lying coastal areas

due to sea-level rise, increased risk of infectious disease (more favourable conditions for

infections), increased natural disasters (e.g. floods), and more strenuous outdoor working

conditions [38].

Some models attempt to capture these effects by incorporating a climate model into an

economic model. The climate aspect of the model is then able to deliver shocks to the

economic sector (labour force productivity, and firm capital/inventory) in proportion to

the level of climate change experienced. This is demonstrated in [103].

Another example [62] looked the strategies most effective for combating flooding (based

off different economies) at the damages on capital due to flooding, influence by climate

change. Figure 5.18 [62] depicts the model.

Product Adoption

Product adoption is important in understanding market and economic shifts. This is rele-

vant to sustainability through the adoption of more sustainable products. In models such

as these the network (communication) between people, the consumer choice mechanisms,

or seller-buyer interaction many be examined to determine how markets behave [179, 90].

Behaviours examined may include quiet and busy markets. Quiet markets have only

a few major competitors and minor movements within them. Busy markets have many
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Figure 5.18: Damages Figure sourced from [62].

people entering and exiting and rapid movements in market share [91].

Agent based models are good for studying these issues as they allow for the analysis of

decision making processes and how these translate into macro behaviour [91, 90]. Often

the study will try and examine how people transition from being a potential consumer, to

a ordinary customer, to a loyal customer, or vice versa [191].

Land Use

Some models examine how the land use of a region changes over time. For example, forest

can be converted to residential or industrial land, depending on the levels of development

[122]. Many land use models will simulate different agent types (government body, de-

velopers, residents) [159] to examine how their actions impact the landscape over time.

Other models may however use statistical Markov chains to predict future outlooks, e.g.

[67].

The complexity of land use models is continually increasing as modellers attempt to ac-

count for “climatic, political, economic and demographic” effects on land use change [126].

Models such as “CRAFTY” simulate various land holder types (crop farmers, livestock

farmers, loggers) competing for land, with land productivity affecting the profitability of

each agent type [126]. Models like this are able to test the effects government policy will

have on land use into the future, e.g. [150].

Carbon Cycles

The carbon cycle refers to the ways in which carbon (usually carbon dioxide) moves

through the biosphere, lithosphere, atmosphere, and hydrosphere. Global heat retention

due to carbon dioxide depends on the quantity of CO2 in the atmosphere. While carbon

emission from fossil fuels initially enter the atmosphere, they can end up dissolved in the

upper or lower ocean [38], changing the concentration in the atmosphere. Carbon dioxide

can also enter via thawing of permafrost regions. An example of a model in which CO2

migration is explicitly accounted can be found in [38].
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Strategy Adoption in Multi-Agent Competitions

To understand a system, the behaviour of the people must be well represented. For this to

be the case, the behaviour of the people must be open to change when better strategies are

presented. A strategy that involves perfect cooperation may produce an optimal pay-off

[16] (i.e. the largest total harvest); this strategy can be undermined by agent defecting

from the cooperation strategy [25]. The agents in such models are usually referred to

as cooperators and defectors, with a third ‘agent’ being an enforcer whose purpose is to

punish defectors [130].

In commons harvesting games the pay-off for over harvesting (performing selfish be-

haviour) depends on the gains to be made (extra resources) and the losses (fines or other

punishments). The losses to defectors usually come with a cost to the cooperators [117],

as is the case in [24]. However, this can be a costless expense to the cooperators if the

losses are in the form of social ostracising, as is the case in [117]. Some strategy models

may look at the spontaneous emergence of cooperative strategies due to aligning pay-off

functions (i.e. the cooperation of two agents benefits both agents). This type of behaviour

was examined in [161] with the modelling of red deer harvesting and pest control.

Carrying Capacity / Biodiversity

Carrying capacity is the concept that a region has a limit to the number of people (or

animals) it can sustain. The level depends upon the health or care given to the region,

e.g. if a region is over stocked with grazing animals it might become bare and will have its

carrying capacity diminished, or if irrigation is implemented in the area carrying capacity

can be increased.

Biodiversity is scope of different species in an area. A loss of species from an area (either

through extinction or habitat lose) is viewed as a reduction in biodiversity in that area.

Biodiversity is thought of as a key element in retaining ecological health. Often the loss

of one species will cause a loss of another, if it provided the main food source for that

species.

While understanding the concepts of carrying capacity and biodiversity is easy, ac-

counting for ecological health and resilience is very trick as it is not straight forward. The

concepts do not have sufficiently specific definitions, and placing a value on it is difficult

[48]. Some attempts, to evaluate the health of a system, are based on examining the

total economic benefit it delivers to society (e.g. tourism, food production, or natural

resources); however these estimations often have flaws [2].

Waste Generation / Pollution

The generation of waste and pollution is often an issue of concern for many people. Waste

generation is often linked to the rate of economic activity, and may have an impact on the

environmental spheres [178]. Understanding pollution generation is important as elements

such as heavy metals or pesticides can have adverse impacts on many species.
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Green Bonds

Bonds are a form of loan. They are often representative as a form of indebtedness of a

government to an individual civilian. Bonds are a means for a governments to quickly

raise funds, and pay-back costs later. In a model presented in [121] “green bonds” were

used to offset government expenditure of green subsidies, to test if they could help with

deal with the issue of advancing green technology.

Regional Effects / Spacial Effects

Many socio-ecological systems operate in a spacial context. This complicates matters

when modelling as it raises questions, e.g. how are the agents in the model connected

(does distance apart affect likelihood of iteration), can agents move from one region to

another and if so what compels them to move, how does location affect the behaviour of

the agents, etc. [57]. Implementing spacial effects is difficult in system dynamics models,

but easier in agent based models.

Multi-market

There are many models which will simulate a market (a product with buyers and seller),

however the model will usually only contain a single market8, like in the case of [179].

Market Signalling

Markets can signal to other processes in an economy, e.g. a drop in price may indicate

that a product is being over produced. Signals can play a role in the overall behaviour

of the system. The time in which signals takes to reach the producer can determine the

stability of the produced good [169].

Servicing

One potential solution to reducing material is the increased use of services, as opposed to

private ownership of goods that produce services. Car sharing services (e.g. car rental)

are a simple example of this. Rather then each person owning a car (which may go largely

unused for people living in a city) a single car is hired. This reduces the amount of

materials that are used to create a car for each and every person. This issue is modelled

in [179].

8General equilibrium models will have multiple markets, however these are static representations with
no buyer-seller interactions.
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5.2 Desired Ability of the Model

The aim of this chapter is to create a model which explicitly models individual human

actors, making consumption decisions within an economy which is linked to the broader

ecosystem. This would mean that economic activity in the model is dependent upon the

state of wildlife stocks and mineral reserves.

The economy in this model should have many sectors, and many different items for the

human actors to select from in order to meet their desires. The prices of goods should

be completely endogenous. Spacial elements should be included so that trading can occur

between regions, along with variations in natural resource availability and accessibility.

The model should also include a government agent, capable of imposing regulations (e.g.

taxes, and wealth distribution) on the people and firms. The people and firms should

be able to freely adjust their actions to maximise their self-interests. The model should

replicate the real world as closely as possible. In the real world there are many different

goods consumers can purchase, which are sourced from a wide variety of natural resources,

often imported from multiple regions.

5.3 Purpose

The purpose of the model is to be able to examine the implications of government policy

for the lives of individual citizens in various regions, and their combined consumption

of natural resources. It is also intended to examine the effects of shifting technological

advancement and changing resource extraction efficiencies. A “toy” style model has been

chosen in this iteration, as the intent is to examine the system behaviour rather than

making predictions about real world situations. Agent based modelling was used so that

the effects of the system can be seen on the individual level so that differences in individuals

can be examined.

The hope is that questions such as: does taxing an item produce the desired effect9,

10? what effect does minimum wage have on the lives of people? or, how would increased

transportation costs change the economy?

The new model aims to explore issues unexamined in the previous chapters. The main is-

sue that this model can address, which is not examined in previous chapters, is inequalities

between individuals in a population. Aggregation assumptions may not be appropriate

when studying the complex phenomena of the world economy, especially when tipping

point feedback loops are present (behaviour may appear stable when aggregated, but

unstable when individuality is considered, e.g. the 2008 global financial crisis).

The results presented in this Thesis are to demonstrate the abilities of the model frame-

work. Questions regarding what should be placed in the model framework have been left

for future work. The most important aspect to be demonstrated is the ability of the model

framework to capture complex knock-on effects for a wide range of factors.

9For example, does taxing fish help reduce fish consumption and thus benefit wild fish stocks.
10There is a dark joke (that illustrates this point), that taxing cigarettes does not reduce the numbers

of cigarettes smoked, but stops many poorer people from eating.
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5.4 Justification

There is a great need for models to better capture the effect human decision making has

on the consumption of materials and services, as this in turn affects natural resources

and the environment. By better capturing the bounded rationality of human decision

making, more detailed and complex behaviours can emerge from the models. Questions

like ‘can certain events trigger mass changes in consumption habits?’, ‘how much do re-

inforced habits hinder social change?’ or, ‘can role model behaviour influence others into

more sustainable ways?’ are better answered with human decision making models as they

can offer more insights than standard socio-ecological models. Multi-agent modelling is a

commonly used approach to incorporate the human decision making process into a model

[88, 5, 91, 16].

The following quotes highlight the importance of developing models that emulate human

decision making in a dynamic environment in order to simulate their corresponding impact

on the wider world.

� “What is apparent is the lack of a new approach to handling what Dovers describes

as “the fundamental, structural inconsistencies between natural and human sys-

tems. The causes of sustainability problems lie deep in patterns of consumption and

production, settlement and governance” that any modelling, be it boosted by the

unprecedented computer power, so far has left untouched” [160].

� “For further application in ecological economic models, we suggest that the consumat

approach [be used] ... to simulate social processes and habitual behaviour, next

to deliberate behaviour, in order to unravel the behavioural dynamics underlying

consumption of common properties and to design suitable management strategies

for our common good” [88].

� “In the process of truly coupling the human systems and natural systems within any

[socio-ecological system], the importance of understanding how human decisions are

made and then put into practice can never be exaggerated” [6].

� “Information structure is an important feedback mechanism with high-leverage. If

you make information go to places it did not go before, it may well cause people

to behave differently.” “Missing feedback is one of the most common causes of

system malfunction. Meadows points out, we humans have a systematic tendency to

avoid accountability for our own decisions and that is why so many feedback loops

are missing. Thus, adding or restoring information can be a powerful intervention,

usually much easier and cheaper than rebuilding physical infrastructure” [80].

� “The article encourages modellers to incorporate out-of-equilibrium aspects of an

economic system as appropriate and highlights the potential for SD practitioners to

contribute to economics, especially ecological economics” [169].
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The cost of items can play a large role in purchasing habits. To understand these habits,

it is important to arrange a model so that the simulated people can make consumption

choices based upon cost.

One important issue to studying is the equality between all people, both interregionally

and intergenerationally. Unfortunately this is a factor that has continued to have mixed

results since the Brundtland Report in 1987 [81]. An advantage of multi-agent modelling

is its ability to break down macro variables (e.g. average income) into raw statistical data

(e.g. individual income). This allows for exploration of questions around the topic of

inequality [88].

By defining clear guidelines for sustainable behaviours11, decisions around consumption

may become easier to make. Indicator based measures can suffer from the user having to

interpret the information and then make a decision as to what to do. For a product that

claims to produce 1.2kg of carbon, a consumer may wonder, “is 1.2 kg of carbon a lot,

or is it negligible?” [149] which may further complicate the consumer’s decisions. Also,

to get a full appreciation for one’s total impact, a record would have to be kept to tally

all carbon emissions, a highly intensive practice unlikely to be adopted by any individual.

For these reasons it is important to develop information that can be easily interpreted and

applied by consumers.

As this model replicates autonomous individuals in a dynamic world, it can be easily

relatable to real humans. Agents in the model can be given different personality traits to

further extend their connection to real humans and to offer more insights into the models

behaviour. Questions around culture can then be investigated further [88] to produce

further knowledge around sustainability.

The literature review indicates that the coupling of broad socio-ecological models with

multi-agent models is still in its infancy. The exercise of adding human behaviour/decisions

to a socio-ecological model could extend the current knowledge of these systems. By

further developing this field, it is hoped that better governance policies can be developed.

5.5 Model Description

Overview

The ‘world’ in this model is separated into multiple regions. Each region has its own

marketplace and government. Each region has its own supplies of natural resources for

which the government can sell licences in the marketplace. There are many different types

of items, which can be traded at a marketplace and used by firms to produce other items.

A market can purchase items from other markets (i.e. from other regions) to fulfil the

demand for items. People and firms (of which there are multiple) can purchase items from

the marketplace to fulfil their needs. Banks are indirectly included due to the ability of

firms and people to go into negative cash levels (with zero interest loans). The basics of

the model are depicted in Figure 5.19.

11For example, buying high quality goods over low quality goods due to longer life cycles, or purchasing
services over owning physical goods.
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Figure 5.19: A diagram of the novel model.

Assumptions

The assumptions made in the model are as follows:

� There is a ‘single’ firm of each firm type in each region (i.e. one fishing, building,

manufacturing, and transporting firm in each region). The single firm represents a

collection of smaller firms of the same type.

� Resource extraction efficiencies are held constant. In this first iteration of the model,

resources have not been modelled explicitly and are essentially assumed to be un-

limited. In the future this will be changed so that the dynamics of the resource can

also be examined.

� Constant efficiency of production. The rates at which resources need to be consumed

to create other products is held constant.

� Production follows a Leontief production function (see section “Production func-

tions”).
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� People in the model spend their money according to a hierarchy of needs (see section

“Human Needs/Driving Forces”). The order of the needs is food, shelter and finally

products.

� Spending practices of people have inertia (based on a mass, spring, damper dynamic).

� Prices are endogenous and based upon the supply and demand of each item (if there

is an imbalance prices will shift accordingly). This price movement is in keeping

with general supply and demand theory [59].

� Governments collect money from the sale of natural resources. This money is redis-

tributed evenly amongst the citizen of the region. There is one government in each

region.

� Production increases and declines based upon profitability of the firm. This is akin

to investors putting capital into enterprises that give high returns, and vis versa

[155].

� Firms have access to unlimited zero interest loans. When loans are given out it can

be imagined that there is an investor like a bank supplying the money, however the

bank is not explicitly modelled.

� Wealth is distributed according to a distribution function, rather than endogenously

through ownership of a firm or shares in a firm.

� The collection of firms (which have been aggregated into one firm) partake in a

tragedy of the commons scenario, where by each firm tries to acquire larger profits

by increasing its production rate. This can oversupply the market and cause the

price to fall as competitors undercut each-other on price, as it is assumed that all

the demand would go to the cheapest supplier (even if this is by a minute margin).

� All actors have perfect information about prices, i.e. they do not have bounded

knowledge.

Detailed Description

1. Setup of the model takes place. Time t is set to zero and time step ∆t is defined.

2. Each person develops a ‘crude’ shopping list for the coming round of trading. The

first item to be placed on the list is food. The person examines their budget and

notes on their list how much food they can afford to purchase (based on the expected

cost of food in their marketplace), up to a maximum of 2 food units per time unit.

They then examine the remainder of their budget and note shelter, up to a maximum

of 1 shelter unit per time unit. After this the remainder of the budget is spent on

products12.

12These products could be thought of as items such as shirts, cars, and electronics.
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The crude shopping list informs the real shopping list. Changes in the crude shopping

list are smoothed using a critically damped mass-spring-damper style function (mass

and spring equal to 1).

3. Each firm develops a shopping list for the coming round of trading. First, firms

must decide if they will expand production or reduce production. They do this by

calculating their adjusted profit ratio p = (R/E−1)/T , where R is the revenue made

if output items are sold at current market prices, E is the expenses of purchasing

input items at expected market cost, and T is target profits per dollar spent on

expenses.

The target production rate α is modified depending on the altered profit ratio. The

target production rate is used to better model the flow of investment, i.e. faster

growth if profit ratios are higher. The rate of change of α depends on p, investment

rate I, and divestment rate D. This is noted in equation 5.1.

αt =


0 p ≤ −1

αt−∆t(1 + pD∆t) −1 < p < 0

αt−∆t(1 + pI∆t) 0 ≤ p < 1

αt−∆t(1 + I∆t) 1 ≤ p

(5.1)

The firm then checks if there is a blockage in its production line. Blockages can be

caused by either disruptions to the purchasing of input, or over stocking of output

product. The actual production rate β is compared to the target production rate α.

If β ≤ Bα, where B is the blockage fraction, then αt = αt−∆t(1−K∆t), where K is

the blockage decay rate function.

Once these calculations have taken place, the firms calculate their desired stock

levels. These levels are the amount of stock (input and output) the firm desires to

have on hand. To do this, the firm calculates the rate at which it will consume inputs

and produce outputs, given production ratios and its target production rate. These

rates are then multiplied by the target reserves fraction to arrive at the target stock

levels.

Finally, the firm’s shopping list is created by calculating the difference between the

desired stock levels and actual stock levels. Each trading round firms send all of

their output stock to the market.

4. Market13 exchanges are now simulated. A diagram of a market is displayed in Figure

5.20. To begin, the marketplaces calculate the cost of purchasing each item from

each marketplace (including their own). The cost is based on a per-unit basis and

includes the price and cost of transporting the item. Then the market of each region

takes the orders (requests for items) and their equivalent cost (based on expected

cost) from each person and firm. In doing so, people or firms can go into negative

13The term market will refer to a particular item in one region, while marketplace will refer to a collection
of markets (many items) in one region.
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Figure 5.20: The market of an item i within a region r. The market is part way through a
round of trading, i.e. there are still transactions that need to happen before the trading process is
complete. There are two sides to the market. The left side represents demand, the right, supply.
The cash is transferred between jars as transactions occur. The 3 icons in the shopping cart (two
shirt icons and one exclamation mark) indicate a demand for 3 units of the good. Similarly the 8
icons on the shelf represent the initial supply of 8 units of the good. As two units of the good are
in the shopping cart and four units have been sold from the shelf (indicated by the tick icon), we
can infer that at least two units of the good have been sold to an outside market place (i.e. sold
and transported to a different region).

cash holdings. The orders and cost are aggregated into a demand tally and demand

cash jar. The items that the people and firms wish to sell are then added to the

shelves of the market. Governments then put licences (an unlimited supply) for

natural resources on the shelves.

Once the marketplaces are primed, trading begins. This process is broken down into

many partial rounds of trading, where only a fraction of the demand for an item is

attempted to be fulfilled. Each partial round is further broken down into a particular

trade of a single item to a single marketplace. The ordering of the particular trades is

randomised so that no singular item is prioritised when trading. The partial rounds

are conducted to make trading a more continuous function between all items, rather

than occurring in large discrete chunks.

To conduct a particular trade, a marketplace is selected at random along with an

item14. The market cost record is examined. The market that is selling the item for

the lowest cost will be approached for trading (presuming no trading restrictions are

broken, the market is still stocked with the item, and there is transportation still

available). The ‘buyer found’ flag will be activated for the approached market. The

14This is repeated until all items from all marketplaces have attempted a particular trade. The process
is repeated every partial trade round.
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two markets will exchange the item and cash. Transportation for the item will be

consumed in equal parts from both the supply marketplace and demand marketplace.

Cash will be paid for the transportation out of the demand cash jar. The transaction

is recorded in the import and export record. The transaction can be hindered due to

a lack of supplies, cash, or transportation. These factors are appropriately accounted

for in the model.

5. After trading has taken place, the actual cost of each item is calculated based on

how much was purchased and the amount of cash spent. Next, items and cash are

returned to people and firms. Items that were supplied to the market are returned

along with the cash accumulated in the supplies cash jar. The amount originally

supplied by the person or firm correlates with the size of the return.

Items that were purchased for the people and firms are returned. Purchased goods

are returned in order of altered profit ratio, with people being assigned a ratio of

zero15. People also receive returned goods in order of wealth. It is assumed that

people and firms are able to ‘out bid’ each other by minute fractions.

When returning purchases, the actual cost is taken into account. If the actual cost

is higher than expected, the difference is paid into the demand cash jar. People and

firms that miss out on purchased goods receive money from the demand cash jar.

6. The price of each item is adjusted based on an adjustment rate C and the target to

actual sales ratio σ. The target sales rate is calculated off the amount of product

placed on the market shelf, divided by the target reserves fraction, and multiplied

by the time step. The change in price P is given by Pt = Pt−∆t(1 + σC). If supplies

to a market were equal to zero, then the price will move up or down depending on

if the buyer found flag was activated.

7. Each firm now examines its stock levels and computes its actual production rate

β. The actual production rate is based on the amount of stock available and the

production ratios, with a maximum of α. Production follows a Leontief function,

i.e. no substitution between inputs can be made. Once β is established the input

stocks are consumed and the output stocks are created.

8. If a firm has positive cash stocks, the cash is distributed among the people of the

region according to a weighting function w = axc, where c is the profit distribution

factor (a higher value indicates a more uneven distribution), x is the person’s identity

number (ranging from 1 to the number of people in the region), and a is a scaling

factor (so that the distribution weights sum to 1).

Cash collected from the government through the sale of resource licences is redis-

tributed to the people of the region evenly.

9. Time t is incremented by ∆t and the process is repeated until the end time has been

reached.
15This stops odd behaviour happening, i.e. where a highly profitable firm receive a small fraction of

goods because its request for goods represent a small fraction of the total demand.
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Software

The model was coded in the MATLAB environment. No pre-defined software package was

used to construct the model.

For copies of the software please contact the author at aheath@uow.edu.au.
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5.6 Results

To begin experimentation, a ‘toy’ world was set up within the model framework previously

described. The world is fictional so units have been left unspecified, as the purpose is to

test model behaviour. All tests, apart from the final test, simulate a single region for

simplicity purposes.

There are 9 items that are traded in the ‘toy’ world. These items are: fish, wood, iron,

oil (which represent the material inputs required for the following products), food, shelter,

products, freighting (transportation), and labour. The properties of these items are listed

in Table 5.1. The properties that an item can have are: if it can be traded, if it can be

traded regionally, the transport type required to move it around, and the number of units

needed to move a single unit of the good a single unit of distance.

In this preliminary version of the model, the people follow very simple consumption

rules. They examine their current cash supply and attempt to purchase food, shelter, and

products in this order, until they have exhausted their cash supply. They will purchase

a maximum of 2 units of food and 1 unit of shelter each time unit. Products can be

purchased at an infinite rate. All people produce labour which can be sold in the market.

They each produce 20 units of labour each time unit.

There are four different types of firms. The four firm types are: fishing, building,

manufacturing, and transporting. Each type represents an aggregation of multiple firms

producing the same type of good. Because of this, the price of the good will fall when it

is over supplied to the market as the individual firms (which are hidden by the aggregate)

will undercut each other to gain greater market share.

Each firm type has a production efficiency. The efficiency is related to the ratios at

which inputs are converted into outputs. The ratios for each firm type are given in Table

5.2.

Eight different tests (A through to H) were conducted to examine the behaviour of the

’toy’ world. To begin, a simple base line simulation was conducted. The base line test was

labelled test A. The parameter settings of test A, and the subsequent tests (B through to

H) are presented in tables 5.1, 5.2 and 5.3.
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Item Tradeable Regional
Trade
Allowed

Transport
Type

Transport Cost (trans-
port type units/item
unit · distance)

Fish true true Freighting 1
Wood true true Freighting 1
Iron true true Freighting 1
Oil true true false false
Food true true Freighting 1
Shelter true false false false
Product true true Freighting 1
Freighting true false false false
Labour true false false false

Table 5.1: Item properties used throughout all model tests. ‘False’ indicates that no transport is
needed to move the item. This has been applied to Oil so that the inputs used in the creation of
freighting transportation can always be traded, even if no transportation existed.

Input/Output Value (A) Altered (X)

Fishing
Fish (input) 1.0 -
Labour (input) 1.0 0.2 (G)
Food (output) 1.0 -

Building
Wood (input) 1.0 -
Labour (input) 1.0 0.2 (G)
Shelter (output) 1.0 -

Manufacturing
Iron (input) 1.0 -
Labour (input) 3.0 -
Product (output) 1.0 -

Transporting
Oil (input) 1.0 -
Labour (input) 1.0 -
Freighting (output) 1.0 -

Table 5.2: Production ratios used throughout the model tests. (X) denotes test.
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Parameter Value (A) Altered (X)

People
Starting Cash 50 200 (B)
Desired Consumption Rate of Food 2.00 -
Desired Consumption Rate of Shelter 1.00 -
Desired Consumption Rate of Products ∞ -
Labour Output Rate 20 -
Profit Distribution Factor 1.00 3.00 (C)
Firms
Target Profits 0.50 1.00 (E)
Firm Investment Rate 0.10 -
Firm Divest Rate 0.05 -
Maximum Production Blockage 0.80 -
Blockage Decay Rate 0.20 -
Target Reserves of Firm Outputs 0.30 -
Target Reserves of Firm Inputs 0.30 -
Markets
Price Change Rate 0.05 -
Distance To Market 0.10 0.30 (F)
Government
Fish Licence Price 1.00 4.0, 0.1 (B,D)
Wood Licence Price 1.00 4.0, 0.1 (B,D)
Iron Licence Price 1.00 4.0, 0.1 (B,D)
Oil Licence Price 1.00 4.0, 0.1 (B,D)

Table 5.3: Parameter settings used throughout the model tests. (X) denotes test.
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5.6.1 Base Run (A)

First, we will examine the behaviour of the markets in the model. The food market is

shown in Figure 5.21 and the product market in 5.22. The top plot shows the price of

the good (black), and the expected price (grey). The expected cost includes the cost of

transporting the item, and so price and expected cost can vary semi-independently, as can

be seen at time t ≈ 620 in the food market.

We can see from these graphs that the price of an item is in constant flux. The price of a

good falls while the good is oversupplied to the market (see the price of food from the time

t ≈ 480 to t ≈ 530), in keeping with basic supply and demand theory [59]. Over this time

the level of desired sales (grey) is higher than the actual sales (black). At time t ≈ 540

the adjusted profits of the fishing firms dips below zero (see Figure 5.25. Investors16 begin

divesting and the production rate of food declines. This results in a dip in the desired

sales rate of food (see Figure 5.21). This causes actual food sales to out-pace target food

sales, causing the price of food to rise.

The consumption rates of the 1st and 5th person (i.e. the poorest and wealthiest

respectively) are shown in figures 5.23 and 5.24. Both person 1 and 5 (and the other

people in the model) manage to meet their consumption needs of both food and shelter

the majority of the time. Person 1 however has a far lower consumption rate of products

compared to that of person 5. Both person 1 and 5 have fluctuating consumption rates of

products.

The production rates of each firm type are presented in figures 5.25, 5.26, 5.27, and

5.28. The production rates of the fishing and building firms are relatively constant. The

production rates of the manufacturing and transporting firms are comparatively unstable

16I have mentioned investors to make it easier to imagine what is happening, however the investment
and divestment (i.e. growth or decline) is controlled by the target production rate variable α.

Figure 5.21: The food market in test A.
(Top) black - price; grey - expected cost. (Bot-
tom) black - actual sales; grey - target sales
based on stock levels.

Figure 5.22: The product market in test A.
(Top) black - price; grey - expected cost. (Bot-
tom) black - actual sales; grey - target sales
based on stock levels.
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Figure 5.23: The consumption rates of per-
son 1 in test A. Black - consumption rate; grey
- desired consumption based on budget con-
straints.

Figure 5.24: The consumption rates of per-
son 5 in test A. Black - consumption rate; grey
- desired consumption based on budget con-
straints.

(i.e. their rate of production is constantly changing). The drops in production rate

correspond to points in time when the adjusted profit ratio (-1 indicates that expenses

equal income, i.e. zero profit) falls below zero. Rises in production correspond to adjusted

profit ratios being greater than zero.

The stability of the food and shelter market is due to their higher priority in the budget-

ing of citizens. When money becomes scarce for the citizens, the first item to be removed

from their shopping lists is products. This makes the manufacturing sector unstable, which

in turn destabilises the transporting sector (as reduced production of products reduces the

need for freight).

In this example we can see five points at which the economy slows down (at t ≈
280, 470, 550, 620, and 680). At these points the profits of each firm type have dropped be-

low the target profit margin and so production rates begin to drop. The drop in production

causes the demand for labour (noted by actual sales) to diminish as seen in Figure 5.29.

Just before the aforementioned times, the consumption rates of the individuals become

very similar, as the profits of the firms near zero (when this happens there are no profits

to be unequally distributed). This can be seen by comparing the product consumption

rate of person 1 and 5.

At time t ≈ 550 the total cash held by all people increases as shown in the bottom plot

of Figure 5.30. This is because the manufacturing firms go into debt at this time as shown

in the top plot of Figure 5.30. Manufacturing firms go into debt at this time because they

undergo a rapid growth stage where they produce more product than they sell, which can

create a situation in which expenses exceed income.



136 CHAPTER 5. NOVEL MODEL

Figure 5.25: The fishing firms in test A.
(Top) production rate. (Bottom) the firms’ ad-
justed profit ratio.

Figure 5.26: The building firms in test A.
(Top) production rate. (Bottom) the firms’ ad-
justed profit ratio.

Figure 5.27: The manufacturing firms in test
A. (Top) production rate. (Bottom) the firms’
adjusted profit ratio.

Figure 5.28: The transporting firms in test
A. (Top) production rate. (Bottom) the firms’
adjusted profit ratio.
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Figure 5.29: The labour market in test A.
(Top) black - price; grey - expected cost. (Bot-
tom) black - actual sales; grey - target sales
based on stock levels. Due to the price and
expected cost being equal, only the grey line
(expected cost) appears in the plot.

Figure 5.30: (Top) Cash reserves of the man-
ufacturing firms (Bottom) Cash held by each
person during test A.
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5.6.2 Currency In Circulation (B)

The first test conducted (Test B) involved increasing the initial cash held by each person

from $50 to $200. This had the effect of increasing the total amount of currency in

circulation. The price of resource extraction licences was also increased from $1 to $4 to

mimic the price increase seen in all other items17. This had no noticeable effect on the

amount of goods consumed by each person. The only effect to occur was the inflation of

prices by a factor of 4, i.e. 50/200. This is demonstrated by comparing the price of food

and products from test A with test B in figures 5.21/5.22 and 5.31/5.32 respectively.

This demonstrates the effects of printing new money and putting it into the economy.

It is now well known that the printing of money by governments causes the costs of items

to rise, i.e. inflation. While this information is not new, it is important to demonstrate

that the model handles this fact without any special mechanism for modelling inflation.

Figure 5.31: The food market in test B. (Top)
black - price; grey - expected cost. (Bottom)
black - actual sales; grey - target sales based
on stock levels.

Figure 5.32: The product market in test B.
(Top) black - price; grey - expected cost. (Bot-
tom) black - actual sales; grey - target sales
based on stock levels.

17If this is not implemented the condition of the poorer people worsens due to the same mechanism
demonstrated in test D.
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5.6.3 Wealth Distribution (C)

In test C the wealth distribution factor was increased from 1 to 3 to examine the effects

of making wealth more unevenly distributed. The results of this test were surprising. The

economy appears to be more stable when comparing the production and profit ratios of

the fishing and manufacturing firms (see figures 5.33 and 5.34 respectively). A more stable

economy means that production rates remain higher on average. This brought benefits to

the average consumption of all people in the model, with the biggest benefit going to the

poorest person (a 26% increase in product consumption). The wealthiest person received

only minimal increases in their consumption of goods (a few percent). Figure 5.35 shows

the consumption pattern on person 1. This is a far more robust consumption pattern

compared to that of person 1 in test A (see Figure 5.23).

The effects of the stabilised economy can be seen in the levels of cash held by each

person. When the profits of businesses decline, the difference in income and cash held by

each person reduce because the profits being generated, and then unevenly distributed,

approach zero. This appears as a converging of cash held by each person. In Figure 5.36

it is evident that the average cycle time of economic growth and shrinkage is smaller in

test C (bottom plot) than in test A (top plot), indicating more frequent but less volatile

rises and drops in economic output. Further testing needs to occur in order to validate

this hypothesis.

Figure 5.33: The fishing firms in test C.
(Top) production rate. (Bottom) the firms’ ad-
justed profit ratio.

Figure 5.34: The manufacturing firms in test
C. (Top) production rate. (Bottom) the firms’
adjusted profit ratio.
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Figure 5.35: The consumption rates of per-
son 1 in test C. Black - consumption rate; grey
- desired consumption based on budget con-
straints.

Figure 5.36: (Top) Cash held by each per-
son during test A. (Bottom) Cash held by each
person during test C.
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5.6.4 Licence Cost (D)

In test D the cost of acquiring resource extraction licences was decreased from $1.0 to

$0.1. The money collected from the sale of these licences is distributed equally between

all people of a region. This alteration reduced the ability of the poorer people to consume

goods, as a larger proportion of their income is dependent on these sales. Figure 5.37

shows the consumption pattern of person 1. It is clear that there is a marked reduction

in their consumption of products and shelter, when compared to person 1 of test A (see

Figure 5.23).

This demonstrates the knock-on effects of taxation (on natural resources) on to tangi-

ble consumption rates of individuals. The total consumption of items decreased in this

scenario, indicating that the tax rate can have a macro effect on the total output of the

economy.

Figure 5.37: The consumption rates of per-
son 1 in test D. Black - consumption rate; grey
- desired consumption based on budget con-
straints.
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5.6.5 Target Profit Ratio (E)

In test E the target profit ratio was increased from 0.5 to 1.0 (dollars of profit per dollar

invested). This alteration increased the amount of goods consumed by all people, the only

exception being the consumption of products by person 1 which fell by 2%. This result is

counter-intuitive to the expected outcome, i.e. that increased profit ratios would increase

disparities of consumption between person 1 and 5. A possible reason for the increased

consumption of goods is the appearance of a more stable economy. Figure 5.38 show the

production rate and adjusted profit ratio of the manufacturing firms. The production

fluctuates in a similar way as seen in test A (see Figure 5.27), however the magnitude of

the fluctuations are smaller in size, thus making the economy more stable. Further testing

needs to occur in order to validate this hypothesis.

Figure 5.38: The manufacturer firms in test
E. (Top) production rate. (Bottom) the firms’
adjusted profit ratio.
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5.6.6 Transport Distance (F)

To examine the effect transport distance has on the consumption levels of the people, the

distance from firms, people, and government to the market was increased from 0.1 to 0.3

units. We can see that when the economy is operating at full capacity, transportation is

consumed at a rate of approximately 35 units per time unit (see Figure 5.40). This is

compared to approximately 15 units of transport consumption of test A. The increase in

transportation production negatively impacts the consumption of goods for all persons in

the model.

In test A both person 1 and person 5 consume enough food and shelter to meet their

maximum threshold (see figures 5.23 and 5.24). In this test, both person 1 and person 5

struggle to meet their desired consumption rates of food and shelter during the entirety

of the simulation (see figures 5.43 and 5.44). The reason for this appears to be twofold.

One, more resources (including labour) need to be put towards producing transport to

move goods throughout the economy, and two, the economy appears to have become more

unstable and slower to recover. This second point is harder to verify and would be worth

further examination in future work.

It is well understood that remote communities (either due to distance or terrain) can

be economically effected by their remoteness [155]. Understanding the exact degree to

which these factors effect the communities is hard to model, as spacial effects need to

be explicitly accounted for. Again, this test demonstrates the models ability to facilitate

knock-on effects throughout the whole economy. In this case it has been demonstrated

that increase transport distances may severely hinder production of goods and services.

Figure 5.39: The freighting market in test A.
(Top) black - price; grey - expected cost. (Bot-
tom) black - actual sales; grey - target sales
based on stock levels.

Figure 5.40: The freighting market in test F.
(Top) black - price; grey - expected cost. (Bot-
tom) black - actual sales; grey - target sales
based on stock levels.
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Figure 5.41: The transporting firms in test
A. (Top) production rate. (Bottom) the firms’
adjusted profit ratio.

Figure 5.42: The transporting firms in test
F. (Top) production rate. (Bottom) the firms’
adjusted profit ratio.

Figure 5.43: The consumption rates of per-
son 1 in test F. Black - consumption rate; grey
- desired consumption based on budget con-
straints.

Figure 5.44: The consumption rates of per-
son 1 in test F. Black - consumption rate; grey
- desired consumption based on budget con-
straints.
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5.6.7 Technology Shift (G)

The effect of changing the production efficiency was examined in test G. In this test the

amount of labour required to produce a unit of food and shelter was changed from 1.0

to 0.2 units at time equal to 600. This naturally affected the price of food and shelter.

Figure 5.45 shows a decrease in the average price of food after this point. The decrease

in labour directed to the production of food and shelter should correspond to an increase

in the production of products, however this is difficult to infer from examining the selling

rate of products in Figure 5.46. The average consumption rate of goods increases slightly

for all people, however the increase is small (a few percent). The increase was predicted to

be bigger. The reason for the smaller than expected increase might be due to an increase

in the instability of the economy, as more labour is dedicated to the most unstable sector

(i.e. the production sector, which is the first to be discarded when people begin cutting

back on their spending). This hypothesis requires further testing to validate.

Figure 5.45: The food market in test G.
(Top) black - price; grey - expected cost. (Bot-
tom) black - actual sales; grey - target sales
based on stock levels.

Figure 5.46: The product market in test G.
(Top) black - price; grey - expected cost. (Bot-
tom) black - actual sales; grey - target sales
based on stock levels.
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5.6.8 Resource Poor Region (H)

In test H another region was added into the simulation. This test was designed to examine

the effect resource abundance plays on the ability of people from different regions to

consume goods. The first region has access to supplies of fish, wood, iron, and oil. The

second region (positioned 1 unit of distance away from region one) has access to only oil

and iron (thus it must import fish and wood). This test produced a large disparity between

the people of each region. The people of region one easily met their consumption needs

of food and shelter, while the people of region two struggled to consume enough shelter.

The combined consumption of products of the people of region two was less than that of

the poorest person of region one. The test showed that the effects of having to import

products can be significant and a great hindrance to the residents of the region.

This finding should give us pause when considering the economic situation of peoples

living in different countries which have vastly different natural resource supplies. If eco-

nomic prosperity is dependent on this, then restriction on immigration become a moral

issue.

5.6.9 Alterations Summary

Table 5.4 was produced to better examine the effects each test had on the citizens of the

‘toy’ world. The table displays the average consumption rates of each citizen. Test A is

displayed in raw units, while tests B through to G have been normalised against test A.

Test H is displayed in raw units for each region. To produce the summary table, the time

frames of the tests were increase twofold, to produce more reliable averages.

In test A, it is evident that each citizen consumes approximately the same amount of

food and shelter, however differences appear in the amount of product consumed. The

poorest citizen’s product consumption was around 40% of the wealthiest.

Increasing the currency in circulation, target profit ratios, and decreasing labour costs,

all had a slight beneficial effect for the citizens. Increasing the inequality in wealth dis-

tribution had a slight beneficial outcome on the consumption pattern of all citizens, with

the largest effect going to the poorest individual, whose average consumption of products

increased by 26%. Consumption of food and shelter also rose for all individuals.

Decreasing natural resource licence costs and increasing the transportation distance both

negatively affected the citizens. The poorest citizen had their consumption of products

reduced by 60% in test D and 65% in test F. No major impact was observed to occur for

the wealthiest person in test D, however consumption of products was reduced by 30% in

test F.

The inclusion of a resource poor region produced a stark difference between the citizens

of each region. The citizens of the resource rich region (r1) increased their consumption

compared to test A, while the citizens of the resource poor region (r2) consumed a fraction

of their counterparts.
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Person A Bn Cn Dn En Fn Gn Hr1 Hr2

Food (2)
1 1.87 1.04 1.03 0.89 1.03 0.71 1.03 1.95 1.89
2 1.89 1.03 1.02 0.97 1.03 0.82 1.02 1.95 1.90
3 1.88 1.03 1.02 0.97 1.03 0.88 1.02 1.95 1.90
4 1.88 1.03 1.03 0.97 1.03 0.92 1.03 1.94 1.90
5 1.88 1.03 1.03 0.97 1.03 0.94 1.03 1.95 1.90

Shelter (1)
1 0.91 1.08 1.08 0.63 1.09 0.41 1.06 0.96 0.14
2 0.96 1.02 1.03 0.88 1.03 0.54 1.01 0.96 0.24
3 0.96 1.02 1.02 0.97 1.03 0.65 1.01 0.96 0.35
4 0.96 1.02 1.02 0.98 1.03 0.73 1.01 0.96 0.42
5 0.96 1.02 1.02 0.97 1.03 0.80 1.01 0.95 0.48

Product (∞)
1 2.11 1.16 1.26 0.40 0.98 0.35 1.03 3.54 0.11
2 2.78 1.10 1.17 0.61 1.06 0.41 1.04 4.32 0.17
3 3.50 1.05 1.09 0.79 1.09 0.51 1.03 5.10 0.28
4 4.23 1.02 1.04 0.93 1.11 0.61 1.03 5.89 0.70
5 4.95 1.00 1.01 1.03 1.13 0.70 1.02 6.67 1.48

Table 5.4: Summary table of average consumption of each person in each test. Tests B through
to G have been normalised with respect to test A. Test H has two populations in different regions.
Desired consumption rates of food, shelter, and product are 2, 1, and ∞ respectively.

Test Description

A Basic run with a single region.
B Increased currency in circulation.
C Increased inequality in distribution of firm profits.
D Decreased natural resources licence costs.
E Increased target profits for firms.
F Increase in transportation distance to the market.
G Decrease in labour costs for fishing and building.
H Addition of a region lacking in natural resource.

Table 5.5: Summary of test scenarios.
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5.7 Discussion

The model developed in this chapter has shown considerable non-linear behaviour. It was

expected that the model would settle to a steady state, however this was not the case.

The model produced cyclical behaviour, with peaks and troughs in production rates, which

naturally had consequences for consumption rates.

The model has demonstrated some potential for experimenting with a multi-regional,

multi-market (many different items being traded) economy, in which the autonomous peo-

ple are able to make consumption choices based on their own buying power. The model

has shown itself capable of investigating a large variety of scenarios. It has been shown

capable of testing issues such as wealth inequality, technological change, government taxa-

tion (in the form of resource licence costs), transportation effects, and resource availability

between regions.

As the overall aim of this thesis is to better understand our world through a holistic

approach, the reversion back to a ‘toy’ world with heavy abstraction may appear counter

intuitive. The author believes that this ‘toy’ still fits within the holistic arch as the aim

of the model is to be able to examine global issues such as regional variations, regional

trade, and energy technology shifts18.

5.7.1 Captured Theories and Concepts

The model is able to capture concepts such as EROI, technological shifts (efficiency changes

in production and extraction), spacial effects and their impacts on trade and markets,

wealth distribution, wages and consumer buying power.

5.8 Verification

The next, and most important step in the creation process of this model is verifying its

validity19. This could be approached in two different ways.

First, if all assumptions made regarding the model could be shown to be perfectly valid

and reliable, then the model could be (tentatively) considered representative of a real

world systems. This process however is problematic as there is no concrete data used, and

human decisions on what counts as a valid assumption can be prone to error.

The second option is to compare the model’s output with real world data. This is also

difficult as few real world examples exist which match the conditions simulated within

this model. For example the production ratios in the tests were kept constant (excluding

test F), however, in the real world production efficiencies are constantly changing due to

technological shifts.

The model does appear to follow business cycles (booms and busts) naturally on its

own accord. This is not due to outside functions, but through endogenous characteristics

18While not included in great detail in this thesis, technological shifts are intended to be studied in the
future.

19Unfortunately time constraints have limited this aspect.
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of the model. This may indicate a small level of congruency between the model and the

real world.

5.9 Conclusions

The aim of this chapter was to develop a novel model which is capable of capturing

phenomena which previous socio-ecological models could not. An important aspect which

past and current socio-ecological models20 have lacked, is the inclusion of human agents

which are free to make consumption choices, along with minimal consideration given to

regional effects (on issues such as trade and production). This model has taken steps

towards rectifying these underdeveloped aspects. To the authors best knowledge the model

presented here is novel in formulation and conception.

20As far as the author is aware.
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Chapter 6

Concluding Remarks

The purpose of this thesis is to help advance humankind’s understanding of the world,

and how we can better handle the issues of our time. This was achieved by adding new

knowledge to our collective understanding of socio-ecological models in three main ways.

First, the uncertainty surrounding the renowned (in the world of socio-ecological mod-

elling) Limits to Growth model was quantified in greater detail. To date, only scenario

testing and local sensitivity testing had been performed on the model. Both of these

methods leave room for question into the reliability of the model, as complex systems

often show non-linear behaviour. This issue was resolved by conducting a Monte Carlo

uncertainty analysis. This involved applying probability density functions to the parame-

ters of the Limits to Growth model and running the model one million times, to develop

probability density functions of the models outputs. This provided a more complete sense

of the reliability of the models projections.

Secondly, an analysis of the trade-off relationships between seven goals (objectives) of

mankind was conducted. This was achieved by applying a multi-objective optimisation

algorithm to the Limits to Growth model to determine the Pareto front of the objectives.

The analysis found many unexpected relationships between the objective trade-offs, and

gave insights into which goals are conflicting, and which are not.

Finally, a novel modelling approach was developed to examine the effects of human

decision making1 and spacial aspects on the lives of individual citizens in a socio-ecological

model. The new model proved capable of capturing dynamic behaviour of a multi-market,

multi-regional economy. The next step in the model’s life cycle is the process of validating

its output. If it can be shown to approximately represent real world systems them it could

prove useful in furthering our analytic abilities.

All of the aforementioned contributions are, to the authors knowledge, unprecedented.

For copies of the software please contact the author at aheath@uow.edu.au.

1In this iteration of the model it was crudely represented with consumer purchasing power and hierar-
chical needs for goods.
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6.1 Future Works

Further work can be conducted investigating the fraction of simulations (from Chapter 2)

which ended in a stable verse unstable future. This is bound to be a small fraction (based

on observation), however it would make for an interesting examination.

This graphical user interface (GUI) presented in chapter 3 could be improved by adding

a tool which allows the user to draw a line over a plot, which then alters the colour of

solutions falling on that line. The colour could transition from red to blue along the length

of the line. The user could then go and look at other plots to see where these points fall

in other pairwise comparison plots.

Another way of improving the GUI could be to include a small image under the name

of each objective so that it is quicker to interpret. A panel with physical dials (e.g. a

sound engineers equaliser board) may also improve the experience of adjusting criteria. A

physical board allows the user to capitalise on their spacial awareness to manipulate the

controls, while their visual senses concentrate on the movement of the bars in the simple

plot.

In the future, a study could be conducted to examine the effectiveness of learning about

objective trade-offs via either manual manipulation (scenario testing), examination of

underlying model equations, or use of the GUI. The ability of the students (or whom ever

happens to be the guinea pig) to correctly identify the trade-offs could be measured to

better understand if the GUI has any appreciable effects. The time taken for a student

to make a decision on the most desirable course of action (select a solution) could also be

studied, along with the variance of the most desired solution (when examining a collection

of student choices).

While the optimisation2 analysis presented in Chapter 4 has been conducted on the

Limits to Growth model, this is but one of many models. It would be of great interest to

apply this technique to other models to determine if the trade-off relationships hold true

for other models. If the relationships hold true over several models, then a greater trust

in their validity can be established.

Adding different objectives to the trade-off analysis would provide new insights to the

work conducted in Chapter 4. There are thousands of objectives for which the human

race could strive to achieve, and so this task is inexhaustible.

Aside from the validation work required for the novel model presented in chapter 5,

there are many aspects of the model that can be advanced. For starters the simulated

world could have a larger number of tradeable items. This would increase the choices

available to the human agents within the model, and allow for the effects of ‘taste’ to be

explored.

If firm types were to be broken up into individual actors (rather than being modelled as

an aggregation of many similar firms) and effects of capital (economy of scale) were also

included, then phenomena such as market monopolisation could be examined.

The model is also intended to be extended to explicitly model natural resource stocks,

thus allowing for extraction efficiencies to be accounted for. If farming and fishing were

2Optimising in the sense of finding the Pareto front of objectives.
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modelled together (with fishing efficiency depending on fish stock levels), then interactions

between food sources could be investigated.

Taxation (including import tariffs) and subsidisation is another component that should

be properly implemented in the model, as this is an important mechanism government

have at their disposal to curb and encourage certain consumption activities.

Another aspect which has been left unexamined are the effects of immigration and em-

igration, along with population growth. By allowing human agents to immigrate and

emigrate from regions, changes in labour force size could be examined. Theories about

the effectiveness of a universal basic income could be examined by implementing a redis-

tribution scheme into the model.

Increasing the complexity of the banking agent would also be of benefit, as interest rates

affect the lending of money and willingness of businesses to start up. By adding this into

the model, the affect institutions such as the reserve bank have on economies could be

investigated.
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sis of a local/global supply chain. International Journal of Production Economics,

78(2):119 – 131, 2002.
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Kohlhammer, and Guy Melançon. Visual analytics: Definition, process, and chal-

lenges. 03 2008.

[96] Rebecca A. Kelly (Letcher), Anthony J. Jakeman, Olivier Barreteau, Mark E. Bor-

suk, Sondoss ElSawah, Serena H. Hamilton, Hans Jørgen Henriksen, Sakari Kuikka,

Holger R. Maier, Andrea Emilio Rizzoli, Hedwig van Delden, and Alexey A. Voinov.

Selecting among five common modelling approaches for integrated environmental

assessment and management. Environmental Modelling & Software, 47:159 – 181,

2013.

[97] M. Kimura and P.-M. Binder. Population and human welfare scenarios for the island

of Hawai‘i up to the year 2100. Pacific Science, 70(2):143–157, 2016.



REFERENCES 163

[98] James W. Kirchner, Richard P. Hooper, Carol Kendall, Colin Neal, and George

Leavesley. Modelling in environmental studies testing and validating environmental

models. Science of The Total Environment, 183(1):33 – 47, 1996.

[99] Thomas S. Kuhn. The Structure of Scientific Revolutions. University of Chicago

Press, 1970.

[100] Natsuhiko Kumasaka and Ritei Shibata. High-dimensional data visualisation: The

textile plot. Computational Statistics & Data Analysis, 52(7):3616 – 3644, 2008.
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Figure A.1: Overview of the progress of development in 2006 from the IUCN report “The Future
of Sustainability”. Figure sourced from [1].
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Figure A.2: Overview of the progress of development in 2014 from the UN report “Prototype”.
Figure sourced from [174].
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Appendix B

Standard Deviation of Input

Variables

Table B.1 of this appendix summarises the standard deviations assigned to each variable,

as a percentage of its nominal value. These standard deviations were pertinent to the

research conducted in Chapter 2.
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Variable SDinput% Page

Population age bracket 1/2/3/4 Initial 5 138
Lifetime Multiplier from Food Table 2.5 67
Health Services Allocations Per Capita Table 5.8 69
Health Services Impact Delay 15 71
Lifetime Multiplier from Health Services 1/2 Table 2.7 72
Fraction of Population Urban Table* 7.8 89
Crowding Multiplier from Industrialization Table* 5 90
Lifetime Multiplier from persistent Pollution Table* 6.4 94
Maximum Total Fertility Normal 5 99
Compensatory Multiplier from Perceived Life Expectancy Table 5 112
Lifetime Perception Delay 15 111
Desired Completed Family Size Normal 7.5 113
Social Adjustment Delay 15 120
Fraction of Services Allocated to Fertility Control Table 10 132
Fertility Control Effectiveness Table* 2.1 134
Industrial Capital-Output Ratio 1/2 8.3 218
Industrial Capital Initial 15 221
Average Lifetime of Industrial Capital 1/2 6.7 222
Fraction of Industrial Output Allocated to Consumption 1/2* 5.3 224
Indicated Service Output Per Capita 1/2 Table 21.3 227
Fraction of Industrial Output Allocated to Services 1/2 Table 10 229
Service Capital Initial 10 230
Average Lifetime of Service Capital 1/2 6.7 231
Service Capital-Output Ratio 1/2 15 232
Jobs Per Industrial Capital Unit Table 14.9 235
Jobs Per Service Capital Unit Table 16.2 236
Jobs Per Hectare Table 70.9 241
Labour Force Participation Fraction* 5 241
Labour Utilization Fraction Delayed Table 15 241
Capital Utilization Fraction Table* 16.9 242
Potentially Arable Land Table 3 278
Arable Land Initial 5 279
Land Fraction Harvested 12.7 281
Processing Losses 20 281

Table B.1: Standard deviation assigned to each input variable given as a percentage of variables
nominal value. Asterisk (*) indicates variables assigned a Normal PDF. All other variables re-
ceived a Log Normal PDF. Page number indicates the location of relevant information in the book
“Dynamics of Growth in a Finite World” [112].
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Variable SDinput% Page

Indicated Food Per Capita 1/2 Table 7.4 285
Fraction of Industrial Output Allocated to Agriculture 1/2 Table 5 288
Development Cost Per Hectare Table 10 291
Agricultural Inputs 15 293
Average Life of Agricultural Inputs 1/2 15 292
Land Yield Multiplier from Capital Table 5 305
Land Yield Multiplier from Air Pollution 1/2 Table* 6.2 310
Industrial Output in 1970 5 309
Fraction of Inputs Allocated to Land Development Table* 8.7 311
Social Discount 15 312
Average Life of Land Normal 20 315
Land Life Multiplier from Yield 1/2 15 316
Urban-Industrial Land Per Capita Table 10 320
Urban-Industrial Land Development Time 15 321
Urban-Industrial Land Initial 5 322
Land Fertility Degradation Rate Table 10 325
Initial Land Fertility 10 329
Land Fertility Regeneration Time Table 10 330
Fraction of inputs Allocated to Land Maintenance Table 10 332
Subsistent Food Per Capita 5 332
Food Shortage Perception Delay 15 332
Non-renewable Resources Initial 15 389
Non-renewable Resources Usage Fraction 1/2 15 390
Per Capita Resource Usage Multiplier Table 9.5 390
Fraction of Capital Allocated to Obtaining Resources 1/2 Table* 14.4 394
Persistent Pollution Generation Factor 1/2 5 428
Fraction of Resources as Persistent Materials 10 430
Industrial Materials Emission Factor 10 431
Industrial Material Toxicity Index 20 432
Fraction of Inputs as Persistent Materials 15 434
Persistent Pollution Transmutation Delay 15 440
Persistent POLlution 5 441
Persistent POLlution in 1970 5 441
Assimilation Half-Life Multiplier Table 10 453
Assimilation Half-Life in 1970 10 452

Table B.2: Table B.1 continued.
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Appendix C

Modification of World3 Model

Relationships

The calculation for the industrial capital investment rate (ICIR) variable in the World3

model [111] was initially arranged such that all output that did not go into consump-

tion, services or agriculture was redirected into industrial capital (see Figure C.1). This

is evident in equation C.13. To manage industrial capital investment according to the de-

sired consumption rates of the population (desired industrial output per capita consumed

(IOPCCD), desired service output per capita (SOPCD), and desired food per capita),

as opposed to automatic reinvestment, the code was modified.

Original equation from the World3 model are: C.1 (L 52)1, C.5 (R 53), C.6 (A 50), C.13

(A 56).

To begin, we know that industrial capital (IC) at the current time step i changes with

respect to the investment rate (ICIR) and decay rate (ICDR) and time step size (DT ).

ICi+1 = ICi +DT · (ICIR− ICDR) (C.1)

ICi+1 − ICi
DT

= ICIR− ICDR (C.2)

We want industrial capital to reach it’s steady state, i.e. the investment rate equals the

decay rate.

ICi+1 − ICi
DT

= 0 (C.3)

ICIR = ICDR (C.4)

The industrial depreciation rate is dependent on the average lifetime of industrial capital

(ALIC).

ICDR =
IC

ALIC
(C.5)

1The bracketed number, e.g. (X 99), refers to the equations position noted in the published code in
“Dynamics of Growth in a Finite World” [112].
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Industrial output (IO) is given by C.6. (Note: FCAOR = Fraction of Capital Allocation

to Obtaining Resources - table variable based off resource stock levels; CUF = Capital

Utilization Fraction - table function based off labour force employment; and ICOR =

Industrial Capital-Output Ratio.)

IO = IC · (1− FCAOR) · CUF
ICOR

(C.6)

IC = IO · ICOR

(1− FCAOR) · CUF
(C.7)

Given C.4 and C.5 we get C.8.

ICIR =
IC

ALIC
(C.8)

Given C.8 and C.7 we get C.9.

ICIR = IO · ICOR

ALIC · (1− FCAOR) · CUF
(C.9)

Because we define a new term, fraction of industrial output going into industrial rein-

vestment (IOF ), as

ICIR = IO · IOF (C.10)

C.9 becomes C.11,

IOF =
ICOR

ALIC · (1− FCAOR) · CUF
(C.11)

Industrial output goes to four different streams: industrial output per capita consumed

(IOPCC); industrial capital investment rate (ICIR); service capital investment rate

(SCIR); and total agricultural investment (TAI). Note: POP = Population.

IO = IOPCC · POP + ICIR+ SCIR+ TAI (C.12)

The fraction of industrial output allocated to industry (FIOAI) can be defined as the

remaining fraction left over from agriculture (FIOAA), services (FIOAS), and consump-

tion (FIOAC).

FIOAI = 1− FIOAA− FIOAS − FIOAC (C.13)

The desired industrial output investment rate (ICIRD) can be found by combining

C.10 with C.12 once converted into desired investment rates. Note: SCIRD = desired

service capital investment rate; and TAID = desired total agricultural investment.

ICIRD = (IOPCCD · POP + ICIRD + SCIRD + TAID) · IOF (C.14)

By simplifying the ICIRD terms we get C.15.
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ICIRD = (IOPCCD · POP + SCIRD + TAID) · IOF

1− IOF
(C.15)

We create a term, desired fraction (DF ), to represent the ratio of how much output can

be given to the sectors that are not industry (i.e. consumption, services and agriculture),

and these sectors desired investment rates.

DF =
IO − ICIR

IOPCCD · POP + SCIRD + TAID
(C.16)

The desired investment rates of each sector is calculated via the following equations.

The variable service output per capita desired plays a similar roll as indicated service

output per capita in the original model, however this variable is a fixed amount rather

than a table function based off industrial output per capita. This is likewise for indicated

food per capita (IFPC)2. We can see that if the desired service output per capita is not

matching the desired level the investment rate will be altered accordingly. Note: SOPC

= service output per capita; and FPC = food per capita.

SCIRD = SCIR · SOPCD
SOPC

(C.17)

TAID = TAI · IFPC
FPC

(C.18)

The investment rates are then calculated as such.

IOPCC = IOPCCD ·DF (C.19)

SCIR = SCIRD ·DF (C.20)

TAI = TAID ·DF (C.21)

Industrial capital investment rate is capped at 50% of industrial output and must be

greater than zero, i.e. there cannot be negative investment.

ICIR = max(min(ICIRD, 0.5 · IO), 0) (C.22)

Equations C.11, C.15, C.16, C.17, C.18, C.19, C.20, C.21, and C.22, were implemented

in the modified code.

2IFPC can be essentially thought of as desired food per capita.
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Figure C.1: The flows of industrial output in the original World3 model. Figure has been slightly
modified from the source image found in “Limits to Growth: The 30-year update” [113].



Appendix D

Formal Mathematics used in

Optimisation Analysis

The following Pareto front and indicator definitions have been derived primarily from

these papers: [193, 68].

The hypervolume definitions have been derived from these papers: [185, 143, 157].

Definitions of symbols used in this chapter can be found in Table D.1.

D.1 Set-up

Lets consider a function f (or a model) which maps X of an input space to Y of an output

space. There are m inputs and n outputs.

x = (x1, x2, ..., xm) ∈ X ⊆ Rm ∧X 6= ∅

y = f = (y1, y2, ..., yn) = (f1(x), f2(x), ..., fn(x)) ∈ Y ⊆ Rn>0 ∧ Y 6= ∅

We will first loosely define a and b as:

a ∈ A ⊂ Y

b ∈ B ⊂ Y

We will also define i and j as:

i ∈ {1, 2, . . . , n}

j ∈ {1, 2, . . . , n}

We will define all functions f as objectives to be maximised.

∀i,maximise fi(x)

Not to be confused with maximise ||f(x)||.
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D.2 Defining Domination Types

See figure D.1 for a graphical representation of the various domination types.

Strictly Dominates

a �� b ⇐⇒ ∀i, ai > bi (D.1)

a ≺≺ b ⇐⇒ ∀i, ai < bi (D.2)

Dominates

a � b ⇐⇒ ∀i, ai ≥ bi ∧ ∃j, aj > bj (D.3)

a ≺ b ⇐⇒ ∀i, ai ≤ bi ∧ ∃j, aj < bj (D.4)

Weakly Dominates

a � b ⇐⇒ ∀i, ai ≥ bi (D.5)

a � b ⇐⇒ ∀i, ai ≤ bi (D.6)

Incomparable

a||b = b||a ⇐⇒ a � b ∧ b � a (D.7)

D.3 Defining the Pareto Optimal Set

We will now define A as the Pareto optimal set taken from Y , B as the set of Y minus

A (the solutions in Y that were dominated), and C as the set dominated by A (from the

entire output space). See figure D.2 for a graphical representation.

Pareto Optimal Set

A = P(Y ) ={A ⊆ Y

: @b � a,@a′ � a

|B = Y \A, a ∈ A,

a′ ∈ A, b ∈ B}

(D.8)

Dominated Set
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C = Π(A) ={C ⊆ Rn>0

: ∀c∃a : a � c

∧ ∀d@a : a � d

|c ∈ C d /∈ C}

(D.9)

D.4 Epsilon Dominance

Given ε ∈ R>0 we can define the following dominance relationships. Note: εy = (εy1, εy2, ..., εyn),

ε+ y = (ε+ y1, ε+ y2, ..., ε+ yn), y
ε = (y1ε ,

yn
ε , ...,

yn
ε ).

ε-Dominates

a �ε b ⇐⇒ a � εb (D.10)

a �ε b ⇐⇒ a � εb (D.11)

Additive ε-Dominates

a �ε+ b ⇐⇒ a � ε+ b (D.12)

a �ε+ b ⇐⇒ a � ε+ b (D.13)

ε-Box Dominates

a �dεe b ⇐⇒ da
ε
e � db

ε
e∨

(da
ε
e = db

ε
e ∧ ‖εda

ε
e − a‖ < ‖εdb

ε
e − b‖)

(D.14)

D.5 Epsilon Indicators

ε-Indicator

The indicator is the minimum value of ε such that A is dominated by εB. This can be

formally expressed as A ⊂ Π(εB). See figure D.3 for a graphical representation.

Iε(A,B) = inf{ε : ∀a∃b : a �ε b} (D.15)

This can be calculated using:

Iε(A,B) = max(min(max(
ai
bi
,∀i|a, b),∀b|a),∀a)

Additive ε-Indicator
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The indicator is the minimum value of ε such that A is dominated by ε+ B. This can

be formally expressed as A ⊂ Π(ε+B).

Iε+(A,B) = inf{ε : ∀a∃b : a �ε+ b} (D.16)

D.6 Epsilon Progress

Description of ε-progress. See figure D.4 for further explanation.

ε−progress ⇐⇒ da
ε
e � db

ε
e (D.17)

D.7 Average Minimum Euclidean Distance

Description of generational distance D, i.e. the average distance from a point in B to

the closest point in A. We will say that there are q elements in B and that bi is the ith

element of B.

D(B,A) =
1

q

q∑
i=1

min(||a− bi||,∀a) (D.18)

D.8 Hypervolume

Description of Hyper-volume.

If F = P(F ) (that is F is a Pareto optimal set) then the hypervolume of F can be found

using the following recursive function. The hypervolume is the area encapsulated by the

set C.

ϑ(F ) =

{ ∑n
i=1 gi · ϑ(P(F ∗i )) if d > 1

f1
1 if d = 1

given that

F ={(f1
1 , f

1
2 , . . . , f

1
d ), (f2

1 , f
2
2 , . . . , f

2
d ), . . . ,

(fn1 , f
n
2 , . . . , f

n
d )}

and

f1
d ≤ f2

d ≤ · · · ≤ fnd
and

gi =

{
f id if i = 1

f id − f
i−1
d if i > 1

and

F ∗i ={(f i1, f i2, . . . , f id−1), (f i+1
1 , f i+1

2 , . . . , f i+1
d−1), . . . ,

(fn1 , f
n
2 , . . . , f

n
d−1)}

(D.19)
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Definition Symbol

if and only if ⇐⇒
maps to ⇒
element of ∈
subset of ⊂
proper subset of ⊆
minus set \
for all ∀
there exist ∃
there is no @
and ∧
or ∨
Euclidean distance || · ||
ceiling d·e
Infimum inf
Such that :
Given that |
Set {·}
Empty Subset ∅

Table D.1: List of symbol definitions.

A fast approach to calculation hypervolume is to randomly sample the output space

and record the ratio of dominated to non-dominated samples.
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Figure D.1: Graphic showing the various domination types.

Figure D.2: Set definitions for a fictional optimisation problem and model.

Figure D.3: Demonstration of ε ·B dominating A.
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Figure D.4: Explanation of ε-progress. Figure sourced from [68].
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Appendix E

Potential Explanations for Each

Observed Pairwise Relationship

• PPOL - IOPCC (Zero Trade-off, Strongly Affected by Others): The relationship

between these two variables could be explained by the relative magnitudes of the two

components that make up persistent pollution in the model, i.e. industrial pollution

and agricultural pollution. The correlation seen between FPC and PPOL suggests that

agricultural pollution is the dominant factor and hence we see a very minimal trade-off

between the two variables with no correlation. The absence of solutions in the lower right

corner indicates another factor of the model. As more resources are funnelled toward

industrial output, less are channelled into agricultural production, which in turn reduces

the pollution generated.

• PPOL – SOPC (Zero Trade-off, Strongly Affected by Others): As service output does

not directly contribute to pollution generation in the model it has a minimal trade-off with

pollution with no correlation. The same absence of solutions can be observes as in PPOL

– IOPCC for much the same reason.

• PPOL – DCFS (Zero Trade-off, Strongly Affected by Others): The relationship be-

tween these two variables is hard to explain. The minimal pollution and high birth rate

solution can be achieved if many sacrifices are made in other objectives. Thus a zero

trade-off can be achieved between these two variables at the expense of other objectives.

• PPOL – FPC (Linear Trade-off, Strong Correlation): This relationship indicates that

FPC has a major impact on PPOL. In the model both industrial output and agriculture

capital (fertilisers and pesticides) contribute to the production of pollution, and this sug-

gests that the majority of the pollution comes from agricultural activities. Variance in

PPOL for a given FPC can be attributed to two factors, i.e. different consumption levels

of industrial capital, and varying ratios of agricultural capital (increasing fertiliser) to land

development efforts (sewing larger areas).

• PPOL – PAL (Zero Trade-off, Strong Correlation, Strongly Affected by Others): The

relationship shown here is explained by the intensity to which food is produced. If food is

produced in small quantities, then only small amounts of land need to be cultivated (i.e.

high PAL) and thus only small amounts of pollution are produced. If food consumption

is increased then more of the PAL must be consumed.
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• PPOL – LE (Small Trade-off, Strongly Affected by Others): Life expectancy is in-

fluenced by levels of food consumption, urbanisation, industrialisation and pollution. It

appears that while greater food, services, and industrial capital per capita increase pollu-

tion, the negatives of pollution are out-weighed by the positives of the other factors. The

combined effects produce a minimal trade-off outcome.

• IOPCC – SOPC (Linear Trade-off, Strongly Affected by Others): The linear corre-

lation is a consequence of the division of industrial output. Industrial output is directed

to four areas; industrial output consumption, services capital, agricultural capital, and

industrial capital. This gives the linear trade-off between IOPCC and SOPC, as well as

the dependence on another factor (agricultural production).

• IOPCC - DCFS (Linear Trade-off, Strongly Affected by Others): As DCFS increases,

so too does the total population. This then causes the IOPCC to be diminished because

the industrial output is finite.

• IOPCC – FPC (Small Trade-off, Strongly Affected by Others): Similar to IOPCC –

SOPC.

• IOPCC – PAL (Zero Trade-off, Strongly Affected by Others): The diversion of in-

dustrial output to industrial consumption appears to have little effect on PAL. This is

probably due to a lack of direct links between the two variables.

• IOPCC – LE (Small Trade-off, Strongly Affected by Others): Similar to IOPCC –

PAL.

• SOPC – DCFS (Linear Trade-off, Strongly Affected by Others): Similar to IOPCC –

DCFS.

• SOPC – FPC (Linear Trade-off, Strongly Affected by Others): Similar to IOPCC –

SOPC.

• SOPC – PAL (Zero Trade-off, Strongly Affected by Others): Similar to IOPCC – PAL.

• SOPC – LE (Small Trade-off, Strongly Affected by Others): Funds spent on health

increase with increases in SOPC. Thus we have no trade-off between the two variables,

and the absence of solutions in the top left section of the graph.

• DCFS – FPC (Linear Trade-off, Strongly Affected by Others): Similar to IOPCC –

DCFS.

• DCFS – PAL (Zero Trade-off, Strongly Affected by Others): The depletion of PAL is

largely dependent on the level of food production in total and only slightly affected by the

total population size (controlled by DCFS). There is a minor trade-off if food consumption

levels are set quite low.

• DCFS – LE (Linear Trade-off, Strongly Affected by Others): Increasing the popula-

tion reduce SOPC which intern reduces health care expenditure which leads to lower life

expectancies, hence the linear relationship. The funnelling of resources from services to

industrial or agricultural consumption produces the dependence on other objectives.

• FPC – PAL (Linear Trade-off, Strong Correlation): To achieve higher levels of food

production PAL must be converted into productive farm land, hence the linear relation-

ship. The spread of solutions is indicative of crop yields.

• FPC – LE (Zero Trade-off, Strongly Affected by Others): The relationship is controlled
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by two factors: increased FPC increases LE; and that diverting resources from agriculture

(decreasing FPC) to SOPC also increases life expectancy. This has the combined effect of

producing an approximate zero trade-off relationship.

• PAL – LE (Small Trade-off, Strongly Affected by Others): Increasing FPC increases

LE but decreases PAL. In total a minimal trade-off is seen between PAL and LE.
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