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Abstract 

The Sequential Processing Schema is a data-driven model that uses event-related potential (ERP) 

components to chart the important psychophysiological processes activated when completing 

auditory equiprobable Go/NoGo tasks. This model is useful for measuring experimental effects 

on basic cognitive processes and provides a valuable framework to synthesise and test ERP 

component theories. Determining the cognitive and behavioural correlates of ERP components is 

critical for understanding their functional significance and utility in psychology. Additional 

research is also needed to refine the conceptualisation of the ERP components and cognitive 

processing requirements in equiprobable Go/NoGo tasks, which are commonly used in 

psychophysiological research. To do that, robust data-driven methods such as temporal Principal 

Components Analysis (PCA) are needed for effective ERP component quantification and analyses 

of the Go/NoGo ERP component ‘processing’ series. This doctoral thesis aimed to clarify ERP 

component functionality and refine our understanding of equiprobable Go/NoGo tasks by 

developing the Sequential Processing Schema and exploring how ERP/PCA components relate 

to cognitive and behavioural processing under different Go/NoGo task conditions. Study 1 

compared the ERP component processing series associated with auditory equiprobable and 

oddball variants of the Go/NoGo task. The manipulation of probability and the relevant 

modulation of the ERP component series reflected a shift in particular cognitive demands or task 

requirements, which promoted the conceptual development of component functionality and the 

generalisability of the Schema. The results of Study 1 questioned the identity of a core ERP 

component (i.e., Processing Negativity) previously linked to auditory Go/NoGo processing; this 

was pursued in detail in Study 2, which aimed to clarify the ERP components associated with 

early information processing in auditory equiprobable and ‘frequent Go’ variants of the Go/NoGo 

task. Stimulus probability differences (this time the inverse of Study 1) were again used to 

elucidate component functionality and provide insight into the cognitive task demands. Study 3 

and 4 explored ERP component functionality by examining Go stimulus- and response-locked 

ERP averaging effects, and the link between the equiprobable NoGo P3a and motor response 

inhibition. Studies 1–4 provided insight into the sequential processing requirements in auditory 

equiprobable Go/NoGo tasks, and the associated ERP/PCA components, promoting the 

development of common ERP components as indices of cognitive processes. These outcomes 

clarified the utility of the equiprobable Go/NoGo task, and highlight important similarities and 

differences between Go/NoGo and oddball processing, encouraging ERP theory development and 

integration between those common research paradigms. An update to the Schema was proposed 

to accommodate the ERP findings and reflect the refined interpretation of equiprobable Go/NoGo 

processing developed in this thesis, including a shift in the conceptualisation of the sensory 

processing and inhibitory requirements in the equiprobable task. This was considered to improve 

the conceptual framework of the Schema and its utility for charting the cognitive and behavioural 

processing in different task conditions. The outcomes also provide novel insight into how healthy 

young adults process information and encourage further studies of sequential processing to help 

delineate abnormalities in cognitive processing related to different psychopathologies.  
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Chapter 1. General Introduction 
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Sequential processing perspectives are concerned with the temporal characteristics (e.g., 

latency, order, and duration) of distinct cognitive events. The purpose of this doctoral research 

was to develop a sequential processing schema proposed by Barry and De Blasio (2013), which 

aims to chart the major cognitive events in auditory equiprobable Go/NoGo tasks, using the task-

related series of event-related potential (ERP) components identified with temporal principal 

components analysis (PCA). This schema represents a holistic data-driven conceptualisation of 

auditory equiprobable Go/NoGo processing that may facilitate research utilising this cognitive 

task. However, further research linking ERP components to cognitive and behavioural demands 

is needed to clarify the functional significance of PCA-derived Go/NoGo ERP components and 

the cognitive requirements in auditory Go/NoGo tasks. 

1.1. Important ERP fundamentals 

ERPs acquired from electroencephalographic (EEG) data are scalp-recorded electrical 

signals that are synchronised with an event, like the presentation of a stimulus or a behavioural 

response (Landa et al., 2014; Picton et al., 2000). ERP data are considered to reflect the sum of 

postsynaptic potentials volume-conducted to the scalp from clusters of cortical pyramidal 

neurons, which fire together while processing information (Sur & Sinha, 2009). Figure 1 presents 

an example of an auditory stimulus-locked ERP. The neuronal origin of ERPs, as well as their 

high temporal resolution (in ms), and the ability to decompose electrical signals into measurable 

components, makes ERPs valuable for studying sequential processing (Landa et al., 2014; Luck, 

2005; Picton et al., 2000; Woodman, 2010). 

 

Figure 1. A typical auditory stimulus-locked ERP averaged over the midline (Fz, Cz, and Pz) 

across 40 subjects. Major ERP components are labelled around the ERP at their approximate peak 

latency. SW refers to the slow-wave component. 
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ERP components are constructs that represent functionally distinct intracranial activity of 

neuronal populations (or networks) that contribute to the total scalp-recorded ERP waveform (see 

Donchin et al., 1978; Fabiani et al., 1987). By convention, components are operationally defined 

and labelled according to observable features within the ERP data that reflect their controlled ERP 

variance; namely, their temporal and spatial (topographic) features (Donchin et al., 1978; Picton 

et al., 2000; Woodman, 2010). 

A typical series of ERP components are labelled in Figure 1. The auditory N1 component, 

for example, is operationally defined as a negative-going peak in the ERP waveform, which peaks 

at frontocentral scalp sites ~100 ms poststimulus; the label N1 (or N100) reflects both its polarity 

(i.e., negative) and its order (i.e., it is the first negative peak) or approximate timing (i.e., 100 ms). 

Theoretically, N1 represents complex neuronal activity (which can be partitioned further into 

subcomponents) associated with auditory stimulus processing and attention (see Näätänen & 

Picton, 1987). Evidence from ERP and other neuroimaging studies frequently support this 

association (e.g., Crottaz-Herbette & Ragot, 2000; Ibrahim et al., 2018; Liem et al., 2012; Paiva 

et al., 2016) and the component has become a valuable tool used to index auditory processing in 

psychophysiological research (e.g., Koerner & Zhang, 2015; Salisbury et al., 2010). However, 

despite its established value there is still a lot to learn about the functional significance of N1 and 

the various overlapping components in this complex, and many other ERP components. 

1.2. ERP methodology 

ERP research typically explores three features of ERP components; the amplitude, 

latency, and current source density in 3D cortical subspace, reflecting the level of activation, 

timing, and the source location (and activity) of the underlying neuronal response. Numerous 

methods of ERP quantification are available to measure these features. Here, a brief overview is 

provided of the methods and considerations needed to understand the general approach taken to 

quantify ERPs in this doctoral research; interested readers are encouraged to consider the works 

by Luck (2005) and other authors (e.g., Cohen, 2014; Handy, 2005; Hoormann et al., 1998; 

Koenig et al., 2014; Picton et al., 2000) for more comprehensive reviews regarding various ERP 

techniques. 

1.2.1. Quantifying ERP components 

Traditionally, the latency and amplitude of ERP components are measured directly from 

ERP waveforms using peak or area measures (e.g., peak-picking and centre-of-area) that have 

been central to establishing ERP components as a discrete field of study. These methods are 

attractive because they are not computationally intense and they can be sensitive to important 

ERP variance; however, this also means that they are highly unstable in the presence of electrical 

noise (Chapman & McCrary, 1995; Donchin & Heffley, 1978). Traditional ERP measures are 

also limited by their subjective nature, as researchers need to select, somewhat arbitrarily, peaks 

or areas of the waveform to measure (Donchin, 1966; Van Boxtel, 1998). More importantly, they 
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cannot account for the influence of overlapping ERP components. Traditional measures will 

collapse the ERP variance from any components that overlap at any measured time-point (peak) 

or time-period (area), resulting in an unknown level of “misallocation of variance”, the incorrect 

attribution of an experimental effect to a particular component (see Beauducel & Debener, 2003; 

Donchin & Heffley, 1978; Wood & McCarthy, 1984). 

The shortcomings of the traditional ERP measures mentioned above have been a major 

impetus for the development of more advanced techniques to objectively decompose ERP data 

into distinguishable components. Numerous methods have been proposed for that purpose, 

including measures of global field power (e.g., Lehmann & Skrandies, 1980), iterative waveform 

decomposition (e.g., Ouyang et al., 2011), and various types of blind signal separation and factor 

analyses (e.g., Cong, 2019; Donchin, 1966; Makeig et al., 1996, 1997; Mørup et al., 2006; Rogers, 

1991; Scharf & Nestler, 2018a). Here, the focus of this doctoral research is on the use of Principal 

Components Analysis (PCA), a linear decomposition akin to factor analysis that is widely used 

to quantify ERP components (e.g., Anderson et al., 2015; Chapman et al., 2011; Cong et al., 2014; 

Curran & Dien, 2003; Deveney & Deldin, 2004; Kayser et al., 2003; Macatee et al., 2018; 

Mecklinger et al., 1992; Siegel et al., 2003; Vanderploeg et al., 1987; Widmann et al., 2018; 

Winterer et al., 2003). 

1.2.2. Temporal PCA 

Temporal PCA extracts factors based on the temporal covariance in the ERP data (Dien 

& Frishkoff, 2005; Donchin, 1966; Van Boxtel, 1998); thus, temporal PCA components are 

considered to represent factors of ERP data (summarising linear combinations of variance) that 

vary in weight (or amplitude) over time, providing a more realistic virtual model of discrete 

electrophysiological processes than voltage fluctuations measured directly from the ERP 

waveform. 

Notably, PCA provides an objective (data-driven) method to identify important and latent 

ERP components (see Dien & Frishkoff, 2005; Donchin, 1966; Kayser & Tenke, 2003; Van 

Boxtel, 1998). It also reduces the issue of component overlap and improves the statistical 

properties, stability, and interpretability of ERP measures through factor extraction and rotation 

(Beauducel & Debener, 2003; Beauducel et al., 2000; Browne, 2001; Chapman & McCrary, 1995; 

Dien, 1998; Kayser & Tenke, 1998, 2003, 2006a; Scharf & Nestler, 2018b, 2019; Van Boxtel, 

1998). 

PCA is equivalent to factor analysis in its application to ERP data (Dien et al., 2005). For 

that reason, many issues related to the factor analytic model concern PCA in this context, 

including the choice of association matrix (correlation vs. covariance), the number of factors to 

extract and the threshold measure to determine this, and the type of rotation used to achieve simple 

structure; that is, a more parsimonious and interpretable solution in the factor pattern matrix (see 

Browne, 2001; Thurston, 1947; Yates, 1988). 
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1.2.3. Considerations for PCA 

A consensus has been reached indicating that the covariance matrix is the ideal PCA 

association matrix for ERP research, as it improves the interpretability of the factors by 

maintaining the scale of the input (i.e., microvolts; Donchin & Heffley, 1978; Van Boxtel, 1998). 

More importantly, it can provide more accurate factor solutions than those derived using a 

correlation matrix (see Dien, 2006; Dien et al., 2005; Kayser & Tenke, 2003, 2005, 2006a); 

although, notably, the accuracies of correlation- and covariance-based analyses are considered to 

converge as more factors are rotated (Dien et al., 2005; Kayser & Tenke, 2003). 

The number of factors to extract and the threshold method to use is less clear. Several 

authors encourage the use of fixed eigenvalue or variance thresholds (e.g., Kaiser, 1960), scree 

tests (Cattell, 1966; Cattell & Jaspers, 1967) or parallel analyses (Horn, 1965; Hayton et al., 2004) 

to limit factor retention. These methods provide reasonable cut-offs that are considered to simplify 

the factor solution and reduce multiplicity in further analyses (see Chapman & McCrary, 1995; 

Dien, 2006; Dien et al., 2005). However, as noted by Kayser and Tenke (2003, 2006a), under-

extraction can result in unstable or degraded factor solutions whereas rotating all factors can 

improve the stability of the factors. Statistical analyses can also be applied to a select number of 

factors after unrestricted rotation to avoid excessive analyses. An unrestricted approach can also 

facilitate the identification of small but physiologically meaningful factors. Moreover, while there 

are concerns for both under-extraction and over-extraction, over-extraction is thought to be much 

less of an issue (Fava & Velicer, 1992, 1996), and it is recommended that under-extraction be 

avoided even at the risk of over-extraction (Wood et al., 1996). 

The factor analysis model is ‘under-determined’ in that an infinite number of factor 

loading matrices could account for any given association matrix (Mulaik, 2005). To resolve this 

indeterminacy, factors are rotated using mathematical transformations that redistribute variance 

across the extracted factors to identify a unique and parsimonious solution. This is often 

conducted in line with Thurston’s (1947) principles of simple structure, namely, that each variable 

in a factor matrix should contain at least one zero, reflecting a reduction in the complexity of the 

data (Kieffer, 1999; Yates, 1988). In this context, complexity is typically defined as the amount 

of cross-loading in the factor matrix; that is, where multiple factors load on the same set of 

variables (Browne, 2001). For temporal PCA, the variables are timepoints, thus perfect simple 

structure (i.e., no cross-loadings) would involve a factor solution in which only one extracted ERP 

factor loads onto any given timepoint. 

Many rotation methods have been proposed to minimise complexity in factor solutions 

and there are several excellent reviews considering their distinct capabilities (e.g., Browne, 2001; 

Dien, 2010; Kieffer, 1999; Sass & Schmitt, 2010; Schmitt & Sass, 2011; Thompson, 2004). In 

general, there are two major classes of factor rotation, known as orthogonal and oblique rotation 

(Scharf & Nestler, 2018b). Orthogonal rotations aim to find a parsimonious solution while 
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ensuring that all factors remain uncorrelated, whereas oblique rotations relax this constraint and 

allow inter-factor correlations. 

In the ERP literature, orthogonal rotations are used because they provide highly stable, 

replicable results, and it is desirable to extract uncorrelated factors, as this simplifies subsequent 

analyses (Kieffer, 1999; Schmitt & Sass, 2011; Van Boxtel, 1998). However, strict orthogonality 

constraints are often considered to be unrealistic, and minimising inter-factor correlations can 

inflate cross-loadings (Sass & Schmitt, 2010; Scharf & Nestler, 2018a; Schmitt & Sass, 2011). It 

is strongly argued that oblique rotations be used to attain more plausible solutions (Dien, 1998, 

2006; Dien et al., 2005; Scharf & Nestler, 2018a, 2018b, 2019). Relaxing the orthogonality 

constraint minimises cross-loadings further and provides closer approximations to perfect simple 

structure. However, in turn, this can increase redundancy and inflate the inter-factor correlations 

throughout the factor solution, potentially reducing the discriminant validity of the extracted 

factors (Kayser & Tenke, 2006a; Schmitt & Sass, 2011; Marsh et al., 2009). 

Simulation studies show that oblique factor rotations like Promax can outperform others 

in particular circumstances (e.g., Browne, 2001; Dien, 1998; Dien et al., 2005; Sass & Schmitt, 

2010; Scharf & Nestler, 2018b, 2019). However, as indicated by Schmitt and Sass (2011), the 

‘correct’ rotated solution cannot be known given the indeterminacy of the factor model. 

Researchers must consider the advantages and disadvantages of each rotation method and select 

those that provide the most appropriate solution for their data and purpose. In this doctoral 

research, Varimax was used to maximise the stability, interpretability, and simplicity (minimal 

redundancy) in unrestricted factor solutions, as well as to maintain comparability with previous 

PCA research in the selected research paradigm. 

1.2.4. ERP component source localisation 

Identifying the neuronal sources of an ERP component is important for its conceptual 

development and for interpreting study outcomes in relation to brain structure and functioning. 

However, this is difficult considering the ambiguous nature of the inverse problem; that is, any 

given scalp topography could be explained by a countless number of neuronal source 

configurations (Nunez & Srinivasan, 2006). Thus, to find a unique and meaningful solution, it is 

necessary to rely on a source model, involving several a priori assumptions about the generation 

of scalp potentials (Michel et al., 2004). 

In general, there are two types of source models: dipolar or distributed source models. 

Dipolar models assume that a select and often small number of sources (i.e., ‘current dipoles’ 

representing specific neuronal assemblies) can account for the scalp-recorded data. This method 

is useful when the number (and possibly orientation and location) of sources is known; however, 

this is extremely difficult to conclude a priori, and this ‘over-determined’ approach can easily 

exclude important dipole activity (He & Ding, 2013; Michel et al., 2004). 
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Distributed models make no strict assumption about the number of sources and 

effectively model the brain volume as a 3D grid of numerous (often thousands) of current dipoles 

that are fixed in location and orientation (Grech et al., 2008). This is a more objective approach 

that is ideal for exploratory analyses where the number of sources is unknown; however, 

additional constraints are needed to find an optimal source solution using such an “under-

determined” approach (Asadzadeh et al., 2020; Halder et al., 2019; He & Ding, 2013; Michel & 

Brunet, 2019; Michel et al., 2004; Wendel et al., 2009). 

Numerous EEG source localisation algorithms are available to calculate distributed 

inverse solutions, and these have been reviewed in detail by Michel et al. (2004, 2019), and by 

others (e.g., Anderer & Saletu, 2013; Asadzadeh et al., 2020; Baillet et al., 2001; Grech et al., 

2008; He & Ding, 2013; Wendel et al., 2009). The important differences between these algorithms 

are in the criteria they use to identify a unique and ‘optimal’ solution to the inverse problem 

(Michel et al., 2004). 

The inverse algorithm used in this doctoral research is the exact low-resolution 

electromagnetic tomography (eLORETA) proposed by Pascual-Marqui et al. (2007, 2009). This 

is a Minimum Norm (MN) approach incorporating a Laplacian constraint, which effectively 

selects the weighted MN solution with the smoothest spatial distribution, assuming that the 

activity is similar at neighbouring dipoles. This assumption has some physiological plausibility, 

as the activity of adjacent neurons can be highly synchronised (e.g., Haalman & Vaadia, 1997; 

Llinás, 1988; Sukov & Barth, 1998); however, this correlation between adjacent neurons is not 

necessarily evident at the scalp level, so this physiological justification should be considered 

tentative (Fuchs et al., 1994, 1999; Michel et al., 2004). 

eLORETA and its precursors (i.e., LORETA, sLORETA) have been shown to provide 

higher accuracies than many other inverse solutions, including standard and weighted MN 

(Pascual-Marqui, 1999; Pascual-Marqui et al., 2011; Soufflet & Boeijinga, 2005; Yao & Dewald, 

2005), Backus-Gilbert and Weighted Resolution Optimisation (Pascual-Marqui, 1999), Dale 

(Pascual-Marqui, 2002), and common beamformer methods (Halder et al., 2019); this superiority 

is particularly evident at greater depths in the 3D solution space and in the presence of noise, 

contributing to its wide uptake by the field. The accuracy of LORETA has also been supported 

extensively using fMRI and EEG/ERP data (Pascual-Marqui et al., 2002). Moreover, eLORETA 

provides better solutions than LORETA and sLORETA (Jatoi et al., 2014), with zero localisation 

error in the presence of noise (Pascual-Marqui, 2007, 2009; Pascual-Marqui et al., 2011). 

The selection of eLORETA for this research was based on its extensive validation and 

superior accuracy at depth, and in the face of noise, relative to other state-of-the-art methods. 

MN-type solutions are also the most commonly used throughout the EEG source localisation 

literature (Michel et al., 2004). However, this is not to say that eLORETA provides the best 

inverse solution. LORETA is known to have a lower spatial sensitivity than other methods due to 
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the Laplacian constraint (see He & Ding, 2013; Michel et al., 2004). This applies to eLORETA; 

hence, it is recommended for exploratory research, while other methods with higher spatial 

resolution (e.g., LCMV beamformer) are advised for targeted source analysis (Halder et al., 2019). 

Considering this, and the under-determined nature of the inverse problem, the source solutions 

identified in this doctoral research should be thought of as a guide for the conceptual development 

of the Go/NoGo ERP factors derived using temporal PCA, rather than a definitive map of their 

neuronal sources. 

1.3. Go/NoGo, oddball, and equiprobable tasks 

The overarching purpose of this doctoral thesis was to continue an ERP/PCA data-driven 

conceptualisation of simple auditory equiprobable Go/NoGo task processing. Go/NoGo tasks 

require individuals to discriminate and respond to two types of stimuli: Go (targets) and NoGo 

(nontargets). Thus, like other active two-choice tasks, the Go/NoGo task requires individuals to 

detect and discriminate between presented stimuli to select and activate the correct behavioural 

response. However, Go/NoGo tasks are unique in that no explicit response is made to NoGo 

stimuli, providing a valuable context to study both response activation and true motor inhibition 

(Gomez et al., 2007). Go stimuli can also be more relevant (or significant) to participants than 

NoGo stimuli, enabling research into attentional control and the processing of relevant (vs. 

irrelevant) information (Barry & Rushby, 2006). 

Traditionally, Go stimulus probability is increased so that individuals anticipate and 

prime Go responses, resulting in greater inhibitory demands in the rarer NoGo trials, and 

facilitating research into motor control (e.g., Low & Miller, 1999; Wessel, 2018). Alternatively, 

in active ‘oddball’ variants of the task, Go probability is lowered relative to NoGo probability to 

increase the demand on relevant (target) stimulus processing, and facilitate research into attention 

(e.g., Näätänen, 1990; Rockstroh et al., 1996); however, as NoGo stimuli are frequent (standard), 

the inhibitory requirements in NoGo trials are considered to be diminished. Figure 2 shows the 

results of a PubMed literature analysis (described in Appendix B), which indicates that discrete 

research literatures have developed for the Go/NoGo and oddball tasks despite their similarity. 

Only seventeen research articles referred to both Go/NoGo and oddball tasks, and only one study 

was common to both the Go/NoGo and oddball probability literatures, suggesting that there is 

little crossover between the two fields; this separation generally follows the different Go and 

NoGo demands associated with each task. 

Common to both the Go/NoGo and oddball literatures is the equiprobable Go/NoGo (or 

oddball) task, which features an equal number of Go and NoGo stimuli. This design is typically 

used to control stimulus probability effects (e.g., Banquet et al., 1981), but is also the most 

efficient method for recording both Go and NoGo data (Barry & De Blasio, 2013, 2015; Key & 

Yoder, 2013; Pfefferbaum et al., 1985), which is perhaps why equiprobable tasks are considered 

to be the most widely used Go/NoGo variant (according to a review of the published Go/NoGo 
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literature between 1993 and 2016: Wessel, 2018). However, that conclusion is for equiprobable 

variants relative to all other discrete probability levels; sorting the studies in Wessel’s (2018) 

review according to those that use tasks that are equiprobable, biased towards Go (Go p > .5), or 

NoGo (NoGo p > .5), reveals that traditional ‘frequent Go’ variants of the task are somewhat more 

common. Regardless, equiprobable tasks are useful and popular for studying both Go and NoGo 

processes together in one study. 

 

Figure 2. The results of the literature analyses based on separate PubMed searches for: (Go NoGo) 

AND Oddball, Go NoGo Probability and Oddball Probability. The total number of accepted 

articles are broken down and colour-coded according to the stimulus modality used (i.e., auditory, 

visual, etc.). Seventeen ERP studies involving statistical analyses of probability effects that 

included an equiprobable condition were derived from the reviewed articles. Further details on 

these literature analyses are available in Appendix B. 

The extent to which equiprobable processing resembles the traditional Go/NoGo or 

oddball processing is debatable, especially in regard to the cognitive requirements that are 

sensitive to stimulus probability (e.g., selective attention and inhibitory demands). Indeed, 

theories developed using traditional Go/NoGo or oddball tasks are often directly generalised to 

equiprobable task measures in accordance with the broader Go/NoGo or target/nontarget context, 

despite the dearth of research formally comparing the processing and behaviour in these tasks. 

An example of this is the interpretation of the equiprobable NoGo P3 (P3a), an ERP component 

that can be considered to represent either motor response inhibition (e.g., Kamarajan et al., 2005) 

or attentional processing (e.g., Ravden & Polich, 1998) from traditional Go/NoGo or oddball task 

perspectives, respectively. 
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Useful comparisons of Go/NoGo and oddball task processing are available in studies 

investigating stimulus probability effects on ERPs within subjects. According to the literature 

analysis in Figure 2, seventeen studies have statistically compared equiprobable task ERP 

components with those in the traditional Go/NoGo or oddball tasks. However, the majority of 

these studies focus on a small number of ERP components using traditional ERP measures (Bruin 

& Wijers, 2002; Dalbokova et al., 1990; Dimigen et al., 2009; Eliades et al., 2014; Heinrich & 

Bach, 2008; Hepsomali et al., 2019; Hull & Harsh, 2001; Keskin-Ergen et al., 2014; Nakajima & 

Imamura, 2000; Nakata et al., 2005; Pfefferbaum & Ford, 1988; Rasmusson & Allen, 1994; 

Rüsseler et al., 2003). This focused insight is valuable; however, clarifying task (i.e., probability) 

differences on a larger range of ERP components is needed to contextualise these effects in the 

broader Go/NoGo processing series, to achieve a more complete understanding of the distinct 

cognitive requirements in each task variant. 

In the auditory modality, several studies have analysed Go/NoGo task differences across 

a broader range of ERP components (Banquet et al., 1981; Brigham et al., 1995; Polich et al., 

1994; Polich & Margala, 1997; Spencer & Polich, 1999). These studies consistently show an 

increase in P3 amplitude as stimulus probability decreases, although the probability effects on 

other components (i.e., N1, P2, N2) are less reliable, likely due to the use of traditional ERP 

measures, limited electrode sites (n = 1–5), and sample sizes (N = 6–16)1. 

Squires et al. (1975) used PCA to examine Go/NoGo stimulus probability effects and 

noted a better separation of effects across six factors (i.e., N1, P2, N2, P3a, P3b, and SW) after 

minimising the overlap evident in their traditional ERP measures. Duncan-Johnson and Donchin 

(1977) also studied auditory stimulus probability effects on a similar PCA factor series. These 

findings are detailed in Chapter 2, but it is notable that identifying similar factors across different 

probability levels suggests that common cognitive requirements are needed in each Go/NoGo 

(oddball) task variant. However, it may be that the temporal PCAs in these two studies were not 

sensitive enough to detect important task differences in the ERP processing series. Similar to the 

traditional probability research mentioned above, these early PCA studies involved small sample 

sizes (N = 6–10), limited scalp sites (3–9), and few timepoints in the PCA (64 variables), limiting 

the sensitivity of the PCA and subsequent ERP analyses. More importantly, the ERP data were 

combined into one PCA, which extracts a fixed hierarchy of factors across the input conditions, 

potentially masking important differences in the ERP processing series by forcibly extracting a 

fixed (or comparable) set of PCA factors across task conditions. Separate PCAs should be applied 

to the ERP data from each condition to extract factors that model data within each condition more 

precisely (see Barry, De Blasio, Fogarty & Karamacoska, 2016). 

 
1 Brigham et al. (1995) included a sample of 54 children, although the study did not examine probability 

effects on ERP amplitudes, which is the focus of this thesis. 
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Studies decomposing richer ERP data with more contemporary techniques are needed to 

compare the wider Go/NoGo (and oddball) ERP processing series more rigorously to clarify the 

related cognitive requirements, as well as the ERP components, and general research utility 

associated with each Go/NoGo variant. Additional research is also needed to determine the 

functionality of the ERP factors in simple (i.e., uncued two-stimulus) variants of the equiprobable 

Go/NoGo task. This is important given that this simple task could provide researchers with an 

efficient and widely relevant tool to assess a range of fundamental neurocognitive functions. 

Additional insight into equiprobable tasks could also help to bridge or demarcate the Go/NoGo 

and oddball ERP literatures. 

1.4. The Sequential Processing Schema 

The Sequential Processing Schema proposed by Barry and De Blasio (2013) is a simple 

(ERP) data-driven framework, which uses a series of Go/NoGo ERP/PCA factors to chart the 

important cognitive stages (or events) associated with uncued auditory equiprobable Go/NoGo 

processing. The Schema’s conceptualisation follows relevant ERP theories and research; hence, 

it is not a theory in and of itself, but is instead a workable model of Go/NoGo processing that can 

be used to synthesize and test a range of psychophysiological theories (or hypotheses) tied to 

common ERP components. 

Using ERP/PCA factors to index cognitive processes is obviously not novel or unique. 

However, extracting and examining a comprehensive range of ERP factors can help delineate and 

contextualise experimental effects relative to the broader task processing requirements; this can 

increase the interpretability and relevance of ERP research, as opposed to focusing on one (or 

few) isolated ERP factor(s). Developing a holistic, integrated, data-driven, and physiologically 

relevant framework of Go/NoGo processing is also considered to be a valuable approach to refine 

our understanding of these tasks (and the related ERP components) and improve their application 

and interpretation within the wider research community. The PCA research underpinning the 

Schema reflects an effort to characterise the auditory equiprobable Go/NoGo processing series 

and to framework experimental effects in this manner, although further research is needed to 

clarify the functional significance of the related ERP/PCA factors and equiprobable task 

requirements. 

The specific PCA method driving the Schema’s development is outlined by Barry, De 

Blasio, Fogarty, and Karamacoska (2016). In brief, unrestricted covariance-based extraction of 

ERP factors is applied without the typical mean-correction applied to factor scores, to identify a 

complete and robust factor solution that can be interpreted directly in relation to the input ERP 

data (Dien, 2014; Dien & Frishkoff, 2005; Kayser & Tenke, 2003). Factors are then Varimax 

rotated to simplify the unrestricted factor solution. The outcome of this method is a highly 

replicable data-driven series of orthogonal ERP/PCA factors that represent discrete electrocortical 

processes related to a particular event. 
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Applying the aforementioned temporal PCA method to auditory equiprobable Go/NoGo 

ERP data generates the factor series associated with the proposed Schema, which has been 

extracted reliably over numerous studies that have examined variations in discrete Go/NoGo 

processes associated with changes in variables including ageing or cognitive development (e.g., 

Barry, De Blasio, & Cave, 2016), behavioural performance (e.g., Barry & De Blasio, 2015), and 

caffeine consumption (e.g., Barry et al., 2014). 

Prior to this doctoral research, the Go/NoGo Schema was updated for young adults by 

Fogarty et al. (2018). As shown in Figure 3, auditory equiprobable Go/NoGo processing is marked 

first by four PCA factors representing P1 and three N1 components: N1-3, N1-1, and Processing 

Negativity (PN). In line with the broader ERP literature (e.g., García-Larrea et al., 1992; Hillyard 

et al., 1973; Lijffijt et al., 2009; Näätänen & Picton, 1987), and the prior version of the Schema 

(Barry & De Blasio, 2013), these factors were considered to reflect sensory and perceptual 

requirements common to each condition. The N1-1 factor was also considered to mark the 

beginning of stimulus categorisation following earlier PCA findings showing N1-1 amplitude 

differences between conditions in this task (Barry & De Blasio, 2013; Borchard et al., 2015). PN 

was thought to reflect a later stage of categorisation following Attentional Trace Theory 

(developed in the oddball literature) linking the component to selective attention (Näätänen, 1982, 

1990). Successful stimulus categorisation is evident after PN with the onset of stimulus-specific 

ERP component processing sequences. For Go, further target processing and response activation 

is marked by factors representing P2, N2c, P3b, and a slow wave (SW); whereas for NoGo, 

nontarget processing is marked by N2b, P3a, and a late positivity (LP), which were considered to 

reflect the active control and termination of response processing in this task, similar to NoGo 

processing in traditional Go/NoGo tasks. 

 

Figure 3. The Sequential Processing Schema updated for young adults in Fogarty et al. (2018). 

The ERP component series in the Schema has supported the conceptualisation of 

equiprobable task demands and the interpretation of ERP component effects relative to other 

component-oriented functions in the Go/NoGo processing series (Griskova-Bulanova et al., 2016; 

He et al., 2018; Le et al., 2020; Melynyte et al., 2017; Nanda et al., 2019; Piispala et al., 2016, 

2017). The related PCA research has also aided the conceptualisation, identification, and 

measurement of ERP components by providing a data-driven representation of their characteristic 
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features and potential subcomponents, separate from other overlapping ERP activity (Cespón & 

Carreiras, 2020; De Zorzi et al., 2020; Horat et al., 2016; Kamp, 2020; Kim et al., 2018; 

Kotchoubey & Pavlov, 2019; Mudar et al., 2019; Nguyen et al., 2017; Ponomarev et al., 2019; 

Proverbio et al., 2016; Wei et al., 2019). ERP findings linked to the Schema (such as the positive 

correlation between N2b amplitudes and commission errors: Barry & De Blasio, 2015; Fogarty 

et al., 2018) have also been adopted for the theoretical development of common ERP components 

(Baghdadi et al., 2017; Cheng et al., 2019; Howell et al., 2018; Hoyniak & Peterson, 2019; Quinzi 

et al., 2018; Verleger, 2020) or to support psychophysiological phenomena, such as the cognitive 

changes associated with aging or caffeine (Bailey et al., 2016; Kardos et al., 2020; Lin & Cheng, 

2020; Maldanado et al., 2020; Yang et al., 2016). This illustrates the broader value of the schema-

related research to the ERP literature; however, as mentioned, basic research into the functional 

significance of Go/NoGo ERP components is needed, especially given that traditional ERP 

findings may not apply to PCA factors. 

1.4.1. Additional considerations 

The Schema in Figure 3 reflects an interpretation of the PCA factor series extracted from 

simple auditory equiprobable Go/NoGo tasks, which builds on previous ERP research in this task 

(e.g., Falkenstein et al., 1995, 1999, 2002; Griskova-Bulanova et al., 2016; Melynyte et al., 2017; 

Sams et al., 1983) and the broader ERP literature. PCA studies using more complex equiprobable 

designs explore similar components, although the task requirements can differ substantially from 

that in simple Go/NoGo tasks (e.g., Barratt, 1987; Kałamała et al., 2018; Key et al., 2016). Similar 

PCA factors are also evident in classic auditory oddball tasks (see Brown et al., 2015; Bruder et 

al., 2002; Kayser & Tenke, 2006b, 2006c; Kayser et al., 1998, 2010; Tenke et al., 2008) and 

somewhat so in visual Go/NoGo or oddball tasks with only two stimuli (Dien et al., 2004; Fink 

et al., 2016; Kamp, 2020; Lavric et al., 2004; Lubman et al., 2007; Macatee et al., 2018; Matsuda 

& Nittono, 2015; Portella et al., 2014; Spencer et al., 1999). 

N1, P2, N2, P3, and SW factors are also studied using PCA in novelty oddball tasks (e.g., 

Anderson et al., 2015; Behforuzi et al., 2019; Delplanque et al., 2005; Friedman, 1984; Goldstein 

et al., 2002; Kayser et al., 2014) and cued Go/NoGo or stop-signal tasks (e.g., Bruder et al., 1999; 

Camfield et al., 2018; Roberts et al., 1994; Verleger et al., 2013). However, these studies (in 

addition to the Go/NoGo PCA studies cited above) illustrate that ERP morphology and the 

associated factor solutions can differ substantially between tasks and modalities, reflecting 

alternate cognitive demands and brain activity involved in task processing. These differences can 

provide useful insight; however, it is difficult to account for these variances without systematic 

investigation across a wide range of ERP factors, and to limit the scope of this thesis we focus, 

primarily, on simple auditory Go/NoGo tasks. 

The Schema may be considered similar to early ‘serial’ processing accounts, such as the 

two-stage or four-stage models of information processing described by Dien et al. (2004). In brief, 
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the two-stage model refers to the perspective that ERP components reflect either stimulus or 

response processing; whereas the four-stage model separates stimulus processing into four 

phases: stimulus registration, selection, identification, and categorisation. These are both useful 

models that aid general ERP interpretation. In contrast, the Schema provides a more granular 

component-oriented interpretation of sequential processing in uncued auditory Go/NoGo tasks, 

extending from early stimulus registration to late post-response processing (e.g., performance 

evaluation and subsequent adjustments). In that sense, the Schema presents a broader and more 

pragmatic framework of sequential Go/NoGo processing, but it may not be as generalisable as 

other serial perspectives. The specificity of the Schema can be considered a strength, as it allows 

for a more complete data-driven conceptualisation and assessment of basic cognitive processing 

in a widely used research paradigm. Furthermore, the aim is that this holistic data-driven approach 

is developed and applied in concert with the broader research community to improve the field’s 

understanding of Go/NoGo processing and provide a more rigorous delineation of ERP research 

outcomes. It is also important to note that a ‘stage-based’ perspective of cognition is not strictly 

adhered to in the interpretation of components or processes in the Schema, meaning that stimulus- 

and/or response-related processes may be considered to overlap in time or occur in parallel (cf. 

Sternberg, 1969). 

1.5. Doctoral thesis: overview of research 

The purpose of this doctoral thesis was to continue the development of the young adult 

Go/NoGo Sequential Processing Schema by clarifying the cognitive requirements and PCA-

derived ERP components in the uncued auditory equiprobable Go/NoGo task. This was achieved 

over four separate studies (Chapters 2–5) that examined ERP and behavioural data collected from 

healthy young adults in two major experiments. In Experiment 1, data were acquired from 

participants while they completed both an auditory oddball and equiprobable Go/NoGo task, 

whereas in Experiment 2, similar data were acquired from a new sample of participants during 

auditory equiprobable and ‘frequent Go’ variants of the task. 

Study 1 aimed to clarify the equiprobable Go/NoGo ERP component processing series 

through a comprehensive within-subjects comparison of the ERP factors and behaviour in the 

oddball and equiprobable tasks. The results in that study queried the role of the PN component in 

the Schema, which has important implications regarding the cognitive strategy that young adults 

use to process sensory information in Go/NoGo tasks. That query was investigated within-

subjects in Study 2, which aimed to elucidate the early auditory processing in the equiprobable 

and ‘frequent Go’ tasks, by using cortical source analyses and shifts in stimulus probability to 

provide greater insight into the identity and function of PCA-derived Go/NoGo ERP factors. 
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Equiprobable Go/NoGo data from Experiments 1 and 2 were then combined to strengthen 

further analyses of the Go and NoGo ERP processing series in Study 3 and Study 4, respectively. 

Study 3 investigated stimulus- and response-locked averaging effects on Go ERP components to 

determine the role of the typical stimulus-locked factors associated with auditory equiprobable 

Go processing. Finally, Study 4 aimed to clarify the inhibitory demands in the auditory 

equiprobable task and to ultimately determine the relationship between the NoGo P3a and 

response inhibition. 

The findings of this systematic research programme were expected to provide greater 

insight into auditory processing, particularly in simple equiprobable Go/NoGo tasks, while also 

promoting the development of the Schema and a range of psychophysiological theories relevant 

to common ERP components. The Schema was considered to be a useful framework for this 

research, and continuing its development was expected to improve our interpretation of discrete 

ERP outcomes, relative to other components (or psychophysiological events) in the broader 

Go/NoGo processing series. We predicted that this would clarify a range of ERP factors used to 

measure cognition in psychophysiology and help elucidate information processing in healthy 

young adults; this was expected to improve the holistic representation of Go/NoGo processing in 

the Schema, providing researchers with a more complete understanding of this popular research 

paradigm, and setting the stage for future studies mapping cognitive difficulties related to 

different psychopathologies. 
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Abstract 

This study compared the ERP components and behaviour associated with the auditory 

equiprobable and classic oddball tasks, to relate the cognitive processing stages in those 

paradigms, and continue the development of the Sequential Processing Schema. Target and 

nontarget ERP data were acquired from 66 healthy young adults (Mage = 20.1, SD = 2.4 years, 14 

male) who completed both equiprobable (target p = .5) and oddball tasks (target p = .3). Separate 

temporal PCAs were used to decompose the ERP data in each task and condition, and the 

similarity of the components identified in each condition was examined between tasks. 

Probability effects on component amplitudes and behaviour were also analysed to identify task 

differences in cognitive demands. A highly similar series of components was identified in each 

task, closely matching the Schema: targets elicited N1-3, N1-1, PN, N2c, P3b, SW1, and SW2; 

whereas nontargets elicited N1-3, N1-1, PN, N2b, P3a, SW1, and SW2. N1-1 and PN amplitudes 

increased as stimulus probability decreased, irrespective of the condition. N2b, P3b, SW1, and 

SW2 amplitudes also varied between tasks, illustrating task-specific demands on those processing 

stages. These findings complemented the behavioural outcomes, which demonstrated greater 

accuracy and control in the classic oddball task. Overall, this study demonstrated comparable 

processing in the auditory equiprobable and classic oddball tasks, extending the generalisability 

of the Schema and enabling further integration of the ERP theory associated with these tasks. This 

study also clarifies stimulus probability effects on the Schema, providing important insight into 

the functionality of common ERP components. 

 

Keywords: Behaviour, Equiprobable, ERP components, Oddball, Principal Components 

Analysis (PCA), Probability 
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1. Introduction 

1.1. The classic oddball task 

In the classic oddball task, participants are presented with a series of target and nontarget 

stimuli and are required to respond to targets and ignore nontargets. The defining feature of this 

task is that the global probability of target presentation is lower than for nontargets, thus 

increasing the deviance of target stimuli and facilitating research into cognitive processes like 

stimulus classification, attention, response selection, and activation (e.g., Garcia-Larrea et al., 

1992). This a priori probability structure is at the opposite extreme from the traditional Go/NoGo 

task (which incorporates fewer nontargets) and is an important characteristic that distinguishes 

oddball tasks from similar two-choice paradigms (Donchin & Coles, 1988). 

1.2. The equiprobable task 

The equiprobable task is a simple choice-RT task that features an equal number of target 

and nontarget stimuli, balancing the global stimulus probability. This is a valuable alternative to 

the oddball task when researchers need to maximise data acquisition for each condition (Barry & 

De Blasio, 2015; Key & Yoder, 2013). Considering this use, and their similar design, 

equiprobable tasks are also referred to as equiprobable or 50% oddball tasks (e.g., Barry et al., 

2000; Steiner et al., 2014a). However, few studies have formally compared the neuronal/cognitive 

and behavioural processing in these two tasks. The extent that equiprobable target and nontarget 

processing parallels that in the oddball task needs to be determined so that researchers can 

properly integrate and develop the theory and research associated with these two paradigms. This 

is also important to clarify given that equiprobable tasks are used in Go/NoGo contexts with 

different cognitive demands; hence, understanding the relationship between these tasks has 

critical implications for their application in two-choice research. 

1.3. Linking the equiprobable and oddball tasks 

In this study we focus on event-related potentials (ERPs) in equiprobable and oddball 

tasks, as these measures provide valuable insight into cognitive task processing at a high temporal 

resolution. Prior research indicates that ERPs in each of these tasks feature the common P1, N1, 

P2, N2, P3 and SW ERP components. However, the specificity of the mismatch negativity 

(MMN; Näätänen et al., 2007) and novelty P3 (nP3; Barry, Steiner, & De Blasio, 2016; 

Courchesne et al., 1975) to deviant (and in terms of probability, infrequent) stimuli, also suggests 

that there could be important cognitive differences between equiprobable and classic oddball 

tasks. This could reflect further sensory processing (Duncan et al., 2009; Escera et al., 1998; 

Näätänen et al., 2007), or perhaps strategic changes to manage conflict and facilitate goal-directed 

behaviour (e.g., Botvinick et al., 2001). Different cognitive demands can also be evident in 

behavioural performance, as illustrated by the typical speed-accuracy trade-off relative to 

stimulus probability; response speed usually increases with target probability, while accuracy and 

control decreases (e.g., Duncan-Johnson & Donchin, 1982). 
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Research into stimulus probability effects on ERP components in two-choice tasks offer 

a useful resource for examining the similarities and differences between equiprobable and oddball 

processing within subjects. Table 1 summarises the ERP components and probability effects in 

the studies comparing simple auditory equiprobable and classic oddball processing, which were 

identified through systematic Go/NoGo and oddball literature analyses (see Chapter 1 and 

Appendix B) and further review of the broader ERP and stimulus probability literature. It is 

important to note that the studies in Table 1 represent only those that compared simple (uncued 

two-stimulus) auditory equiprobable and oddball task effects on ERP components; this is not an 

exhaustive review of ERPs or probability across all two-choice stimulus discrimination tasks. 

In the auditory modality, N. Squires et al.'s (1975) early event-related potential (ERP) 

research using temporal principal components analysis (PCA) illustrates similar P1, N1, P2, N2, 

P3, and slow wave (SW) ERP components at different levels of target probability (0.1, 0.5, 0.9) 

in an oddball counting task. Also, in that study, a frontocentral nontarget P3 (i.e., P3a, sometimes 

referred to as P250; Comerchero & Polich, 1999; Garcia-Larrea et al., 1992) was distinguished 

from the larger and more parietal target P3 (i.e., P3b). ERP component amplitudes also increased 

as stimulus probability decreased, showing that the cognitive processes underlying N1, N2, P3a, 

and P3b required greater neuronal activation when stimuli were rare (but note: P2 showed the 

opposite trend and the effects for N1 and P2 did not reach significance). Duncan-Johnson and 

Donchin (1977) replicated these PCA findings and found significant effects on all factors over a 

greater range of target probabilities, although a parietal P4 (P400) was extracted across 

participants instead of the early P3a, possibly reflecting the influence of a late P3 (i.e., P400) 

component observed in the data of two participants. 

Auditory probability research using traditional ERP measures (e.g., baseline-to-peak) 

also indicate a similar ERP component series across these two classic tasks, both when targets are 

counted or when a motor response is required (Banquet et al., 1981; Brigham et al., 1995; Polich 

et al., 1994; Polich & Margala, 1997; Spencer & Polich, 1999). The comparability of equiprobable 

and oddball ERP components and processing may also be reinforced (but also largely assumed) 

in studies exploring probability effects on one or two components, rather than the more complete 

task-processing series (Dalbokova et al., 1990; Eliades et al., 2014; Hull & Harsh, 2001; Verleger 

& Berg, 1991). These studies all confirm the negative correlation between P3 amplitudes and 

stimulus probability, however, the effects on N1, P2, and N2 are somewhat less reliable; different 

effects may also exist across target and nontarget conditions (see Spencer & Polich, 1999). Similar 

findings are also evident in studies that examined equiprobable and oddball probabilities using 

different stimulus modalities or other complex task manipulations (e.g., Bruin & Wijers, 2002; 

Duncan-Johnson & Donchin, 1982; Key & Yoder, 2013; Nieuwenhuis et al., 2003; Polich & 

Margala, 1997; K. Squires et al., 1977; Verleger & Berg, 1991); however, here we focus on simple 

auditory tasks. 
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Table 1       

Previous Studies Testing ERP Differences Between Simple Auditory Equiprobable and Oddball Tasks 

Study Citation P(target) N Sites ERP Method Task Identified ERP Components 

N. Squires et al. 

(1975) 
.1, .5, .9 6 3 

Traditional 

and tPCA 
C N1, P2, N2↓, P3a↓, P3b↓, SW↓ 

Duncan-Johnson 

& Donchin 

(1977) 

.1, .2, .3, .4, 

.5, .6, .7, .8, 

.9 

10 5 
Traditional 

and tPCA 
C N1↓, P2↑, P3↓, P4↓, SW↓ 

Banquet et al. 

(1981) 
.2, .5, .8 6 3 Traditional M N1, P2, N2↓, P3↓, P4↓ 

Dalbokova et al. 

(1990) 
.1, .3, .5 15 3 Traditional C P3↓ 

Polich et al. 

(1994) 
.2, .5, .8 16 3 Traditional M N1↓, P2, N2, P3↓ 

Brigham et al. 

(1995) 
.1, .3, .5 54 5 Traditional C P1, N1, P2, N2, P3, SW (Nc) 

Polich & 

Margala (1997) 

.1, .3, .5, .7, 

.9 
16 3 Traditional M N1‡, P2‡, N2‡, P3↓ 

Spencer & 

Polich (1999) 
.2, .5, .8 16 1 Traditional C 

GO: N1↓, P2↑, N2↓, P3↓ 

NG: N1↑, P2↓, N2↓, P3↓ 

Hull & Harsh 

(2001) 
.2, .5, .8 10 3 Traditional M P3↓ 

Eliades et al. 

(2014) 
.2, .5, .8 5 iEEG Traditional P N1, P2 

N.B. ‘Sites’ refers to the number of EEG scalp sites used. C = Counting Task. M = Motor Task. GO = Go, 

target condition. NG = NoGo, nontarget condition. The amplitudes of ERP components in bold text were 

analysed. Arrows describe significant effects of increasing stimulus probability (i.e., ↑ = increased amplitudes; 

↓ = decreased amplitudes; no arrow = no significant effect). ‡ = significant probability effect reported without 

a clear direction. iEEG = intra-cranial EEG. tPCA = temporal PCA. 

Although the number and identification of P3 factors varies across the studies in Table 1, 

the general indication is that the same ERP components can be identified between both the simple 

equiprobable and oddball tasks. This suggests that the auditory equiprobable and classic oddball 

processing series (and/or requirements) are comparable or equivalent, but that discrete variations 

in target/nontarget cognitive demands exist between the tasks, as indicated by the task differences 

(i.e., probability effects) in ERP amplitudes. However, the studies in Table 1 utilise an extremely 

low number of scalp sites (≤ 5 derivations). The traditional and PCA methods used are also biased 

to identify a similar series of ERP components. For example, submitting equiprobable and oddball 

ERPs to one combined PCA will forcibly extract a fixed set of factors across conditions (Barry, 

De Blasio, Fogarty, & Karamacoska, 2016). A similar issue arises when applying traditional 

measures to operationalise data in each condition. Thus, with these methods and such low spatial 
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resolution, the previous studies comparing equiprobable and oddball processing were likely 

insensitive to important task differences in the ERP component series. 

1.4. The Sequential Processing Schema 

In their early PCA research, Barry and De Blasio (2013) proposed a sequential processing 

schema that used ERP components to delineate the neurocognitive processes in an auditory 

equiprobable task. Temporal PCA was used to extract target and nontarget components, providing 

an effective data-driven method to chart important electrocortical events in each condition; 

including their latency, order, and duration (represented by factor loadings; Dien & Frishkoff, 

2005). Previous ERP literature guides the identification and interpretation of extracted 

components; hence, the Schema is not a theory itself, but an empirical model, which can be used 

to synthesise and test theories regarding a range of ERP components. This then provides a simple 

and effective framework to measure, illustrate, and interpret experimental effects on several 

cognitive processes in the equiprobable paradigm.  

Components in the Schema are considered to mark separate functional events, which are 

often considered to reflect ‘stages’ of processing; however, this is merely a simplification. The 

Schema does not assume or strictly adhere to ‘stage-based’ views of cognition (e.g., Sternberg, 

1969), as components within the Schema can overlap temporally. Indeed, the component-

processes often begin before the completion or culmination (i.e., peak) of previous components, 

which can support continuous-flow perspectives of cognition (see Coles et al., 1985). Despite 

that, these conceptual deliberations remain flexible as this working model continues to develop 

through progressive and iterative ERP research. 

Following conceptual and methodological improvements, such as the now standard 

application of separate PCAs within conditions (cf. combined PCA; Barry, De Blasio, Fogarty, 

& Karamacoska, 2016), Barry and colleagues have produced updated versions of the Schema for 

children (Barry et al., 2018), and for young adults (Fogarty et al., 2018). The young adult Schema 

in Fogarty et al. (2018) starts with the auditory P1 and N1-3 components, representing early 

sensory and attentional mechanisms involved in stimulus detection (Figure 1); however, these 

components are not always identified using PCA, given they account for such a small proportion 

of ERP variance (typically < 1%; Barry & De Blasio, 2013). N1-3 is followed by N1-1 and 

processing negativity (PN), signifying the onset of stimulus categorisation (for a review of these 

N1 subcomponents, see Näätänen & Picton, 1987). Successful target categorisation is marked by 

P2, followed by N2c, P3b, and a classic SW, reflecting further target-specific response processing. 

Alternatively, nontargets elicit N2b, P3a and a late slow-wave positivity (LP), marking the 

categorisation of nontargets and the termination of active response processing. 
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Figure 1. The updated Sequential Processing Schema in Fogarty et al. (2018). The corresponding 

component headmaps were extracted from the ERP data in that study. Note: P1, N1-3, and LP 

labels are faded as their mapping is more variable. 

The Sequential Processing Schema has proven to be a reliable research tool in studies of 

a range of target/nontarget processes over the lifespan (Barry, De Blasio, & Borchard, 2014; 

Barry, De Blasio, & Cave, 2016), with pharmacological manipulation (Barry, De Blasio, & Cave, 

2014), variable stimulus onset asynchronies (SOAs; Borchard et al., 2015), brain dynamics 

(Barry, De Blasio, De Pascalis, & Karamacoska, 2014; Barry et al., 2018; Karamacoska et al., 

2017, 2018), and in relation to behaviour (Barry & De Blasio, 2015; Barry et al., 2018; Fogarty 

et al., 2018). In the same way, the comprehensive data-driven approach used to quantify and test 

the broad ERP processing series in the Schema would be a valuable framework to compare target 

and nontarget processing in the auditory equiprobable and classic oddball tasks. Linking the 

components in the equiprobable and oddball tasks would also provide valuable insight into the 

generalisability of the Schema as a holistic ERP data-driven model of simple auditory Go/NoGo 

and active oddball task processing. 

1.5. The present study 

Previous studies have examined ERP component differences between simple auditory 

equiprobable and oddball task processing, however, those studies were designed to examine 

probability effects on certain components rather than characterise and compare the cognitive 

processing requirements in each task. There is a need for data-driven ERP studies with increased 

spatial resolution and sample sizes to delineate the processing series within each task condition 

and test the similarities and differences between these popular two-choice tasks within subjects; 

this could have valuable implications for equiprobable task utility and the fundamental ERP 

component structure and functionality within each paradigm.  
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Accordingly, the aim of the present study was to relate target and nontarget processing in 

the simple auditory equiprobable and classic oddball tasks, by comparing the range of ERP 

components and behaviour elicited in a large sample of healthy young adults using separate 

temporal PCAs; unlike the previous studies, this will allow the unique task and condition-specific 

variance to define the extracted ERP factor series. This investigation was also designed to 

determine if the young adult Sequential Processing Schema applies to the classic oddball task, to 

continue the development of that model. The Schema has not been examined in a classic oddball 

framework, although many of the ERP components forming the model are relevant to oddball 

paradigms. As such, a similar range of components was expected to be identified in each task, 

closely replicating the Sequential Processing Schema. 

ERP component amplitudes were likely to vary between tasks, reflecting the different 

cognitive demands. Following N. Squires et al. (1975) and Duncan-Johnson and Donchin (1977), 

the target and nontarget N1-1, N2, and P3 component amplitudes were expected to vary as a 

negative function of stimulus probability, while P2 was predicted to show the opposite pattern. 

Task-specific components (e.g., MMN, nP3) may also be identified, marking additional processes 

associated with rare targets. Behavioural performance outcomes were also anticipated to follow 

the typical speed-accuracy trade-off, relative to target probability (e.g., Duncan-Johnson & 

Donchin, 1982). 

 

2. Method 

2.1. Participant demographics and screening 

Sixty-six young adults volunteered to participate in this research through the University 

of Wollongong, School of Psychology Research Participation Scheme to gain additional course 

credit (Mage = 20.1, SD = 2.4 years; 14 males). All participants were right-handed, gave written 

informed consent, and self-reported no ongoing mental health issues, neurological disorders, or 

previous head injuries causing unconsciousness. Each participant had also abstained from 

caffeine/tobacco (> 4 h) and psychoactive substances (> 12 h) before testing. This procedure was 

conducted with the approval of the University of Wollongong and Illawarra Shoalhaven Local 

Health District Human Research Ethics Committee. 

2.2. Physiological recording 

Continuous electrophysiological data from DC to 30 Hz (sampled at 1000 Hz) were 

recorded using a Neuroscan Synamps2 Amplifier. EEG was recorded with electrodes at the right 

mastoid (M2) and 30 derivations across the scalp, all referenced to the left mastoid (M1) and 

grounded at AFz (Figure 2A). EOG data were also recorded at four sites: two adjacent to the outer 

canthi, and two above and below the left eye. All EEG and EOG electrodes were sintered 

Ag/AgCl, with impedances below 5 kΩ. 



42 

 

 

Figure 2. The EEG electrode montage utilised in this study (2A) and the nine core sites (2B) used 

to define component topographies in the topographical analyses (lower panel). 

2.3. Task and procedure 

The tasks used in this study were projected onto a blank wall, in a dark sound-attenuated 

room, ~3 m in front of participants. Participants were seated to complete a short EOG calibration 

task (see Croft & Barry, 2000), before receiving equipment and instructions for the auditory 

equiprobable and classic oddball tasks. Each task incorporated two blocks of 150 uncued tones 

(1000 or 1500 Hz) presented in random order through circumaural headphones at 60 dB SPL 

(calibrated at the headphone using an artificial ear; Brüel & Kjær, model 4152). Tones lasted 80 

ms (including 15 ms rise/fall times) and the SOA was fixed at 1250 ms, to be consistent with our 

prior research (Fogarty et al., 2018). Target tone frequency was counterbalanced between blocks, 

and task and block order alternated across subjects to minimise order effects. The global a priori 

target probability was the only difference between the two experimental tasks: equiprobable 

p(target) = .5 and classic oddball p(target) = .3. This oddball probability was set to establish a 

significant shift in target probability that is similar to other oddball tasks, while maintaining a 

reasonable target: nontarget ratio in each condition. 
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Participants were instructed to respond to target tones as quickly and as accurately as 

possible, and to ignore the alternate (nontarget) tone. Participants were also asked to respond with 

a right-handed button-press on a Logitech® Precision Gamepad Controller and fixate on a white 

cross displayed in front of them during each block. Before each block, participants received an 

example of their target tone and a short ten trial practice. Practice trials were randomly shuffled 

and shared the same target probability as the ensuing block. 

2.4. Measure quantification 

2.4.1. Behavioural performance 

Individual behavioural outcomes were quantified separately for each task: Reaction times 

(RTs) within the SOA period were recorded in ms, with extreme RTs classified as Fast (RTs < 

MRT − 2 SD) or Slow RT errors (RTs > MRT + 2 SD). Target and nontarget accuracy were also 

computed as the rate of omission and commission errors, respectively. After accuracy and extreme 

RTs were recorded, trials including errors or electrical artefacts (see Method 2.4.2) were removed 

so that a final measure of the intrasubject mean RT and standard deviation of RT (ISD) could be 

calculated for analysis. 

2.4.2. ERPs 

EEG data were EOG corrected (Croft & Barry, 2000), re-referenced to linked mastoids, 

and lowpass filtered to 25 Hz (FIR, 24 dB/Octave, zero phase shift) in Neuroscan (Compumedics, 

v. 4.5). The filtered data were then epoched around stimulus onset (−100 to +750 ms) and 

baselined using the average amplitude over the prestimulus period. Epochs including behavioural 

errors or electrical data exceeding ± 100 µV at any site were rejected. The remaining trials were 

then averaged to generate mean target and nontarget ERPs for each participant in each task. 

The target and nontarget ERP data from each task were subjected to four separate 

temporal PCAs in Matlab (The Mathworks, v. 8.0, R2012b), using the covariance matrix with 

Kaiser normalisation, and unrestricted Varimax rotation (Kayser & Tenke, 2003). These were 

conducted using Matlab functions provided by Kayser and Tenke (2003; http://bit.ly/2oX0etA); 

although those functions were modified to prevent the removal of the grand mean ERP, in line 

with Dien (2010) and Barry, De Blasio, Fogarty, and Karamacoska (2016). Each PCA included 

1980 cases (66 participants × 30 sites) and 850 variables (timepoints). The variance, topography, 

and latency of the extracted factors were used to identify as many ERP components as possible; 

this process was guided by prior ERP research and began with the factors accounting for the most 

variance. Unless they were readily identified from the PCA output, factors explaining < 1.5 % 

were not considered further. The final components within each condition were then summed to 

produce virtual (reconstituted) target and nontarget ERPs for each task. 

2.5. Statistical analysis 

Paired sample t-tests (N = 66, df = 65) were used to compare the percentage of accepted 

trials and the behavioural outcomes between tasks. Pearson’s correlations (r) were calculated 
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between the raw and reconstituted ERP data at three midline sites (Fz, Cz, Pz), to evaluate the 

virtual ERPs’ goodness-of-fit, within each task and condition. Following Barry, De Blasio, 

Fogarty, and Karamacoska (2016), matching components identified in the separate tasks were 

compared using Tucker’s (1951) congruence coefficient (rc), and topographic correlations. The 

congruence coefficient is calculated using the unscaled factor loadings of two components and 

provides an indication of component similarity over time; two components were considered 

highly similar if .85 ≤ rc ≤ .94, and temporally equivalent if rc ≥ .95 (Lorenzo-Seva & ten Berge, 

2006). The topographic correlations were calculated between the component amplitudes over the 

30 scalp sites.  

To define the topography of each component, separate univariate repeated measures 

ANOVAs (using SPSS MANOVA) were applied to their peak amplitude data from nine cores 

sites (Figure 2B). Alpha adjustments were not necessary for these topographical analyses as the 

number of planned contrasts was lower than the degrees of freedom for effect (Tabachnick & 

Fidell, 2013). Greenhouse-Geisser type corrections were also unnecessary as single degree of 

freedom contrasts are not affected by violations of sphericity (O’Brien & Kaiser, 1985). Each F 

test reported has (1, 65) degrees of freedom. 

In each task, mean intrasubject component amplitudes were calculated over the electrodes 

defining the dominant topographical features of each component; electrodes were carefully 

selected using the contours on the component headmaps, extending from the core topographic 

outcomes. Component amplitudes were then analysed between tasks using paired sample t-tests 

(N = 66, df = 65). Each t-test was two-tailed unless otherwise specified. An α < .05 was needed 

for the statistical significance of each test presented in this study, although those nearing 

significance (.05 < p < .10) are also reported, to guide future research. 

 

3. Results 

3.1. Trial and behavioural outcomes 

The percentage of accepted target trials in the classic oddball (M = 93.2 %, SD = 4.2) and 

equiprobable (M = 92.6 %, SD = 4.6) tasks did not differ. However, a larger percentage of 

nontarget trials were accepted in the oddball task (M = 97.4 %, SD = 3.3), compared to the 

equiprobable task (M = 95.4 %, SD = 3.9); t(65) = −4.62, p < .001. The grand mean (GM) task 

performance outcomes are summarised in Table 2. Commission error rates were significantly 

lower in the oddball task, t(65) = 7.42, p < .001. The oddball task was also linked to smaller ISDs, 

t(65) = 3.79, p < .001. Mean RTs also tended to be slower in the oddball than the equiprobable 

task, t(65) = -1.32, p = .096. 
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Table 2 

Grand Mean (and SD) for the Behavioural Outcomes by Task 

 Error Rates (%)  Target Reaction Time (ms) 

 Commissions*** Omissions Fast RT Slow RT  Mean ISD*** 

E 2.7 (2.4) 1.5 (2.4) 0.2 (0.5) 4.1 (1.2)  374.8 (51.3) 77.9 (24.3) 

O 0.8 (1.0) 1.0 (2.6) 0.3 (0.5) 4.0 (1.4)  380.4 (52.7) 69.3 (21.8) 

N.B. E = equiprobable; O = oddball; ISD = intra-individual standard deviation; *** is 

significant at p < .001. 

3.2. Target-specific outcomes 

3.2.1. Grand mean and reconstituted target ERPs 

Figure 3 compares the raw (left) GM target ERPs between the equiprobable and oddball 

tasks at Fz, Cz and Pz. These raw ERPs are highly comparable, with the major target components 

evident in the midline data, including the auditory P1, N1, P2, N2, P3 and a broad SW. 

 

Figure 3. Raw (left) and reconstituted (right) GM target ERPs related to the equiprobable and 

classic oddball tasks. Major Go ERP components are marked on the raw target ERP at Fz. 

3.2.2. Target PCA findings and congruence 

Figure 4 displays the scaled factor loadings, headmaps and factor information associated 

with the target components extracted in each task. Eight components were identified in relation 

to equiprobable targets, including N1-3, N1-1, PN, P2, N2c, P3b, and two SW components (target 

SW1 and SW2). A similar series of components was linked to oddball targets, excluding P2. 

These components explained a total of 94.4 % and 93.0 % of the variance in the equiprobable and 

oddball tasks, respectively. 
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Figure 4. GM target headmaps (top), and task-specific scaled factor loadings (middle) and target 

components (bottom). Topographic correlations (r) and congruence coefficients (rc) are displayed 

between the paired components. GM P2 is faded as it was unique to one task. 

The indicators of congruence and topographic similarity of paired target components are 

presented between the corresponding headmaps in Figure 4. The paired components were highly 

similar (N2c and SW1) or equivalent over time (N1-1, PN, P3b, SW2), except for N1-3 (rc = .78). 

Their topographies were also highly comparable, except for N2c, though it was still fairly 

comparable (r[28] = .61, p < .001). The raw and reconstituted ERP data (in Figure 3) were also 

highly correlated at Fz, Cz and Pz in each task (r[848] ≥ .98, p < .001), indicating a good fit 

between the raw and reconstituted data. 
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3.2.3. Target component topographies 

The GM target headmaps are displayed in Figure 4, while the significant and approaching 

significant topographical statistics for the GM target components are reported in Table 3. These 

outcomes are also summarised in text, including the topographical effects for the initial 

components, to aid the reader’s interpretation of these results. 

Table 3     

GM Target Topographies Across Tasks 

Component Effect F p ηp
2 

N1-3 F < P 10.70 .002 .14 

 L < R 3.82 .055 .06 

 M > L/R 10.79 .002 .14 

 C > F/P × L < R 13.21 .001 .17 

N1-1 F > P 96.06 < .001 .60 

 C > F/P 27.09 < .001 .29 

 M > L/R 168.21 < .001 .72 

PN F > P 8.50 .005 .12 

 C > F/P 8.82 .004 .12 

 L < R 10.52 .002 .14 

 M < L/R 29.96 < .001 .32 

 F > P × L < R 3.03 .086 .04 

 F > P × M < L/R 3.02 .087 .04 

 C > F/P × L < R 18.35 < .001 .22 

 C > F/P × M < L/R 96.62 < .001 .60 

P2 C > F/P 19.70 < .001 .23 

 M > L/R 4.43 .039 .06 

 C > F/P × M > L/R 221.84 < .001 .25 

N2c F > P 6.26 .015 .09 

 C < F/P 5.82 .019 .08 

 M < L/R 10.73 .002 .14 

 C > F/P × M < L/R 22.87 < .001 .26 

P3b F < P 235.33 < .001 .78 

 C > F/P 37.46 < .001 .37 

 F < P × L > R 30.83 < .001 .32 

 F < P × M > L/R 99.70 < .001 .60 

SW1 C < F/P 46.40 < .001 .42 

 L < R 42.59 < .001 .42 

 M > L/R 3.02 .087 .04 

 F > P × L > R 4.34 .041 .06 

 F > P × M > L/R 7.71 .007 .11 

 C < F/P × L < R 4.96 .029 .07 

SW2 C < F/P 65.28 < .001 .50 

 L > R 29.26 < .001 .31 

 M > L/R 5.36 .024 .08 

 F > P × M > L/R 7.89 .007 .11 

 C < F/P × L < R 17.42 < .001 .21 

 C < F/P × M < L/R 3.32 .073 .05 

N.B. Effects approaching significance are in grey. F = frontal; C = central; 

P = parietal; F/P = frontoparietal mean; L = left hemisphere; M = midline; 

R = right hemisphere; L/R = hemispheric mean. 
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The GM target N1-3 was a parietal negativity (F < P) that was stronger in the midline (M 

> L/R) and centrally in the right hemisphere (C > F/P × L < R). GM target N1-1 was a large 

frontocentral negativity (F > P and C > F/P) that was dominant in the midline (M > L/R). Across 

tasks, target PN was a frontocentral negativity that was dominant in the hemispheres, particularly 

on the right, at central sites; these effects interacted, and temporal amplitudes were greatest 

centrally. 

The equiprobable P2 was a small positivity that was maximal at the vertex (i.e., central-

midline sites). GM N2c was strongly frontal, and dominant in the hemispheres, particularly at 

central sites. Over tasks, GM P3b was a large centroparietal positivity with greater parietal activity 

in the midline and left hemisphere. Across tasks, target SW1 was a frontoparietal negativity that 

was dominant in the midline and in the right hemisphere, particularly at parietal sites. GM target 

SW2 was also a frontoparietal negativity, but was dominant on the left and in the midline, 

especially frontally; central SW2 amplitudes were also largely reduced on the right. 

3.2.4. Target amplitudes and task effects 

The t-test results comparing mean target component amplitudes between tasks are 

summarised in Table 4. These analyses did not include P2 as it was unique to the equiprobable 

task. Also, given that SW components are thought to comprise positive and negative 

subcomponents (Fitzgerald & Picton, 1981) the positive and negative features of SW1 and SW2 

were quantified and analysed separately (as in Karamacoska et al., 2018). However, it was 

deemed inappropriate to compare the target SW2 negativity (i.e., SW2−) between tasks, 

considering it was frontal in the classic oddball task, but parietal in the equiprobable (Figure 4). 

Target N1-3 amplitudes were averaged over P3, Pz, CPz, CP4 and C4; N1-1 was averaged across 

Fz, FC3, FCz and FC4; PN over FT7, T7, FT8 and T8; N2c across FC3, F3, Fz, F4 and FC4; 

while P3b amplitudes were computed over P3, Pz, CP3 and CPz. Target SW1− was averaged over 

Fz, F4, CP4, and P4; SW1+ across FC3, CP3, C3, Cz and C4; and SW2+ over Cz, C4 and T8. 

Target N1-1, PN and P3b amplitudes were significantly larger in the classic oddball task, whereas 

SW1+ was smaller, relative to that in the equiprobable task. 
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Table 4 

Task Differences in Target Component Amplitudes 

Target 

Component 

Mean Amplitudes (and SD) 
t p Cohen’s d 

Equiprobable Oddball 

N1-3 −0.43 (1.1) −0.38 (1.1) −.30 .764 .04 

N1-1 −4.63 (2.1) −5.03 (2.1) 2.07 .021 † −.19 

PN −1.56 (1.4) −2.34 (1.7) 6.56 < .001 † −.50 

N2c −0.25 (1.4) −0.46 (2.4) .84 .204 † −.11 

P3b 6.50 (3.5) 8.56 (4.7) −4.59 < .001 † .50 

SW1+ 0.42 (2.2) 0.14 (1.8) 2.32 .023 −.14 

SW1− −0.80 (2.2) −0.76 (1.6) −.15 .881 .02 

SW2+ 1.07 (2.6) 1.41 (3.4) −1.02 .310 .11 

N.B. One-tailed p value†. Shaded components did not differ significantly between tasks. 

 

3.3. Nontarget-specific outcomes 

3.3.1. Grand mean and reconstituted nontarget ERPs 

The raw GM nontarget ERPs in each task were markedly similar at Fz, Cz and Pz, 

showing an early P1, N1, N2, P3 and SW (Figure 5). Slight amplitude differences were evident 

between tasks, particularly later in the epoch at frontal and central sites. 

 

Figure 5. Raw (left) and reconstituted (right) GM nontarget ERPs associated with each task. 

Major nontarget ERP components are labelled on the raw ERP at Fz. 

3.3.2. Nontarget PCA findings and congruence 

Figure 6 displays the nontarget PCA output and the similarity of the nontarget ERP 

components paired between tasks. Seven components were identified in each task, including N1-

3, N1-1, PN, N2b, P3a, and a nontarget SW1 and SW2. These components accounted for a total 

of 88.8 % and 89.7 % of the nontarget ERP variance in the equiprobable and oddball tasks, 
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respectively. These components had comparable topographies across tasks (r[28] ≥ .61, p < .001), 

and were highly similar (N1-3, PN) or equivalent over time (N1-1, P3a, SW1, SW2); excluding 

N2b (rc = .73). Also, although PN’s topography was highly similar across tasks, frontal PN 

amplitudes were notably larger in the oddball task (Figure 6). The raw and reconstituted ERPs in 

Figure 5 were also highly correlated (r[848] ≥ .97, p < .001), indicating a good fit between the 

raw and reconstituted nontarget ERP data. 

 

Figure 6. GM nontarget headmaps (top), task-specific scaled factor loadings (middle) and the 

headmaps, topographic correlations (r), and congruence coefficients (rc) for the corresponding 

nontarget components, across tasks (bottom). 
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3.3.3. Nontarget component topographies 

The defining topographies of the GM nontarget components are detailed statistically in 

Table 5 and are summarised in text, along with the computation of the nontarget component 

amplitudes. The corresponding GM headmaps are displayed in Figure 6. 

Table 5     

GM Nontarget Topographies Across Tasks 

Component Effect F p ηp
2 

N1-3 F < P 45.45 < .001 .41 

 M > L/R 7.09 .010 .10 

N1-1 F > P 183.85 < .001 .74 

 C > F/P 40.27 < .001 .38 

 M > L/R 72.34 < .001 .53 

 F > P × M < L/R 4.53 .037 .06 

 C > F/P × L > R 2.92 .092 .04 

PN F > P 3.33 .072 .05 

 C > F/P 9.53 .003 .13 

 L < R 55.64 < .001 .46 

 M < L/R 7.23 .009 .10 

 F < P × M < L/R 17.06 < .001 .21 

 C > F/P × L < R 14.92 < .001 .21 

 C > F/P × M < L/R 36.77 < .001 .36 

N2b C < F/P 100.24 < .001 .61 

 L < R 19.85 < .001 .23 

 M > L/R 15.28 < .001 .19 

 F > P × L > R 3.90 .053 .06 

 F > P × M > L/R 14.29 < .001 .18 

 C > F/P × L < R 12.34 .001 .16 

P3a F < P 9.27 .003 .12 

 C > F/P 52.56 < .001 .45 

 L > R 4.84 .031 .07 

 M > L/R 95.53 < .001 .60 

 F > P × L > R 12.33 .001 .16 

 C > F/P × M > L/R 31.50 < .001 .33 

SW1 F > P 19.27 < .001 .23 

 C < F/P 8.74 .004 .12 

 M > L/R 53.33 < .001 .45 

 C > F/P × M > L/R 45.57 < .001 .41 

SW2 C > F/P 106.17 < .001 .62 

 M < L/R 12.88 .001 .16 

N.B. Effects approaching significance are in grey. F = frontal; C = central; 

P = parietal; F/P = frontoparietal mean; L = left hemisphere; M = midline; 

R = right hemisphere; L/R = hemispheric mean. 

GM nontarget N1-3 was a small parietal negativity that was larger in the midline. Across 

tasks, nontarget N1-1 was a frontocentral negativity that was enhanced in the midline, particularly 

at parietal sites. The GM nontarget PN was central with maximal amplitudes at temporal sites, 

which were enhanced parietally; PN was also larger on the right, particularly at central sites. 

Across tasks, N2b was a small frontoparietal negativity that was dominant at the midline 

and on the right; midline N2b amplitudes were larger frontally and in the right hemisphere at 

central sites. GM P3a was a centroparietal positivity that was greater in the midline and on the 
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left, especially at frontal sites; P3a amplitudes were maximal at the vertex. Over tasks, nontarget 

SW1 was a strong frontal negativity that was dominant in the midline, especially at central sites. 

GM nontarget SW2 was a central positivity that was maximal in the hemispheres. 

3.3.4. Task effects on nontarget component amplitudes 

The t-test outcomes comparing nontarget component amplitudes between tasks are 

presented in Table 6. Consistent with the nontarget topographical analyses and component 

headmaps, mean nontarget N1-3 amplitudes were calculated across P3, Pz, P4 and CPz; nontarget 

N1-1 was averaged over Fz, FCz, FC3 and FC4; PN across T7 and T8; N2b over Fz and F4; and 

P3a across FCz and Cz. Nontarget SW1− was averaged across F3, Fz, F4, and FCz; mean SW1+ 

was computed over T7 and T8; nontarget SW2− was averaged across Fz and Pz; whereas mean 

SW2+ was computed over C3, Cz and C4. The nontarget N1-1, PN, N2b, SW1+, and SW2− were 

significantly smaller in the classic oddball task. Larger nontarget SW1− and SW2+ amplitudes 

were found in the oddball task, compared to their equiprobable counterparts. 

Table 6 

Task Differences in Nontarget Component Amplitudes 

Nontarget 

Component 

Mean Amplitudes (and SD) 
t p Cohen’s d 

Equiprobable Oddball 

N1-3 −0.65 (1.9) −0.58 (0.9) −.45 .653 .05 

N1-1 −4.88 (2.2) −4.12 (1.9) −4.04 < .001 † .37 

PN −1.77 (1.0) −1.05 (1.0) −6.07 < .001 † .72 

N2b −0.52 (2.5) −0.01 (1.2) −1.96 .028 † .26 

P3a 2.90 (3.9) 2.64 (3.3) .82 .208 † −.07 

SW1+ 2.08 (1.3) 1.76(1.1) 2.09 .040 −.27 

SW1− −0.27 (2.3) −1.01(2.0) 3.01 .004 −.34 

SW2+ 0.94 (2.2) 1.70(2.1) −3.86 < .001 .35 

SW2− −1.10 (2.3) −0.15(2.2) −4.21 < .001 .42 

N.B. One-tailed p value †. Shaded components did not differ significantly between tasks. 

 

4. Discussion 

4.1. Study overview 

The aim of this study was to link the cognitive processing in the auditory equiprobable 

and classic oddball tasks, in relation to the young adult Sequential Processing Schema (Barry & 

De Blasio, 2013; Fogarty et al., 2018). To do so, we compared the series of ERP components and 

behaviour elicited in healthy young adults completing those two-choice tasks. As predicted, a 

highly comparable series of target and nontarget components were identified in each task, closely 

matching the range of components in the Schema. These findings illustrate the similarity of 

equiprobable and oddball processing and demonstrate that the Schema can apply to the classic 

oddball task. Nevertheless, task differences in behaviour and component amplitudes were evident, 

signifying important changes in target/nontarget demands reflecting stimulus probability. 
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4.2. Behavioural performance outcomes 

The oddball task was associated with lower commission error rates and smaller RT ISDs, 

indicating that target responses were more accurate and controlled in the classic oddball task. 

Oddball RTs also tended to be longer; thus, taken together, these behavioural outcomes are 

consistent with the typical speed-accuracy trade-off found relative to target probability (Duncan-

Johnson & Donchin, 1982; Miller, 1998). 

4.3. Target processing outcomes 

Eight ERP components were identified in relation to equiprobable targets, including (in 

latency order) N1-3, N1-1, PN, P2, N2c, P3b, and two slow-wave components (SW1, SW2). This 

series replicated our previous findings and the target profile in the young adult Schema (e.g., 

Barry, De Blasio, Fogarty, & Karamacoska, 2016; Borchard et al., 2015). The seven components 

linked to classic oddball target processing matched the series in the equiprobable task, excluding 

P2, which was not evident, suggesting that the processes underlying P2 were strongly abated when 

target probability decreased, in line with earlier research (Duncan-Johnson & Donchin, 1977; 

Spencer & Polich, 1999; N. Squires et al., 1975). This outcome may question the functional role 

of P2 in the Schema and auditory oddball task, suggesting that target categorisation could occur 

prior to, or independently of P2 processing. However, given the considerable amount of research 

relating P2 to sensory and perceptual processing (see e.g., Burkhard et al., 2019; Crowley & 

Colrain, 2004; Garcia-Larrea et al., 1992; Lijffijt et al., 2009; Shahin et al., 2005; Tong et al., 

2009; Tremblay et al., 2001, 2014; Vaughan & Ritter, 1970), it is likely that oddball P2 was 

simply not extracted by PCA due to its lower amplitude or signal-to-noise ratio in the oddball task 

(see Section 4.6). In turn, the separation of equiprobable P2 could reflect its increased amplitude 

related to a greater signal-to-noise ratio and augmented perceptual processing as targets are 

presented more frequently in that task (e.g., enhanced sensory gating or short-term memory 

retrieval; Atienza et al., 2002; Lijffijt et al., 2009; Tong et al., 2009). 

Across tasks, each target component demonstrated highly similar or equivalent 

amplitudes over time, except for N1-3 (Figure 4). The paired components were also highly similar 

topographically, although the correlation between the N2c components was notably weaker, 

perhaps due to greater N2c latency variability in the equiprobable data (see the double-peak in 

the raw ERPs at Fz; Figure 3). The topography of the target SW2− was also notably different 

between tasks, suggesting that distinct negative subcomponents were overlaying the equiprobable 

and oddball SW2+. This finding suggests that task-specific processing occurs towards the end of 

target trials in the SW time period, possibly reflecting some variation in the way that participants 

are evaluating performance, updating memory, or preparing for subsequent trials after infrequent 

targets. The remaining target components were remarkably similar across tasks, demonstrating 

that highly comparable processes are elicited by targets in the auditory equiprobable and classic 

oddball tasks. 
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4.3.1. Target processing demands 

Target N1-1 and PN amplitudes were significantly larger in the classic oddball task, 

consistent with research illustrating a refractory period for N1 that results in lower amplitudes as 

target probability increases or target-to-target intervals decrease (see Budd et al., 1998; Coch et 

al., 2005; Duncan-Johnson & Donchin, 1977; Nelson & Lassman, 1968, 1973, 1977; Pereira et 

al., 2014; Polich et al., 1994; Steiner et al., 2014b, 2016; Spencer & Polich, 1999), and indicating 

that selective target identification was potentially more effortful when targets were rare 

(Näätänen, 1990). Contrary to our expectations and prior research (Nieuwenhuis et al., 2003; 

Spencer & Polich, 1999; N. Squires et al., 1975), target N2c did not differ with probability 

(Banquet et al., 1981; Polich et al., 1994), suggesting that each task demanded a similar amount 

of effort to categorise and direct further target response processing (Ritter et al., 1979). 

Consistent with prior probability research, target P3b or “P300” amplitudes were larger 

in the classic oddball task (Dalbokova et al., 1990; Duncan-Johnson & Donchin, 1977, 1982; Hull 

& Harsh, 2001; Polich & Margala, 1997; Spencer & Polich, 1999; K. Squires et al., 1977; N. 

Squires et al., 1975). This can be interpreted from several perspectives. Larger P3b amplitudes 

could reflect greater neural inhibition linked to memory encoding (Polich, 2007), or index 

strategic changes associated with planning and control in the oddball task (Donchin & Coles, 

1988). Alternatively, P3b could represent the reactivation of a stimulus-response relationship (i.e., 

target → button-press; Verleger et al., 2015), which requires more effort when that process is 

largely inactive. 

The central target SW1+ was significantly smaller in the oddball, relative to the 

equiprobable task. Although the literature on SW functionality is relatively limited, positive SW 

activity is often thought to involve working memory or response evaluation (e.g., Friedman, 1984; 

García-Larrea & Cézanne-Bert, 1998; Ruchkin et al., 1990; Schmajuk et al., 2006), whereas late 

negative SW activity is often related to memory, control, and preparatory response processes in 

various cognitive tasks (Desmedt & Debecker, 1979; Mecklinger & Müller, 1996; Rohrbaugh et 

al., 1978; Ruchkin et al., 1988, 1990, 1995; Zickerick et al., 2020). In this study, the target SW1+ 

overlays the motor cortex and is larger contralateral to the responding hand, suggesting a potential 

link to motor cognition. The fact that it increases when participants must respond more frequently 

also supports this notion. Following this, and previous interpretations of SW activity, we suspect 

that the different subcomponents contributing to the target SW1 and SW2 may reflect an interplay 

between performance evaluation and the cognitive adjustments made to prepare for the next trial, 

but further research is necessary to test this proposal. 

4.4. Nontarget processing outcomes 

Seven components were related to nontarget processing in the auditory equiprobable and 

classic oddball tasks: N1-3, N1-1, PN, N2b, P3a, and nontarget SW1 and SW2. This component 

series closely replicates the nontarget ERP profile in the Sequential Processing Schema. However, 
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nontarget P1 was not extracted in either task (due to its small size; Barry & De Blasio, 2015) and 

nontarget SW1 and SW2 were identified instead of the LP. Nontarget SW2 could feature the LP 

(i.e., SW2+), however, its topography is substantially different to the global LP originally 

identified in Barry and De Blasio (2013). SW2 and LP will be considered separately here, but 

further research is needed to clarify these late components in the Schema. 

The seven nontarget components demonstrated a highly similar or equivalent morphology 

in each task, except for N2b, which demonstrated more dissimilar factor loadings (Figure 6). 

However, the peak topography of each component (including N2b) was highly similar across 

tasks, although the oddball PN featured notably larger amplitudes at frontal sites. Overall, these 

outcomes demonstrate that successful nontarget processing elicits highly comparable processing 

stages in the equiprobable and classic oddball tasks. 

The identification of a nontarget P3 in the current oddball task corroborates previous 

research identifying frequent-nontarget (i.e., standard) P3 components in similar tasks (e.g., Bruin 

& Wijers, 2002; Duncan-Johnson & Donchin, 1977; Kamp & Donchin, 2015; Kayser et al., 1998; 

McDonald et al., 2010; Rosenfeld et al., 2005; Spencer et al., 1999; N. Squires et al., 1975; Sutton 

et al., 1965; Tueting et al., 1971; Verleger & Berg, 1991; Verleger et al., 2016); although the 

specific factors underpinning P3 in these studies are not always clear (for some critique, see Barry, 

Steiner, & De Blasio, 2016; Dien et al., 2004). Identifying a frequent nontarget P3 might be 

considered unusual to some researchers, as P3 is often thought to be observable after targets and 

deviants only, as shown in novelty oddball tasks (e.g., Debener et al., 2005; Spencer et al., 2001). 

However, nontarget P3a might be evident in classic oddball tasks if targets and nontargets are 

highly similar, perhaps reflecting increased cognitive control requirements, or a shift in attention 

towards nontargets (Comerchero & Polich, 1999). Nontarget P3a amplitudes are also more central 

compared to the parietally dominant target P3b, and are negatively related to nontarget probability 

(Duncan-Johnson & Donchin, 1977; N. Squires et al., 1975). Accordingly, the apparent absence 

of P3a in other oddball studies could also be due to the higher nontarget probabilities, or P3 

measures being limited to parietal sites. Alternatively, this may indicate a difference in the 

cognitive processing of frequent nontargets (i.e., standards) in classic two-stimulus and novelty 

variants of the oddball task, suggesting that researchers should be careful comparing the ERP 

results between these oddball variants. 

4.4.1. Task effects on nontarget processing 

As expected, nontarget N1-1, PN, and N2b were all significantly smaller in the classic 

oddball task, again demonstrating refractory and possibly faciliatory effects of increasing 

nontarget probability on stimulus identification (Duncan-Johnson & Donchin, 1977; Polich et al., 

1994; Steiner et al., 2014b; N. Squires et al., 1975); as well as lower demands for inhibitory 

control as nontargets become standard and target motor response tendencies decrease (Bruin & 

Wijers, 2002; Miller, 1998; Nieuwenhuis et al., 2003). P3a amplitudes were also smaller in the 
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oddball task, consistent with our hypothesis, although this effect did not approach statistical 

significance, suggesting that the probability difference between the equiprobable and oddball 

tasks needed to be larger. However, the direction of that non-significant effect, and the significant 

N2b and behavioural outcomes found here, together corroborate previous research linking larger 

auditory N2b and P3a amplitudes to greater inhibitory demands and effortful control processing 

(e.g., Falkenstein et al., 1999; Fogarty et al., 2018). 

Nontarget SW1+ and SW2− were both smaller in the oddball task, whereas the nontarget 

SW1− and SW2+ were increased, relative to their equiprobable counterparts. It is likely that these 

SW subcomponents represent a range of processes involved in nontarget performance evaluation 

and preparation for ensuing trials, similar to that proposed for the target SW1 and SW2 following 

prior SW research (e.g., Desmedt & Debecker, 1979; Rohrbaugh et al., 1978; Ruchkin et al., 1988, 

1990, 1995). 

4.5. Common elements across conditions 

N1-3 amplitudes did not differ between tasks in either condition, supporting its link to a 

sensory process prior to stimulus identification (Näätänen & Picton, 1987). In contrast, N1-1 and 

PN both increased in amplitude as stimulus probability decreased, irrespective of the stimulus 

condition, indicating that these components represent subsequent processing stages, separate from 

the N1-3; perhaps involving higher order perceptual processes and selective attention, leading to 

stimulus categorisation (Näätänen, 1990; Näätänen & Picton, 1987). Following PN, stimulus-

specific processing occurred, reflecting the different response requirements in the Schema (Figure 

1). Each processing chain ended with two stimulus-specific SW components (SW1 and SW2), 

perhaps reflecting the evaluation, integration, and adjustment of task response processing. Further 

research is needed to test our current interpretation of these late components and illuminate their 

role in the young adult Schema, perhaps by examining their relationship with the response. 

4.6. Further considerations 

MMN was not extracted in this study, which is likely because the target probability was 

not low enough to elicit a significant mismatch response in these simple two-choice tasks. Indeed, 

the MMN guidelines set by Duncan et al. (2009) indicate that the optimal target probability in 

MMN-eliciting paradigms is ≤ 0.2. The large difference in auditory frequency between the stimuli 

used in this study could also have shifted MMN latencies towards the N100 (Justen & Herbert, 

2018), and this potential overlap could have made it more difficult to extract the MMN separately, 

particularly if it was very small. 

The present PN outcomes contradict what is expected by Attentional-Trace Theory, 

which suggests that PN reflects electrocortical activity generated as new stimuli are compared to 

a neuronal representation of the target (Näätänen, 1982). This representation (and thus, PN) has 

been shown to diminish with a lack of sensory reinforcement, which occurs when the relevant 

stimuli are infrequent (Alho et al., 1990); however, here PN amplitudes increased as stimulus 
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probabilities decreased, irrespective of the condition. This could question Attentional-Trace 

Theory. Alternatively, the PCA-derived PN might not be representative of the traditional PN, 

which is normally measured from difference waveforms (i.e., Nd; Näätänen, 1990). 

Both PN and MMN are traditionally isolated from the difference between target and 

nontarget ERP data (e.g., Alho et al., 1990), which can provide valuable insight. However, this 

subtraction process can also cancel out relevant data within conditions (Näätänen, 1982). The 

subtraction approach does not clearly account for the ERP variance associated with overlapping 

ERP components either, resulting in unknown levels of error in difference waveforms (Ouyang 

et al., 2013). In contrast, PCA separates components based on the underlying patterns in the ERP 

data, which should still extract and isolate components like MMN if they carry enough unique 

variance. A limitation of this study was that we did not include a nose-reference to explore and 

validate MMN further. To our knowledge, no research has examined the comparability of PCA-

derived MMN components with those measured from difference-waveforms; this would be useful 

to consider in future research to determine if MMN can be extracted separately or if its variance 

loads onto other factors derived from the typical target and nontarget waveforms. 

The use of PCA to decompose the ERP data is considered a strength of this study. 

However, a possible limitation to be considered is the use of orthogonal Varimax rotation. 

Varimax-rotated factor loadings may be biased by the orthogonality constraint (see Scharf & 

Nestler, 2018). This bias can inflate factor cross-loadings, which may be reflected in the temporal 

overlap of the loadings in this study, and is perhaps most apparent in the long tail of the N1-1 

overlapping later factors. The absence of oddball P2 may also be explained by this as Varimax 

might achieve greater simple structure and orthogonality by misallocating ERP variance (Dien, 

1998; Dien et al., 2005); that is, P2 may have been subsumed within other overlapping factors, 

particularly if it was less prominent in the oddball task. Accordingly, the duration of factors and 

their interpretations should be considered with some caution. 

In particular, the SW1 and SW2 outcomes should be generalised tentatively, as it is not 

clear what these factors represent or how they relate to SW factors identified in previous studies. 

The topographies of SW1 and SW2 do not bear any obvious similarity to that described for the 

‘classic’ frontally-negative and parietally-positive SW, even when the subcomponents of that 

component are delineated using methods like PCA (e.g., Loveless et al., 1987; Spencer et al., 

2001; Steiner et al., 2013; Strüber & Polich, 2002). Instead, SW1 and SW2 resemble other late 

frontal, parietal, or frontoparietal negativities that are often linked to memory processing, 

evaluation, and preparation in similar paradigms (Desmedt & Debecker, 1979; Rohrbaugh et al., 

1978; Ruchkin et al., 1988, 1990, 1995). Hence, we put forward a tentative interpretation 

regarding the functionality of the components labelled as SW1 and SW2 in this study, which 

aligns with this view in the literature and the current findings. However, as mentioned, it is also 
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possible that these factors are somewhat distorted by Varimax constraints, and systematic testing 

is needed to explore the stability of SW1 and SW2 using different techniques and task designs. 

As mentioned in Chapter 1, the correct factor solution cannot be known, and despite the 

potential limitations of Varimax rotation the factor solutions in this study provide a sensible model 

of numerous ERP components in the broader literature. Strict factor orthogonality may not be 

realistic (Dien et al., 2005), however, the current results are considered to provide a simple and 

stable account of the ERP data in this task. Further research comparing the factor series output by 

different rotations (e.g., orthogonal vs. oblique) would help to highlight the potential biases in 

each solution and facilitate the interpretation of these factors and the development of a holistic 

ERP data-driven processing schema for these paradigms. 

4.7. Conclusion 

This investigation showed that a highly similar range of ERP components is elicited in 

healthy young adults completing both the auditory equiprobable and classic oddball tasks. These 

components also closely replicated Barry and De Blasio’s (2013) Sequential Processing Schema 

(as updated by Fogarty et al., 2018), demonstrating that it can apply to the auditory classic oddball 

as well as its formative equiprobable task. These findings illustrate a high level of comparability 

between these two tasks, showing that classic oddball target and nontarget processing closely 

parallels that in the equiprobable task; though there are clear variations in the task demands 

illustrated by the differing component amplitudes and behaviour. This indicates that the 

equiprobable task can be used as an efficient alternative to the classic oddball paradigm. More 

importantly, these outcomes will facilitate the integration and progression of the ERP theory and 

research linked to equiprobable and oddball tasks, particularly in relation to the Sequential 

Processing Schema.  
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Chapter 3. The First 250 ms of Auditory Processing: No 

Evidence of Early Processing Negativity in the Go/NoGo Task 

 

 

 

Foreword 

Through the vagaries of the peer review system, this chapter, corresponding to Experiment 2, was 

the third accepted paper from this thesis. It compared the sequential processing and behaviour in 

traditional (frequent Go) and equiprobable Go/NoGo tasks. Following the probability effects 

identified in Chapter 2, it was suspected that PN may have been misidentified in much of the 

previous Go/NoGo PCA research, which has important implications for the conceptualisation of 

Go/NoGo processing. Hence, Chapter 3 concentrated on clarifying the ERP components in the 

first 250 ms of auditory Go/NoGo processing, with a particular focus on the factor previously 

identified as the Go/NoGo PN. In this chapter, the labelling of the N1 components changed to 

follow the nomenclature in McCallum and Curry (1980), reflecting conceptual developments 

adopted during this study. Minor changes were made to the accepted article for this thesis and its 

final publication in the journal, Scientific Reports. A copy of the published article is printed in 

Appendix C for reference. 

 

Citation 

Fogarty, J. S., Barry, R. J., & Steiner, G. Z. (2020). The first 250 ms of auditory processing: No 

evidence of early processing negativity in the Go/NoGo task. Scientific Reports, 10(1), 

Article 4041. https://doi.org/10.1038/s41598-020-61060-9 

 

Author Contributions 

JSF conceptualised this study. JSF performed the data collection, analyses, and interpretation of 

the outcomes under the supervision of RJB and GZS. The journal article was drafted and finalised 

by JSF following critical revisions provided by RJB and GZS. All authors approved the final 

article prior to submission. 

 

 

 

Mr Jack S. Fogarty Prof. Robert J. Barry A/Prof. Genevieve Z. Steiner 

PhD Candidate Primary Supervisor & Co-author Co-supervisor & Co-author 

June 11, 2020 June 11, 2020 June 11, 2020 



69 

 

Abstract 

Past evidence of an early Processing Negativity in auditory Go/NoGo event-related potential 

(ERP) data suggests that young adults proactively process sensory information in two-choice 

tasks. This study aimed to clarify the occurrence of Go/NoGo Processing Negativity and 

investigate the ERP component series related to the first 250 ms of auditory processing in two 

Go/NoGo tasks differing in target probability. ERP data related to each task were acquired from 

60 healthy young adults (Mage = 20.4, SD = 3.1 years). Temporal principal components analyses 

were used to decompose ERP data in each task. Statistical analyses compared component 

amplitudes between stimulus type (Go vs. NoGo) and probability (High vs. Low). Neuronal 

source localisation was also conducted for each component. Processing Negativity was not 

evident; however, P1, N1a, N1b, and N1c were identified in each task, with Go P2 and NoGo 

N2b. The absence of Processing Negativity in this study indicated that young adults do not 

proactively process targets to complete the Go/NoGo task and/or questioned Processing 

Negativity’s conceptualisation. Additional analyses revealed stimulus-specific processing as 

early as P1, and outlined a complex network of active neuronal sources underlying each 

component, providing useful insight into Go and NoGo information processing in young adults. 

 

Keywords: auditory processing, event-related potentials, Go/NoGo, Processing Negativity, 

source localisation 
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1. Introduction 

The Go/NoGo task requires participants to respond quickly and accurately to Go (target) 

stimuli, while making no response to NoGo (nontarget) stimuli. Like other two-choice tasks (e.g., 

oddball tasks), this involves complex sensory, perceptual, and cognitive processing to 

discriminate between stimuli, and to regulate or control behaviour. However, Go/NoGo tasks are 

unique in that they provide a response set specifically for motor inhibition, the ability to suppress 

active or prepotent motor responses (Gomez et al., 2007; Wessel, 2018). The purpose of this study 

was to clarify the early information and control processing in auditory Go/NoGo tasks by 

analysing the series of electroencephalographic (EEG) event-related potential (ERP) components 

related to the first 250 ms of Go/NoGo processing. 

The first 250 ms of auditory Go/NoGo processing is generally associated with four ERP 

components: P1, N1, P2, and N2. P1 is a small frontal scalp positivity that peaks ~ 50 ms after 

the onset of auditory stimuli, reflecting neuronal activity primarily generated in the temporal lobe 

and prefrontal cortex (Brodmann’s Area [BA] 2, 6, 22, and 24: Grunwald et al., 2003; Korzyukov, 

et al., 2007). P1 (or P50) is generally associated with sensory gating, an early selection mechanism 

involving the automatic filtering of sensory stimuli to facilitate relevant or targeted information 

processing (Alho et al., 1994; Freedman et al., 1987; Knight et al., 1989; Lijffijt et al., 2009). 

N1 is a large frontocentral negativity that peaks ~ 100 ms poststimulus, involving a 

complex of sensory components, including a small and diffuse N1a that peaks ~ 75 ms 

poststimulus, a frontocentral N1b at ~ 100 ms, and a temporal N1c at ~ 150 ms after stimulus 

onset (Bender et al., 2006; Knight et al., 1988; McCallum & Curry, 1980; Nielsen-Bohlman et 

al., 1991; Timm et al., 2013; Wolpaw & Penry, 1975; Woods, 1995). These N1 components are 

also referred to as N1-3, N1-1, and N1-2, respectively, representing the “true” N1 components in 

Näätänen and Picton’s (1987) review of the N1. N1a and N1c are also considered part of the T-

complex (or T-wave), a double-peaked N1 waveform that is evident at the temporal scalp 

electrode sites (Woods, 1995). 

N1 generators are located mostly in the superior temporal plane, including the primary 

and secondary auditory cortices (BA 41 and 42) and auditory association area (BA 22: Lü et al., 

1992; Martin et al., 2007; Näätänen & Picton, 1987; Pantev et al., 1995; Woods, 1995). However, 

N1 may also have sources in the frontal lobe (BA 9, 10, 24, 32, and 33: Dien et al., 1997; Grau et 

al., 2007; Picton et al., 1999), supporting links between N1 and attention (Giard et al., 1994; 

Näätänen, 1988), or response selection (Bender et al., 2006; Filipović et al., 2000; Kirmizi-Alsan 

et al., 2006). N1 is generally considered to mark stimulus detection, and perhaps later stages of 

sensory gating in conjunction with P2 (Lijffijt et al., 2009; Joos et al., 2014). 

P2 is a central positivity that peaks ~ 200 ms poststimulus, reflecting neuronal activity in 

the vicinity of Heschl’s gyrus, slightly anterior to the N1 generators (Lütkenhöner & Steinsträter, 

1998; Ross & Tremblay, 2009; Woods et al., 1993). Alternate sources have also been suggested 
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for P2, including the reticular activating system and BA 22 (Crowley & Colrain, 2004; Rif et al., 

1991). 

The functional significance of P2 is not clear, although suggestions have been made that 

it is linked to higher-level perceptual processes involved in target identification (Crowley & 

Colrain, 2004). This corresponds with previous auditory ERP research illustrating differential Go 

and NoGo processing after N1, marked by the Go-specific P2 and NoGo-specific N2b (Borchard 

et al., 2015). N2b is a frontal negativity that peaks ~ 200 ms after NoGo stimulus onset, reflecting 

neuronal activity in the anterior cingulate cortex (BA 32 and 33) commonly associated with 

cognitive control (Botvinick et al., 2004; Folstein & Van Petten, 2008; Gratton et al., 2018). 

In auditory discrimination tasks, the automatic sensory components may be overlapped 

by Processing Negativity (PN), an endogenous slow wave associated with selective attention 

(Näätänen, 1982). PN is considered to index a matching process between attended sensory input 

and an actively-maintained neuronal representation or trace of relevant target information 

(Näätänen, 1982, 1988; Schröger et al., 2015). Maintaining a trace is effortful, although it is 

thought to facilitate the processing of the relevant stimulus input (Näätänen, 1982). In view of 

that, PN may be considered as a putative marker of proactive information processing, which could 

provide useful insight into the cognitive strategy that individuals are using in a task. 

PN is traditionally quantified in oddball tasks as a frontocentral negative difference (Nd) 

between target and nontarget ERP data, and may involve an early and late component (Hansen & 

Hillyard, 1980; Näätänen et al., 1981). The early auditory PN occurs between 50–250 ms and is 

hemispheric in its distribution when quantified with temporal principal components analysis 

(PCA: Curry et al., 1983), consistent with suggestions that the early PN is generated in sensory-

specific areas (Näätänen & Picton, 1987; Vaughan & Ritter, 1970; Woods et al., 1993); note, 

however, that a more recent examination of Nd indicated that the early PN is generated in the 

frontal lobe (Picton et al., 1999). 

Previous ERP/PCA research has identified an early hemispheric PN in auditory 

equiprobable Go/NoGo tasks at ~ 160 ms poststimulus, suggesting that participants proactively 

select or identify target information in that paradigm (Barry & De Blasio, 2013; Barry, De Blasio, 

& Cave, 2016; Borchard et al., 2015). However, recent research comparing auditory oddball and 

equiprobable Go/NoGo processing has questioned the identity of that component (Fogarty et al., 

2019). 

According to Attentional Trace Theory, PN should increase with target probability, 

representing sensory reinforcement of the attentional trace, as shown using Nd (Alho et al., 1990). 

In contrast, Fogarty et al. (2019) found that the early hemispheric PN increased as stimulus 

probability decreased. However, it was suggested that the hemispheric negativity identified in that 

task may not represent the traditional PN, but rather N1c, which had not been identified in the 

auditory Go/NoGo paradigm. Accordingly, the presence of PN in that task is also unclear; this 
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has important implications for auditory Go/NoGo processing, as the absence of the PN could 

indicate that young adults are not proactively processing target stimuli in that task. 

The purpose of this study was to clarify the early information and control processing 

associated with auditory Go/NoGo tasks. To do so, this study first aimed to identify the traditional 

PN (Nd) in healthy young adults who completed both an ‘equiprobable’ and ‘frequent Go’ variant 

of the auditory Go/NoGo task. The difference between these tasks was in the probability of Go 

stimuli, which was expected to facilitate the characterisation of the hemispheric negativity and 

the identification of PN. 

To gain further insight into early Go/NoGo processing, this study also aimed to explore 

the active neuronal sources, and stimulus type and probability effects associated with the series 

of temporal PCA-derived ERP components in the first 250 ms of task processing; that is, P1, N1, 

P2, and N2b. This was expected to provide a more detailed account of the sequential processing 

of auditory information in the Go/NoGo task, and of the discrete ERP/PCA components that are 

commonly used to study information and control processing in two-choice tasks. 

Healthy young adults were expected to show a traditional PN, marked by an Nd in the 

50-250 ms poststimulus period in the Go/NoGo ERP difference waveforms, indicating that young 

adults were proactively processing target information. Nd was hypothesised to increase with Go 

probability, consistent with Alho et al. (1990) and the theories relating PN to selective attention 

(Näätänen, 1982, 1988; Schröger et al., 2015). The PCA-derived hemispheric negativity identified 

in Fogarty et al. (2019) was hypothesised to match N1c, a temporal negativity that is maximal 

over the right hemisphere, corresponding to the second negative peak in the T-complex (Woods, 

1995). N1c amplitudes have been shown to decrease in predictable conditions (Timm et al., 2013); 

thus, the hemispheric negativity was also expected to decrease as stimulus probability increased, 

supporting its identification as N1c, and its distinction from PN. No additional hypotheses were 

made regarding the other components (or analyses) included in this study. 

 

2. Method 

2.1. Participant demographics and screening 

Sixty healthy young adult university students volunteered for this study in return for 

course credit (31 female; M = 20.4, SD = 3.1 years), through the University of Wollongong School 

of Psychology Research Participation Scheme. Before testing, each participant gave their 

informed consent and was assessed against key exclusion criteria: those with ongoing mental 

health issues, pre-existing central neurological complaints, or head injuries causing 

unconsciousness, were excluded, along with those who had consumed psychoactive substances 

(≤ 12 hours), or caffeine/tobacco (≤ 4 hours) before testing. Participants were also required to be 

right-handed, which was assessed using the Edinburgh Handedness Inventory (Oldfield, 1971). 
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This research was completed in accordance with a protocol approved by the University of 

Wollongong and Illawarra Shoalhaven Local Health District Human Research Ethics Committee. 

2.2. Physiological recording 

Continuous electrophysiological data, from DC to 30 Hz, were recorded throughout each 

task using a Neuroscan Synamps2 amplifier (sampling rate: 1000 Hz). EEG data were recorded 

from 30 scalp sites (Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, 

TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2) and the right mastoid, grounded at 

AFz and referenced to the left mastoid. EOG data were also recorded with four electrodes placed 

beside the outer canthi, and above and below the left eye. Non-polarisable sintered Ag/AgCl 

electrodes were used for cap and EOG electrodes, with impedances below 5 kΩ. 

2.3. Task and procedure 

Participants were first seated in a darkened sound-attenuated room to complete a brief 

EOG calibration task (Croft & Barry, 2000). Afterwards, participants received equipment and 

instructions for two auditory Go/NoGo tasks, each involving two blocks of 150 uncued Go/NoGo 

tones (1000 or 1500 Hz). Tones were presented through circumaural headphones at 60 dB SPL 

(calibrated by an artificial ear and sound level meter: Brüel & Kjær, model 4152), using a 

stimulus-onset asynchrony (SOA) of 1250 ms. The duration of each tone was 80 ms, including 

15 ms rise/fall times. The tone (i.e., trial) order was shuffled prior to each block, and the Go and 

NoGo tone frequencies were counterbalanced across blocks, within each task. The only difference 

between these two tasks was the global stimulus probability: in one task, Go and NoGo tones 

were equiprobable (p[Go] = .5); in the other, Go tones were more frequent (p[Go] = .7). Task and 

block order were counterbalanced across participants. 

Participants were instructed to respond to the Go tone as quickly and accurately as 

possible, whilst ignoring the other (NoGo) tone. All responses had to be made with a button-press 

with the right thumb, using a Logitech® Precision Gamepad Controller. An example of the Go 

tone, and a short practice, was provided before each block. Ten random trials were presented in 

each practice, with the same Go tone and stimulus probability as the subsequent block; practice 

blocks were repeated if necessary. 

2.4. Measure quantification 

2.4.1. Behavioural performance 

Individual mean response time (RT) was calculated across Go trials in each task. RTs 

exceeding 2 SD above or below the mean RT were classified as Slow or Fast RT errors, reflecting 

unusually delayed or impulsive responses, respectively. Mean RT and intra-individual standard 

deviation of RT (ISD) were recalculated after erroneous or artefactual trials were rejected (see 

Method 2.4.2), to ensure that these measures reflected only correct/accepted Go trials. Go 

omission and NoGo commission error rates were also recorded to assess Go and NoGo accuracy. 
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2.4.2. ERPs 

After EOG-correcting the raw EEG data using the regression approach established by 

Croft and Barry (2000), the data were re-referenced to digitally linked mastoids, and lowpass 

filtered to 25 Hz (FIR, 24 dB/Octave, zero phase shift) in Neuroscan (Compumedics, v. 4.5). Go 

and NoGo trials were first separated into full epochs ranging from -100 to +750 ms relative to 

stimulus onset, and then baselined using their prestimulus period. Any epochs containing 

incorrect responses, or artefact exceeding ± 100 µV at any electrode, were rejected. The remaining 

trials were then averaged across blocks to form Go and NoGo ERPs for each participant in each 

task, resulting in four ERP datasets separated by stimulus type (i.e., Go vs. NoGo) and stimulus 

probability (i.e., Higher vs. Lower): equiprobable Go (G50), equiprobable NoGo (N50), frequent 

Go (G70), and rare NoGo (N30). Difference waveforms were then computed within subjects by 

subtracting the averaged NoGo ERP data from the mean Go data within each task; these 

waveforms were then examined for Nd. 

Following Barry, De Blasio, Fogarty, and Karamacoska (2016), separate temporal PCAs 

were conducted on a restricted 0–250 ms period of each ERP dataset in Matlab (The Mathworks, 

v. 8.0, R2012b), to enhance the extraction of the early auditory ERP components. This process 

was implemented using the erpPCA functions provided by Kayser and Tenke (2003: 

http://bit.ly/2oX0etA), adjusted to omit the subtraction of the grand mean (GM) ERP (Dien & 

Frishkoff, 2005). Each PCA was implemented using the covariance matrix with Kaiser 

normalisation, and unrestricted Varimax rotation, and included 1800 cases (60 participants × 30 

sites) and 250 variables (timepoints). PCA factors explaining ≥ 5 % of the ERP variance were 

output in variance order (largest to smallest), and were manually identified as ERP components 

according to their topography and latency; this process was guided by the preceding ERP 

literature (as outlined in the Introduction). If an expected component (i.e., P1, N1, P2, or N2) was 

not extracted in a condition at first, it was searched for below the variance cut-off (down to ≥ 2 

%) if it met the initial threshold in another condition. 

2.5. Statistical analysis 

Behavioural performance outcomes were compared between tasks using paired sample t-

tests. Following Barry, De Blasio, Fogarty, and Karamacoska (2016), matching components were 

compared to determine whether the same (or similar) components were extracted within each 

dataset. Tucker’s (1951) congruence coefficients (rc) were calculated between the unscaled factor 

loadings of matching components to assess their temporal similarity; components are considered 

temporally equivalent if rc ≥ 0.95, and highly similar when 0.85 ≤ rc ≤ 0.94 (Lorenzo-Seva & ten 

Berge, 2006). Simple correlations were also calculated between component amplitudes (at each 

of the 30 sites) to assess their topographic similarity. GM components were then formed for 

further analyses by averaging matching PCA component waveforms. 
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2.5.1. Stimulus type and probability 

Two-way repeated measures ANOVAs were used to analyse stimulus type (Go vs. NoGo) 

and stimulus probability (Higher vs. Lower) effects on the peak component amplitudes in each 

dataset. Individual peak component amplitudes were computed within each dataset as an average 

across the electrodes marking the component’s key topographical features, based on the peak 

electrode sites and contour lines in the GM component headmaps. This approach helped to 

minimise the influence of any random error that could be attributed to a single site (Barry & De 

Blasio, 2015). Each F-test had (1, 59) degrees of freedom with statistical significance determined 

at α < .05. 

2.5.2. Source analyses 

Following the methods in Barry et al. (2020), the “exact” version of low-resolution 

electromagnetic tomography (eLORETA: Pascual-Marqui, 2007, 2009) was used to estimate the 

cortical sources of the GM PCA component waveforms. This process was conducted in 

LORETA–KEY (v. 20170220) using default settings, with no regularisation, and a threshold of 

0.0000001; and exported positive and negative data. This program separates the brain into 6,239 

voxels of 5 mm3, and outputs 3-D inverse solution locations in relation to a realistic brain atlas 

from the Montreal Neurological Institute (MNI); solutions are reported in voxel values in 

µA/mm2. The exported voxel values were grouped according to their structural brain location and 

then summed to determine the most active sources that accounted for ≥ 50 % of the total current 

density for each component. The BAs that accounted for ≥ 90 % of the activation in those 

structures were also reported. 

3. Results 

3.1. Trial and behavioural outcomes 

There was no significant difference between the mean percentage of Go trials accepted 

in the equiprobable (M = 93.2, SD = 4.3 %) and frequent Go conditions (M = 93.3, SD = 3.3 %) 

after error and artefact rejection; t[59] = -0.08, p = .936. On average, a larger proportion of NoGo 

trials were accepted in the equiprobable (M = 95.0, SD = 4.2 %) compared to the rare NoGo 

condition (M = 90.5, SD = 7.2 %); t[59] = 6.36, p < .001. The behavioural performance outcomes 

are summarised in Table 1. Mean Go RTs were significantly shorter in the frequent Go condition; 

t(59) = 4.32, p < .001. The G70/N30 task was also associated with higher rates of NoGo 

commission errors (t[59] = -7.65, p < .001), and Fast RT errors (t[59] = -1.82, p = .036). 

Table 1 

GM (and SD) for the Behavioural Outcomes by Task 

 
Error Rates (%)  Go Response Time (ms) 

Commissions** Omissions Fast RTs* Slow RTs  Mean** ISD 

G50/N50 3.46 (2.71) 1.62 (2.98) 0.23 (0.42) 3.98 (1.06)  364.49 (50.50) 75.87 (24.18) 

G70/N30 8.62 (6.92) 1.31 (2.07) 0.38 (0.47) 3.94 (1.10)  345.00 (58.53) 74.24 (30.81) 

N.B. ISD = intra-individual standard deviation; *significant at p < .05; **significant at p < .001 
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3.2. Raw ERP outcomes 

Figure 1 depicts the GM raw ERPs in each condition. At each level of stimulus 

probability, Go/NoGo stimulus onset is followed by a minor positive-going P1 wave that peaks ~ 

60 ms poststimulus. P1 is followed by a major N1, involving a dominant frontocentral N1b at ~ 

120 ms, and a T-complex represented by the negative “double-peak” between 80 and 160 ms at 

the temporal scalp sites (see T7 and T8 in Figure 1); the two negative peaks in the T-complex are 

considered to reflect N1a and N1c, respectively. Go P2 was evident ~ 190 ms poststimulus, 

followed by N2c, P3b and a target Slow Wave (SW); whereas NoGo N2b peaked at ~ 220 ms 

poststimulus, and was succeeded by P3a, and a nontarget SW. No evidence of Nd was found in 

the Go/NoGo difference waves computed for each task (see Chapter 3 Supplementary Material, 

pp. 65‒67). Hence, the subsequent analyses focused solely on the ERP components derived using 

temporal PCAs. 

 

Figure 1. GM Go/NoGo ERPs in each condition at nine distinctive scalp sites; scalp locations are 

labelled in bolded text adjacent to each plot, and major ERP components are marked at Fz. 

3.3. PCA outcomes 

The PCA components identified in this study are depicted in Fig. 2. Five components 

were identified in each condition, including P1, N1a, N1b, and the hemispheric negativity, 

tentatively labelled N1c; P2 and N2b were also identified in the Go and NoGo conditions, 

respectively. Together, the five identified components accounted for ≥ 88.6 % of the ERP variance 

within each condition. However, as indicated in Fig. 2C, three components were identified below 

threshold, including P1 (Factor 5) in G50 and N50, and N1a (Factor 6) in G70. The statistics in 

Fig. 2D, above the diagonal, show that the peak topography of each component was highly similar 
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across conditions (r[28] ≥ .81, p < .001), excluding G70 N1a, which did not correlate with its 

counterparts. The congruence coefficients, below the diagonal, show that the temporal 

morphology of each component (including G70 N1a) was highly similar or equivalent across 

conditions (rc[248] ≥ .90, p < .001). 

 

Figure 2. The scaled factor loadings (A), peak topography (B), peak latency and variance (C) for 

each PCA component identified in this study. The similarity of the components matched between 

conditions is summarised on the right (D), with topographical correlations (r) and congruence 

coefficients (rc) above and below the diagonal, respectively; correlation coefficients in grey text 

were not statistically significant (i.e., p > .10). 

3.4. Verification of the N1 components 

Figure 3 provides a comparison of the GM raw and PCA-derived N1 components at three 

electrode sites distinguishing the major frontocentral N1 wave (FCz), and the T-complex (T7 and 

T8). As expected, the PCA-derived hemispheric negativity (i.e., N1c, represented by dashed lines 

in Part B) was larger over the right hemisphere, and corresponded with the second negative peak 

in the T-complex. The GM PCA-derived N1a and N1b also paralleled the N1a and N1b in the 

raw ERP data, supporting the identification of those N1 components. 
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Figure 3. The GM raw ERPs (Part A) and PCA-derived N1 waveforms (Part B) over the 0-250 

ms poststimulus period. The major N1b was represented using data at FCz (Black). The T-

complex, including N1a and N1c, was distinguished at left and right temporal electrode sites; T8 

(Dark Grey) and T7 (Light Grey), respectively. 

3.5. Neuronal sources 

Figure 4 shows the GM peak topography and neuronal sources associated with the P1 and 

N1 components identified in this study. The neuronal sources of P1 were located primarily in the 

frontal and parietal lobes, as well as sub-lobar regions, and the temporal, occipital, and limbic 

lobes. In order of descending intensity, P1 sources were active in the precuneus, cingulate gyrus, 

inferior frontal gyrus, superior temporal gyrus, middle frontal gyrus, postcentral gyrus, medial 

frontal gyrus, and insula, collectively accounting for 54.3 % of the voxel data variance. The most 

active BAs, explaining 90.8 % of the P1 activation in those structures, included (in descending 

order) BA 7, 13 (not visible in Fig. 4), 31, 6, 10, 47, 24, 11, 9, 3, 45, 23, 8, and 2. 
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Figure 4. GM peak topography and Brodmann Areas (BAs) associated with the P1 and N1 

components. Dark grey BAs were active in each component; light grey areas were active in 

multiple components; wavy areas were uniquely active in that component. 

N1a sources were located predominantly within the frontal and temporal lobes, but were 

also evident in the parietal and occipital lobes. In descending order, the most active N1a sources 

were in the superior temporal gyrus, middle frontal gyrus, superior frontal gyrus, medial frontal 

gyrus, middle temporal gyrus, precentral gyrus, and inferior frontal gyrus, together explaining 

54.8 % of the total voxel variance. In intensity order, the BAs accounting for 90.2 % of the N1a 

activation in those structures included BA 6, 21, 10, 38, 47, 22, 9, 11, 4, 8, and 44. 

N1b sources were identified primarily in the frontal and temporal lobes, as well as sub-

lobar areas, and the parietal, and occipital lobes. Beginning with the most active structures, N1b 

sources were located in the superior temporal gyrus, insula, inferior frontal gyrus, precentral 

gyrus, postcentral gyrus, middle temporal gyrus, and middle frontal gyrus, collectively accounting 

for 51.7 % of the variance. The most active BAs, explaining 90.0 % of the N1b activation in those 

structures, included (in descending order) BA 13, 38, 47, 21, 6, 22, 4, 3, 2, 44, 9, 11, 45, 10, and 

41. 
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N1c sources were located predominantly within the frontal and temporal lobes, but also 

in the occipital and parietal lobes. The most active N1c sources (in descending order) were in the 

middle frontal gyrus, superior temporal gyrus, precentral gyrus, superior frontal gyrus, middle 

temporal gyrus, and medial frontal gyrus, explaining 51.5 % of the variance in N1c voxel data. 

The BAs contributing to 90.8 % of the N1c activation in those locations were, in intensity order, 

BA 6, 21, 8, 22, 10, 9, 11, 38, and 4. 

Figure 5 illustrates the GM peak topography and neuronal sources related to Go P2 and 

NoGo N2b in this study. The neuronal sources of the Go P2 were primarily in the frontal, 

temporal, and limbic lobes, with the most active structures including (in descending order) the 

superior frontal gyrus, medial frontal gyrus, inferior frontal gyrus, superior temporal gyrus, 

middle frontal gyrus, and cingulate gyrus, together explaining 53.1 % of the variance. The most 

active BAs accounting for 92.3 % of the P2 activation in those structures were, in intensity order, 

BA 6, 8, 9, 47, 38, 10, 32, 24, 11, 22, and 45. 

N2b sources were located mainly within the frontal and temporal lobes, with the most 

active structures (ordered by amplitude) including the superior frontal gyrus, inferior frontal 

gyrus, superior temporal gyrus, medial frontal gyrus, and middle frontal gyrus, collectively 

explaining 51.7 % of the voxel data variance. The most active BAs accounting for 93.2 % of the 

N2b activation in those structures included, in order of their contribution, BA 6, 47, 8, 38, 9, 10, 

11, 22, and 45. 

 

Figure 5. GM peak topography and Brodmann Areas (BAs) associated with the Go P2 and NoGo 

N2b. Dark grey BAs were active in each component; light grey areas were active in multiple 

components; wavy areas were uniquely active in that component. 

3.6. Stimulus type and probability effects 

The GM component amplitudes in each condition are summarised in Table 2. The 

repeated measures ANOVAs showed a main effect of stimulus type was found on P1, F(1,59) = 

6.48, p = .014, ηp
2 = .10, with larger amplitudes following NoGo stimuli (M = .24, SD = .84 µV), 

relative to Go (M = .04, SD = .70 µV). N1a varied significantly with stimulus probability, F(1,59) 
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= 11.80, p = .001, ηp
2 = .17, with larger N1a amplitudes associated with lower stimulus probability 

(M = -1.4, SD = 1.8 µV), compared to higher probability (M = -.9, SD = 1.4 µV). That probability 

effect was larger for Go, than NoGo N1a amplitudes, with a significant interaction effect, F(1, 

59) = 10.14, p = .002, ηp
2 = .15. NoGo N1b was significantly larger (M = -4.6, SD = 2.2 µV), than 

Go N1b (M = -4.2, SD = 2.0 µV), F(1, 59) = 8.33, p = .005, ηp
2 = .12; this effect was greater when 

stimulus probability was lower, apparent in a significant interaction, F(1, 59) = 8.36, p = .005, ηp
2 

= .12. A main effect of stimulus probability was found on N1c, F(1, 59) = 15.43, p < .001, ηp
2 = 

.21, with larger amplitudes associated with lower stimulus probability (M = -1.9, SD = 1.1 µV), 

compared to higher probability (M = -1.5, SD = 1.0 µV). Go P2 amplitudes were significantly 

larger when Go probability was higher (M = 2.8, SD = 2.9 µV), than when Go probability was 

lower (M = 2.1, SD = 3.1 µV); F(1, 59) = 8.63, p = .005, ηp
2 = .13. No significant effects were 

found for the NoGo N2b. 

Table 2  

GM Component Amplitudes (and SD) by Stimulus Type and Probability 

 Go NoGo 
         

Probability Higher Lower Higher Lower 

P1 0.15 (0.66) -0.07 (0.72) 0.20 (0.63) 0.27 (1.00) 

N1a -0.61 (1.02) -1.50 (1.74) -1.22 (1.63) -1.25 (1.83) 

N1b -4.36 (2.15) -4.12 (1.90) -4.26 (1.93) -4.94 (2.35) 

N1c -1.48 (0.82) -1.77 (0.92) -1.58 (0.22) -1.95 (1.22) 

P2 2.83 (2.89) 2.10 (3.12)   

N2b   -1.51 (2.38) -1.72 (2.96) 

N.B. GM component amplitudes are in µV. P2 and N2b were Go and NoGo specific, respectively. 

4. Discussion 

This study analysed the first 250 ms of ERP data in two Go/NoGo tasks, to clarify early 

auditory Go/NoGo processing, and the presence of an early Go/NoGo PN in healthy young adults. 

No early frontal Nd was identified, and the hemispheric negativity identified in previous PCA 

studies matched N1c, demonstrating that there was no PN evident in young adults completing 

either equiprobable or frequent Go variants of the auditory Go/NoGo paradigm. Further analyses 

revealed complex neuronal source activations and stimulus effects throughout the Go/NoGo 

processing sequence, perhaps providing some direction for future models of auditory information 

processing. 

In this study, the early PN (Nd) was expected to be evident in the Go/NoGo ERP 

difference waveforms between 50‒250 ms poststimulus if participants were proactively 

processing target stimuli. No PN was identified during that period, although a frontal negativity 

was evident ~ 300 ms poststimulus, representing the difference between NoGo P3a and Go P3b 

(see Chapter 3 Supplementary Material, pp. 65‒67). NoGo P3a increases with decreasing NoGo 

probability (Squires et al., 1975), which begs the question as to whether this P3 difference 
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explains the traditional findings showing Nd to increase with Go probability (Alho et al., 1990). 

This highlights the difficulty of interpreting ERP outcomes determined using difference waves. 

Despite that, the absence of Nd in this study shows that the traditional PN was not evident in 

young adults completing the auditory Go/NoGo task. 

As hypothesised, the PCA-derived hemispheric negativity was a close representation of 

N1c; a temporal negativity that is larger over the right hemisphere, corresponding with the second 

negative peak in the T-complex (Bender et al., 2006; Woods, 1995). The hemispheric negativity 

also decreased in amplitude as stimulus probability increased, replicating the findings in Fogarty 

et al. (2019). This also follows previous research linking smaller N1c amplitudes to more 

predictable stimuli (Timm et al., 2013), providing further confirmation that the hemispheric 

negativity represents N1c, rather than PN. Together, with the absence of Nd, this suggests that 

young adults were not proactively (or selectively) processing target stimuli in either Go/NoGo 

variant. 

This study replicated the ERP components associated with early auditory processing in a 

range of cognitive tasks (i.e., P1, N1, P2, and N2). Using PCA to decompose the early sensory 

period also enabled the clear separation of the true N1 components; including N1a, N1b, and N1c 

(Bender et al., 2006; Knight et al., 1988; McCallum & Curry, 1980; Näätänen & Picton, 1987; 

Nielsen-Bohlman et al., 1991; Wolpaw & Penry, 1975; Woods, 1995). Accordingly, successful 

auditory processing in this task was linked to a frontal P1, a small centroparietal N1a, large 

frontocentral N1b, and a temporal N1c. Distinctive Go and NoGo processing was evident after 

N1c, marked by the subsequent Go P2 and NoGo N2b (Borchard et al., 2015). 

A range of neuronal sources were linked with the Go/NoGo processing series in this 

study, including several frontal sources that were common to P1, N1a, N1b, N1c, Go P2 and 

NoGo N2b (i.e., BAs 6, 8, 9, 10, and 11). This may be consistent with a parallel distributed 

processing framework (Cohen et al., 1990), and suggests that Go/NoGo processing involves a 

core frontal network that is active throughout the first 250 ms, together with additional sources 

specific to each component/processing stage. That core network may represent the cognitive 

control functions required throughout the task, perhaps including the coordination and integration 

of discrete cognitive operations, the maintenance of task goals in working memory, and 

behavioural regulation (Casey et al., 1997; Fuster, 1997; Miller & Cohen, 2001; Ramnani & 

Owen, 2004). 

P1 was related to activity in frontal and parietal lobes, as well as sub-lobar regions, and 

temporal, occipital, and limbic lobes; corroborating (and extending) previous findings linking P1 

to activation in frontal and temporal areas of the brain (Grunwald et al., 2003; Korzyukov et al., 

2007). The parietal and sub-lobar activation in BAs 7, 23, and 31 were unique to P1, perhaps 

signifying an early shift in attentional focus (Leech & Sharp, 2014). Together with the 

involvement of the core frontal network, these outcomes support the link between P1 and auditory 
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sensory gating (Alho et al., 1994; Freedman et al., 1987; Knight et al., 1989; Lijffijt et al., 2009). 

P1 was also larger to NoGo, illustrating early stimulus-specific processing, perhaps consistent 

with that interpretation; however, this finding should be viewed with caution due to the small 

mean P1 peak amplitudes, particularly in G50 (see Table 2). 

N1a activity was localised mainly in the frontal and temporal lobes, but also in some 

parietal and occipital areas (Näätänen & Picton, 1987). Unlike P1, no BAs were unique to N1a, 

relative to the other components. However, notably the frontal BAs 8 and 47 were active in 

relation to N1a and the preceding P1, reflecting early sequential processing in areas related to 

working memory (Babiloni et al., 2005; Ranganath et al., 2003), and behavioural control (Kübler 

et al., 2006; Sarazin et al., 1998). N1a also represented the initial activation of several regions that 

were common to later processing stages (i.e., BAs 4, 21, 22, 38, and 44); these BAs have been 

related to a range of functions, including (but certainly not limited to) auditory processing (Jäncke 

et al., 2002), and motor control (Grefkes et al., 2008; van der Kallen et al., 1996). 

N1b was associated with activation in several structures common to P1 (BAs 2, 3, 13, 

and 45), and the immediately preceding N1a (BAs 4, 21, 22, 38, 44, and 47), representing the 

continuation of stimulus (and likely, response) processing in those areas. N1b was uniquely 

related to activation in BA 41, consistent with its connection to basic auditory processing, and the 

more general observation that N1 is generated within the primary auditory cortex (Näätänen & 

Picton, 1987). It is remarkable that the primary auditory cortex was not active earlier (or later) in 

the auditory Go/NoGo processing sequence; perhaps this suggests that auditory N1b is the 

primary marker of tone frequency discrimination (Liebenthal et al., 2003), or the processing of 

stimulus offset (Mirz et al., 1999; Näätänen, 1988). 

N1c was linked to activation in frontal and temporal areas common to both P1 and N1a 

(BA 8), and the previous N1b (BAs 4, 21, 22, and 38). This is consistent with suggestions that 

N1a, N1b, and N1c reflect processing in similar cortical areas (Näätänen & Picton, 1987); indeed, 

BAs 4, 21, 22, and 38 were common to all three N1 components. More notably, however, is that 

of those cortical areas, activations in the primary motor cortex (BA 4) and the middle temporal 

gyrus (BA 21) were exclusive to the N1 components in this study. Together, with the frontal N1 

source activations confirmed in this study, these outcomes support earlier research that proposed 

links between N1 and response processing in choice/RT tasks (Bender et al., 2006; Filipović et 

al., 2000; Kirmizi-Alsan et al., 2006). 

Both N1a and N1c were larger when stimuli were rare; whereas, N1b was larger following 

NoGo stimuli, similar to P1. The common N1 sources and the interaction effects noted in the 

results could signify some functional overlap or crosstalk between these components, however, 

the main effects identified here could help distinguish the functional specificity of N1b and the 

T-complex; comprising N1a and N1c. Namely, that N1b is sensitive to stimulus type (or 
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significance), while the T-complex is related to stimulus probability (or predictability: Schröger 

et al., 2015; Timm et al., 2013). 

Go P2 and NoGo N2b were both active in BAs 22, 38, 45, and 47, implying some 

continued information processing in the frontal and temporal areas associated with P1 and N1. 

Additionally, P2 was also active in BA 24, and uniquely, BA 32; representing the ventral and 

dorsal anterior cingulate, respectively. P2 was also larger when Go probability was higher (as in 

Fogarty et al. 2019). Together, these outcomes corroborate the suggestion that auditory P2 is (at 

least) partly generated in the temporal lobe (Crowley & Colrain, 2004; Rif et al., 1991). Its link 

to the anterior cingulate could also substantiate its relationship with sensory gating or attention 

(Benedict et al., 1998; Lijffijt et al., 2009), which was perhaps enhanced by increasing the 

predictability of Go stimuli. 

This study suggests that the temporal PN (or N1) identified in previous PCA studies was 

N1c. From that viewpoint, those earlier studies indicate that larger N1c amplitudes are associated 

with caffeine consumption (Barry, De Blasio, & Cave, 2014; Barry, De Blasio, & Fogarty, 2019), 

shorter oddball RTs (Steiner et al., 2016), and the processing of tonal stimuli (vs. phonetic stimuli: 

Kayser & Tenke, 2006). Previous studies would also suggest that N1c is more enhanced at 

temporal sites (relative to the midline) following Go stimuli, although that may be because the 

NoGo counterpart was often more negative at frontal-midline sites (Barry & De Blasio, 2013; 

Barry, De Blasio, & Cave, 2014; Barry, De Blasio, De Pascalis, & Karamacoska, 2014; Barry, 

De Blasio, & Cave, 2016; Barry et al., 2018; Borchard et al., 2015). These observations, and the 

present findings, strongly support a link between N1c and stimulus-response processing, at least 

in paradigms that require a response. Moreover, the clarification of those effects could provide 

useful insight for researchers using the T-complex to study auditory perception or deficits in 

individuals with learning difficulties (e.g., dyslexia: Hämäläinen et al., 2011, 2015; Wagner et al., 

2016). 

The absence of PN in this study was considered to show that young adults were not 

proactively processing target stimuli, following theories suggesting that PN represents activity 

associated with an attentional trace (Näätänen, 1982), stimulus set (Hillyard & Kutas, 1983), or 

prediction of target stimulus input (Schröger et al., 2015). However, that does not discount the 

possibility of proactive response processing. Indeed, Go primacy effects were identified in this 

study, as signified by the shorter RTs and higher commission error rates in the frequent Go (vs. 

equiprobable) variant of the Go/NoGo task. Hence, the present findings tentatively suggest that 

increasing stimulus probability can prime response processes separately from sensory processing. 

Alternatively, the present findings could question the traditional view of PN as a marker of early, 

proactive, or selective information processing. 

Several limitations in this study can be addressed in future research. Firstly, this study 

was limited to the first 250 ms of task processing, which aided the PCA extraction of the early 
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ERP components that were the focus of this study; however, it would be useful to apply the same 

analyses to later time periods so that the present findings can be considered relative to the broader 

task processing sequence. Source analyses should also be conducted on the Go and NoGo P1 and 

N1 components separately. In this study, source analyses were conducted on GM components, 

preventing the detection of possible Go/NoGo source differences that might help to elucidate the 

early stimulus-specific effects on component amplitudes. Including a classic oddball task would 

also have been useful to verify the traditional PN (Nd) in the current sample, and to strengthen 

the conclusions in this study by providing a PN for comparative purposes. 

The ERP source outcomes in this study also indicate that each component represents 

complex neuronal activations that could be consistent with a parallel distributed processing 

framework, which posits that information processing occurs as activity propagates through a 

system of connected modules (i.e., neuronal sources: Cohen et al., 1990). Accordingly, analysing 

the functional connectivity between the active areas identified in each component could 

potentially further our understanding of the discrete processing stages in auditory Go/NoGo tasks. 

That approach could also assist in the confirmation of the core network of (pre)frontal areas 

identified in this study, and assist in clarifying its role (and that of other brain areas) in the 

sequential processing of auditory information. Additional research is also important to verify this 

distributed model of the component sources. LORETA has lower spatial resolution due to an 

intrinsic Laplacian ‘smoothness’ constraint (He & Ding, 2013; Michel et al., 2004). Thus, while 

eLORETA is considered robust against noise and advantageous for deep source localisation, other 

techniques or algorithms may provide greater specificity; at least, relative to LORETA (see Grech 

et al., 2008; Halder et al., 2019; Michel et al., 2004). The liberal output and lack of a priori 

assumptions about the source distribution in this study is considered favourable for exploratory 

source analyses (Halder et al., 2019). Extraneous source activation was also controlled (albeit 

arbitrarily) by variance thresholds to highlight the most important sources; however, researchers 

should be mindful that these results reflect one of many possible source models for the early 

factors in this auditory Go/NoGo study, and until these results can be cross-checked and validated 

with other methods the source distributions identified in this study should be considered carefully. 

This study clarified the early ERP/PCA factors related to auditory Go/NoGo sensory 

processing in young adults. As expected, the hemispheric negativity identified in previous 

ERP/PCA research was a marker of N1c. Together with the absence of the traditional PN (Nd), 

this suggests that young adults did not proactively process the target stimulus input in this 

paradigm. However, the behavioural outcomes showed that the Go response was still primed by 

increasing target probability; this has interesting implications for the cognitive control of both 

stimulus and response processing. A complex of neuronal generators was associated with each 

factor/processing stage in this study. In future, these observations could provide a useful basis for 

models of auditory information and control processing in healthy young adults. 
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Chapter 3 Supplementary Material 

 

S1.1. Overview 

In this study, Go/NoGo ERP difference waveforms were calculated to identify the 

negative difference (Nd) traditionally used to quantify Processing Negativity (PN; Alho et al., 

1990; Näätänen, 1982). Particular interest was also given to the early PN (Nd), as it was 

considered to reflect a matching process, indicating that participants were proactively maintaining 

an attentional trace (or representation) of sensory information to facilitate target processing 

(Hillyard & Kutas, 1983; Näätänen, 1982; Schröger et, 2015). 

Two auditory Go/NoGo tasks were used in this study, which required participants to 

respond to Go (target) tones, and ignore NoGo (nontarget) tones; these tasks were similar to those 

used to study PN in the past. Early PN (Nd) is a frontal negativity that occurs between 50‒250 ms 

poststimulus; although, its latency can vary for several reasons (see Näätänen’s, 1982 review). 

Accordingly, we examined the entire stimulus-locked epoch (-100 to +750 ms) for signs of Nd. 

Due to the task-relevance of the Go tone, PN (Nd) was expected to be identified in relation to Go 

stimuli; hence, difference waveforms were calculated for each subject by subtracting their mean 

NoGo ERP waveforms from their averaged Go ERP data. Further confirmation of PN (Nd) was 

expected to be shown using a stimulus probability effect, replicating the positive relationship 

between Nd amplitude and target stimulus probability, found by Alho et al. (1990). 

S1.2. ERP outcomes 

The Grand Mean (GM) raw ERPs and difference waveforms computed for each condition 

and task are displayed in Figure S1, respectively. It is clear in the Go - NoGo difference 

waveforms that the 50‒250 ms poststimulus period was positive across the scalp. Indeed, the GM 

raw frontal amplitude (averaged over F3, Fz, F4, and FCz) over that timeframe was .02 (SD = .54 

µV) and .99 (SD = .69 µV) in the equiprobable and frequent-Go tasks, respectively. This finding 

demonstrated that there was no Nd evident in the expected time window in either task. 

In Figure S1 a large negative difference wave is also evident at Fz and Cz between ~ 250-

450 ms poststimulus. That negative difference was tentatively considered a late candidate for PN 

(Nd); however, after closer inspection it was instead decided to reflect a relative difference 

between the Go and NoGo P3, given its alignment with the frontocentral NoGo P3 in each task; 

this is discussed briefly in the main article. Overall, these findings indicate that no traditional PN 

(Nd) wave was evident to target stimuli in either task. 
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Figure S1. Grand Mean (GM) raw ERPs for each condition, and the difference waveforms 

calculated for the equiprobable (i.e., G50 − N50; Blue) and frequent-Go (i.e., G70 − N30; Red) 

variants of the auditory Go/NoGo task. 
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Chapter 4. Auditory Stimulus- and Response-Locked ERP 

Components and Behaviour 

 

 

 

Foreword 

This chapter features the second published journal article of this thesis, which investigated the 

functional significance of the ERP components associated with auditory Go processing in the 

equiprobable task, by analysing stimulus- and response-locked ERP averaging effects on PCA 

component amplitudes. The equiprobable Go ERP and behavioural data from Experiments 1 and 

2 were combined to improve the statistical power and the ERP signal-to-noise ratio in this 

investigation. Since it was published in Psychophysiology, small adjustments have been made to 

the accepted article in this chapter to clarify the introduction and update the interpretation of the 

N1 components, so that the component labels are consistent with conceptual advances in Chapter 

3. Minor changes were also made to the accepted paper by the journal editors prior to publication. 
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Abstract 

To clarify the functional significance of Go event-related potential (ERP) components, this study 

aimed to explore stimulus- and response-locked ERP averaging effects on the series of ERP 

components elicited during an auditory Go/NoGo task. Go stimulus- and response-locked ERP 

data from 126 healthy young adults (Mage = 20.3, SD = 2.8 years, 83 female) were decomposed 

using temporal principal components analysis (PCA). The extracted components were then 

identified as stimulus-specific, response-specific, or common to both stimulus- and response-

locked data. ANOVAs were then used to test for stimulus- versus response-locked averaging 

effects on common component amplitudes to determine their primary functional significance (i.e., 

stimulus- or response-related). Go stimulus- and response-related component amplitudes were 

then entered into stepwise linear regressions predicting the reaction time (RT), RT variability, and 

omission errors. Nine ERP components were extracted from the stimulus- and response-locked 

data, including N1b, N1c, P2, response-related N2 (RN2), motor potential (MP), P3b, P420, and 

two slow wave components; SW1 and SW2. N1b, N1c, and P2 were stimulus-specific, whereas, 

RN2, MP, and P420 were response-specific; P3b, SW1, and SW2 were common to both data sets. 

P3b, SW1, and SW2 were significantly larger in the response-locked data, indicating that they 

were primarily response-related. RT, RT variability, and omission errors were predicted by 

various stimulus- and response-related components, providing further insight into ERP markers 

of auditory information processing and cognitive control. Further, the results of this study indicate 

the utility of quantifying some common components (i.e., Go P3b, SW1, and SW2) using the 

response-locked ERP. 

 

Keywords: ERPs, auditory processes, behaviour, cognitive control, information processing 
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1. Introduction 

Averaging EEG data epochs time-locked (or synchronised) to the same repeated event 

increases the resolution of event-related potentials (ERPs). This averaging effect occurs as event-

unrelated (unsynchronised) or latency-variable data in the individual epochs are attenuated, 

blurred, or filtered out of the averaged ERP data, like electrical artefact or noise (Poli et al., 2010). 

In previous research, ERP averaging (or blurring) effects have been studied to clarify the 

functional significance of ERP components, by comparing component amplitudes averaged to 

different events (e.g., stimulus vs. response onset). In this study, Go stimulus- and response-

locked ERP data were compared to clarify ERP averaging effects and the functional significance 

of Go ERP components in an auditory equiprobable Go/NoGo task. 

The Go/NoGo task is a two-choice reaction time (RT) task variant that requires a motor 

response to Go stimuli, but no response to NoGo stimuli. This paradigm is useful for studying 

basic information and control processing, as participants must detect and discriminate between 

stimuli, and selectively activate the appropriate behavioural response. In equiprobable variants of 

this task, Go and NoGo stimulus probabilities are balanced. This is the most efficient design for 

Go and NoGo data acquisition (Pfefferbaum et al., 1985), which may explain why equiprobable 

tasks are the most commonly used Go/NoGo variant (Wessel, 2018). 

Auditory Go processing in the equiprobable task is associated with a series of stimulus-

locked ERP components: P1, N1 (comprising several subcomponents: Näätänen & Picton, 1987), 

P2, N2c, P3b, and Slow Wave (SW). Those components are also overlapped by movement-related 

cortical potentials, involving response-locked components like the frontally negative Motor 

Potential (MP), the Correct Response Negativity (CRN), or the Reafferent Potential (Bötzel et al., 

1997; Coles et al., 2001; Di Russo et al., 2017; Gerbrandt et al., 1973; Shibasaki & Hallett, 2006; 

Vaughan et al., 1968; Vidal et al., 2000). These stimulus- and response-locked components are 

considered to index brain functioning at distinct processing stages, providing researchers with 

discrete electrophysiological measures of the cognitive functioning related to information 

processing and motor control. 

P1, N1 and P2 are generally associated with sensory and perceptual processes, including 

sensory gating, selective attention, and stimulus identification (Crowley & Colrain, 2004; Lijffijt 

et al., 2009; Näätänen & Picton, 1987). In contrast, N2c, P3b, and SW are often interpreted as 

reflecting either stimulus or response processes. For instance, N2c (or “the Go N2”) is frequently 

linked to target classification, conflict monitoring, or response selection (Folstein & Van Petten, 

2008; Larson et al., 2014; Nieuwenhuis et al., 2003; Yeung et al., 2004). P3b is also related to 

“context updating” (Donchin & Coles, 1988; Donchin et al., 1997), the reactivation of a stimulus-

response pattern (Verleger et al., 2016), or response monitoring (Verleger et al., 2005). SW 

(including subcomponents, SW1 and SW2: Fogarty et al., 2019) is suggested to reflect 

information processing, response evaluation, or motor preparation for subsequent trials (Desmedt 
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& Debecker, 1979; Friedman, 1984; García-Larrea & Cézanne-Bert, 1998; Rohrbaugh et al., 

1978). 

Investigating the differences between stimulus- and response-locked ERP data can help 

to clarify functionally ambiguous ERP components like N2c, P3b, and SW. However, few studies 

have actually tested ERP averaging effects in the Go/NoGo task, and those have shown relatively 

inconsistent results. 

In an auditory Go/NoGo task featuring rare targets (i.e., a classic oddball task), Goodin, 

Aminoff, and Mantle (1986) discovered that N2c was enhanced in stimulus-locked ERP data; 

whereas Go “P165” (perhaps equivalent to P2) and P3b amplitudes were larger when averaged in 

relation to the onset of motor responses. In contrast, Verleger et al. (2005) found no differences 

between the stimulus- and response-locked P3b in a two-choice task requiring left- or right-

handed responses to alternate stimuli; this provided key evidence suggesting that P3b represents 

cognitive activity that is central to both stimulus and response processing. Saville et al. (2011) 

have since corroborated this finding at the single-trial level in a visual 1-back task, which also 

required participants to activate left- or right-handed responses. 

More recently, Nguyen et al. (2016) compared a stimulus-locked NoGo N2 to response-

locked error-related negativity (ERN) in a visual Go/NoGo paradigm, showing that increased N2 

amplitudes following partial errors may be explained by greater error monitoring (an overlap of 

the ERN). Other studies have also explored stimulus- and response-locked ERPs to investigate 

error processing in choice-RT tasks, often in relation to correct ERPs (Falkenstein et al., 1991; 

Vidal et al., 2003). These ERP studies were designed to investigate the ERN; however, they also 

suggest that Go P3b and SW may be smaller in stimulus-locked averages due to overlapping ERN 

or CRN activity. Blind signal separation, such as Principal Components Analysis (PCA), could 

help separate these factors in stimulus- and response-locked data to determine whether P3 or SW 

averaging effects are distinct from those overlapping negativities. The wider error-related ERP 

literature is not considered further in this study as the focus is on correct Go processing; interested 

readers are directed to the reviews by Coles et al. (2001), Gehring et al. (2018), and Larson et al. 

(2014) for more on that topic. 

Berchicci et al. (2016), in a large sample (n = 140), studied ERP averaging effects on a 

broad range of components using a visual equiprobable Go/NoGo task: P1 and N1 were larger in 

the stimulus-locked data, supporting their established relationship with stimulus processing (e.g., 

Liégeois-Chauvel et al., 1994; Lijffijt et al., 2009; Näätänen & Picton, 1987). P3b was larger in 

response-locked data, consistent with Goodin et al. (1986). However, surprisingly, Berchicci et 

al. (2016) did not identify the typical Go P2, nor any averaging effect on N2c (which was expected 

to be larger in response-locked data, consistent with conflict theory). Despite that, these results 

are considered to be more robust than earlier findings, which were derived using far smaller 

sample sizes (n ≤ 12). 
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Due to the limited and inconsistent research into Go stimulus- and response-locked 

averaging effects, it was unclear which outcomes should be considered reliable, or whether any 

of the earlier findings would apply to ERP components in auditory equiprobable Go/NoGo tasks. 

The previous studies also used traditional ERP component amplitude measures (e.g., peak-to-

peak or mean area), which are not ideal for isolating discrete ERP components, not to mention 

latent subcomponents (Donchin, 1966; Donchin & Heffley, 1978). Also, the similarity of 

matching stimulus- and response-locked components were not assessed prior to their comparison, 

which makes it difficult to ascertain the validity of each contrast. 

The purpose of this research was to clarify the stimulus- and response-locked averaging 

effects on ERP components that are common to many two-choice tasks, and primarily, to 

elucidate the functional significance of the components associated with successful auditory Go 

processing. To accomplish that, this study aimed to compare the series of Go stimulus- and 

response-locked ERP components elicited in healthy young adults during the completion of an 

auditory equiprobable Go/NoGo task. The outcomes of this investigation were expected to 

provide valuable insight into the significance of several ERP components that are commonly used 

to measure cognitive functioning in a variety of two-choice paradigms; these findings may also 

have important implications regarding the quantification of those components. 

To address the limitations of the previous Go/NoGo research, and extend on their 

findings, this study used temporal PCA to quantify and compare the Go stimulus- and response-

locked components. Unlike the traditional ERP measures used in the past, temporal PCA with 

Varimax rotation extracts orthogonal latent components according to patterns of covariance in the 

ERP data, enabling the quantification and analysis of discrete ERP components (and 

subcomponents), while minimising misallocation of variance (Barry et al., 2016; Dien & 

Frishkoff, 2005; Donchin & Heffley, 1978; Kayser & Tenke, 2003). Nguyen et al. (2016) and 

Saville et al. (2011) also used PCA in their comparative stimulus and response-locked research, 

although the method was applied only to the stimulus-locked ERP data. To our knowledge, the 

present study reflects the first systematic comparison of the PCA factor series related to correct 

Go stimulus- and response-locked data in this task, providing novel insight into successful 

auditory Go processing, common ERP components, and ERP averaging effects in this popular 

Go/NoGo variant. 

Following the general interpretation of averaging effects (Berchicci et al., 2016; Poli et 

al., 2010), ERP components here that were specific (unique) or larger to one event type were 

associated primarily with that type of processing. Moreover, because a purpose of this study was 

to clarify ERP component functionality, this categorisation scheme was then used to direct further 

analyses between Go component amplitudes and behaviour. 

Following prior research, it was hypothesised that Go P1, N1, and P2 would primarily 

reflect stimulus-related processing (i.e., they would be unique or larger in stimulus-locked vs. 
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response-locked data), consistent with their connections to early sensory and perceptual 

processing in the broader ERP literature (Crowley & Colrain, 2004; Lijffijt et al., 2009; Näätänen 

& Picton, 1987). In contrast, the N2c, P3b, and SW components were predicted to be primarily 

response-related (i.e., larger in response-locked vs. stimulus-locked data), following a range of 

studies suggesting that those components index response processes (e.g., Falkenstein et al., 1994; 

Gratton et al., 2018; Nieuwenhuis et al., 2003; Rohrbaugh et al., 1978; Verleger et al., 2016). 

Response-locked components such as the MP, CRN, or RAP were also anticipated in this study, 

however, it was uncertain which of those components would be extracted, and how those 

components would relate to the stimulus-locked processing sequence in this paradigm. All 

subsequent behavioural analyses were exploratory. 

 

2. Method 

2.1. Sample demographics and eligibility criteria 

One-hundred and twenty-six students (Mage = 20.3, SD = 2.8 years, 83 female) from the 

University of Wollongong volunteered through the School of Psychology Research Participation 

Scheme. Participants were healthy right-handed young adults (aged 18–35 years), with no self-

reported ongoing mental or central neurological complaints, and no previous head injuries. 

Participants abstained from caffeine/tobacco (≥ 4 hours) and other psychoactive substances (≥ 12 

hours) prior to their testing session. Each participant was screened against these criteria using a 

self-report questionnaire, and provided informed consent before testing. This procedure was 

approved by the University of Wollongong and Illawarra Shoalhaven Local Health District 

Human Research Ethics Committee (HE09/220). Stimulus-locked ERP data from ~50 % of this 

sample have been analysed previously in Fogarty, Barry, and Steiner (2019), and N was increased 

here to substantially enhance the robustness of this novel stimulus- and response-locked PCA 

investigation. 

2.2. Physiological recording and setup 

Continuous EEG data from DC to 30 Hz were recorded from 30 scalp sites (Fp1, Fp2, 

F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, 

P3, Pz, P4, P8, O1, Oz, O2) and M2, grounded by an electrode at AFz and referenced to M1. Four 

electrodes were also placed above and below the left eye, and next to the outer canthi of each eye, 

to record continuous electrooculographic (EOG) data. The EEG and EOG data were all recorded 

at 1000 Hz using a Neuroscan SynAmps2 amplifier, and electrodes were all sintered Ag/AgCl 

with impedances below 5 kΩ. 

2.3. Tasks and procedure 

As reported in Fogarty et al. (2019), participants were seated in a dark sound-attenuated 

room to complete an EOG calibration task and an auditory equiprobable Go/NoGo task. The 

Go/NoGo task involved two blocks of 150 randomly shuffled tones (1000 and 1500 Hz), 
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presented at 60 dB SPL for 80 ms (including 15 ms rise/fall times) through circumaural 

headphones, using an SOA of 1250 ms. Global Go stimulus probability was 50 %, and Go and 

NoGo tone frequency was counterbalanced across blocks. Block order was also alternated across 

subjects. 

Participants were instructed to respond to Go tones as quickly and as accurately as 

possible with a button-press from their right hand. A Go tone example, and a short ten trial 

practice (50 % Go) were provided before each block, which was repeated until the participant 

understood the task. A white fixation cross was also displayed in front of participants throughout 

the task to minimise eye/head movement. 

2.4. Data quantification and measurement 

2.4.1. Go behavioural performance 

Go accuracy was represented by the rate of omission errors (i.e., misses), and reaction 

time (RT) was measured in ms. Extreme RTs (exceeding MRT ± 2 SD) within subjects were 

marked as RT errors. Trials containing any errors were removed so that only successful Go trials 

remained. Measures of mean Go RT and RT variability (RTV) (the intrasubject SD of RT) were 

then computed for analysis, using only the successful trials remaining after ERP artefact rejection. 

2.4.2. ERPs and PCAs 

EEG data were EOG corrected (Croft & Barry, 2000), re-referenced to digitally linked 

mastoids, low-pass filtered (FIR 25 Hz, 24 dB/Octave, zero-phase shift), and then epoched twice: 

relative to the successful Go stimuli (−100 to +750 ms) and individual RTs (−450 to +400 ms) in 

Neuroscan (Compumedics v. 4.5). The corresponding stimulus- and response-locked epochs were 

then paired and baselined to the average of the same prestimulus period in Matlab (The 

Mathworks, v. 8.0, R2012b). Trials including stimulus- or response-locked data exceeding ±100 

µV were then rejected to remove artefactual data while maintaining consistent datasets associated 

with each event. The final accepted epochs were then averaged to generate mean stimulus- and 

response-locked ERPs for each participant. 

The participants’ averaged stimulus- and response-locked ERP data were submitted to 

separate temporal PCAs in Matlab (The Mathworks, v. 8.0, R2012b). Each PCA used the 

covariance matrix with Kaiser normalisation and unrestricted Varimax rotation. The Matlab 

functions used for this procedure were provided by Kayser and Tenke (2003) 

(http://bit.ly/2oX0etA), but slightly modified to avoid the removal of the grand mean ERP 

waveform from each case prior to computing the PCA component waveforms; this preserves the 

relationship between the input and output data, enabling the extracted PCA components to be 

considered directly in terms of their ERP amplitudes (see Barry et al., 2016; Dien, 2010). The 

case to component ratio in each PCA was 4.45 (3780 cases: 126 files × 30 sites; 850 components: 

timepoints/variables), which according to the prevailing rule of thumb, is approximately the ratio 

needed to achieve an acceptable level of stability in component patterns (Gorsuch, 1983). 
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The PCA method described above outputs factors in hierarchical order (of unique ERP 

variance), with their peak latency, and peak topography (i.e., the amplitude at each scalp 

derivation at the peak latency). Factors explaining ≥ 1 % of unique variance were retained for 

further analyses, and were identified as ERP components based on their temporal and topographic 

features, following previous ERP research.  

To facilitate the comparability between the stimulus- and response-locked ERP 

outcomes, the grand mean RT was added to the latency of the response-locked ERP data so that 

they could be displayed relative to stimulus onset. ERP/PCA components that were unique to 

stimulus- or response-locked data were considered to be stimulus-specific or response-specific, 

respectively; whereas, those that were identified in both stimulus- and response-locked data were 

referred to as common ERP components. 

2.5. Statistical analyses 

2.5.1. Topographical analyses 

The peak topographies of common components were compared between event types 

using Pearson’s correlations conducted over all 30 scalp sites. The peak topography of each 

component was then defined statistically using 3 × 3 repeated measures ANOVAs with planned 

orthogonal contrasts of the peak amplitude data at nine core sites, representing the sagittal (Frontal 

[F3, Fz, F4], Central [C3, Cz, C4], and Parietal [P3, Pz, P4]) and coronal plane (Left [F3, C3, P3], 

Midline [Fz, Cz, Pz], Right [F4, C4, P4]). For the N1c component, data from F7/8, T7/8, and P7/8 

replaced the Left and Right sites to account for its topographical focus at temporal sites (similar 

to Barry et al., 2016). If components were common, event was added as an additional two-level 

factor (i.e., stimulus vs. response) to evaluate averaging effects. Significant averaging effects 

revealed the optimal event synchronisation for common components, and the larger component 

in each pair was considered to be the ‘optimal’ variant. No adjustments to alpha were necessary, 

as the number of planned contrasts was lower than the degrees of freedom for effect (Tabachnik 

& Fidell, 2013). Greenhouse-Geisser corrections were also unnecessary as single degree-of-

freedom contrasts are not influenced by violations of sphericity (O’Brien & Kaiser, 1985). Each 

F test had (1, 125) degrees of freedom, and significant (p < .05) and approaching-significant (.05 

≤ p ≤ .10) F tests are reported (the latter are not discussed). 

2.5.2. Regression analyses of ERP components and behaviour 

Linear multiple regressions were conducted in SPSS (V21) to link ERP component 

amplitudes with the behavioural outcomes. ERP component amplitudes were calculated within 

subjects, as the mean across the electrodes reflecting the component’s largest amplitudes at the 

component’s peak latency (electrode selection was guided by the component headmaps and the 

topographic analyses described in 2.5.1). ERP component amplitudes were submitted as the 

predictors of each behavioural variable (i.e., RT, RTV, and omission rate) using a stepwise 

method, with entry and removal criteria at α = .05 and α = .10, respectively. Only event-specific 
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and ‘optimal’ components were subject to these analyses, as they were considered to reflect the 

best measure of the components related to successful Go processing. This also circumvents any 

issues of multicollinearity that might arise if matching stimulus- and response-locked data were 

both included in the same regression. 

 

3. Results 

3.1. Go trial and performance outcomes 

The average number of Go trials accepted across participants was 139.1 (SD = 7.1). 

Across participants, the grand mean RT was 369.7 ms (SD = 50.9) and the grand mean RTV was 

76.7 ms (SD = 24.1). The grand mean Go omission error rate was 1.5 % (SD = 2.7). 

3.2. Raw ERPs 

The grand mean raw ERPs from three midline sites (Fz, Cz, and Pz) are presented in 

Figure 1. In the grand mean stimulus-locked ERP, P1 is identifiable as the minor positive-going 

peak at Fz, ~50 ms poststimulus. That is followed by a large N1 and a minor P2/N2 complex 

(notable at Fz), at ~100 and 200 ms poststimulus, respectively. After ~300 ms, a broad P3 and 

SW dominate the remaining ERP trace. In the grand mean response-locked ERP, a large frontal 

negativity peaks ~200 ms after stimulus onset, reflecting a response-related N2 (RN2). RN2 is 

followed by a parietal P3, and a frontal peak of the MP (Shibasaki & Hallett, 2006), which peak 

almost simultaneously with the grand mean RT. The MP is succeeded by a response-locked SW, 

featuring a central positivity at ~450 ms (SW1), and a frontoparietal negativity beginning ~550 

ms poststimulus (SW2). 

 

Figure 1. Grand mean raw stimulus- and response-locked ERPs at three midline electrode sites, 

with stimulus- and response-locked components labelled in black and grey, respectively. The 

grand mean RT (GMRT) is marked by the dashed red line. 
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3.3. PCA outcomes 

Figure 2 displays the separate factor loadings for the stimulus- and response-locked PCA 

components identified in this study. Six components were identified in relation to each event. 

This involved (in latency order) a stimulus-locked N1b and N1c (two subcomponents of the N1: 

Näätänen & Picton, 1987), P2, P3b, Go SW1, and SW2, explaining a total 92.5 % of the stimulus-

locked ERP variance. From the response-locked ERP data, an RN2, P3b, MP, P420 (an 

unidentifiable parietal positivity), SW1 and SW2 were identified, accounting for 90.4 % of the 

total ERP variance related to the response. 

 

Figure 2. Stimulus- and response-locked scaled factor loadings for each component; grand mean 

RT (GMRT) is marked by the dashed red line. 

3.4. Topographical outcomes 

Figure 3 depicts the peak topography and factor information for each of the 12 stimulus- 

and response-locked components extracted in this study. Nine distinct components were identified 

overall, including six unique event-specific components (i.e., stimulus-locked: N1b, N1c, P2; 

response-locked: RN2, MP, P420), and three common components that were identified in both 

stimulus- and response-locked data (i.e., P3b, SW1, and SW2). The peak topographies of the 

corresponding common components were strongly correlated (r[28] ≥ .94, p < .001), showing that 

they were highly comparable. For brevity, only the averaging effects on common component 

topographies are reported here. The remaining statistical outcomes defining individual component 

topographies are summarised in Chapter 4 Supplementary Material (pp. 87–88). 



107 

 

 

Figure 3. The stimulus- and response-locked ERP component headmaps, labels, and factor 

information; those with bolded labels were analysed in relation to behaviour. 

3.5. ERP averaging effects 

The averaging effects on P3b, SW1, and SW2 are presented in Table 1, and indicate that 

all three components were primarily response-related; this is also represented in Figure 3 and 

Figure 4, which illustrate the impact that stimulus- and response-locked averaging had on the 

common component headmaps and waveforms, respectively. The tabulated symbols outlining the 

topographical effects for P3b are also included in text to facilitate the interpretation of the 

statistical results; note that the reversals in Table 1 (as indicated by underlined effects) have also 

been applied here in text to improve readability. 

Table 1 

ERP Averaging Effects 

  P3b   SW1   SW2  

Effect F p ηp
2 F p ηp

2 F p ηp
2 

RL > SL    57.19 < .001 .31 4.03 .047 .03 

RL > SL × F > P 19.17 < .001 .13    25.20 < .001 .17 

RL > SL × C > F/P 16.65 < .001 .12 174.82 < .001 .58 28.88 < .001 .19 

RL > SL × L > R 37.40 < .001 .23    15.33 < .001 .11 

RL > SL × M > L/R    26.88 < .001 .18    

RL > SL × F > P × L > R 7.20 .008 .05 3.73 .056 .03 6.95 .009 .05 

RL > SL × F > P × M > L/R 34.18 < .001 .21    5.81 .017 .04 

RL > SL × C > F/P × L > R 48.75 < .001 .28       

RL > SL × C > F/P × M > L/R 3.50 .064 .03 24.34 < .001 .16    

N.B. RL = response-locked; SL = stimulus-locked; F = frontal; C = central; P = parietal; F/P = frontoparietal mean; 

L = left hemisphere; M = midline; R = right hemisphere; L/R = hemispheric mean. Effects approaching significance 

are in grey text, and underlined effects are reversed for corresponding underlined results. Two relationship reversals 

within an effect represents a statistically-equivalent effect (e.g., C < F/P × M < L/R ≡ C > F/P × M > L/R). 
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When synchronised with the Go response, parietal P3b amplitudes were significantly 

enhanced (RL > SL × F < P and RL > SL × C < F/P), especially at the left (RL > SL × F < P × L 

> R) and midline sites (RL > SL × F < P × M > L/R); the right hemisphere was also increased 

(RL > SL × L < R), particularly at central sites (RL > SL × C > F/P × L < R). Significant main 

effects were found on SW1 and SW2, showing that their response-locked amplitudes were larger 

over the nine core scalp sites. Focal enhancements were also identified in relation to the response: 

SW1 positivity was further increased at the central sites and midline sites, and these effects 

interacted, illustrating a strong response-related enhancement at the vertex. SW2 negativity was 

strongly enhanced at parietal sites, and in the left hemisphere. The parietal enhancement was 

larger in both the midline and left hemisphere. 

 

Figure 4. Left: A comparison of the common components (P3b, SW1, and SW2) at their peak 

electrode sites, illustrating the averaging effect between stimulus- and response-locked 

amplitudes. Right: The electrodes used to compute the mean peak amplitude of each component 

for behavioural analyses using multiple regression. 

3.6. ERP components and behaviour 

The ERP/PCA components that were subjected to behavioural analyses included the 

stimulus-specific N1b, N1c, and P2; the response-specific RN2, MP, and P420; and the optimal 

response-locked P3b, SW1, and SW2. The electrode sites used to calculate the mean peak 

amplitudes for each of these components are outlined in Figure 4, on the right. 

The stepwise linear regressions showed that Go RTs were predicted by N1c, RN2, P420, 

and SW1 amplitudes: adjusted R2 = .156, F(4, 121) = 6.771, p < .001. Specifically, faster RTs 

were related to smaller N1c (β = −.243, t = −2.614, p = .010), larger RN2 (β = .311, t = 3.359, p 

= .001), larger P420 (β = −.204, t = −2.462, p = .015), and larger SW1 amplitudes (β = −.236, t = 

−2.850, p = .005). Go RTV was predicted by P3b and P420: adjusted R2 = .110, F(2, 123) = 8.723, 
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p < .001. Lower RTV was associated with larger P3b (β = −.265, t = −3.130, p = .002) and larger 

P420 amplitudes (β = −.213, t = −2.519, p = .013). Omission error rates were also predicted by 

P420: adjusted R2 = .040, F(1, 124) = 6.266, p = .014. Fewer omission errors linked to larger 

P420 amplitudes (β = −.219, t = −2.503, p = .014, R2 = .048). 

 

4. Discussion 

This study used a factor analytic approach to investigate and compare the series of 

stimulus- and response-locked ERP components in an auditory equiprobable Go/NoGo task, in 

order to clarify ERP averaging effects, and the functional significance of the ERP components 

associated with auditory Go (target) processing in healthy young adults. Nine components were 

extracted from the Go stimulus- and response-locked ERP data, including (in latency order) N1b 

and N1c (two N1 subcomponents: Näätänen & Picton, 1987), P2, RN2, P3b, MP, P420, and SW1 

and SW2 (two SW subcomponents: Fogarty et al., 2019). These discrete components were 

specific (or unique) to either stimulus- or response-locked data, or common to both. The 

functionality of each common component was demonstrated by significant averaging effects, and 

this classification was then used to direct further analyses between the Go ERP (PCA) component 

series and behaviour. 

Go P3b, SW1, and SW2 were common to both stimulus- and response-locked ERP 

datasets, although all three were significantly larger in the averaged response-locked data, 

demonstrating that these components represent neuronal activity that is primarily response-

related. The P3b outcome here is consistent with findings in other Go/NoGo task variants 

(Berchicci et al., 2016; Goodin et al., 1986; cf. Verleger et al., 2005), whereas the significant 

averaging effects on SW1 and SW2 amplitudes reflect novel findings in this paradigm; perhaps 

comparable to SW observations in error trials (Falkenstein et al., 1991). These effects suggest that 

Go P3b, SW1 and SW2 (which are typically measured from stimulus-locked data) should be 

quantified and analysed as response-locked components. PCA is also considered to isolate these 

components from other potentials suggesting that these averaging effects are distinct from 

overlapping motor activity (cf. Falkenstein et al., 1991; Vidal et al., 2003). Further implications 

for each component are discussed alongside the behavioural findings below. 

As expected, the N1 components (i.e., N1b and N1c) and P2 were primarily stimulus-

related, supporting prior research linking those components to sensory and perceptual processing 

(e.g., Crowley & Colrain, 2004; Liégeois-Chauvel et al., 1994; Lijffijt et al., 2009; Näätänen & 

Picton, 1987). Additionally, further analyses showed that smaller N1c amplitudes (i.e., lower 

magnitude) predicted shorter RTs. This outcome could support links between N1 and the 

activation of stimulus-response processing (Bender et al., 2006), and that more efficient stimulus 

processing can lead to earlier responses, suggesting that the N1c component could be associated 

with stimulus categorisation. 
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RN2 amplitudes were negatively associated with RT, providing novel evidence for a 

control-related response-locked N2 component preceding the response (Folstein & Van Petten, 

2008). This component has been considered to index response conflict (like N2c), although that 

is only possible if larger pre-response conflict signals can facilitate response selection or 

activation (Nieuwenhuis et al., 2003; cf. Larson et al., 2014; Yeung et al., 2004). 

The response-locked P3b peaked in line with the grand mean RT ~370 ms poststimulus. 

P3b was larger when RTV was smaller, possibly reflecting a greater coupling between stimulus- 

and response-related activity (Saville et al., 2011). Together, in conjunction with the averaging 

effects identified in this study, these outcomes support hypotheses linking P3b to stimulus-

response processing, although it is primarily response-related. This supports the notion that P3b 

context updating can involve response-related information to facilitate strategic task processing 

(cf. Donchin & Coles, 1988). Specifically, P3b could represent the updating of sensory, and in 

particular, motor or response-related representations in working memory (Brydges & Barceló, 

2018). Alternatively, this finding could support the link between P3b and a ‘tactical’ reactivation 

of a stimulus-response pattern (Verleger et al., 2015, 2016). In successful Go trials, that would 

result in motor activation and movement-related sensory feedback, which could be marked by the 

frontal MP identified ~15 ms after the grand mean RT (Gerbrandt et al., 1973; Tarkka & Hallett, 

1991). MP was not related to any behavioural outcomes in this study, which supports its 

conceptualisation as a simple motor (or reafferent) potential, as opposed to an endogenous 

component related to active cognitive control or behavioural regulation. 

P420 was a novel response-specific positivity that was negatively associated with RT, 

RTV, and omission error rates. The identity of P420 is unclear; however, its morphology 

resembles that of the parietal error positivity (Pe: Falkenstein et al., 2000) and the small response-

related portion of the P3 (R-P3) identified using RIDE, an iterative decomposition method used 

to separate stimulus- and response-locked (and intermediate) ERP waveforms from single trial 

EEG data (see Ouyang et al., 2011, 2015; Verleger et al., 2014, 2016). The latter (R-P3) is perhaps 

a more likely match for P420 considering that Pe should only be evident following response errors 

(Vidal et al., 2000). In that case, P420 could also be viewed in terms of tactical response 

processing or evaluation (Verleger et al., 2016). Linking P420 to response evaluation could 

accommodate its broad relationship with behavioural performance in this study. 

The response-locked SW1 positivity increased with shorter RTs, which could be 

consistent with hypotheses linking SW1 and SW2 in the auditory Go/NoGo task to post-response 

evaluation and further planning or preparation for subsequent trials (Fogarty et al., 2019). This 

perspective builds on earlier research, which posits that late SW components reflect evaluation or 

memory-related processes (e.g., Friedman, 1984; García-Larrea & Cézanne-Bert, 1998), or 

preparatory processing in choice-response tasks (see, Desmedt & Debecker, 1979; Rohrbaugh et 

al., 1978). 
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Further considerations regarding this investigation refer to components that were not 

identified. Hypothetically, the absence of a stimulus-locked N2c in this study could suggest that 

the typical Go N2c is a response-related component, as anticipated. The small diffuse topography 

of the auditory N2c and its usual latency ~250 ms poststimulus (e.g., Melynyte et al., 2017; 

Fogarty et al., 2019) could suggest that it reflects a smearing of RN2 in stimulus-locked data, 

which would explain why larger RTV has been linked to smaller stimulus-locked N2c amplitudes 

(Fogarty et al., 2018). If this is the case, N2c’s role in target stimulus processing would be 

questionable (cf. Goodin et al., 1986; Pritchard et al., 1991). 

CRN and RAP also were not identified in this study. It is unclear why CRN was not 

extracted; however, it is possible that RAP might correspond with SW1, considering that the 

morphological features of the two components are almost identical (Bötzel et al., 1997; Di Russo 

et al., 2017; Kornhuber & Deecke, 2016; Shibasaki et al., 1980; Vaughan et al., 1968). This would 

imply that SW1 could reflect the processing of reafferent input, although further research is 

needed to explore this, perhaps by examining the links between SW1 and kinematic variables. 

Averaging data over RT bins (Friedman, 1984; Poli et al., 2010; Verleger et al., 2005), or perhaps 

using other ERP decomposition techniques (e.g., RIDE) in conjunction with PCA, could also help 

to elucidate additional components in this paradigm. 

Alternatively, the current PCA approach may not have extracted a distinct N2c, CRN, or 

RAP if the time course of those components overlapped similar factors. The Varimax rotation in 

this study could have combined morphologically similar components into fewer factors to achieve 

a simpler orthogonal factor solution. This is expected to be less likely for N2c given that it is 

frequently separated using Varimax PCA in this task (e.g., Barry & De Blasio, 2013; Fogarty et 

al., 2018, 2019; Karamacoska, Barry, & Steiner, 2017, 2018; Karamacoska, Barry, Steiner, 

Coleman, & Wilson, 2018); although, it is possible that CRN or RAP were extracted with MP, 

P420, or SW1. Further research is needed to help distinguish these components; however, this 

study could suggest that those components may be described by fewer factors in this task, 

questioning their distinction in this paradigm and perhaps the broader ERP literature. 

Unlike previous research examining the ERP components associated with simple 

equiprobable Go/NoGo task processing, this study used temporal PCA to extract and compare 

orthogonal stimulus- and response-locked ERP components and subcomponents for analysis. The 

outcomes clarified ERP averaging effects on a range of components, and in conjunction with 

behaviour, these findings provided novel insight into the Go processing series in the auditory 

equiprobable Go/NoGo task. Notably, Go P3b, SW1, and SW2 were primarily response-related, 

supporting theories linking those components to motor or response processing. This also suggests 

that P3b, SW1, and SW2 should be quantified as response-locked components to improve their 

analytical validity in future Go/NoGo research. 
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Chapter 4 Supplementary Material 

 

The mean topographies of the unique (i.e., stimulus- or response-specific) and common 

components are defined statistically in Table S1 and summarised briefly in text. The shorthand 

indicators describing the statistical topographic effects for the initial components are included in 

text to aid the reader’s interpretation of these outcomes. 

Table S1 

Stimulus-Specific  N1b   N1c   P2  

Effect F p ηp
2 F p ηp

2 F p ηp
2 

F > P 147.92 < .001 .54 5.68 .019 .04    

C > F/P 112.58 < .001 .47 7.09 .009 .05 37.11 < .001 .23 

L > R    21.77 < .001 .15    

M > L/R 198.42 < .001 .61 52.09 < .001 .29    

F > P × L > R 3.63 .059 .03 11.08 .001 .08 2.97 .087 .02 

F > P × M > L/R 6.88 .010 .05    7.23 .008 .05 

C > F/P × L > R    18.10 < .001 .13 4.77 .031 .04 

C > F/P × M > L/R 3.75 .055 .03 126.15 < .001 .50 13.41 < .001 .10 

          
Response-Specific  RN2   MP   P420  

Effect F p ηp
2 F p ηp

2 F p ηp
2 

F > P 78.14 < .001 .38 100.20 < .001 .44    

C > F/P    25.14 < .001 .17 9.65 .002 .07 

L > R 49.39 < .001 .28 6.32 .013 .05    

M > L/R    218.03 < .001 .64    

F > P × L > R 4.05 .046 .03 20.84 < .001 .14 10.51 .002 .08 

F > P × M > L/R 22.93 < .001 .16 33.57 < .001 .21 16.72 < .001 .12 

C > F/P × L > R 8.46 .004 .06 27.38 < .001 .18 10.75 .001 .08 

C > F/P × M > L/R 11.49 .001 .08 134.19 < .001 .52 8.63 .004 .06 

          
Common  P3b   SW1   SW2  

Effect F p ηp
2 F p ηp

2 F p ηp
2 

F > P 498.69 < .001 .78 25.93 < .001 .17 34.69 < .001 .22 

C > F/P 26.18 < .001 .17 353.41 < .001 .74 48.85 < .001 .28 

L > R 22.56 < .001 .15 35.18 < .001 .22 116.85 < .001 .48 

M > L/R 2.85 .094 .02 16.75 < .001 .12 4.67 .033 .04 

F > P × L > R 62.70 < .001 .33 43.95 < .001 .26    

F > P × M > L/R 135.92 < .001 .52 63.83 < .001 .34    

C > F/P × L > R 34.63 < .001 .22    69.75 < .001 .36 

C > F/P × M > L/R          

N.B. F = frontal; C = central; P = parietal; F/P = frontoparietal mean; L = left hemisphere; M = midline; R = right 

hemisphere; L/R = hemispheric mean. Effects approaching significance are in grey text, and underlined effects are 

reversed for corresponding underlined results. Two relationship reversals within an effect represents a statistically-

equivalent effect (e.g., C < F/P × M < L/R ≡ C > F/P × M > L/R). 

N1b was frontocentral (F > P and C > F/P) and dominant in the midline (M > L/R), 

particularly at frontal sites (F > P × M > L/R). The Go N1c was maximal in the hemispheres (M 

< L/R), particularly at the temporal sites (C > F/P × M < L/R). Moreover, N1c was larger in the 
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right hemisphere (L < R) and at frontotemporal sites; these effects also interacted (F > P × L < R 

and C > F/P × L < R). P2 was maximal at central sites, which were enhanced in the midline (C > 

F/P × M > L/R) and on the left (C > F/P × L > R). Parietal P2 amplitudes were also greater in the 

midline, relative to the hemispheres (F < P × M > L/R). 

RN2 was maximal at frontal sites and in the right hemisphere; these effects interacted, 

demonstrating a strong frontal enhancement on the right. Central RN2 amplitudes were also 

greater on the right and in the midline. The MP was strongly frontal (driving other frontoparietal 

effects), particularly at the midline and on the left. P420 was enhanced parietally in the midline 

and right hemisphere, and was reduced centrally, particularly at the midline and in the left 

hemisphere. 

P3b was a large centroparietal positivity that was greater over the right hemisphere, 

especially at central sites. Parietal P3b amplitudes were also enhanced on the left and at the 

midline. The positive GM SW1 was maximal at centroparietal sites and strongly dominant in the 

left hemisphere, particularly at parietal sites. Parietal SW1 amplitudes were also greater in the 

midline. GM SW2 was strongly negative at parietal, left, and midline sites; this negativity was 

significantly reduced centrally in the right hemisphere. 
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Chapter 5. NoGo P3a Cannot Index Response Inhibition: A 

Single-Trial Latency-Adjusted ERP Analysis 

 

 

 

Foreword 

This chapter, which investigated the link between the auditory equiprobable NoGo P3a and 

response inhibition in healthy young adults, is the fourth journal article of this thesis. The 

lateralised readiness potential (LRP) was used to index prepotent motor activity, and thus, 

inhibitory demand. The functional significance of NoGo P3a in relation to inhibition was tested 

by correlating P3a and LRP amplitudes at a single-trial level, after P3a latency jitter was 

controlled to improve the quantification and measurement of P3a amplitudes. Additionally, 

source analyses were conducted using eLORETA, to explore the relationship between PCA-

derived P3a and known inhibitory control networks in the human brain. The equiprobable NoGo 

ERP and behavioural data from Experiments 1 and 2 were combined for this investigation, which 

was submitted for publication. 
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Abstract 

 

The NoGo P3 event-related potential (ERP) component is often related to response inhibition, 

although its function in equiprobable Go/NoGo tasks is debated. Previous findings concerning 

the auditory equiprobable NoGo P3 (i.e., P3a) could be confounded by averaging latency-variable 

ERP components. This study aimed to control NoGo P3a latency jitter to investigate the 

component’s relationship with inhibitory demands and its neuronal sources across trials. P3a 

latency jitter was controlled using a novel procedure to enable single-trial P3a quantification 

across 126 healthy young adults (Mage = 20.3, SD = 2.8 years) using principal components 

analysis. NoGo inhibitory demands and performance were measured using the Lateralised 

Readiness Potential and error rates, respectively. The stimulus-locked P3a (SL-P3a) was also 

analysed to assess the “blurring effect” associated with ERP averaging. A Spearman’s rank 

correlation across 4,806 NoGo trials demonstrated that the relationship between latency-adjusted 

P3a (LA-P3a) and inhibitory demands was inconsequential. The cortical sources associated with 

LA-P3a, using eLORETA, were in the premotor and prefrontal cortices, cingulate, precuneus, and 

postcentral gyrus. SL-P3a was smaller than LA-P3a, and that difference was positively related to 

P3a latency jitter; its source solution was also limited to lower activation in the prefrontal cortex. 

SL-P3a was not related to inhibitory demands or performance. This study demonstrated that 

NoGo P3a cannot index response inhibition in auditory equiprobable tasks. Instead, the findings 

support a neuroinhibition account relating P3a to attention. Blurring effects were also shown to 

impact a standard ERP measure and its source solution, encouraging ERP latency-adjustment in 

future research. 

 

Keywords: Go/NoGo, P3, Inhibition, Attention, Latency Jitter, eLORETA 
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1. Introduction 

The frontocentral P3 component of the NoGo event-related potential (ERP) is widely 

considered to reflect response inhibition in Go/NoGo tasks (e.g., Albert et al., 2013; Bokura et 

al., 2001; Bruin et al., 2001; Dimoska et al., 2006; Falkenstein et al., 2002; Gonzalez-Rosa et al., 

2013; Karlin et al., 1970; Pires et al., 2014; Randall & Smith, 2011; Roberts et al., 1994; Smith 

et al., 2008; Vallesi, 2011). NoGo P3 measures have been used to study inhibitory functioning in 

clinical populations (e.g., Kamarajan et al., 2005a, 2005b; Ruchsow et al., 2008; Wu et al., 2014; 

B. Yang et al., 2009; L. Yang et al., 2015), and to evaluate the efficacy of therapeutic approaches 

addressing cognitive control deficits, such as inattention or impulsivity (e.g., Ogrim & Hestad, 

2013; Schoenberg et al., 2014; Yan-ling & Xuan, 2013). However, several theories argue against 

the inhibition account of NoGo P3 (e.g., Huster et al., 2013; Polich, 2007). Moreover, 

equiprobable Go/NoGo tasks are often used in studies of inhibitory control, even though it is 

debated whether equiprobable NoGo P3 can index response inhibition (e.g., Wessel, 2018a). In 

this study, a data-driven approach was used to control NoGo P3 latency jitter and clarify the 

functional significance of the auditory equiprobable NoGo P3 over individual trials. 

1.1. The equiprobable NoGo P3a 

Equiprobable Go/NoGo tasks feature an equal number of Go and NoGo trials and are 

reportedly the most commonly used variant of the Go/NoGo paradigm (Wessel, 2018a). The 

popularity of this task likely stems from its simplicity and the fact that it is the most efficient 

variant for acquiring both Go and NoGo data (Barry & De Blasio, 2015; Pfefferbaum et al., 1985). 

Equiprobable designs are also valuable for studying cognitive processes related to stimulus 

discrimination and behavioural regulation with minimal (or balanced) Go/NoGo response conflict 

(Donkers & Van Boxtel, 2004) and oddball deviant effects (Masharipov et al., preprint). Matching 

Go and NoGo stimulus probability is also believed to moderate the prepotency of the Go response 

and, relative to that, the NoGo inhibitory demands (Bruin & Wijers, 2002; Low & Miller, 1999; 

Wessel, 2018a). However, equiprobable tasks could still require effortful inhibition if individuals 

have a tendency to activate the Go response (Boulinguez et al., 2009; Criaud & Boulinguez, 2013; 

Donkers & Van Boxtel, 2004). 

In simple (i.e., uncued two-stimulus) equiprobable Go/NoGo or oddball tasks, the NoGo 

P3 is a frontocentral positivity that peaks 250–350 ms after auditory stimuli (e.g., Banquet et al., 

1981; Barry & De Blasio, 2013; Griskova-Bulanova et al., 2016; Karamacoska et al., 2017, 2019; 

Sams et al., 1983) and 300–450 ms after visual and somatosensory stimuli (e.g., Bruin & Wijers, 

2002; Di Russo et al., 2000; Gonzalez-Rosa et al., 2013; Iijima et al., 2009; Kiehl et al., 2000; 

Nakata et al., 2012; Ohbayashi et al., 2017; Piispala et al., 2016, 2017). This positivity is distinct 

from the centroparietal P300 or P3b (Pfefferbaum et al., 1985; Squires et al., 1975; Dien et al., 

2004) and is often referred to as P3a (mostly in the auditory modality), considering its early 
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latency and the fact that a later P3 can be distinguished (e.g., Barry et al., 2020a; De Blasio & 

Barry, 2020; Polich, 2007; Squires et al., 1975; Smith et al., 2010). 

It has been argued that NoGo P3a and novelty P3 factors seen in different tasks reflect 

the same component (e.g., Dien et al., 2004; Polich, 2007). This is still debated, and recent 

evidence indicates that P3a and novelty P3 are distinct frontocentral components (Barry et al., 

2020c). Evidence related to ERP measures matching the NoGo P3a in simple equiprobable 

Go/NoGo (or oddball) tasks is reviewed regardless of the P3 label selected, as the aim of this 

study was to clarify the functionality of the NoGo P3 in this task. The literature surrounding P3a 

or novelty P3 in alternate paradigms is not reviewed here explicitly and further consideration of 

the distinction between those P3 components is beyond this study. 

NoGo P3a amplitudes have been shown to increase with stimulus discrimination 

difficulty (Pfefferbaum et al., 1985) and inter-stimulus-intervals (Recio et al., 2009); as well as 

decreasing NoGo probability or increasing nontarget-to-nontarget intervals in simple Go/NoGo 

tasks (Banquet et al., 1981; Bruin & Wijers, 2002; Fogarty et al., 2019; Hull & Harsh, 2001; 

Keskin-Ergin et al., 2014; Sams et al., 1983; Squires et al., 1975; Wessel, 2018a). A larger 

equiprobable NoGo P3a is also evident when participants need to pay more attention or activate 

a motor response to Go stimuli, such as a button-press (Bruin & Wijers, 2002; Falkenstein et al. 

1999; Nakata et al., 2008a); although the effect of increasing attention is not always reliable or 

significant (e.g., Squires et al., 1975; Falkenstein et al. 1999). 

Previous EEG and ERP research using equiprobable tasks have shown repeatedly that 

NoGo P3a is related to EEG delta and theta activity (Barry et al., 2010, 2012, 2014c, 2018b, 

2020a; De Blasio & Barry, 2013b, 2018; Spencer & Polich, 1999). Links between NoGo P3a and 

alpha or beta activity have also been shown, although those findings are less reliable (Barry et al., 

2010, 2012, 2014c, 2020a; De Blasio & Barry, 2013a, 2020). Larger NoGo P3a amplitudes have 

also been related to better behavioural performance in simple equiprobable tasks, as indexed by 

lower NoGo commission error rates (i.e., false alarm rates), increased Go reaction times, and 

lower reaction time variability (Fogarty et al., 2018; Karamacoska et al., 2018a, 2018b; Melynyte 

et al., 2017; Nakata et al., 2012; Nguyen et al., preprint). 

Equiprobable NoGo P3a is significantly reduced in individuals with alcohol dependence 

and the offspring of people addicted to alcohol (Kamarajan et al., 2005a, 2005b), reflecting 

impaired executive processing consistent with behavioural research in this paradigm (Rupp et al., 

2016). A smaller NoGo P3a has also been associated with children who stutter (Piispala et al., 

2016, 2017), depression (Zhang et al. 2016), obsessive compulsive disorder (Di Russo et al., 

2000), and higher PTSD symptom severity (Wu et al., 2014). Larger NoGo P3a amplitudes are 

also associated with advancing age (Barry et al., 2014a; Vallesi, 2011; Zhang et al., 2016); with 

greater anteriorisation (i.e., a more frontal topography) indicated in older adults (Barry et al., 

2016a). NoGo P3a latency is also positively related to avoidance (Wu et al., 2014) and heroin 
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addiction (L. Yang et al., 2015), implying a delay in cognitive processing in individuals with those 

clinical problems (cf. B. Yang et al., 2009). 

Previous research suggests that dopaminergic/serotonergic neurotransmitter pathways 

underpin or influence NoGo P3a generation. Specifically, Melynyte et al. (2017) found that NoGo 

P3a latencies are greater in females completing an uncued auditory equiprobable task, consistent 

with the P3a effect of progesterone, a sex hormone that is usually higher in women (Griskova-

Bulanova et al., 2016). NoGo P3a amplitudes can also increase after caffeine consumption (Barry 

et al., 2007, 2020b; cf. Barry et al., 2014b, 2019a), during exposure to incense (Iijima et al. 2009), 

and to white noise (Ohbayashi et al., 2017). Each of these variables are considered to modulate 

dopamine and/or serotonin activity directly (e.g., progesterone: Dluzen & Ramirez, 1984; 

caffeine: Volkow et al., 2015; incense: Okugawa et al., 2000; White Noise: Rausch et al., 2014), 

or indirectly, given the interaction between the dopaminergic and serotonergic neurotransmitter 

systems at a neurocognitive and behavioural level (see Bethea et al., 2002; Daw et al., 2002; 

Kapur & Remington, 1996; Kelland & Chiodo, 1996; Seo et al., 2009; Smith et al., 2004; Wong 

et al., 1995). 

Previous ERP source outcomes indicate that uncued auditory equiprobable NoGo P3a 

represents neuronal activity in the cingulate cortex and cuneus (Barry & Rushby, 2006) or the 

medial frontal gyrus (Barry et al. 2014a). Using fMRI, Gonzalez-Rosa et al. (2013) associated the 

visual NoGo P3a with activation in the anterior cingulate and anterior and dorsolateral prefrontal 

cortices (involving the medial frontal gyrus). This is compatible with other MRI and fNIRS 

studies in visual and somatosensory modalities, which link equiprobable NoGo processing with 

activity in the anterior cingulate, dorsolateral and ventrolateral prefrontal cortices, as well as the 

premotor cortex, insula, inferior frontal gyrus, inferior parietal lobule, temporoparietal junction, 

and occipito-temporal area (Arbula et al., 2017; Kamarajan et al., 2005b; Laurens et al., 2005; 

Nakata et al., 2008a, 2008b, 2009; Rubia et al., 2001; Watanabe et al., 2002). Together, these 

findings indicate a distributed network of brain areas related to equiprobable NoGo processing, 

although it is difficult to attribute these source outcomes to NoGo P3a per se. 

The findings associated with the equiprobable NoGo P3a can be interpreted in a number 

of ways; however, the main theories to be considered are that NoGo P3a reflects response 

inhibition (e.g., Bokura et al., 2001; Fallgatter & Strik, 1999; Karlin et al., 1970; Roberts et al., 

1994), NoGo performance monitoring (Huster et al., 2020; Liotti et al., 2005; Schmajuk et al., 

2006), or alternatively, stimulus-driven shifts in focal attention via a neuroinhibitory mechanism 

(Polich, 2007). This study aimed to test the response inhibition hypothesis for the auditory 

equiprobable NoGo P3a. 

1.1.1. NoGo P3a and response inhibition 

Following a similar pattern as equiprobable NoGo P3a amplitudes, inhibitory demands 

could increase with stimulus discrimination difficulty and Go prepotency (resulting from lower 
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NoGo probability or increased nontarget-to-nontarget intervals), as the detected stimulus or 

response conflict requires a higher level of reactive control (Botvinick et al., 2001, 2004; Braver, 

2012; Bruin & Wijers, 2002; Chmielewski et al., 2019; Dippel et al., 2016; Low & Miller, 1999; 

Wessel, 2018a). Larger P3a amplitudes in motor (vs. count) tasks can be explained by increased 

effort to control overt motor behaviour relative to an implicit decision (Bruin & Wijers, 2002). 

Moreover, the positive correlation between accuracy and NoGo P3a amplitudes supports a link 

between NoGo P3a and behavioural control. Response inhibition is also mediated by dopamine 

(e.g., Albrecht et al., 2014; Beste et al., 2010, 2016; Ghahremani et al., 2012; Nandam et al., 2013; 

Robertson et al., 2015) and serotonin (e.g., Daly et al., 2014; Humby et al., 2013; Landrø et al., 

2015; Macoveanu et al., 2013; Thornton & Goudie, 1978; Ye et al., 2014; cf. Clark et al., 2005), 

as implicated for equiprobable NoGo P3a. Thus, it seems reasonable to consider NoGo P3a as a 

marker for response inhibition based on these outcomes. 

Frontal delta and theta have been linked to executive processing subserving response 

inhibition (e.g., Adelhöfer & Beste, 2020; Andreu et al., 2019; Harmony, 2013; Harper et al., 

2014, 2016; Kamarajan et al., 2004; Kirmizi-Alsan et al., 2006; Müller & Anokhin, 2012; 

Yamanaka & Yamamoto, 2010); however, it is important to note that delta and theta are 

implicated in a range of processes (Başar, 1998, 1999; Güntekin & Başar, 2016). Modern accounts 

of decisional task processing also consider delta to reflect motivated attention and memory (e.g., 

Knyazev et al., 2007, 2012; Huster et al., 2013), and theta activity to reflect an alerting signal 

associated with attention and the need for cognitive control (e.g., Başar & Demiralp, 2001; Başar 

et al., 2001; Brittain & Brown, 2014; Cavanagh & Frank, 2014; Huster et al., 2013; Pscherer et 

al., 2019). These accounts primarily support links between NoGo P3a and performance 

monitoring (Huster et al., 2013, 2020; Liotti et al., 2005; Schmajuk et al., 2006) or shifts in focal 

attention (Polich, 2007), rather than inhibition per se. 

Neuronal sources associated with equiprobable NoGo P3a (i.e., the anterior cingulate and 

medial frontal gyrus) have been shown to play a key role in executive functions, including 

response inhibition (Braver et al., 2001; Gonzalez-Rosa et al., 2013; Rushworth et al., 2004; Talati 

& Hirsh, 2005). However, these brain areas are also implicated in other control processes, 

including conflict processing (e.g., Botvinick et al., 1999, 2004; Braver et al., 2001), performance 

monitoring (e.g., Carter et al., 2001; Ullsperger et al., 2014), and attentional control (e.g., Aarts 

& Roelofs, 2011; Polich, 2007). The inhibitory control network is also considered to involve the 

ventrolateral prefrontal cortex (inferior frontal gyrus), as well as the premotor area, and parietal 

cortex (e.g., Albert et al., 2013; Aron & Poldrack, 2006; Rubia et al., 2001); it is unclear whether 

NoGo P3a is also related to activity in that inhibitory control neural circuitry and additional 

research is needed to investigate the sources of P3a in this simple paradigm. 

Several studies also contradict the potential relationship between the equiprobable NoGo 

P3a and response inhibition. Falkenstein et al. (1999) did not find a relationship between NoGo 
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P3a amplitudes and behavioural control (cf. Fogarty et al., 2018; Karamacoska et al. 2018b). 

Electrodermal studies also indicate that NoGo stimuli are indifferent for young adults in this task, 

suggesting that equiprobable NoGo stimuli require little to no effortful control, perhaps because 

the Go response is not predominant (Barry & Rushby, 2006; Recio et al., 2009; Schacht et al., 

2009). Indeed, using visual stimuli, Wessel (2018a) demonstrated that only tasks with rare NoGo 

stimuli show significant levels of prepotent motor activity in NoGo trials. Prepotent motor activity 

was indexed by the amplitude of the Lateralised Readiness Potential (LRP), a negative scalp 

potential largest over the motor cortex contralateral to the responding hand, and widely considered 

to reflect cortical activity associated with the preparation of a voluntary motor response (Coles, 

1989; Miller, 1998; Miller & Low, 2001; Smulders et al., 2012). Thus, although inhibition is a 

reasonable interpretation of the previous NoGo P3a outcomes, it is questionable as to whether this 

account is plausible in simple equiprobable tasks; further research is needed to relate NoGo P3a 

to measures of inhibitory demands, as in Wessel (2018a). 

1.2. ERP latency variability and adjustment 

A potential problem for research measuring NoGo P3a involves ERP latency variability 

and averaging effects. It is common practice for ERP researchers to average data within subjects 

and across trials to filter out electrical noise and improve the signal-to-noise ratio of specific 

ERPs. However, this technique generates within-subject measures that collapse or ignore 

important variance across trials (Volpert-Esmond et al., 2018; Vossen et al., 2011). This concerns 

trial-level variance in inhibitory demands, which may fluctuate in latency and magnitude 

according to the Go/NoGo trial sequence or other factors like practice or time-on-task. Moreover, 

if the latency of NoGo response processes vary (or jitter) from trial to trial, then any response-

related ERP components may be confounded in the averaged stimulus-locked ERP data 

(McFarland & Cacace, 2004; Truccolo et al., 2002; Spencer, 2005). This is often referred to as a 

“blurring effect”, as latency-variable ERP components are attenuated and smeared in the averaged 

data, similar to random signal noise (Poli et al., 2010). This unknown level of error can propagate 

throughout the quantification and analysis of typical stimulus-locked ERP measures of (what is 

considered to be) implicit NoGo response-related activity, potentially influencing previous study 

outcomes concerning the functionality of NoGo P3a. 

Group or condition differences in P3 latency variability (reflected in the SD of P3 peak 

latencies) could account for significant amplitude effects identified in studies relating NoGo P3a 

to response inhibition (e.g., Gonzalez-Rosa et al., 2013; Smith et al., 2008; Vallesi, 2011). ERP 

blurring effects are also expected to be problematic for source localisation, given that averaging 

can result in the misallocation or ‘smearing’ of ERP component variance and lower signal-to-

noise ratios for latency-variable components in the input ERP data. Indeed, simulations show that 

overlapping signal noise (or extraneous data) can result in more “ghost sources” and lower 

precision in ERP source solutions (Grech et al., 2008; Pascual-Marqui, 2002). Thus, it is important 
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to control or account for ERP latency variability to ensure that amplitude and source localisation 

outcomes are independent of this potential confound. 

In this study, we implement a novel method to control NoGo P3 latency variability in 

order to investigate NoGo P3a sources and its link to response inhibition at a single-trial level. 

Controlling ERP component latency jitter typically involves the generation of latency-adjusted 

ERP data by synchronising (or aligning) epochs to the peak latency of the component in each 

trial. Several techniques have been developed for that purpose including adaptive filters (Ford et 

al., 1982; Thornton, 2008; Woody, 1967), template matching (Lange et al., 1997), or maximum 

likelihood scoring (Tuan et al., 1987). In this study, we applied an iterative P3 peak-detection 

algorithm to generate latency-adjusted ERPs aligned to the NoGo P3 within participants, before 

applying temporal principal components analysis (PCA) to extract the single-trial latency-

adjusted P3a (LA-P3a). This simple approach was designed specifically for this study to control 

P3 latency variability and extract trial-level P3a variance for analysis. 

Similar approaches have been implemented previously to study P3. For example, 

Pfefferbaum et al. (1985) applied PCA to latency-adjusted ERPs averaged within participants, 

after using Woody’s (1967) filter to synchronise ERP data to the P3 across trials. Saville et al. 

(2011) used PCA to extract P3 from stimulus-locked ERP data averaged within subjects, and then 

applied that factor to individual trials to measure and control for P3 latency jitter. Independent 

Components Analysis (ICA) has also been used to quantify single-trial ERP data through the 

back-projection of ICA components identified within participants (Wessel, 2018a, 2018b; 

Debener et al., 2005); however, temporal ICA (and PCA) solutions are also influenced by ERP 

latency jitter (see Möcks, 1986). To the best of our knowledge, no study has applied factor 

analysis or blind signal separation directly to single trial ERP data after P3 latency jitter has been 

controlled within and between participants. 

1.3. The present study 

Previous equiprobable NoGo P3a outcomes may be explained by theories relating NoGo 

P3 (or P3a) to inhibition, monitoring, or attention. This study aimed to test the response inhibition 

hypothesis of the equiprobable NoGo P3a in the auditory modality. Following Wessel (2018a), 

LRP was calculated in NoGo trials to correlate P3 with inhibitory demands. NoGo P3 amplitudes 

reflecting larger inhibitory demands were expected to increase with the magnitude of negative 

LRP amplitudes. A novel method was also used to control ERP latency variability and quantify 

single-trial P3a in a large sample of healthy young adults, providing substantial statistical power, 

to investigate behavioural and neuronal correlates of the auditory equiprobable NoGo P3. The 

cortical sources of the LA-P3a were also explored to clarify the factor’s neuronal origin without 

the influence of ERP blurring effects. 

Similar analyses were conducted on the averaged stimulus-locked P3a (SL-P3a) to 

provide a ‘standard’ reference for the LA-P3a and assess the impact that latency jitter can have 
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on typical P3 measures. SL-P3a was also examined in relation to performance to replicate 

previous outcomes (Fogarty et al., 2018; Karamacoska et al., 2018b). Due to the blurring effect 

(Poli et al., 2010), SL-P3a was expected to be smaller than LA-P3a averaged within participants 

(i.e., at the participant level). No predictions were made regarding the differences in SL-P3a and 

LA-P3a sources, although SL-P3a was expected to be related to activation in the cingulate, 

cuneus, and medial frontal gyrus. 

The purpose of this investigation was to clarify the functionality of the equiprobable 

NoGo P3a and determine whether it can be considered a potential marker of response inhibition. 

This was considered important given that equiprobable tasks are reported to be the most 

commonly used Go/NoGo variant. This paradigm is also frequently used to study or assess 

inhibitory control in a range of fundamental and clinical research areas; hence, the outcomes of 

this study were expected to clarify the functionality of the NoGo P3a as well as the utility of the 

simple equiprobable task. 

 

2. Method 

2.1. Participant demographics and screening 

NoGo ERP data from 126 healthy right-handed young adults (Mage = 20.3, SD = 2.8 years, 

83 female) were collated from the two independent samples published in Fogarty et al. (2019, 

2020) to substantially increase N for statistical analysis; the NoGo P3 has been examined in only 

one of these datasets (in relation to stimulus probability: Fogarty et al., 2019). Participants were 

psychology students at the University of Wollongong who volunteered to participate for course 

credit through the School of Psychology Research Participation Scheme. Participants provided 

their informed consent before screening and testing. Screening was conducted via self-report 

questionnaires: volunteers were excluded from testing if they reported ongoing mental illness 

(e.g., depression) or neurological complaints (e.g., epilepsy), previous head injuries (e.g., 

concussion), were not right-handed (according to the Edinburgh Handedness Inventory; Oldfield, 

1971), or had consumed tobacco/caffeine (≤ 4 hours) or other psychoactive substances (≤ 12 

hours) before testing. This study was approved by the University of Wollongong and Illawarra 

Shoalhaven Local Health District Human Research Ethics Committee (HE09/220). 

2.2. Physiological recording 

A Neuroscan SynAmps2 amplifier was used to record continuous electrophysiological 

data at 1000 Hz between 0–30 Hz from 30 EEG scalp sites (Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, 

FC3, FCz FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, 

O2), the right mastoid (M2), and four EOG sites located above and below the left eye, and beside 

the outer canthus of each eye. Each electrode was referenced to the left mastoid (M1), and 

grounded at AFz, and all were sintered Ag/AgCl with impedances below 5 kΩ. 
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2.3. Go/NoGo task and procedure 

Participants were seated in a dark sound-attenuated room to complete Croft and Barry’s 

(2000) EOG calibration task, and an auditory equiprobable Go/NoGo task (i.e., pNoGo = .5). The 

Go/NoGo task featured two blocks of 150 randomly shuffled 1000 and 1500 Hz tones, presented 

through circumaural headphones for 80 ms (including 15 ms rise/fall times), using a fixed SOA 

of 1250 ms. Tone intensity was calibrated at 60 dB SPL at the headphone using an artificial ear 

and sound level meter (Brüel & Kjær, model 4152). 

Participants were instructed to respond to Go tones as quickly and accurately as possible 

with a button-press from their right hand, while keeping their gaze on a white fixation cross 

projected onto the wall in front of them throughout the task. An example of the Go tone and a 

short practice (10 trials) were provided prior to each block. Go tone frequency and block order 

were counterbalanced across blocks and participants, respectively. 

2.4. Data quantification and analysis 

NoGo accuracy was measured within-subjects using the NoGo commission error rate 

(i.e., the % of NoGo trials that were incorrectly responded to with a button-press). All EEG data 

were EOG corrected using the RAAA procedure (Croft & Barry, 2000) and re-referenced to 

digitally linked mastoids in Neuroscan Edit (Compumedics v. 4.5). LRP data were then generated 

as the difference between the C3 and C4 EEG electrode data (i.e., C3 minus C4) and then low-

pass filtered (FIR 4 Hz, 24 dB/Octave, zero-phase shift) to help isolate LRP slow-wave data 

(Coles, 1989; Smulders et al., 2012; Wright et al., 2011). Separate to that, the re-referenced EEG 

data at all 30 channels were low-pass filtered to 25 Hz (FIR, 24 dB/Octave, zero-phase shift) 

following our standard filtering procedure (e.g., Fogarty et al., 2019).  

LRP data were epoched ±500 ms around the intra-subject mean Go RT in each NoGo 

trial, following Wessel (2018a), whereas the EEG data were epoched from -400 to +1250 ms 

around NoGo stimulus onset. The NoGo LRP and ERP data in each trial were baselined to the 

100 ms directly preceding stimulus onset, and epochs containing artefact exceeding ± 100 µV 

were removed across both the LRP and ERP datasets to ensure that the NoGo LRP and ERP trial 

datasets were comparable within subjects. The remaining artefact free ERP trials were used to 

generate stimulus-locked and latency-adjusted ERP data for further analysis. 

2.4.1. Averaged stimulus-locked ERP data 

Correct and incorrect (i.e., error-related) NoGo stimulus-locked ERP averages were 

computed within-subjects and truncated to -100 to +750 ms around stimulus onset. The correct 

NoGo ERP data were then decomposed using temporal PCA. The PCA was conducted in Matlab 

(The Mathworks, v. 8.0, R2012b) using functions provided by Kayser and Tenke (2003) 

(http://bit.ly/2oX0etA), which were modified to avoid removal of the grand mean (GM) ERP from 

each case (Barry et al., 2016b; Dien & Frishkoff, 2005). The covariance matrix was used, with 

Kaiser normalisation, and all components were Varimax rotated to maintain factor orthogonality. 
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There were 3,780 cases (126 participants × 30 sites) and 850 components (time points), leading 

to a case to component ratio of 4.45 to 1. Factors explaining ≥ 5 % of unique ERP variance were 

extracted, and their identification was guided by their temporal and topographic features output 

by the PCA. 

2.4.2. Latency-adjusted ERP data 

Latency-adjusted NoGo ERP data were computed within-subjects in Matlab using a data-

driven procedure designed to minimise P3 latency jitter. Figure 1 illustrates the processing stages 

involved in that procedure as it was applied to ERP data from participant #1. For each participant, 

(Step 1) individual NoGo P3 peak latencies were estimated in correct trials by identifying the 

largest positive peak between 0–750 ms poststimulus at FCz2. (Step 2) A P3 time window was 

then calculated for the participant as the period between ±1 SD of their initial mean P3 peak 

latency across trials. (Step 3) Final estimates of the individual’s intra-trial P3 peak latencies were 

then calculated using the largest positive peak in their P3 time window in each trial. (Step 4) 

NoGo trials with invalid P3 estimates were rejected: invalid trials included P3 peak amplitudes 

that were negative or not technically a peak (i.e., it was not the largest positivity in the period ±5 

ms around the estimated latency). (Step 5) The remaining data were then epoched ±425 ms around 

the final P3 latency estimate in each trial, effectively aligning the P3 peak across trials and 

participants at time zero. 

The PCA approach in Method section 2.4.1 was used to quantify the LA-P3a at the 

individual trial level. Eighty latency-adjusted trials were randomly selected from each participant 

for the PCA, as this was the maximum that could be selected while maintaining a consistent 

amount of input from each individual. The PCA input was also restricted to ±1 SD of the mean 

intra-subject P3 peak latencies (rounded up to the nearest integer) around zero, which was 0 ± 45 

ms (i.e., 90 data points). This was to focus the PCA on the P3 waveform and minimise the 

likelihood that other extraneous latency-variable components would confound the quantification 

of P3a during the factor rotation stage (see Harshman et al., 2003). Thus, the latency-adjusted 

PCA involved 302,400 cases (126 participants × 30 sites × 80 trials) and 90 components, resulting 

in a case to component ratio of 3,360 to 1. The aim of this PCA was to quantify LA-P3a at each 

trial, hence, only the component explaining the most variance was retained for analysis. 

 

 
2 FCz was chosen as it was the peak site of the grand mean stimulus-locked P3a in this study. 
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Figure 1. Left: The latency adjustment procedure (Steps 1–5) demonstrated using single-trial 

NoGo ERP data from participant #1. Black dots reflect the estimated intra-trial P3 peak latencies, 

and the dashed lines in Step 2 reflect the range of the participant’s P3 time window (±1 SD around 

the mean of the estimated latencies in Step 1). Right: The original stimulus-locked, invalid, and 

latency-adjusted ERPs averaged across trials at FCz for participant #1. 

2.4.3. P3a and LRP measurement 

Subject- and trial-level P3a amplitudes were measured from the SL-P3a and LA-P3a 

(PCA) component waveforms3, respectively, using the average amplitude over FCz and Cz at the 

component’s peak latency. FCz and Cz were the peak scalp sites of P3a and using the average 

between the two locations was considered to minimise the effect of any potential error at any one 

 
3 PCA component waveforms (scaled to microvolts) are computed by multiplying each factor 

loading by the factor scores and the standard deviations from the input data (see Dien & Frishkoff, 

2005). 
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site (Barry & De Blasio, 2015). The difference between SL-P3a and LA-P3a amplitudes (averaged 

across trials and within subjects) was calculated for each participant to examine the change in P3a 

amplitude related to the blurring effect. P3a latency jitter was measured within subjects as the 

standard deviation of P3a’s peak latency in the eighty LA-P3a trials selected for analysis. 

NoGo LRP amplitudes were measured in each trial using the mean across the 500 ms 

period preceding the individual’s mean Go RT (Wessel, 2018a). Only negative LRPs were 

considered to index prepotent motor activation of the Go response (i.e., trials with positive LRP 

amplitudes were excluded), given that positive LRP amplitudes can reflect alternate motor 

responses (Coles, 1989). Prepotent motor activation (negative LRP) was computed separately for 

analysis with SL-P3a and LA-P3a; within each dataset, the same trials were used to calculate the 

prepotent motor activity and P3a amplitudes for correlations. 

2.4.4. Statistical analyses 

A Pearson’s correlation between the GM SL-P3a and LA-P3a peak topographies over all 

30 EEG scalp sites was used to assess the similarity of the two P3a components. To examine the 

blurring effect, a two-way repeated measures t-test was used to analyse the difference between 

SL-P3a and LA-P3a peak amplitudes, and a simple correlation was computed between P3a 

latency jitter and the change in SL-P3a and LA-P3a amplitudes. To account for the large 

variability in the ERP and behavioural data, Spearman’s rank correlations were used to evaluate 

the relationship between SL-P3a, error rates, and LRP amplitudes at the participant-level, and 

between LA-P3a amplitudes and LRP amplitudes at the trial level.  

To clarify the neuronal generators underpinning NoGo P3a, the cortical sources of the 

SL-P3a and LA-P3a PCA component waveforms were estimated using exact low-resolution 

electromagnetic tomography (eLORETA) in LORETA-KEY (v. 20170220; Pascual-Marqui, 

2007, 2009). eLORETA separates the brain volume into 6239 cortical voxels of 5 mm3 and 

exports 3-D linear inverse solution locations relative to a realistic brain atlas from the Montreal 

Neurological Institute (MNI152 2009c); voxel (source) activation is reflected in the magnitude of 

the estimated current density (µA/mm2) (Anderer & Saletu, 2013). 

Following Barry et al. (2020c) and Fogarty et al. (2020), default settings were used in 

LORETA-KEY to export both positive and negative data, with no regularisation, and a threshold 

of 0.0000001 to yield 100 % of the voxel data. The output voxel data were grouped by their 

structural brain location. Current densities were summed to identify the most active structures 

explaining ≥ 50 % of the total current density for the P3a components; these are reported in the 

results, along with the Brodmann Areas (BAs) that accounted for ≥ 90 % of the activation in those 

selected structures. 
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3. Results 

3.1. Raw ERP and trial data 

Figure 2 presents the GM raw ERPs (Left) and a comparison of correct and incorrect 

stimulus-locked ERP data (Right). Across the entire sample, the average NoGo commission error 

rate was 3.0 (SD = 2.6) %. There was an average of 140.5 (SD = 9.4) stimulus-locked NoGo trials 

remaining per participant following error and artefact rejection. From those data, an average of 

128.9 (SD = 8.8) trials were accepted following the P3 latency-adjustment procedure, from which 

eighty trials per participant were randomly selected for further analysis. 

 

Figure 2. Left: GM raw ERPs computed from correct stimulus-locked, latency-adjusted, and 

invalid trial data at FCz. The latency-adjusted data are centred at the GM P3a peak latency, 371.8 

(SD = 44.5) ms. Right: A comparison of GM correct and incorrect ERPs at FCz across the 

participants who made errors. Correct and incorrect headmaps were both generated at the peak 

latency of the raw GM P3 in this subsample. 

ERP data from 114 participants were used to generate the GM correct and incorrect NoGo 

stimulus-locked ERPs for visual comparison in Figure 2 (12 participants made no commission 

errors and were excluded). P3a can be observed ~ 280 ms poststimulus in the correct ERP, but no 

P3a is evident in the incorrect ERP; in its place is a prominent frontal error-related negativity. No 

statistical tests were conducted using incorrect ERP data due to the limited number of error trials 

available for averaging per participant (M = 5.0, SD = 3.7 error trials, n = 114). 

Figure 3 depicts the GM NoGo LRP difference waveform and a scatter plot illustrating 

the averaged NoGo LRP amplitudes calculated relative to the mean Go RT within subjects. The 

GM difference waveform was positive in the pre-response period, suggesting that prepotent motor 

activity was not evident across subjects in this study; this is supported in the scatter plot, which 

showed that mean LRP amplitudes were mostly positive. However, prepotent motor activity 

(negative LRPs) was evident in a small subsample of participants (n = 31). 
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Figure 3. Left: GM NoGo LRP difference waveforms averaged across the entire sample in this 

study and the subsample with negative pre-response LRP amplitudes. Right: Mean pre-response 

LRP amplitudes computed within-subjects; grey and black markers distinguish positive and 

negative LRP amplitudes, respectively. 

3.2. Averaged SL-P3a outcomes 

Figure 4 shows the averaged stimulus-locked ERP components extracted using temporal 

PCA. Five components were output from the correct NoGo stimulus-locked ERP data, including 

N1b, N2b, P3a, and slow-wave components (SW1 and SW2), explaining a combined total of 87.1 

% of the ERP variance. Spearman’s rank-order correlations showed no significant relationship 

between SL-P3a amplitudes (M = 2.95, SD = 4.01 µV) and NoGo error rates, rs(124) = -0.10, p = 

.286. Likewise, no relationship was found between the NoGo SL-P3a (M = 3.01, SD = 4.40 µV) 

and LRP amplitudes (M = -0.35, SD = 0.31 µV) in the subsample of individuals showing prepotent 

motor activity, rs(29) = -0.03, p = .866. These findings indicate that typical SL-P3a amplitudes 

are not related to behavioural performance or inhibitory demands at the participant-level. 
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Figure 4. The five PCA components extracted from the averaged NoGo stimulus-locked ERP 

data, including their scaled factor loadings (top), and their unique headmaps and factor 

information (bottom). 

3.3. LA-P3a outcomes 

Figure 5 depicts the LA-P3a extracted from single trial ERP data using temporal PCA 

(Panel A), and the influence of P3a latency jitter on P3a amplitudes (Panel B) and cortical sources 

(Panel C). NoGo LA-P3a was extracted as Factor 1 and explained 40.4 % of the latency-adjusted 

ERP variance. The topography of the LA-P3a was highly correlated with that of the stimulus-

locked component, r(28) = 0.63, p < .001, indicating that a comparable P3a component was 

extracted across trials after controlling for P3a latency jitter. As expected, the repeated measures 

t-test showed that SL-P3a (M = 3.0, SD = 4.0 µV) was significantly smaller than LA-P3a (M = 

21.6, SD = 6.6 µV) at the participant-level; t(125) = -30.9, p < .001. Moreover, as illustrated in 

Figure 5B, there was a significant positive correlation between P3a latency jitter (M = 120.4, SD 

= 21.2 ms) and the magnitude of that difference (M = 18.6, SD = 6.8 µV), r(124) = .42, p < .001, 

demonstrating that P3a latency jitter accounted for a moderate amount of the blurring effect on 

SL-P3a amplitudes. 

From the 10,080 NoGo trials that were measured across participants, only 4,806 featured 

prepotent motor activity and were analysed in relation to the LA-P3a amplitudes in those same 

trials. Spearman’s rank-order correlation showed a small, but significant, negative relationship 
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between NoGo P3a and LRP amplitudes at the trial level, rs(4,804) = -0.12, p < .001. However, 

the statistical significance of that small correlation likely reflects the large number of trials. 

According to this result, prepotent motor activity accounted for 1.4 % of the variance in LA-P3a 

amplitudes, which is considered to be inconsequential. 

Panel C in Figure 5 compares the SL-P3a and LA-P3a source outcomes. SL-P3a was 

associated with activation in the superior frontal gyrus, middle frontal gyrus, and medial frontal 

gyrus. Four BAs explained 94.1 % of the activation in those structures, including in order of their 

intensity, BAs 6, 8, 9, and 10. In contrast, the LA-P3a was associated with additional sources and 

greater cortical activation (see the right of Figure 5, Panel C). In order of their intensity, LA-P3a 

was related to activation in the cingulate gyrus, superior frontal gyrus, middle frontal gyrus, 

medial frontal gyrus, precuneus, and postcentral gyrus. Ten BAs accounted for 93.6 % of the 

activation in those structures, including BAs 6, 8, 7, 24, 9, 31, 32, and 10. 

 

Figure 5. Panel A: The GM LA-P3a extracted across 10,080 correct artefact-free NoGo trials; the 

PCA component’s peak topography is plotted next to its scaled factor loading. Panel B: The 

positive relationship between P3a latency jitter and the change in P3a amplitudes after controlling 

latency jitter. Panel C: A comparison of the most active cortical sources associated with SL-P3a 

and LA-P3a. The most active BAs are illustrated on the left and the total current source density 

(CSD) across all BAs in each active cortical structure is plotted on the right. 
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4. Discussion 

This study aimed to clarify the functional significance of the NoGo P3a in the auditory 

equiprobable Go/NoGo task, with a focus on the component’s potential relationship with response 

inhibition. The latency-adjustment procedure in this study controlled NoGo P3a latency jitter 

within participants, enabling the extraction and analysis of NoGo P3a data at the trial level, 

without ERP averaging. As expected, increased P3a latency jitter was shown to have a greater 

‘blurring effect’ on averaged SL-P3a amplitudes, impacting the source solution computed using 

eLORETA. The relationship between single-trial LA-P3a and LRP amplitudes was also 

remarkably trivial, and SL-P3a was not related to performance or LRP amplitudes at the 

participant level, indicating that NoGo P3a cannot effectively index response inhibition in this 

paradigm. The present study outcomes provide insight into the functional significance of 

equiprobable NoGo P3a, which could reflect an internally-directed shift in attention. 

4.1. P3 latency adjustment 

Latency-adjusted NoGo ERP data were generated in this study to control P3a latency 

jitter within and between participants. Correct NoGo trials that did not feature a P3a (i.e., invalid 

trials) were also identified and excluded from analysis. This approach was expected to reduce the 

blurring effect associated with averaging latency-variable components (see Poli et al., 2010), and 

to minimise the impact of irrelevant ERP data, which could confound P3a quantification using 

typical stimulus-locked measures. 

Topographically, the P3a extracted from the stimulus-locked and latency-adjusted ERP 

data were highly similar. However, as expected, SL-P3a amplitudes were significantly smaller 

relative to the LA-P3a, and this was predicted by the amount of P3a latency jitter measured within-

subjects (Trongnetrpunya et al., 2019; Spencer et al., 2000; Walhovd et al., 2008). The LA-P3a 

positive waveform deflection was also much ‘sharper’ in its morphology than the SL-P3a, 

indicating that there was less smearing of the P3a in the averaged latency-adjusted ERP data. 

Together, these findings demonstrate the negative impact that latency jitter can have on typical 

ERP component measures, and the potential value of latency jitter correction in ERP research 

(Picton et al., 2000; Luck, 2005; Poli et al., 2010; Spencer, 2005). 

4.2. P3, LRP, and behaviour 

NoGo P3a in this study was a frontocentral positivity that peaked 277 ms poststimulus, 

similar to the NoGo P3a in prior research using auditory (e.g., Banquet et al., 1981; Barry & De 

Blasio, 2013; Borchard et al., 2015; Fogarty et al., 2018, 2019; Griskova-Bulanova et al., 2016; 

De Blasio & Barry, 2013a, 2013b, 2018, 2020; Karamacoska et al., 2017, 2018a, 2018b, 2019; 

Melynyte et al., 2017; Sams et al., 1983; Squires et al., 1975), visual (e.g., Bruin & Wijers, 2002; 

Di Russo et al., 2000; Gonzalez-Rosa et al., 2013; Iijima et al., 2009; Kamarajan et al., 2005a; 

Piispala et al., 2016), or somatosensory stimuli in this paradigm (Nakata et al., 2012; Ohbayashi 

et al., 2017); although NoGo P3a has a later peak after visual or somatosensory stimuli. 
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SL-P3a reflects a typical stimulus-locked quantification of NoGo P3a in the simple 

auditory equiprobable Go/NoGo task and features negative scalp amplitudes at the most anterior 

sites, which is evident in previous studies that illustrate NoGo P3a topography across the entire 

scalp (e.g., Borchard et al., 2015; Bruin & Wijers, 2002; Fogarty et al., 2018, 2019; Wu et al., 

2014; Zhang et al., 2016). This frontopolar negativity is not apparent in the LA-P3a topography 

suggesting that it is not synchronised with frontocentral P3a amplitudes and, thus, likely reflects 

overlapping activity from other frontally negative components (e.g., N2b, SW2). 

The GM NoGo LRP waveforms were positive in this study, indicating that, on average, 

healthy young adults did not exhibit prepotent motor activity in the uncued auditory equiprobable 

Go/NoGo task, consistent with results in the visual modality (Wessel, 2018a). This indicates that, 

overall, healthy young adults do not have a tendency towards the Go response in this task 

(Donkers & Van Boxtel, 2004). More importantly, this finding corroborates research suggesting 

that, in general, equiprobable tasks do not require effortful inhibition in NoGo trials (Barry & 

Rushby, 2006; Recio et al., 2009; Schacht et al., 2009; Wessel, 2018a). Together with those 

previous studies, the current results show that simple equiprobable Go/NoGo tasks are not suitable 

for studying response inhibition in healthy adults per se. Nevertheless, prepotent motor activity 

was reflected in subsamples of the LRP data in this study, indicating that inhibitory demands 

occur in certain individuals and some NoGo trials in this task. 

A negative relationship was found between LA-P3 and LRP amplitudes over the NoGo 

trials that showed prepotent motor activity. However, LRP explained only 1.4 % of the variance 

in NoGo P3a amplitudes, and the statistical significance of that correlation is thought to reflect 

the massive statistical power at the trial level (similar to Type I error), rather than being of any 

practical significance. No relationship was identified at the subject level between SL-P3a and 

LRP, with the smaller N yielding lower power that is perhaps more typical of ERP studies. Thus, 

while there was a minor correlation at the trial level, the present outcomes indicate that there is 

no meaningful relationship between NoGo P3a amplitudes and response inhibition in simple 

auditory equiprobable tasks. 

No significant correlation was found between SL-P3a amplitudes and error rates. P3a was 

also absent in a number of correct NoGo trials. This does not mean that P3a is not related to 

successful NoGo processing, especially considering that incorrect NoGo trials were associated 

with a prominent frontal error-related negativity instead of P3a (see Figure 2). However, together, 

these findings show that P3a does not effectively predict NoGo performance in healthy young 

adults (Falkenstein et al., 1999; cf. Fogarty et al., 2018; Karamacoska et al., 2018b). That is, 

according to the LRP and behavioural outcomes in this study, NoGo P3a cannot be used to index 

successful response inhibition or behavioural accuracy in simple equiprobable tasks. 
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4.3. NoGo P3a sources 

The LA-P3a was related to cortical activation in the frontal and parietal lobes, including 

the premotor cortex (BA 6), dorsolateral and orbitofrontal prefrontal cortex (BAs 8, 9, 10, and 

11), anterior and posterior cingulate (BAs 24, 31, and 32), precuneus (BA 7), and postcentral 

gyrus (i.e., the primary somatosensory cortex: BA 3). Relative to that, SL-P3 was associated with 

less activation in the frontal lobe (in BAs 6, 8, 9, and 10) and activity in the orbitofrontal cortex, 

cingulate, precuneus, or postcentral gyrus was not prominent. The differences between these 

outcomes shows that ERP latency jitter can impact the source solution of averaged ERP data. 

However, the topography of the LA-P3a and SL-P3a were highly similar and there were no unique 

sources in the typical stimulus-locked solution; this indicates that latency jitter did not result in 

erroneous ‘ghost sources’ (at least, not above threshold; see Method 2.4.4.), rather, these 

outcomes likely reflect differences in P3a amplitude or signal-to-noise ratio. In this case, the 

attenuation of SL-P3a due to the blurring effect (averaging latency variable data) could explain 

the limited SL-P3a source solution relative to LA-P3a. 

The LA-P3a source outcomes in this study corroborate prior research linking auditory 

equiprobable NoGo P3a to activation in frontal and parietal brain regions, particularly in the 

cingulate cortex and medial frontal gyrus (Barry et al., 2014a; Barry & Rushby, 2006). These 

findings are largely consistent with P3a sources identified in similar tasks (e.g., Go/NoGo, oddball 

and habituation tasks) using a variety of ERP measurement and source localisation techniques 

(e.g., Bachiller et al., 2018; Barry et al., 2020c; Bokura et al., 2001; Kamarajan et al., 2005b; 

Takahashi et al., 2013; Volpe et al., 2007; Wronka et al., 2012). 

fMRI research in the visual modality supports the connection of the cingulate and medial 

frontal gyrus to equiprobable NoGo P3a (Gonzalez-Rosa et al., 2013). Studies using MRI and 

fNIRS have also shown that equiprobable NoGo processing is linked to a distributed network 

including the cingulate, prefrontal cortices, premotor cortex, insula, inferior parietal lobule, 

temporoparietal junction, and occipito-temporal area (Arbula et al., 2017; Kamarajan et al., 

2005b; Laurens et al., 2005; Nakata et al., 2008a, 2008b, 2009; Rubia et al., 2001; Watanabe et 

al., 2002). The present findings support the involvement of a distributed network in auditory 

NoGo processing and suggest that NoGo P3a can account for activity in a number of these areas, 

including the cingulate, prefrontal cortices, and premotor cortex. Additional P3a sources 

identified here may also reflect close approximations of activity identified with MRI (e.g., the 

cuneus vs. inferior parietal activity). The distributed sources here could also reflect the LORETA 

method, which estimates solutions over the entire cortex, and is known to have lower spatial 

resolution than other dipolar methods (for useful reviews, see Anderer & Saletu, 2013; Grech et 

al., 2008; He & Ding, 2013; Michel et al., 2004; Yao & Dewald, 2005). However, using the 

eLORETA solution was considered a strength of this study, as it makes no assumptions about the 

source distribution, and it is robust against noise and more accurate at greater depths relative to 
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other localisation methods (Halder et al., 2019; Jatoi et al., 2014; Pascual-Marqui, 1999, 2002). 

The overlap of the present findings with previous ERP and MRI research also shows that the 

current outcomes are reasonable, although simultaneous EEG and MRI research in this auditory 

task would be useful to clarify the results. 

A brief overview of the major cognitive functions associated with the LA-P3a sources is 

provided here for consideration. Activity in the premotor cortex is broadly related to motor 

planning (e.g., Catalan et al., 1998; Purves et al., 2001; Shubotz & von Cramon, 2002), whereas 

activation in the prefrontal cortex is associated with a range of executive functions including 

working memory, decision making, the control of attention and behaviour (Blumenfeld & 

Ranganath, 2007; Hoshi, 2006; Knight et al., 1995; Lara & Wallis, 2015; Miller & Cohen, 2001). 

The anterior cingulate is linked to similar functions, although it has primarily been associated 

with control processes such as conflict monitoring and inhibition (Botvinick et al., 2001, 2004; 

Braver et al., 2001; Gonzalez-Rosa et al., 2013; Peterson et al., 1999, 2002; Rushworth et al., 

2004; Talati & Hirsh, 2005; Woodward et al., 2006). The postcentral gyrus is related to sensory 

(particularly somatic) processing and proprioception (DiGuiseppi & Tadi, 2019), and both the 

posterior cingulate and precuneus have been related to internally directed attention and 

prospective and retrospective memory (see Cavanna & Trimble, 2006; Leech & Sharp, 2014). 

4.4. Functional implications for equiprobable NoGo P3 

The observations in this study have several functional implications for the NoGo P3a in 

the auditory equiprobable Go/NoGo task. (1) P3a does not appear to occur in incorrect NoGo 

trials, suggesting that it is associated with successful NoGo processing. However, (2) P3a is not 

evident in every correct NoGo trial (i.e., invalid trials), implying that successful NoGo processing 

is not always dependent on the cortical processes underpinning P3a. This suggests that P3a 

reflects an active process, rather than an automatic stimulus-driven response (cf. Muller-Gass et 

al., 2007). (3) Motor response inhibition does not account for P3a, given the relatively-trivial link 

between P3a and prepotent motor activity in this study. However, (4) many of the cortical sources 

underpinning P3a are related to inhibitory control (e.g., Albert et al., 2013; Aron & Poldrack, 

2006; Rubia et al., 2001). (5) The LA-P3a source outcomes imply a link between P3a and sensory 

and motor processing, memory, cognitive control, and attention (towards the self). 

These findings can be interpreted relative to Polich’s (2007) neuroinhibition hypothesis, 

which suggests that NoGo P3a reflects a stimulus-driven cortical mechanism involving rapid 

neural inhibition to enhance focal attention. This perspective relates P3a to activity in frontal areas 

(i.e., anterior cingulate) and does not provide a full account of the distributed source outcomes 

identified in this study. NoGo performance monitoring may explain the present findings more 

completely, as monitoring requires attention, memory, stimulus- and response-processing, which 

engage a wide network of cortical areas largely overlapping the LA-P3a sources (i.e., anterior 

cingulate, medial frontal cortex, prefrontal cortex: BAs 6, 8, 9, 10, 11, 24, 25, 32; Ullsperger et 
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al., 2014). An explicit mechanism for NoGo P3a was not provided with this account, although 

attention and memory processing related to P3a is considered to support this view (Huster et al., 

2013). Hence, we tentatively propose an explanation that connects both the neuroinhibition and 

performance monitoring accounts to explain the outcomes associated with the simple 

equiprobable NoGo P3a. That is, in relation to equiprobable Go/NoGo task demands, and the 

present findings, rapid neuronal inhibition could drive an internally directed shift in attention in 

correct NoGo trials. In other words, NoGo P3a could reflect a re-orienting of attention towards 

the self, perhaps to ensure (or confirm) that static motor behaviour was maintained correctly. This 

extrapolated neuroinhibition account implies that NoGo P3a reflects an attentional mechanism 

that serves performance monitoring in this context. But this may not apply in all tasks; variations 

of the P3a mechanism could be evident in other tasks separate from performance monitoring (e.g., 

passive mismatch tasks). 

Regarding the functional implications above, an internally directed shift in attention 

would not be essential for successful NoGo performance, although it could facilitate task 

processing (i.e., monitoring, evaluation, and subsequent adjustments). Also, attention towards the 

passive maintenance of static behaviour per se, would be unlikely in incorrect NoGo trials, given 

that those trials involve alternate processes resulting in explicit commission errors. Moreover, 

shifting attention may be considered a relatively indifferent or effortless process for healthy young 

adults (Barry & Rushby, 2006; Recio et al., 2009; Schacht et al., 2009). 

Research linking P3 (P3a) to dopaminergic/serotonergic activity (e.g., Albrecht et al., 

2010; Antolin et al., 2009; Berman et al., 2006; Griskova-Bulanova et al., 2016; Hill et al., 1998; 

Frodl-Bauch et al., 1999; Hansenne et al., 1995; Iijima et al., 2009; Krämer et al., 2007; Mulert 

et al., 2006; Ohbayashi et al., 2017; Polich & Criado, 2006; Takeshita & Ogura, 1994; Vogel et 

al., 2006) and delta/theta oscillations (e.g., Barry et al., 2010, 2012, 2014c, 2018b, 2020a; Başar-

Eroglu et al., 1992; De Blasio & Barry, 2013b, 2018; Demiralp et al., 2001; Kolev et al., 1997; 

Spencer & Polich, 1999; Yordanova & Kolev, 1998), could also reinforce the idea that NoGo P3a 

reflects an attentional component of performance monitoring, consistent with the neuroinhibition 

hypothesis (Polich, 2007). Frontal and subcortical dopaminergic systems are thought to play a 

role in both attention (Anderson et al., 2016; Dang et al., 2012; Matthysse, 1978; Nieoullon, 2002; 

Noudoost & Moore, 2011) and performance monitoring (which might also involve serotonergic 

activity: Ullsperger et al., 2014). Furthermore, EEG delta oscillations have been associated with 

motivated attention related to the evaluation of internal or external stimuli (see Knyazev, 2012). 

Theta-band activity is also related to attention and cognitive control; specifically, frontal-midline 

theta, which is thought to originate mostly in the mid-cingulate area, has been related to integrated 

processing across distributed cortical sources involved in action selection (see Cavanagh & Frank, 

2014; Huster et al., 2013; Jensen & Colgin, 2007; Mizuseki et al., 2009), as well as neuronal 

inhibition to facilitate adaptive control (Cavanagh & Frank, 2014; Medalla & Barbas, 2009). 
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Together, these findings can support an integration of research linking NoGo P3a to 

controlled attention and the monitoring of behaviour, possibly involving motivated and internally 

directed shifts in attention to instantiate performance monitoring. However, it is important to note 

that this is a tentative hypothesis given that dopamine/serotonin and delta/theta activity are 

implicated in a range of psychological functions. It is also worth noting that this account may also 

be comparable to theories linking the Go (or target) P3 to response monitoring, or the re-activation 

of stimulus-response patterns (Verleger et al., 2005, 2016), indicating some potential for further 

integration with these perspectives. 

4.5. Further considerations and limitations 

An unsurprising finding in this study was that ERP blurring effects can have an impact 

on ERP component source outcomes. It is also interesting that the LA-P3a sources were a closer 

match to previous SL-P3a source outcomes, relative to the SL-P3a sources in this study. A 

possible explanation for this is that ERP blurring effects may be more pronounced in larger 

samples, as more variance is collapsed during ERP averaging. If that is the case, then the 

development and implementation of ERP latency-adjustment procedures and trial-level ERP 

measures will be critical for future ERP research within larger samples. 

The simple data-driven latency-adjustment procedure designed for this investigation 

successfully controlled P3a latency jitter within and between subjects, enabling a clean isolation 

and quantification of the NoGo P3a across trials. Similar to other procedures used to control P3 

latency jitter (e.g., Lange et al., 1997; Thornton, 2008; Woody, 1967), this technique may be 

useful to isolate other prominent ERP components (e.g., N1b); although it is unlikely that it could 

reliably isolate small ERP components (e.g., P1 or N1a). Alternate techniques may be needed to 

account for ERP latency jitter in smaller components; possible solutions could be shifted factor 

analysis (see Harshman et al., 2003; Knuth, 2006; Kohl et al., 2010; Mørup et al., 2007) or Residue 

Iterative Decomposition (RIDE; e.g., Ouyang et al., 2011). Indeed, a limitation of this study was 

that it does not control the potential latency variability in other ERP components overlapping the 

NoGo P3a. Here, the latency-adjusted PCA was restricted to LA-P3 to minimise the potential 

influence of other latency-variable components; however, shifted factor analysis or RIDE may 

provide a more optimal solution. Other PCA rotation criteria may also provide a more ‘realistic’ 

P3a measure than Varimax (Dien, 1998, 2006; Dien et al., 2005; Scharf & Nestler, 2018a, 2018b, 

2019); however, Varimax still provides meaningful solutions and was favoured here for its 

simplicity and comparability with previous PCA studies of the ERPs in this task (e.g., Barry et 

al., 2014a, 2014b, 2016a, 2018a, 2019a, 2020b; Barry & De Blasio, 2013; Fogarty et al., 2018, 

2019; Karamacoska et al., 2017, 2018a, 2018b, 2019). 

Restricting the PCA to the P3 time-window could also be considered to limit our signal 

separation by not including more complete ERP data to enable other factors to be separated out. 

In this case, extraneous data should be low in the LA-P3a PCA input as the ERP data was clipped 
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tightly around the P3 wave identified across and within subjects. Nevertheless, we had also 

quantified LA-P3a (averaged within subjects) using a much broader epoch to match the timepoints 

in the stimulus-locked PCA input (i.e., ± 425 ms around LA-P3a) and this did not change the 

nature of the correlations; although certain LA-P3a sources did fall below threshold (i.e., 

precuneus and postcentral gyrus), perhaps due to the different signal-to-noise ratio associated with 

averaging. The restricted single-trial solution was used as the optimal approach to present a more 

simplified and valid analysis of LA-P3a (including trial variance) with minimal influence from 

extraneous latency variable components. 

The fact that no rare NoGo conditions were tested in this study is a limitation, as it would 

be useful to compare the NoGo P3 in this paradigm with the NoGo P3 in tasks requiring effortful 

motor control. Analysing LA-P3a across tasks could clarify whether task-specific NoGo P3 

components reflect equivalent processes interacting with different task demands, as has been 

suggested (Polich, 2007). The omission of a more demanding NoGo condition does not change 

the major findings in this study, which show that NoGo P3a in the auditory equiprobable task is 

not a practical measure of response inhibition in healthy young adults. Importantly, this finding 

is specific to healthy young adults, and may not apply to children, who find this paradigm more 

difficult due to immature executive control processing (e.g., Barry et al., 2014a; Johnstone et al., 

2005; Jonkman, 2003, 2006). It is also unclear if these findings generalise to older adults, or adults 

with cognitive or behavioural difficulties, given that P3 and control processing may differ in these 

groups relative to healthy adults (e.g., Kamarajan et al., 2005a, 2005b; Vallesi, 2011; Wu et al., 

2014; B. Yang et al., 2009; L. Yang et al., 2015). 

The LRP outcomes in this study (and those previous) should be viewed with some 

caution, given that they are based on ERP difference waveforms, which can be influenced by the 

amplitudes of other lateralised components occurring in the pre-response period (e.g., N2b). In 

this study, the difference waveforms were low-pass filtered to help isolate LRP; however, further 

investigation is needed to clarify its relationship with overlapping components. Future research 

should also clarify the role of positive LRP amplitudes, and determine if there are more optimal 

ERP measures of response preparation in tasks with only one motor response. 

4.6. Conclusion 

This investigation controlled NoGo P3a latency jitter within and between participants to 

investigate the functionality of that component in the auditory equiprobable task, in a large sample 

of healthy young adults. The latency-adjustment (or correction) used in this study enabled the 

clear extraction of NoGo P3a using temporal PCA, permitting a novel analysis of the component’s 

behavioural and neuronal correlates, in a manner that accounts for trial variance with unusually-

high statistical power. Comparing the LA-P3a outcomes to the typical SL-P3a in this study 

demonstrated the significant ERP blurring effect associated with averaging latency-variable ERP 

components, with novel (but unsurprising) insight into the detrimental impact that blurring effects 
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can have on cortical source solutions. These outcomes provide valuable information regarding 

the functional significance of the NoGo P3a, without the blurring effect, and encourage the control 

of ERP latency jitter in future research. 

In this study, the link between the equiprobable NoGo P3a and inhibitory demands was 

inconsequential, and on average, healthy young adults did not require response inhibition in the 

auditory equiprobable task; consistent with research in the visual modality (Wessel, 2018a). 

Accordingly, the NoGo P3a in this simple task cannot be used to index response inhibition in 

healthy young adults, and alternate task designs are recommended for the study of response 

inhibition. Despite that, the equiprobable task is still valuable for investigating a range of other 

information and control processes (e.g., attention and response selection), and is the most efficient 

Go/NoGo variant for collecting data in each condition. However, continuing research is needed 

to clarify the components and processing in this task, particularly given its popular use in 

psychophysiology.  
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The purpose of this thesis was to elucidate the functional significance of the ERP/PCA 

components associated with auditory Go/NoGo tasks and to clarify the cognitive and behavioural 

processing requirements in simple equiprobable Go/NoGo variants. For that purpose, four 

empirical studies were conducted to clarify how auditory Go/NoGo ERP/PCA components relate 

to cognitive and behavioural processing in healthy young adults under different Go/NoGo task 

conditions. The four studies aimed to promote psychophysiological theory development by 

providing detailed insight into the functional and/or structural characteristics of common and 

novel ERP components. In this final chapter, the major study outcomes are discussed and 

integrated into an updated sequential processing schema to synthesise the current thesis outcomes 

in an intuitive manner that delineates our improved conceptualisation of auditory equiprobable 

Go/NoGo processing in healthy young adults. 

Studies 1 and 2 manipulated Go/NoGo stimulus probability to alter cognitive task 

demands within subjects and compare the equiprobable task processing series with that in the 

classic oddball and traditional ‘frequent Go’ tasks. This was deemed to be important considering 

that only a few limited studies have formally compared the broader Go and NoGo ERP component 

series between tasks (as discussed in Chapters 1 and 2: Banquet et al., 1981; Brigham et al., 1995; 

Duncan-Johnson & Donchin, 1977; Polich et al., 1994; Polich & Margala, 1997; Spencer & 

Polich, 1999; N. Squires et al., 1975), and even fewer have utilised temporal PCA or other 

methods of blind signal separation to examine probability effects on ERP components (and 

subcomponents) relative to simple equiprobable tasks (Duncan-Johnson & Donchin, 1982; N. 

Squires et al., 1975). This approach was expected to provide a holistic view of task differences, 

clarify the relationship between the Go/NoGo and oddball ERP literatures, and encourage ERP 

theory development across simple Go/NoGo tasks. 

Study 1 demonstrated that highly similar (almost equivalent) series of ERP components 

were associated with successful equiprobable and oddball task processing, suggesting that the 

cognitive requirements in those tasks were almost identical for healthy young adults. This 

provides strong support for the generalisability of the Sequential Processing Schema, and in a 

broader sense, the extrapolation and integration of ERP outcomes from both equiprobable and 

oddball tasks. Study 1 was the first systematic within-subject comparison of the ERP component 

processing series between these tasks using separate PCAs, allowing the factors to reflect task- 

and condition-specific ERP variance rather than forcibly extracting a composite factor solution 

across multiple conditions; it also utilised a higher sample size and temporal/spatial resolution, so 

the outcomes are considered to be more robust and sensitive to potential task ERP differences 

than the probability research cited above. The Go/NoGo probability effects on ERP components 

were generally consistent with prior research (summarised in Chapter 2 and below), and the PCA 

factor series were similar to those in N. Squires et al. (1975) and Duncan-Johnson and Donchin 

(1977); although Study 1 analysed a more-complete ERP component series. 
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Study 1 also indicated the existence of two distinguishable Go and NoGo SW components 

in each task (i.e., SW1 and SW2), corroborating two-choice task research suggesting that the late 

SW involves several subcomponents (e.g., Borchard et al., 2015; Fitzgerald & Picton, 1981; 

Karamacoska et al., 2018; Näätänen et al., 1982); although it is not yet clear whether SW1 or 

SW2 reflect subcomponents of the classic SW, or other slow potentials, such as the reafferent 

potential or contingent negative variation (e.g., Bötzel et al., 1997; Desmedt & Debecker, 1979; 

Di Russo et al., 2017; Friedman, 1984; García-Larrea & Cézanne-Bert, 1998; Kornhuber & 

Deecke, 2016; Rohrbaugh et al., 1978; Ruchkin et al., 1988, 1990, 1995; Shibasaki et al., 1980; 

Vaughan et al., 1968). The characterisation of SW1 and SW2 in Study 1 has since guided their 

identification and interpretation in subsequent studies using other samples (Barry et al., 2019; 

Fogarty et al., 2020a), indicating that the two components are reliable factors in the Varimax 

rotated auditory Go/NoGo ERP processing series.  

The identification of the hemispheric PCA-derived Processing Negativity (PN) 

associated with auditory Go/NoGo processing in the Schema (e.g., Barry & De Blasio, 2013; 

Fogarty et al., 2019) was also questioned in Study 1. The presence of PN has important 

implications for Go/NoGo task processing considering its link to higher order ‘proactive’ 

information processes (e.g., the use/maintenance of an attentional trace: Näätänen, 1982). Hence, 

Study 2 aimed to clarify the identity of “PN” in auditory equiprobable and ‘frequent Go’ tasks 

using temporal PCA and traditional PN measures (i.e., difference waveforms). The typical 

hemispheric negativity was extracted, but as expected, the study demonstrated that it was a better 

match for the exogenous N1c. In essence, no PN was found in young adults, confirming the 

component-labelling error in the initial Schema-related studies of young adults (see Barry et al., 

2014a, 2014a, 2016a, 2016b, 2020; Barry & De Blasio, 2013; Borchard et al., 2015; Fogarty et 

al., 2018, 2019). 

Paralleling Study 1, Study 2 demonstrated that the early auditory ERP processing series 

in the equiprobable and ‘frequent Go’ tasks were highly comparable; hence, following the 

improvements to the characterisation of the N1 components in Study 2, it can be concluded that 

the three Go/NoGo variants in this thesis shared similar early processing requirements, marked 

by P1, N1a, N1b, N1c, and either Go P2 or NoGo N2b. Using PCAs to identify these components 

in Studies 1 and 2 has provided a stronger definition of their temporal and topographic features, 

as well as their cortical sources; this is particularly important for the three ‘true’ N1 components, 

which are often overlooked in psychophysiological research, perhaps because they are difficult to 

separate with traditional ERP measures. The ability to extract these true N1 components 

separately demonstrates their important role in Go/NoGo processing, as well as the utility of PCA 

and this task for studying cognitive difficulties that may be marked by specific N1 components, 

and other processes indexed by later components (e.g., dyslexia or schizophrenia; see McCarley 

et al., 1991; Taylor et al., 2003). 
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Studies 3 and 4 explored equiprobable Go/NoGo ERP/PCA component functionality 

further. Importantly, Study 3 confirmed that N1b, N1c, and P2 were related to stimulus processing 

(as suggested in previous research, e.g., Burkhard et al., 2019; Crowley & Colrain, 2004; Lijffijt 

et al., 2009; Näätänen & Picton, 1987), and demonstrated that Go P3b, SW1, and SW2 were 

primarily response-locked (corroborating traditional ERP findings in similar tasks: Berchicci et 

al., 2016; Falkenstein et al., 1991; Goodin et al., 1986). Study 4 indicated that NoGo P3a was not 

related to inhibitory demands or NoGo performance, and suggested that healthy young adults 

generally do not require effortful motor inhibition in auditory equiprobable NoGo trials (Barry & 

Rushby, 2006; Wessel, 2018). As discussed in Studies 3 and 4, these outcomes have significant 

implications for the utility of equiprobable Go/NoGo tasks (e.g., for inhibition research), and for 

the conceptualisation and application of ERP components that are frequently studied in 

psychophysiology. Primarily, equiprobable tasks are not practical for studying motor inhibition 

in healthy young adults (Wessel, 2018), contrary to the suggestion that individuals may still need 

active response inhibition in these tasks (cf. Boulinguez et al., 2009; Criaud & Boulinguez, 2013; 

Donkers & Van Boxtel, 2004).  

1.1. P1 and N1: implications for early Go/NoGo processing 

The temporal PCA outcomes in Studies 1–4 clarified the ERP component series in 

auditory Go/NoGo tasks, showing that healthy young adults exhibit a frontal P1 that peaks 

approximately 50 ms after stimulus onset, followed by a large N1 complex, featuring three ‘true’ 

or exogenous N1 subcomponents: a central (and somewhat parietal) N1a peaking approximately 

75 ms poststimulus, a large frontocentral N1b that peaks around 120 ms poststimulus, and a 

temporal N1c approximately 150 ms poststimulus (consistent with McCallum & Curry, 1980; 

Näätänen & Picton, 1987; Woods, 1995). These P1 and N1 components were evident in both the 

Go and NoGo processing chains, suggesting that they mark fundamental auditory processing 

requirements (Garcia-Larrea et al., 1992; Näätänen & Picton, 1987; Schröger et al., 2015). 

The significant variations in P1 and N1 component amplitudes related to stimulus type 

and probability in Studies 1 and 2 (and traditional ERP research: Ko et al., 2012; Polich et al., 

1994; Polich & Margala, 1997; Spencer & Polich, 1999) demonstrated that different Go and 

NoGo trial demands can occur in these common processing stages, and that stimulus-specific 

information is registered early in the Go/NoGo processing sequence, perhaps even at low- or sub-

conscious levels (Jerger et al., 1992; Lijffijt et al., 2009). 

The early stimulus effects shown in Studies 1 and 2 were considered to corroborate 

previous studies linking variations in P1 and N1 amplitudes to selective attention (Hillyard, 1998; 

Hillyard et al., 1973; Johannes et al., 1995; Näätänen, 1982, 1988, 1990; Schröger et al., 2015; 

Wijers et al., 1997), the ability to distinguish relevant stimulus input from noise, in order to 

facilitate further processing (Joos et al., 2014; Lijffijt et al., 2009). Notably, this thesis did not 

support the Attentional Trace Theory of selective attention, given the absence of MMN and a true 
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PN in Experiments 1 and 2 (cf. Näätänen, 1982). Instead, the current findings are perhaps best 

explained by sensory gain control (or gating), a proposed mechanism of selective attention 

involving the early filtering of sensory input via selective inhibition and/or amplification of 

sensory-evoked responses in the cortex (Hillyard, 1998; Hillyard & Mangun, 1987; Lijffijt et al., 

2009). 

From that viewpoint, the PCA-derived P1 and N1 components (i.e., N1a, N1b, N1c) can 

be considered to represent a complex interaction between bottom-up sensory processes and top-

down executive control functions (e.g., Knight et al., 1989, 1995). This account is supported by 

Study 3 which confirmed that N1b and N1c were primarily related to sensory processing; as well 

as the complex cortical sources underpinning the P1 and N1 components in Study 2, which can 

be considered to reflect an ongoing relationship between sensory processes and a core executive 

network (involving BAs 6, 8, 9, 10, and 11). 

P1 was related to activity in areas linked to cognitive control, memory retrieval, and the 

orienting of attention (e.g., Catalan et al., 1998; Mayer et al., 2006; Peterson & Posner, 2012; 

Tsukiura et al., 2001), indicating that it could reflect brain activity that facilitates a consequent 

stimulus-driven shift in attention (Corbetta & Shulman, 2002). From this viewpoint, P1 might be 

related to processing that has often been attributed to N1, such as the triggering of attention or the 

onset of stimulus categorisation; though it may not reflect those processes per se. 

P1 was not related to activity in cortical areas specifically associated with auditory 

processing (Fogarty et al., 2020b). Thus, it could reflect an initial shift in cortical arousal that 

facilitates active processing marked by subsequent components (e.g., N1). In keeping with that, 

and a gain control account, the frontally positive and centroparietally negative topography of P1 

could be considered to reflect frontal inhibitory control of stimulus processing (i.e., sensory 

gating) and activation in the parietal cortex, facilitating the orienting of attention and/or memory 

processing. 

The Go/NoGo N1a, N1b, and N1c components identified in this thesis increased in 

amplitude as stimulus probability decreased, corroborating broader findings associated with the 

N1 wave (Ko et al., 2012; Polich et al., 1994; Polich & Margala, 1997; Spencer & Polich, 1999). 

Together, these effects are consistent with refractory effects identified for N1 (e.g., Budd et al., 

1998; Coch et al., 2005; Nelson & Lassman, 1968, 1973, 1977; Pereira et al., 2014; Steiner et al., 

2014b, 2016), but could also indicate a shift in the demand on fundamental auditory information 

processes associated with the frequency of stimulus presentation, implying that the processes 

underlying N1 can be sensitive to implicit learning or neuronal adaptation across trials (e.g., Elvira 

et al., 2003; Kudela et al., 2018; Hermanutz et al., 1981; Steiner et al., 2014a; Verleger, 1987; 

Zhang et al., 2011). These N1 probability effects are compatible with sensory gain control (and 

predictive coding views) if lower probability stimuli are considered to demand more attention or 
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effort relative to predictable stimuli (Hillyard, 1998; Marzecová et al., 2017; Schröger et al., 2015; 

Starr et al., 1997; Steiner et al., 2014b). 

The eLORETA source solutions for N1a, N1b, and N1c in Study 2 demonstrated a 

substantial role of the temporal cortex (BAs 21, 22, 38, and 41) and primary motor cortex (BA 4) 

in the processing stages following P1. The temporal sources here are consistent with established 

accounts relating N1components to auditory processing (Näätänen & Picton, 1987). However, N1 

activation in the primary motor cortex and the core frontal sources also implies that higher-level 

cognitive processes could interact with the auditory processing in the temporal cortices. These 

outcomes are compatible with research linking N1 to stimulus categorisation (Borchard et al., 

2015), decisional processes (Filipović et al., 2000), or the activation of learned stimulus-response 

associations (Bender et al., 2006); which could follow early memory processing related to P1 (i.e., 

in the precuneus: Catalan et al., 1998; Tsukiura et al., 2001). Study 3 corroborates the suggested 

relationship between N1 and stimulus-response processing, by linking the stimulus-specific N1c 

and Go RTs, similar to previous N1 findings (Steiner et al., 2016). 

1.2. P2, N2, P3, and SW: implications for further Go/NoGo processing 

Different Go and NoGo ERP/PCA processing chains were evident after P1 and N1 (Barry 

et al., 2016, 2018, 2019; Fogarty et al., 2019, 2020b). Studies 1–3 demonstrated that successful 

Go processing after N1 is marked (in latency order) by a central P2, a minor frontal N2c, a large 

centroparietal P3b, a centrally positive SW1 and a negative frontoparietal SW2. The response-

locked PCA output in Study 3 indicated that the typical (stimulus-locked) Go ERP processing 

series is also overlapped by unique response-locked ERP components, including a frontal N2 

(RN2), a frontocentral negativity identified as a Motor Potential (MP), and a novel parietal 

positivity labelled P420. In contrast, Studies 1, 2, and 4 indicated that NoGo processing after N1 

is marked by a frontal N2b, frontocentral P3a, a frontally-negative SW1 and a centrally positive 

SW2. 

1.2.1. Go ERP components  

The PCA-derived Go P2 in this thesis was a stimulus-specific positivity that peaked 

approximately 220 ms poststimulus at central (and somewhat centroparietal) scalp sites, 

consistent with the traditional P2 in the broader ERP literature (for a review, see Crowley & 

Colrain, 2004). P2 was shown in Study 2 to increase with Go stimulus probability (similar to 

Polich et al., 1994; Spencer & Polich, 1999; N. Squires et al., 1975), which likely explains its 

absence in the oddball PCA output in Study 1; that is, its amplitude (and thus, attributed ERP 

variance) was reduced to a point below the extraction threshold of the PCA in the lower Go 

(target) probability condition (see Chapter 2, Figure 4, p. 42); alternatively, it was not prominent 

enough to be extracted independently in the Varimax rotated solution. 

Little is known about P2 functionality, although it is suggested to relate to stimulus 

categorisation (Crowley & Colrain, 2004), the rapid activation of perceptual representations in 
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memory (Tong et al., 2009), or a higher level ‘gating’ mechanism involving active interference 

control (i.e., cognitive inhibition) facilitating relevant stimulus-driven processing demanding 

memory and attention (Lijfijjt et al., 2009; Näätänen, 1992; Nigg, 2000). In addition to the core 

frontal sources, P2 was associated with activity in the prefrontal cortex (BAs 8, 45 and 47), the 

anterior cingulate (BAs 24 and 32), and the temporal lobe (BA 22 and 38) in Study 2; which could 

support its link to auditory stimulus-driven attention and control (Benedict et al., 1998; Cabeza & 

Nyberg, 1997; Knight et al., 1989, 1995; Nigg, 2000). From a sensory gating perspective, the 

probability effects on P2 could indicate enhanced or fine-tuned cortical inhibition with the 

increased repetition of target stimuli, resulting in better interference control to facilitate active 

stimulus-response processing (e.g., response activation). Greater interference control could also 

involve rapid access to perceptual representations (or stimulus-response associations) resulting in 

better task performance (Tong et al., 2009). 

A small frontal Go N2c was evident in Study 1 with a peak latency of approximately 260 

ms (e.g., Folstein & Van Petten, 2008; Patel & Azzam., 2005; Pritchard et al., 1991; Ritter et al., 

1979). That N2c was absent in Study 3, and it was speculated that it had been washed out across 

the large ERP sample collated for that investigation, due to latency jitter in the stimulus-locked 

ERP data. This could support the notion that N2c is actually a response-locked ERP component, 

in keeping with previous evidence linking smaller stimulus-locked N2c amplitudes to greater RT 

variability (Fogarty et al., 2018). However, no response-locked N2c component was found, unless 

RN2 is considered as such. Further research is needed to explore the link between RN2 and N2c; 

until then, the two PCA components are considered to reflect distinct N2 components. 

The centroparietal P3b component had a peak-latency around 350 ms poststimulus in 

Studies 1 and 3, consistent with broader target-P3 research (Conroy & Polich, 2007; Hillyard & 

Kutas, 1983; Kok, 2004; Patel & Azzam., 2005; Polich, 2007). The Go P3b PCA component was 

shown to increase as auditory Go probability decreased (Dalbokova et al., 1990; Duncan‐Johnson 

& Donchin, 1982; Fogarty et al., 2019; Hull & Harsh, 2001; Polich et al., 1994; Polich & Margala, 

1997; Spencer & Polich, 1999; K. Squires et al., 1977; N. Squires et al., 1975). It was also 

enhanced in response-locked ERP data (Berchicci et al., 2016; Fogarty et al., 2020a; Goodin et 

al., 1986), and increased in amplitude as RT variability decreased in Study 3. Together, these 

outcomes indicate that Go P3b reflects mostly response-related (i.e., response-locked) cognitive 

processing, which is sensitive to the frequency of the target stimulus (and perhaps the motor 

response). These findings are compatible with previous studies suggesting that P3 context-

updating involves motor (or response) elements (Brydges & Barceló, 2018), consistent with the 

fact that Go/NoGo task ‘contexts’ or ‘environments’ are defined by specific stimulus and motor 

response relationships; as well as the idea that context-updating determines response processing 

(i.e., biases or strategies) relative to a working model of the task environment (see Donchin & 

Coles, 1988; Donchin et al., 1997). Alternatively, these outcomes are also compatible with 
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suggestions that P3b may be related to the more tactical reactivation of stimulus-response 

associations, which are considered to be more demanding in rare conditions (Verleger et al., 2014, 

2015, 2016). 

In Study 3, the P3b and grand mean RT were closely followed by a frontocentral 

response-locked negativity identified as the Motor Potential (MP; Berchicci et al., 2016; 

Shibasaki et al., 1980; Vaughan et al., 1968), a reafferent component proposed to reflect the 

processing of movement-related sensory feedback (Gerbrandt et al., 1973). The current 

conceptualisation and timing of the MP relative to P3b (and the grand mean RT) implies that MP 

could reflect the onset of post-response processing. 

A novel parietal response-locked positivity, labelled P420, was extracted after the MP in 

the auditory equiprobable task. P420 was positively associated with better behavioural 

performance in healthy young adults (i.e., shorter RTs, lower RTV, and fewer omission errors); 

this general link to performance was considered to support a link between P420 and response 

evaluation (Fogarty et al., 2020a). Additional research is needed to replicate and clarify the PCA-

derived P420, as well as the preceding MP, to determine their functional role in Go/NoGo 

sequential processing. 

Go SW1 peaked after P3b (and P420), approximately 500 ms poststimulus, and was 

characterised as a large positivity that is maximal at central electrode sites contralateral to the 

responding hand. The topography of Go SW1 was considered to imply a relationship between 

SW1 and motor processing; this was confirmed in Study 3, which demonstrated that SW1 

amplitudes were enhanced in averaged response-locked ERP data, and negatively associated with 

RTs (perhaps similar to the P4 in Karlin et al., 1971). 

Go SW1 is similar to the Reafferent Potential (RAP), a post-movement positivity that is 

considered to reflect the evaluation of reafferent sensory input (Bates, 1951; Bӧtzel et al., 1997; 

Shibasaki et al., 1980). It is unclear whether the two components are related; however, following 

the broader ERP literature concerning positive SWs, both Go SW1 and RAP could reflect the 

evaluation or closure of movement-related processes (Falkenstein et al., 1994; Gajewski et al., 

2008; García-Larrea & Cézanne-Bert, 1998); as well as attention (Gevins et al., 1996), or memory 

processing (e.g., García-Larrea & Cézanne-Bert, 1998; Johnson & Donchin, 1985; Nogueira et 

al., 2015). 

Speculatively, increases in SW1 (and perhaps the preceding P420) could represent greater 

gain or amplification of movement-related sensory input (e.g., reafferent motor feedback), which 

could be associated with better cognitive performance in auditory Go/NoGo tasks (Azim & Seki, 

2019). Like P2, SW1 increased with Go stimulus probability in Study 1, perhaps reflecting 

stronger (or enhanced) gating of reafferent somatosensory input with the increased response 

frequency. 
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Go SW2 was identified as a parietal (somewhat frontoparietal) scalp negativity that 

peaked approximately 600–700 ms poststimulus (Fogarty et al., 2019, 2020a). Like Go SW1, it 

was enhanced in response-locked ERP data, indicating that it reflects mostly response-related 

neuronal activity; this is consistent with our current hypothesis relating SW2 to late post-response 

cognitive adjustments, or preparation for ensuing trials, following early research into late negative 

slow waves in choice/RT tasks (e.g., Desmedt & Debecker, 1979; Rohrbaugh et al., 1978; 

Ruchkin et al., 1986). 

1.2.2. NoGo ERP components 

The PCA-derived N2b was a minor frontal negativity peaking approximately 220 ms after 

NoGo stimuli in the auditory equiprobable Go/NoGo task (e.g., Falkenstein et al., 1999). In Study 

1, N2b was shown to significantly increase in amplitude as NoGo stimulus probability decreased 

(Banquet et al., 1981; Bruin & Wijers, 2002; Hepsomali et al., 2019; Keskin-Ergen et al., 2014; 

Nieuwenhuis et al., 2003; Wessel, 2018), in line with research linking N2b to cognitive control 

(for a useful review, see Folstein & Van Petten, 2008). This general and well-established view of 

N2b was supported by the frontal sources related to that PCA component in Study 2, considering 

research linking those sources and N2b to control processes such as inhibition (Aron et al., 2003, 

2004; Bruin & Wijers, 2002; Falkenstein et al., 1999; Fogarty et al., 2018; Jodo & Kayama, 1992), 

response conflict monitoring (Botvinick et al., 2001; Ridderikhof et al., 2004; Yeung et al., 2004), 

or higher-level perceptual processes involved in response selection (Lange et al., 1997). 

Healthy young adults exhibited a frontocentral P3a, which peaked about 260 ms after 

nontargets in the equiprobable (and classic oddball) Go/NoGo tasks, consistent with previous 

research (e.g., Barry & De Blasio, 2013; O’Connell et al., 2012; Polich, 2007; N. Squires et al., 

1975). P3a PCA component amplitudes were larger when NoGo probability was lower, although 

that finding was not significant (cf., Banquet et al., 1981; Hull & Harsh, 2001; Spencer & Polich, 

1999; N. Squires et al., 1975). Study 4 also demonstrated that NoGo P3a amplitudes were not 

related to behavioural performance (Falkenstein et al., 1999), and their correlation with inhibitory 

demands was inconsequential (Wessel, 2018). Hence, NoGo P3a cannot reflect response 

inhibition in this simple paradigm, as it was previously considered (cf., Falkenstein et al., 2002; 

Fogarty et al., 2018; Kamarajan et al., 2005). 

Study 4 also demonstrated that, on average, healthy young adults did not prime Go 

responses in the auditory equiprobable task, questioning the need for effortful response inhibition 

in this paradigm (Barry & Rushby, 2006; Wessel, 2018); this implies that the NoGo N2b (or other 

ERP components) in this task are not likely to reflect response inhibition (Donkers & Van Boxtel, 

2004). Thus, it is more likely that the equiprobable NoGo N2b represents decisional processing 

related to conflict monitoring or response selection, while the subsequent P3a could reflect an 

internally-directed shift in attention related to initial performance monitoring or evaluation, which 

is partially consistent with Polich’s (2007) neuroinhibition hypothesis and other performance 
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monitoring views of NoGo P3 (see Huster et al., 2013). As described in Study 4, this view of the 

NoGo P3a can explain the complex P3a source solution in that study, which linked the component 

to activity in the premotor and prefrontal cortices, cingulate, precuneus, and postcentral gyrus. 

Interestingly, these sources included the core executive network noted in Study 2, indicating the 

continued importance of those cortical areas in later NoGo processing. 

Following P3a, NoGo SW1 peaked approximately 400–450 ms after nontargets, and was 

negative over frontal and midline sites and positive at temporal sites. The frontal SW1 negativity 

decreased, and temporal positivity increased, when NoGo stimuli were less frequent (Fogarty et 

al., 2019). NoGo SW2 peaked later, approximately 625 ms poststimulus, and was negative at 

frontoparietal sites and positive at central sites. The frontoparietal SW2 negativity increased and 

the central positivity decreased when NoGo probability was lower; this is opposite to the effect 

shown for NoGo SW1, providing support for the separation of the NoGo SW into two distinct 

subcomponents. 

NoGo SW1 and SW2 were proposed to represent post-response evaluation and 

preparation similar to that hypothesised for Go SW1 and SW2 (Fogarty et al., 2019, 2020a); 

however, the electrophysiological processes underpinning the Go and NoGo SW components 

must differ to some extent, considering their distinct scalp topographies (especially in regard to 

SW1; compare Figures 4 and 6 in Chapter 2). Further research is needed to clarify the role of 

these components, although we can speculate that the topography of NoGo SW1 reflects 

executive processing of auditory information in fronto-temporal brain regions. More specifically, 

the probability effect shown on SW1 could be viewed as a decrease in the demand (or load) on 

top-down memory or evaluative processes (reduced frontal negativity), and enhanced gating in 

auditory areas (greater temporal positivity), following an increase in the occurrence of NoGo 

stimuli; perhaps facilitating post-response evaluation or late auditory processing. In contrast, SW2 

may represent preparatory processing (Desmedt & Debecker, 1979; Rohrbaugh et al., 1978; 

Ruchkin et al., 1986), perhaps relative to the Go/NoGo motor requirements stored in working 

memory, which could account for the central SW2 positivity. The SW2 probability effect in Study 

1 could reflect increased Go trial preparation after lower probability NoGo stimuli, particularly if 

participants have learned that Go stimuli are more likely. 

No distinct Late Positivity (LP) was extracted after NoGo SW1 and SW2 in this thesis. 

In Barry and De Blasio (2013), the novel LP was identified as a globally positive slow-wave 

component that peaked at frontocentral sites approximately 700 ms after NoGo stimuli. More 

recent PCA studies have identified similar components in this auditory task (e.g., Barry & De 

Blasio, 2015; Barry, De Blasio, & Cave, 2014; Barry et al., 2018, 2019). However, upon closer 

inspection, those recent “LP” components show topographies that are broadly similar to NoGo 

SW2. It is possible that SW2 and LP could overlap to some extent (as suggested in Chapter 2), 

although the two components have been separated recently using PCA (Barry, Fogarty, & De 
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Blasio, 2019). Further research is needed to clarify these two components; considering their long 

latencies, they both could be separated more clearly if the epoch that we use in this paradigm is 

extended beyond 750 ms poststimulus. 

1.3. Updating the Go/NoGo Schema 

This thesis continued the development of Barry and De Blasio’s (2013) Sequential 

Processing Schema by investigating the temporal PCA-derived ERP components related to 

auditory Go/NoGo processing in healthy young adults. The major findings in Studies 1–4 clarified 

the ERP component series associated with previous versions of the Go/NoGo Schema (Barry & 

De Blasio, 2013; Fogarty et al., 2018), prompting a reconceptualisation of the N1 subcomponents, 

and thus the sensory (and perceptual) processing theories related to the Schema. Two Go/NoGo 

SW components were also confirmed using separate PCAs, and the Go P3b, SW1, and SW2 were 

shown to be primarily response-related, improving the conceptualisation of the ERP component 

series associated with Go and NoGo response processing in young adults. 

Figure 1 displays an updated Sequential Processing Schema that is proposed to integrate 

the major findings in this doctoral thesis. Relative to the update prior to this thesis (Chapter 1, 

Figure 3, p. 7), the updates proposed for the young adult Schema include the relabelling of the N1 

components, the inclusion of SW1 and SW2 in each processing chain, and the use of italics to 

represent components that are primarily response-related. P1 and N1b are also underlined red to 

indicate their enhancement following NoGo stimuli (Fogarty et al., 2020b), and the LP is now 

faded to illustrate that it has an uncertain place in the Schema, given that it is not always extracted 

in this task (Borchard et al., 2015; Karamacoska et al., 2018). The response-specific components 

extracted in Study 3 require further replication and investigation; hence, they are not formally 

integrated in this update. 

New processing labels have been proposed to indicate the functional interpretation of 

each ERP component and the sequential processing series more appropriately in the Schema. 

Go/NoGo sensory processing is relabelled as ‘perceptual processing’ to acknowledge the complex 

involvement of attention and memory in the P1/N1 stimulus processing stages. Stimulus 

‘categorisation’ is also thought to be finalised earlier with N1c, prior to P2/N2b, considering the 

early stimulus-specific effects identified in this thesis and Barry et al. (2019). The Go P2, N2c 

and P3b processing stages are also relabelled as ‘target S-R activation’, to highlight their 

involvement in Go-specific stimulus-response (S-R) activation, and to distinguish P3b from post-

response processing (the onset of which may be marked by the response-locked MP). Following 

that, both Go SW1 and SW2 are linked to ‘evaluation and adjustment’, reflecting their current 

interpretation as markers of evaluative, memory, and/or preparatory post-response processing; 

this label is also applied to NoGo SW1, SW2, and LP for similar reasons (moreover, the ‘winding-

down’ associated with LP could reflect an active cognitive adjustment; Barry & De Blasio, 2013). 

‘NoGo: control and termination’ was also replaced by ‘NoGo: implicit response processing’ to 
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reflect that young adults may not need response inhibition in the equiprobable task. Nevertheless, 

N2b and P3a are marked by ‘active control’, reflecting their links to cognitive control processes 

like conflict monitoring and attention, which were supported throughout this thesis research. 

 

Figure 1. The proposed update to the Go/NoGo Sequential Processing Schema. S-R refers to 

stimulus-response, and both the P1 and N1b are underlined in red to indicate their enhancements 

following NoGo stimuli. 

Following the update of the Schema in Figure 1, and the general interpretation of each 

ERP/PCA component in this chapter, auditory equiprobable Go/NoGo processing in healthy 

young adults is proposed to begin with P1, N1a, N1b, and N1c, reflecting the sequential 

processing of sensory information (Näätänen & Picton, 1987). Variations in these early 

components are likely to reflect a selective top-down cortical gain control mechanism acting to 

facilitate perceptual processing leading to stimulus categorisation and further response processing 

(Hillyard et al., 1998). Go/NoGo stimulus categorisation is considered to be finalised in the N1b 

and N1c stages, leading to distinguishable processing chains involving Go ‘response execution’ 

and NoGo ‘implicit response processing’. Go response execution is marked by P2, N2c, and P3b, 

reflecting the activation of target stimulus-response processes enabling the Go response (e.g., 

interference control, conflict monitoring, and the reactivation of S-R links). The subsequent SW1 

and SW2 are then considered to reflect Go motor response evaluation and cognitive adjustments 

potentially involving memory-updating (or retrieval) and preparatory processing. Implicit NoGo 

response processing is marked by N2b and P3a reflecting active control (e.g., conflict monitoring 

and attentional control), facilitating the relatively passive maintenance of static behaviour and 

further NoGo processing, represented by NoGo SW1, SW2, and LP. The late NoGo SW 

components and LP are also considered to represent evaluation, memory, preparation, and the 

active winding-down of effortful response processing (Barry & De Blasio, 2013). 

The updated Schema presented here is considered to represent a more refined ERP 

framework of auditory Go/NoGo processing in healthy young adults, relative to previous versions 

(Barry et al. 2013, 2019; Fogarty et al., 2018). The structural and conceptual developments 

applied to the Schema in this chapter (and illustrated in Figure 1) are expected to increase the 

model’s utility in future Go/NoGo studies, by providing researchers with a more sophisticated 

and holistic psychophysiological framework for data-driven ERP research in this paradigm. This 

is considered to enhance the value of the Schema and the current PCA method as an empirical 
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tool (or approach) to measure discrete ERP components, and delineate experimental effects on a 

more complete series of fundamental neurocognitive processes that are linked to auditory 

equiprobable Go/NoGo processing. 

1.4. Further implications, limitations, and future research 

As discussed in Chapter 1, the similarity between equiprobable and traditional Go/NoGo 

or oddball processing is debatable, given that equiprobable tasks are intermediate in Go and NoGo 

probability relative to those paradigms. However, as shown in Chapter 2, the equiprobable and 

oddball ERP component series were highly similar, suggesting that the cognitive requirements in 

those two tasks were almost equivalent. This supports further extrapolation of ERP theory and 

research between auditory equiprobable and active oddball contexts, consistent with Study 4, 

which suggested that equiprobable NoGo P3a was more likely an index of attentional processing 

than response inhibition. Together, these specific outcomes (and others in this thesis) help to 

clarify the cognitive demands in simple equiprobable tasks, but also imply task differences 

distinguishing traditional Go/NoGo processing from that in both the equiprobable and oddball 

variants; that is, primarily, because the traditional ‘frequent Go’ variants require effortful response 

inhibition in NoGo trials (e.g., Wessel, 2018). 

A limitation of this thesis is the lack of analyses comparing traditional and equiprobable 

Go/NoGo processing beyond 250 ms poststimulus. The traditional Go/NoGo task could involve 

a distinct sequential-processing component series, considering the task differences noted above, 

which may be distinguishable using a focused PCA applied to a later ERP epoch (e.g., 250–750 

ms poststimulus). An outstanding question is whether NoGo P3a and the traditional NoGo P3 are 

distinct ERP components or variations of the same scalp potential (Polich, 2007). Indeed, recent 

studies have proposed that NoGo P3 in traditional Go/NoGo tasks might reflect performance 

monitoring (Huster et al., 2013, 2020), and this view could be compatible with the neuroinhibition 

account of P3a developed in the oddball literature (see Polich, 2007), as discussed regarding the 

equiprobable P3a in Chapter 5 (pp. 137–139). Exploring this could provide valuable insight into 

task-specific and -nonspecific P3 functionality and cognitive control. These queries can be 

addressed in future research; nonetheless, the current thesis outcomes are considered to provide a 

useful step towards bridging the ERP literature across common Go/NoGo variants. 

Processing in the Go/NoGo Schema is represented by orthogonal ERP components that 

reflect stages of cognitive task processing. Despite each PCA component being statistically 

independent, sequential processing in the Schema may be considered to occur in a graded (or 

continuous) fashion, rather than strictly stage-based (cf. Sternberg, 1969). Indeed, the core frontal 

sources identified across multiple components in Chapter 3 could reflect continuity across 

component-oriented processing stages at the level of the cortex. Graded processing can also be 

reflected in the temporal overlap of the PCA component waveforms, evident in their factor 

loadings. However, given that orthogonal solutions can inflate cross-loadings (Sass & Schmitt, 
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2010; Scharf & Nestler, 2018a; Schmitt & Sass, 2011), researchers should be careful interpreting 

the temporal overlap of PCA factors, and consider comparing factors quantified using various 

rotations if component onset/offset latencies are of particular interest. 

The ERP source outcomes in this thesis suggest that each component can represent a 

complex interaction between ongoing executive processes and discrete cognitive functions, 

consistent with a parallel distributed processing framework of information processing (Cohen et 

al., 1990). This view emphasises the relationship between tonic control and task-related 

information (e.g., goals, strategies, and rules), and the phasic neuronal responses in each 

component (e.g., motor activation), although the phasic aspect is often considered to account for 

ERP components entirely. Further research to decompose and study the temporal characteristics 

of the cortical networks related to the ERP component series in this thesis would be useful to 

understand the complex neurocognitive processing underpinning scalp potentials and clarify 

sequential Go/NoGo processing at a cortical level. However, it is important to note that 

eLORETA, the algorithm used for source localisation in this research, is a distributed model that 

uses a Laplacian ‘smoothing’ constraint to find a solution to the inverse problem (Pascual-Marqui, 

2007, 2009; Pascual-Marqui et al., 2011). This approach has been validated extensively in relation 

to MRI research and is thought to be highly accurate (Pascual-Marqui, 1999, 2002; Pascual-

Marqui et al., 2002), but it has low spatial resolution due to the smoothing constraint (Michel et 

al., 2004), which may have inflated the number of active ERP sources identified in Chapters 3 

and 5. Hence, the complexity of the current source outcomes should be considered carefully as a 

guide for further research exploring component networks. 

A major strength of the ERP research underpinning the Schema is the consistent and 

systematic application of the PCA method described in Chapter 1 and Barry et al. (2016). 

However, while the current PCA approach is considered useful and effective, it may not be the 

most optimal. The use of Varimax to maintain the orthogonality of PCA components has distinct 

advantages for ERP component analysis; specifically, Varimax solutions have little redundancy 

in the rotated factor solution, which effectively simplifies the interpretation and analysis of 

extracted components (Barry et al., 2016; Donchin & Heffley, 1978; Kayser & Tenke, 2003; Van 

Boxtel, 1998). However, Varimax rotation might not be the best method to quantify the sequential 

or continuous processing in ERP data. Promax, or other oblique methods of factor rotation, may 

provide a better or more realistic factor solution by relaxing the orthogonality restraints on the 

PCA (see Dien, 1998, 2010; Dien & Frishkoff, 2005). Previous studies also indicate that oblique 

factor rotation achieves a closer approximation of Thurston’s (1947) simple structure than 

orthogonal methods (Dien et al., 2005, 2007; Scharf & Nestler, 2018b). Thus, using Varimax in 

this thesis could be considered a limitation that needs to be addressed in future research, which 

should investigate the potential of other ERP methods to optimise the Schema and our ability to 

delineate sequential task processing; this may include alternate PCA parameters (e.g., Promax 
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rotation), or other signal processing techniques including Residue Iteration Decomposition (see 

Ouyang et al., 2011, 2015), Shifted Factor Analysis (e.g., Harshman et al., 2003; Hong & 

Harshman, 2003a, b; Knuth, 2006; Kohl et al., 2010; Mørup et al., 2007, 2008), or single-trial 

methods similar to the approach developed in Study 4. 

Preparation in the auditory equiprobable Go/NoGo task is also still unclear, although this 

thesis showed that, on average, healthy young adults do not prime the Go response (as indexed 

by LRP). However, the current hypotheses linking P1, N1, and P2 to sensory gating and 

interference control, and SW2 to readiness or cognitive adjustments, implies the role of selective 

and preparatory processing. Further research should aim to investigate control processing more 

directly in relation to the sequential processing in this task, perhaps by exploring the application 

of Braver’s (2012) dual mechanisms of control (i.e., proactive vs. reactive processing) in relation 

to the Schema; this could assist in elucidating useful ERP markers of cognitive control and 

potentially explain developmental differences previously identified in Go/NoGo task processing 

(Barry, De Blasio, & Borchard, 2014; Barry, De Blasio, & Cave, 2016; Johnstone et al., 2005; 

Jonkman, 2006; Jonkman et al., 2003). For example, children find equiprobable tasks more 

difficult and exhibit larger N2b components in NoGo trials compared to adults (Barry, De Blasio, 

& Borchard, 2014), perhaps reflecting a more reactive response, demanding effortful control for 

NoGo trials (Barry & De Blasio, 2015). In that manner, exploring the dual mechanisms of control 

in the Schema could provide useful insight into the development of information and control 

processing across the lifespan. 

The relationship between the current ERP findings and those in other task modalities or 

designs (e.g., visual or cued Go/NoGo tasks) was not considered in detail throughout this research 

as there were no data to support alternate task comparisons. This may be viewed as a limitation 

to the generalisability of this research, however, the focused scope of this thesis is also a strength 

in that it provides a systematic and comprehensive characterisation of auditory Go/NoGo 

processing; other ERP task comparisons are better explored in research designed specifically for 

that purpose, and some useful research has already been conducted to that end (e.g., Falkenstein 

et al., 1995; Gajewski & Falkenstein, 2013; Key & Yoder, 2013; Simson et al., 1977; Spencer et 

al., 2001). 

In relation to the Sequential Processing Schema, it is important to note that many 

researchers have their own schemas regarding ERP components and the functions that they 

represent in a given task; some have been published previously, primarily to form hypotheses 

regarding latent subcomponents, such as those underlying the N1 or P3 components (e.g., 

Falkenstein et al., 1995; Näätänen et al., 2011; Näätänen & Picton, 1987; Polich, 2007). Relative 

to those component-specific models, the work formalising the Sequential Processing Schema 

reflects an effort to investigate ERP components and develop a more holistic (i.e., complete) data-
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driven conceptualisation and quantification of Go/NoGo processing, to clarify and measure the 

neurocognitive processes in that common paradigm. 

Using PCA to quantify the full Go/NoGo processing series improves the measurement of 

ERP components as overlapping factors in the series are more easily separated with more data 

(i.e., timepoints and cases). Generally, the interpretation of components is also easier when it is 

possible to compare the timing and topography of a component relative to others in the factor 

series. From that perspective, a holistic PCA approach can increase the utility and interpretability 

of ERP outcomes as researchers are able to consider specific study findings relative to other 

factors and the broader ‘component-oriented’ task processing requirements, even if only one 

factor is of interest to the study authors. Observing the processing series in this manner is efficient 

for modelling a range of cognitive task demands and exploring the impact of experimental effects 

or neurocognitive deficits on various mental functions. In that sense, the Schema is considered a 

research tool that can be utilised to framework and interpret ERP outcomes, however, further 

study is needed to test the advantages and implications of other data-driven ERP methods for 

modelling cognitive task processing series (e.g., Promax rotation or shifted factor analyses). 

Additional research is also needed to explore the utility of the Schema in clinical investigations 

and compare the ERP processing series in these tasks with other cognitive paradigms, to work 

towards a consensus regarding the ERP components and measurable processing demands in 

common cognitive tasks. 

1.5. Conclusion 

This doctoral thesis clarified the ERP markers of auditory Go/NoGo processing in healthy 

young adults by exploring temporal PCA-derived ERP component functionality and continuing 

the development of Barry and De Blasio’s (2013) Sequential Processing Schema. The four studies 

in this thesis provided valuable insight that can support theoretical advances in areas associated 

with a range of Go/NoGo ERP components and executive functions, contributing to the 

development of common ERP components as potential indices of important mental functions. 

Nesting those complex ERP findings within the broader Go/NoGo processing series also provided 

useful insight into basic information processing in healthy young adults, and these outcomes were 

considered to help clarify the cognitive requirements in auditory equiprobable Go/NoGo tasks, 

which can guide future research utilising that common paradigm. The study outcomes reviewed 

here also resulted in a major update to the young adult Sequential Processing Schema, improving 

its utility as a data-driven research tool for studying a range of psychophysiological processes. 

Applying the updated Schema in future research is encouraged to promote a greater synthesis of 

Go/NoGo ERP theory and research in psychophysiology, and to delineate cognitive processing 

associated with different task demands or psychopathologies. 
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Appendix B. Chapter 1 Literature Analyses 

The literature analyses summarised in Chapter 1, Figure 2 (p. 9), were conducted using 

the results of three separate PubMed literature searches to help characterise the current state of 

the Go/NoGo (and oddball) ERP literature.  

1.1. Probability literature searches and the derived studies 

PubMed searches of the Go/NoGo and oddball probability literature were conducted to 

identify the number of simple (i.e., two-stimulus) uncued Go/NoGo studies involving statistical 

analyses of global stimulus probability effects on ERP components. General search terms were 

used without restrictions (e.g., of time range) to maximise the initial search results: (1) “Go NoGo 

Probability” (search date: 26/03/19), and (2) “Oddball Probability” (search date: 27/05/19). 

Irrelevant (or unusable) articles were rejected if they were not (i) journal articles, (ii) in english, 

(iii) studies of humans, or (iv) they did not involve an experiment utilising a Go/NoGo (or oddball) 

task. Details of the remaining articles were then recorded, including the number of imperative 

stimuli in the Go/NoGo task, the stimulus modality (or modalities), whether warning stimuli 

(cues) or masks were used, the global target stimulus probability level(s), and the primary 

measures used (i.e., EEG, Behavior, fMRI etc). Any articles with tasks using warning stimuli or 

masks, or involving more than two imperative stimuli (i.e., multiple targets, nontargets, or 

deviants) were then excluded from the final summary of the “Go NoGo Probability” and “Oddball 

Probability” search outcomes shown in Chapter 1, Figure 2 (p. 9). The 226 studies remaining 

across both literature searches were then examined to derive the number of simple and uncued 

Go/NoGo studies, including an equiprobable condition, involving statistical analyses of stimulus 

probability effects on ERP components. 

1.2. Go/NoGo AND Oddball analysis: crossover between literatures 

To illustrate the crossover (or distinction) between the Go/NoGo and oddball literatures, 

an additional PubMed search was conducted using the terms “(Go NoGo) AND Oddball” (search 

date: 03/03/20) to get an approximate number of articles including (or mentioning) both Go/NoGo 

and oddball tasks. The number of duplicate (or common) studies identified between the two 

probablity literature analyses were also counted as an additional measure of the relationship 

between the Go/NoGo and oddball research areas. Seventeen journal articles were identified in 

the PubMed results in total, and one duplicate was identified between the two probability literature 

search outcomes described above, suggesting that there is little crossover between the Go/NoGo 

and oddball literatures. 

1.3. Further comments 

“Go NoGo” was used in the PubMed searches because other common variations of the 

term (i.e., “Go/NoGo”, “go-nogo”, etc) resulted in more limited search results. A formal 

publication of the literature analyses described here is being prepared separate to this thesis; 

however, the search outcomes are available upon request. 
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