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ABSTRACT

Early childhood development is arguably the most significant period in the course of life. It
is widely recognized that physical activity (PA) during early childhood plays an influential
role on current and future developments of the child [1]. Partially based on this evidence,
the Australian Government has created the Physical Activity Recommendations which rec-
ommend that, among others, preschoolers should be physically active every day for at least
three hours, spread throughout the day [1]. However, difficulties in accurately measuring
physical activity in preschoolers have impeded the investigations in physical activity classi-
fications using data modelling techniques and the use of such classifications in the estimation
of the metabolic equivalents (METS1), a measure commonly used as a proxy for measuring
the extent of the physical activity performed by a subject. Therefore the issue of quantifying
the extent of physical activity performed by a child is transformed to an issue of physical
activity classifications into categories, like “sedentary”, “light” activity, “medium” activity,
“walking”, or “running”. Based on such classifications, the METS can be estimated, and as
a result the daily recommended minimum METS can be monitored.

The research reported in this thesis is part of a larger research project which include the
collection of raw data, over two separate and different small cohorts of young pre-school
children, in 2014 (11 participants), and 2016 (16 participants) respectively, from accelerom-
etry sensors mounted on various parts of the body. As these are pre-school children, they
often did not adhere to the suggested activity, but instead engaged in unscripted activities
during the 5 minute episodes of observations, thus introducing “noise” in the recordings.
Despite such imperfection, the accelerometer recordings were labelled by the assigned ac-
tivity type, irrespective of what the subject was doing during the episode thus challenging
data driven modelling techniques.

Moreover, for probity reasons, as the subjects were pre-school children, consent of
the parents before activity trials could be conducted was needed. Each activity trial was
recorded using a video camcorder. The videos were taken as “evidence” that the children
were engaged as was agreed upon with the parents and as was approved by the Ethics Com-
mittee on Experiments Involving Human Subjects. The videos were taken by a camcorder
which was mounted on a tripod. The camcorder was left unattended most of the time. The
videos were not meant as a data source for PA classification because accelerometers are the
commonly accepted standard source of information. Nevertheless, this thesis will explore
both data sources for the investigations on PA prediction. The videos are used to validate
the results from using the accelerometer data.

The broad task of this thesis, is to “make sense” of these data recordings, pertaining
to their ability of PA classifications independent of the subjects performing the activities.
Faced with such a challenging task of “making sense” of two small cohorts of subjects, per-
forming the assigned activity only once, and each cohort performed different types of activ-
ities, which are only broadly classified into five categories: “sedentary”, “light”, “medium”,
“walking” and “running”, the first task was to normalize the recordings, and to extract fea-
tures from the resulting time sequences.

As there was little understanding of the nature of accelerometer recordings of preschool
children, this thesis introduces and uses a High Resolution Self Organzing Map (HRSOM),

1METS is an objective measure of the ratio of the rate at which a person expends energy, relative to the mass
of that person, while performing some specific physical activity compared to a reference, set by convention at
3.5 mL of oxygen/kg/min, which is roughly equivalent to the energy expended when sitting quietly.



which maps the high dimensional feature vectors to a two dimensional display space, with
the property that any two feature vectors that are close to each other in the high dimensional
feature space are mapped to be close to one another in the two dimensional display space.
High resolution in this context means that the display space should be of sufficient resolution
to permit the visualization of any intricate details of interest in the display space. The un-
known nature of preschool children data required us to use benchmark datasets with known
properties, viz., the policemen dataset, and the network intrusion detection UNSW-NB15,
to study the anticipated capabilities of the HRSOM. The visualization of the two PA datasets
reveals that there is considerable overlap between some of the classes of physical activities
performed by the participants, and that there are considerable variations in the grouping of
samples from within the same activity class.

The samples in the PA datasets are broadly classified into five categories of accelerom-
eter recordings. Such datasets would be ready for experimentation with classification tech-
niques, except for one issue: the unbalanced nature and the small number of samples in each
category of physical activity types. To address the issue, this thesis proposes a novel data
sampling technique to generating more samples for each class where needed. To achieve
this, the thesis first introduces a supervised DBSCAN (Density Based Spatial Clustering of
Applications with Noise) method to label each sample based on the sample density of the
region near the sample point. To help with the identification of dense regions in the high
dimensional feature space, this thesis first projects the samples to a lower dimension with
the help of the HRSOM. This procedure allows the identification of where more data is
required to enhance differentiability of the pattern classes. For each additional point, a cor-
responding high dimensional feature vector is generated using a simple linear interpolation
technique between two vectors from the same class which are closest to the point which is to
be generated. The reason why we need to generate the corresponding feature vector of the
added point is that this thesis explores how the sampling procedure is effective in enhancing
the prediction accuracy of multilayer perceptron (MLP) with a single hidden layer. We call
this method a synthetic sampling ensemble network (SSEN). When applying the SSEN to
the PA datasets, we found that in general, the SSEN outperforms the baseline MLP method
by about 10% in generalization accuracies. It is shown that the SSEN also works well with
other benchmark datasets, in improving the generalization accuracies.

The thesis then explores the concept of transfer learning. Transfer learning is a method
used to retain knowledge gained in one domain, the source domain, and transfers it to an-
other domain, the target domain. This thesis uses the following architecture: the source
domain is trained using a simple MLP with one or two hidden layers. When the train-
ing converges, the parameters of the classifier are “frozen” and this constitutes the source
model. Then, one or more additional hidden layers are appended to the source model. The
parameters of the newly added layers are trained using the target domain data to obtain the
target model. The trained target model is then tested on the target domain testing dataset.
Applying this methodology to the PA datasets it is found that transfer learning can improve
the generalization accuracy by 2% to 5%.

We then explored the possibility of using the “evidence” videos for physical activity
classifications even though their primary purposes were not intended for classification pur-



poses. We first removed the segment in which the subject did not appear in the video. It
is observed in some of the videos, during some segment of the episode that the subject
was being partially or completely occluded. This necessitated some kind of tracking, or
re-identification of the subject when the subject was partially or completely occluded. A
fast bounding box location technique called Yolo2 (You Only Look Once version 2) was
used to “demarcate” the region of interest, which is where the subject was located in the
video, while other subjects, e.g., the instructor, or other children are ignored, by making a
simplifying assumption that the subject is furthest from the video camcorder. A Kalman
filter method was used to track the “hidden” bounding boxes when they are occluded. A
human re-identification method was used to re-identify the bounding box when it emerges
from occlusion, and the corresponding trajectory of bounding boxes of the subject can be
reconstructed. Motion based features and deep CNN based features were extracted from the
bounding boxes, and the corresponding subject who was inside the bounding boxes were
extracted respectively. Those features were classified using the deep neural network. It is
found that, in general, the tracking with re-identification achieves approximately 2% bet-
ter generalization accuracy when compared with the tracking without compensation for the
partially or completely occluded segment(s).

The contribution of this thesis include the following: (1) a scalable HRSOM method
for visualizing high dimensional data; (2) a data augmentation method which utilizes the
HRSOM to aid the training of an MLP classifier with one or two hidden layers; (3) a novel
method to generate new samples, from two close existing samples, grouped together to be-
long to the same class using a supervised DBSCAN method, and its incorporation into an
SSEN classification ensemble system; (4) a simple and effective way to align the categories
of differently labelled accelerometer recordings from two different cohorts over different
time span using a K-mean clustering algorithm on mapped points of high dimensional fea-
ture vectors in the two-dimensional HRSOM display space; (5) an effective and novel trans-
fer learning regime which retains knowledge accumulated in a source model to the target
domain; (6) an effective procedure for overcoming a possible partially or completely oc-
cluded moving subject leading to good classification results.

KEYWORDS: Recognition, Physical activities, Modeling, Neural networks, Deep
learning, Computer vision, Feature extraction.



List of Publications

• M. Hagenbuchner, D. P. Cliff, S. G. Trost, N. V. Tuc, and G. E. Peoples, Prediction of
Activity Type in Preschool Children using Machine Learning Techniques.Journal of
Science and Medicine in Sport, vol. 18, no. 4, pp. 426-431, 2015. (This publication
forms the part of chapter 6)

• Nguyen V.T., Hagenbuchner M., Tsoi A.C. (2016) High Resolution Self-organizing
Maps. In: Kang B., Bai Q. (eds) AI 2016: Advances in Artificial Intelligence. AI
2016. Lecture Notes in Computer Science, vol 9992. Springer, Cham. (This publica-
tion forms the part of chapter 5)

• S. G. Trost, D. Cliff, M. Ahmadi, N. Van Tuc, and M. Hagenbuchner, Sensor-enabled
activity class recognition in preschoolers: Hip versus wrist data, Medicine and science
in sports and exercise, vol. 50, no. 3, pp. 634-641, 2018. (This publication forms the
part of chapter 6)

• Saraswati, A., Nguyen, T., Hagenbuchner, M. and Tsoi, A., High-resolution Self-
Organizing Maps for advanced visualization and dimension reduction. Neural Net-
works, No 105, pp. 166-184, 2018. (This publication forms the part of chapter 5)

• N. V. Tuc, M. Hagenbuchner, and A. C. Tsoi, Synthetic sampling ensemble network.
Submitting to Neural Networks. (From materials contained in Chapter 6)

xi



Acknowledgements

I would firstly like to express my deepest gratitude to A. Prof Markus Hagenbuchner for
being my supervisor during my PhD study. His consistent encouragement, guidance and
direction is incomparable. It has been a great honour for me to study under Markus’s super-
vision. He always provides very detailed and constructive instructions on my work. Without
his continuous, meticulous directions and the uncountable-hours of work, I would not have
been able to conquer different hurdles during my study. I have been deeply impressed by
Markus’s friendliness, politeness and endurance from my initial research program. And I
am looking forward to working with Markus in the future.

I would also express my special appreciation to my co-supervisor Prof Ah Chung Tsoi
for his massive help during my research. Ah Chung Tsoi selflessly shared his strong and
unique research vision with me and helped me with many brilliant research ideas. His
inspiration and encouragement will never be forgotten. This thesis would never be the same
without the tireless working and insightful contributions from Ah Chung. In addition, I
appreciate to have been on the receiving side of helpful suggestions and comments from
other researchers. They are Prof. Franco Scarselli, who is very friendly and supportive, and
my laboratory mate Ayu Saraswati who shared with me her knowledge and expertise from
the very beginning stage of my study, and many other researchers I had the pleasure to
collaborate with.

Thirdly, I acknowledge the financial support received in form of a scholarship for my
studies from the ARC discovery project grant that was awarded to A. Prof Markus Ha-
genbuchner. I especially appreciate the technical support from the Information Technology
Services staff at the University of Wollongong, allowing me to access the high performance
computer clusters which were essential for my research experimental needs. They were al-
ways willingly available to help with any problems with the Internet connection and printing
resources.

Last but not least, I likewise owe an eternal debt to my family for their unconditional
love. I would like to thank my parents for their continuous encouragement both financially
and emotionally during the hardness of my research. And certainly, life seems meaningless
without the whole-hearted support of my wife Trang Thi Nguyen and without my adorable
little daughter Anh Thu Nguyen. They endlessly fill me up with laughter and joy which is as
invaluable as aspirin in helping through the more stressful moments. Finally, my gratitude
also extends to my friends who have been assisting me in time of needs.

xii



List of Abbreviations

2D Two Dimension

ADAM Adaptive Learning Rate Optimization

(A)NNs (Artificial) Neural Networks

AUC Area Under Curve

AVG Average

ACC Accuracy

BG Background

CUDA Computer Unified Device Architecture

CPM Convolution Pose Machine

CNN Convolution Neural Network

DBSCAN Area Under Curve

DNN Deep Neural Network

EE Energy Expenditure

F1 F-measure

FRPN Fully Recursive Perceptron Network

GNN Graph Neural Network

GPU Graphical Processing Unit

GPGPU General Purpose Graph Processing Unit

HNBD Hybrid Negative Binomial Distribution

HOG Histogram of Oriented Gradients

HOF Histogram of Optical Flow

xiii



HRSOM Hight Resolution Self Organizing Map

KM K-Mean

MV Moderate to Vigorous

MLPs Multilayer perceptrons

MBH Motion Boundary Histograms

LRSOM Low Resolution Self Organizing Map

L-GNN Layered Graph Neural Network

LOPO Leave One Person Out

LSTM Long Short Term Memory

PA Physical Activity

RMSE Root Mean Square Error

RPROP Resilient Backpropagation

RB Roughly Balanced

R-CNN Region Proposal Convolution Neural Network

RESNET Residual Deep Neural Network

SSD Single Shot Multibox Detector

SGD Stochastic Gradient Decent

SOM Self Organizing Map

SOMSD Self Organizing Map for Structured Data

SSE Sum Square Error

SSEN Synthetic Sampling Ensemble Network

SVM Support Vector Machine

YOLO You Look Only Once

xiv



No Hardware OS Number of Core Usage
Category Type cores speed years

1 Workstation Intel Linux 2 2.1 3
2 Workstation Intel Linux 2 2.4 1.5
3 Workstation Intel Linux 4 3.5 2
4 Supercomputer SGI Linux 9 2.1 3
5 Cluster AMD Scientific Linux 240 1.5 3
6 Workstation Intel Linux 7 2.1 3

Notation
In this thesis, the mathematic representation is uniformly presented as follows: Lower-

case script letters like n are used to indicate scalars and constants. Parameters of a learning
model are shown by lowercase Greek letters such as γ. Sets and matrices are indicated by
upper case letters, e.g., M . Calligraphic letters like G,N and E are respectively used to rep-
resent graphs, a set of nodes, and a set of edges. Letters used in combination with brackets
such as h(x, y) denote functions. Typical examples are given below:

x(t) The parameter x depends on time t.

Fw(x, y) The function F takes a vector x and y as its arguments, and depends
on the variable w.

M = KL The multiplication of the two matrices, or the dot product.

n = |d| n is denoted the cardinality of vector d.

n = ‖m‖ Variable n takes the positive value of m.

x = (x1, x2, ..., xn) x is a vector containing n elements.

n ∈ {10, 15, 20, 24} A number n can take a value from a set of four elements.
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Hardware Environment
The work presented in this thesis includes results from a wide range of experiments on

a number of neural networks as well as kernel methods. Hardware resources which were
utilized for the experiments are as follows:

Core speed is an approximate value relative to a 1GHz single-core Intel Pentium. The
core speed is approximate since the actual speed of a machine dependents on the amount
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Chapter 1

Introduction

1.1 The motivation

Human activity recognition is an interesting and popular research topic which has numerous

applications such in security, military and defence, health, sports, education, agent systems,

robotics, systems and services optimization, and others. If activity recognition is to be per-

formed on young children such as preschoolers and school age children then activity recog-

nition can support health science researchers in studying human subjects from a very early

stage of their lives. Corresponding applications are related to the children’s development

programs for diet balancing, obesity avoidance, physical and mental health improvements.

The knowledge about physical activity levels in young children is central to weight control

and behavior acknowledgment. For example, by predicting the activities a child performs

during a period of time, one can estimate the activity-driven behavior as well as the amount

of energy intake and energy expenditure of the child. More information can be derived such

as whether the child is more likely to be distracted by other events or more disciplined,

whether she/he is over active or over sedentary. In general, activity prediction in young chil-

dren allows researchers to identify causalities for the development of mental health problems

or obesity problem, respectively, in later life [2, 3].

1
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There are clear guidelines that recommend young children should be active for rea-

sonable periods of time during the day [4]. However, current estimation methods are not

sufficiently accurate in measuring how much and when physical activities are performed by

young children [3, 5]. Prior to this thesis the state-of-the-art approach to activity prediction

in young children was based on linear regression models of accelerometry [3, 6]. The work

in this thesis is motivated by significant advance in machine learning that bear promise of

significant improvements in prediction capability as well as abilities of processing richer

sources of information for the purpose of predicting activity type and duration in young

children. The first approach taken in this thesis is to evaluate different machine learning

methods on their ability to predict activity classes and energy expenditure from sensory

data. The work is then expanded to the development and adoption of new techniques for

activity recognition.

The work being carried out in this thesis is significant in supporting the national chil-

dren health promotion programs. Additionally, accelerometer-based motion sensors are now

used prolifically in population-based studies of physical activity and sedentary behaviour in

many age-cohorts [4]. Utilizing expertise from behavioural and health sciences, and com-

puter science the research presented in this thesis will result in the introduction of novel

machine learning methods for physical activity recognition which, as will be shown, en-

hances prediction accuracy significantly. For long term benefits, researchers and public

health agencies could enhance physical activity surveillance and more effectively identify

individuals at risk. The activity recognition methods investigated here would be also directly

applicable to a range of other domains such as security, surveillance, and robotics and have

the potential to impact these domains as well.

In order to create a dataset for human physical activity recognition, many supporting

sensory devices have been used [7] ranging from a more intrusive device like wearable

sensor (e.g. some kinds of accelerometers to attach on children body’s parts like chest,
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hip or wrist), to a mobile-based device which is embedded in the mobile phone, and a less

intrusive one like the camera network. In this research, two main kinds of data collection

devices were used, namely accelerometers mounted at the hip and wrist, and tripod held

video camcorders.

Accelerometers are very commonly used for the purpose of monitoring human activities

particularly in sports science and other areas which require light-weight wearable sensors

for data acquisition of body movements [8]. Accelerometers measure the acceleration with

a single or triple acceleration axis at a regular observation frequency. The accelerometers

applications can be seen in many research works such as the detection of fall [9], movement

and analysis of body motion [10, 9, 11] or the prediction of human gait and postural orien-

tation [12, 13, 14]. More details and applications of using accelerometers can be found in

[7]. The drawbacks of this mode of data collection is its intrusive nature, which requires

the participants wearing the sensors on their body. More intrusive approaches exist and in-

clude oxygen-based intake energy expenditure and heart beat measurement devices. Since

this thesis studies activity recognition of young children we will use sensory data from low-

impact sensors such as lightweight accelerometers and external video capturing devices.

This research will use the data collected from wearable accelerometers mounted on chil-

dren’s hip and wrists. This allows us to capture data uninterrupted and unobscured. We will

also explore the use of video capturing devices which are less intrusive than accelerometers

but have the disadvantage of not being able to follow the child and visual information can

be obscured by objects in the environment.

The use of video data is common in prior research on general human action recognition.

The common approach is to extract image features from the video captured on the objects of

interest. The prediction task is to issue a corresponding action class label for each video clip.

Essentially, a video is formed by a number of images (frames) arranged in a chronological

order. Thus, techniques in image processing are applicable to the video-based feature extrac-
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tion process. Various applications of vision-based human action/activity classification can

be found in literature. For example, the detection of unusual human activities [15, 16, 17],

fall detection [18, 19], or generic human action and activity recognition [20, 21, 22], just

to mention a few. More details about different video datasets and methods applied to hu-

man action recognition can be found in the review paper in [23, 16, 24]. The advantages of

this data collection is that it is a non-intrusion way which can capture data even without a

participants’ awareness.

Human action recognition remains a challenging and interesting research topic. In the

research presented in this thesis we find that action recognition of very young children adds

new challenges. The reasons include:

• Children are not as disciplined as adults. They may not follow the laboratory protocols

or experimental settings during a data acquisition phase. This increases the inter-class

variations.

• Some activities cannot be performed by the child alone during a given activity trial

but they need to be guided by one or more instructors. As a result, the chance that a

person is occluded by another person (when using video capturing) is increased, and

the chance of interference (i.e. an educator is holding the hand of a child when using

accelerometers) is increased. This affects data quality and is hence creating a greater

burden on the detection and tracking algorithm.

• The children are commonly more active than adults, changing activity type more fre-

quently, they seem never staying still for long time. This makes the capturing of

activity samples for activities such as sedentary, story time or quiet play more diffi-

cult and increases the intra-class variation. This increases the chance that an activity

pattern may be confused with other activity patterns.

Methods would thus have to demonstrate resilience to variations in data quality in order
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to be considered suitable for activity recognition in young children.

The research presented in this thesis is part of a larger project on activity recognition of

young children. The project includes a data acquisition phase during which young children

were invited to participate in this research. Data acquisition was performed in a controlled

environment and under the supervision of qualified educators. While the data acquisition

component of the project does not form a part in this thesis, we have the unique opportu-

nity to process relatively complete sets of activity phases from collected raw high-resolution

accelerometer data, and the recording of corresponding video clips. This thesis will pre-

process the raw data, evaluate and develop a number of machine learning approaches suit-

able for the activity recognition task.

The main aims of the research presented in this thesis can be summarized as follows:

Aim 1: Investigate machine learning-based modelling approaches to estimate physical ac-

tivity (PA) type (e.g. sitting, walking, running) from accelerometer data and from

observational video data.

In other words, the purpose is modelling accelerometry in preschoolers using machine

learning. Different artificial neural networks (ANNs) are developed and evaluated in

this study. Methods studied include the standard feed-forward Multi-Layer Percep-

tron Network (MLP), the Self-Organizing Map (SOM), the synthetic sampling en-

semble network (SSEN) and several others. We found that because the MLP tends to

perform poorly when dealing with limited number of samples and high dimensional

input space, it makes sense to combine the SOM with MLP, or to develop the MLPs

in the form of ensemble methods where multiple MLPs can be used for evaluation.

A common evaluation approach in PA prediction is leave-one-subject-out cross val-

idation. In particular, the models will be trained on all input samples except for the

data of one participant. After training, the model is then tested on the left-out data.

The experiment will be repeated until each participant is considered exactly once for
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testing.

Aim 2: Develop and test efficient machine learning approaches to modelling information

from accelerometers and videos.

Each activity monitor collects data at regular time intervals. The results are numeric

temporal sequences. It is important to note that the data collected by the monitors at

each body part are not independent. For example, one activity may trigger different

responses from two or more of the monitors. Hence, we expect that by taking the

context of all the monitored data from one type of monitor into account, this will

help to uniquely map the data to an associated activity. The model used for time-

series acceleration data is much different from the one used for video-based physical

action recognition since when dealing with the visual data, a good amount of image

processing work is required. Some typical algorithms include object detection, object

tracking and feature extraction from series of object image bounding boxes. The

problem then can be simplified to be a time series where at each time step (an image

in the video clip), the feature information is extracted for the classification purpose.

Aim 3: Analyse the ability of activity recognition algorithms to handle high-resolution ac-

celerometer data and video data, and the sensitivity to measurement errors or missing

measurement samples.

1.2 Research benefits

The benefits of the research in this thesis can be summarized as follows:

1. This research obtains and processes raw data from acceleration sensors and camcorder

videos for the purpose of classifying physical activities in (small) children. The prob-

lem is challenging and very useful in supporting health science research. None of the
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methods studied have been applied previously to activity recognition in young chil-

dren. The research conducted encapsulates wide range of methods and experimental

protocols. The methods produce significantly enhanced recognition accuracy com-

pared with all prior work or methods that has been applied to the same problem or

datasets.

2. A visualization method, the high resolution self-organizing map, will be introduced to

support a greater level of analysis and insight. The model helps to express the intrinsic

characteristics of input data space. The model is examined and experimented with a

number of datasets, both artificial and real-world data. It is found that the model can

not only be utilized for the purpose of visualization, but is also very helpful as an

unsupervised filter for a deep-learning inspired classification models.

3. Due to the nature of input sparsity in the accelerometer data, a Synthetic Sampling

Ensemble Network is developed. The new model is capable of handling the lack of

training input samples or lack of training sample coverage over the testing set. The

model is proved quantitatively and qualitatively better than the other well-known sam-

pling techniques. It is shown that the model can be applied to two main disciplines,

namely health science data and cyber-security dataset.

4. The benefits of transfer learning in terms of children physical activity recognition is

investigated. It is found that domain background knowledge is essential. If the back-

ground model trained on a sufficiently long data set which is related to the target do-

main, the target model, which is employed by adding layers on top of the background

model, this will perform better on the target domain.

5. Vision-based physical activity recognition is usually the most challenging prediction

problem since this involves a number of image/video processing techniques, detec-

tion and tracking algorithms, solving the occlusion situations, converting the image
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sequences to feature vectors, making it possible to be processed by computing devices,

and thus addressing high dimensional input space issues. This will also be addressed

in this thesis

1.3 Thesis contributions

The main focus of this research is to evaluate, design and develop machine learning algo-

rithms for the purpose of predicting the activity types in children by using raw data from ac-

celeration sensors and video sequences from camcorders recording of the children’s physical

activities. Since the data has typical properties such as: (1) High dimensional issue which is

a consequent of the high resolution temporal accelerometer and video capture. Steps such

as data analysis and visualization are required to aid proper understanding of the data before

performing selecting suitable pre-processing methods and to design a suitable training pro-

cedure; (2) The highly sparse data is caused by the difficulties in collecting children’s related

data since the experimental protocols and procedures are not straightforward. The number

of children participants can be small (i.e about 10 to 15 preschool children) which results

in a small number of data samples collected. This is taken into account when selecting or

designing suitable methods for data processing.

This thesis proposes two approaches respectively to the two afore-mentioned issues.

First, the high resolution self-organizing map is introduced to support the higher level of

data analysis. The corresponding algorithm is similar to the standard self-organizing map,

however the main focus is to allow high dimensional neuron map sizes and a highly paral-

lel optimization learning process for time efficiency. Thanks to high dimension operation,

this model helps to expose the insight intrinsic characteristics of input data space. This the-

sis examines and tests the proposed method on a number of datasets including controlled

synthetic datasets and several real-world datasets. Interestingly, it is found that the model

does not only meet the envisaged application objectives, but that it can also be effective as
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an unsupervised filter/pre-processor for a classification/supervised learning model. It will

be shown that, by using the high resolution self-organizing map as a filter, the classifica-

tion performance is improved significantly. Secondly, in order to address the sparsity in

the accelerometer data, this thesis proposes a Synthetic Sampling Ensemble Network that is

capable of handling the lack of training input samples or lack of training sample coverage

over the testing set. The approach uses the high resolution self-organizing map in combi-

nation with the Dbscan clustering algorithm to create a new sampling technique which can

be applied to sample cohorts. It is shown that such a sampling technique is better than any

other well-known sampling method.

There is a sparsity of information in the accelerometer data. To address this the thesis

proposes an approach by which modelled knowledge from one related dataset/domain is

used as background information for another learning/classification problem. The rationale

is that variations in experimental protocols when collecting data from accelerometer sensors

results in different but related data cohorts. The idea is to exploit the relatedness (knowledge

from a related domains, the so-called source domain) by means of transfer learning. To do

this, the thesis will train a deep learning model on the source domain, then freeze the model

weights in all layers excluding the layers in the output network. Then these last layers can be

tuned or expanded by additional layers with trainable parameters. The trainable parameters

are then trained on a given classification problem from the target domain. This produces a

model that has been trained on the basis of background knowledge from a related domain

and which has deep knowledge about the target domain. This thesis finds that if the source

domain does contain relevant background knowledge then the target model will perform

better in the target domain.

Attaching and wearing accelerometer sensors can be considered somewhat intrusive.

This thesis investigates a less invasive sensory device which can provide relevant infor-

mation for the activity recognition task. This thesis investigates the use of video sequences
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recording of children while they were performing physical activity trials. Vision-based phys-

ical activity recognition is a challenging problem since this involves a number of techniques

required in human activity recognition such as: detection of the human subject within a

given scene, tracking of the subject’s body parts, human re-identification to address periods

of occlusion and to maintain a continuous tracking trail, and the extraction of feature vectors

from sequences of frames. The proposed method is based purely on the video signal and

is producing a prediction accuracy comparable to that obtained when using accelerometer

data. It is thus found that, if the subject can be contained within a field-of-view of a video

capturing device (i.e. within a playground, within a child’s room) then video data are a

viable alternative to accelerometry for activity recognition of young children.

1.4 Thesis structure

The thesis is organized as follows:

Chapter 1: This chapter gives a general overview of the research and includes the under-

lying ideas of the research topic, the benefit of the research, and an outline of the

thesis.

Chapter 2: This chapter gives an overview of related literature, lists available approaches

to modelling active play in young children, and presents some background knowledge

on several machine learning models and its applications in wearable sensor-based data

and computer vision.

Chapter 3: This chapter provides the description of the physical activity datasets.

Chapter 4: This chapter states the central problem which this thesis aims to solve.

Chapter 5: Approach 1: High resolution Self-organizing map for intrinsic visualization

and classification purposes.
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Chapter 6: Approach 2: Synthetic sampling ensemble network for classification problems.

Chapter 7: Approach 3: Transfer learning applied to time series data for children physical

activity recognition.

Chapter 8: Approach 4: Video-based feature extraction for human activity understanding.

Chapter 9: This chapter offers comparisons and discussions on the results obtained by the

aforementioned approaches.

Chapter 10: this chapter gives a summary of the research presented in this thesis, lists and

explains limitations, and provides suggestions for future work.



Chapter 2

Background and literature review

This chapter presents some important background knowledge and reviews relevant literature

on physical activity recognition in children using either acceleration or non-intrusive video

captured data. A number of classic and modern machine learning based approaches will be

presented. Limitations of traditional methods are examined, and approaches that pre-date

this thesis and which produced respectable accuracy performances will be shown.

This rest of this chapter is structured as follows. The first part of this chapter provides

a literature review on linear and traditional methods, and recent neural network models

on physical activity recognition with a special focus on young children such as preschool-

ers, school children and adolescence using acceleration data. The basic count sample and

heuristic prediction equations are considered first, then supervised models such as the de-

cision tree, approaches based on regression, neural networks and support vector machines

are shown. For each algorithm, a comparison with the previous models is made in order to

overview the incremental capability, robustness, or complexity of the learning system. Then

relevant video based physical activity recognition methods are reviewed.

The second part of this chapter describes in some detail several well-known machine

learning algorithms which will be evaluated in this thesis. Particular attention is given on

(1) unsupervised clustering models, (2) supervised neural networks and deep learning based

12
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models. This will include the Convolution Neural Networks and object detection models.

Relevant to modelling the large amount of feature extracted from the long sequences of

video-based data, graph neural models and time series learning models such as the long

short term memory will be described.

2.1 Literature Review

Research with the purpose of gaining knowledge from data collected from pervasive sensors

defines a broad area of research. Within that area, human activity recognition has become

highly attractive topic, especially for medical, military, and security applications [23]. For

instance, patients with diabetes, children with high level of obesity, or heart disease are often

required to supervise their daily routines as part of their treatment. Therefore, recognizing

activities such as sedentary activities, walking, running, or cycling becomes significant to

provide useful information for the purpose of behavior analysis, abnormal action awareness

and weight control. It can also provide information about the level of physical action for

activity orientation programs.

Figure 2.1 presents a common work-flow for physical activity recognition systems.

There are many challenges in the system that require the attention of researchers and which

motivate the development of new techniques and algorithms to improve prediction accuracy

under realistic conditions. Some of these challenges include:

• The construction of a portable, unobtrusive, and inexpensive data acquisition system.

• The design of object detection, tracking, and feature extraction methods.

• The collection of data under realistic or real-life conditions.

• The design of learning and inference models to handle large dimensional input from

raw acceleration and video sequence data.
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Figure 2.1: Physical activity recognition: A complete system work flow.

• The implementation for just-in-time response given a real-time data acquisition sys-

tem.

The task of recognizing human physical activities has been approached in two different

ways, namely using external sensing systems like video-based monitoring systems and

wearable sensors as shown in Figure 2.2. For these two data acquisition approaches, dif-

ferent data processing algorithms and learning models are applied. More details about each

are given in the following two sections.

2.1.1 Physical activity recognition on children using wearable sensors

Accelerometers are a de-facto standard type of wearable sensors for research on activity

recognition in children [8, 25]. Accelerometers can either provide accelerometry count data
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Figure 2.2: Physical activity recognition on children: relevant algorithms in use.

or raw accelerometry sampling data at a particular Hz rate. For the former, researchers have

typically used cut-points developed from regression to estimate time spent in each physical

activity [5]. The latter is commonly obtained from triaxial accelerometers and are likely

the mostly used sensors to recognize ambulation activities e.g., walking, running, lying, etc

[8]. From work presented in literature it is found that common sampling frequencies are

in the range from 10Hz to 100Hz. The placement of the accelerometer is another impor-

tant point of discussion. Different works explored various mounted locations on humans’

body. Common are placements on the hips, arms, wrists, legs or chest. Researcher found

that the best place to wear the accelerometer for activity recognition tasks is on the hip

or wrists [5, 8, 25]. However, the optimal position to place the accelerometer depends on

the application and the type of activities to be recognized. For example, the activities in-

volved with moving forward and backward of the humans’ body can be recognized with

high accuracy if using hip mounted accelerometers [25]. On the other hand, when the users

frequently move their hands or arms, the arm or wrist attached accelerometers would be

of more helpful than the other attached locations. The reason is that well placed sensors

capture unique or distinguishable body’s part movements which can then be converted into
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useful and separable input feature for the classification model.

In terms of prediction models, the traditional method for predicting PA type and energy

expenditure is based on cut-point data [5] using regression model. The traditional method

has been vastly outperformed by machine learning algorithms such as decision tree, random

forest, MLP and SVM [5, 6, 8, 25]. Most recent studies limit the attention to predicting

physical activity type in children aged from 5 years old, or school aged and older children

using triaxial accelerometers [5, 6, 8]. Our first attempt in recognizing very small children

physical activities has been published in [25] where the triaxial acceleration data was col-

lected via laboratory experimental settings for children in the preschool stage. In order to

model the very young children activity, both the pre-processing techniques and prediction

models need to be taken into account. The traditional methods have not performed well

given that the data is affected by noise and by body movement patterns that are irrelevant

to the actual activities being performed. The reasons for the poor prediction accuracy is

possibly that the traditional methods might not generalize well for younger children when

the collected data contains noise. It would thus be interesting to investigate the suitability of

machine learning algorithms when applied to data capturing very young children activities.

This research studies classification problems such as predicting PA type in various children

aged cohorts.

Several works have applied machine learning models to predicting PA type [5, 6, 26,

27, 28]. Authors also applied deep learning inspired models where an unsupervised self-

organising map was used as pre-processing stage before the multi-layer perceptron neural

network model is applied [25]. The data based on the combination of triaxial accelerometers

mounted at hips and wrists was explored for several machine learning algorithms such as

multi-layer perceptron networks and support vector machines [8]. The prediction accuracy

is better than the case where data from an individual accelerometer (rather than from a set

of accelerometers mounted at different locations) is used. In this research, a new ensemble
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approach will be introduced which makes use of both unsupervised and supervised methods.

It will be found that the proposed model’s prediction accuracy is around 3% to 5% better than

the other machine learning models and for several children physical activity datasets. As

illustrated in Figure 2.2, the ensemble model can be used with the involvement of supervised

models and unsupervised ones. There are choices for each type of model that can be made.

It can be important that the data samples in the input space can be appropriately visu-

alized in order to expose their intrinsic characteristics. Since a data visualization tool can

be very helpful in data analysis and in data preparation this research also proposes a new

visualization and clustering technique for high dimensional input spaces, called high res-

olution Self-Organizing Map. The thesis will find that the algorithm is not only a useful

visualization tool but also as a unsupervised filter for a classification task.

In order to be more applicable in practice, the data collection devices should not require

the user to wear many or heavy sensors nor should they interact too often with the applica-

tion. Even though the more sources of data available, the richer the information that can be

extracted from the measured attributes. For instance, a video camera system can be used to

record all visual information related to particular physical activities. However, the extraction

of sensible and useful information for a given classification model is not straightforward. A

review of recent and relevant methods and algorithms for image/video processing and recog-

nition is presented in the following section.

2.1.2 Physical activity recognition on children using captured videos

Camera systems are a typical example of external sensing. In fact, the recognition of human

activities and gestures from video sequences is of a great research interest [20].Camera

systems are especially suitable for security purposes such as in intrusion detection, human

action monitoring such as detecting unusual human activities [15] and fall detection [18].

Even though, the data collection using camera system is less obstructive that the wearable
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sensors, video-based monitoring system certainly have some disadvantages:

1. The privacy issue is a problem since there is a greater reluctance to be permanently

monitored and recorded by cameras.

2. A camera can only cover a restricted area, meaning that the information will be missed

if the subject of interest is out of the field of view. A video capturing device can also

not obtain images of the entire body during daily living activities. The subject being

monitored would need to stay within a perimeter defined by the coverage capability of

the camera. Hence, in recording video sequences involving small children as subjects

of interest, the camera location and orientation would need to be non-static or several

suitably placed cameras would be needed.

3. The complexity of processing and learning algorithms, since video processing tech-

niques are relatively expensive, and it is hard to make the learning model scalable and

operate in real-time.

Due to these issues, video sources are a much less frequently considered alternative to

accelerometers as the source of data for PA in children.

An important step in visual information processing is feature extraction. Children ac-

tivities are performed during relatively long periods of time like in the order of seconds

or minutes. While the single sampling data point normally does not provide sufficient in-

formation to describe the actual activity, the sliding time window (with overlap or without

overlap) is often used for the creation of feature vectors which can then be used as input to

the learning or classification system [23]. Different sizes of windows are another point of

argument. In practice, short time windows may not provide sufficient information about the

activity being performed [25]. Conversely, if the window size is long, there might be more

than one activity within a single time window. Whatever the window size is, the feature

extraction method should be applied on each window to filter out relevant information and
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to obtain quantitative measures. In general, two approaches have been proposed to extract

features from time series data, namely the statistical and the structural method. The first one

can include some kinds of data transformation such as the Fourier transform and the Wavelet

transform which use quantitative characteristics of the data to extract features [29]. The sec-

ond method takes into account the inter-relationship among data such as auto-correlation or

entropy [8]. One can choose to use either of these methods or using them in combination

manner, however being dependent with the nature of the given signal type. We note that, as

at the time of writing this thesis, Convolutional Neural Networks have not been deployed to

video sequences for the purpose of PA prediction of young children. This should be mainly

due to the fact that accelerometers are the preferred choice of information in this field of

research [5, 8, 25].

Among the many applications of video recording and video processing systems, human

action recognition especially with high-level behavior recognition comes out to be one of the

most interesting one. An physical activity is a sequence of human body movements, and may

simultaneously involves a number of body parts’ co-interaction. In terms of the computer

vision field, as can be seen in Figure 2.2 the recognition of human action on video sequences

need to go through several steps. Major components of such systems include human body

and body parts detection, tracking the subject of interest possibly among many other non-

interest objects, feature extraction from the detected bounding boxes, action learning, and

classification [20]. More details on each step are as follows:

Subject detection: The problem of detecting the body of a child can be divided into (1)

whole body detection, (2) body part detection, and (3) corresponding skeleton detec-

tion. OpenPose is a well-known library for real-time multi-person key-point detec-

tion. OpenPose is computationally efficient by using a multi-threading GPU model.

The corresponding algorithm has gone through a number of development stages [30,

31, 32]. It can in a real-time fashion jointly detect a human body, hands, and facial
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key-points on a single image. This thesis will use the method to extract the coordi-

nates and correlation features from the children skeleton detected and then by using a

time-series prediction model for recognizing the physical activity.

Another approach is to use the whole body detection model. Amodel for this purpose

which stands out from the rest can be found in the recently introduced Yolo (You only

look once) object detection method [33]. Yolo is a state-of-the-art, real-time object

detection system. The method is robust in the sense that it not only offers object

detection, but also allows to do classification of the image, say to know whether the

detected object is human or some other object. Yolo allows us to know what is exactly

the objected being detected (know the class of each detected object). Yolo outperforms

other state-of-the-art methods like Faster R-CNN [34] with ResNet [35] and SSD [36]

while still running significantly faster [33]. The regression mechanism in the learning

stage tries to minimize the error that occurs between the object bounding box and the

ground truth bounding box. The use of the whole body detection approach would

result in a series of body bounding boxes for further image processing steps.

Object tracking: This step commonly follows the object detection step and functions on an

object’s bounding box over a sequence of image frames. The fundamental idea behind

tracking algorithms is to consider the past movement patterns and changes around the

object to predict a future movement direction. There are many tracking algorithms.

For example:

• Kalman filter [37]: The functionality of Kalman Filter is to take the current

known state (i.e. position, heading, speed and possibly acceleration) of the tar-

get and predict the new state of the target at the next time step. In making

this prediction, it also updates its estimate of its errors in this prediction. This

method was used originally in radar tracking because it takes into account the

position, heading, speed and possibly acceleration of the object. Being similar
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to the Kalman filter the Multiple Hypothesis Tracker (MHT) [38] can also be an

alternative.

• Correlation filter tracking is a Minimum Output Sum of Squared Error (MOSSE)

filter, which results in stable correlation filters. The model can work while only

a single frame is initialized. An advantage of this tracker is that it is robust to

variations in lighting, scale, pose, and deformations while it can operate very

fast [39, 40].

• The Tracking Learning and Detection method (TLD) is based on Median-Flow

tracker. A Median-Flow tracker uses a bounding box of the object and interprets

its motion between sequential frames. Basically, the tracker estimates displace-

ments of points within the bounding box covering the object. The drawback of

this tracker is that it is not robust when the object is very small, blurry or of low

resolution [41]. In addition, we found that the model performs poorly in con-

ditions where subject’s appearance is changing significantly. This, for example,

occurs when a kid performs a vigorous PA as this can significantly change the

scale, appearance, and orientation of the subject. Nevertheless, the method does

work well i.e. tracking a human face in videos since a human face is not rotating

as much.

Children re-identification: Periods of occlusion can create great challenges to tracking a

human subject. Occlusion occurs more frequently when tracking young children since

their smaller size is more easily occluded by other objects or other people. Moreover,

children are very active. During occlusion their body can promptly move in a dif-

ferent direction and thus change the appearance of the body. It is thus difficult for

an algorithm to re-identify the body of a small person once it re-emerges. Moreover,

children act more commonly in the presence of others since they are commonly under

the supervision of parents or educators. It is thus more common that others are present
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while performing an activity. It is common that a childs’ body is from time to time

hidden and then re-appears from the perspective of the video capturing device. When

they re-appear, their movement direction, distance from camera and their body pose

might not the same as at the time when occlusion started. This raises a challenging

problem in object re-identification. The tracking trail of a subject is ultimately con-

nected throughout all of a video segment which represents a single physical action.

Thus, the use of human re-identification is important, and accurate re-identification

methods are required to help the track algorithm to work properly.

There are a number of approaches to human re-identification. The more traditional

methods engage feature matching [42], or a part-based mixture of models [43] which

requires the detection of body parts in the image. These models are comparable with

more recent methods such as the one based on deep convolutional neural network for

person re-identification [44, 45]. The method builds up the deep convolutional neural

network from scratch or uses pre-trained models that are distributed publicly on the

Internet. The state-of-the-art model presented in [46] is an example which uses the

pretrained resnet model (having been trained with Imagenet dataset) and which is then

re-trained on human re-identification datasets [46].

Feature extraction: The outcome of object detection and tracking is a series of subject’s

image without much background. It is possible to apply a 3D CNN directly on the

image sequence for a classification task. However the method is computationally ex-

pensive and may not produce a prediction accuracy that justifies the computational

expense. A common approach to reducing computational time is by reducing the fea-

ture space via feature extraction. There are numerous feature extraction methods for

video sequences. For example the 3-dimensional sift descriptor (3D-SIFT) [47], dense

and scale-invariant spatio-temporal interest point detector (extended SURF) [48], the

3D histogram of gradient (HOG3D) [49] and local trinary pattern [50]. The most
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impressive feature extraction which is state-of-the-art (at the time of writing this) for

a number of video sequence classification benchmarks, is based on the dense trajec-

tory based approach [51, 52] and the improved model of dense trajectory [53] which

includes spacial-temporal based feature like HOG, histograms of optical flow (HOF)

and motion boundary histograms (MBH). The feature computation is quite fast so that

the method can be applied to real-time human action recognition as i.e. in [54, 55].

The calculation of these feature are based on a number of consecutive frames when

the track’s lengths of individual interest points are long enough.

Classification models: Classification models can be used right after suitable video pre-

processing steps such as person detection, tracking, and feature extraction. Various

options exist. For example, one can apply 3D CNN directly on the image sequence

after the object tracking task. One can also apply time-series prediction models by

using the coordinate data collected from the children’s skeleton for each image. A

problem however is that the recognition accuracy can be compromised because of a

very high computational demand and because of confusions that arise out of inaccu-

racies in human re-identification.

Given that the time-series data is available for the classification task, the choices of

recognition models can be various. One could choose to use traditional model such

as simple recurrent neural networks. However a more recent method better suited

to solve the time-series problem would be long short term memory (LSTM) [56], or

Graph Neural networks [57], or CNN models [58]. These models might handle well

the long term dependencies given the feature sequence is long for a single physical

activity being performed [56].
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2.2 Background knowledge on selected machine learning

algorithms

This section will present several relevant machine learning models found in the literature.

Here, the term ”relevance” is with respect to algorithms that either (a) have been deployed to

PA recognition in young children, or (b) are considered in this thesis for the PA recognition

task. We will distinguish between unsupervised and supervised learning paradigms. The

mentioned methods will be evaluated, developed, and deployed later in this thesis.

2.2.1 Unsupervised machine learning algorithms

Unsupervised learning methods can be any kind of topology projection models or any clus-

tering algorithms. Because one of the main focus of this research is to explore the in-

trinsic characteristics given the high dimensional and complex structural input space, Self-

Organising Map (SOM) and DBScan are selected. The reason for this is these algorithms

can be computationally very time efficient when exploiting the parallel capability nature

of these algorithms and by implementing them on massive parallel (i.e. GPU) computing

infrastructure. Other common clustering algorithms such as K-means, PCA, and others are

less suitable because of unrealistic assumptions (i.e. K-means assumes that clusters are glob-

ular in shape) or limitations in preserving topological relationships among input attributes.

2.2.1.1 The Self-Organising Map

Teuvo Kohonen proposed the Self-Organising (feature) map, sometimes called a Kohonen

map, 30 years ago [59]. The SOM and its many variations is one of the most successful

and most widely used methods for dimension reduction and visualization. The SOM is a

type of artificial neural network [59]. The SOM performs a projection of high-dimensional

signal spaces onto low-dimensional display spaces, usually two-dimensional spaces. The
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Figure 2.3: An example of a SOM model: The 12 neurons are organized on a two-
dimensional display space.

two dimensional display space is parametrized by a two dimensional grid. At the intersec-

tion of the grid points, it is assumed that there is a vector of weights, which is of the same

dimension as the input vectors. The main purpose is to enable these weights to approximate

the training input, such that the vectors which are nearby each other in the high dimensional

feature space will remain close in the low dimensional display space. Generally, the SOM

is capable of preserving the topological properties of the input space [59].

The learning process encompasses two major steps: The competitive step and the co-

operative step. A winner neuron is identified in the competitive step and a neighbor set of

neurons is updated using a neighborhood function in the latter step. Formally, let an input

vector be defined as x = [ξ1, ξ2, ..., ξn]T ∈ <n and the parametric real reference vectors or

codebook vectors be defined as mi = [µi1, µi2, ..., µin]T ∈ <n, i = 1, 2, . . . , N ×M , where

N and M are respectively the dimension of a two-dimensional grid. There is one codebook

vector associated with each neuron in the feature map. T denotes Transpose. Note that the

vectors m have the same dimensions as the input vectors. All vectors m may be initialized

with arbitrary values. However, the probability density function p(x) of the input data is

often used as initial values for mi. The number of output units is chosen by the user. The
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method of normalizing x and m before their use in the algorithm may enhance the numeri-

cal accuracy as the reference vectors are implemented in the same dynamic range. However

only the dot product used in measuring the similarity between two vectors is needed rather

than requiring the input to be normalized. In finding the winning neuron, the best-matching

unit (BMU) mc has the maximum value in the matching criterion compared with other neu-

rons. Many matching criteria could be used especially the Euclidean distance d = ‖x−mi‖2

and the dot-product, d = xTm. The BMU is determined as follows:

c = arg min
i
{d(x,mi)} (2.1)

where c is a two dimensional vector, denoting the location of the winning neuron.

In the cooperative phase, the elements in a neighborhood set Ni of node mi are modi-

fied by using the neighborhood function hci(t) where t denotes the iteration. The learning

equation is as follows:

mi(t+ 1) = mi(t) + hci(t)[x(t)−mi(t)] (2.2)

A widely used neighborhood function is the smooth Gaussian kernel function:

hci = α(t) exp
(
− ‖rc − ri‖

2

2σ2(t)

)
(2.3)

where α(t) is a scalar learning-rate factor and the parameter σ(t) represents the kernel size.

α(t) and σ(t) are both monotonically decreasing functions of time t. rc and ri are the

location vectors of winning neuron c and a neuron i respectively.

The corresponding learning algorithm can be given as follows:

Step 1: Initialize the map node weight vectors.

Step 2: Select then present one input vector to the network.
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Step 3: Calculate the distance between the given input vector and all weight vectors, then

find the winning neuron that corresponds to the smallest distance to the input vector.

This step identifies the BMU.

Step 4: All neurons in the neighborhood set of the BMU are updated by moving them closer

to the input vector using Equation (2.2).

Step 5: Increment the time step then repeat Steps 2 through to Step 4 until a stopping crite-

rion is met.

In order to increase the mapping effectiveness, the batch map algorithm can be run for

several iterations first [59]. A few iterations of the K-mean algorithm can be effective in

eliminating border effects in the two-dimensional map [59]. hci can be shrunk to a constant

value when it is close to the convergence stage in order to achieve a better approximation of

p(x) [59].

Weight initialization: Beside the random method, weights can be initialized via linear ini-

tialization. This popular method utilizes the eigenvectors of a few of the largest eigenvalues

which are calculated based on the autocorrelation matrix of the input space. The eigenvec-

tors span the linear subspace that contains the centroid which is the mean of the rectangular

or hexagonal lattice array (feature map). The size of feature map is then set the same as the

two largest eigenvalues. mi(0) are now ordered and their point density functions “loosely”

approximates p(x) [59].

Optimal learning rate factor: It has been suggested that αi(t + 1) = αi(t)
1+hciαi(t)

or α(t) =

A
t+B

where A and B are some reasonable constants [59].

2.2.1.2 Density-based spatial clustering of applications with noise

Density-Based Spatial clustering of applications with noise (DBSCAN) is a data clustering

algorithm [60]. The unsupervised mechanism allows DBSCAN to be used as a data prepro-

cessing tool. Basically, DBSCAN can help to identify outliers in the input data space and
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help to investigate the similarity between several data categories. A particular strength of

DBSCAN is that, unlike many other popular clustering algorithms, it can find clusters of

arbitrary size and shape. In particular, given a set of points in some space, it would group

together points that are packed nearby in high-density regions (points with many nearby

neighbors), marking as outliers that lie alone in low-density regions (points with very far

away nearest neighbors). DBSCAN is one of the most common clustering algorithms and

also is also most cited in scientific literature [60]. This density-based clustering and non-

parametric algorithm can be formally presented as follows:

The input and models’ parameters include:

1. There is a set of points D in some space that one wishes to cluster.

2. Let ε be a parameter specifying the radius of a neighborhood function.

3. Let minPts be the minimum number of neighbors to identify the core point

With DBSCAN the data points are classified as core points, density reachable points,

and outliers as follows:

1. A point p is classified as a core point if at least minPts points lies within ε distance

from p.

2. A point q is directly reachable from core point p if q is within distance ε from p. Points

are only said to be directly reachable from core points.

3. A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q,

where each pi+1 is directly reachable from pi. Please note: all points on the path must

be core points, with the possible exception of q.

4. All points not reachable from any other points are maked as outliers or noise points.

5. If p is a core point, then it forms a cluster together with all points (core or non-core)

that are reachable from it.
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6. Each cluster contains at least one core point; non-core points can be part of a cluster,

but they form its ”edge” (boundary points), since they cannot be used to reach more

points.

The DBSCAN algorithm can be abstracted into the following steps:

• Step 1: Find the points in the ε neighborhood of every point, and marks points as core

if they have more than minPts neighbors.

• Step 2: Find the connected components of core points on the neighbor graph, ignoring

all non-core points.

• Step 3: Assign each non-core point to a nearby cluster if the cluster is an ε neighbor,

otherwise assign it to noise.

2.2.2 Supervised machine learning models

Supervised methods have been extensively studied and used in the machine learning litera-

ture. The MLP is well established example of a supervised algorithm [61, 62]. A vast num-

ber of algorithms have evolved on the basis of MLP over the years. Many recursive, recur-

rent, deep learning, graph neural, and convolutional neural network architectures use con-

cepts and elements of the MLP. For example, a version capable of processing time sequence

input data was presented in [63], which is denoted as Elman recurrent network. Several

approaches dealing with structured data have been proposed such as the back-propagation

through structure [64] and the extended cascade-correlation in [65]. More generic model

for data structures is proposed in [66]. However, those models are restricted in processing

acyclic and directed graphs. Some other extensions in addressing the cyclic and labeled-link

graphs were introduced in [67]. The graph neural network, a recent generation of recursive

neural network which can handle more general types of graphs such as cyclic, directed and
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Figure 2.4: A common architecture of the MLP with three layers. N input neurons, H hidden
neurons and M output neurons. Neurons are connected via weighted and directed links.

undirected graphs, was proposed in [68, 69, 70]. The followings will explain some well-

known and relevant supervised neural processing prediction models.

2.2.2.1 Multilayer perceptron (MLP)

The MLP is a fully connected feedforward neural network [61, 62]. The main characteristic

of the MLP is the activation function and the training mechanism called the error backprop-

agation. The activation function can be briefly described as follows: Given an input x as

defined before, and a corresponding target t: 0 < t < 1. When x is normalized to lie in

[-1 1] then we want to observe that the most significant change of an output occurs in the

neighborhood of x ≈ 0. This property is applied in the input data preparation stage called

squashing or scaling the input data. A widely used activation function which exhibits such

property is the sigmoidal activation function:

σ(x) =
1

1 + e−x
(2.4)

We will consider the most common MLP architecture which features: One input layer



2.2. Background knowledge on selected machine learning algorithms 31

(N neurons), one hidden layer (H neurons) and one output layer (M neurons) as illustrated

in Figure 2.4. The error or cost function is defined based on the Least mean squared error

such thatE = 1
2

∑M
k=1(tk−ok)2 where, o is the vector of actual outputs and t is the vector of

desired outputs. The activation function is associated with every neuron in the output layer

and the hidden layers. W I of dimension N × H is a weight matrix between the input and

the hidden layers and WO of dimension H ×M is the weight matrix between the hidden

and the output layer. Then, in the feedforward stage, the output of hidden units is computed

as follows: hj = σ(
∑N

i=1w
I
ijxi). Similarly, the outputs of the output layer neurons is

computed as follows: ok = σ(
∑H

j=1w
O
jkhj). The computation of an output for a given input

as described here constitutes the feedforward step of the algorithm.

Learning through backpropagation mechanism: Learning occurs through the backprop-

agation stage in which the output of the network is compared with a given target value, and

then all elements in the weight matrices are updated by using a gradient descent method

with a given cost function. A common cost function is defined as E = 1
2

√
(t− o)2. The

amount by which weights change can then be computed by ∆w = −γ∇w(E) where γ is a

learning rate and ∇ is the gradient term. In the case of using a sigmoidal function hidden

layer neuron activation, we note that the corresponding derivative is σ′(x) = σ(x)(1−σ(x)).

Computing the gradient using the error back propagation algorithm for the output layer, we

have:
∂E

∂wOjk
= (tk − ok)ok(1− ok)hj (2.5)

The gradient in the hidden layer is given by:

∂E

∂wIij
=

M∑
k=1

(dk − yk)yk(1− yk)
( H∑
j=1

wOjk
∂hj
∂wIij

)
(2.6)

where ∂hj
∂wI

ij
= hj(1 − hj)xi. Weights are updated, guided by the learning rate, into the

negative direction of the gradient.
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The MLP has some known limitations:

1. The network requires the input samples to be normalized, therefore a pre-processing

step should be taken into account for the effective functioning of the activation func-

tion. The value range of inputs needs thus to be know a-priori.

2. The data fed into the input layer is a vector, so that in the cases of the input data

featuring sequences, tree structure or graph, more generic models are required.

3. The algorithm is prone to be trapped in a local minimum of the error function due to

the complex landscape of the error surface.

2.2.2.2 The Graph neural network (GNN)

The GNN was first introduced in [68]. The method has been applied to a number of practical

applications, for example to XML document and sentence classification [71, 72], to web

page ranking and processing [73, 74, 75], to image recognition applications [76], and others.

A comprehensive explanation of the GNN learning model and computational complexity is

presented in [69, 70]. The GNN is considered one of the most generic models which can

accept various types of input including vectors, sequences, and graphs. Sequences and

graphs can be directed or undirected, ordered or unordered, edges can be labeled. Cyclic

graphs can also be processed by this method.

The GNN consists of two network components: The encoding network and the output

network. In the encoding network, consider the a node c of a given graph and its neighboring

(connected) nodes ne, then xc denotes the state of current node in the given graph, xne is

the states of neighbors of xc. Let lc be the label of c, lne be the labels of ne. Linked-edge

labels between c and a node u of ne is l(c,u). s is the dimension of the nodes’ state. For

non-positional GNN, the current node’s state and the output o corresponding to each node
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at time step t are calculated as follows:

xc(t) =
∑
u∈ne

hw(xu(t), lu, lc, l(c,u))

oc(t) = gw(xc(t), lc) (2.7)

where hw and gw are local transition and output functions, respectively. Note that the state

x is computed by a dynamic system called the encoding network whereas the output o is

computed by a feedforward network called the output network. The output network is an

MLP which takes the state x and a node’s feature vector l as input. Function hw is introduced

in order to make the GNN to be applicable to un-ordered graphs. For simplicity we can

reduce the representation of 2.7 and 2.8 as follows:

x = Fw(x, l)

o = Gw(x, lc) = Gw(Fw(x, l), lc) (2.8)

Here Fw and Gw are global transition and output functions, respectively. l is stacked by

all labels or current node, edge and neighbor node labels. However, note that x in Equation

2.8 the left hand side is not the same as x in the right hand side. At time step t, we compute

the current state xc of a node in the left of Equation 2.7, then in the next time step t + 1,

that value of xc would become xne in the right hand side, if at this time step we consider

the activation of the c neighboring node. Because of the mutual dependencies between

nodes, the state value xc is iteratively calculated until a stable solution (called stable state)

is obtained. The states are guaranteed to converge. The corresponding proof is provided in

[68].

Target values may be associated with any node in an input graph. The GNN training

algorithm uses an error function similar to that of the MLP to apply the gradient descent

method for adjusting the internal weight parameters. The error function is calculated as
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follows:

Ew =

p∑
i=1

q∑
j=1

(tij − oij)2 (2.9)

where p is the number of graphs in the dataset, q is the number of supervised nodes in a

particular graph.

2.2.2.3 Support vector machine

Unlike neural networks, SVM is a non-parametric machine learning algorithm. The SVM

is one of the most popular kernel methods [77]. The SVM algorithm is based on a su-

pervised learning regime. The fundamental idea is that given a set of input feature vec-

tors and associated class labels, SVM will construct a hyper-plane to separate the data in

high-dimensional space into binary categories [77]. The basic form of SVM is defined as

a non-probabilistic linear classifier. However, SVM can in practice efficiently perform a

non-linear classification by the application of kernel functions. One of the most widely

used kernel function is the radius basic function k(xi, xj) = exp
(
− ‖xi−xj‖

2σ2

)
, where σ de-

notes the kernel function parameter, xi and xj are two arbitrary input samples. The model

would be formally defined as follow. Given a set of training examples D and correspond-

ing class labels, D = {(xi, yi)|xi ∈ Rn, yi ∈ {−1, 1}}Ni=1. The output of SVM is defined

as y =
∑N

i=1 αiyiK(x, xi) + b, where K(.) denotes a kernel function. (xi, yi) is the i-th

training sample and corresponding class label in N training inputs. If an unseen sample x is

present, the output y of SVM is computed accordingly. The model parameters α = {αi}Ni=1

are learned by solving the optimization problem raised in the dual form:

min
αi

( N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiyiαjyjK(xi, xj)
)

(2.10)

satisfying the constrains
∑N

i=1 αiyi = 0, 0 6 αi 6 C, i = 1, ..., N , where C denotes an

upper bound for the soft margin of the optimal hyper-plane.
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Figure 2.5: LSTM cell structure of the LSTM neural network model

2.2.2.4 Long Short Term Memory

The LSTM is a recurrent NN model which is effective in solving the long-term dependency

problems [56]. The LSTM architecture contains special memory blocks located at the hid-

den layer. Each memory block may include one or more memory cells. The memory is

built with a fixed self-connection. The model is learned by seeking an appropriate way to

open and shut the input and output gates. For instance, the gate remains close if the model

assesses the input information as not useful and vice versus.

Figure 2.5 illustrates one memory block with a single cell. The input xt at time step t

is given to each the input, output gate and the memory cell. The corresponding weights are

Win,Wout,Wc. The squashing function used in the input gate and output gate are sigmoidal

f = 1
1+e−x . The squashing function at for input of the memory cell is the logistic sigmoidal

function g = 4
1+e−x−2 and for the output of the memory cell it is a centered sigmoid g =
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2
1+e−x−1 . Lets denote Yin, Yout, Yc to be respectively the outcome of the input, output gates,

and the memory cell. We can then define formally:

Yin = f(
∑
Win × xt)

Yout = f(
∑
Wout × xt)

Sc = Sc + Yin × g(
∑
Wcxt)

Yc = Yout × h(Sc)

A major problem with gradient descent for standard recurrent NNs is that the error

gradients vanish exponentially quickly with the size of the time lag between important

events [56]. With the LSTM memory blocks, however, when the error values are back-

propagated from the output, the error becomes trapped in the memory portion of the block.

This is referred to as an ”error carousel”, which continuously feeds error back to each of the

gates until they become trained to cut off the value. Thus, regular back-propagation become

more effective by training LSTM blocks to remember values for a longer duration.

This method has been very successful in solving the long-term dependency problem thus

contributing to advancements in a range of pattern recognition learning problems such as in

speech signal recognition, handwriting recognition, and general time-series problems [56].

The LSTM can handle learning problems with considerable long term dependencies by uti-

lizing the special memory unit located at the hidden layer. Each memory cell is built with

a fixed self-connection. The truncated update rule is as follows: Error signal is trapped in

the cell and cannot be changed. The output gate of the memory cell has to learn which

error to trap by properly scaling them. Meanwhile, the input gate learns when to release the

error, again by a scaling method. Then the error is truncated once it is allowed to leave the

memory cell. The design of such memory units allows the gradient of an error function to

freely back-propagate through the network with possibly infinite duration. More recent de-

velopment of LSTM is deep temporal LSTM [78] which contains a finite number of hidden
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layers.

2.2.2.5 Fully Recursive Perceptron Network (FRPN)

The FRPN is a recent generation of multilayer perceptron (MLP) [79]. FRPN is an effective

alternative to MLPs that feature a large number of hidden layers such as those found in deep

neural networks. Basically, the FRPN consists of an input layer, an output layer, and one

pool of hidden neurons. The unique feature lies in the composition of the hidden neurons.

The hidden neurons are fully connected with algebraic (instantaneous) connections. The

FRPN thus eliminates the need of multiple hidden layers and hence eliminates the need of

identifying the optimal number of hidden layers as well as the number of neurons for each

hidden layer for a given learning problem [79].

Training an FRPN model is similar to the case of MLPs. In FRPN, however the learning

mechanism is performed in a recursive manner. The mechanism is similar to the encoding

network of the GNN except that the input to the FRPN remains static until a stable state

is reached. Given the number of hidden neurons, we denote as a fully connected pool of

neurons, each neuron in the pool computes its own weights using the weighted inputs from

the input layer and from all neurons in the pool. The FRPN training algorithm uses a gradient

descent method in two steps: The forward step which is analog to the feedforward step of

the encoding network in the GNN and the backward back-propagation step for computing

the weight updates. In the forward step, the outputs of the pool of neurons are applied

repeatedly until they converge to a stable state or until a maximum number of recursions is

reached. In the backward step, the weights are updated based on the gradients of an error

function with respect to the weights. The training procedure is progressed repeatedly for

each training sample or for each batch of training samples and for a pre-defined number

of training iterations [79]. An advantage of the FRPN is that it can simulate deep neural

networks of arbitrary depths without requiring the specification of the depth.
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2.2.2.6 Deep learning and Convolution neural networks

Research in Deep Learning and Convolutional Neural Networks (CNN) is rapidly evolving.

This section presents a snapshot of relevant and current (as of date of thesis commencement)

literature on deep learning models learning and CNN. The focus will be on algorithms that

accept vectorial input. The earliest exploration of deep leaning originated from MLPs. Le-

cun proposed to use multiple hidden layer MLP with very large hidden layer size [80].

Lecun’s work then led to the introduction of CNNs [81, 82]. Both of the models were

successfully applied to digit and image recognition problems. Then Hinton and Bengio in-

troduced Deep belief networks (DBN) by using either the Restricted Boltzmann Machines

(RBM) [83] or Auto-Encoders [84] as the unsupervised pre-training layers, followed by

a fully connected MLP for the supervised learning stage. More recently, and inspired by

the biological reaction on the visual area V2 of human brain cortex, Andrew Ng proposed

Sparse DBN for feature learning from images [85]. A more detailed overview and analysis

of deep learning architectures can be found in [86, 87, 58, 88]

In practice, a CNN or ConvNet is an important class of deep neural networks. Its ap-

plications are mostly focused on image and video perception. The key characteristics of

CNN include shared-weight architecture and translation invariance. The weight sharing and

sparsity nature of the network architecture helps the model to learn high dimensional input

effectively [58, 89]. Hence, given a high dimensional input of color value pixels in an input

image, the number of learnable parameters is significantly smaller when compared with the

fully connected and traditional multi-layer perceptron networks if provided with the same

number of network layers.

In addition, CNN learns the filters that in traditional algorithms needed to be hand-

engineered. The major components of CNN include different types of learning layers:

1. The convolutional layer is the most important part. The layer runs a convolution op-

eration to the input and then passes the result to the next layer. The inspiration of the
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convolution layers is to imitate the actual neuron’s response to a visual signal. Each

convolutional neuron only processes data for its own receptive field. Learning this

ways makes the network more sparse. For this reason, CNN can resolve the vanish-

ing or exploding gradients problem that can be encountered when training traditional

multi-layer neural networks with many layers by using backpropagation.

2. The local or global pooling layer is another feature of the CNN model. The pooling

layer down-samples the outputs of neuron groups from one layer to a single neuron in

the next layer. For example, max pooling layers use the maximum outcome value of

neuron groups at the prior layer. In addition to max-pooling, average pooling layers

use the average value of neurons in the cluster at the prior layer.

3. The fully connected layers. These are exactly same as the traditional MLP layers. It

should be noted that in a fully connected layers, each neuron receives input from every

element of the previous layer. However, in a convolutional layer, neurons only receive

input from a restricted sub-area of the previous layer. The sub-area is basically of a

square shape, and is called the receptive field. In the other words, in a fully connected

layer, the receptive field is the entire previous layer whereas in a convolutional layer,

the receptive area is smaller than the entire previous layer.

Weights and bias: A neuron in CNNs computes an output value by applying an activation

function to the input values coming from the receptive field in the previous layer. The

activation function is specified by a vector of weights and a bias value which is usually a

real number. Learning in a neural network is a procedure to make incremental adjustments

to the biases and weights. The vector of weights and the bias are called a filter. The filter,

similar to encounter filter in image processing, helps to identify some feature of the input

e.g., a particular edge, arc or shape. In CNN architecture, the same filter is shared between

many neurons. This reduces the memory footprint since a single bias and a filter is used
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across all receptive fields, rather than each receptive field having its own bias and vector of

weights.

2.2.2.7 Yolo network

Yolo (You only look once), is a typical type of deep neural network for the purpose of

object detection and classification [33]. Object detection requires determining the location

of certain objects on a given image and identifying the class labels (i.e. object category) of

those objects as well. There are a wide range of deep learning algorithms used for object

detection and classification such as region based CNN (R-CNN) and its variations [90, 34],

deep residual neural network [35], google inception network [91], densely connected deep

neural network [92] and many others, which go beyond the scope of this thesis. Interested

readers should be referred to comprehensive studies on applying deep learning in object

detection and recognition [93, 89].

This section is limited to describe one representative of deep learning algorithm for

object detection and classification, Yolo. To put it simple, one can take an image as input,

pass it through the network and ultimately one can get a vector of bounding boxes and class

predictions in the output. The input image is divided into an S × S grid of cells. Each

grid cell predicts B bounding boxes and C class probabilities. The bounding box prediction

contains the coordinates representing the center of the box and the confidence score. The

confidence score reflects the probability that the object is presence or absence on the image.

Given an object present on the image, a grid cell is said to be responsible for predicting the

object if the center of the object falls into that grid cell. Since Yolo considers all the grid

cells and looks at the entire image once when making predictions (hence the name of the

algorithm), the model implicitly encodes contextual information about object and hence is

less likely to predict false positives on background.

Loss function: The Yolo loss function contains 4 different components:
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1. An element which computes the loss related to the predicted bounding box position.

2. An element which represents the loss related to the predicted width and height of the

box. The error metric reflects that small deviations in large boxes matter less than

in small boxes. To address this the square root value of the width and height of the

bounding box is used instead of the width and height directly.

3. A component that computes the loss associated with the confidence score for each

bounding box predictor.

4. A component that is similar to a normal sum-squared error for classification.

Thus, the first three components compute the loss for the regression task to detect the right

object on the image while the final component is for the purpose of identifying which class

label the object belongs to.

2.3 Conclusion

This chapter has given a brief review of approaches to children physical activity recognition

based on two respective types of input data, namely the wearable accelerometer sensors and

video sequences. For each approach, we have listed a number of relevant work in literature

and pointed out some limitations. Advantages and disadvantages for these problems have

also been presented. Additionally, several well-known machine learning algorithms that will

be used later in this thesis, have been described in some detail. Special attention was given

on the unsupervised learning models such as SOM and DBSCAN since one of the main

aim of this thesis is to develop a visualization tool for data analysis and data knowledge

expression. Supervised models including MLP, SVM, LSTM and deep learning algorithms

have also been explained since the aim of the thesis is to classify samples into activity

classes. Moreover, the deep learning models can be utilized as a regression model for object

detection or used for the classification task and is thus relevant to this thesis.



Chapter 3

Description of the Physical Activity

Datasets

3.1 Introduction

This chapter describe the three physical activity datasets which were collected in the course

of this research, either by our collaborative partners, or by ourselves. These datasets were

created to support research in metabolic consumption rate of humans, engaged in physical

activities, and they were collected under controlled practical situations. Therefore, they are

far from the well curated datasets which one often encounters in machine learning bench-

marks. The nature of these datasets dictates to a large extent the approaches which we will

deploy for their processing, in order to answer the question: can we classify such datasets

into different categories of physical activities. By categorizing these activities into differ-

ent categories together with the time duration in which the physical activity was conducted

by a participant, sports physiologists will be able to use the information, to compute the

metabolic consumption rate involved in performing a particular physical activity type.

Three sets of physical activity data were collected, one involving adolescents and preschool

children, (PA2012 dataset), while the other two involved only preschoolers (PA2014 dataset

42
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and PA2016 dataset). The physical activities conducted during these trials were different in

each trial, and they could be different within a trial, as they were conducted over different

dates. While conducting the trial on preschool children, because of their age, it was quite

difficult to ensure that they will perform the designated category of physical activities, for

example, it was observed that a child, in the middle of a trial on ‘cycling’ got off the bike,

ran around, then went back onto the cycle to continue. The whole sequence of which would,

however, still be labelled as ”cycling”.

Owing to the imperfect conditions under which the data was collected, that is the reason

we decided to introduce the dataset collected first, before discussing the problem which we

wish to solve in this thesis, as the nature of such datasets dictate to a large extent the type

of information which may be extracted, pertinent to solving the classification problem, and

more specifically, they dictate on the types of approaches which would lead their resolutions.

3.1.1 Accelerometer Data from a Wearable Device

An accelerometer is an electromechanical unit used to measure acceleration forces which

might be static such as the continuous gravity force (G-force) or be dynamic to measure

changes in movements or vibrations of an attached object. Acceleration is the measure of

how large is the change in velocity, or in other words, the change in speed within an amount

of time. For example, a car accelerating from a stopping point to a speed of 60 mph in six

seconds will be calculated as an acceleration of 10 mph per second (60 divided by 6).

Accelerometers are used widely and in a multitude of disciplines. For example, ac-

celerometers are used in portable computing devices like laptops to protect hard drives from

damage. If the laptop is suddenly dropped while being in operation, the accelerometer will

detect the free fall and will temporarily park the sensitive read-write head(s) of the hard drive

to prevent them from hitting the hard drive platter(s). In another example, accelerometers

are used in cars that would help in car crash situations. They can be used to detect a crash
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and to instantaneously relieve airbags.

In essence, a dynamic accelerometer measures G-force to determine the angle at which

the wearable device is tilted with respect to the Earth. Given the acceleration information,

users may know how their wearable device is moving, such as moving uphill, falling over

or tilting at any angle. For example, smartphones can rotate their display to meet the user

viewing angles based on their 3D position [94].

The principal functionality of an accelerator is as follows. Most commonly the accel-

erator’s circuit operate either on the piezoelectric effect or via capacitance sensors. The

piezoelectric effect is the most common form that uses microscopic crystal structures which

are more or less stressed due to accelerative forces. These crystals result in a voltage from

the stress, and the accelerometer’s circuit interprets the voltage to determine velocity and

orientation. Another common technique is via capacitance sensors which sense changes be-

tween microstructures located next to the device’s circuitry. If an accelerative force moves

one of these structures, the capacitance will change and the accelerometer will translate the

changes to voltage for interpretation [94]. Typical accelerometers measure G-forces for each

of three axes in which the first two are to determine two-dimensional changes in movement

and the third to determine the 3D positioning.

Figure 3.1 shows some examples of 3D accelerometer data collected from an accelerom-

eter attached on a kid’s body part when performing several physical activities. Smartphones

commonly make use of three-axis models, whereas cars use only a two-axis to determine

the moment of impact. The sensitivity of an accelerometer is quite high since it is intended

to measure very moment shifts in acceleration. The more sensitive the accelerometer, the

more easily it can measure acceleration.

Accelerometers, while actively used in many electronics in todays world, are also avail-

able for use in physical health disciplines as they will be used in this research. This thesis

considers accelerometers that have been integrated in a lightweight wearable device such as
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Figure 3.1: Some examples of 3D accelerometer data.

those that can be attached to a wristband or a belt clip. The 3-axial accelerometer ActiGraph

GT3X+ is a light weight, low cost, precision instrument which has been used by us for data

collection. The ActiGraph GT3X+ can sample G-forces at 100Hz and has been deployed as

will be described in the following subsections.

3.1.2 School children and Adolescence data (PA2012 data)

This dataset was created by our research partner Professor Stewart Trost at Queensland Uni-

versity of Technology (QUT) in 2012. The dataset contains observations from 100 children

and adolescents in the age group of 5 to 15 years old [5]. The accelerometer used in collect-

ing this data is set at 30Hz sampling rate and positioned at the waist of participants using

flexible elastic belts. Each participant performed 12 activity trials including lying down,

handwriting, laundry task, throw and catch, comfortable overground walk, aerobic dance,

computer game, floor sweeping, brisk overground walk, basketball, overground run/jog,

and brisk treadmill walk. Each activity trial lasted 5 minutes, except for the lying down
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Table 3.1: Activity classes in the PA2012 dataset.

ID PA type class Activity inclusion
1 Sedentary Lying down and handwriting
2 Light activities computer game, floor sweeping, laundry task, and throw and

catch
3 Moderate-to-vigorous Aerobic dance and basketball
4 Walking Comfortable overground walk, brisk overground walk, and

brisk treadmill walk
5 Running Running or Jogging

trial, which was completed in 10 minutes. Based on the movement pattern and the amount

of energy expenditure, these activities are categorized into 5 classes: (1) sedentary, (2) light

activities, (3) moderate, (4) walking, and (5) running, as shown in Table 3.1.

All accelerometer data can be modelled as time series or temporal sequences. This then

becomes a sequence to label classification problem, since each activity is composed of a

series of time-step based acceleration information. It can be assumed that the information at

a current time-step is influenced by the information happened in the past.

3.1.3 Preschool children physical activity cohort 2014 (PA2014 data)

This dataset was created as part of a feasibility study in 2014. Eleven children aged 3-6 years

were recruited to participate in the study [25]. Data collection was performed by our project

team at the University of Wollongong. Parent consent was obtained prior to participation by

the child.

Participants were requested to complete 12 protocol activity trials over two laboratory

visits scheduled within a 3 week period. The 12 activities performed by the children are

slightly different in both visits, but for analysis purposes, they are grouped into five groups,

the grouping of the activity into the same group is based on the approximate equivalence of

the estimated energy expenditure by the child in performing the activity.

Children performed the following six activity trials during the first visit: Watching TV
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Table 3.2: Activity classes in the PA2014 dataset.

ID PA type class Activity inclusion
1 Sedentary Watching TV, Story time, Playing iPad game, Quiet play
2 Light lifestyle activities Treasure hunt, Cleaning up, Collage
3 Moderate-to-vigorous Obstacle course, Bean bags, Riding bicycle or tricycles
4 Walking Walking
5 Running Running

(TV), sitting on the floor being read to (reading), standing making a collage on a wall (art),

walking (walking), playing an active game against an instructor (active game), and complet-

ing an obstacle course (obstacle course). The following six activity trials were performed

during the second visit and by the same participants: Sitting on a chair playing a computer

tablet game (tablet), sitting on the floor playing quietly with toys (quiet play), treasure hunt

(treasure hunt), cleaning up toys (clean up), bicycle riding (bicycle), and running (running).

Each trial lasted 4-5 min. These 12 activities were then grouped into five activity classes, the

same five classes as those in the 2012 dataset for consistency through the activities covered

by each of the five classes differed as is shown in Table 3.2. The main purpose of class divi-

sion is that the PA activities of more or less equivalence in the amount of energy expended

are considered to belong to the same group, while running and walking ones are distinct in

terms of energy expenditure and are thus separated to two different classes. This in turn

means that the class ”sedentary” contains four times as many samples as each of the classes

”walking” and ”running”.

Participants were equipped with ActiGraph GT3X+ accelerometers on three different

body locations, hip, left wrist, and right wrist. The acceleration output is recorded with the

user-specified sampling frequency of 100 Hz. Those sensors measured and stored triaxial

acceleration of those body locations. As a result, there are three datasets extracted from

those accelerometers, denoted as Hip, Lwr and Rwr data corresponding to the data collected

by the accelerometer mounted to the hip, left wrist, and right wrist respectively.

Energy expenditure (EE) was also recorded via a room based calorimetry system and
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a face mask. Two EE measured were the metabolic equivalents (METs) and activity en-

ergy expenditure (Kcal/kg/min) denoted as AEE. The face mask attached to the children’s

mouth measured the difference between inhaled and exhaled CO2. The two real values of

METs and AEEs were computed from those measurements accordingly. Though energy

expenditure prediction will not be a focus of this thesis.

3.1.4 Video sequences captured during the PA2014 trials

In addition to the data collected via acceleration sensors, video recordings were taken during

the 2014 trial. A tripod mounted video camcorder recorded the activity trials using 512×512

image resolution at 25 frames per second. The time to start the activity trials and the time

displayed on the video were noted, hence one can use the video sequences for the purpose of

data preparation and validation. In particular, one can examine: (1) if there is a missing bit

of time when the child was doing something else rather than doing the assigned activity trial;

(2) if the input signal from sensors was consistent (with the designated activity trial type) and

with no loss of information; (3) if there is some unwanted inferences during the experiments.

The camera is mounted on a tripod near the middle of the laboratory. The camera was left

unattended most of the time but was rotated occasionally to follow the movement direction

of the participant doing the PA trial. This is thus not a fixed mounted camera hence it raises

some challenges for image processing, object detection, object tracking and recognition.

In total, there is approximately 5 (minutes) × 12 (activity trials) × 11 (participants) =

660 minutes (or 11 hours) of video recorded. The video sequences contain segments in

which there is no presence of the performing subject (i.e. the subject left the field of view).

Such segments will be removed as part of a video pre-processing step. Cutting and pasting

of video sequences and labelling was performed manually in order to obtain a single video

file for each individual activity trial.

The original purpose of the video recording is to serve as “evidence” of compliance
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with procedures as approved by the Ethics Committee on Experiments Involving Human

Subjects. Nevertheless, in this thesis we use the videos for validating the accelerometer

recordings. This is because a child even if one suggests what the designated activity type is,

say, cleaning up toys, a child might instead play with the toys for sometime whilst walking

between placing the toys into a designated area, before recommencing cleaning up. From

the visual evidence captured by the videos we know that it was common that a child devi-

ated from a designated activity during a trial. This correspondingly affects the data quality

and would make it difficult to differentiate activity classes from the accelerometer measure-

ments. However, such episodes would be readily differentiable from the video recordings.

Therefore, the video recordings are considered in this thesis as an alternate source of infor-

mation in order to investigate, via a comparison of results, the limiting effects of the noise

in the accelerometer data. We find that while using the video recording in this role, it is a

simple step to edit the video recordings as well, so that they are approximately consistent

with the accelerometer measurements; it is approximate because manually it is very difficult

to align the two different modalities of recordings precisely, as they are being sampled at

different sampling rates. A curios question arose: what if we use video processing tech-

niques, like object tracking, object recognition algorithms on the edited videos, what might

be their classification accuracies, when compared with those in the accelerometer measure-

ments. In other words, the two modes of measurements are not meant to constitute basis

of multiple modality fusion, because of the ways in which the accelerometer measurements

and the video recordings were edited, would render this exercise futile. Had fusion been

intended we would have to have the camera following and tracking the child continually,

rather than intermittently.
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3.1.5 The Preschool PA cohort 2016 (PA2016 data)

This dataset was created by our research group at UoW in 2016. 16 children aged 3-6 years

were recruited to participate in this study. Actigraphs and GeneActivs (the accelerometers

used) were mounted in the same three locations of the child, viz., hip, and both wrists, as in

the 2014 study.

The datasets thus also contain triaxial accelerometer data. Nine physical activities were

performed: (1) Lying down; (2) Toys at table (free play); (3) Story time; (4) Whiteboard;

(5) Treasure hunt; (6) Pack Away; (7) Dance; (8) Bean Bag Game; (9) Captain is coming.

For this dataset the physical activities were not grouped into different PA classes. This

would prevent comparisons of the performances of the proposed machine learning algo-

rithms across the three datasets. A solution to this issue will be presented later in Chapter 7.

Video recordings of the trials are made under similar conditions to those described in the

2014 study.

3.2 Processing Problems Encountered in the Collected Data

These three datasets are collected for the purpose of supporting metabolic consumption,

and energy expenditure of a participant performing some specified physical activities. They

are not intended for bench-marking machine learning algorithms. Therefore, there are a

number of problems faced when using machine learning types of algorithms to process the

data collected. These problems are described as follows:

1. The secondary role played by the video recordings. As indicated, video recordings are

obtained as a way to validate the label placed manually on a particular accelerometer

recording. It is not designed for conducting multi-modal fusion possibilities so as to

enhance the classification accuracies of either modality. Therefore, in this thesis, we

will consider these two recordings as separate modality recordings and no attempt
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would be made to fuse them together.

2. In the 2012 study, it involves both adolescents, and pre-school children, while the

2014 study and 2016 study only pre-school children are involved. Therefore some

caution would need to be exercised in comparing the results across the three datasets.

3. In the 2012 study only one accelerometer was involved, while in both the 2014 study

and the 2016 study three accelerometers were deployed. In other words, in the 2012

study, only one accelerometer recording is available while in the 2014 and 2016 stud-

ies, three accelerometer recordings are available. So some care would need to be

exercised in interpreting the results obtained by a machine learning algorithm.

4. As indicated above, the accelerometer recordings are labelled according to the trial

rather than by the activity actually performed by the child. This introduces consid-

erable noise. Data cleaning was not engaged. This thesis will instead investigate the

robustness of PA prediction methods to such noise.

5. In both the 2014 and 2016 studies only few participants were involved in the trial; 11

and 16 respectively for the 2014 and 2016 studies. While for the estimation of energy

expenditure and metabolic rates, this would not cause any issues, but for supervised

machine learning approaches, such small numbers would cause severe challenges for

cross dataset comparisons.

6. The datasets are unbalanced. Some classes such as the class ”sedentary” in the PA2014

dataset are five times larger than the smallest classes such as the classes ”running” and

”walking”. This thesis will thus investigate the suitability of PA prediction methods

to model unbalanced data.

7. As the types of activities vary over the three datasets: 12 in the 2012 study, 6 in the

first visit and another 6 in the second visit for the 2014 study, and 9 for the 2016
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study. The activity type varies in each of these four recordings. For convenience

the two visits in the 2014 study are grouped as one visit, i.e., 12 types of physical

activities for that study. Moreover, for convenience sake, these 12 types are grouped

into five categories. For estimation of the energy expenditure, and metabolic rates,

such variations in each trial would not make much impact, say, in the 2014 moderate

energy expenditure category: obstacle course, and riding a bicycle or a tricycle, but

such actions would make it quite different to being in the same category in the video

recordings. Therefore, some care must be exercised in interpreting the results related

to the video classifications.

These issues largely dictate the type of machine learning algorithms which we may use

to process the data. Moreover, as we will introduce some new machine learning algorithms

which have not been tried on such datasets previously, we need to use some benchmark

datasets to validate the proposed machine learning algorithms first, before applying them

to process these three datasets. The description of such benchmark datasets would best be

described after we have provided an idea of the type of approaches which we will use to

process these three datasets.



Chapter 4

Problem description

4.1 Introduction

As indicated in the previous chapter, the datasets collected during those three studies, viz.,

PA2012, PA2014, and PA2016 respectively can be considered as two separate modalities:

accelerometer recordings and video recordings. As these are considered as two separate

modalities, the processing of the data would be different. Therefore, we need to formulate

two different problems, one for each modality to solve.

4.2 Physical activity recognition problem using accelerom-

eter recordings

Given that we have a set of accelerometer recordings, either as recordings from one ac-

celerometer, or from three accelerometers, each with an associated label (the training set),

is it possible to classify them into distinct categories. Moreover, is it possible to predict the

labels in a testing set which consists of accelerometer recordings but which are assumed to

be without any associated labels?

53
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When formulated in this manner, this defines a classification problem. Since these data

sequences are not well-known, indeed we are probably the first one in the world who con-

sidered this classification problem, involving these three datasets, therefore the nature of

these datasets are not known. We propose first to familiarize ourselves with the datasets,

through visualization of the datasets, on a two dimensional display space. We propose to

use HRSOM (high resolution self organizing map) to do so, as it is known that the SOM,

proposed by Kohoene originally is capable of projecting from a high dimensional feature

space to a two dimensional display space, with the property that any two feature vectors

close to one another in the high dimensional feature space will remain close in the two di-

mensional display space. By being able to visualize the relationships among the features in

different categories with itself (other samples in the same categories) and those samples in

other categories, in the high dimensional feature space on the display space, it will inform

us of those relationships. As those relationships among the feature vectors could be quite

intricate, therefore, we will need the display space to be of sufficient resolution so as to dis-

play such intricate details. This is why we will need to use a HRSOM, instead of one which

is lower resolution, or insufficient resolution to display those intricate relationships.

In this process of discovery we found that such visual information can be incorporated

into the features, to serve as an aid in the classification scheme (for details please see the

Chapter 6). We then tackle the classification problem when the dataset is severely unbal-

anced. For this we propose to use a new machine learning algorithm which is called SSEN

(Synthetic Sampling Ensemble Network).

Then we tackle the problem of how to make use of information (learned knowledge) in a

dataset, e.g., the PA2014 dataset, and apply it to a different dataset, e.g., the PA2016 dataset.

Therefore we will use transfer learning techniques which can transfer learned knowledge

from one dataset to another. This will be reported in Chapter 7.
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4.3 Problem Formulation for Video Recordings

Given that we have video recordings concerning different subjects performing different tasks

(the training set) the problem is that if the trained model can predict the class labels of videos

in a testing set which consists of videos only, without any labels. Unlike the accelerometer

situation, the videos have been edited, to remove segments which are inconsistent with the

label on the video. Therefore the results we will obtain will be a theoretical maximum, as in

practice the videos in the testing set would not be edited. The problem as posed is a standard

video classification problem, like in human activity recognition problems.

In this case, as we are dealing with videos, there is no need for us to learn about the

characteristics of the videos, as they are readily visible. Secondly, as we are dealing with a

standard human activity classification problem, we decided to use the “best of breed” at the

time with some modifications when we processed such datasets. The details of this will be

contained in Chapter 8. A major issue of this would be the video classification algorithm

would be subjected to the vagary of the “best of breed” approach at the time, and so the

approach used would not be the latest approach in the field. We justify the deployment

of the “best of breed” at that time of processing the video data by the fact that the video

recordings were not of any use except that they serve a secondary role in validating the

accelerometer recordings. It is just our curiosity to see if processing such information using

the “best of breed” video classification algorithms at the time to see if anything useful might

come out of such an exercise. In other words, the main focus of this thesis is the possibility

of classifying accelerometer recordings of physical activities into categories, and not on

video classification algorithms. Therefore, we can just use some “best of breed” video

classification algorithms at the time when the processing was performed. As it happens,

to our surprise, the results are quite comparable to those obtained with the accelerometer

recordings. This is somewhat unexpected, but then this serves as a confirmatory result for

the ways in which we deploy the proposed SSEN and transfer learning techniques. Details
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of this discussion will be elaborated in Chapter 9.

4.4 More datasets for model validation

Since one of the research objectives is to develop and test novel classification models using

the accelerometer recordings, the use of other benchmark datasets for model evaluation

is considered. A set of well studied and well understood datasets is selected. Datasets

were chosen which either (a) share certain properties with the PA datasets to be deemed

relevant for the purposes of the study in this thesis, or (b) feature some properties which

are not present in an ideal PA dataset but which would be encountered in physical activity

observations in an an environment which is beyond control. This situation is especially

rampant in wishing young children to do as requested. For example, the PA data were

collected as part of a controlled environment. The occurrence and duration for each activity

is therefore designed to be balanced. But uncontrolled (free play) settings would perform

some activities much more frequently (i.e. playing games) than other activities (such as

household tasks). This means for popular activity types, like game playing, there would

be much longer recordings than the activity type, like, household chores, as children, as

can be understood, would be less likely to be performing those designated activity which

would not provide them with an incentive to perform, during the trial, and hence this would

result in a shorter recording. This would create issues of disparate length recordings of

different activity types. To analyse robustness of the proposed machine learning algorithms

on unbalanced data we thus select suitable benchmark datasets which would have similar

characteristics.

As we do not know the characteristics of the collected PA datasets, as a result we propose

to use a HRSOM to help us explore those characteristics. Therefore, we need to choose a

HRSOM of sufficient resolution which would display some of the intricacies which might

be present in the PA datasets. Therefore we have chosen a benchmark dataset. viz., the
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policemen dataset. which would have sufficient degree of intricacy (indeed the intricacy of

the policemen dataset can be adjustable to arbitrarily fine precision) to give an idea of the

likely resolution of the HRSOM to be used to study the PA datasets.

Other datasets selected either to feature severely imbalanced in terms of class distribu-

tion, or where the sample size is much larger in order to verify robustness and scalability of

the classification models.

Hence a number of artificial and real-world challenging datasets will be used to ensure

that the proposed classification models would perform in a robust fashion in the PA classifi-

cation tasks including free-play situations.

We have used the following datasets: (1) the policemen dataset, apart from being used

for the purpose of finding a SOM with sufficiently high resolution to visualize the intri-

cate patterns in the physical activity datasets, it can also be used in the evaluation of the

proposed supervised learning algorithm, SSEN; (2) web spam detection datasets: UK2006

and UK2007, and (3) an intrusion detection dataset, UNSW-NB15 dataset. (2) and (3) are

deployed to evaluate mainly the capabilities of the proposed supervised learning algorithm,

called SSEN, in particular of its ability to handle unbalanced datasets.

4.4.1 The Policement dataset

The policemen dataset is an artificial dataset which is used for the purpose of assessing

visualization and clustering capabilities of machine learning algorithms [95]. The dataset

consists of an arbitrarily large database of images that are produced via a given attributed

plex grammar [95]. The dataset contains three categories of images: policeman, house,

and sailing boat. Each category of images contains a number of sub-classes dependent on

the specific features associated with the image. For example, a policemen image contains

a hat, a head, a torso, two arms and two legs. All policemen whose left hand is raised

belong to one sub-class whereas all other policemen belong to another sub-class. Similarly,
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Table 4.1: The distribution of the 12 classes in the policemen dataset.

(LL) = lower left; (UR) = upper right; (UL) = upper left

a house can have a roof, a chimney, a door and several windows. Sub-classes of houses

are defined depending on the number of visible windows. Thus, for example, a house with

two windows is considered to be in a different sub-class from that of a house with three

windows. Similarly for the sailing boats where sub-classes are defined depending on the

number of masts.

Each generated image is encoded into a feature input vector which is the concatenation

of the center of gravity coordinates of the image’s parts. For this thesis, a dataset containing

15,000 artificial images (5,000 for each of the three categories), which are then described

by 15,000 corresponding feature vectors. The maximum number of parts in an image is 14.

Since the center of gravity is a two-dimensional coordinate value and hence the input data

dimension will be 2 × 14 = 28. For images having fewer than 14 parts, the corresponding

input vector is padded with the value zero.

The distribution of the 12 classes in the dataset is shown in Table 4.1. It can be observed

that the distribution of the data classes is considerably unbalanced. The largest class is more

than 30 times larger than the smallest one.
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Table 4.2: Statistical information on the two Webspam data sets.

Properties UK2006 UK2007

Number of samples 11,402 114,529
Unlabeled samples 3,929 108,050
Labeled samples 7,473 6,479
Training set 5,622 4,275
Test set 1,851 2,204
Number of hyperlinks 730,774 1,885,820

4.4.2 Web spam detection problems

The Webspam datasets UK2006 [96] and UK2007 [97] are severely unbalanced real world

datasets with an input dimension larger than that of the policemen dataset. Web spam de-

tection problems were provided for advanced research on detecting the spam websites. The

spam and normal are basically two main categories of web-pages. There also exists a num-

ber of unknown/unlabeled pages, for which it is uncertain if should be classified as spam or

normal. It is interesting to note that the category distributions of these datasets are severely

unbalanced. In particular, the number of spam class samples is 10 to 15 times smaller than

that of normal class samples. General properties of these datasets are summarized in Ta-

ble 4.2.

It can be observed that the Webspam dataset contains unlabelled samples. Unlabelled

samples correspond to samples which are not known whether they are normal or spam. The

dimension of the input feature vectors for these two datasets is 137, consisting of 96 features

that describe the content of a web page and 41 hyperlink-based features [96, 97].

4.4.3 Intrusion detection problems

Intrusion detection concerns the processing of large amount of data in real-time in order to

classify network traffic into normal or attack. Corresponding learning problems are thus

suited to evaluate scalability limitations of a given machine learning method.
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There are many other large scale datasets that could have been chosen for this purpose.

We chose data from intrusion detection problems due to the acute nature of the problem in

current literature. Due to the rapid growth in computer network applications, the challenges

in cyber security research have increased. Intrusions and attacks can be defined as events

that compromise availability, authority, confidentiality or integrity of a computer system. A

network intrusion detection system (NIDS) monitors network traffic flow to identify attacks.

There are misuse/signature based and anomaly based intrusion detection systems. The sig-

nature based system uses the knowledge of known attacks to detect intrusions. However, in

the anomaly based system, a normal profile is created from normal network behaviors, and

any deviations from these normal behaviors are considered attacks.

Some older benchmark data set such as the popular KDDCUP99 dataset [98] were

widely adopted for evaluating NIDS algorithms performance. Evaluating a NIDS algorithm

using such data sets does not reflect realistic performances due to (1) a large number of re-

dundant records in the training set, (2) multiple missing records that are a factor in changing

the nature of the data, and (3) the dataset was created artificially *by simulation rather than

from actual network measurements).

We will, instead, use the much newer dataset UNSW-NB15 [99]. The number of records

in the training set is 175, 341 and the testing set contains 82, 332 records which can be

grouped into two classes: attack and normal. Nine families of attacks are covered by this

dataset (see Table 4.3). The dataset was the result of observations during a 16 hour period on

Jan 22, 2015 (training set) and observation during a 15 hour period on Feb 17, 2015 (testing

set) during which 100 GBs of data was collected. The data set is labelled from a ground

truth table that contains nine known attack types. A key characteristic of the UNSW-NB15

dataset is that it is a hybrid set consisting of both real modern normal behaviors as well as

simulated (synthetic) attack activities.
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Table 4.3: Class distribution of the UNSW-NB15 dataset.

Category Training set Testing set
Normal 56,000 37,000
Analysis 2,000 677
Backdoor 1,746 583
DoS 12,264 4089
Exploits 33,393 11,132
Fuzzers 18,184 6,062
Generic 40,000 18,871
Reconnaissance 10,491 3,496
Shellcode 1,133 378
Worms 130 44
Total Records 175,341 82,332

4.5 Evaluation methods

The performance of models needs to be quantified in order to allow a formal evaluation of

their capabilities. To cover various aspects of performance evaluation, various evaluation

metrics will be applied. For the classification problems, Accuracy (ACC), (macro/micro)

Recall, F1, and Area under the ROC curve (AUC) indicators will be utilized. The root mean

square error (RMSE) and (absolute) mean bias are the evaluation metrics when evaluating

the results of the regression and visualization tasks. The metrics are defined as follows.

4.5.1 Accuracy (ACC)

ACC represents the percentage of correctly classified examples over the dataset size. On the

basis of the confusion matrix given in Table 4.4, the accuracy is calculated as follows.

ACC = TP+TN
TP+FN+TN+FP

, where TP and TN are true positives and true negatives respec-

tively and FP and FN are false positives and false negatives respectively..

Despite its popularity, the ACC performance measure is limited in expressing the true

performance of a classifier on unbalanced learning problems.
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Table 4.4: Confusion matrix.

Classified Classified
Positive Negative

Actual Positive TP FN
Actual Negative FP TN

4.5.2 Recall

Recall is defined as the proportion of target documents returned in a document classification

task. There are two conventional methods of calculating the performance of a text cate-

gorization system based on recall, namely micro-averaging and macro-averaging. Micro-

averaged values are calculated by constructing a global contingency table and then calcu-

lating the recall using these sums. In contrast, macro-averaged scores are calculated by

first calculating precision and recall for each category and then taking the average of these.

The difference between these is that micro-averaging gives equal weight to every document

while macro-averaging gives equal weight to every category.

Rmicro =

∑|C|
i=1 TPi∑|C|

i=1 TPi + FNi

(4.1)

Rmacro =
1

|C|

|C|∑
i=1

TPi
TPi + FNi

(4.2)

4.5.3 F-measure (F1)

F1 can reflect more accurately on the generalization performance of a classifier in an un-

balanced dataset. The larger the F-measure value the better the performance on the positive

class. Its calculation is a balance between precision Pr = TP
TP+FP

and recall Re = TP
TP+FN

in that the F-measure is F1 = 2∗Pr∗Re
Pr+Re
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4.5.4 Area under the ROC curve (AUC)

AUC is a measure which represents the accumulated performance over all possible classifi-

cation thresholds. AUC can also be referred to as the probability that a learning model ranks

a randomly chosen positive sample higher than a randomly chosen negative one. In fact, if a

model classifies the negative examples correctly, then a poor performance in predicting the

positive examples would be reflected by a low AUC value.

4.5.5 Validation methods

There are two main validation approaches that will be considered in this thesis, namely the

train-validation-test split and the leave-one-subject-out (LOSO) cross validation approach.

For the former evaluation method, a dataset is split into 3 non-overlapping groups for serving

the training, validation, or testing of a given method. The training set is used to fit the clas-

sification model. During the learning procedure, the validation set is used for the selection

purpose of hyper-parameters in the classification model so that the best model performed on

the validation set would be selected to be applied to the blind testing set. This evaluation

method will be used mostly in this thesis.

In the LOSO cross-validation, the classification model is trained on data collected from

all participants, who perform physical activity trials, except one, which is left apart and used

as the test dataset. The process is repeated until every participant has served as the test data.

The model performance results are calculated as the average of all testing results.

In this thesis, because some of the datasets are very small (such as the PA2014 dataset)

we will use the LOSO method whereas for larger datasets the train-validation-test split

method will be used.
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4.6 Conclusion

This chapter considers the problem of data processing issues arising from the characteristics

of the the three sets of physical activities collected in 2012, 2014, and 2016 respectively. It

is proposed to use a data visualization technique to visualize the data, to investigate what

might be characteristics of the datasets at hand. Then, it is proposed to use SSEN, a proposed

machine learning algorithm which can handle sparse unbalanced datasets to classify the

accelerometer data. The use of transfer learning to handle the issue of small sample sizes, in

the PA2014 and PA2016 datasets is suggested. It is also proposed a “best of breed” object

detection, object tracking algorithm to process the video recordings.

Then as the characteristics of the PA data are relatively unknown, therefore a benchmark

dataset, the Policemen dataset, which could have arbitrary fine visual patterns is suggested to

provide the information of what might be a sufficiently high resolution suitable to visualize

the PA datasets. Then, it is suggested that two more datasets, viz., web spam dataset, and an

intrusion detection dataset, UNSW-NB15, together with the policemen dataset can be used

to evaluate the capabilities of the proposed SSEN algorithm in handling severely unbalanced

data classifications in a timely fashion.

A number of evaluation criteria were described which can be used to assess the efficacy

of the proposed approaches to study these three PA datasets.



Chapter 5

High resolution Self-organizing Map

5.1 Introduction

The Self Organizing Feature Map (SOM) provides a convenient way for visualizing high

dimensional inputs by projecting them onto a low dimensional display space. Since the

objective it to visualize data, in this thesis we will limit the exposure to SOMs with a two-

dimensional display space. This map has an appealing characteristic: Feature vectors close

to one another in the high dimensional input space remain close to one another in the low

dimensional display space. Owing to the computational requirements, the display space so

far remains of relatively low resolutions.

This Chapter describes an implementation of the SOM which makes use of the highly

parallel architecture of a graphic processing unit. The corresponding algorithm significantly

decreases the computational time requirement thus increases the computational speed. This

in turn allows a substantial increase in resolution of the map while keeping the computation

to within an acceptable wall clock time. The public interest in training a SOM is to produce

an output map structure that matches as well as possible the input structure of increasingly

complex problems. A small neural map would not be sufficient for modelling complex input

spaces. While the concept of high resolution neural map is not new, there are no significant

65
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works proving its benefits in its applications to difficult clustering problems. This thesis

will present the graphic processing unit (GPU) implementation of a high-resolution SOM

(HRSOM) algorithm which will allow to adopt clustering experiments with very large neural

maps. Armed with such an implementation, we find that the HRSOM can display intricate

details associating the relationships among input feature vectors, which would be lost if

a low resolution SOM was deployed. This property is validated through a deployment of

the SOM and HRSOM to visualize an artificially generated dataset with well understood

properties (viz. the policeman dataset). The experiments will confirm that the HRSOM can

expose intricate relationships among input feature vectors which would remain hidden in

SOMs of lower resolution. Moreover, by measuring the clustering performances for three

large clustering problems, this thesis will find that the HRSOM produces maps with near

optimal clustering performance.

5.2 Background

The SOM [100] is popularly used for data visualization in the exploration stage of a data

mining application. One of the key properties of a SOM is that it creates a topology-

preserving mapping of a high dimensional input (feature) space onto a low dimensional,

usually two-dimensional, output discrete grid of resolution N ×M , commonly referred to

as a display space [100]. The SOM is especially suitable for data visualization and analysis,

as it conveniently facilitates the visualization of relationships among the input vectors in

high dimensional space onto a two-dimensional display space. Through such visualization,

it helps the user in understanding any intricate relationships among the input vectors via ex-

ploration in the display space. Such visualization can act as a prelude to further processing

of the input data [100].

Each grid point is referred to as a neuron, characterized by a codebook vector of the same

length as the input vectors. In this case the SOM is said to consist of NM neurons. The SOM
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training algorithm aims to order the codebook vectors located at grid points so that data

points represented by high dimensional vectors which are similar in input space are mapped

to nearby grid points. Once the ordered codebook vectors is obtained and converged to a

stable equilibrium [100], interesting and useful insights into the properties of input vectors

can be made. A main problem with the SOM is that its mapping space, N ×M , is discrete,

thus the quality of the mapping depends on the magnitude of N and M , the resolution of the

grid over the display space.

A SOM consisting of a very large number of neurons, i.e. the magnitude of N and

M are relatively large, is called a High Resolution SOM [101]. The reason for creating

HRSOMs is to better visualize the macro as well as micro structures, indicating relation-

ships existing among the input vectors [102, 103]. HRSOMs allow more room to separate

dissimilar input patterns, and are more suitable for datasets that exhibit complex relations

among its vectors. In contrast, a low resolution SOM (LRSOM) consists of N and M of

relatively low magnitude. Intricate and complex relationships among input vectors will be

lost if LRSOM is deployed. The intricate relationships would merge into simpler structures

due to the low resolution nature of the display space. The training algorithm of SOM scales

linearly with the number of neurons and the size of the dataset [100]. When implemented

on a modern CPU architecture, its limited computational power prevents it from training

sufficiently large SOMs, i.e. both N and M are relatively large. This also prevents the

construction of a display space which could considered continuous, by having very large

magnitude N and M values. To the best of our knowledge, prior to this thesis nobody had

succeeded in implementing and training SOMs withN andM in the order of low thousands.

There were various attempts in improving the granularity of the display space but these were

based on a hierarchical SOM structure [104, 105] and by a social hierarchical structure: The

tree SOM [106, 107]. The basic idea behind these approaches is that the SOM adapts the

topology of each hierarchical layer to the properties of the input vectors, starting with a
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very small SOM of grid size 1 × 1, then growing/enlarging the SOM in places where the

quantization errors are high [106, 107, 104, 105]. The approach of growing SOM online

and only in locations where high quantization error occurs, gives the SOM a tree-like ap-

pearance [104, 105]. The approach does deploy a number of additional neurons in order to

separate the input vectors from different categories. However, there are two main drawbacks

associated with this approach:

1. The SOM can only grow in restricted areas. Thus, the shape of clusters formed can

be distorted so that they no longer reflect the size and shape of a cluster in the high

dimensional input space.

2. The growth of the neuron number increases the computational demand.

It hence remained difficult to solve problems involving datasets with complex relationships

among input vectors which require a display space with relatively large magnitudes of N

and M . In contrast, the HRSOM introduced here does not suffer from these drawbacks, as

it can provide a display map with relatively large magnitude of N and M . This is achieved

by “collapsing” the hierarchical structure into the two dimensional display space by the

provision of N and M with relatively large magnitude.

An important observation is that the SOM is an Artificial Neural Network and is a mas-

sively parallel system. The SOM has traditionally been implemented on CPU systems thus

limiting the degree of parallelism to the number of cores in a CPU. There have been various

recent attempts in porting the SOM algorithm to GPU (Graphics Processing Unit) in order to

take advantage of hundreds and thousands of cores, though each core would have access to

relatively small fast onboard memory capacity, typically found on a GPU. It was claimed 1

that this significantly reduces the execution time of the SOM algorithm [108, 109, 110].

Moreover, there is a trend to computing clusters which are equipped with multiple GPUs

1Some of the papers do not provide sufficient details for us to repeat their experiments to validate their
claims.
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internally connected together, and which are much more powerful than CPU clusters in

parallel and distributed applications [111, 112].

The aims of this Chapter is to (a) describe techniques which enhance the speed of a GPU

implementation and (b) analyze the effects and results of using HRSOM in a dataset which

contains intricate relationships among their input vectors.

The contribution of this work is as follows:

1. An implementation of the SOM on a GPU which takes into account its architectural

characteristics. To the best of our knowledge, the resulting GPU implementation is

the fastest known implementation of the SOM algorithm.

2. Demonstrating that a HRSOM can display intricate and complex relationships among

input vectors by applying the method to an artificially generated dataset with known

intricate and complex relationships among its vectors. This demonstration is possible

because the algorithm allows the revision of a sufficiently large magnitude N and

M . It is shown that the unsupervised classification accuracy of the SOM approaches

100% with the increase of both N and M . This indicates that the HRSOM is able to

capture and display the intricate and complex relationships among its input vectors.

To our knowledge there exist no similar demonstrations to what will be shown in this

Chapter.

5.3 The High Resolution Self-Organizing map

The SOM algorithm [100] performs a nonlinear and topology preserving projection of the

high dimensional input data (feature) space onto a discretized display space consisting of

NM neurons arranged in a N × M grid. Each neuron i of the map is associated with

an n-dimensional codebook vector mi = (mi1,. . . ,min)T , where T denotes the transpose

operator. n is also the dimension of the input vectors. Neurons adjacent to neuron i belong
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to a neighbourhood denoted as Ni where the neighborhood relation is often hexagonal in

shape [100]. The SOM training algorithm [100] can be presented in two steps:

Step 1 - Competitive step: An input vector u is randomly drawn from the input dataset. Its

similarity to the codebook vectors is computed. Most commonly, it is to find the minimum

Euclidean distance ‖u − mi‖ between u and the codebook vector of neuron i, mi. The

winning neuron r must satisfy the relationship r = arg mini ‖u−mi‖.

Step 2 - Cooperative step: All codebook vectors are adjusted. The best matching codebook

vector mr and its neighbours are moved closer to the input vector. The magnitude of the

adjustment is controlled by the learning rate α and by the neighbourhood function f(∆ir),

where ∆ir is the topological distance between the two codebook vectors mr and mi. The

amount of change in the codebook vector mi is computed as ∆mi
= α(t)f(∆ir)(mi − u).

The learning rate α(t) decreases with the training process. The neighbourhood function

f(.) controls the amount by which the codebooks of the neighbouring neurons are updated.

Popular is a Gaussian neighbourhood function: f(∆ir) = exp
(
− ‖li−lr‖

2

2σ2

)
, where σ is the

spread or radius which controls the operating region of function f(.). The two values lr and

li are respectively the location of the winning neuron, and the location of the i-th neuron on

the map.

The two steps are repeated for each training sample and for a pre-defined number of

iterations. While there is no proof of the convergence of the training algorithm [100], it is

empirically found that the training algorithm always converge, as when the learning constant

is reduced to a value close to 0 the training algorithm stops updating the codebook vectors.

5.3.1 GPU acceleration of the SOM algorithm

5.3.1.1 GPU architecture:

A GPU, sometimes called visual processing unit, is a specialized graphical unit. The elec-

tronic circuit design of GPU is for the particular purpose to rapidly manipulate and alter
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memory to accelerate the processing of data stored in a frame buffer, and to optimize the

visualizing process on a display. GPUs are widely used in various hardware architectures

such as embedded systems, personal computers and workstations. In a personal computer,

a GPU can be integrated on a video card, can be embedded on the motherboard. Modern

computers allow to attach one or more GPUs. The more recent GPU technology allows for

efficient and general purpose massive parallel computations that is not limited to graphics

processing.

In software programming, a GPU is extensively used to support computational problems

that require high-performance and highly-parallel computations. The GPU is constructed by

a number of stream multiprocessors. A multi-threaded program is employed in parallel by

allocating the number of threads equally to a number of processing blocks and the number

of blocks is partitioned into a grid of blocks. All threads have access to the GPU’s global

memory which is also used as a communication channel between the multiprocessors and

between GPU and CPU. Threads of an individual block have common access to another

type of memory called shared memory that helps threads in a block to have access to the

data of each others. A thread from one block cannot access the shared memory of another

block. There are five types of memory on a GPU each with different properties and scope:

Register memory: Data stored in this memory is limited to be accessible to the thread that

uses it and is destroyed when the thread terminates. The size of register memory is in

the order of a few bytes.

Local memory: This has a similar role as register memory, however its size is in the order

of kilobytes but it is slower than register memory.

Shared memory: Data stored in shared memory is accessible to all threads within the oper-

ating block. This type of memory allows for threads to share data and to communicate

with one another. The shared memory lasts for the life-time of the associated block it

is larger but slower than local memory.
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Global memory: This is the most accessible type of memory. The memory is accessible

by all threads and by the CPU host system. Its content lasts for the duration of the

host allocation, and is in size in the order of gigabytes although it is the slowest of all.

Constant and texture memory: These are read only memory and are used to store data

that is not altered during the code execution. This memory, too, can be gigabytes in

size and it is faster than global memory.

GPU hardware manufacturers provide programming interfaces that allow the host system

to interact with the GPU. For example, CUDA is a parallel computing platform that offers

an application programming interface (API) model. CUDA is created by NVIDIA allowing

software developers to use GPU for general purpose, so-called GPGPU code. CUDA is

a software layer that gives direct instructions to GPU for the execution of GPU kernels.

The CUDA platform accommodates various programming languages such as C and C++.

A multiprocessor adopts an unique architecture called SIMT (single-instruction, multiple-

thread). For this reason, all parallel threads execute the same set of instructions but can

operate on different data. CUDA introduces simple kernel calls to execute code on the

GPU.

The HRSOM algorithm described in this section exploits GPU characteristics that can

be accessed by commonly available programming interfaces. Thus, while the algorithm has

been implemented and tested using CUDA and NVIDIA GPU infrastructure, the algorithm

has no dependency on any particular programming interface or type of GPU. The algorithm

is thus more portable than alternatives that use GPU type specific features such as tensor

cores or ray-tracing cores.

5.3.1.2 Porting the SOM algorithm to GPU

The SOM algorithm implemented on GPU is optimized for dealing with problems that re-

quire the training of significantly large maps. There are computations involving the finding
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of the best matching unit and in updating the related codebook vectors for large amounts of

data. All computations in the SOM algorithm can be implemented for massive parallel com-

putation on a GPU. To achieve this we define a number of specialized kernels namely (1) a

kernel for initializing the codebook vectors and assigning the map coordinates to reference

variables in parallel; (2) calculating all the Euclidean distances between the current input

vector and the codebook vectors in parallel; (3) a reduction kernel for finding the minimum

distance; (4) a kernel for identifying the neighbouring nodes based on the radius value in

parallel; (5) a kernel which updates in parallel the codebook vectors of nodes relative to the

winning node.

Each of these operations can thus be implemented as a GPU kernel function. In order to

optimize these kernels, a number of strategies have been applied:

1. Reduce the number of host to device and device to host memory transfers. When

transferring data from CPU to GPU and back, we use one continuous memory block.

For example, by concatenating all data samples into a single array there is only one

instruction to transfer the data to GPU. For large datasets this can improve the transfer

speed by more than 10 times when compared to transferring input samples separately.

2. For all kernel functions store run-time variables in shared memory or in local mem-

ory as much as possible, and keep kernels simple and small since the cost of kernel

launches is negligible and since this improves speed due to fewer registers used. By

using small kernels one can better utilize the registers, shared memory and constant

memory because the memory resources are limited to each kernel.

3. The reduction kernel is a choke point of the algorithm. Its speed can be optimized by

assuming that the number of threads is a power of two value. Hence the number of

threads is chosen to suit the reduction kernel.

4. A stream multiprocessor can handle at most 2048 threads concurrently and can ac-
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Figure 5.1: GPU rate of speed-up depending on map size. 1K means 1000 and Ax means A
times speed up when compared to the CPU.

commodate 16 active blocks. If one sets a block to contain 128 threads, the number

of concurrently active blocks will be 2048/128 = 16 (the maximum threshold for the

GPUs that were available to this thesis). On the other hand a block size of 256 would

also use the available computation resource. We found that setting the block size to

any other value seems to be wasting the resources since there will exist a block which

contain fewer number of threads than the others. We found that using blocks that

contain 128 threads produces the best acceleration.

5. Prevent threads from diverging by ensuring that the conditional jumps branch equally

for all threads. We implemented conditional branching based on a multiple of the

wrap size and, in addition, we also unroll loops.

The speed improvement of the GPU implementation increases with the degree of par-

allelism. This can be observed in Figure 5.1. The Figure shows that the rate of speed

improvement increases with the size of a SOM. The speed comparison is relative to the In-

tel(R) Core(TM) i7-5960X CPU @3.00GHz (extreme edition). That CPU was the fastest

consumer type CPU from Intel at the time of writing. The Figure shows that the GPU imple-

mentation can be 52 times faster than the fastest consumer CPU. The results were obtained

by using GeForce GTX TITAN X (black edition) - one of the fastest GPUs for single pre-
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cision computations at the time of writing. The results were obtained by using the compiler

optimization flag -O3 for both, the CPU and GPU version of the code. Moreover, the CPU

version is based on the SOM software package (som pak) which implements tricks to accel-

erate code execution such as (a) not updating codebooks that are more than 3σ away from

the winning codebook, and (b) breaking the loop early when computing the Euclidean dis-

tance. Theses tricks improve the execution speed of the CPU code by approximately three

to 10 times depending on network size, and are not (and do not need to be) implemented in

the GPU code.

It is difficult to make a comparison with others who ported the algorithm to GPU since

the others use different computation resources, do not specify the type of CPU and GPU that

they used for their comparisons, do not specify whether or not optimization tricks were im-

plemented, or do not provide the code. Nevertheless, we found that we achieved a maximum

on the memory bandwidth on the GPU and hence are confident that our GPU implementation

processes the data at the maximum possible rate. The latest hardware architecture of popular

models have been selected for the experiments. The CPU information is Intel(R) Core(TM)

i7-5960X CPU @ 3.00GHz and the GPU is NVIDIA Corporation GM200 [GeForce GTX

TITAN X]. The computations are made using single precision floating point.

Limitations of the HRSOM: The size of the HRSOM is limited to the amount of memory

on a GPU. GPUs generally have access to less (global) memory when compared to the

amount of RAM accessible by a CPU. Since the training data needs to be located in the

global memory and thus this reduces the amount of memory available for the HRSOM.

Nevertheless, HRSOMs of size 10, 000 × 10, 000 and larger (depending on the size of a

training set) can be trained on consumer market GPUs. This is much larger than would be

feasible for a CPU.



5.4. Evaluation methods 76

5.4 Evaluation methods

There is a number of standard measurements which are usually used to determine the quality

of clusters with regard to the known input samples’ categories. The micro purity and the

macro purity is commonly used in the machine learning and data mining community. While

the micro purity measures the overall clustering performance with respect to given sample’s

classes, the macro purity calculates the average of individual clustering performance for

each class. Given a SOM mapping result of a n-class clustering problem, the number of

samples in a dataset is denoted as A, and the number of samples in class k is denoted as Ak.

The number of samples with the majority label in class k is denoted as ak. The calculation

of micro and macro purity is as follows:

micro-purity =

∑n
k=0 ak
A

, macro-purity =

∑n
k=0

ak
Ak

n
. (5.1)

The SOM is an unsupervised training algorithm whereas micro-purity and macro purity

are computed based on available labels. These two measures thus quantify how well the

mappings align with the class labels. To quantify the degree by which the mapped data is

organized in clusters, a third evaluation method is used to compute the clustering quality.

The quantity is computed based on a group of neurons on the SOM map. A group is de-

fined by including the nodes that are in the direct neighborhood to a given node on the map.

In other words, all nodes that are connected with a given node. For every node and corre-

sponding group we count the number of samples with the majority label for every class. The

result obtained is divided by the number of samples in the whole dataset. We denote this

evaluation as the grouping index. In practice,the local relation between neurons on the map

is considered in this evaluation method, hence reducing the sparsity problem when one uses

more number of neurons than the number of input samples.
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5.5 Experiments

5.5.1 The cluster forming progress

A HRSOM of size 2500× 2500 is trained using σ = 600, the number of training iterations

is 120 and the learning rate α = 0.6. The progress by which the clusters formed is presented

in Figure 5.2. The mappings as they were observed at iteration 2, 40, 80, 90, 100, 110, 117

and 120 are shown from top left to bottom right, respectively. It can be observed that for

about half of the training period, the clusters form relatively slowly. Separation of groups of

samples commenced between the 70th and 80th iteration, and become well defined between

the 100th to 120th epoch. The mapping result from 115th iteration to the end of the training

procedure is largely unchanged. Such a detailed clustering result has never before been seen

for this dataset since the largest SOM applied thus far never exceeded the size of 256× 256.

The result presented here is useful since it not only provides an insight into the visually

differences and similarities between sample classes, but also supports the claim that the

HRSOM can give a better visualization for the complex input space.

5.5.2 Closer view on individual clusters

The fully trained HRSOM in Figure 5.2 shows well separated clusters although there ex-

ist pattern classes the mapping of which spread across a larger region on the map. For

example: the two classes denoted as the policemen with lowered left arm and the police-

men with raised left arm. This indicates that the policemen classes contain a variety of

sample features which are not very similar. Another reason could be that the two classes

contains approximate ten times the number of samples of the other classes. A closer view of

some of the individual clusters is provided by Figure 5.3. Shown are the clustering of sam-

ples belonging to the four sub-classes of the class house, clustering of the two sub-classes

of policemen and the clusters formed by the two sub-classes of ships from top to bottom,
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Figure 5.2: The evolution of the mapping during the training procedure.

respectively. Inside each cluster, there exists a number of sub-clusters which show the dif-

ferent samples’ characteristics. More observation has been made for a house type class as

can be seen from Figure 5.4. This cluster has some patterns which were mapped closer than

the other. These patterns have similar characteristics. Samples mapped far apart, however

contain different features. It can be seen from the corresponding images of these samples,

the patterns mapped near by, i.e in the middle of the cluster, look very similar in the shape
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Figure 5.3: The mapping of some of the pattern classes.

Figure 5.4: The mappings of the samples in class ”house one windows (UR)”.
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Figure 5.5: Comparing LRSOM and HRSOM performances when trained on the artificial
policemen dataset.

of the windows and the relative positions of chimneys. Further to the left of the figure, there

are houses with chimneys located further on their right sides. On the other hand, further

to the right of the figure, there are houses with chimneys located further on their left sides.

Such observations were only possible due to the HRSOM and were not previously observed

using lower resolution SOMs.

5.5.3 Comparing LRSOMs and HRSOMs

Table 5.1 compares the clustering performance when training SOMs with different map sizes

for the policemen dataset. The map sizes are grouped into low resolution SOMs (LRSOMs)

and HRSOMs. The former group includes SOMs with as little as 400 neurons (80 × 50)

and SOMs with up to 75,000 neurons (300×250) while the latter contains SOMs with more

than 100,000 neurons and up to 5,500,000 neurons (2500 × 2200). It should be noted that

this is the first time that SOMs of such large size have been trained on complex clustering

problems such as the policemen benchmark data.

When training the SOMs we varied training parameters such as the learning rate α and
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Table 5.1: A comparison of LRSOMs with HRSOMs when using the policemen dataset.

Map Map size Epoch σ α Micro Purity Macro Purity Grouping Index
1 80x50 400 20 0.2 0.9351 0.8766 0.7334
2 80x50 400 22 0.5 0.9377 0.8877 0.7097
3 80x50 400 25 0.6 0.9385 0.8789 0.7435
4 100x80 400 35 0.5 0.9536 0.9200 0.7785
5 100x80 400 40 0.8 0.9532 0.9185 0.7776
6 100x80 400 37 0.3 0.9556 0.9192 0.7747
7 300x250 400 100 0.6 0.9773 0.9635 0.8702
8 300x250 400 115 0.4 0.9750 0.9641 0.8658
9 300x250 400 120 0.7 0.9717 0.9664 0.8668

10 1200x1000 200 400 0.1 0.9957 0.9894 0.9687
11 1200x1000 200 300 0.5 0.9970 0.9933 0.9745
12 1200x1000 200 500 0.9 0.9935 0.9876 0.9699
13 2300x2000 100 500 0.4 0.9823 0.9634 0.9712
14 2300x2000 150 500 0.4 0.9987 0.9982 0.9876
15 2300x2000 200 500 0.4 0.9997 0.9995 0.9965
16 2500x2200 80 600 0.6 0.9813 0.9524 0.9692
17 2500x2200 100 600 0.6 0.9993 0.9994 0.9964
18 2500x2200 120 600 0.6 1.0000 1.0000 0.9990

number of training iterations as indicated in Table 5.1 or visually in Figure 5.5. The radius

(σ) was adjusted to be about 40% of the smaller side of the map although we varied σ to

investigate the sensitivity of this parameter. Each experiment was repeated three times with

different initializing conditions. The results shown are the average performance over the

three runs. A number of interesting observations can be made from Table 5.1:

1. The performance of HRSOMs is generally much better than that of LRSOMs for all

three assessment methods.

2. An almost perfect performance is obtained for the highest resolution SOM. This is

an interesting observation because the SOM is trained unsupervised but evaluated

on using actual class labels. Only the largest SOMs offer sufficient mapping space

to serve applications which require the separation of pattern instances in low dimen-

sional space while preserving the topology of the input data. HRSOMs are thus partic-
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ularly well suited as a dimension reduction method while maintaining the information

needed to separate pattern classes. A trained HRSOM is useful, for example, as a

pre-processor in big data applications to reduce the dimensionality of a domain and

speed up subsequent computations.

3. The grouping index experiences the most significant improvement among the three

evaluation metrics. An improvement by approximate 27% indicates the improvement

in quality of the clusters.

4. HRSOMs are less sensitive to the choice of σ and the learning rate α. We attribute this

observation to the fact that HRSOM offer a higher degree of freedom to the mappings

of the data and hence do not rely on large α and large σ as is often needed for smaller

SOMs (this is needed to allow the re-organization of mappings during the early stages

of network training [100]).

The training time required ranged from less than 60 minutes for the smallest of the maps

to 4 days and 9 hours for the largest map. The training of the largest map would have taken

nearly 8 months had it been executed on a state-of-the-art Intel CPU. Note also that the SOM

only needs to be trained once and, when trained, the GPU version of the SOM can project

data in O(logN ) time, whereN is the number of neurons. Provided a sufficiently large GPU

the computational complexity of the HRSOM is thus independent to the number of samples

that need to be projected as they can be processed independently and in parallel.

5.5.4 Clustering abilities of the HRSOM for web spam detection datasets

The following will present and compare the experimental results of LRSOMs and HRSOMs

for two real-world web spam detection problems, namely, the UK2006 and UK2007 datasets.

Figure 5.6 and 5.7 visualises SOMs’ results when training the network containing as little as

400 neurons (80× 50) and SOMs with up to 3,000,000 neurons (2000× 1500) for UK2006
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problem and with up to 990,000 neurons (1100 × 900) for UK2007 dataset. Some major

derivations include:

1. The clustering abilities of the SOMs with larger maps are always better than that of lower

resolution ones given three evaluation indicators.

2. The clustering performance is poor for the spam class samples with respect to the low

resolution maps. This is associated with the situations that the micro purity is high while the

macro purity is low. The reason for this poor clustering performance is that samples in the

normal class overlapped most of the spam class samples in the case that the training map is

not sufficiently large. There must be lack of room on the neural map to separate the spam

samples from the normal ones.

3. The clustering performance is almost 100% for both categories when training on the very

large maps such as the map of size 2000×1500 for UK2006 and the map of size 1100×900

for UK2007.

4. The greatest improvement is seen with regard to the macro purity performance, which is

approximately 28% and 32% when compared the lowest with the highest resolution SOMs

for the UK2006 and the UK2007 datasets, respectively.

5. The grouping index results for the web spam detection data are seen much better (by at

least 12%) than the case for the policemen dataset even though the training maps are small

in size. The reason for this may be that the policemen data has 12 categories which might

increase the confusion level in the clustering process.

Regarding the training time requirement, the experiment on the largest map has finished

in almost 4 days and 1 hours for UK2006, and in almost 13 days and 12 hours for the

UK2007 dataset. Once the training is done, in the application phase, the trained HRSOM

can map around 400 samples per second.
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Figure 5.6: Comparing LRSOMs and HRSOM performance on the UK2006 dataset.
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Figure 5.7: Comparing LRSOMs and HRSOM performance on the UK2007 dataset.

5.6 HRSOM in a layered classification ensemble

This section will deploy a layered ensemble model consisting of the HRSOM in its first layer

and a classifier in the second layer. Two layers are trained independently. The HRSOM is

trained on the available input samples. Then, once training is finished, the original feature

vector of each sample is augmented with the mapping result of the HRSOM, resulting in
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augmented feature vectors. There are several advantages when using the HRSOM in this

manner: Since the HRSOM is trained unsupervised, the learning process is not affected by

the unbalanced nature of the input data distribution. The significantly large display space

will help to reveal intrinsic and complex relationships among data and also help to identify

regions of likely confusion. The classifier in the second layer is then trained with the aug-

mented feature vectors. The mapping information from the HRSOM would provide useful

information that allows the classifier to learn effectively.

In this section, we would like to provide evidence that the HRSOM is not only served as a

clustering or visualisation package, but also served as an effective unsupervised enrichment

model.

In the following, three evaluation metrics, namely AUC, F1 and ACC are used since the

experiments have been conducted on datasets with differing characteristics and since we aim

to show the robustness of the learning systems. The key evaluation method is AUC which

is also used in the competitions for the web spam detection. The classifier model chosen

is GNN which is a recent graph-based generation of MLP, and is a suitable selection for

link-based web spam detection problems.

The SOM’s best training results in the previous step are taken for this experiment. The

GNN model is trained using a variety of parameter settings. The number of hidden units is

selected from within {15, 19, 25, 34, 40} while the number of state neurons is within {8,

15, 18, 29, 35}. An adaptive learning mechanism is applied during training. The input data

is normalized. The number of training iterations respectively is set to 2, 000 and 1, 200 for

the UK2006 and UK2007. The selection of number of epochs is based on observing the

network’s error convergence during the training. The experimental procedure is as follows.

GNN is trained by itself using different network configurations. The best set of network’s

parameters is selected based on the training performance, and the associated classification

performance will be taken as the baseline for further comparison.
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Table 5.2: Learning performance on UK2006 dataset with SOM+GNN.

Map size Training Testing
AUC F1 ACC AUC F1 ACC

No SOM 0.9267[0.0031] 0.6694[0.0112] 0.9173[0.0044] 0.8603[0.0031] 0.7803[0.0056] 0.7421[0.0060]

Low Res.
80x50 0.9256[0.0039] 0.6644[0.0158] 0.9141[0.0087] 0.8574[0.0031] 0.7800[0.0068] 0.7414[0.0067]

120x80 0.9287[0.0017] 0.6739[0.0100] 0.9227[0.0023] 0.8643[0.0053] 0.7811[0.0047] 0.7436[0.0061]
160x120 0.9304[0.0016] 0.6794[0.0090] 0.9208[0.0036] 0.8677[0.0051] 0.7962[0.0178] 0.7573[0.0137]

High Res.
1500x1000 0.9326[0.0085] 0.6804[0.0260] 0.9243[0.0034] 0.8737[0.0258] 0.7833[0.0254] 0.7477[0.0254]
1800x1400 0.9450[0.0010] 0.7220[0.0208] 0.9313[0.0062] 0.8905[0.0062] 0.8131[0.0105] 0.7753[0.0087]
2000x1500 0.9356[0.0012] 0.7044[0.0063] 0.9300[0.0032] 0.8830[0.0007] 0.7827[0.0198] 0.7500[0.0174]

Table 5.3: Learning performance on UK2007 dataset with SOM+GNN.

Map size Training Testing
AUC F1 ACC AUC F1 ACC

No SOM 0.7233[0.0061] 0.3034[0.0232] 0.9430[0.0014] 0.7485[0.0034] 0.3103[0.0077] 0.9231[0.0145]

Low Res.
70x40 0.7180[0.0063] 0.2810[0.0253] 0.9432[0.0010] 0.7464[0.0040] 0.2994[0.0018] 0.8938[0.0144]
100x60 0.7242[0.0063] 0.3473[0.0259] 0.9431[0.0007] 0.7512[0.0032] 0.3277[0.0104] 0.9208[0.0116]
120x80 0.7426[0.0309] 0.3054[0.0441] 0.9460[0.0035] 0.7547[0.0053] 0.3119[0.0279] 0.8929[0.0323]

High Res.
800x500 0.7579[0.0137] 0.3268[0.0167] 0.9433[0.0022] 0.7630[0.0011] 0.3462[0.0142] 0.9076[0.0022]

1000x800 0.7851[0.0060] 0.2988[0.0194] 0.9478[0.0013] 0.7686[0.0015] 0.3061[0.0210] 0.8655[0.0242]
1100x900 0.7770[0.0112] 0.3158[0.0232] 0.9456[0.0006] 0.7678[0.0040] 0.3370[0.0344] 0.8904[0.0297]

In the following, the layer-wise architecture performance will be presented. Compar-

isons can be made between the LRSOM+GNN and HRSOM+GNN model and with the

baseline method. Each experiment is repeated three times and the average performance will

be reported.

In Table 5.2 and Table 5.3, the layer-wise architecture performance is presented for

the UK2006 and UK2007 datasets, respectively. Comparisons can be made between the

LRSOM+GNN and HRSOM+GNN model and with the baseline performance. Without

using any SOM result mapping, the AUC generalization performances for UK2006 and

UK2007 are 0.8603 and 0.7485, respectively. The use of LRSOM seems not contributing

much on the generalization performance while the use of HRSOM in the layer-wise model

is seen more effective. In contrast, the HRSOM consistently contributes to an improvement

of around 2% to 3% for all evaluation metrics for both datasets.
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5.7 Conclusions

This Chapter demonstrated important capabilities of the HRSOM, which include a clustering

and a unsupervised feature enrichment capability. It is shown that a HRSOM with resolution

N×M for the display map, when bothN andM are of the order of low thousands, intricate

details of the relationships among input vectors can be observed in the display space. These

details would have been lost if N and M are of the order of low hundreds. Our implemen-

tation of the SOM algorithm on a GPU is particularly efficient so that the limitation is now

only the amount of available memory on the GPU. It is expected that the next generation of

GPU would allow N and M to be of the order of high thousands, or low tens of thousands,

thus further reduce the difference between a discrete and a continuous mapping space. Ow-

ing to the relatively low cost of the GPU to CPU, one could envisage the HRSOM to be

deployed as a visualization device in its own right.

As a topic for future research, we suggest the implementation of SOM to run on a GPU

cluster. This will allow the SOM to be deployed to big data applications, and to applications

which require an even higher resolution of the mapping space.



Chapter 6

Synthetic Sampling Ensemble Network

6.1 Preamble

The datasets available for PA classification in this thesis are relatively small. The number of

participants in the PA2012 dataset is 100, in the PA2014 dataset just 11, and in the PA2016

dataset 16. We find that such small datasets may hamper attempts for obtaining robust mod-

els that offer a good generalization performance. Adding to the problem is the unbalanced

nature of the PA datasets. The class ”running”, for example, is several times smaller than

the class ”light activities”. This thesis thus investigates techniques for working with small

unbalanced sets of data.

Many of the common machine learning methods are unable to effectively model unbal-

anced data in a sparse domain. These models tend to overfit the majority class samples and

to generalize poorly. Prior work on improving the generalization performances of i.e. MLPs

has shown that the shortcomings of an individual method can be overcome by designing

an ensemble system consisting of several methods in such a way that their complementary

properties are exploited. For example, an ensemble approach which involves the incorpora-

tion of an unsupervised learning approach, e.g. a SOM as a preprocessor, concatenate the

outputs to the data samples prior to processing them by an MLP. This can be effective in

88
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addressing the problem [113, 114, 115].

Other common approaches to addressing the issue of unbalanced information use a sam-

pling approach, where a number of subsets are created. Each subset contains approximately

the same number of normal samples and abnormal samples [115, 116]. There are various

sampling techniques, and, these can be categorized as: (1) balanced sampling, (2) over sam-

pling, (3) under sampling, and (4) synthetic sampling [117, 118, 119].

Balanced sampling, under sampling and oversampling are methods which do not make

any changes to the original training samples, but differ only in the way samples are se-

lected. Synthetic sampling, on the other hand, creates new training samples from the feature

information of the available training set.

This chapter investigates an effective approach to synthetic sampling using an innova-

tive approach based on a supervised clustering method, viz. supervised DBSCAN, and the

use of a visualization algorithm. The supervised DBSCAN method can identify different

groups (clusters) of samples. Hence the synthetic sampling can be conducted to different

data groups and in knowledge of the class membership of the samples. The procedure is

described in greater detail later in this Chapter.

This thesis will apply the proposed synthetic sampling ensemble model to three bench-

mark datasets from two domains, namely physical activity classification and cyber security.

The results are compared and analysed. It will be found that this new sampling technique

performs better than other popular methods such as oversampling or under sampling. The

thesis will further find that the approach leads to consistently better generalization perfor-

mances when compared with previous works on these learning problems.

6.2 Introduction

Research in machine learning has long been dealing with problems where a set of training

samples is either affected by unbalanced class distributions, small number of training sam-
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ples relative to domain space, poor coverage of the feature space, or any combination of

these. In order to address such issues, it is common to apply sampling approaches to create

more training samples in the hope that the newly created samples compensate the lack of

information that can be observed in a given training set [113, 120]. In terms of sampling,

the bagging and aggregating idea were pioneered by Breiman [121]. The concept refers to

a method of generating multiple versions of a classifier, trained individually on bootstrap

replicates of the training sample set [113, 120]. Conceptually, one has a training dataset

with n classes, in which class 1 has N1 labelled samples, class 2 contains N2 ones and so

on. A balanced dataset can be obtained by selecting all Ns = min(Ni) samples from all

classes. This method thus under-samples data [118]. It is also possible to add a number

of duplicate samples for each class so that the number of samples for each class is equal to

Nl = max(Ni). Such methods over-sample data [122].

A more robust approach called roughly balanced bagging selects all available minority-

class samples while a portion of majority class is chosen based on the use of negative bino-

mial distribution (NBD) [119]. The method is about creating a nearly (not exactly) balanced

number of samples for every class in the datasets. It was shown that this method is more

effective in classifier learning mechanisms than the more popular alternatives, like under-

sampling, and over-sampling [119]. The reason for this improvement in performance cannot

be proved theoretically. Intuitively, as we are dealing with a classification problem, with

more samples in a majority class than in other classes. So by providing more training sam-

ples in the majority class this will bias the classifier towards classifying an unknown sample

in the direction of the majority class. In the case of over-sampling, or under-sampling, this

bias is reduced thus informing the classifier that every unknown test sample would have a

likely possibility of being majority or a minority class. But this is clearly not what the under-

lying distribution of the data is, and therefore it makes sense to bias the classifier, towards

the majority class, by providing more training samples in the majority class. Obviously such
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a situation of having more majority class samples than minority classes, and the negative bi-

nomial distribution is a good probability distribution for such an application, as it provides

more samples in the direction of selection of majority samples in a controlled manner.

Another approach to sampling creates distorted versions of input samples with the aim

of making changes to the input so as to introduce diversity and variance to a training data

set. Such approaches are commonly used in image classification (e.g., see [123, 124]). The

input image is modified and distorted in some ways such as adding noise, changing the color,

rotating, shearing or deleting some of its parts before sending it to the classifier for training.

This procedure is recursively applied through the learning process so that at each training

iteration, the distortion procedure is engaged to create further images that differ from the

original ones. This kind of sampling has proves qualitatively very effective if the level of

distortion is set appropriately [124, 125, 126].

A common approach to sampling is to use some form of random data selection from an

original dataset in order to create a training set. But, in practice, many input samples do

not contribute to the robustness of the classifier. Random selection methods may thus select

samples that are not particularly useful to the training algorithm. Similarly, mechanisms that

enlarge a dataset via the insertion of distorted samples are commonly ignorant to whether a

generated sample would lead to enhancing the robustness of a learning system or not. As

a result, those methods insert samples that are of no additional value to the classifier which

is thus leading to unnecessary increase in computational demand. The main point we wish

to make is that when some training samples are not useful for the classifier then it would be

useful to have an algorithm which does not select such samples randomly. In other words,

the value of selected samples to a classification system should be taken into account during

sampling.

The small size of the PA datasets are likely to lead to overfitting when building a model.

This thesis explores an idea to creating distorted samples in a fashion which targets the
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robustness of a classifier. The basic idea is to introduce distorted samples in regions of the

feature space where missclassifications are most likely. The newly generated samples are

thus to improve the ability of a classification system to discriminate the pattern classes.

There are two main challenges that need to be overcome:

1. We first have to identify the subspaces where confusions between pattern classes are

most likely. The hypothesis is: The closer a sample (or a group of samples) is to

samples (or a group of samples) from another class the greater the risk of misclassifi-

cation in the feature space between those samples (or group of samples). The question

could be addressed via a proximity matrix. But due to the sparsity issue which arises

out of the few samples in a high-dimensional feature space a proximity matrix in

the high dimensional space would not be an appropriate approach. We instead en-

gage a dimension reduction and visualization technique, the HRSOM. The HRSOM

is ideally suited for identifying structure and proximities between samples in different

pattern classes. We specifically engage the HRSOM algorithm to enhance granularity

of the mappings and thus enhance the precision of results. We further process these

mappings by engaging the DBSCAN clustering algorithm. DBSCAN will label each

sample as either core, border, or noise points as was described in Section 2.2.1.2. The

role of each sample can thus be identified. Core points correspond to samples that are

embedded within a cluster of similar samples. Border points are marginal samples

which are located at the edge of a cluster. And noise points are isolated cases of sam-

ples. Since we wish to identify the proximities between clusters samples in different

classes and hence we alter the DBSCAN algorithm such that clusters are identified for

each of the pattern classes.

2. The HRSOM will reveal the proximity of samples to each other and DBSCAN will

reveal the role of each sample. Furnished with this information we then wish to create

new samples in regions where confusions (between pattern classes) are most likely.
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Since samples at a border of a cluster would be closest to samples from a cluster

of samples in another class it should be best to create more samples in the border

regions of clusters that are in close proximity and belong to different classes. When

creating a distorted version of border samples then we need to take case that the newly

generated sample will not fall into the feature space of samples from another class. To

achieve this we first select a sample at a border region, find a set of nearby samples

that belong to the same cluster, then create new samples via interpolation of the first

sample with those nearby samples. The approach thus increases the density in regions

of the feature space where samples from different classes are closest to each other.

A set of base learners is engaged to further enhance the representative value of the ap-

proach. The base learner we chose is a deep multilayer perceptron [127], in which the

number of hidden layers and the number of neurons can be adjusted to fit the particular clas-

sification problem. The reason to why we choose a set of base learners is that this allows us

to present typical results via averaging of results.

The contributions of this chapter can be summarized as follows:

1. The introduction of an unsupervised clustering mechanism consisting of a HRSOM

and DBSCAN, which then is used to group input samples into a number of groups.

We introduce a supervised version of DBSCAN since we wish to identify data clusters

that belong to different classes. The approach will reveal proximities between pattern

classes the insight of which is used later to identify samples for the selective based

sampling approach.

2. The introduction of distortion based sampling method which we named Synthetic

Sampling Ensemble Network (SSEN). The method automates means by which the

cardinality of samples is increased in the areas of a feature space where confusion be-

tween pattern classes are most likely. A learning system would thus be provided with

more samples in regions where the various pattern classes are closest in feature space.
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The approach thus encourages the robustness of a classification and hence reducing

likelihood of missclassifications.

This thesis will validate the proposed approach via an application to the PA2012 and

PA2014 datasets, and to the intrusion detection dataset. The thesis will find that the approach

is very effective in enhancing the generalization performance than other popular approaches

used in the literature [115, 117, 118, 116, 119].

The rest of this Chapter is organized as follows. Section 6.3 describes briefly the model

architectures. Section 6.3.2 and Section 6.3.1 introduce two supervised algorithms, namely

synthetic sampling ensemble network (SSEN) and the supervised Dbscan algorithm, re-

spectively. The experimental results of sampling techniques are presented in Section 6.4.

Experimental results for intrusion detection data are given in Section 6.5. Conclusions are

drawn in Section 6.6.

6.3 Model architectures

The SSEN will engage the HRSOM algorithm as was described in Chapter 5. The SSEN

will furthermore utilize a modified version of the DBSCAN algorithm as described in the

following.

6.3.1 The supervised DBSCAN

The DBSCAN algorithm was presented in Section 2.2.1.2. When deployed to the mappings

produced by the HRSOM the algorithm would group points that are closely packed together

or in dense region. The algorithm also identifies marginal points and outlier points that are

located isolated in low-density regions. DBSCAN is one of the most popular supervised

clustering algorithms in data mining since it can identify clusters of any shape, and since it

can identify noise points and outliers.
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Algorithm 1 The Supervised DBSCAN algorithm
Input:

1: Database DB
2: Neighborhood radius eps
3: Minimum number of points minPts to form a dense region
4: Number of classes/clusters Cls
5: A HRSOM resulting activation map M of all training samples P ∈ DB

6: for each class C in Cls do
7: for each point P in DB and P ∈ C do
8: Neighbors N = FindNeighbors(M,P, eps)
9: if Density check |N | = 0 then

10: label(P ) = C Outlier
11: else if Density check |N | < minPts then
12: label(P ) = C Border
13: else
14: label(P ) = C Core

15: for each pair of core points P1, P2 ∈ DB do
16: C1 = Classlabel(P1)
17: C2 = Classlabel(P2)
18: if C1#C2 then
19: Neighbors N = FindNeighbors(M,P1, eps)
20: if P2 ∈ N then
21: label(P1) = Core overlapped
22: label(P2) = Core overlapped

The SSEN algorithm will apply sampling to individual pattern classes. The class hence

needs to be taken into account when computing the clusters by DBSCAN. Another reason is

that by considering the class label of each sample when grouping samples into clusters then

it becomes possible to identify whether pattern classes overlap. This is helpful in the group-

based sampling approach that will be presented in Section 6.3.2. We propose the supervised

DBSCAN algorithm as follows.

The following description of the supervised DBSCAN algorithm is based on the descrip-

tion of the unsupervised DBSCAN algorithm in Section 2.2.1.2 with a slight simplification:

the number of points in the circle of radius epswhich constitute noise/outliers is 0. Consider

a set of points in a mapping space, and the two DBSCAN parameters, the radius eps and

the minPts (the minimum of points located in a circle defined by the radius), the points

are clustered into different groups. In Algorithm 1, FindNeighbors is a function that finds
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all the neighboring points given a point P , on a map M of a trained HRSOM and the given

radius eps. Samples of individual class labels are applied to DBSCAN once, resulting in

three sets of data points: core, boundary/border and noise/outlier points. After all class sam-

ples are separated, a final scan through all the samples on the map is deployed in order to

determine the overlapped points between any two classes. These data points are named as

core-overlapped points. Ultimately, samples are clustered into four main sets: overlap core

points (OC, labeled as Core overlapped in Algorithm 1) separate core points (SC labeled

as C Core in the algorithm), border points (BD, labeled as C Border in the algorithm) and

outliers (OUT, labeled as C Outlier in the algorithm. It should be noted that in this method,

the number of clusters determined by DBSCAN is equivalent to the number of class labels

for the classification problem.

The use of the supervised DBSCAN serves two purposes. First, it helps to group input

samples into a number of clusters denoted as OC, SC, BD and OUT for individual classes.

The groups of samples will be useful for group-based sampling in the SSEN algorithm.

Secondly, the resulting clustering produces a clearer visualization with more intrinsic topo-

logical information on the two-dimensional map of the HRSOM. DBSCAN is thus also very

useful for the visualisation of results in this chapter.

On a side note: In theory, the supervised DBSCAN algorithm could have been applied

to the raw data. However, the sparsity of the data space is amplified by the separate treat-

ment of the different pattern classes and would thus hamper attempt to group samples. The

HRSOM produces a much more compact representation of the samples. Moreover, the

two-dimensionality of the display space allows a visual inspection thus leading to a better

understanding of the data, and it allows for the visualization of results. Hence the application

of DBSCAN to the mappings of the HRSOM is essential.
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Figure 6.1: The SSEN model illustration.

6.3.2 The SSEN learning model

The SSEN algorithm is presented in Algorithm 2. The SSEN model is an ensemble learning

system which uses a number (p) of base learners (here MLPs) on differently sub-sampled

datasets. The final results is then the average over all the base learners outcomes.

The SSEN algorithm is based on the HRSOM activation map (M ) for generating the new

input samples, hence, a HRSOM needs to be trained first, in order to obtain the required ac-

tivation map. The synthetic sub-dataset is then created for each base learner (L) by using the

activation map. The searching radius (α) is used to find the number of neighborhood sam-

ples. The parameter range controls the level of distortion. The supervised DBSCAN creates

a number of groups G consisting of border samples. Note that only samples belonging to

the set G are being sampled.

The purpose of using the HRSOM mappings is to find a number of nearest neighbors

corresponding to samples in the original training set. Those will be used to create new

synthetic samples by steps shown in line 3, line 4 and line 5 of Algorithm 2.

The SSEN is a type of ensemble learning method. The reason for selecting a MLP as a

base learner in this thesis is that MLP is a excellent and well understood representative of

connectionist learning system. The MLP will suffice for demonstration purposes. One can

consider other model architectures here, however this is beyond the scope of this thesis.
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Algorithm 2 The SSEN algorithm
Input:

1: Original training set T
2: Dbscan-based Group of samples to be used in sampling G
3: Base learning model L
4: The value decides the level of distortion range, in percentage
5: Number of classes n and corresponding numbers of input samples in each class c1, ...cn
6: Desired numbers of input samples in each class d
7: The searching radius α
8: A HRSOM result activation map M of all training sample x ∈ T

9: for k = 1 to p = number of base learner L do
10: New training set Tk ← T
11: for i = 1 to n do
12: for j = 1 to d− ci do
13: (1) Randomly select sample x ∈ Classi so that x ∈ G
14: if @x ∈ G then
15: Tk ← xs
16: continue
17: (2) Find the α-NN xr1 , ..., xrm samples to x on M .
18: (3) Randomly select a xr in m nearest neighbors
19: (4) Create synthetic sample xs, a ∈ x− attributes using
20: (5) xs[a] = x[a] + rand(0, 10) ∗ (x[a]− xr[a]) ∗ range
21: (6) Tk ← xs
22: (7) Train Lk on sampled data Tk to output Ok

23: Averaging is applied to p output O to get final outcome.

Some notes on the deployment of the SSEN model are as follows:

1. The learning problems: it should be reasonable to show it works on two completely

different domains. In this chapter we have chosen these two domains, namely physical

activity recognition and cyber-security intrusion detection problems. For this purpose

we use the PA2012 and PA2014 datasets since both are small yet differ significantly

in size. The PA2016 dataset was not available at the time when the experiments were

conducted. The second set of data is related to cyber security which includes the

intrusion detection or the UNSWNB15 dataset a much larger dataset.

2. The HRSOM uses an unsupervised learning mechanism to project all samples onto an

activation map, so that similar input samples will be mapped onto nearby locations on

the map. The resulting activation map is the mapping coordinates of all input samples.

An input sample can be referred to a particular location on the map. In order to locate
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the neighborhood samples of a given input sample within a given radius, one can use

the resulting map for its reference. In particular, all the samples mapped within the

radius region from the given input sample are named as neighboring samples.

3. Using the results of SOMs in the SSEN model algorithm, especially in line 2 to line 5

of Algorithm 2. In particular, in line 2, one would find the α-NN xr1 , ..., xrm samples

to x on M (which are to find all the neighboring samples of x on the SOM resulting

map). Then line 3 would randomly select a xr in m nearest neighbors of x and in line

4 would create a synthetic sample xs based on the calculation of every attribute of the

input sample vector.

4. The supervised DBSCAN creates different groups G of samples. The groups G are

then used in line 1 in the algorithm. The use of supervised mode will help us identify

the class label as well as the group label of any samples on the activation map.

5. The sampling techniques will make use of all training samples, the activation map

of the SOM, and the grouping of the mappings by the supervised DBSCAN method.

The techniques thus include group-based, class-based and range-based approaches. A

number of sub-training sets are created and a corresponding number of base learners

are trained on the respective sub-training set. The final result would be the averaging

results of all based learner’s one.

6.4 Experimental results: Physical activity recognition

This section uses the PA2012 and PA2014 datasets which were described in Section 3.1.2

and Section 3.1.3 respectively. Each of these datasets is split into three roughly equal parts.

One part is used for training purpose, the second is for validation and the rest is used as

testing set. The training model is learned based on the training set, tuning its parameters and
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adjusting the feature set options based on the validation set and finally testing the general-

ization performance on the test set.

The following presents experimental results for different sampling approaches. For the

experimental setting, the number of base learners used by the SSEN is varied from 5 to

30. Each MLP is configured with two hidden layers, the number of hidden units is chosen

within {15, 25, 37, 56, 88}, the learning rate α = 0.0001 and is trained for 50, 000 iterations

using standard back-propagation. The experimental results are averaged and the standard

deviation of results over all MLPs is reported. For the group-based sampling, the synthetic

sampling is only applied to the particular group indicated in the experiment. For example,

the experiment set of the border points group will give the SSEN experimental result based

on applying synthetic sampling on border points, but not for outlier and core points.

We analyse the SSEN incrementally as follows. Section 6.4.1 uses the SSEN algorithm

as presented before. Then Section 6.4.2 uses the SSEN algorithm with the group selection

feature disabled. But considers class memberships when creating new samples. Then Sec-

tion 6.4.3 disables both the group selection feature as well as ignoring class memberships.

This mode of presentation allows us to investigate the role and impact of the components of

the SSEN algorithm.

6.4.1 Group-based sampling

The group-based sampling approach aims to determine the importance of these groups in

solving the classification problem. The sampling is applied to individual groups (border

points, outlier points, overlap core points or all core points which is the combination of

groups overlap core and separate core points). The reason, why the border and outlier points

are not chosen in the final combination of points, is because outlier points are considered as

noise in terms of clustering discipline and needed to be removed from the training set, while

the border points are considerably sparse, and empirically do not contribute to the model’s
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Table 6.1: The SSEN performance using the group-based sampling approach.

Group-based
Sampling

Model performance
Accuracy Avg-Precision Avg-Recall Avg-F1

PA2012 data
Border points 0.9000[0.0020] 0.8871[0.0024] 0.8877[0.0028] 0.8874[0.0027]
Outlier points 0.9009[0.0032] 0.8890[0.0037] 0.8898[0.0049] 0.8898[0.0049]
Overlap core pts 0.9028[0.0009] 0.8880[0.0038] 0.8892[0.0033] 0.8875[0.0038]
All core points 0.9046[0.0018] 0.8903[ 0.0021] 0.8903[ 0.0021] 0.8903[ 0.0021]
PA2014 Hip data

Border points 0.8708[0.0009] 0.8537[0.0023] 0.8612[0.0022] 0.8572[0.0009]
Outlier points 0.8767[0.0073] 0.8554[0.0064] 0.8700[0.0069] 0.8621[0.0066]
Overlap core pts 0.8816[0.0052] 0.8632[0.0042] 0.8767[0.0075] 0.8695[0.0056]
All core points 0.8865[0.0046] 0.8680[0.0022] 0.8821[0.0079] 0.8744[0.0049]
PA2014 Hip+Wrist data

Border points 0.9081[0.0020] 0.8834[0.0015] 0.8970[0.0030] 0.8896[0.0021]
Outlier points 0.9083[0.0016] 0.8829[0.0023] 0.8956[0.0023] 0.8887[0.0020]
Overlap core pts 0.9101[0.0026] 0.8850[0.0025] 0.9005[0.0025] 0.8921[0.0023]
All core points 0.9108[0.0017] 0.8858[0.0011] 0.8989[0.0015] 0.8919[0.0026]
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Figure 6.2: An example of outliers and borders.

performance. A combination of core points and border points (and/or outlier points) was

found not better than the core points by themselves in terms of SSEN classification results.

Results are summarised in Table 6.1. Given that the ACC is the most important assess-

ment indicator for this learning problem, it can be seen that the group of ”all core points”

leads to a better accuracy than the other groups. The results are consistent for all datasets,

though the improvement in accuracy for the best choice of group (all core points) is not re-
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Figure 6.3: The mappings of the samples when using an HRSOM of size 1000x800 and the
PA2012 dataset.

ally significant. The improvement in accuracy ranges from 0.3 to 1.0% when compared with

the worst choice of groups for SSEN model. The experiments revealed that the use of all

core points would result in a better classification performance. This indicates that DBSCAN

helps to remove unhelpful data points in the SSEN model. The finding is important in the

term of selective sampling algorithm.

To gain a better understanding of the results we need to look at the distribution of the

data points and the output of DBSCAN. Figure 6.2 presents the outlier points versus core

points (on the left) and border points versus core points (on the right) on the activation map

of size 1000×800 for all samples in class ”light activities and games” (treasure hunt, collage,

clean up) in the PA2012 dataset. Points shown using square shapes belong to the class ”light
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activities and games” whereas samples which belong to any of the other classes are shown

using crosses. It can be seen that the noise points can be considered outliers since they are

located far from their class center density region.

Similarly, Figure 6.3 presents all the class sample points from the PA2012 dataset on the

activation map. Each class is represented by a unique symbol. The mapping of the sample

classes can thus be seen. The no-mutual/separate core points and mutual/overlapped core

points are represented in black and blue color, respectively. It is observed that the border

and outlier points are distributed relatively sparsely on the map. This can explain why these

two groups do not contribute to improve generalization accuracy of the SSEN algorithm.

6.4.2 Class-based sampling

The previous group-based sampling did not consider the class label of the samples. This

means that among all the neighboring samples, a sample of any classes could be selected.

This can make a newly created sample biased towards samples of a different class, thus

making it harder to discriminate the pattern classes. In this section, the class label will be

taken into account so that when randomly selecting a sample within the neighborhood, we

only select a sample of the same class as the class label of the given sample.

In the following experiments, the group selection step is not applied, meaning that all

the samples are used by the SSEN model though class memberships are taken into account.

We compare two approaches, one for the case that only sample of the same class is selected

and secondly for the case that any sample of another class is selected.

Table 6.2 summarizes the results. It can be observed that for all cases the generalization

accuracy is best when selecting samples from the same class. This is an expected result.

Though the difference in result to those obtained from selecting samples from another class

is not very significant. This is somewhat unexpected but may be attributed to pattern classes

which generally overlap (as could be seen in Figure 6.3). It is interesting to observe that class
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Table 6.2: The SSEN performance using class-based sampling approach

Direction-based
Sampling

Model performance
Accuracy Avg-Precision Avg-Recall Avg-F1

PA2012 data
same class 0.9047[0.0014] 0.8927[0.0012] 0.8927[0.0011] 0.8927[0.0019]
other class 0.9019[0.0017] 0.8907[0.0013] 0.8907[0.0012] 0.8907[0.0013]
PA2014 Hip data
same class 0.8844[0.0048] 0.8634[0.0048] 0.8808[0.0058] 0.8894[0.0052]
other class 0.8772[0.0051] 0.8564[0.0053] 0.8748[0.0050] 0.8898[0.0051]
PA2014 Hip+Wrist data
same class 0.9081[0.0008] 0.8832[0.0032] 0.8961[0.0017] 0.8892[0.0016]
other class 0.9061[0.0018] 0.8813[0.0026] 0.8964[0.0028] 0.8882[0.0026]

based sampling did not improve the results when compared to using group based sampling.

6.4.3 Range-based sampling

The final approach to sampling is the range-based one. The range parameter appears in

the SSEN algorithm to indicate the level of distortion in the synthetic sampling step. In

the aforementioned experiments, the range was set to a default value 1. In the following

experiments, the group selection feature is disabled and the class-based sampling is not used.

We will also investigate the effectiveness of selecting the right value of range on the

SSEN model’s classification performance. By changing the range value from 0.1 (or 10%

of proposed distortion) to 1 (or 100% of proposed distortion). The higher the range value

is, the more distortion to feature vector is added. When range = 1, we found that this is a

significant distortion so that should be the maximum threshold being proposed.

Table 6.3 below only shows several value of range. We found that the right choice

of range value can help to improve the generalization accuracy by 0.4% to 0.6% on all

datasets. We found that range = 0.5 is the best choice for all three datasets. This indicates

that the random distortion of the input feature could be helpful if one know how much the

change should be. Too much distortion would not the right way to add randomness to a
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Table 6.3: The SSEN performance using range-based sampling approach.

Direction-based Sampling Model performance
Accuracy Avg-Precision Avg-Recall Avg-F1

PA2012 data
range = 1.0 0.8991[0.0016] 0.8860[0.0038] 0.8860[0.0035] 0.8860[0.0032]
range = 0.5 0.9065[0.0034] 0.8948[0.0037] 0.8948[0.0037] 0.8948[0.0037]
range = 0.3 0.9037[0.0014] 0.8920[0.0021] 0.8920[0.0021] 0.8920[0.0017]
range = 0.1 0.9028[0.0031] 0.8914[0.0020] 0.8914[0.0041] 0.8914[0.0020]
PA2014 Hip data
range = 1.0 0.8780[0.0052] 0.8569[0.0054] 0.8758[0.0047] 0.8906[0.0050]
range = 0.5 0.8819[0.0036] 0.8564[0.0040] 0.8752[0.0040] 0.8900[0.0039]
range = 0.3 0.8778[0.0035] 0.8576[0.0041] 0.8737[0.0042] 0.8900[0.0041]
range = 0.1 0.8778[0.0030] 0.8565[0.0036] 0.8738[0.0039] 0.8894[0.0037]
PA2014 Hip+Wrist data
range = 1.0 0.9085[0.0023] 0.8832[0.0059] 0.8962[0.0019] 0.8892[0.0041]
range = 0.5 0.9116[0.0023] 0.8860[0.0013] 0.9016[0.0020] 0.8932[0.0015]
range = 0.3 0.9097[0.0016] 0.8846[0.0014] 0.8999[0.0020] 0.8917[0.0011]
range = 0.1 0.9062[0.0026] 0.8805[0.0021] 0.8952[0.0023] 0.8873[0.0021]

model training since this might have ruined the training feature space.

6.4.4 Comparing with other sampling approaches

Table 6.4 which compares the best result of three sampling approaches. In Table 6.4 the

line ”Traditional ANN” corresponds to baseline results which are obtained by deploying the

MLP without any sampling. ”RB Ensemple MLPs” corresponds to a well-known roughly

balanced (RB) ensemble MLPs technique [119]. Also shown are results (where available)

from deploying vanilla SVM for comparisons.

The SSEN results shown in Table 6.4 were obtained by using full SSEN algorithm (de-

noted as ”group based sampling” earlier) and using range=0.5. The SSEN results shown in

Table 6.4 confirm that increasing the range value to 0.5 also improves the result for group

based sampling.

When compared to the ANN baseline results we find that the proposed SSEN algo-

rithm improves the generalization ability by 2.7% to 10.6%. The improvement is greater the
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Table 6.4: Comparing SSEN performance with other approach

Evaluation Model performance
Accuracy Avg-Precision Avg-Recall Avg-F1

PA2012 data
Traditional ANN [128] 0.8840 - - -
RB Ensemble MLPs 0.9066[0.0011] 0.8943[0.0016] 0.8895[0.0012] 0.8950[0.0026]
SSEN model 0.9111[0.0018] 0.9000[0.0015] 0.9006[0.0013] 0.8990[0.0019]
PA2014 Hip data

Traditional ANN [129] 0.8000 - - -
SVM model [129] 0.8400 - - -
RB Ensemble MLPs 0.8944[0.0013] 0.8756[0.0023] 0.8896[0.0014] 0.8800[0.0021]
SSEN model 0.8990[0.0020] 0.8773[0.0018] 0.8974[0.0017] 0.8865[0.0016]
PA2014 Hip+Wrist data

Traditional ANN [129] 0.8100 - - -
SVM model [129] 0.8550 - - -
RB Ensemble MLPs 0.9105[0.0016] 0.8834[0.0019] 0.9021[0.0019] 0.8933[0.0023]
SSEN model 0.9211[0.0015] 0.8934[0.0015] 0.9117[0.0013] 0.9019[0.0014]

smaller the dataset. This thus confirms effectiveness and that the algorithm meets its design

goals.

Table 6.4 also reveals that the SSEN generally outperforms the RB ensemble method.

This is an interesting observation since RB sampling makes use of the binomial distribution

to sample a relative number of individual classes so that the new sampling dataset contains

roughly balanced number of samples for each class. Moreover, the number of MLPs for

this ensemble method is 50 which is much greater than the number of MLPs used in the

SSEN model. Yet, the SSEN is able to outperform the RB sampling method by 0.5% to 1%

in accuracy. This is a surprise finding since the SSEN model only uses 20 MLPs as base

learners.

SVMs often outperform MLPs because they compute decision boundaries that are lo-

cated at the maximum distance between pattern classes. The SSEN significantly outper-

forms the SVM which implies that the optimal decision boundary is not in the center be-

tween pattern classes.

The findings in this Chapter show that the proposed SSEN is best for the PA classification
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task. To verify whether the algorithm is sufficiently robust we apply it to another dataset

which features significant different properties.

6.5 Experimental results: UNSW-NB15 data

6.5.1 Experimental setting

The experimental setting is similar to that for the PA classification problems though we

only use group based sampling (the full SSEN algorithm with all features enables) here.

The dataset was standardized to make each attribute mean zero and standard deviation one.

The base learner MLP has been experimented with a number of different network activa-

tion functions, training duration and the number of MLPs for SSEN. Since this intrusion

detection data is much larger in size when compared with the PA problems, the following

will show the experimental results with respect to the best accuracies on the validation set

(randomly extracted 10% from the training set which is separated from the testing set).

The base learner MLP was trained with the following settings: the number of hidden

layers are selected within {1, 2, 3}. The number of hidden neurons on each layers was

selected within {158, 118, 78, 50, 18}. The learning rate is set with smaller value than

0.001 and with the decay factor of 0.95% during the training process. The number of training

iteration is set up to 5, 000. Note that the number of training iterations is much smaller than

when using the PA data. The reason for this is that we use online training which updates

the network parameter for each sample. Since the number of training samples is by orders

of magnitudes larger and hence by reducing the number of training iterations the number of

updates for each base learner will remain similar.
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Figure 6.4: The mappings of the samples when using SOM of size 192x144 for part of
UNSWNB15 dataset.

6.5.2 Experimental results

We first present the mapping of the training samples and the result of DBSCAN in order

to obtain an overview of the learning problem. Figure 6.4 presents the activation map of a

trained SOM of size 192× 144. We also trained larger maps but chose this smaller map for

visualization purposes. The mapping look extraordinary and very different to that observed

with the PA datasets. It can be observed in Figure 6.4 that some of the pattern classes are

organized in well distinct clusters (i.e. in the upper left corner and lower left corer of the

map) as well as large regions that are organized in clusters of overlapping pattern classes.

There is a clear distinction of border points which occur much denser than was observed for

the PA data.
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Table 6.5: SSEN performance with different network’s settings

Parameters Model performance
Acc Pre Recall F1

Optimization functions
Adam 83.50% 86.53% 83.50% 82.83%
RMSProp 85.85% 87.85% 85.85% 85.45%
SGD 86.57% 88.19% 86.57% 86.24%
Number of training epoches

500 epoches 82.22% 84.81% 82.22% 81.54%
1000 epoches 84.20% 86.40% 84.20% 83.70%
2000 epoches 85.82% 87.46% 85.82% 85.46%
3000 epoches 85.45% 87.38% 85.45% 85.04%
4000 epoches 86.62% 88.16% 86.62% 86.30%
5000 epoches 86.45% 87.94% 86.15% 85.79%
Number of base learners

5 learners 86.48% 87.81% 86.48% 86.19%
10 learners 87.01% 88.16% 87.01% 86.76%
20 learners 87.69% 88.61% 87.67% 87.46%
30 learners 87.28% 88.34% 87.27% 87.05%
40 learners 86.83% 88.05% 86.83% 86.57%

In the following, we will try SSEN with a number of different settings to show how much

the generalization accuracy is affected by the changes the number of training iterations or

the number of base learners within the SSEN.

First, given three different first order minimization algorithms, namely Adam (a first or-

der gradient based optimization of stochastic objective functions) [130], RMSProp (a deriva-

tive of RProp) [131]and SGD (Stochastic Gradient Descent) [132]. Results are summarized

in Table 6.5. It can be observed in Table 6.5 that the SGD minimization algorithm gives

the best generalization performance. The difference in result is significant. SGD improves

the accuracy by over 3% when compared to the popular Adam optimization minimization

algorithm which performed worst on this dataset. It should be noted that each problem can

be fitted to some extent by a different first order minimization algorithm.

For the second set of experiments we change the duration of training process. We vary

the number of training epoches within {500, 1000, 2000, 3000, 4000, 5000 } and record
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the generalization performance (on the validation set) at the end of each training run. Each

experiment is repeated three times, starting from a different initial condition. Average results

are reported. The result is shown in Table 6.5. It is found that when using more than 4000

training epochs this may lead to overfitting whereas the network is not fully trained when

using less than 4000 training iterations. This implies that for this dataset 4000 epochs is the

best one to use.

In a third set of experiments we vary the number of base learners in the SSEN. The

number of MLPs is increased incrementally from 5 to 40. Results are shown in Table 6.5. It

is again observed that SSEN might only require as many as 20 base learners since the best

accuracy performance is obtained with 20 base learners, even though the difference is not

significant.

6.5.3 Comparing SSEN with other approaches for the UNSW-NB15

dataset

Table 6.6 compares our experimental results with results obtained by using machine learn-

ing algorithms. Comparisons will be made between popular classification methods such as

decision tree [133, 134], SVM [77], Naive Bayes [99] and some MLP based models [135]

which are single model based algorithms, and the RB ensemble and the SSEN approach

which are multi-model based algorithms.

The results are summarized in Table 6.6. It is found that the decision tree produced, a

popular decision tree classification technique, one of the best results using the single model

methods (i.e with the the model ensemble approach). The Decision Tree is outperformed

only by a small margin by the SVM. For these experiments the SVM is trained with C

(C is the parameter for the soft margin cost function) being chosen within [10, 100] and

the gamma parameter (gamma is the free parameter of the Gaussian radial basis function)

chosen within [0.01, 0.001]. The MLP was used with the same parameters as a single base
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Table 6.6: Compare model’s performance.

Models Model performance
Acc Pre Recall F1

Decision Tree [99] 85.56% - - -
Naive Bayes [99] 82.07% - - -
MLP [135] 81.34% - - -
EM [135] 78.47% - - -
SVM 85.74% 86.75% 81.37% 80.34%
MLP 85.01% 85.73% 80.90% 79.75%
RB ensemble 86.32% 88.15% 86.34% 86.81%
SSEN model 87.69% 88.61% 87.67% 87.46%

learner in the SSEN algorithm. The RB ensemble used 40 MLPs as its base learners, each

base learner was trained on a sub-set sampled from original training set using the roughly

balanced bagging approach.

It can be observed that the multi-model methods generally outperform single-model

methods and that the SSEN produces best results by a good margin. The SSEN model

improved the accuracy by 2.2% over the second best method which is quite significant for

this UNSW-NB15 dataset.

6.6 Conclusion

This chapter introduced a new innovative sampling technique. The chapter has shown that

the synthetic based sampling approach is effective in creating a richer training sample set for

parametrized classifiers such as MLPs. The method is especially useful for the cases when

the training set is quite small in size and does not encapsulate the properties of the unknown

testing samples. It was shown that HRSOM and DBSCAN are effective in aiding SSEN to

create samples that lead to a better discrimination of pattern classes. This in turn leads to a

more robust classification system with improved generalization capabilities. A very useful

side-effect is that the HRSOM and DBSCAN algorithms allow for visualizations of the data

which helps to obtain a better understanding of the learning problem and is assisting in the
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analyses of results. The approach was qualitatively demonstrated that its accuracy results

are consistently much better than other sampling techniques. The findings were verified by

using datasets with significantly different characteristics.



Chapter 7

Transfer learning

7.1 Preamble

This chapter investigates an alternative to dealing with the small PA datasets. Small datasets

may not cover the feature space well enough to allow for a better discrimination between

pattern classes. The question explored in this chapter is as follows: Can the knowledge

gained from exploring the representations on the feature space of one PA dataset be used

to enhance the class discrimination of another PA dataset. In other words, this chapter

explores whether information from one PA dataset can be transferred to another dataset,

using a technique called transfer learning [136] Whether transfer learning can enhance PA

classifications will be explored.

7.2 Introduction

In the traditional machine learning applications, the training and testing data samples are

assumed to be obtained from the same distribution in the same application domain. In

other words, the input feature space share similar characteristics and possibly the class data

distribution between the training and testing sets. In many real-world scenarios, however,

113
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there are cases where the amount of labelled data is limited or costly to obtain. Hence,

there have been efforts to design and train a classifier using available datasets from a related

knowledge domain, or using related data that was more easily obtained [136, 137]. The

underlining methodology discussed here is referred to as the transfer learning mechanism

[136].

Transfer learning is inspired by the fact that a human being is able to recognize objects

from a background knowledge obtained from related domains, or by only having learned

from a few similar objects, not necessarily exactly the same identical shape. An example

of knowledge transferability is the observation that it is faster to learn to play a piano when

a person had prior knowledge on playing another musical instrument. Transfer learning is

only applicable where the source domain is related to the target domain. One can not identify

a car if one has never seen a vehicle. This is because there is an unique domain-independent

feature when compared one domain with the others.

For PA recognition of children there might be several sources obtained at various times,

of somewhat similar activities, which might have similar energy expenditure, but not nec-

essarily similar visually. This is commonly called the source, or the background domain.

Then, a classifier trained on data in the source domain, might be able to be adapted to pro-

vide the classification of data which is obtained at another time, from another cohort, or

under similar recording conditions. This is often called the target, or target domain [44].

For example, the sources can be a data cohort collected from PA trials of a different cohort

(i.e. adolescents). The source knowledge can be extracted from information contained in the

accelerometer data movement sensor data, or data from the videos. Such information can

be used to train a classifier using the information in the source domain. Then, for a target

domain, data may be collected from different cohorts, like young pre-school children, per-

forming activity which might have similar energy expenditure. The suggestion is to adapt

the trained classifier from the source domain to classify the data in the target domain. This
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idea is attractive since it is easier to collect data from PA trials involving adolescents than

pre-school children. The reason for that is the young children are not as disciplined and are

less likely to follow protocol in an experimental setting in the laboratory. This thesis does

not have access to PA data involving adults. But we do have access to PA data from two

age-cohorts the 2012 dataset collected in Brisbane and two datasets 2014 and 2016 datasets

which were collected from young pre-school children in Wollongong. The classifications

of activities into categories is based on energy expenditure levels rather than on what the

physical activity is. The 2012 dataset consists of data collected from 100 participants, while

the 2014 and 2016 datasets contain 11 and 16 participants respectively. Therefore, it would

be an interesting question: is it possible to train a classifier on the 2012 dataset, and then

adapt the classifier to classify the 2014 dataset, or the 2016 dataset? If this can be done,

what might be the improvement in generalization accuracies using the 2014 dataset, or the

2016 dataset alone by itself as a standalone dataset.

There exist numerous work applying transfer learning to recognition tasks including text

sentiment classification, image classification, human activity classification, software defect

classification, and multi-language text classification [136, 138, 139].

It is also popular to exploit transfer learning in deep learning though for different rea-

sons [139]. The reason is that the source data is assumed to be sufficiently large for an

effective deep training procedure. One can easily collect multiple sources of e.g. publicly

available images about related domain to the target domain, e.g., recognition of images

which might not be present in the source domain. It was largely recognized that a deep

learning model being trained by using images or related images from the source domain

can be adapted much more quickly to a given target image recognition task and is thus is

able to perform better than a model which was trained from scratch based on the images

in the target domain [44, 45]. However, when the training speed is not a major concern in

this thesis given the small datasets, the primary aim here is to investigate whether knowl-
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edge transferred from one PA dataset can improve classification performance on the target

dataset.

There are two main types of transfer learning: Feature-based transfer learning and

parameter-based transfer learning [140, 137]

• The feature-based transfer learning approach attempts to transform the features of

source (Xs) into features of a target (Xt) domain. The corresponding features are

called domain-independent feature. One example of feature-based transfer learn-

ing is by using augmented latent features in the feature space [140]. Another work

is based on the spectral feature alignment which use the spectral feature clustering

method [141].

• The parameter-based transfer learning is performed at the model level [137] The ob-

jective is to transfer parameters of the classification model from a model that was

trained on data from the source domain to adapt the model to work in the target do-

main. After training a model on labelled data from the source domain, the trained

model is then adapted as the initial model in the training on the labelled data in the

target domain. In other words, the trained model in the source domain is used as an

initial model in the training of the same model in the target domain, often only for

a few training iterations. In this manner, the knowledge obtained in training on the

source domain is preserved and modified by the training data in the target domain.

The boosting method is an example of parameter-based transfer learning [137]. In

the boosting method, the learning model is driven to focus on a sample if a model

misclassified that sample or is decelerated if the model correctly classified it.

The parameter-based transfer learning approach, which is performed at the model level,

will be explored in this thesis. The general approach taken in this thesis is illustrated in

Figure 7.1
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Figure 7.1: Transfer learning applied to physical activity recognition.

The Figure shows that the process commences by training a base model on the source

domain. Once the base model is trained, its internal parameters are frozen. Then two options

on creating the transfer model are explored.

Option 1: A number of new and randomly initialized layers of hidden neurons are added.

The weights of these newly added neuron layers are then trained on data from the

target domain. The transfer model is then evaluated on the test data from the target

domain. We will refer to this architecture as the Expanded Transfer Learning (ETL)

model.

Option 2: The FRPN (fully recursive perceptron network) deep learning architecture is

added and its parameters are trained on data from the target domain. This creates

a hybrid architecture consisting of a layered architecture to which a recursive model

is appended. The trained transfer model is then evaluated on the test data from the tar-

get domain. We will refer to this architecture as the Stacked Transfer Learning (STL)

architecture.

Here the knowledge obtained in the source domain is “frozen” in the base model, a vanilla
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MLP. The knowledge on the target domain is adapted in the added feedforward layers (op-

tion 1), or added fully recursive layer (option 2), It is known that the FRPN is a data de-

pendent expansion of the feedforward layers; in other words, a fully recursive layer can be

expanded into a number of feedforward layers, and the depth of expansion is based on the

incoming data. Therefore, option 1 can be considered as a fixed depth feedforward layers,

while option 2 can be considered as a feedforward layer with variable depth, i.e., the depth

is automatically determined by the data. Option 2 is inspired by the work reported in [79]

and is presented for the first time in this thesis in the context of transfer learning. In this

chapter, both option 1 and option 2 will be explored for transfer learning of PA datasets.

The rest of this Chapter is structured as follows. Section 7.3 presents the data preparation

step and explains experimental settings. Experimental results are presented and analysed in

Section 7.4. Conclusion will be drawn in Section 7.5.

7.3 Data preparation

7.3.1 Accelerometer cohorts

The datasets PA2014 and PA2016 will be used for the transfer learning experiments. The

PA2012 dataset is not used because the PA classes differ significantly from those in the

PA2014 and PA2016 dataset respectively. The PA2016 dataset consists of two subsets: One

subset corresponds to data acquired by using the GeneActiv tri-axial accelerometer whereas

the data in the second subset were acquired by using the ActiGraph tri-axial accelerometer.

The PA2014 contains only data acquired by ActiGraph tri-axial accelerometers. Details of

the types of activity trials performed for each dataset were presented in Chapter 4.

Note that the activities recorded in the PA2016 data differ somewhat from the activities

in the PA2014 dataset. Moreover, the number of different activities in the 2016 dataset

is nine compared with 12 activities in the PA2014 dataset. There are only three activities
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that are comparable between the 2014 dataset and the 2016 dataset: Treasure hunt, Bean

bag game and Story time. Some data alignment is thus required. This will be described in

Section 7.3.2.

We will use the PA2014 dataset for training the base model i.e., we will consider the

2014 dataset as the source domain. The PA2016 dataset will be considered as the target

domain. The PA2016 dataset is split into three parts of approximately equal size. One is

used for training, one for validation and the rest serves as a test set. The non-overlapped

window method as described in Chapter 4 is used for feature extraction. The window size

is set empirically to 15 seconds. The features extracted include: for each accelerometer

coordinate (x,y and z) we use the 5 percentiles, auto-correlation, entropy, average, standard

deviation, average deviation, skew, curt and peak (13 dimensional feature vector for each

accelerometer coordinate, which results in 13× 3 = 39 dimensional feature vector for each

input sample). The choice of features is motivated by work in [129] hence we use the same

features as in [129]. We can use the combination of Hip+Left wrist for both datasets, so that

the input dimension increases to 2×39 = 78. Hip+Left wrist data was shown to be the good

choice of combining multiple accelerometer data [8].

7.3.2 Alignment of Pattern Classes

This section introduces a novel methodology of aligning pattern classes from two data pop-

ulations. The methodology is quite generic and would work in situations where the data in

multiple populations meet the following criteria:

• The populations are part of a classification problem featuring two or more classes.

• The data is normalized to within the value range [−1, 1] with zero mean.

• The dimension of the features is the same in all populations.
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The method has been developed to align pattern classes of the PA2014 and PA2016

datasets and will be used in this chapter for this purpose. We will thus not evaluate the

method on other datasets.

Note that the pattern classes in both datasets are segmented based on the level of en-

ergy expenditure measured e.g., sedantary, light exertion, medium exertion, walking, and

running. PA are categorized in five energy expenditure levels in the PA2014 dataset which

differs from the 9 levels in the PA2016 dataset as shown in Chapter 4. There was very

common approach to groups physical activities into 5 levels of energy expenditure which

include: (1) Sedentary activities; (2) Light activities; (3) Moderate-to-vigorous activities;

(4) Walking like activities; and (5) Running like activities [5, 3]. Thus, we should group

these 9 activities into 5 energy expenditure levels as listed to make a consistent comparison

and to enable the tranfer learning from one domain to the others.

The proposed approach aims at finding a common ground for grouping data into five

categories and labelling them accordingly. The approach thus needs to be based on the level

of energy expenditure of each PA. It is difficult to align activity classes by comparing fea-

ture vectors in a high-dimensional feature space. To simplify the task, this thesis will use

the topology preserving characteristics of the HRSOM algorithm introduced in Chapter 5.

The topology preserving characteristics of the SOM is as follows: any two feature vectors

in the high dimensional feature space will remain close when they are being projected onto

the two-dimensional display space [100]. Clustering of the projections is used to identify

alignment of data groups. K-means clustering is engaged for this purpose. K-means cluster-

ing is similar to PCA and mean shift clustering, though the key difference is that K-means

is a vector quantization method. K-means is extensively applied in signal processing, used

for the cluster analysis in data mining [142]. K-means clustering aims to partition n input

samples into k clusters in which each sample belongs to the cluster with the nearest mean.

The nearest mean is called a prototype of the cluster. The value k, the desired number of
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clusters, needs to be specified. Since we wish to identify the alignment of a fixed number

(five) data groups and hence this makes K-means particularly appealing.

K-means is applied to the mappings of the HRSOM since (1) the 2D map offers visu-

alization of results which aids observations and the understanding of results and (2) data

dimension reduction reduces sparsity thus aiding K-means to identify dense clusters.

The procedures for applying this idea to align the categories between the 2014 dataset

and the 2016 dataset are as follows:

• We train a HRSOM on the GeneActiv subset of PA2016.

• K-means is then applied to each HRSOM in order to identify k = 5 clusters. The

HRSOM is thus trained on samples that belong to nine activities while K-means is

performed to group the samples into five clusters. The result of K-means will reveal

the correlation between clusters and the pattern classes. One should thus be able to

identify how the pattern classes align with the K-means clusters. Comparisons with

the two results should then reveal how the pattern classes are related.

• The pattern classes are aligned with a cluster by using majority-based assignment.

This can be explained as follows. If a majority of samples from a particular class is

clustered into cluster A, then all samples from that class will be assigned to cluster A

and are then relabelled as class A.

The result of applying this method to the PA2016 dataset is shown in Table 7.1. From

this Table it can be observed how majority-based assignment leads to an alignment with

the clusters. For example, the samples from the PA ”Lying down” is mapped to cluster-

C while all other samples from that PA are found in cluster-E. All samples of that PA are

then re-assigned to belong to the majority cluster-E and are labelled accordingly by using

a unique ID (5 in this case). Notice that the ID is unique to each cluster. Since there are

more PAs than clusters this means that some clusters will be the majority cluster for several
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Table 7.1: Majority voting to assign nine classes to the 5 clusters.

Cluster New
PA trial A B C D E Class-Id
(1) Lying down 0 0 1 0 139 5
(2) Toys at table (free play) 0 72 20 28 20 2
(3) Story time 0 103 12 19 6 2
(4) Whiteboard 0 114 16 9 1 2
(5) Treasure hunt 2 3 11 124 0 4
(6) Pack Away 1 4 135 0 0 3
(7) Dance 19 10 8 103 0 4
(8) Bean Bag Game 95 12 18 15 0 1
(9) Captain is coming 134 5 0 1 0 1

PAs. For example, cluster-B is the majority cluster for the three PAs ”Free play”, ”Story

time”, and ”Whiteboard”. Notice that the method re-aligned the categorization of the nine

PAs. The categorization is very similar to the original categorization and we observe that

new categorization organized PA according to the vigorousness of a PA. The method has

thus shown its effectiveness in achieving the envisaged aim of realigning the pattern classes.

As can be seen in Table 7.1, nine activities are assigned into five clusters (from Cluster-

A to Cluster-E, associated with indices from 1 to 5). To decide the class-id (class label for

each activity), we need to get the index of the cluster with the largest value. For example,

for (1) Lying down activity, the largest value of 139 is with Cluster-E, associated with the

index of 5, thus we would assign this activity to New Class-id of 5. Similarly, for the (6)

Pack Away activity, the largest value of 135 is with Cluster-C, associated with the index of

3, thus we would assign this activity to New Class-id of 3. The New Class-id here is relative

since we need to arrange the classes in the energy expenditure order. That final stage should

be involved with some heuristic perspective. In particular, we should assign the smaller

class-id value to least energy expended activities and larger class-id value to more energy

expended activities.

We analyse the results further by inspecting the projections of the data. Figure 7.2 shows

the mapping of the PA2016 data on a trained HRSOM of size 600. The mappings are labelled
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Figure 7.2: SOM mapping result.

according to the PA type of each sample. The HRSOM’s mapping result is then used as the

input for K-means algorithm.

Figure 7.3 illustrates the results of K-means clustering. It can be seen that the 5 clusters

formed by K-means are relatively well separated and that the separation of the clusters is

purer than was observed for the nine PAs. It is also observed that the clusters do largely

correspond to the grouping of the data that can be observed on the SOM in Figure 7.2, in

other words each model contributes to the final class annotation task.

The following observations can be made: (1) using both HRSOM and K-means with

majority voting can help us to determine which PA trials to be assigned to which classes;

(2) given the class label annotation shown in Table 7.2, one can observe some alignments

between activities in each class in terms of level of energy expenditure; (3) the PA2016 data

contains two datasets, namely GeneActiv and ActiGraph cohorts. The two datasets share
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Table 7.2: Comparing class division between two datasets: PA2014 and PA2016

cID PA2014 PA trials PA2016 PA trials
(1) Watching TV, Story time,

Playing iPad, Quiet play
Lying down

(2) Collage, Treasure hunt,
Clean-up

Toys at table (free play),
Story time, Whiteboard

(3) Bean bag, Obstacle course,
Bicycle

Treasure hunt, Dance

(4) Walking Pack Away
(5) Running Bean bag, Captain is coming

the same experimental settings and the number of physical activity trials. Hence it is not

necessary to repeat the same experiments for ActiGraph dataset.

The result is that the PAs of the two datasets can now be aligned into five overarching

pattern classes. Table 7.2 presents the results.

It can be seen from the Table that i.e. the activity ”Lying down” in the PA2016 dataset
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aligns with the PAs ”Watching TV”, ”Story time”, Playing iPad”, and ”Quiet play” in the

PA2014 dataset. All of these activities are of low intensity and it makes sense to have them

aligned to the same class. A similar observation is made for the other newly formed classes.

Even though, the activity type alignment in Table 7.2 is a heuristic procedure, the cluster

determination process was made automatically using HRSOM and K-means. This is a very

good result which will allow us to engage transfer learning on these two datasets. Note that

this alignment of PAs is entirely data driven. This is unlike the approach taken to create the

original pattern classes which were defined manually. The new classes aligns well with the

original classes while concurrently aligning the pattern classes of two populations of data.

7.4 Experimental Results on the Application of Transfer

Learning to PA Prediction

The following experiments will compare the recognition accuracy of the baseline models

with the results of transfer learning model by using the PA2014 dataset and the two subsets

of the PA2016 dataset. The target domain is defined by the subsets of the PA2016 dataset

whereas the PA2014 data are to provide background knowledge to the transfer learning

model. The focus of the analysis of results will be on the target domain. The results shown

in this section will thus be limited to the PA2016 domain. Both, the ETL and STL modelling

options are explored.

The experiments are prepared as follows: Having aligned the pattern classes as described

in the previous section we then split each of the PA2016 subsets into three sets, 60% for

training set, 20% for validation, and 20% for the test set. A baseline model is trained on

each training set, training parameters are optimized by using the corresponding validation

data, then the final result on the corresponding test set will be reported. For building the

transfer learning model we first train a baseline model on the full PA2014 dataset, freeze the
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weights, then build the ETL architecture as well as the STL architecture the newly added

parameters of which will then be trained on the afore mentioned training sets.

7.4.1 Baseline Results

The baseline model is an MLP with either one or two hidden layers. The number of hidden

neurons in each layer is chosen to be within {23, 35, 57, 76, 100}. We also trained MLPs

with more than two hidden layers but found, as will be seen in Table 7.3, effects of overfitting

are observed if large MLPs or MLPs with more than one hidden layer is used.We thus omit

the results from MLPs with more than two hidden layers. The reason why we chose the

MLP as a baseline architecture is that (a) MLPs are often used in transfer learning since

the number of hidden layers can be easily expanded, (b) the properties and capabilities of

MLPs are well understood, and (c) MLPs have been deployed to PA classification of young

children from accelerometer data [5, 8, 25].

The training of the MLPs is performed by selecting the learning rate from within {0.1,

0.01, 0.001, 0.0001}. The final choice if the learning rate is made on the basis of the val-

idation results. All experiments are repeated three times using different initial (random)

conditions. The average test accuracy and the average training accuracy is calculated. The

results are summarized in Table 7.3.

Table 7.3 reveals that, for both subsets, the best results are obtained when using just a

single layer of hidden neurons and when the number of hidden neurons remains small. This

implies that the model develops a tendency to overfit the training data when the number

of parameters is large. To verify whether overfitting is indeed leading to these results we

then train a set of MLPs where we evaluate the generalization performance at various stages

during the training procedure. More specifically, the generalization performance is evaluated

at the 500-th training iterations, then again at the 1000-th iterations, at the 1500-th iterations,

and so on, and up to 10,000 iterations. The results are shown in Table 7.4. It can be observed
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Table 7.3: Experimental results when using different number of hidden neurons and number
of hidden layers.

Model architecture GeneActiv ActivGraph
#hidden1 #hidden2 #params TrainACC TestACC TrainACC TestACC

23 1937 0.8645 0.6960 0.8225 0.7110
35 2945 0.8935 0.7076 0.8378 0.7314
57 4793 0.9082 0.7168 0.8555 0.7129
76 6389 0.9277 0.6865 0.8644 0.7211

100 8405 0.9360 0.6794 0.8634 0.7280
23 23 2489 0.9022 0.6738 0.8603 0.6958
57 23 5957 0.9432 0.6595 0.8635 0.6749
57 57 8099 0.9746 0.6960 0.9097 0.6711
75 57 10683 0.9845 0.6833 0.9202 0.6970

100 35 11615 0.9782 0.6762 0.9303 0.6875

Table 7.4: Experimental results when using different number of training iterations.

#epochs GeneActiv ActivGraph
TrainACC TestACC TrainACC TestACC

500 0.8653 0.7286 0.8032 0.6983
1000 0.9082 0.7168 0.8378 0.7314
1500 0.9249 0.7286 0.8536 0.7362
2000 0.9201 0.7167 0.8479 0.7249
5000 0.9464 0.6929 0.9221 0.7040
10000 0.9833 0.7048 0.9506 0.7021

that the accuracy for the training data increases with the number of training iterations and

that the generalization accuracy peaks at about 1500 iterations. This confirms our hypothesis

that overfitting has indeed occurred.

Overfitting can be controlled by choosing smaller models or by increasing the number of

training samples. Furnished with the insight that it is best to train small MLPs for a limited

number of iterations we can thus eliminate the validation set as it is no longer needed for

optimizing the training parameters. Furthermore, we can change the test set such that it

contains only the samples of one person. This allows us to create a training set which

contains all samples except the ones that are in the test set. The mechanisms thus maximizes

the size of the training set. To obtain a complete overview of the generalization performance
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we rotate the person in the test set so that each person appears in the test set exactly once.

Since the PA2016 is a collection of samples from 16 participants and hence we train 16

MLPs where each MLP is evaluated on the data of one of the participants. This creates 16

results. Averaging the results thus produces a generalization result over all samples. The

approach is called leave-one-person out (LOPO). This is similar to cross-validation that is

commonly applied when working with small datasets. The LOPO approach is not new. It

has been deployed previously to PA classification of young children [5, 8, 25]. By using

the LOPO approach the generalization results increase to 77.34% (GeneActive) and 75.60%

(ActiGraph) respectively. We will use this result as a baseline for subsequent comparisons.

7.4.1.1 Comparisons with SVM and FRPN

This section will compare the results of the MLP with results from the SVM and the FRPN

algorithms in order to obtain a more complete picture on how the proposed transfer learning

approach compares. The SVMs and FRPNs were trained by (a) identify the optimal training

parameters by using the training and validation sets then (b) training the models using the

LOPO approach.

The averaged generalization results are shown in Table 7.5. Presented are the evaluation

metrics micro-recall and macro-recall 1. For the GeneActiv dataset the generalization accu-

racy of the MLP is slightly better when compared with the FRPN whereas for the ActiGraph

data is worse than the FRPN. This comes as a surprise because the FRPN had more param-

eters then the MLP and the algorithm simulates a deep learning architecture. But, as found

in the previous section, more parameters and layers were observed to lead to overfitting. It

is not clear why the generalization performance of the FRPN is better for the ActiGraph

data. But the results are interesting because the STL method will engage the FRPN. From

this result we can establish the hypothesis that the STM method will perform better for the

ActiGraph data whereas the ETL method could be better for the GeneActiv data. whether

1Note that macro-recall can be called as ”accuracy” for multi-label class classification problems
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Table 7.5: Comparison of baseline results.

Model GeneActiv ActivGraph
MicroRecall MacroRecall MicroRecall MacroRecall

MLP 0.7416 0.7734 0.7180 0.7560
SVM 0.7667 0.7857 0.7856 0.7895
FRPN 0.7480 0.7635 0.7467 0.7784

this hypothesis holds will be investigated in the next section.

For completeness, it can be seen in Table 7.5 that the SVM produced the best general-

ization performance for both datasets. This is an expected result given that the SVM estab-

lishes a decision boundary that maximises the distance between pattern classes whereas for

the MLP and FRPN the decision boundary could be anywhere between the pattern classes.

Another reason would be that SVM still performs well even when the number of training

samples is relatively small as in the cases of our PA datasets while MLPs and FRPN might

be overfitting quickly with the small data sample space. It is to be seen whether transfer

learning can enhance the results and how the results of transfer learning compare with the

baseline methods.

7.4.2 Results from using Transfer Learning via Model Expansion

This section investigates the effectiveness of the Expanded Transfer Learning (ETL) ap-

proach. Two avenues are explored to train the base model:

Approach A: We define the source domain as being the one which combines the PA2014

dataset with the ActiGraph data of the PA2016 dataset. The target domain is the

GeneActive data. The ActiGraph and GeneActive data can be considered 2 different

datasets since they were collected using different types of accelerometers and from

different laboratory settings and time. The two datasets are called the as a portion of

PA2016 data cohort because they contain the same types of physical activities.
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Approach B: We define the source domain as being the one which combines the PA2014

dataset with the GeneActive subset of the PA2016 dataset. The target domain is the

ActiGraph subset.

Both approaches maximise the amount of the source information. The source models

are created and trained as before by first splitting the dataset, using training and validation

data to identify optimal network size and training parameters, then use LOPO to train the

final model. The source model obtained by using approach A will be referred to as model-A.

Conversely, model-B is the one obtained by using approach B.

Transfer learning is then engaged as follows. The weights in the source model are frozen.

The model is extended by adding one new hidden layer. The model is then trained on the

(training) data in the target domain and tested on the test data in the target domain. The

training procedure only updates the weights of the newly added hidden layer neurons thus

retaining the information that was encoded by the source model.

Two transfer learning models are obtained: One which uses model-A as the source model

and one which uses model-B as the source model. The corresponding transfer learning

models will be referred to as ETL-model-A and ETL-model-B respectively.

The background model ETL-model-A and ETL-model-B here are multiple hidden layer

MLPs, which were found best to contain two hidden layers. We tuned the number of hidden

neurons for each case and found that for ETL-model-B, the network architecture would

look like input-50-40-output where two hidden layers contain 50 and 40 hidden neurons

respectively. For ETL-model-A, the network architecture has 170 and 90 hidden neurons

for two hidden layers respectively. The validation set is left-aside 33% of the training set.

For the case of expanding the network at the last layer, say removing the output layer and

then topping up the network architecture with one hidden layer or two. We experimentally

found that adding one hidden layer to the end gave better generalization accuracies. In

this case, the whole background model’s parameters are frozen, when training on the target
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Table 7.6: Experimental results when using different number of models.

Model GeneActiv ActivGraph
MicroRecall MacroRecall MicroRecall MacroRecall

MLP 0.7416 0.7734 0.7180 0.7560
model-A 0.8008 0.8012 - -
ETL-model-A 0.8246 0.8258 - -
model-B - - 0.7896 0.7901
ETL-Model-B - - 0.7941 0.7954

domain training set, only expanding layer’s weights were updated.

The results are presented in Table 7.6. It can be observed that ETL-model-A enhances

the result by about 2% over the source model and by over 5% when compared with the

baseline model. This is a good improvement and is also better than the baseline SVM

results.

It can also be observed in Table 7.6 that the transfer learning model significantly im-

proves results over the baseline results. Though the difference in results between the source

model and the transfer model is relatively minor.

7.4.3 Results from using Transfer Learning via Model Stacking

This section uses the Stacked Transfer Learning (STL) approach in which the output layer of

the source model is replaced with an FRPN. Source model-A and ackground source model-

B from the previous section are used. The corresponding transfer learning models are then

referred to as STL-model-A and STL-model-B respectively. The same procedure as before

is used for model optimization and model training.

Results are shown in Table 7.6. By comparing the results in Table 7.7 with those shown

in Table 7.6 we can make the following observations: The STL method works much better

than the ETL method. The STL method significantly enhances the generalization results

over both, the source models and the baseline models for both datasets. The improvements

are about 8% when compared to the baseline for both datasets, and about 2% better than the
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Table 7.7: Experimental results when using the STL approach.

Model GeneActiv ActivGraph
MicroRecall MacroRecall MicroRecall MacroRecall

STL-model-A 0.8404 0.8516 - -
STL-model-B - - 0.8199 0.8316

Table 7.8: Confusion matrix for GeneActiv data

class 1 2 3 4 5
1 0.9929 0.0071 0.0000 0.0000 0.0000
2 0.0071 0.9262 0.0524 0.0071 0.0071
3 0.0000 0.0964 0.7286 0.1071 0.0679
4 0.0000 0.0429 0.2429 0.6714 0.0429
5 0.0000 0.0250 0.0571 0.0357 0.8821 0.8516

Table 7.9: Confusion matrix for ActivGraph data

class 1 2 3 4 5
1 0.9857 0.0071 0.0000 0.0071 0.0000
2 0.0019 0.9111 0.0611 0.0222 0.0037
3 0.0000 0.0750 0.7444 0.1250 0.0556
4 0.0000 0.0500 0.2778 0.6056 0.0667
5 0.0000 0.0417 0.0944 0.0111 0.8528 0.8316

ETL method for both datasets. It is a surprise finding that the STL method is better than the

ETL method for the GeneActive data since the hypothesis was that the ETL method would

work better on the GeneActive data. The result implies that transfer learning is effective

in enhancing the generalization performance in PA classification in young children using

accelerometers, and that the FRPN is much better as exploiting background information in

transfer learning.

We present confusion matrices to further investigate these results. Table 7.9 presents the

confusion matrix of results produced by STL-model-A and Table 7.8the confusion matrix

of results produced by STL-model-B. It can be seen that the accuracy performance can vary

significantly from class to class. For example, for class 4 (Walking and Pack Away) the

accuracy is almost 40% lower when compared to class 1. This coincides with the fact that

class 4 is the smallest class and class 1 is one of the largest (only class 2 is larger, see
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Table 7.2). This indicates that the unbalanced nature of the dataset affects the overall result.

The observation is true for both datasets. The way we divide the PAs into 5 activity classes

may thus affect the overall generalization performance. This in turn implies that the result

may further improve if a balancing technique such as SSEN is engaged. This would result in

a SSEN transfer learning model. However, despite holding great promise to improve results

further, this idea shall remain a subject of future research 2.

7.5 Summary

This chapter investigated the possibility of engaging transfer learning for enhancing PA clas-

sification. A background model was trained on different but related data. The background

data differed in terms of protocol and in terms of the type of sensors used. Due to differ-

ences with the target domain this chapter proposed a workable approach to align the source

domain with the target domain. The background model was then expanded and the newly

added parameters were trained on the target domain. This resulted in significant improve-

ments in results particularly when the FRPN was engaged to expand the background model.

While the general concept of transfer learning is not new, this chapter introduced several

novel concepts to render transfer learning suitable for classifying PA of young children on

available data. The work presented in this chapter confirmed that it is possible to effectively

transfer prior knowledge on PAs to a model in the target domain. Improvements in results

by as much as 8% were observed. This is a significant improvement given that the data is

unbalanced and affected by noise. Further improvements should be possible by incorporat-

ing a data balancing technique into the adopted transfer learning approach. This, however,

will be left as an objective of future research.

2The work could not be carried out due to time limitations and personal circumstances.



Chapter 8

Video-based children activity recognition

8.1 Preamble

Children physical action recognition problems may have two modalities of measurements:

be available with two different types of collective data. The use of accelerometer sens ac-

celerometer recordings as the primary data, and video recordings as a secondary record, for

validation of the accelerometer measurements. This is because the accelerometer measure-

ments cannot distiguish various physical activities by the young pre-school children who

might not be performing the labelled activity throughout an activity episode, while such

deviations from the laebled activity would be easily detected from video recordings, and

manually removed from the accelerometer in a postprocessing stage, so as to preserve the

consistency of the label. Therefore, the video used for validation for disposal. In this chap-

ter, we investigate for the sake of curiosity: would the video be pliable to video processing

techniques and might be used for video classifications by themselves. Obviously we do not

expect the video classification task to have superior performance when compared with those

obtained using the accelerometer recordings, but the energy expenditure which would be

estimated from the accelerometer recordings are sufficiently coarse, which might imply that

video processing of the associated video recordings might surprise us of its accuracy. In the

134
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event if the accuracy of the video classification task is high, this could serve as a confirma-

tion of the accuracy of the classification task using the accelerometer recordings. It is in this

spirit that we investigate the video classification problem in this chapter.

8.2 Introduction

Recently, human physical activity recognition has drawn attention in the field of video un-

derstanding and knowledge acquisition from video sequence because of the growing demand

from a number of applications, such as surveillance environments, entertainment environ-

ments and health-care systems [16].A good review paper about related work can be found

in [143, 16, 24]

Fundamentally, steps in video-based action recognition include (referred to Figure 8.1):

• Video preparation which includes the annotation steps to assign each video segment

with a class label, video image noise and blurriness reduction.

• Object detection to identify the object’s boundary which is applied on the image by

identifying the bounding box of an object in each image in the video sequence, ul-

timately resulting in a series of bounding boxes corresponding to the sequence of

images in each video.

• It is necessary to track/following the object of interest in the whole video segment so

that the bounding boxes are placed on the right object over time.

• Feature extraction from sequence of object’s bounding boxes.

• From the sequence of feature points, we train a model to classify the human actiivity

type.

We acknowledge the challenges that arises when solving small children’s action recog-

nition problem.
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Figure 8.1: Stages in recognizing children physical activities

1. Intra- and inter-class variation challenge: For a single action/class for example, walk-

ing and running movements can differ in speed and stride length for different indi-

viduals. For several actions/classes, one action can accommodate the other actions

such as the case that the clean-up contains actions that come from the walking and

sitting down action/class. For increasing numbers of action classes, this will be more

challenging as the overlap between classes will be higher.

2. Environment and recording settings: The environment (such as in laboratory, outdoor

or free style) in which the action performance takes place is an important source of

variation in the recording. The actions performed under a strict pre-setting protocol

would be much easier to recognize than the actions made under free-living conditions.

3. Less disciplined children: while actions acted by a teenager or of older ages are ex-

actly followed the setting procedures, children are more active and are not able to

follow the instructions all the times. For example, while doing the walking action,

children sometimes can stop walking and picking up a little toy that appears on the

ground. These noisy actions can be detrimental to the classification task. In practice,

instructors might request to have another replacing trial, however it is relatively hard

to achieve a clean performing action by a little child.

4. There was a problem with camera position and children poses: since children are more

active and hence their body parts’ poses are diverse and changing more frequently.

The camera position is normally fixed so that the children’s body parts can hardly be
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visible all the time. The detection model may find it hard to identify humans and body

parts in this case.

5. Another problem is when there are more than one persons being visible from the

camera. More importantly, they are moving and occluded by one another. In this

case, the track lost is more likely to occur.

6. Other problems: first , the lighting conditions can further influence the appearance of

the person; secondly, the same action, observed from different viewpoints, can lead to

very different image observations.

8.3 Methodology

Among many applications of video recording system, human action recognition especially

with high-level behavior recognition comes out to be one of the most interesting one. An

physical activity is a sequence of human body movements, and may simultaneously in-

volves a number of body parts’ co-interaction. Basically, the recognition of human action

on video sequences need to go through several steps. Major components of such systems in-

clude human body and body parts detection, tracking the subject of interest possibly among

many other non-interest objects, feature extraction from the detected bounding boxes, action

learning, and classification [20]. The methodology followed in this chapter is the “best of

breed” object detection, and object tracking” algorithms at the time such experiments were

conducted. More details on each step are as follows:

8.3.1 Object detection

Children body detection can be divided into whole body detection, body part detection, and

corresponding skeleton detection. OpenPose is a well-known library for real-time multi-

person key-point detection. OpenPose is computationally efficient by using multi-threading
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GPU model. We follow closely the development of automatic human skeleton detection in

[30]. Another approach includes the whole body detection model. The current state-of-the-

art model for this purpose is Yolo (You only look once) object detection [33]. Yolo is a

real-time object detection system. In this Chapter, we will follow the implementation of two

mentioned algorithms.

8.3.2 Object tracking

This step commonly follows the object detection step or functions that give an object’s

bounding box on a sequence of image frames. The fundamental idea behind tracking algo-

rithms is to consider the past movement patterns and changes around the object to predict

future movement direction. There are several most accurate tracking algorithms that we will

follow the development closely in this Chapter as follows:

• Tracking by detection using Kalman filter [37]

• Correlation filter tracking [39].

• Tracking by using template matching [144]

• Tracking by using human re-identification model based on deep convolutional neural

network [44].

Detailed descriptions of these algorithms are shown in Chapter 2.

8.3.3 Feature extraction

The outcome of object detection and tracking is a series of subject’s image with as less

background noise as possible since we found experimentally that images with more noisy

background would result in poorer descriptive features and hence result in poorer classifica-

tion accuracy. In this Chapter we will follow the development of the state-of-the-art feature

extraction approach which was based on the dense trajectory [53].
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8.3.4 Classification

Once the sequence of feature vectors from the feature extraction step are available, we use

them as direct inputs to a classifier model. The output of which would be the class label

of physical activity class. This problem is one type of many-to-one classification problem

[145]. The model would map sequence/time series data to a class label, which in other

word is called supervised sequence labelling/classification [145]. Since the tradition models

such MLP or SVM might not be suitable or be capable of solving this type of problem, we

follow the development of the current state-of-the-art recurrent neural network model which

is denoted as deep temporal LSTM [78] which is the latest generation of LSTM model [56].

For simplicity, in the following we will call the classifier LSTM.

It should be noted that at the time of this experiment, all the models selected for devel-

opment in this Chapter are considered being state-of-the-art models.

8.4 Experimental settings

There will be several steps before the numerical data are extracted. One can have optional

processing steps along with the required steps. In particular, the features extracted from

image frames are unavoidable for every approach while the object detection, object tracking

and object re-identification are kinds of optional techniques. The separated approach being

used as the base line is using the human skeleton location extraction.

In the following, the required steps will be presented first, optional processes will be

shown later. We will compare the experimental results when using the LSTM (long short

term memory) given different combinations of pre-processing steps, namely:

• The skeleton location extraction, this would form the base line for experimental com-

parison

• The human detection + feature extraction (Setting 1)



8.4. Experimental settings 140

• The human detection + human tracking + feature extraction (Setting 2)

• The human detection + human tracking + human re-identification + feature extraction

(Setting 3)

As being stated in Methodology section, the LSTM is selected for classification task

of labelling the long time series/sequence or very high dimensional input. We expect that

the feature extracted would be of very high dimensionality, since each 15s contains 15*25

frames (=375), then the dense-trajectory feature extraction given those frames would be

much larger in size.

The classification experiment procedure is as follows: (1) given the feature vectors ex-

tracted from the sequence of image frames using the feature extraction method stated in

Methodology section (i.e each sequence input to LSTM is a series of feature vectors). The

dataset we will obtain, includes these input sequences. We randomize on the dataset and

split the data into training set and test set,the training set contains 60%, the validation set

contains 10%, and the testing dataset contains 30% of the original dataset. (2) The LSTM

network’s parameters are chosen as follows. The LSTM Network architecture contains from

1 to 3 recurrent layers.The number of hidden neurons on each layer was selected in the range

[30, 70], the learning rate was tuned within [0.01, 0.00025]. The number of training iter-

ations was selected from 50,000 to 300,000. The batch size was chosen in the range [50,

200]. The input sequence length is set based on the number of image frames collected for

each segment of video, since we will consider each segment of video is corresponded with

a class label/a type of physical activity. The length of each video segment is selected from

5s to 15s.

The data description has been presented in Chapter 4. The video sequences are available

for all participants performing their physical activity trials in the PA2014 dataset only. In

total, there is approximately 5 (minutes) * 12 (activity trials) * 11 (participants) = 660 min-

utes (or 11 hours) of video recorded in the PA2014 dataset. The video sequences from time
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Figure 8.2: Skeletons detected given a treasure hunt activity (top) and a collage activity
(bottom). The example contains skeletons from 14 consecutive frames.

to time contain segments in which there is no presence of the performing subject. The im-

age frame in some cases contains vertical strips so the image noise removal and de-interlace

approaches [146] are used to improve the frame quality.

8.5 Skeleton feature-based recognition: the base line

For human skeleton detection, we use convolution pose machine (CPM) model [30]. This

method works as follows: It learns the localization context (the location of the subject and

the surrounding related objects) of a body part in the image based on the model’s belief map

and receptive field. For the case of multiple people in the image, once body parts are found,

the minimum spanning tree is used to separate a set of parts that belong to individual persons

[30].

The model was trained with publicly available data, say COCO cohort [147].

There are 18 detection key points on the body (nose,left eye,right eye,left ear,right ear,

neck, left shoulder,right shoulder,left elbow,right elbow, left wrist,right wrist,left hip,right

hip,left knee,right knee,left ankle and right ankle), in which each was represented with a

coordinate which includes 2 numbers.The window size for feature extraction is the same as

the length of video segment.For example, if we take out 24 frames for each second, a feature

vector is formed by concatenating all the key points’ coordinates of all frames within each
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5s. The final dimension for the concatenated feature vector would be 24 * 5 * 18 * 2 =

4320, which is relatively large for a classification model such as the traditional MLP model.

However, we will create LSTM input in the form of sequences (series of feature vectors).

Figure 8.2 presents two examples of skeleton detection for two respective activities,

namely treasure hunt (for the top row) and collage activity (for the bottom row). When there

are more than one persons appearing in the video, the smaller skeleton is assumed to be of

the child.This is not right in the case that the location of the child is closer to the camera than

that of other people. More importantly, at some situations the model is not able to detect the

child due to occlusion by others, .i.e some important body parts such as face and hands are

hidden, or the child facing away from the camera. In that situation, the coordinates might

become zero for that particular frame. For this problem, we interpolated the detected key

points of missing values in the frames by using the frames’ information before and after

the missing ones. This is sensible, because if we skip the frame then the time sequence of

feature information will become meaningless to some extent.

8.6 Processing 1: Detecting children in videos

In order to detect children in videos, Yolo v2.0 [33] was selected since it was at the time of

processing, a state-of-the-art object detection algorithm. The model was trained with two

challenging datasets, namely, PASCAL VOC [148] and Microsoft COCO dataset [147].Yolo

was shown to outperform other state-of-the-art models then like Faster R-CNN [34],ResNet

[35] and SSD [36] while running significantly faster [33].

The algorithm contains three components: (1) the regional selective component is learned

to quickly select a region of interest where the object is more likely to be located; (2) the

regression component is learned the annotated bounding box in the training set, the output

of this component are the set of coordinates, the lower left hand corner coordinates, and

the upper right hand corner coordinates, representing the bounding box;(3) the classification
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componentis trained to classify the class label of detected objects. These three components

contribute their certain role in the model accumulative loss function.

The input image is resized to fixed size, say 416 × 416. In some cases, however the

child looks too small in the video, there would be two approaches: (1) we consider only

the region in the video where the child appears which basically excludes the outer region of

each image; (2) we use the network with the larger size of input layer (or image size) being

608× 608.

There are situations that the people are well detected in video such as the one on the

right of Figure 8.3 in which the instructor and the child are clearly in the good view from

the camera. On the other hand, when the kid was facing away and crawling through the tube

like the one on the left of Figure 8.3, the detection model would miss anyway. Increasing the

size of input images, or excluding portion of the outer most region on images would help

to boost the detection accuracy to some extent. Because of some undetectable situations,

the only detection model seems not be efficient for the human action recognition problem.

We need to track all kid’s body movements so that the recognition model would be more

beneficial using the detected information. In the following, we will investigate the tracking

algorithm and how to make the tracking consistent and reliable.

8.7 Processing 2: Tracking algorithm

There are several tracking algorithms which can be divided into two main approaches, in-

cluding tracking by detection and automated tracking given the initial object’s bounding

box.

1. Tracking by detection: it builds up the track based on the object detection model.

The detection quality is identified as a key factor influencing tracking performance.

A representative of this type is the Kalman filter tracking algorithm [149]. Kalman
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Figure 8.3: Subject detection and tracking result. On the left shows the undetectable exam-
ple or a track lost. On the right shows the good detection and tracking result.

filter estimates the state and the variance or uncertainty of the tracked objects. The

estimation is updated over time using a state transition model and using the actual

measurements given by the detection model. If x̂k|k−1 denotes the system’s state at

time step k before the k-th measurement yk has been taken into account, Pk|k−1 is the

corresponding uncertainty.

The Kalman filter model is able to “filter“ the state information among the noise and

then is able to estomate the object’s movements in the next time step, in particular the

moving direction of a child in video the sequence. In some cases, there is no detection

bounding boxes being given since the child’s possibly is hidden behind another object,

Kalman filter can estimate what is the likely position of the child. The prediction of

the future direction of movement of the child is based on the historical direction of

movements and positions.

Another example is simple online and realtime object tracking (SORT) algorithm

[150].

2. Automated tracking: initialized by an object’s bounding box, the tracking algorithm

helps to track the object during its trajectory in the video. An example is a tracking
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algorithm by correlation filter and online learning [151]. This type of tracking algo-

rithm is able to learn the appearance of object and then keep searching around the

current position in the next image frame to see where is the object’s position might

be.

Figure 8.3 shows the Kalman filter’s trace results of a child and an instructor when

doing their activity trials in the laboratory setting. The detection model is set to skip one

image frame after processing one image frame. This means the Kalman filter tracking is

required to provide one step ahead prediction. The trace shown in the figure indicates that

Kalman filter does track quite well given the accurate detection results. In practice, however

there are situations that the camera is rotated on tripod to follow a subject of interest. This

results in a wrongly stored tracking history in the Kalman filter algorithm. The rotating

camera will add some uncontrolled movements such that the tracking algorithm is not able

to predict the subject’s position in the next image frame. Another case is when the child

is occluded sufficiently long such that the tracking algorithm, which is based very much

on detection results, cannot provide accurate prediction any more. This is also challenging

for any tracking algorithm if the child re-appears at different locations. The following will

presents a workable solution for this problem. It should be noted that the better tracking

solutions would help us extract more accurate image frames of the subject of interest since

we found experimentally that the more accurate and the less background noise is in resulting

image frames, the better prediction results will be.

8.8 Processing 3: human re-identification

Before going through the human re-identification model, we have tried another two popular

methods for supporting the tracking algorithm in cases that the track is lost due to occlusion

or no detected bounding boxes are available in several consecutive image frames.
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8.8.1 Traditional methods to support a tracking algorithm

The traditional methods used to re-identify the object since its lost from the tracking algo-

rithm include template [144] and feature matching [152]:

• Template matching: The basic idea of template matching is that we have a template

image patch and a test image to search on where there are any template image parts

appearing on the test image [144]. The template image is super-imposed on the test

image and the correlation matrix is calculated accordingly to see the best match loca-

tion on the test image. For this case we store several images of the child as templates

as shown in Figure 8.4, and when the tracking algorithm is not able to maintain the

track, we start matching the image region around the missing points and the stored

template images. A threshold value is required to compare with the output of the tem-

plate matching algorithm, and this value is tuned based on the trial and errors method

so that the best matching results are obtained. Several outputs of this algorithm are

shown in Table 8.1.

For this method to work well, the subject would have been non deformable. For a

human subject especially a young child this method is unlikely to work well.

• Feature matching: This method calculates ”feature description” of the object. This

description, extracted from an image (template image), can then be used to identify

the object when attempting to locate the object in another image (testing image) con-

taining many other objects [152]. To perform reliable recognition, it is important that

the features extracted from the training image be detectable even under deformation,

noise contamination and illumination alterations. The feature matching algorithm

calculates the Harris corner condition for edge detections or the Haar-like features of

the object in images [152]. This approach would work well if the object consists of

sharp and well defined edges. For human subjects, especially for a young child, this
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Figure 8.4: Example of some images take for image gallery

approach is unlikely to work satisfactorily.

Another important characteristic of the feature matching algorithm is that the relative

positions between objects in the original scene should not change from one image to

another. For example, if only the corners of a door were used as features, they would

work regardless of the door’s position. However, if features located on a deformable

object, this would typically not work. Practically, we found that the method does

not work effectively with the child’s body’s features since the object image does not

satisfy the aforementioned constraint.

8.8.2 Human re-identification

Both matching algorithms were implemented to support the tracking performance, however

the tracking algorithm still cannot handle well in the case that the child changes his/her

pose and direction, since in those cases the image looks quite different from the original one

(i.e. the stored template images). It is understandable since the template matching method

is a pixel-by-pixel approach while the feature-based matching is not able to differentiate a

person and another person, or a face with another face since two images have very similar

edge/feature points. Thus, both aforementioned approaches are observed to be not really

helpful to improve the tracking performance.

Recent interesting research in human re-identification studies [42, 43, 44, 45] inspired

us to investigate the use of some of the proposed algorithms to support the tracking per-
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formance. There are several approaches to human re-identification as listed below. The

traditional method still used the feature marching[42], another one was based on part-based

mixture of model [43]. Recent state-of-the-art methods include deep convolutional neural

network such as CNN models for person re-identification [44, 45] at the time when we stud-

ied this problem. These methods train a deep convolutional neural network from scratch and

use publicly available human re-identification datasets such as the CUHK01, 02, 03 datasets

[153],Market-1501 datasets [154].The deep CNN models work on deformable objects, such

as humans, because they use the advantages of deep CNN models to form a good set of

features, which summarizes the image based on the image rather than objects in the image,

rather than on pre-assumed characteristics of the object, like it must be well defined sharp

edges, or that it is non deformable.

The learning metric of this type of CNN models is distance metric function (i.e triplet

loss function) [155].Specifically, the model learns to minimize the distance metric between

images of the same person taken at different time, or circumstances, and maximize that of

different subjects.Recently, this strategy has been applied to human re-identification and re-

sults are better than the hand-crafted feature based methods such as using The scale-invariant

feature transform (SIFT) or histogram of oriented gradient (HOG) features [44, 45].

In this section, we made use of the model presented in [46], which is a Resnet [35] model

with an extended layer before the output layer for learning the distance metric function

[46].The Resnet model was pre-trained with Imagenet data and then re-trained the whole

extended model with the combinations of human re-identification datasets as listed above.

It should be noted that the output of this human re-identification model is a descriptive

feature vector. In other words, each input image to the human re-identification model will

result in a descriptive vector. In order to identify who is in the input image, we need an

image gallery of each person. The descriptive vectors were produced before hand for each

image in gallery. Then when considering a new image, the descriptive vector of this new
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image will be compared with all descriptive vectors of the gallery. The person appeared in

the nearest image (in terms of Eucledian distance) in the gallery will be the person appeared

in the new image.

Experimental comparison: The human re-identification CNN model was used to com-

pare with the template matching method using images shown in Figure 8.4 as template

images and shown in Table 8.1 as the testing ones. The matching results presented are the

average of one test image with all template images. For template matching, the greater is the

matching result, the better is the testing image matched with the image gallery (or template

images). For human re-identification, on the other hand, the smaller is the matching result,

the closer is the testing image compared with the image gallery.

It can be observed that while the template matching algorithm is not able to identify

the same subject with lowest scores (lower score signifies a better match), the human re-

identification algorithm can. For template matching, the image of the lady instructor is

shown best matched with the template images of the child, and the image on the first row

of the child is associated with quite a low matching result, which is unexpected. As can be

expected, the human re-identification method produces correct identification results for both

of those two images of the child on the first two rows. The first row is associated with the

lowest matching result which is anticipated since visually we can see that the second image

of the child is little interfered with the image of a male instructor. The results shown in

Table 8.1 are a good indication that the human re-identification approach can significantly

improve the tracking performance.
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Image to test Template matching Human re-identification

30 0.60

45 0.67

32 0.72

35 0.73

36 0.83

44 0.75

50 0.78

Table 8.1: Comparing matching results



8.9. Dense-trajectory feature extraction based on bounding box series 151

Figure 8.5: Illustration of the dense trajectories

8.9 Dense-trajectory feature extraction based on bounding

box series

The Dense trajectory method for human action recognition has been used extensively in

the literature [53, 52] before the advent of the deep CNN methods of feature extraction

and classification methods were introduced in 2013 [156] which includes spacial-temporal

based features such as HOG, histogram of oriented optical flow (HOF) and motion bound-

ary histograms (MBH). The features computation is quite fast, as they are considered as

handcrafted ones, as contrary to those obtained by the deep CNN ones [156, 157] so that the

method has been applied in real-time human action recognition [54, 55]. The calculation of

these features are based on a number of consecutive frames. In addition, a dense trajectories

feature for long term evolution of the human action is also found [53]. This is called dense

because the trajectories are evaluated at dense interest points in the image, and track across

the sequence of images in the video. The dense trajectory feature is essentially the tube

formed by these dense trajectories across the video sequences, and thus this gives an idea of

the long term evolution of the those trajectories [52]. An example of this method is shown

in Figure 8.6.

All these features are computed in local cuboids obtained by spatial-temporal interesting

points (STIP) detectors [158] or dense sampling schemes [52]. There are some options to

extract dense trajectories such as trajectory length based on the start and end frames or the
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Figure 8.6: Example of the dense trajectories

size of spatial and temporal cells in the STIP scheme [158] which is used to extract the

feature. The detailed work flow is illustrated in Figure 8.5 which was shown in [53].

Given a video sequence, one can extract features from the dense trajectories method [52].

In our experiments, we used suggested best parameters of choice for the feature extraction

as in [52]. Several separated features include:

1. Mean-x: the mean value of the x coordinates of the trajectory

2. Mean-y: the mean value of the y coordinates of the trajectory

3. Var-x: the variance of the x coordinates of the trajectory

4. Var-y: the variance of the y coordinates of the trajectory

5. Length: the length of the trajectory

6. Scale: the trajectory is computed on which scale

7. X-pos: the normalized x position w.r.t. the video, for spatio-temporal pyramid

8. Y-pos: the normalized y position w.r.t. the video, for spatio-temporal pyramid

9. T-pos: the normalized t position w.r.t. the video, for spatio-temporal pyramid
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The followings are five sets of description feature:

1. Trajectory: 2x[trajectory length]

2. HOG: 8x[spatial cells]x[spatial cells]x[temporal cells]

3. HOF: 9x[spatial cells]x[spatial cells]x[temporal cells]

4. MBHx: 8x[spatial cells]x[spatial cells]x[temporal cells]

5. MBHy: 8x[spatial cells]x[spatial cells]x[temporal cells]

Since in the video sequence, there are other people such as instructors present rather than

the child, different from the accelerometer recordings, which only have the ones related to

the child, and not those who were in the room at the time.. Dense trajectory technique for

extraction of features, was applied directly on the original video sequence; this should result

in a set of local features together with global features which describe the time evolution of

the trjaectories of the bounding bozes, however in order to recognize the child’s physical

activities, we need to extract the description feature of the child only, not all other subjects

present in the scene. Hence, the bounding boxes pertaining only to the child should be

detected and tracked first. Then the feature extraction method would be applied. Given

the bounding boxes of the child, one can restrict the calculation area of dense trajectory

feature extraction method, so that only features within the child’s bounding box is taken

into account.

8.10 Experimental results

Referred to Section 8.4, the experimental setting, the following Table 8.2 presents the recog-

nition accuracy given different experimental settings and using LSTM classifier.

It can be seen that by using CPM to detect human skeleton and then we extract feature

as coordinates of these skeleton’s points located on various body part, the classification ac-
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Table 8.2: LSTM’s recognition performance

Data processing Accuracy Precision Recall F-measure
Skeleton based 0.703 0.684 0.703 0.692
Setting 1 0.712 0.749 0.702 0.724
Setting 2 0.734 0.773 0.735 0.753
Setting 3 0.815 0.819 0.815 0.816

Figure 8.7: Training and testing performance or LSTM

curacy is about the poorest results which is only 70.3% (see Table 8.2). These are used

as baseline results. Applying feature extraction after Yolo 2 for child detection (i.e. only

selecting the smallest bounding box and assuming that is the child’s bounding box) would

be associated with the LSTM accuracy being 71.2% as listed as setting 1 in the table 8.2.For

setting 2, we added tracking algorithm after the detection step, so that the recognition ac-
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Table 8.3: LSTM result - confusion matrix for setting 3

Sedentary 0.9360 0.0400 0.0240 0.0000 0.0000
Light activities 0.0280 0.8252 0.1049 0.0000 0.0420
MV activities 0.0167 0.1667 0.7250 0.0750 0.0167
Walking 0.0000 0.0333 0.1667 0.6333 0.1667
Running 0.0000 0.0000 0.0286 0.1714 0.8000

Table 8.4: skeleton feature - Confusion matrix

Sedentary 0.9240 0.0367 0.0290 0.0070 0.0033
Light activities 0.1908 0.5664 0.1721 0.0216 0.0492
MV activities 0.1760 0.2624 0.4658 0.0390 0.0569
Walking 0.1360 0.2237 0.2412 0.2763 0.1228
Running 0.1444 0.2535 0.2359 0.1514 0.2148

curacy was boosted to 73.4% which by 2% better than the case without using the tracking

approach. Finally, for setting 3, by applying human re-identification to enhance the tracking

quality, the recognition outcome was associated with the best experimental result which is

81.5% in accuracy.

If compared with the base line that we used skeleton feature extraction, the final clas-

sification accuracy was improved more than 10% which is significant since this approach

is non-intrusive and is not required any devices and sensors being attached to the subject’s

body parts.

Figure 8.7 shows the training and testing performance of LSTM given the time series

feature extracted in the setting 3. The network starts to converge from around 50k training

iterations, since from this point onward we do not observe any testing accuracy improve-

ment. The confusion matrix of this experiment is given in Table 8.3. Table 8.4 presents the

confusion matrix result of LSTM for the skeleton feature input space. It can be observed

that skeleton feature contains very much of noise which should be the confusion between the

skeletons detected of the kids and those of other people appeared in the scene. For this rea-

son, the only Sedentary class was associated with relatively good recognition performance

as in Table 8.4. For the case of the best accuracy shown in Table 8.3, the walking input
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samples are most difficult to classified since this might be the action being most confused

with other actions which also contains more or less amount of walking action.

8.11 Conclusion

In this chapter, small children physical activity recognition problem has been addressed

given a number of video sequences. Steps of pre-processing video to label the segments of

video corresponding with each of five activity types has been conducted. Several experimen-

tal settings and associated results have been drawn, which include human skeleton feature

extraction, object detection and tracking, human re-identification for tracking enhancement

and dense trajectory feature extraction for video sequences. The experiments indicated that

the carefully feature preparation approach i.e. the method using all techniques like detecting

human, tracking with the use of human re-identification and dense trajectory based feature

extraction, produced the best recognition accuracy which is 81.5% and is more than 10%

better than the base line which used the skeleton feature extraction approach.

Closely related to human action recognition in stored video sequences, the automatic

video annotation is a kind of algorithm that allows naming what type of activities occur in

the video clips using unsupervised algorithms or feature-based comparison approach. This

automated procedure would help to improve the video quality and to result in more accurate

annotation when labeling the video segments. In addition, the real-time activity recognition

on video like in [159] and in [160] is also very interesting subject that is worth exploring.

In term of real-time processing, the algorithm is required to process video sequence and to

response quickly to the actual action occurring in reality. Due to the time limitation, we

would wish to investigate this in the future research.



Chapter 9

Comparisons and Discussions

This Chapter compares the results of different prediction models in this thesis. The state-of-

the-art accuracy performance for each dataset will be used to compare with our approach.

While accelerometry is the methodology of choice for capturing and assessing PA and

sedentary behaviour in young children [161, 162] , this thesis also considered a video se-

quence dataset for validation and comparisons of results.

The best results from the various methods in this Thesis are compared and discussed.

Three accelerometry datasets were available for the work in this thesis. For the comparisons

we will differentiate between accelerometry subsets as follows:

Dataset Subsets

PA2012 1. Hip mounted accelerometry

PA2014
1. Hip mounted accelerometry

2. Hip and wrist mounted accelerometry

The PA2016 dataset became available to us in late 2017 and after the work on the SSEN

was done. Thus, for the SSEN we have obtained results for the PA2012, PA2014 Hip only,

and PA2014 Hip + Wrist datasets. In contrast, for the transfer learning models we found

the PA2012 unsuitable as a background domain and hence we obtained results by using the

PA2014 Hip + Wrist and the PA2016 GeneActive and ActivGraph datasets.
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Table 9.1: Comparing results of different data modelling methods.

Dataset Name Models Accuracy
PA2012 data Regression-based or cut-point method [5] 0.5900

Traditional ANN [128] 0.8840
SSEN model 0.9111

PA2014 Hip data Traditional ANN [129] 0.8000
SVM model [129] 0.8400
SSEN model 0.8990

PA2014 Hip+Wrist data Traditional ANN [129] 0.8100
SVM model [129] 0.8550
SSEN model 0.9211

The HRSOM was deployed to obtain a general overview of the data. A number of com-

mon learning systems such as the standard feed-forward MLP [128, 129], and SVM [129]

have been used to verify published results or to explore suitability for the given PA predic-

tion tasks. This thesis also introduced novel methods such as the SSEN (Chapter 6) and

a transfer learning model (Chapter 7) in an attempt to address relevant shortcomings of

the standard models. In this process we discovered that it is beneficial to incorporate the

HRSOM with MLP in an ensemble manner (Chapter 5).

We found that traditional ANN/MLPs perform much better than regression models which

were, prior to this thesis, commonly considered for PA prediction problems [5]. We also

found that the performance of the MLP is hampered when dealing with the limited number

of samples and relative high dimensional input space in the available datasets. Due to this

sparsity in the available accelerometer data, an SSEN model was designed. The SSEN in-

creases the data density along decision boundaries between classes thus addressing the lack

of coverage of the feature space by the training input samples. The SSEN model is robust

because it uses the best parameters selected within our three proposed sampling approaches,

namely core-point group sampling, same-class orientation sampling and range-based sam-

pling. A major benefit of the SSEN is that the algorithm is data driven.

It is seen in Table 9.1 that for the PA2012 dataset, the SSEN outperforms the current best
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accuracy results of [128] by a significant margin (2.7%) to reach an accuracy 91.1%. At the

time of the experiments, the SSEN produced a new state-of-the-art result.

For the PA2014 dataset we considered two subsets (i.e. PA2014 Hip only and PA2014

Hip + Wrist accelerometry) where the latter is simply concatenating the two sensor streams.

The consideration of these subsets is made to make a consistent comparison with other work

shown in [129]. The previous best result for the PA2014 Hip only data was 84% in accuracy.

The result was produced by using an SVM prediction model [129]. The SVM result bettered

the result of an MLP approach by 4% using the same evaluation method [129]. It can be

seen in Table 9.1 that the SSEN boosts the accuracy performance significantly to 89.9%. An

improvement of 5.9% over the previous state-of-the-art result. Similarly, given the PA2014

Hip + Wrist dataset, the SSEN model achieved an accuracy of 92.1%. An improvement

by 6.6% over the previous best result that was produced by the SVM, and by 11.1% better

than an MLP [129]. The result confirms that the standard methods are affected by the data

sparsity in these datasets and that the SSEN is effective in addressing the problem. The

observed improvements in results are consistently significant.

This thesis then investigated, developed and tested transfer learning approaches. An

aim was to investigate whether it is possible and beneficial to transfer modelled knowledge

from a background (source) domain to a target domain. Differences in the categorization

of samples between the two domains presented a main challenge that this thesis overcame.

Investigations and experiments were conducted by using the PA2014 hip + wrist dataset and

the PA2016 Actigraph (or GeneActive) subset as the source to build a background model.

Then to create a transfer learning model by using the PA2016 GeneActive (or ActiGraph)

subset as the target domain as illustrated in the following Table:

Source Domain Target Domain

{PA2014, PA2016 ActiGraph} accelerometry PA2016 GeneActive accelerometry

{PA2014, PA2016 GeneActive} accelerometry PA2016 ActiGraph accelerometry

We investigated three types of transfer models: (1) Unchanged architecture in which the
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Table 9.2: Comparing results of different models

Dataset Name Models Accuracy
PA2016 GeneActiv dataset MLP 0.7734

SVM 0.7857
FRPN 0.7635
ETL-model-A 0.8258
STL-model-A 0.8516

PA2016 ActiGraph dataset MLP 0.7560
SVM 0.7895
FRPN 0.7784
ETL-Model-B 0.7954
STL-model-B 0.8316

architecture of the background model is kept unchanged. The last hidden layer of which is

then updated on the data from the target domain; (2) Fully connected hidden layers are added

in front of the output layer to the background model. The parameters of the newly added

hidden layers are then trained on the data in the target domain. We called this model the

Extended Transfer Learning (ETL) model; (3) A FRPN is added to the background model

in front of the output layer. The parameters of the FRPN are trained by using the data in the

target domain. This model was called the Stacked Transfer Learning (STL) model.

The results in Table 7.7 and Table 9.2 revealed that PA prediction can benefit from trans-

fer learning if the background domain is related to the target domain. The type and architec-

ture of the transfer learning model plays an important role in the effectiveness of the transfer

learning methodology. Of the three investigated types the STL model has shown to work

best by far. One explanation for this result is that FRPN simulates a deep neural network

which however can adjust the depth according to each training sample. This is achieved

while using only a few hidden neurons. The FRPN thus features the benefits of deep learn-

ing architectures while the number of adjustable parameters remains small. The model is

thus less likely to overfit. These properties would allow the FRPN to learn effectively de-

spite the sparsity of the training space, and the complexity of the learning problem which

could benefit from a deep learning framework. The results in Table 9.2 show that for the
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PA2016 GeneActiv target domain data, the best transfer learning approach boosts the pre-

diction accuracy to 85.16%. This is an improvement by almost 8% over the baseline model.

For the PA2016 ActiGraph target domain data, the best transfer learning model produced

a prediction accuracy of 83.16%. Again, an improvement by almost 8% over the baseline.

The FRPN model training by itself on the target domain data is not much better the stan-

dard MLP since the FRPN behaves similar to MLP especially in cases of small and sparse

datasets.

To investigate whether the data quality of the PA accelerometer data played a role that

prevented us from obtaining even better result we then investigated the use of videos as an

alternative data source. This is the first time that videos were used for PA prediction of

young children. While the videos were recorded for inspection and protocol monitoring

purposes here in this thesis we use these videos for the PA recognition purpose. By doing

so, this thesis overcame difficulties such as multiple people appearing at the scene at the

same time, or educators occlude the child of interest. Multiple video preprocessing steps

were conducted to label the segments of video corresponding to the five activity types being

conducted. Several experimental settings and associated results have been obtained. The

thesis has shown that the human skeleton feature extraction approach led to a relatively low

prediction accuracy (70.3%). In contrast, the most effective approach is much more com-

plex and involves the combination of object detection and tracking, human re-identification

for tracking enhancement and dense trajectory feature extraction for video sequences. The

experiments revealed that this approach accurately recognizes activity classes 81.5% of the

time, an improvement by over 10% over the baseline. The video-based prediction results

thus show that video based PA prediction is a viable alternative to accelerometry based PA

prediction. In practice however, video capturing devices are more expensive and much less

versatile in following a mobile actor when compared to accelerometers. The results would

not support a motion to substitute the currently accepted approach based on accelerome-
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ters with a video based approach. Nevertheless, the video based results are close to those

obtained by using accelerometer data. Given that the quality of the video data is affected

by i.e occlusion or actor leaving the scene, and given that the quality of the accelerometer

data is affected by episodes of activities that do not correspond to the target label, and given

that the two sets of results are comparable we can thus conclude that both , the video based

approaches and the accelerometer based approaches, are affected by the data quality. This

implies that it may not be possible to achieve 100% accurate predictions when using the

available datasets. In this light, our results do not only mark the state-of-the-art on PA pre-

diction of young children but that our results would also be close to a maximum achievable

results.

In summary, the methods proposed in this thesis (SSEN in particular) produced better

accuracy results than any other published work applied to the same problems. A main

finding is that the sparsity of the datasets are a main factor which inhibits the performance

of prediction models. While the problem could be addressed by collecting more data (a

costly exercise) this thesis has shown that the data driven SSEN can achieve significant

improvements in results by using available data.



Chapter 10

Conclusion

This thesis studied the research question on how to accurately classify physical activities

of young children from accelerometer data. The research was motivated by the importance

of physical activities to early childhood development and by the lack of studies on devel-

oping suitable data modelling approaches. To address this research question this thesis

developed and evaluated several machine learning approaches. The work resulted in novel

machine learning methods which are capable of processing sparse, noisy, high-dimensional

accelerometer data for classifying physical activity classes of young children.

There are two sets of experiments conducted on different cohorts of young pre-school

children over two different time span: 2014 and 2016 respectively. Multiple accelerometers

were attached to different parts of the subject’s body, e.g., hip, left wrist, right wrist perform-

ing various assigned physical activities. The list of activities performed in the 2014 cohort is

different both in number and type to those performed in 2016. Moreover for probity reasons,

“evidence” videos of the corresponding sessions were recorded. These two data collections

became the main task in this thesis: to “make sense” of such data recorded pertaining to the

possibility of classifying the accelerometer recordings into one of 5 categories: sedentary,

light, medium, walking, and running.

At the data preprocessing level, a minor task: to align the labels of the 2016 dataset,
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into 5 categories, which the 2014 dataset is categorized. This was conducted using a K-

mean clustering on the points in the display space of the HRSOM into 5 clusters. This

was successful in that the in-class correlation is reasonably high, while the cross class mis-

classifications were at acceptable levels. A review of relevant literature revealed (1) a lack

of adequately powered studies of activity classification in pre-school children, (2) a lack

of investigations in suitably designed data modelling techniques, (3) a lack of investiga-

tion into the robustness and scalability of suitable data driven models, and (4) a lack of

investigations on whether accelerometry captures sufficient information to allow accurate

PA classifications. This thesis addressed these deficiencies by first introducing a scalable

and capable data visualization technique called a High Resolution Self-Organizing Map

(HRSOM). The HRSOM can be trained very efficiently to reveal intricate patterns which

consequently assisted the understanding of the data collected. These insights led to an un-

derstanding of why standard data modelling techniques, like a multilayer perceptron with

a single hidden layer, perform not too well in this context, and led to the development of

a data sampling and modelling technique; a technique for generating more data where they

are needed by inspecting the HRSOM display space, to improve the robustness of the mod-

elling approach. The corresponding algorithm, the Synthetic Sampling Ensemble Network

(SSEN) was shown to significantly enhance classification accuracies (by an improvement

of about 10%) while maintaining a high F1 measure of about 90% (which indicates that the

high generalization capability is not achieved at the expense of high false positives) when

compared with a baseline model which is the classic multilayer perceptron with a single

hidden layer on the PA2014 dataset. It was shown that the method is robust and scalable

which could be applied to other problems with similar characteristics, like having a small

dataset. Obviously there will be limits to the effectiveness of additional data in improving

the generalization accuracy, and robustness of the SSEN, and such limitations would be left

as problems for further research.
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The thesis then investigated an alternative approach via a novel transfer learning ap-

proach, which encapsulates the knowledge in a source model, which consists of a multilayer

perceptron with one or two hidden layers, and a target model which appends one or two

hidden layers further on the “frozen” source model, and found that such an approach can

be effective in improving model robustness when applied to a source domain consisting of

the 2014 dataset and a subset of the 2016 dataset, and the target domain consisting of the

other subset of the 2016 dataset. It is found that if the one or two hidden layers in the target

model is replaced by a fully recursive perceptron network (a fully connected recursive layer

which is essentially an expanded deep multi-hidden layer with data dependent depth), the

generalization accuracy is further improved. This shows that the proposed transfer learning

approach may be deployed which may transfer the knowledge gained from the source do-

main be retained to improve the classification accuracies in the target domain. Obviously

there will be limits on which the generalization accuracies may be improved using such an

approach, and this is left as a problem for future research.

The deployment of methods described in this thesis resulted in state-of-the-art results

though it still yield a classification error of around 9%. This accuracy probably could not

be improved further due to the inherent noise in the accelerometer recordings: despite what

the young child was doing during the episode, the corresponding accelerometer recordings

was labelled by the assigned activity type. Therefore, there could be significance of what

the assigned label should be when compared with the actual activities which the young child

was performing at the recording session. This inherent source of labelling “noise” would

place an upper limit to the generalization accuracy using either the SSEN or the transfer

learning generalization accuracies. The impacts of such “noisy” labels on the SSEN and the

proposed transfer learning approach was not investigated in this thesis, but instead would be

left as a problem for future research.

As indicated, there are the “evidence” videos which are available and they were manu-
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ally labelled. This thesis investigated two main approaches to extracting features from the

videos, one using the dense trajectory approach (the so-called classical approach which uses

hand-crafted features, e.g., histogram of oriented gradients, histogram of oriented optical

flows, motion boundary histograms, evaluated on a set of dense interest points in each frame

of the video, together with the trajectory tube which is “carved” by the dense set of trajecto-

ries on those dense sets of interest points in each frame and the classifier is using normalized

Fisher vector on a chi-square kernel machine), and deep CNN on the trajectory “carved” out

by the bounding boxes enclosing the intended subject, reconstructed using re-identification

techniques if they were occluded in view). The results of the deep CNN with re-identified

reconstruction of the bounding boxes approach showed that videos are a viable alternative

of information for the PA classification task as they yielded comparable results to those ob-

tained using the SSEN. An analysis of the results also provided indications which confirm

that the “noisy” labelling of the accelerometer data s a contributing factor to the observed

classification errors.

The following section summarizes the major contributions and findings of this thesis.

Research limitations and future research directions will be presented later in this chapter.

10.1 Summary of major contributions and findings

1. An unsupervised visualization technique, the high resolution Self-Organizing Map

(HRSOM), has been introduced for the purpose of data analysis. The model helps

to expose the intricate characteristics of the input feature space thus assisting domain

understanding and the analysis of results. The model was evaluated on a number

of benchmark datasets, both artificial and real-world data. The experimental results

showed that the HRSOM is not only useful as a data visualization tool, but also that

the method is useful as a way to augment the original input feature vectors by their

corresponding co-ordinate locations on the HRSOM display space, as augmented in-
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puts to a supervised training algorithm, e.g., a multilayer perceptron.

2. It was found that the accelerometer data is relatively sparse, particularly with the

choices of large window sizes during the feature extraction process, and that it is pos-

sible to augment such data by using a supervised DBSCAN technique, which labels

each point in the HRSOM display space with a class label, and thus permit the visual

identification of where more data might be required, and the corresponding additional

generated point is generated by linear interpolation of the two closest existing points

to the location of the generated point. Such synthetically generated features can be

used to augment the lack of training data in a perceived cluster. The original inputs to-

gether with their corresponding co-ordinates on the HRSOM display space served as

the augmented training dataset in the training of a multilayer perceptron. This scheme

is called a synthetic Sampling Ensemble Network (SSEN). The SSEN is effective in

overcoming the lack of training samples in the training dataset. The model has been

experimentally shown to be better than other well-known sampling techniques, e.g.,

oversampling, undersampling.

3. The idea of transfer learning has been explored. A new transfer learning method is

introduced which consists of a source model, a multilayer perceptron with one or two

hidden layers, having its weights frozen after it has been trained on the source domain

data, and the target model consists of additional one or two hidden layers appended

to the frozen source model. It was shown that such a transfer learning approach is

able to improve the generalization accuracies on the target domain. Moreover, if the

appended one or two hidden layers of the target model is replaced by a fully recursive

layer, i.e., a direct feedback connected output to the input of the feedforward hidden

layer, further improvements in the generalization accuracies may be observed.

4. The “evidence” videos were processed using two different approaches: one using the
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body keypoint detection approach, while the second approach uses a deep CNN to ex-

tract features, from the bounding boxes enclosing the intended subject, these bounding

boxes can be reconstructed when occluded using re-identification techniques, and the

classifier is the deep temporal LSTM. When applied to the physical activity videos,

it is found that the deep CNN, with human re-identification approach produces better

generalization accuracies than the one using the body keypoint detection approach.

From such experiments, it is confirmed that the “noisy” labels in the accelerometer

recordings has considerable impact on its generalization accuracies using either the

SSEN or transfer learning techniques.

10.2 Research limitations

Despite the aforementioned contributions and findings, the work presented in this thesis was

often not straight forward. Some of the issues that arose can lead to future research and are

given as follows:

• There is no clear theoretical statement to prove that the HRSOM output in the display

space is useful and interpretable. This may be related to the nature in which the

HRSOM is deployed in this thesis: mainly as a visualization tool. It is difficult to

show theoretically the properties or patterns of what our human eyes and mind can

perceive. Moreover, the HRSOM, is serving as an unsupervised learning device in

an ensemble system. The learning mechanism is not online. This means that the

individual methods in the ensemble system are trained in a hierarchical manner, one

at a time. Thus, for example, after training a HRSOM, the resulting activation map

(co-ordinates of the location of the point in the display space) is then used for the

training of a supervised learning model e.g., a multilayer perceptron. Hence, there

exists a research opportunity on the unification of the learning algorithms such that

the individual models can be trained towards the same goal of classifying an unknown
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test sample as accurately as possible. Such research could result in a novel deep

learning algorithm which can be expected to perform better than the method used in

this thesis.

The lack of interpret-ability, in terms of why the classifier cannot classify a partic-

ular unknown testing sample correctly, is also observed with the SSEN algorithm.

The capabilities of the SSEN were not formally shown. The proposed synthetic sam-

pling approach leaves much room for further exploration such as, for example using

a deep learning framework instead of the MLPs, or engaging the concept of genera-

tive adversarial networks in a controlled fashion, guided by the clustering results of

the supervised DBSCAN, to generate artificial samples by using either core or border

points (as defined in the supervised DBSCAN technique) as the input space.

• There are several types of data sources. Accelerometer data of various sampling rates,

accelerometer measurements taken at different locations (wrists, hip), accelerometer

data captured by different devices, video sequences, data captured in different sets of

activity trials. The thesis has shown that the combination of data sources (i.e. combin-

ing hip and wrist data) can enhance the generalization abilities of a classifier. It was

also shown that the various data sources offer complementary information. It should

thus be interesting to take a broader approach to data augmentation by e.g. com-

bining information captured by the accelerometers with information captured by the

camcorders. This may result in a more comprehensive and informative input space.

One approach to achieve this would be to have data augmentation done on the algo-

rithm level where the outputs of a set of models that have been trained on the various

different data sources is combined to create a final result.

• The number of participants involved in the data collection process is small (relative

to the size of datasets normally used in machine learning). The input space would

become even smaller if we had selected larger window sizes during the feature extrac-
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tion process. In addition, the dimensionality of the input samples would increase with

the window size. On the other hand, smaller windows sizes would increase the num-

ber of training samples and reduce the dimensionality of the data space. However, if

the window size is too small then the data points do no adequately cover the pattern of

the physical activities and thus a classification model could not predict well the type

of activity if based only on quite a short bit of time series information. The windows

size used in this thesis is a compromise between data dimensionality and number of

data samples.

10.3 Future Research Directions

This thesis introduced several approaches to solve the physical activity recognition in young

children. This research topic is still quite new and the problem domain is more challenging

than the better studied area of activity prediction of older subjects. There are several open

questions and problems that could be addressed in future research:

• Further studies on the theoretical properties of the HRSOM learning model in partic-

ular with respect to the effectiveness when used as a filter in an ensemble architecture

could be conducted. An integrated training algorithm that trains the components of

such an ensemble in unison is another aspect worth taking into consideration. For

example, the learning algorithm could consider the HRSOM to be an internal unsu-

pervised layer within a deep learning network with subsequent layer could be convo-

lutional instead of fully connected layers. The HRSOM’s neuron weights could be up-

dated periodically while the convolutional of fully connected layers are being trained.

The approach could find an inspiration from deep learning architectures where the

first preprocessing layer is trained without utilizing a class label.

• The experiments on video based activity recognition requires more exploration in



10.3. Future Research Directions 171

terms of automatic video annotation, feature extraction and classification models.

Firstly, the video segmentation or video segment division from the long and con-

tinuous video sequence has been done manually. The labelling process was tedious

and time consuming. The automated algorithm should be taken into account for the

video annotation part. Secondly, there are various types of feature extraction methods

based on video sequence input. These methods then would be compared to find the

best approach for this particular problem.

• Alternative approaches such as those based on Long Short Term Memory, deep Con-

volution Neural Networks and Graph Neural Networks would be worth exploring. It

would also be interesting to study these methods in a learning ensemble. This has not

yet been considered in PA prediction of young children and would thus be worth a

consideration for future research. Since there exist several types of time series data

such as raw acceleration signal and video sequences, using augmentation methods for

both the data level and the model level could result in further improvements in the

recognition accuracy.

• The transfer learning methods explored in this thesis did not take the unbalanced na-

ture of the problem domain into account. Incorporating a sampling technique would

likely lead to enhanced results. A good and interesting approach would be to substi-

tute the MLP in the proposed Synthetic Sampling Ensemble Network by the proposed

stacked transfer learning model.

• There has been an increasing requirement for real-time recognition tasks, such as re-

alizing the human activities based on streamlined information extracted from video,

camera, wearable sensors. The main purpose is to establish a recognition system

that is able to respond quickly to met the human requirement in particular for deci-

sion making tasks. Such real-time system needs to be optimized to become fit for
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deployment. Studies on the possibilities of implementation for clinical uses, and on

the implementation for real-time mobile assessments would significantly enhance the

translational value of work on PA prediction of young children.
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[110] P. Wittek and S. Darányi, “A gpu-accelerated algorithm for self-organizing maps in a distributed envi-
ronment.” in Proceedings of the European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 2012.

[111] S. McConnell, R. Sturgeon, G. Henry, A. Mayne, and R. Hurley, “Scalability of self-organizing maps
on a gpu cluster using opencl and cuda,” in Proceedings of the Journal of Physics: Conference Series,
vol. 341, no. 1. IOP Publishing, 2012, pp. 012–018.

[112] S. Q. Khan and M. A. Ismail, “Design and implementation of parallel som model on gpgpu,” in Pro-
ceedings of the International Conference on Computer Science and Information Technology. IEEE,
2013, pp. 233–237.

[113] T. G. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the International work-
shop on multiple classifier systems. Springer, 2000, pp. 1–15.

[114] X. Liu, G. Wang, Z. Cai, and H. Zhang, “Ensemble inductive transfer learning,” Journal of Fiber
Bioengineering and Informatics, vol. 8, no. 1, pp. 105–115, 2015.

[115] M. Galar, A. Fernández, E. B. Tartas, H. B. Sola, and F. Herrera, “A review on ensembles for the
class imbalance problem: Bagging-, boosting-, and hybrid-based approaches.” IEEE Transactions on
Systems, Man, and Cybernetics, Part C, vol. 42, no. 4, pp. 463–484, 2012.

[116] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority over-
sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–357, 2002.

[117] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training sets: One-sided selection,” in
Proceedings of the 14th International Conference on Machine Learning, D. H. Fisher, Ed. Morgan
Kaufmann, 1997, pp. 179–186.

[118] G.-G. Geng, C.-H. Wang, Q.-D. Li, L. Xu, and X.-B. Jin, “Boosting the performance of web spam
detection with ensemble under-sampling classification,” in Proceedings of the 4th International Con-
ference on Fuzzy Systems and Knowledge Discovery, vol. 4. IEEE, 2007, pp. 583–587.

[119] S. Hido, H. Kashima, and Y. Takahashi, “Roughly balanced bagging for imbalanced data.” Statistical
Analysis and Data Mining, vol. 2, no. 5-6, pp. 412–426, 2009.

[120] Y. Zheng, W.-K. Wong, X. Guan, and S. Trost, “Physical activity recognition from accelerometer data
using a multi-scale ensemble method,” in Proceedings of the IAAI, 2013.

[121] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.



References 180

[122] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic minority over-
sampling technique.” Journal of Artificial Intelligence and Research, vol. 16, pp. 321–357, 2002.

[123] Z. Chen, J. Wang, H. He, and X. Huang, “A fast deep learning system using gpu,” in Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 1552–1555.

[124] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the robustness of deep neural networks via
stability training,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 4480–4488.

[125] K. M. Rashid and J. Louis, “Times-series data augmentation and deep learning for construction equip-
ment activity recognition,” Advanced Engineering Informatics, vol. 42, pp. 1–12, 2019.

[126] L. Yang, L. Tao, X. Chen, and X. Gu, “Multi-scale semantic feature fusion and data augmentation for
acoustic scene classification,” Applied Acoustics, vol. 163, pp. 11 617–11 637, 2020.

[127] M. Kubat, “Neural networks: a comprehensive foundation by simon haykin, macmillan, 1994, isbn
0-02-352781-7,” The Knowledge Engineering Review, vol. 13, no. 4, pp. 409–412, 1999.

[128] S. G. Trost, W.-K. Wong, K. A. Pfeiffer, and Y. Zheng, “Artificial neural networks to predict activity
type and energy expenditure in youth,” Medicine and science in sports and exercise, vol. 44, no. 9, pp.
1801–1809, 2012.

[129] S. G. Trost, D. Cliff, and M. Hagenbuchner, “Sensor-enabled activity recognition in preschool children:
Hip versus wrist data,” Medicine and science in sports and exercise, vol. 48, no. 5 Suppl 1, p. 313,
2016.

[130] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[131] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation learning: the rprop
algorithm,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 1, 1993, pp.
586–591.

[132] S.-i. Amari, “Backpropagation and stochastic gradient descent method,” Neurocomputing, vol. 5, no.
4-5, pp. 185–196, 1993.

[133] L. D. Raedt and H. Blockeel, “Using logical decision trees for clustering.” in Proceedings of the 9th
international workshop on inductive logic programming, ILP, ser. Lecture Notes in Computer Science,
vol. 1297. Springer, 1997, pp. 133–140.

[134] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81–106, 1986.

[135] N. Moustafa and J. Slay, “The significant features of the unsw-nb15 and the kdd99 data sets for network
intrusion detection systems,” in Proceedings of the 4th International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS). IEEE, 2015, pp. 25–31.

[136] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and data
engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[137] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learning,” in Proceedings of the 24th
international conference on Machine learning. ACM, 2007, pp. 193–200.

[138] G. M. Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie, X. Muller, G. Desjardins,
D. Warde-Farley, P. Vincent et al., “Unsupervised and transfer learning challenge: a deep learning
approach,” in Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp. 97–
110.

[139] Y. Bengio et al., “Deep learning of representations for unsupervised and transfer learning.” ICML Un-
supervised and Transfer Learning, vol. 27, pp. 17–36, 2012.



References 181

[140] W. Li, L. Duan, D. Xu, and I. W. Tsang, “Learning with augmented features for supervised and semi-
supervised heterogeneous domain adaptation,” IEEE transactions on pattern analysis and machine in-
telligence, vol. 36, no. 6, pp. 1134–1148, 2014.

[141] S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen, “Cross-domain sentiment classification via spectral
feature alignment,” in Proceedings of the 19th international conference on World wide web. ACM,
2010, pp. 751–760.

[142] J. MacQueen et al., “Some methods for classification and analysis of multivariate observations,” in
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, no. 14.
Oakland, CA, USA, 1967, pp. 281–297.

[143] S.-R. Ke, H. L. U. Thuc, Y.-J. Lee, J.-N. Hwang, J.-H. Yoo, and K.-H. Choi, “A review on video-based
human activity recognition,” Computers, vol. 2, no. 2, pp. 88–131, 2013.

[144] J. P. Lewis, “Fast template matching,” in Proceedings of the Vision interface, vol. 95, no. 120123, 1995,
pp. 15–19.

[145] K. Kawakami, “Supervised sequence labelling with recurrent neural networks,” PhD dissertation, 2008.

[146] G. de Haan and E. B. Bellers, “De-interlacing of video data,” IEEE Transactions on Consumer Elec-
tronics, vol. 43, no. 3, pp. 819–825, 1997.

[147] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Mi-
crosoft coco: Common objects in context,” in Proceedings of the European conference on computer
vision. Springer, 2014, pp. 740–755.

[148] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object
classes (voc) challenge,” International journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[149] X. Li, K. Wang, W. Wang, and Y. Li, “A multiple object tracking method using kalman filter,” in
Proceedings of the IEEE International Conference on Information and Automation, June 2010, pp.
1862–1866.

[150] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” CoRR, vol.
abs/1602.00763, 2016.

[151] X. Zhang, G.-S. Xia, Q. Lu, W. Shen, and L. Zhang, “Visual object tracking by correlation filters and
online learning,” Journal of Photogrammetry and Remote Sensing, vol. 140, pp. 77 – 89, 2018.
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