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Abstract

Through technology, humans have become more interconnected, especially in the way

we are able to communicate our thoughts and views. This means that our ability to

influence one another is also increasing, which shapes us not only as individuals but

also as a society. Such effects can be better understood through social network analysis,

which includes several methods that can be used for investigating the impact of our

relationships and interactions on our collective behaviors. Studies on opinion dynamics,

in particular, describe the effects of interpersonal influences on the opinion formation in

social networks.

Several models exist for describing the opinion dynamics of social networks. In con-

trol theory, this is done using agent-based models. These models have mathematical

properties that can help in better understanding how social networks may reach con-

sensus, disagreement, and other patterns resulting from collective behaviors. However,

these models have rigid specifications that restrict the behavior of agents which leads to

an unrealistic representations of real-world scenarios.

More recent works have incorporated time-varying and randomized dynamics to cap-

ture the fluidity of human interactions. These include gossip-based models which uses

random pairwise interactions to emulate interpersonal communications. The scenarios

they capture remain limited, however, and additional schemes are needed to cope with

the evolving modes of communications brought about by technological advancements.

Motivated by the growing need for understanding how opinions propagate in this age

of social media and smartphones, this dissertation proposes five gossip-based models for

the opinion dynamics of social networks. First is a model that extends pairwise gossiping

to group interactions. The second model randomizes the participants in group gossiping.

In the third model, random group gossiping is applied to a social network with stubborn

agents. The fourth model combines random group gossiping with bounded confidence,

which is an approach used in other opinion dynamics models. The final model describes

how consensus can be reached by interconnected groups. Each proposed model is given

detailed analysis, including its convergence properties. Additionally, simulations are

provided to demonstrate the behaviors of the models under varying conditions.
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Chapter 1

Introduction

1.1 Background

A social network is a collection of social actors and the relationships between them. As

an abstract concept representing interconnected persons, it is a tool for investigating

how humans influence one another. Different types of interactions may occur within a

social network, and the aggregate behaviors of its members give rise to various social

phenomena. The area of social network analysis utilize mathematical methods to exam-

ine the effects of these interactions on individuals, groups and the network as a whole

[1, 2]. Recently, there is an emerging field that combines social network analysis with

systems theory for describing the processes over social networks [3].

One of the important research topics in social network analysis is understanding

the opinion formation process within a group of interconnected individuals. Studies

describing the spread of opinions within groups of individuals began decades before the

existence of massive communication platforms such as social media applications [4–6].

However, due to the increasing capacity of humans to connect and influence one another,

it is becoming more relevant to examine how opinions propagate and shape our views.

From a control theory perspective, this can be approached using agent-based models

where the agents and their states correspond to social actors and their opinions [1, 7].

Such models describe the evolution of individual opinions over time based on a given

set of rules that define the way agents interact and update their states at every time

step. Depending on the design considerations implemented by researchers, patterns

that resemble collective social behaviors may emerge, such as consensus, clustering, and

fragmentation of opinions [8].
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Introduction 2

Some of the earlier works on opinion formation are the theory of social power by

French [4], the consensus model by DeGroot [5], and the social influence network the-

ory by Friedkin and Johnsen [9]. These models have laid the foundation for succeeding

researches on opinion dynamics and are still used as a basis by current works on the

subject. However, in these classical models, interactions remain static throughout the

duration of their processes and opinions are updated simultaneously during each turn.

Thus, these models can be described as deterministic and synchronous, which are char-

acteristics that are not reflective of how interactions take place in real-world settings.

More recent models, however, are shifting toward time-varying and randomized pro-

cesses [2] which are much closer approximation of human behavior. The use of random-

ized methods for modeling social networks is unsurprising as it has been established as

an important tool for analyzing uncertain systems [10] and distributed computation over

networks [11]. Of particular interest are models that implement a gossip-based approach

for defining how agents can interact within a network. In distributed systems, gossip-

ing refers to random pairwise interactions [12]. This method has been used in various

applications such as in communication networks and multi-agent systems. Recently, it

has also been incorporated to classical opinion dynamics models. Gossiping addresses

two main concerns in earlier models. First, since the selected agents are the result of

a random process, it removes the deterministic behavior of social actors. Second, by

limiting interactions to one pair at a time, communications become asynchronous which

is a more appropriate representation of how humans interact.

While recent innovations on opinion dynamics model have addressed some of the

rigid portrayal of social networks [2, 13, 14], the way agents can interact remain re-

stricted and the scenarios that they capture are still limited. Several recent models

capture only some important aspects of the dynamics of actual social groups [3]. This

observation is especially true when we consider the way we communicate using online

and mobile applications which allows us to broadcast our sentiments to multiple recip-

ients and receive information from multiple sources simultaneously. We also have to

consider the fact that agents may already belong in social groups, as opposed to groups

that are the result of opinion exchange, which is something straightforward gossiping

does not consider. These factors should be given serious consideration when designing

opinion dynamics models since humans are becoming more and more interconnected

via technological advancements which greatly enhances our capabilities to influence one

another [15]. To this end, the mechanism provided in gossip-based models for opinion

dynamics should be expanded in order to make them more well-suited for representing

how opinions spread in social networks.



Introduction 3

This research introduces a new set of models that expand the behavior of gossiping

to allow a more flexible representation of the interactions within a social network. The

new schemes are combined with other existing models in order to take into consideration

various scenarios that are addressed by opinion dynamics models. The following models

are proposed in this dissertation:

• group gossiping [16]

• random group gossiping [17]

• random group gossiping with stubborn agents [18]

• random group gossiping with bounded confidence [19]

• intergroup opinion dynamics via gossiping [20]

Each proposed model has its corresponding chapter which contains detailed explanation

of its process and analyses of its properties, including convergence and expected dynam-

ics. Simulations are also provided for demonstrating the behavior of each model and for

highlighting the results of the analyses.

1.2 Purpose and Contribution

The purpose of this dissertation is to develop novel schemes based on gossiping for rep-

resenting various types of interactions that may occur in the opinion formation process

in social networks. The resulting models and the scenarios represent are as follows:

The first model extends pairwise gossiping so agents interact with a group instead.

This model corresponds to real-world scenarios where individuals are more likely to

communicate with the same group of people regularly, like in families or in workplace

settings. Additionally, this model can be used for analyzing the effects of group sizes in

the evolution of opinion.

The second is a consensus model that involves a generalized version of group gossiping

which allows agents to interact with a random subset of its neighbors. The flexible

scheme employed by this model can capture a wide range of scenarios pertaining to

human communication, such as in random daily encounters and the interactions that

take place in online platforms. This also introduces a new way of reaching consensus

based on random group gossiping.



Introduction 4

The third model applies random group gossiping in social networks with stubborn

agents. Aside from allowing the Friedkin-Johnsen model to be applied to the same sce-

narios in the previous model, this also presents a different perspective on how stubborn

individuals can prevent social networks from attaining consensus.

The fourth model combines the concept of bounded confidence with random group

gossiping. From a real-world perspective, this corresponds to humans that are only

influenced by like-minded individuals within their social circle. The outcome is a new

approach for clustering members of a social network based on their shared beliefs.

Finally, the fifth model presents an intergroup opinion dynamics model based on

gossiping. This model introduces a social network based on interconnected groups,

which can represent organizations or online groups, and describes a way for them to

reach consensus.

1.3 Organization

This dissertation is organized as follows. Chapter 2 contains the preliminaries and the

social network representation used in this. Related works and some important results

related to this study are discussed in Chapter 3. The succeeding chapters discuss the

proposed models for opinion dynamic. In Chapter 4, an extension of pairwise gossiping

to group gossiping is presented. Chapter 5 introduces the concept of random group

gossiping. This approach is applied to social networks with stubborn agents in Chapter

6. In Chapter 7, random group-gossiping is combined with bounded confidence for

clustering. Chapter 8 presents a novel method for modeling intergroup opinion dynamics

using a gossip-based approach. Finally, the conclusion of this dissertation is stated in

Chapter 9.

1.4 Preliminaries

A directed graph is denoted as G = (V, E), where V = {1, 2, . . . , n} is the set of nodes

and E ⊆ V × V is the set of edges. G is bidirectional if for any edge (i, j), the edge

(j, i) also exists. The neighbors of agent i is given by Ni = {j|(i, j) ∈ E}. A path is a

sequence of nodes where each consecutive pair of nodes is connected by an edge. A cycle

is a path that starts and ends on the same node. A node i is globally reachable if all the

other nodes has a path to it. A directed graph is strongly connected if there is a path

between every pair of nodes. It is weakly connected if making its edges bidirectional

results to a strongly connected graph.
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A graph G′ = (V ′, E ′) is a subgraph of G if and only if V ′ ⊆ V and E ′ ⊆ E . A strongly

connected component of G is a subgraph that is strongly connected and no additional

nodes or edges from G can be added to produce another strongly connected subgraph. A

strongly connected subgraph is periodic if the length of its cycles is divisible by c ∈ Z+,

with c > 1. Otherwise, it is aperiodic. A graph induced by a square matrix A, given by

G[A], contains nodes for each row in A and its edges correspond to all aij > 0

The vector of ones is given by 1. A standard basis vector is denoted by ei ∈ Rn,

where the ith element is 1 while the rest are zeros. Given a vector v ∈ Rn and a matrix

A ∈ Rn×n, diag(v) returns a diagonal matrix that has v as its main diagonal while

diag(A) returns a diagonal matrix that contains the main diagonal entries of A. The

Hadamard product of two matrices A and B, denoted by A ◦ B, results to a matrix

whose each element is given by aijbij .

The ith eigenvalue of matrix A is denoted by λi(A), and the eigenvalues of A are

ordered as λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). If |λi(A)| > |λj(A)| for all j 6= i, then λi(A) is

the dominant eigenvalue and its corresponding eigenvector is the dominant eigenvector.

Matrix A is Schur stable if and only if all of its eigenvalues are inside the unit circle.



Chapter 2

Social Network, Opinion and

Related Models

2.1 Social Network

A social network is a sociological concept that refers to a set of social units or actors and

the relationships between them [21, 22]. The social units commonly denote individual

persons, but they can also signify collective entities or objects [21]. Relationships may

represent communication, influence, and other kinds of interactions that may occur

between social actors [21].

Mathematically, social networks are usually represented using a directed or undi-

rected graph where the nodes and edges respectively symbolize the actors and their

relationships [22–24]. Edges may also have associated values that indicate the strength

of relationships or the frequency of interactions [22]. Undirected graphs are used when

the relationships are mutual, such as friendships [23]. However, there are cases when the

relationships between units are asymmetric, like the citation of authors, which requires

a directed graph [23]. Graphs are convenient for visualizing social networks, but they

are also easily converted to matrices when computations must be performed.

In this dissertation, a social network is represented by a directed graph G = (V, E),

where the set of nodes V correspond to social actors or agents and the set of edges

E signify the relationships between agents. Given a pair of agents i and j, the edge

(i, j) means that i can be influenced by j. In general, an edge in G is not necessarily

a symmetric relationship. However, in cases where a model deals with agents that

mutually exchange information, G is represented by a bidirectional graph instead. For

clarity, the specific type of graph used is indicated in every succeeding chapter that

6
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discusses a proposed model. In all models described in this dissertation, G is assumed

to be at least weakly connected. Otherwise, it is treated as multiple social networks.

2.2 Opinion

In psychology, opinion is defined as an attitude, belief, or judgment [25]. A broader

definition is adapted for opinion dynamics models, which considers opinion as an cog-

nitive orientation of an individual towards objects, such as persons, issues or events

[26, 27]. Such an interpretation permits the representation of opinions as qualitative

attributes that express favor or disdain for particular objects. However, when the con-

cern is describing the evolution of opinions, quantitative variables are more appropriate

representations that can convey the magnitude of shift in attitudes [28] or the change

in certainties when it comes to beliefs [29]. Agent-based models, in particular, require

opinions to be discrete or continuous numeric variables in order to allow the modeling of

the opinion formation process, although discrete values also allow mapping to qualita-

tive features [7]. Discussion of the different representations of opinions used in opinion

dynamics can be found in [1, 7].

For this research, each agent i maintains an opinion xi(k) ∈ R which corresponds

to the strength or certainty of its belief for a particular object at time k ∈ Z≥0. The

opinions of all agents in a social network at time k is denoted by vector x(k) ∈ Rn. All

models discussed in this dissertation starts with an initial set of opinions x(0). In some

models, the opinions of all agents are explicitly defined to be within the interval [0, 1].

The same restriction is not applied here, although setting the initial opinions within

the interval [0, 1] will guarantee that the opinions at any succeeding time k are also

within the same interval because the models proposed in this dissertation use convex

combinations for updating opinions.

An important and recurring concept in opinion dynamics is the notion of consensus or

agreement. Given x(0) of a social network, reaching consensus means limk→∞ x(k) = ω1

where ω ∈ R is the consensus value. That is, all agents agree to have the same final

opinion. When ω is equal to the average of the initial opinions, that is called average

consensus. Consensus is reached in probability if limk→∞ P[maxi,j∈V |xi(k) − xj(k)| >
ε] = 0 for all ε > 0.
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2.3 Consensus Models

A common theme among several studies on opinion dynamics is finding out if a social

network can attain consensus and the conditions that make it possible. In fact, some

of the earliest works on opinion formation deal with this topic. French [4] described a

consensus model where agents in a social network iteratively communicate with their

neighbors and then use the average of the opinions they received to update their own

opinions. This was later generalized by the work of DeGroot [5], which updates opinions

using a weighted average of other opinions.

The DeGroot consensus model can be formally described as follows. Given n agents

in a social network G, let W ∈ Rn×n be a nonnegative weight matrix, where wij > 0

if and only if (i, j) ∈ E . The weight wij reflects how much agent i gives importance to

the opinion of agent j. As such, wij = 0 means j has no influence on i i.e (i, j) /∈ E .

The weights are normalized such that
∑

j∈Ni
wij = 1, which makes W a row-stochastic

matrix. Starting with the initial opinions x(0), the opinions at each succeeding time k

are updated as

x(k + 1) = Wx(k) (2.1)

where the opinion of each agent i is updated as

xi(k + 1) =
∑
j∈Ni

wijxj(k). (2.2)

The model (2.1) describes a deterministic process that updates the opinions of all agents

synchronously every iteration using a convex combination of a fixed set of opinions given

by the neighbors of each agent and whose weights are defined by W . In general, (2.1)

corresponds to the averaging dynamics used in different types of networks and multi-

agent systems [30, 31].

An interesting property of the DeGroot model is that convergence and consensus are

not dependent on the initial opinions, but rather on the structure of the social network

[5, 32]. The opinions at time k is given by

x(k) = W kx(0) (2.3)

which implies that the model (2.1) is convergent if and only if limk→∞W
k exists.

Lemma 2.1. The limit limk→∞W
k exists if and only if all strongly connected compo-

nents in G with no outgoing edges are aperiodic. If there is only one strongly connected

component with no outgoing edges and all the other strongly components has a path
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to it, then limk→∞W
k = 1πT , where π is the dominant left eigenvector of W that is

normalized such that
∑

i πi = 1.

The second part of the lemma above provides the consensus condition for the DeGroot

model. Applying Lemma 2.1 to (2.3) results to

lim
k→∞

x(k) = 1πTx(0)

where πTx(0) is the consensus value. Thus, π characterizes the contribution of each

agent on their consensus.

Another important property of the model (2.1) is the rate by which opinions converge

to the consensus. For cases that involve symmetric W matrices, this is determined by

the second largest eigenvalue of W , denoted by λn−1(W ). A λn−1(W ) that is close to 1

means opinions approach the consensus at a slower pace, while lower values correspond

to faster convergence. In general, the convergence rate of (2.1) is determined by the

magnitude of the eigenvalues of W [30].

While the topic of achieving consensus has garnered significant interest in opinion

dynamics, its relevance goes beyond social networks and it is also studied in other

applications, such as decentralized computers, sensor networks, and distributed systems

[33, 34].

2.4 Stubborn Agents

While the previous section describes a process for reaching an agreement, understanding

the conditions that fail to achieve consensus is a separate but still an important challenge

in the analysis of social networks [27]. In fact, a limitation of the DeGroot model (2.1)

is that consensus may still be attained regardless of agents’ resistance to interpersonal

influence, which is characterized by the cases when wii < 1 [27].

This limitation is addressed by the Friedkin-Johnsen model [9], which expands the

work of DeGroot by taking into consideration agents who are attached to their previous

opinions. These so-called stubborn agents have varying degree of openness to external

opinions based on their prejudices. As indicated in Lemma 2.1, the ability to reach

an agreement in the DeGroot model is dependent on the topology of the given social

network. By taking into account resistance to influence, convergence to a disagreement

may occur in the Friedkin-Johnsen model even under the same situations that lead to

consensus in the DeGroot model.
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Similar to the DeGroot model, the Friedkin-Johnsen model uses a weight matrix

W to denote the interpersonal influences among agents. The matrix Γ = I − diag(W )

is added into the model to represent the susceptibility of agents to external influence.

Given an agent i, γi < 1 means the agent is stubborn and has attachment to its initial

opinion, while γi = 1 means it is completely open to the opinions of others. Prejudices

or preconceived opinions are given by the vector u = x(0). The model can then be

expressed as

x(k + 1) = ΓWx(k) + (I − Γ)u. (2.4)

Note that Γ = I reduces (2.4) to the DeGroot model (2.1). Based on equation (2.4), the

opinions at time k is given by

x(k) = (ΓW )ku+

k−1∑
q=0

(ΓW )q(I − Γ)u. (2.5)

Lemma 2.2. When all agents are either stubborn or has a path to a stubborn agent in

G, ΓW becomes Schur stable. In this scenario, the model (2.4) converges to the limit

lim
k→∞

x(k) = (I − ΓW )−1(I − Γ)u. (2.6)

As such, disagreements can occur in the Friedkin-Johnsen model even in aperiodic

strongly connected graphs, which is not permissible in the DeGroot model.

A time-varying version of the Friedkin-Johnsen model is described in [35], while a

gossip-based model is presented in [36]. The gossip-based model is briefly discussed in

the next section.

2.5 Opinion Dynamics via Gossiping

In communication networks, gossiping refers to asynchronous pairwise interactions of

agents [37]. Motivated by the simultaneous interactions employed by previous opinion

dynamics models, which is deemed unrealistic for depicting personal communications,

the work in [38] utilized a gossip algorithm [12] to model the opinion formation process

in settings involving one-on-one discussions. This model can be described as follows.

Consider a social network G where the edges are bidirectional since the model is con-

cerned with exchange of opinions between pairs of agents i.e. an edge (i, j) ∈ E means

agent i can receive the opinion of agent j and vice versa. At each time k ≥ 0:

1. An agent i is selected with uniform probability from V.
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2. An agent j ∈ Ni is then randomly selected with probability pij .

3. The opinions of i and j are updated as

xi(k + 1) = xj(k + 1) =
xi(k) + xj(k)

2
. (2.7)

while other opinions remain the same.

The update scheme in (2.7) can be generalized [33] as:

xi(k + 1) = (1− a)xi(k) + axj(k) (2.8a)

xj(k + 1) = axi(k) + (1− a)xj(k) (2.8b)

xl(k + 1) = xl(k) ∀l ∈ V \ {i, j}, (2.8c)

where a ∈ (0, 1) is the weight given by an agent to the opinion it receives at each round

of interaction. The same behavior in (2.7) can be achieved by setting a = 0.5. All

succeeding mentions of gossiping for opinion dynamics refers to the process described

above that uses (2.8) for updating opinions.

Alternatively, the previous process can be expressed as a time-varying version of

(2.1). Let W ij ∈ Rn×n be defined as

W ij = I − a(ei − ej)(ei − ej)T , (2.9)

which can be considered as a weight matrix based on the interacting agents i and j.

Using (2.9), the pairwise gossip-based model for opinion dynamics can also be written

as

x(k + 1) = W (k)x(k), (2.10)

where W (k) = W ij . Previous results [33, 38] have established that this model achieves

average consensus, as stated in the following lemma.

Lemma 2.3. The gossip model (2.10) converges almost surely to the limit

lim
k→∞

x(k) =
1

n
11Tx(0). (2.11)

This means that all agents will have the same final opinions which is the average of the

initial opinions.
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Another useful method in describing the properties of stochastic systems is the com-

putation of its expected dynamics. For (2.10), this can be obtained by letting P = [pij ].

Lemma 2.4. Let x̄(k) = E[x(k)] and W̄ ij = E[W ij ] given by

W̄ ij = I − a

n
(diag((P + P T )1)− (P + P T )).

Then, the expected dynamics of (2.10) is

x̄(k + 1) = W̄ ij x̄(k).

Proof. Since G is bidirectional and (2.8) updates the opinions of i and j symmetrically,

P[W (k) = W ij ] = P[W (k) = W ji] = (pij+pji)/n. Additionally, note that
∑

j∈Ni
pij = 1.

Hence,

W̄ ij =
∑
i∈V

∑
j∈Ni

pij
n
W ij

=
∑
i∈V

∑
j∈Ni

pij
n

(I − a(ei − ej)(ei − ej)T )

= I − a

n

∑
(i,j)∈E

(pij + pji)(ei − ej)(ei − ej)T

= I − a

n
(diag((P + P T )1)− (P + P T )).

Gossiping was also applied to the Friedkin-Johnsen model [36]. The dynamics of this

model can be described by using the same steps defined for (2.10) and replacing (2.8)

with

xi(k + 1) = γi((1− wij)xi(k) + wijxj(k)) + (1− γi)ui (2.12a)

xl(k + 1) = xl(k) ∀l ∈ V \ {i} (2.12b)

where the matrices W and Γ and the vector u are the same as in (2.4). Notice that

only the opinion of agent i is recomputed, while the others remain the same. This is an

example of an asymmetric update, which can be used to represent situations where an

individual can retrieve an information from another without necessarily engaging in a

discourse. The properties of this model are beyond the scope of this section; however,

some of the analysis performed in [36] are also applied in later parts of this dissertation.
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2.6 Bounded Confidence

Bounded confidence models describe the opinion formation process in social networks

where only like-minded individuals influence one another. Such models are used for

analyzing how clusters are formed within communities with diverse opinions.

One of the earliest works that popularized the concept of bounded confidence is the

model by Hegselmann and Krause [39]. In this model, all individuals simultaneously

update their opinions based on the average of all opinions that are within a given range.

Let δ denote the range of acceptable opinions or the confidence threshold. The model

can then be described by using a time-varying social network, where the neighbors of

each agent i at time k is given by Ni(k) = {j : |xi(k)−xj(k)| ≤ δ}. The opinion of each

agent is iteratively updated as

xi(k + 1) =
1

|Ni(k)|
∑

j∈Ni(k)

xj(k). (2.13)

The model converges either to a consensus or to a clustering of opinions depending on

the initial opinions and the specified range. Aside from updating opinions synchronously,

the dynamics of (2.13) is deterministic based on the initial opinions.

Another well-known bounded confidence model is the work by Deffuant and Weis-

buch [40]. Their model follows a similar scheme as the gossip-based model for opinion

dynamics, but it also incorporates a confidence threshold δ. Let a ∈ (0, 1) be the weight

of another agent’s opinion, like in (2.8). At each time k ≥ 0:

1. A pair of agents i and j are randomly chosen from V.

2. If |xi(k)− xj(k)| ≤ δ, the opinions of i and j are updated as

xi(k + 1) = (1− a)xi(k) + axj(k) (2.14a)

xj(k + 1) = axi(k) + (1− a)xj(k) (2.14b)

while other opinions remain the same.

Similar to (2.13), the Deffuant-Weisbuch model is convergent despite involving a random

process. However, the resulting clusters may vary each time the model is executed.



Chapter 3

Opinion Dynamics via Gossiping

with Group Interactions

3.1 Overview

As mentioned in the previous chapter, gossiping updates opinions based on random

pairwise interactions. This approach addressed the synchronism and determinism of

earlier models. However, while this is a more realistic method, interactions are strictly

restricted to one pair at a time.

This chapter describes an opinion dynamics model based on an extension of pairwise

gossiping where agents interact with a group instead. Here, a group refers to the neigh-

bors of an agent in the given social network. From a real-world perspective, this model

represents scenarios where individuals are more likely to communicate with multiple

persons that they regularly encounter. It can also be seen as an intermediate model

between the DeGroot consensus model, where all agents interact with their neighbors

simultaneously, and pairwise gossiping.

3.2 Group Gossiping

Consider a social network G composed of n agents. Since the model proposed in this

chapter is concerned with agents exchanging views, G is bidirectional. Let bij ∈ [0, 1] be

a scalar variable such that
∑

j∈Ni
bij = 1 and bij > 0 if and only if j ∈ Ni. This variable

represents the amount of information or opinion that is transmitted when an agent i

contacts its neighbors. As such, it serves a similar purpose as a in the gossip model

(2.10), but each neighbor is given its own corresponding weight. To take into account

14
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personal opinions, which are also included in pairwise gossiping, it is assumed bii > 0

for all agent i. This means there is an implicit self-loop for each agent, although this

does not affect the behavior of the model.

The group gossiping model for opinion dynamics can then be described as follows.

At each time k ≥ 0:

1. An agent i is selected with uniform probability from V.

2. The opinions of i and all agent j ∈ Ni are updated as

xi(k + 1) = (1−
∑
j∈Ni

bij)xi(k) +
∑
j∈Ni

bijxj(k) (3.1a)

xj(k + 1) = bijxi(k) + (1− bij)xj(k). (3.1b)

while other opinions remain the same.

The combination of (3.1a) and (3.1b) signifies the scenario when i expresses its opinion

to all its neighbors who, in turn, also give their opinions to i. Regardless of whether i

is included in Ni or not, the computations in step 2 remain the same since (3.1a) will

become

xi(k + 1) = (1−
∑
j∈Ni

bij)xi(k) +
∑
j∈Ni

bijxj(k)

= (1−
∑

j∈Ni,j 6=i
bij)xi(k) +

∑
j∈Ni,j 6=i

bijxj(k)

and (3.1b) will become

xj(k + 1) = xi(k + 1) = biixi(k) + (1− bii)xi(k) = xi(k)

when the edge (i, i) is ignored.

Similar to (2.10), the model can also be alternatively represented as a time-varying

discrete-time system using a random matrix W i ∈ Rn×n whose value depends on the

selected agent i at time k and defined as

W i = I −
∑
j∈Ni

bij(ei − ej)(ei − ej)T . (3.2)

Thus, the model can also be expressed as

x(k + 1) = W (k)x(k). (3.3)
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where W (k) = W i.

Let P ∈ Rn×n be a matrix where pij > 0 if and only if (i, j) ∈ E . Each pij denotes

the probability that agent i contacts agent j ∈ Ni at time k when only one neighbor can

be chosen, such as in pairwise gossiping, which implies
∑

j∈Ni
pij = 1. This means P

is defined similarly as in the previous chapter and can be used to show the relationship

between the group gossip model and the pairwise gossip model, as stated by the following

lemma.

Lemma 3.1. Let bij = apij. Then E[W i] = E[W ij ].

Proof.

W̄ i =
∑
i∈V

1

n
W i

=
∑
i∈V

1

n
(I −

∑
j∈Ni

bij(ei − ej)(ei − ej)T )

= I − 1

n

∑
(i,j)∈E

(bij + bji)(ei − ej)(ei − ej)T

= I − a

n
(diag((P + P T )1)− (P + P T )).

Moreover, both models actually reach the same consensus even if their weights are

defined independently of one another. Similar to (2.10), the dynamics (3.3) also achieves

average consensus.

Theorem 3.2. The model (3.3) converges almost surely to the limit

lim
k→∞

x(k) =
1

n
11Tx(0). (3.4)

Proof. Since G is at least weakly connected and it is also bidirectional because of the

symmetric exchange of opinions in the model (3.3), G is strongly connected. Note that

the sequence {W (k)}k≥0 is i.i.d, where each W (k) is doubly stochastic and has a positive

diagonal based on (3.2). Because G is strongly connected and P[W (k)ij > 0] for any

(i, j) ∈ E , then E[W (k)] is irreducible and λn−1(E[W (k)]) < 1 via the Perron-Frobenius

theorem. Given the properties of W (k) and E[W (k)], the model (3.3) converges almost

surely to the consensus using Theorem 3 in [41]. Additionally, since E[W (k)] is also

doubly stochastic, the consensus is given by the limit (3.4).
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The results of Lemma 3.1 and Theorem 3.2 enable additional comparisons to be

performed on the group gossip model and the pairwise gossip model. This is done using

simulations in the next section.

3.3 Numerical Examples

Since the models (3.3) and (2.10) converge to the same limit, their behaviors can be

compared using the same initial opinions. Also, by making E[W i] = E[W ij ], the dynam-

ics of both models can also be compared to the DeGroot model by using either E[W i]

or E[W ij ] as the weight matrix in (2.1) which results to the expected dynamics of (3.3)

and (2.10).

Consider the social network in Figure 3.1. Let a = 0.3, pij = 1/Ni and bij = apij .

Set the initial opinions as

x(0) =
[

0.4664 0.5070 0.8022 0.8805 0.2055

0.0202 0.9304 0.7237 0.8057 0.5268
]
.

Figure 3.2b show the results of the three models for the given values. It can be seen that,

while all three models converged to the same consensus, there is significant difference

on how their opinions evolve from one time step to another. The pairwise gossiping

produces drastic changes in opinions, while the consensus model has smooth transitions.

The behavior of the group gossiping has more gradual changes compared to pairwise

gossiping and can be described as an intermediate between the other two models.

While the consensus model is deterministic, the interactions of the pairwise gossip

model and the group gossip model are based on random processes. To further explore

the distinction between both gossip-based models, their dynamics are compared with

the DeGroot consensus model that uses E[W i] in Lemma 3.1 as its weight matrix. The

comparisons are performed on three randomly generated graphs with n = 10, n = 50,

and n = 100. For each graph, the Euclidean distance between the opinions of the gossip-

based models and the consensus model are computed each time step. This is performed

in one hundred trials for each graph. The initial opinions are randomly generated at the

start of each trial and the same initial opinions are used for all the models. Figure 3.3

shows the results. In all graphs, the average distance between the opinions generated by

the group gossip model and the consensus model is significantly less than the distance

between the opinions of the pairwise gossip model and the consensus model during the

earlier time steps. However, as the value of k increases, the differences become less

pronounced since the opinions converge to the consensus value.
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The observations regarding Figure 3.3 are consistent with how opinions are updated

in the models under consideration. For these models, assuming that the conditions for

reaching consensus are met, the updated opinions at each iteration satisfy the inequality

min
i
xi(k) ≤ xi(k + 1) ≤ max

i
xi(k). (3.5)

For the consensus model, this implies that all opinions gradually approach the consensus

value since they are all updated at each time k. The group gossip model updates an

average of 1
n

∑
i |Ni| + 1 opinions per turn, where |Ni| ≥ 1 since the social networks

under consideration are assumed to be at least weakly connected. The pairwise gossip

model, on the other hand, updates only two opinions each time step. Thus, based on

the inequality (3.5), there is less gap between the opinions of the group gossip model

and the DeGroot model when the consensus is not yet reached.

Figure 3.1: Social network

3.4 Summary

In this chapter, the gossip model for opinion dynamics is extended to incorporate group

interactions. Both the pairwise gossip model and group gossip model approach the

same consensus. Moreover, their expected dynamics can be the same by modifying the

weights used in the group gossip model. However, the evolution of the opinions in group

gossiping is less drastic compared to pairwise gossiping, especially during the early stages

of their opinion formation process.
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(a) DeGroot Model

(b) Pairwise Gossiping

(c) Group Gossiping

Figure 3.2: Resulting dynamics



Opinion Dynamics via Gossiping with Group Interactions 20

(a) n = 10

(b) n = 50

(c) n = 100

Figure 3.3: Distance between opinions



Chapter 4

Gossip-Based Model with

Probabilistic Group Interactions

4.1 Overview

The previous chapter introduced group gossiping, which not only extends the behavior

of pairwise gossiping but also demonstrates the effects of group sizes on the evolution

of opinions. This chapter proposes a generalization of group gossiping by allowing in-

teractions with randomly selected participants. This novel approach to representing

interactions in social networks can be combined with other models in order to depict

a wider range of scenarios. When applied to the DeGroot model, consensus can still

be attained although the final opinions are no longer deterministic. Additionally, the

frequency of interactions can affect the rate by which agents converge to consensus.

4.2 Random Group Gossiping

The DeGroot model (2.1) is an intuitive depiction of how agents in a social network can

come to an agreement. Gossiping (2.10) makes interactions random and asynchronous,

while group gossiping (3.3) expands the coverage of interactions. In this chapter, the

core features of these models are combined then modified in order to attain a more

flexible behavior. The result is a gossip-based extension of the DeGroot model with

probabilistic group interactions.

Consider a directed graph G as the given social network. Let R ∈ Rn×n be a nonneg-

ative matrix, where rij ∈ [0, 1] and rij > 0 if and only if (i, j) ∈ E . In this matrix, each

rij corresponds to the independent probability that agent i receives the opinion of agent

21
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j at time k. This is different from the matrix P defined in the previous chapters, where

each row gives the probabilities of mutually exclusive events. So, unlike P , R is not row

stochastic. Let Si(k) ⊆ Ni be a random subset of the neighbors of i where each member

is determined by an independent Bernoulli trial, denoted by the random variable φij(k)

that is defined as

φij(k) =

1 j ∈ Si(k)

0 j /∈ Si(k)

where

P[φij(k) = 1] = rij .

In this model, the term ”group” refers to the randomly selected members of Si(k).

Let W ∈ Rn×n be a weight matrix that has the same properties and usage as the

W matrix in the model (2.1). To be consistent with the objective of generalizing group

gossiping and other related models, the requirement of a self-weight wii is excluded

from this model. The consensus model via random group gossiping can be described as

follows. At each time k ≥ 0:

1. An agent i is selected with uniform probability from V.

2. The members of Si(k) are chosen by performing an independent Bernoulli trial

φij(k) on each j ∈ Ni.

3. The opinion of agent i is then updated as

xi(k + 1) =

1−
∑

j∈Si(k)

wij

xi(k) +
∑

j∈Si(k)

wijxj(k) (4.1)

while the opinions of the other agents remain unchanged.

The process described above conveys the idea that at any given time, individuals may

receive information or sentiment from different persons they know and this usually hap-

pens unpredictably.

The equation (4.1) is an asymmetric update, like (2.12), which only updates the

opinion of one agent, as opposed to symmetric updates where opinions are updated in

a pairwise manner. The choice of an asymmetric update gives this model flexibility

in representing various scenarios; however, this can be easily extended to a symmetric

update while the analyses in this chapter can still be readily applied. The update
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performed in (4.1) can also be accomplished using a weight matrix A(k) given by

A = I −
∑

j∈Si(k)

wijeie
T
i +

∑
j∈Si(k)

wijeie
T
j . (4.2)

Thus, the consensus model via random group gossiping can be compactly expressed as

x(k + 1) = A(k)x(k). (4.3)

Note that if Si(k) = Ni, which can occur if all neighbors of i are selected, the opinion

of i is updated using (3.1a), where bij = wij . This is also the same as using (2.2), since

xi(k + 1) =

1−
∑
j∈Ni

wij

xi(k) +
∑
j∈Ni

wijxj(k))

=
∑
j∈Ni

wijxj(k).

On the other hand, if |Si(k)| = 1 because only one neighbor j ∈ Ni is selected at the

current turn, then the opinion of i is updated using (2.8a), where a = wij . These show

how the proposed model in this chapter relates to the DeGroot model, the pairwise

gossip model, and the group gossip model.

Even if the opinions received by an agent at each time step results from a random

process, the dynamics (4.3) still achieves probabilistic consensus under certain condi-

tions.

Theorem 4.1. If G contains a globally reachable node and every node has a self-loop,

that is (i, i) ∈ E for all i ∈ V, then consensus is reached in (4.3).

Proof. Let Q(k, r) = A(k + r)A(k + r − 1) . . . A(k). Theorem 3.1 in [33] states that a

random network achieves probabilistic consensus if and only if

P[{∃k, ∃h|Qih(0, k)Qjh(0, k) > 0}] = 1 (4.4)

for all i, j ∈ V. If every node in G has a self-loop, then Aii(k) ≥ wii for any i selected at

time k. Thus, Aij(k + 1) > 0 implies Qij(k, 1) > 0. If i has a path to a node h, then

P[{∃k, ∃r|Qih(k, r) > 0}] > 0.

Let

κij(k, t) = {∃k, ∃t|Qih(k, t)Qjh(k, t) > 0} (4.5)
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for any i, j ∈ V . If h is a globally reachable node, then P[κij(k, t)] > 0. As k −→ ∞,

then P[κij(k, t)] −→ 1. Notice that (4.5) implies that Qih(k, t) > 0 for all i. Since A(k) is

row-stochastic with a positive diagonal, then Qih(0, k + t) > 0 for all i, which satisfies

(4.4).

The consensus value that the proposed model (4.3) attains varies depending on the

members of Si(k) at each time step. In order to have a better understanding of its

behavior, its expected dynamics is analyzed.

Lemma 4.2. Let Ā = E[A(k)]. The expected dynamics of the model (4.3) is

E[x(k + 1)] = ĀE[x(k)] (4.6)

where

Ā = I − 1

n
(diag((R ◦W )1)−R ◦W ). (4.7)

Proof. At any given time k, P[j ∈ Si(k)] = rij . Since the selection of j ∈ Si(k) is an

independent event, then

Ā =
1

n

∑
i∈V

I −
∑
j∈Ni

rijwij

 eie
T
i +

∑
j∈Ni

rijwijeie
T
j

 .

Note that

∑
i∈V

∑
j∈Ni

wijeie
T
i = diag(W1)

∑
i∈V

∑
j∈Ni

wijeie
T
j = W.

Thus

Ā = I − 1

n
(diag((R ◦W )1)−R ◦W ).

Theorem 4.3. If G contains a globally reachable node, then the expected dynamics (4.6)

reaches consensus and the consensus value is given by 1πTx(0) where π is the dominant

left eigenvector of Ā.

Proof. Notice that (4.6) is the same as the model (2.1), which means Lemma 2.1 can

be applied. Let G[Ā] be the graph induced by matrix Ā. It can be directly observed
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that any (i, j) ∈ E means that Āij > 0. Hence, the existence of a globally reachable

node in G implies the same for G[Ā]. Since Ā has a positive diagonal, then all strongly

connected components in G[Ā] are aperiodic. Also, any globally reachable node in G[Ā] is

part of a strongly connected component with no outgoing edges since any outgoing edge

attached to it will include a new node to that strongly connected component. This is

the only strongly connected component in G[Ā] with no outgoing edges because all other

strongly connected components, if they exists, have a path to it. If there are multiple

globally reachable nodes in G[Ā], they belong to the same strongly connected component.

Therefore, by Lemma 2.1, the expected dynamics (4.6) reaches the consensus value stated

in Theorem 4.3.

The convergence behavior and consensus value of (4.6) and (2.1) are dependent on

the properties of the matrices Ā and W , respectively. An important distinction of the

proposed model, however, is the presence of the R matrix which allows the modification

of its dynamics without having to alter the structure of the given social network. This

idea is demonstrated via the succeeding corollary, which involves a special case of the

model (4.3).

Corollary 4.4. Let rij = r̂ for all i, j ∈ V, which means the probability for selecting a

neighbor is uniform for all agents (i.e. R ◦W = r̂W ). Let A0 = I − diag(W1) + W

which is a row-stochastic matrix. Then any eigenvalue λi(Ā) = 1− r̂/n+ (r̂/n)λi(A0).

Proof. Based on the assumptions in Corollary (4.4), Ā can be computed as

Ā = I − r̂

n
(diag(W1)−W )

= (1− r̂

n
)I +

r̂

n
(I − diag(W1) +W )

= (1− r̂

n
)I +

r̂

n
A0,

from which we can characterize its eigenvalues.

The corollary above does not guarantee that the magnitude of the eigenvalues of Ā

is inversely proportional to r̂. However, it can be generalized that an r̂ value closer to 1

means lower eigenvalue magnitudes while an r̂ value closer to 0 means higher eigenvalue

magnitudes. Note that the convergence rate of (4.6) is dependent on the magnitude of

the eigenvalues of Ā. Thus, Corollary (4.4) implies that higher interaction frequencies

can lead to a faster convergence to consensus.
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(a) Does not contain a globally reachable node (b) Globally reachable nodes are present

Figure 4.1: Two social networks with different structures

4.3 Numerical Examples

Consider the social networks in Figure 4.1. The first network is a weakly connected

graph that does not contain a globally reachable node, while the second is also weakly

connected but contains some globally reachable nodes. The nodes in both graphs are

given self-loops that are not shown in the figures. The W and R matrices for both

networks are randomly generated such that the properties of both matrices are satisfied.

Let the initial opinions for both network be

x(0) =
[

0.3436 0.2327 0.4117 0.2685 0.1403

0.7108 0.5072 0.0197 0.5942 0.1286
]
.

Figure 4.2 shows the result of the model (4.3) on both networks. The opinions in Figure

4.2a do not converge, while the dynamics in Figure 4.2b converged to a consensus which

demonstrates Theorem 4.1.

To demonstrate the effects of having low and high interaction frequencies, the ex-

pected dynamics (4.6) is applied on the social network 4.1b using R matrices with

r̂ = 0.15 and r̂ = 0.85. The expected dynamics in Figure 4.3b reached consensus signifi-

cantly faster than the expected dynamics in Figure 4.3a. This highlights the implication

of Corollary 4.4.
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(a) First social network

(b) Second social network

Figure 4.2: Resulting dynamics

4.4 Summary

This chapter proposed a gossip-based model for opinion dynamics that involves group in-

teractions with random participants. Compared to traditional models and other gossip-

based models, the proposed model is a closer representation of real-world interactions.

The results in this chapter have established that, under suitable conditions, the model

achieves probabilistic consensus. Furthermore, interaction frequencies may slow down

or speed up the rate of convergence.
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(a) r̂ = 0.15

(b) r̂ = 0.85

Figure 4.3: Expected dynamics



Chapter 5

Random Group Gossiping with

Stubborn Agents

5.1 Overview

The work in the previous chapter introduced the concept of random group gossiping.

It incorporates features from the DeGroot model and gossip-based models, particularly

group gossiping, and then added a more generalized form of interaction. In this chapter,

random group gossiping is applied to social networks with stubborn agents, which is

achieved by extending the Friedkin-Johnsen model. While the opinions tend to oscillate

in the resulting model, its expected dynamics and time-averaged opinions coincide over

time.

5.2 Random Group Gossiping with Stubborn Agents

The model described in this chapter uses the same setup in the previous chapter. Ad-

ditionally, let Γ = I − diag(W ) be a diagonal matrix denoting susceptibility to external

influence and let u = x(0) be the prejudices of the agents. Both Γ and u are adapted

from the Friedkin-Johnsen model (2.4). The stubborn agents are all i such that γi < 1.

Random group gossiping in networks with stubborn agents follows the same steps defined

in the previous chapter, but with a modified update formula. At each time k ≥ 0:

1. An agent i is selected with uniform probability from V.

2. The members of Si(k) are chosen by performing an independent Bernoulli trial

φij(k) on each j ∈ Ni.

29
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3. The opinion of agent i is then updated as

xi(k + 1) = γi

1−
∑

j∈Si(k)

wij

xi(k) +
∑

j∈Si(k)

wijxj(k)

+ (1− γi)ui (5.1)

while the opinions of the other agents remain unchanged.

The model can also be written as

x(k + 1) = A(k)x(k) +B(k)u (5.2)

where

A(k) = (I − eieTi (I − Γ))

I −
 ∑
j∈Si(k)

wij

 eie
T
i +

∑
j∈Si(k)

wijeie
T
j


and

B(k) = eie
T
i (I − Γ).

Hence, (5.2) is a time-varying version of (2.4) that is dependent on the participating i

and Si(k) at time k. This model also extends the gossip-based version of the Friedkin-

Johnsen model (2.12) that was proposed in [36]. Setting rij = 1 for all (i, j) ∈ E converts

this model to the classical Friedkin-Johnsen model (2.4), while making Γ = I transforms

this to the model (4.3) in the previous chapter.

While its possible for this model to achieve consensus by manipulating the values in

W , R, and Γ, it does not usually converge to stable opinions. Thus, the analysis on this

chapter is focused on its expected behavior.

Lemma 5.1. Let Ā = E[A(k)] and B̄ = E[(B(k)]. The expected dynamics of the model

(5.2) is

E[x(k + 1)] = ĀE[x(k)] + B̄u (5.3)

where

Ā = I − 1

n
(I − Γ− Γ(R ◦W − diag(R ◦W )1))) (5.4)

B̄ =
1

n
(I − Γ).
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Proof. Considering that the selection of j ∈ Si(k) is an independent event, then

Ā =
1

n

∑
i∈V

((I − eieTi (I − Γ))(I − (
∑
j∈Ni

rijwij)eie
T
i +

∑
j∈Ni

rijeie
T
j ))

=
1

n

∑
i∈V

(I − (
∑
j∈Ni

rijwij)eie
T
i +

∑
j∈Ni

rijeie
T
j − eieTi (I − Γ)+

eie
T
i (I − Γ)(

∑
j∈Ni

rijwij)eie
T
i − eieTi (I − Γ)

∑
j∈Ni

rijeie
T
j )

=
1

n
(nI − diag((R ◦W )1) +R ◦W − (I − Γ) + (I − Γ)diag((R ◦W )1)−

(I − Γ)(R ◦W ))

=I − 1

n
(I − Γ− Γ(R ◦W − diag((R ◦W )1)))

and

B̄ =
1

n

∑
i∈V

eie
T
i (I − Γ)

=
1

n
(I − Γ).

Note that Γ, Ā, and B̄ can be rearranged as

Γ =

[
Γ11 0

0 I

]
Ā =

[
Ā11 Ā12

0 Ā22

]
B̄ =

[
I−Γ11

n 0

0 0

]
(5.5)

where the submatrices Γ11 and [Ā11 Ā12] correspond to all stubborn agents i, i.e.

γi < 1, or has a path to a stubborn agent j in G, and Ā22 corresponds to all the

remaining agents.

Theorem 5.2. Let

x∗ = lim
k→∞

E[x(k)]. (5.6)

The expected dynamics of (5.2) converges to

x∗ =

[
(I−Ā11)−1(I−Γ11)

n (1− Ā11)−1Ā12Ā22
∗

0 Ā22
∗

]
u (5.7)

where

Ā22
∗ = lim

k→∞
(Ā22)k.
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Proof. The proof below follows the arguments used in [26]. From (5.3), the expected

opinions at time k is

E[x(k)] = Āku+
k−1∑
q=0

ĀqB̄u. (5.8)

Applying (5.5) on (5.8) results to

E[x(k)] =

[
(Ā11)k

∑k−1
q=0(Ā11)k−q−1Ā12(Ā22)k

0 (Ā22)k

]
u+

[
1
n

∑k−1
q=0 Ā

q(I − Γ11) 0

0 0

]
u.

(5.9)

Note that
∑

j∈Ni
Āij = 1 − 1−γi

n , which implies that in Ā11,
∑

j∈Ni
Ā11
ij < 1 for all

i. Thus, Ā11 is Schur stable and limk→∞(Ā11)k = 0. Also, Ā22 is stochastic and its

diagonal entries are positive, which means that the strongly connected components in

G[Ā22] are aperiodic. Therefore, limk→∞(Ā22)k exists based on Lemma 2.1. Using the

previous statements on (5.9) gives

x∗ =

[
0 (I − Ā11)−1Ā12Ā22

∗

0 Ā22
∗

]
u+

[
(I−Ā11)−1(I−Γ11)

n 0

0 0

]
u,

from which (5.7) can be obtained.

Corollary 5.3. If γi < 1 for all agents, then Ā is Schur stable and the limit x∗ is

x∗ = (I − Γ− Γ(R ◦M − diag((R ◦M)1)))−1(I − Γ)u. (5.10)

Proof. Applying the condition in Corollary 5.3 to (5.5) implies that

Γ = Γ11 Ā = Ā11 B̄ =
I − Γ11

n

which converts the limit (5.7) to

x∗ =
(I − Ā)−1(I − Γ)

n
u (5.11)

by reapplying Theorem 5.2. The limit (5.10) can be obtained by applying (5.4) on

(5.11).
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Theorem 5.2 describes the resulting opinions of the expected dynamics of the model

(5.3). The presence of stubborn agents can turn the limit (5.7) into a disagreement of

opinions, which is also the case with the Friedkin-Johnsen model. In fact, when rij = 1

for all i and j, the limit (5.11) in Corollary 5.3 will be the same as (2.6).

Another interesting aspect of random group gossiping with stubborn agents is that

its time-averaged opinions approaches its expected opinions at time k (5.8).

Theorem 5.4. Let

x̄(k) =
1

k + 1

k∑
q=0

x(q).

Then, the dynamics (5.2) is mean-square ergodic, such that

lim
k→∞

E[‖x̄(k)− x∗‖2] = 0.

Proof. Frasca et al. [36] provided their analysis in order to prove the mean-square

ergodicity of their gossip-based implementation of the Friedkin-Johnsen model (2.12).

This method was generalized in the work of Ravazzi et al. [42]. Their method is used

here for proving the same property applies to the model (5.2).

From (5.1)

min
j
xj(0) ≤ xi(k) ≤ max

j
xj(0). (5.12)

Let e(k) = x(k)− x∗. Then,

x̄(k)− x∗ =
1

k + 1

k∑
q=0

x(q)− x∗

=
1

k + 1

k∑
q=0

e(q). (5.13)

The expected squared Euclidean norm of (5.13) is

E[‖x̄(k)− x∗‖2] = E

∥∥∥∥∥∥ 1

k + 1

k∑
q=0

e(q)

∥∥∥∥∥∥
2 . (5.14)
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Note that  k∑
q=0

e(q)

2

=

k∑
q=0

e(q)T e(q) + 2

k−1∑
q=0

k−q∑
t=1

e(q)T e(q + t). (5.15)

Combining (5.14) and (5.15) results to

E[‖x̄(k)− x∗‖2] =
1

(k + 1)2
E

 k∑
q=0

e(q)T e(q) + 2
k−1∑
q=0

k−q∑
t=1

e(q)T e(q + t)

 . (5.16)

Based on (5.12), there is a constant upper bound for (x(k)− x∗)T (x(k)− x∗) for all k.

Let the upper bound be η. Then, from (5.16)

E

 k∑
q=0

e(q)T e(q)

 ≤ k∑
q=0

η

≤ η(k + 1). (5.17)

Also, from (5.16)

E[e(q)T e(q + t)] = E[E[e(q)T e(q + t)|x(q)]]

= E[e(q)TE[e(q + t)|x(q)]]

= E[e(q)TE[x(q + t)− x∗|x(q)]]

= E[e(q)T (E[x(q + t)|x(q)]− x∗)]. (5.18)

By recursively applying (5.3) on E[x(q + t)|x(q)] until x(q) is reached, the following is

obtained

E[x(q + t)|x(q)] = Ātx(q) +
t−1∑
s=0

ĀsB̄u. (5.19)

Using the same principle on x∗ yields

x∗ = Ātx∗ +

t−1∑
s=0

ĀsB̄u. (5.20)
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Then applying (5.19) and (5.20) on (5.18) produces

E[e(q)T e(q + t)] = E[e(q)T (Ātx(q)− Ātx∗)]

= E[e(q)T Āt(x(q)− x∗)]

= E[e(q)T Āte(q)]

≤ E[e(q)Tρte(q)]

≤ ηρt (5.21)

where ρ is a constant such that vT Āv ≤ vTρv for any vector v.

Applying (5.21) on (5.16) yields

E[‖x̄(k)− x∗‖2] ≤ 1

(k + 1)2

η(k + 1) + 2

k−1∑
q=0

k−q∑
t=1

ηρt


≤ η

(k + 1)2

k + 1 + 2

k−1∑
q=0

k−q∑
t=1

ρt


≤ η

(k + 1)2

(
1 + 2

k∑
t=1

ρt

)

≤ η

(k + 1)2

(
1 +

2

1− ρ

)
.

This completes the proof.

5.3 Numerical Examples

Consider the social network in Figure 5.1 with 10 agents. Let the values in W be

randomly generated such that there are agents i with wii > 0 so that γi < 1, which

makes them stubborn agents. R is also randomly generated. Let the initial opinions be

x(0) =
[

0.6227 0.3108 0.8258 0.6248 0.4064

0.0401 0.5294 0.2153 0.9236 0.5654
]
,

which are also the prejudices of the agents.

Figure 5.2a shows the behavior of random group gossiping when the prejudices of

stubborn agents are taken into consideration. Instead of converging to fixed values,

the opinions are continuously fluctuating. The expected dynamics of the model (Figure

5.2b), on the other hand, converged to a disagreement, which is the presumption when
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there are stubborn agents in a social network. More importantly, the time-averaged opin-

ions (Figure 5.2c) follow the same trajectory as the expected dynamics, which validates

the ergodic property of the model stated in Theorem 5.4.

Figure 5.1: Social network

5.4 Summary

In this chapter, random group gossiping is used for modeling the opinion formation

process in social networks with stubborn agents. The resulting model is a time-varying

version of the Friedkin-Johnsen model with non-deterministic interactions, which is more

appropriate for representing real-world scenarios. While the model is not guaranteed to

converge to stable opinions, the analysis in this chapter has shown that its expected

dynamics is convergent regardless of the network topology. Furthermore, its expected

opinions and its time-averaged opinions approach the same values as the number of

iterations increases. This was proven through analysis of its mathematical properties

and demonstrated via simulations.
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(a) Dynamics

(b) Expected dynamics

(c) Time-averaged opinions

Figure 5.2: Resulting dynamics



Chapter 6

Clustering of Opinions via

Random Group Gossiping with

Bounded Confidence

6.1 Overview

Bounded confidence models involve time-varying dynamics that are determined by the

interactions of agents with similar opinions. Two of the most influence works on bounded

confidence are the models by Hegselmann and Krause [39], and Deffuant and Weisbuch

[40]; both of which have served as the foundation of other similar models.

However, these models disregard relationships in social networks, allowing any pair of

individuals to interact as long as they have similar views. In real-world social networks,

meaningful interactions are more likely to occur within the same social circles. This

idea is addressed by the work of Parasnis et al. [43] which modifies the Hegselmann-

Krause model by limiting the interactions to neighbors in the social network graph. The

bounded confidence model by Nguyen et al. [44] also restricted the interactions based on

relationships while employing a gossip-based approach similar to the Deffuant-Weisbuch

model.

In this chapter, random group gossiping is combined with bounded confidence. Simi-

lar to the models in [43] and [44], the this model only permits interactions to occur based

on existing connections. However, the pairwise gossiping in [40] and [44] is extended by

allowing interactions with groups of varying sizes. The proposed model is demonstrated

using an actual social network graph data, which resulted to multiple clusters with each

cluster representing a set of agents coming to an agreement.

38
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6.2 Random Group Gossiping with Bounded Confidence

Similar to Chapter 6, the model proposed in this chapter uses the same setup in Chapter

5. It also follows a similar process as the previous random group gossiping models.

The rules for updating the opinions, however, are modified to incorporate bounded

confidence. Let δ denote the confidence threshold for all agents which determines the

opinions that they are willing to accept. That is, given an agent i and j ∈ Ni, the opinion

of j can only influence i if and only if |xi(k)−xj(k)| ≤ δ. Random group gossiping with

bounded confidence can thus be described as follows. For each time k ≥ 0:

1. An agent i is selected with uniform probability from V.

2. The members of Si(k) are chosen by performing an independent Bernoulli trial

φij(k) on each j ∈ Ni.

3. The opinion of agent i is then updated as

xi(k + 1) =

1−
∑

j∈Si(k)

1{|xi(k)−xj(k)|≤δ}wij

xi(k) +
∑

j∈Si(k)

1{|xi(k)−xj(k)|≤δ}wijxj(k)

(6.1)

where 1 is the indicator function such that 1{θ} = 1 if θ is true, otherwise 1{θ} = 0.

The opinions of the other agents remain unchanged.

Theorem 6.1. The model above always converges to a limit

lim
k→∞

x(k) = x∗, (6.2)

where either x∗i = x∗j or |x∗i − x∗j | > δ for any i and j ∈ Ni.

Proof. At each k + 1, either

|xi(k + 1)− xj(k)| ≤ |xi(k)− xj(k)| (6.3)

or

|xi(k + 1)− xj(k)| > |xi(k)− xj(k)| (6.4)

for any pair of i and j ∈ Ni. Since the probability of (6.3) and (6.4) occurring are

independent based on (6.1), as k →∞, there will be a sequence involving combinations
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of (6.3) and (6.4) such that, at a time k0, either

|xi(k0)− xj(k0)| ≤ δ0 ≤ δ

|xi(k0)− xl(k0)| > δ

|xj(k0)− xl(k0)| > δ

∀l 6= i, j (6.5)

or

|xi(k0)− xj(k0)| > δ (6.6)

for all pairs of i and j ∈ Ni. Once this scenario is reached, only the neighbors that

satisfy (6.5) can influence one another. From hereon,

lim
k0→∞

|xi(k0)− xj(k0)| = 0 (6.7)

for all pairs of i and j ∈ Ni that satisfy (6.5) since all succeeding recomputations of

their opinions will result to (6.3). This completes the proof.

Despite the randomness of interactions, Theorem 6.1 guarantees that (6.1) will always

converge to stable opinions regardless of how the agents are connected in the given social

network. The resulting opinion profile corresponds to a consensus or to a clustering of

agents based on their final opinions.

Within the context of real-world scenarios, the dynamics (6.1) represents the situ-

ations where individuals interact with some people they know and then only consider

the opinions that are similar to their views. This kind of behavior is consistent with

the concept of homophily which asserts that like-minded individuals tend to associate

with one another. Because of this tendency, clusters can be formed within communities,

where each cluster represents a shared belief system.

Since opinions in (6.1) can only be given to neighbors in G, there may be pairs of i

and j /∈ Ni such that |x∗i − x∗j | ≤ δ. In reality, such situations do occur since there are

other people who may have similar views as us but we have no opportunity to interact

with them to further align our views.

6.3 Numerical Examples

To demonstrate the behavior of the proposed model and to show clustering within social

networks based on similarity of views, this section includes numerical examples using an
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actual social network graph data taken from the Facebook ego dataset of the Stanford

Network Analysis Project [45]. This particular network contains 148 nodes that are

connected via 1692 edges. The average number of neighbors per node is 22.86. Since the

“friend” connection in Facebook is symmetric, the edges in the graph are bidirectional.

The dataset does not include information about interpersonal influences and frequency

of interactions. Weights and probabilities are randomly assigned to the edges, which

correspond to the values in the W and R matrices, respectively. The initial opinions

are also randomly generated such that each xi(0) ∈ [0, 1]. To explore the effects of

varying confidence thresholds, three simulations are performed using δ = 0.1, δ = 0.2,

and δ = 0.5. The same W , R, and x(0) are used in all simulations.

Figure 6.1 shows the convergence of opinions based on the various confidence thresh-

olds used. The dynamics in Figure 6.1a resulted to the most number of clusters because

of its low confidence threshold which heavily restricts the possible interactions of all

agents. Figure 6.1b also resulted to multiple clusters reaching a disagreement, but there

are significantly less clusters compared to the previous example. The use of a higher

confidence threshold in Figure 6.1c led to consensus since it enabled agents to interact

with most of their neighbors.

Figure 6.2 shows the resulting clusters in the given social network. Note that the

clusters are not based on the location of agents in the network, but on the proximity

of their opinions. Figure 6.2 exhibits how views can spread out within a social network

even among agents that are not directly connected with one another. Different trials

may yield different clusters because the model is non-deterministic. But in general,

smaller confidence thresholds produce more clusters, while larger confidence thresholds

result to less clusters or may even result to a consensus.

6.4 Summary

This chapter presented an alternative approach to bounded confidence models for opinion

dynamics by using random group gossiping. Unlike the popular bounded confidence

models and their variants, the model (6.1) limits interactions only to neighboring agents.

Also, compared to other gossip-based bounded confidence models, the proposed model

allows interactions with groups of varying sizes. The model is applied to an actual social

network graph data, which demonstrated how opinions can propagate within the network

and showed how clustering of opinions develop by adjusting the range of opinions that

agents are willing to accept.
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(a) δ = 0.1

(b) δ = 0.2

(c) δ = 0.5

Figure 6.1: Convergence of opinions leading to clusters
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(a) δ = 0.1

(b) δ = 0.2

(c) δ = 0.5

Figure 6.2: Clusters formed in the social network graph



Chapter 7

Reaching Consensus via

Coordinated Groups

7.1 Overview

Opinion dynamics models are often concerned with describing the behavior of an entire

network based on the characteristics of individual agents and the interactions that may

take place. However, important patterns may also be exhibited by smaller groups within

a social network. Exploring group dynamics is especially relevant during this age when

it is easier to connect with other people, leading to the spread of communities with

shared ideologies that shape different aspects of our societies.

One way to explore group behaviors is through a bottom up approach where there

are no predefined groupings, but they may later surface based on the dynamics of the

model employed. Examples that follow this principle are bounded confidence models,

such as the model proposed in the previous chapter. The clusters formed by these models

depend on the range of opinions that agents are willing to accept. An alternative to this

approach is to design a model with an assumption that there are already explicit groups

in place before observing the resulting dynamics [46, 47]. This enables the analysis of

how intergroup dynamics affect an entire social network.

In this chapter, a novel model is proposed for the opinion dynamics of social networks

with intragroup and intergroup interactions. The model, which also employs a gossiping

scheme, enables multiple groups to reach consensus via the presence of coordinators that

act as links between groups. Analysis of its expected dynamics shows that the number

of groups and the frequency of interactions may affect the convergence behavior of the

groups in the network.

44
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7.2 Gossip-Based Intergroup Model

The social network G considered for this model is bidirectional since it is concerned with

changes in opinions brought about by exchanges of views. Every agent in the network

belongs to a group Gs = (Vs, Es), where Vs ⊆ V and Es ⊆ E . Each Gs should be a

strongly connected subgraph, otherwise it is decomposed into multiple groups. However,

groupings may be selected arbitrarily. The groups are labeled as s = 1, 2, . . . ,m, where

m ≥ 2 to avoid trivialities. While in reality, individuals may belong in multiple groups,

the scope of this chapter is restricted to cases when agents belong in exactly one group

only. Fig. 7.1 shows a social network composed of interconnected groups.

In this model, members of a group are classified as either a coordinator or a follower.

A coordinator is an agent i ∈ VC ⊆ V that is connected by an edge to a member of

another group. All the remaining agents are followers. It is assumed that each group

contains at least one coordinator and there is a path between any pair of coordinators,

thus the graph induced by the set of coordinators, GC = (VC , EC), is also strongly

connected. Additionally, every coordinator should have at least one follower neighbor,

that is |N s
i \ VC | > 0. The total number of coordinators is given by c = |VC |. The set

N s
i ⊆ Ni denote the neighbors of i on the same group and NC

i ⊆ Ni are the neighbors

of i that are coordinators.

The intergroup opinion dynamics model can be described as follows. Let q ∈ (0, 1)

be the weight given to the opinion of other agents, which is similar to the variable a in

2.10. Let ρ ∈ (0, 1) be the frequency which agents interact with members from other

groups. At each time k ≥ 0:

Figure 7.1: Social network with three groups containing five, four, and three members.
Dashed edges connect the coordinators.
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1. Agent i is chosen with uniform probability from V. The group of i is Gs, where

i ∈ Vs.

2. If i 6∈ VC , agent j ∈ N s
i is chosen with probability 1/|N s

i |. If i ∈ VC , agent

j ∈ N s
i is chosen with probability (1−ρ)/|N s

i |, while agent j ∈ NC
i is chosen with

probability ρ/|NC
i |.

3. The opinion of i and j are updated as

xi(k + 1) = (1− q)xi(k) + qxj(k) (7.1a)

xj(k + 1) = qxi(k) + (1− q)xj(k), (7.1b)

while others remain the same.

The process above represents a random sequence of exchanges between a pair of coordi-

nators, a pair of followers, or a coordinator-follower pair. The exchange of opinions in

7.1 implements the same scheme from 2.8. Coordinators make it possible for different

groups to influence one another. The frequency of interactions between different groups

may increase or decrease depending on the value of ρ.

Similar to the other models introduced in this dissertation, the model for intergroup

interactions can also be compactly expressed as linear discrete-time system by introduc-

ing a time-varying matrix. Let M ij ∈ Rn×n be the random matrix based on the selected

pair of agents i and j at time k, and defined as

M ij = I − q(ei − ej)(ei − ej)T .

The proposed model can then be written as

x(k + 1) = M(k)x(k) (7.2)

whereM(k) = M ij . Since the communication between agents occur independently based

on a fixed probability distribution, then the sequence {M(k)}k≥0 is i.i.d. Additionally,

M ij1 = 1 and 1TM ij = 1T for any i, j ∈ V, hence M ij is always doubly stochastic.

From here, the first result can be stated.

Theorem 7.1. The model (7.2) converges almost surely to the limit

lim
k→∞

x(k) = x∗.
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where

x∗ =
1

n
11Tx(0). (7.3)

Proof. The sequence {M(k)}k≥0 is i.i.d, where each M(k) is a doubly stochastic matrix

with a positive diagonal. Since 0 < ρ < 1, for any pair i, j ∈ V, P[M(k) = M ij ] > 0,

which also implies E[Mij(k)] > 0. Note that G is strongly connected, thus E[M(k)] is

irreducible. Additionally, M(k) is doubly stochastic for any k, therefore E[M(k)] is also

doubly stochastic. By the Perron-Frobenius theorem, λn−1(E[M(k)]) < λn(E[M(k)]) =

1. Given the previous statements, the limit (7.3) can be reached based on the Theorem

3 in [41].

Theorem 7.1 shows that the model (7.2) can be interpreted as multiple groups coming

to an agreement through the presence of coordinators. In order to further understand

the effects of the frequency of interactions among groups, the expected dynamics of the

model (7.2) must be analyzed. This first done through the following lemma.

Lemma 7.2. Let x̄(k) = E[x(k)] and M̄ = E[M(k)] which is given by

M̄ = (1− α)W + αH,

where

W =
1

n− ρc

∑
i∈V

1

|N s
i |
∑
j∈N s

i

M ij − ρ
∑
i∈VC

1

|N s
i |
∑
j∈N s

i

M ij


H =

1

c

∑
i∈VC

1

|NC
i |

∑
j∈NC

i

M ij

α =
ρc

n
,

where W and H are doubly stochastic matrices. Then, the expected dynamics of the

model (7.2) is

x̄(k + 1) = M̄x̄(k). (7.4)
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Proof. The proof of this lemma can be obtained by direct computation

E[M(k)] =
1

n

∑
i∈V, i 6∈VC

1

|N s
i |
∑
j∈N s

i

M ij

+
1

n

∑
i∈VC

1− ρ
|N s

i |
∑
j∈N s

i

M ij +
ρ

|NC
i |

∑
j∈NC

i

M ij


=

1

n

∑
i∈V, i 6∈VC

1

|N s
i |
∑
j∈N s

i

M ij +
1

n

∑
i∈VC

1

|N s
i |
∑
j∈N s

i

M ij

− ρ

n

∑
i∈VC

1

|N s
i |
∑
j∈N s

i

M ij +
ρ

n

∑
i∈VC

1

|NC
i |

∑
j∈NC

i

M ij

=
1

n

∑
i∈V

1

|N s
i |
∑
j∈N s

i

M ij − ρ

n

∑
i∈VC

1

|N s
i |
∑
j∈N s

i

M ij

+
ρ

n

∑
i∈VC

1

|NC
i |

∑
j∈NC

i

M ij .

If α is defined as in the lemma, the third term becomes αH, where the non-negative

matrix H satisfies H1 = 1 and 1TH = 1T , which means H is doubly stochastic. The

first term

1

n

∑
i∈V

1

|N s
i |
∑
j∈N s

i

M ij = Ws

is doubly stochastic, and the second term can be rewritten as

ρ

n

∑
i∈VC

1

|N s
i |
∑
j∈N s

i

M ij = α

1

c

∑
i∈VC

1

|N s
i |
∑
j∈N s

i

M ij

 = αWC ,

where WC is also doubly stochastic. This means that (Ws − αWC)1 = (1 − α)1 and

1T (Ws − αWC) = (1 − α)1T hold true. Therefore, Ws − αWC can be represented as

(1−α)W , where W should be a doubly stochastic matrix. This completes the proof.

The dynamics (7.4) can be alternatively be viewed as a deterministic version of the

model (7.2) which describes the evolution of the opinions in a social network based on an

alternating sequence of intragroup and intergroup interactions. The matrix W defines

the interpersonal influence within members of the same group, which acts similarly as

the W matrix in the previous models but on a group level. The matrix H, on the other

hand, specifies how much the coordinators influence each other and enables opinions to

spread across groups.

The parameter α can be seen as a weight that determines the amount of outside

influence that a group is willing to accept per iteration. It can also be viewed as the
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frequency of interactions among coordinators, while 1−α is the frequency of intragroup

discussions. Since α is proportional to c, the number of coordinators is a significant factor

that affects the impact of groups on one another during each round of interactions.

Corollary 7.3. The expected dynamics (7.4) converges to the limit

lim
k→∞

x̄(k) = x̄∗

where

x̄∗ =
1

n
11Tx(0). (7.5)

Since the same limit (7.3) is always achieved in Theorem 7.1, Corollary 7.3 can be

directly obtained from (7.4). While (7.4) have the same limit as (7.2), it can be used to

analyze the eigenvalues of M̄ . This can give a better understanding of how the various

groups in G and the frequency of interactions among coordinators can affect the way

groups converge to the consensus.

Theorem 7.4. Suppose that the number of groups and the number of coordinators satisfy

the inequality m ≤ n− c+ 1. Then

max(1− α, α) ≤ λi(M̄) ≤ 1 i = n−m+ 1, . . . , n.

Proof. Since W , H, and M̄ , are stochastic, their dominant eigenvalues are equal to 1.

Note that W can be rearranged as

W =


W 1 0 · · · 0

0 W 2 . . . 0
...

...
. . .

...

0 0 · · · Wm


where each W s corresponds to agents of the same group, and H can be rearranged as

H =

[
HC 0

0 I

]

where HC contains only the agents in VC . It can be directly inferred that W and H have

m and n− c+1 dominant eigenvalues, respectively. Based on the eigenvalue inequalities

of the sum of two Hermitian matrices stated in Theorem 4.3.1 of [48],

λi−j+1((1− α)W ) + λj(αH) ≤ λi(M̄) ≤ 1 j = 1 . . . i
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for i = 1 . . . n. From here, Theorem 7.4 can be obtained.

The theorem above implies that, when α is sufficiently small, the expected dynamics

(7.4) has m eigenvalues that are close or equal to 1. This means that the number of

groups is an important indicator for describing how the opinions of the interconnected

groups converge to the consensus.

A special case of the model (7.2) is discussed in [49] where the groups are cliques,

meaning all the members are close to one another so each group is given by a complete

subgraph.

7.3 Numerical Examples

Consider a collection of 15 agents, whose initial opinions are given by

x(0) =
[

0.1937 0.4754 0.7152 0.2560 0.6766

0.7251 0.7382 0.1089 0.1012 0.8487

0.2705 0.6122 0.1337 0.3151 0.5430
]
.

The agents are organized into two different social networks, one with three groups con-

taining five members each (Figure 7.2a) and the other with five groups containing three

members each (Figure 7.2b). All groups in both networks contain one coordinator. For

the opinion updates, q = 0.6.

Figure 7.3 shows the resulting dynamics of the model on both networks when ρ =

0.30. In both examples, the opinions converge towards to the limit (7.3) that is the

average of the initial opinions, which confirms Theorem (7.1).

To demonstrate the effect of interaction frequencies with other groups, the expected

dynamics (7.4) is applied on the two given social networks using ρ = 0.15, rho = 0.30,

and rho = 0.45. These correspond to α values of 0.03, 0.06, and 0.09 for the social

network with three groups, and 0.05, 0.10, and 0.15 for the social network with five

groups. All of the results, shown in Figure 7.4 and 7.5, converge to the same consensus

but with varying rates and patterns. In the cases where α is small, it is easier to see the

evolution of opinions for each group since these opinions already approach one another

as they slowly reach the consensus. This illustrates the implication of Theorem 7.4,

where the m largest eigenvalues can signify the convergence behavior of each group’s
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(a) m = 3 (b) m = 5

Figure 7.2: Social networks with interconnected groups

opinions when α is significantly small. The corresponding eigenvalues of the given social

networks are shown in Figure 7.6, which emphasizes the characterization of the m largest

eigenvalues described in Theorem 7.4.

7.4 Summary

This chapter proposed a gossip-based model for achieving consensus in a social network

composed of interconnected groups. The members of each group are classified as either

coordinators or followers. The presence of coordinators enables groups to exchange

opinions, making it possible for the entire network to reach a consensus. The model

can be seen as a combination of intergroup and intragroup opinion dynamics. Aside

from allow groups to reach a consensus, analysis have shown that the number of groups

and the frequency of interactions between their members can influence the behavior by

which the group’s opinions converge to the consensus.
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(a) m = 3, ρ = 0.30

(b) m = 5, ρ = 0.30

Figure 7.3: Resulting dynamics
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(a) α = 0.03

(b) α = 0.06

(c) α = 0.09

Figure 7.4: Expected dynamics for the social network with m = 3
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(a) α = 0.05

(b) α = 0.10

(c) α = 0.15

Figure 7.5: Expected dynamics for the social network with m = 5
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(a) m = 3

(b) m = 5

Figure 7.6: Eigenvalues of the given social networks



Chapter 8

Conclusion

8.1 Summary

Modeling the opinion formation of social networks is a unique challenge in complex

systems. Compared to engineered systems, human behavior is hard to predict. Unlike

other problems in natural systems, whose properties can be accurately measured, opin-

ions are difficult to quantify. Despite these challenges, research on opinion dynamics is

an important endeavor since it can give us a better understanding of how our interac-

tions shape us individually and our society as a whole. And as we expand our capacity

to communicate and connect with others, the need to recognize how these affects us

becomes increasingly relevant.

Previous works on opinion dynamics enabled us to see how opinions propagate in

social networks from a broader perspective. While the representation of social actors

and their relationships are quite simple, such as in the case of agent-based models, this

approach makes it possible to test different scenarios that are difficult, if not impossible,

to duplicate in real-world settings. Now, there exist various models that demonstrate

how agreement can be reached or how individuals can have polarized views by using

processes that follow a similar intuition as how we exchange opinions. However, given

the tricky nature of capturing human behavior, there is always room for improvement

in these models.

In these dissertation, some of the limitations in earlier opinion dynamics models are

addressed. In particular, the objective is to alter the way interactions are represented

in these models in order to have a closer depiction of how information and sentiments

are conveyed in real-world settings. This was achieved by adapting and expanding the

gossip approach used by other models. The result is a set of models that can be used

for depicting various scenarios.

56
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Group gossiping portrays interactions in settings we normally encounter the same

group of people. While less flexible compared random group gossiping, it has shown

that having multiple sources of opinions affects the way social networks converge to a

consensus. Specifically, the evolution of opinions in group gossiping is more gradual

compared to pairwise gossiping.

Random group gossiping employs a more generalized scheme which permits varying

opinion sources every time an agent updates its opinion. While the steps involved in

pairwise gossiping are simpler and faster to execute, this approach depicts how humans

interact in day-to-day situations i.e. we talk to different people, whether individuals

or groups, at different times. When applied to the DeGroot model, consensus can be

achieved in the probabilistic sense depending on the structure of the network. Addi-

tionally, increasing the frequency of interactions between agents may help in attaining

consensus at a faster rate.

In the case of social networks with stubborn agents, random group gossiping results

to opinions that tend to oscillate. However, its expected dynamics and its time-averaged

opinions approach the same limit in the mean-square sense. The observation of this result

as a product of random group gossiping provides a new insight on the effects of stubborn

agents, especially on how they can cause disagreements.

The combination of bounded confidence and random group gossiping converges to

an opinion profile that reflects the clustering of individuals based on the similarity of

their opinions. Although this behavior is similar with other bounded confidence models,

the proposed model achieved this using a more realistic interaction scheme.

The gossip-based integroup model introduced in the previous chapter allows analysis

of opinion dynamics at a group level. Aside from describing a process for the groups to

reach consensus, it has been shown that number of groups and the frequency of inter-

actions between members of different groups can affect the way their opinions converge

to the consensus. Unlike the other models proposed in this study, this model uses pair-

wise gossiping. However, it can be extended by applying the schemes used in the other

proposed models.

While there are several opinion formation processes not covered by the five models

proposed in this dissertation, they addressed some of the most important themes in

opinions dynamics, namely: consensus, disagreement, stubborn agents, bounded con-

fidence, and randomized dynamics. Additionally, this dissertation has shown that the

convergence behavior of previous models can still be attained by applying the novel

interaction schemes described in this study.
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8.2 Future Works

The proposed models can still be modified to produce more realistic interactions. Ran-

dom group gossiping, in particular, can be extended such that there are multiple random

agents whose opinions will be updated each turn. For the intergroup model, the effects

of using more complex gossiping schemes can be explored. Additional analyses can also

be performed to further characterize the convergence properties of the proposed models.
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[46] M. Moussäıd, J.E. Kämmer, P.P. Analytis, and H. Neth. Social influence and the

collective dynamics of opinion formation. PLoS ONE, 8(11):e78433, 2013.

[47] F. Gargiulo and S. Huet. Opinion dynamics in a group-based society. Europhysics

Letters Association, 91(5):58004, 2010.

[48] R.A. Horn and C.R. Johnson. Matrix Analysis, 2nd Edition. Cambridge

University Press, 2012.

[49] E. Aguilar and Y. Fujisaki. Inter-clique influence networks. 52nd ISCIE

International Symposium on Stochastic Systems Theory and Its Applications,

2020.

[50] E. Aguilar and Y. Fujisaki. Opinion shift: An index for describing gossip

algorithms for opinion dynamics. SICE International Symposium on Control

Systems 2019, 2I2-4, 2019.


	List of Publications
	List of Figures
	1 Introduction
	1.1 Background
	1.2 Purpose and Contribution
	1.3 Organization
	1.4 Preliminaries

	2 Social Network, Opinion and Related Models
	2.1 Social Network
	2.2 Opinion
	2.3 Consensus Models
	2.4 Stubborn Agents
	2.5 Opinion Dynamics via Gossiping
	2.6 Bounded Confidence

	3 Opinion Dynamics via Gossiping with Group Interactions
	3.1 Overview
	3.2 Group Gossiping
	3.3 Numerical Examples
	3.4 Summary

	4 Gossip-Based Model with Probabilistic Group Interactions
	4.1 Overview
	4.2 Random Group Gossiping
	4.3 Numerical Examples
	4.4 Summary

	5 Random Group Gossiping with Stubborn Agents
	5.1 Overview
	5.2 Random Group Gossiping with Stubborn Agents
	5.3 Numerical Examples
	5.4 Summary

	6 Clustering of Opinions via Random Group Gossiping with Bounded Confidence
	6.1 Overview
	6.2 Random Group Gossiping with Bounded Confidence
	6.3 Numerical Examples
	6.4 Summary

	7 Reaching Consensus via Coordinated Groups
	7.1 Overview
	7.2 Gossip-Based Intergroup Model
	7.3 Numerical Examples
	7.4 Summary

	8 Conclusion
	8.1 Summary
	8.2 Future Works

	Bibliography

