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ABSTRACT 

Prioritization decisions using the Army Modernization and Analysis (AMA)-

developed Trade-Space Decision Exploration System (TRADES) does not address 

programmatic variance related to cost and schedule growth. This study offers an 

improved methodology for modeling cost risk by employing sound cost estimation 

principles, distribution fitting, Monte Carlo simulations, and cost/benefit analysis to assist 

strategic decision makers and the acquisitions community. To that end, this approach 

follows a five-step methodology that (1) collects and screens cost data from the Cost 

Assessment Database Enterprise (CADE), (2) determines normalized cost growth factors, 

(3) identifies and constructs the appropriate distributions for modeling, (4) simulates cost 

variance among the entire program portfolio, and (5) recommends the necessary 

contingency cash reserve quantity associated with a decision maker’s confidence level. 

The result is a credible, repeatable, and effectual cost estimating methodology that 

promotes commodity-based models for predicting cost growth and measuring risk.
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EXECUTIVE SUMMARY 

As history has proven, cost overrun in defense spending is nearly inescapable; 

therefore, risk management is a necessity. Currently, the AMA estimation approach 

captures cost data based on a deterministic approach that lacks consideration for inevitable 

cost and schedule overruns that plague more than 80% of defense industries (Smart 2021, 

xi). This thesis, however, proposes a methodology that captures financial risk associated 

with historical defense programs based on commodity or milestone. This research 

leverages a statistical approach to capture the probability of cost overrun based on historical 

CADE data to inform decision makers on program rankings and contingency cash reserve 

levels necessary to achieve a desired confidence level. 

The result is a quantifiable recommended cash reserve that supports the decision 

maker’s desired confidence level for maintaining cost and schedule objectives without 

sacrificing technical performance or operational effectiveness. Findings include program 

comparisons to identify the elements of the portfolios that contribute the most risk based 

on coefficients of variation. By mitigating subjectivity through data-driven distributions 

and improving foresight via Monte Carlo simulations, this thesis bridges the gap between 

specific program uncertainty and industry trends to develop an objective CE methodology 

that adequately informs investment decisions. 

This thesis employs an analytical approach to investigate how historical cost data 

can inform cost growth predictions based on commodity and nearest milestone. The 

process begins with gathering relevant historical CADE data before calculating each 

program’s cost growth factor (CGF). The CGF data leads to the construction of probability 

distributions used to model cost and schedule behaviors. Next, this study captures the 

uncertainty by leveraging Monte Carlo simulations to generate probability plots for total 

program costs. In doing so, this method can determine the appropriate cash reserve quantity 

necessary to meet a decision maker’s confidence level for staying underbudget. Analysis 

of variance tests provide the mechanism for testing the trends of variance between factors 

to identify the most effective method for predicting cost growth. Figure 1 demonstrates the 

overall process for determining these forecasted portfolio costs. 
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Figure 1. Thesis Methodology Process Flowchart 

Based on the statistical analysis performed in this study and throughout the 

proposed methodology, evidence supports the following insights and recommendations: 

• There is no statistical difference in mean CGF values between 

commodities, milestones, or their subsets. Therefore, a single benchmark 

CGF provides relatively rapid and effective cost growth insight when 

under time constraints. 

• The variance within programs provides insight into their inherent risk 

while coefficients of variation provide the metric for prioritizing risk 

levels between programs or portfolios. 

• Cost variance peaks in milestone B and specific commodities (rotary), 

therefore, analysts can counter the assumption that increased cost overrun 

before low-rate initial production (LRIP) does not necessarily imply that 

the program’s cost risk is escalating out of control. Further investigation 

into specific CSDR submissions can provide insight into the reasons for 

cost overrun. 

• Forecasting cost using the milestone approach requires subjective 

assumptions for determining event events of developmental programs 

(AMA). Consequently, this study recommends the commodity-focused 

cost estimating methodology since it promotes conservatism and 

objectivity. 
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• Analysis of historical CADE data reveals that the lognormal distribution is 

the best model for cost growth. When coupled with Monte Carlo 

simulation techniques, cost-prediction simulations provide a sound 

mechanism for translating confidence levels into contingency cash reserve 

quantities.  

• When “exceptional variation” (Smart 2021) is present in the simulated 

results for total portfolio cost, the recommended funding is at or above the 

80% confidence level, but an appropriate confidence level for funding can 

rest somewhere between 50% and 90% depending on risk tolerance and 

resource availability. This mitigates the risk of costly budget interruptions 

that hinder schedule and technical performance. 

Implementation of these recommendations would allow cost analysts to provide a 

structured approach to informing budget decisions and program prioritization. The 

simplicity of a single benchmark CGF value manages the expectations of senior leaders 

while analysts provide the due diligence that accounts for historical trends. Leveraging 

CADE data also reduces subjectivity while streamlining the estimating process since SME-

elicitation is unnecessary. Diversification of portfolios helps to mitigate the increased risk 

in particular commodities but relies on the ability to shift resources between programs. 

Lastly, modeling and simulation provides the means for quantifying the risk and 

unpredictability that is intrinsic to government contracting. Overall, cost growth is 

undeniable, so, cost estimators have an obligation to capture and communicate that truth to 

the relevant decision makers. The methodology outlined in this thesis drives current 

practice closer  toward the goal of accurate and precise cost prediction. 
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I. INTRODUCTION TO RESEARCH 

A. PURPOSE 

This thesis aims to develop a methodology that captures financial risk associated 

with defense programs based on commodity and milestone. Military leaders must exercise 

prudence when determining how to steward government resources  toward achieving 

operational effectiveness. Fundamentally, senior leaders weigh their decisions based on 

risk versus reward. This thesis focuses on the risk aspect of decision-making with emphasis 

on monetary investments in Army modernization programs. The Department of the Army 

relies on the newly established Army Futures Command (AFC) to prioritize and oversee 

the development of all modernization programs. Currently, AFC models consider risk and 

benefit based on a deterministic approach that lacks consideration for inevitable cost and 

schedule overruns that plague more than 80% of defense industries (Smart 2021, xi). This 

research leverages a statistical approach to capture the probability of cost overrun to inform 

decision makers on appropriate program rankings and contingency cash reserve levels 

necessary to achieve the desired operational effectiveness and meet budgetary constraints. 

B. PROBLEM BACKGROUND 

In the wake of the 2018 National Defense Strategy, military and civilian leadership 

established AFC to address modernization gaps due to an erosion of close combat 

capabilities relative to threats around the world. As a result, AFC began investing in eight 

cross-functional team (CFT) modernization programs to achieve strategic military 

advantage by 2035. This rapid change in organizational structure and investment strategy 

requires new a methodology for adequately understanding, analyzing, and informing 

program investments of the future.  

In preparation for potential budget constraints within the Department of Defense, 

AFC must accurately prioritize more than 80 modernization programs based on cost versus 

operational effectiveness. To accomplish the prioritization feat, AFC relies on a series of 

strategic research and analysis centers located throughout the continental United States; 

one of which resides at the Naval Postgraduate School (NPS). The Research and Analysis 



2 

Center (TRAC) in Monterey leverages the intellectual capital of faculty and students to 

achieve their mission of conducting “relevant and credible applied research  toward 

improving military operations analysis” (Wade 2020, under “Our Mission”).  

In support of AFC’s effort to establish program prioritization within the Army’s 

portfolio, TRAC-Monterey, in conjunction with their higher headquarters in Kansas, 

provides analytic evidence for establishing an integrated approach known as Army 

Modernization Analysis (AMA) (Luher et al. 2021). The AMA team recently designed an 

analytic tool for the AFC CG to rapidly assess the cross-portfolio effects of trades between 

programs with respect to the cost and operational benefit. TRAC refers to the resulting 

methodology to as the “Trade-Space Decision Exploration System” (TRADES) tool. The 

intent of TRADES is to inform investment decisions made by Army senior leaders (ASL) 

impacted by resource and time constraints by analyzing the changes to cost and operational 

benefit (Luher et al. 2021). 

Currently, prioritization decisions using the AMA-developed TRADES method 

does not address programmatic uncertainty associated with cost and schedule; it also 

provides a false sense of certainty based on deterministic modeling and point estimates. 

The ever-present uncertainty of defense contracting presents significant risk once military 

decision makers choose to invest in that specific program over another. In this case, the 

current prioritization model does not capture the risk associated with the probability of cost 

overrun. Furthermore, the TRADES tool does not include a reliable methodology for 

estimating the cost to cancel a program that considers industry, schedule, procurement, or 

Research, Development, Test, and Evaluation (RDT&E). This thesis provides a 

methodology for modeling cost and schedule-related risk to inform AFC’s prioritization 

efforts.  

The authoritative source of cost data is the Cost Assessment Data Enterprise 

(CADE) managed by the Office of the Secretary of Defense Cost Assessment and Program 

Evaluation (OSD CAPE) department. CADE’s mission is “to increase analyst productivity 

and effectiveness by collecting, organizing, and displaying data in an integrated single 

web-based application, improving data quality, and reporting compliance and source data 

transparency” (CADE 2020, under “About CADE”). The CADE website asserts itself to 
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being the single authority in providing joint source data that is accurate and easily 

researchable. It recently replaced and upgraded the original CAPE database named Defense 

Cost and Resource Center (DCARC).  

C. PROBLEM STATEMENT 

The Army Modernization Analysis (AMA) Team of The Research and Analysis 

Center (TRAC) requires an estimation methodology for total program cost that considers 

schedule risk to inform modernization decisions relevant to the Army Futures Command 

(AFC). 

D. THESIS OBJECTIVES AND DELIVERABLE 

This thesis employs an analytical approach to investigate how historical cost data 

can improve cost estimation methodology. The study incorporates quantitative analyses, 

which include computational statistical methods of analysis. The overall research will 

address the following objectives: 

1. Construct distributions for total program cost based on historical industry 

and technology maturation data. 

2. Leverage Monte Carlo simulations to capture variance and confidence 

levels associated with cost by industry. 

3. Offer data-driven information during program selection. 

4. Support development of cost positions in the context of operational 

effectiveness. 

The ultimate deliverable of this research and analysis is an improved methodology 

for modeling cost risk. This study includes a proof-of-concept that compares the model’s 

results with historical programmatic cost data as a means of cross-validation. The intent is 

to employ the lessons learned from this study when providing future recommendations to 

the commander of AFC. 
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E. THESIS SCOPE, LIMITATIONS, AND ASSUMPTIONS 

To develop a holistic understanding of data trends, this study scopes the problem 

by focusing on Army programmatic commodities relative to their nearest acquisition 

milestone. The three commodities included in this study are (1) vehicles, (2) rotary 

systems, and (3) C3I (command, control, communication, and intelligence) programs. 

Scoping the research to three specific platforms allows this study to concentrate on insights 

related to developing a repeatable methodology for capturing cost and schedule risk. 

This thesis will limit the cost data to that which comes from the CADE website. 

The historical data for each corresponding program comes from the Cost Assessment Data 

Enterprise system maintained by the Office of the Secretary of Defense Cost Assessment 

and Program Evaluation (OSD CAPE) directorate. Within the CADE database resides two 

repositories. The first database includes detailed cost data on every line-item within a single 

program while the second captures macro-level summary data for an entire program. This 

study will focus on the latter for consistency since TRAC-provided cost data only includes 

top-level metrics.  

Additionally, the CADE database only captures cost data for programs that satisfy 

the criteria for major defense acquisition programs (MDAP) and Acquisition Category 

Level-I (ACAT-I). Government officials classify programs as MDAP or ACAT-I based on 

a cost threshold or congressional oversight requirements. Fortunately, cost variation based 

on program size is relatively consistent across the spectrum but reporting requirements due 

to congressional oversight typically correlate with programs that suffer from severe cost 

overrun (Smart 2020). This dynamic thereby introduces the potential to overestimate cost 

growth thereby leading to a more conservative estimate when applying the approach 

proposed by this research. 

According to TRAC-AMA, the Army G-8 and AFC directorate are responsible for 

drafting cost and schedule data connected to each of the modernization programs (Luher 

et al. 2021). However, these cost estimates only consider equipping costs and do not 

include sustainment and personnel costs, since the AFC commander’s authority only 
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extends to equipping. As such, this study chose historic programs that shared similar cost 

estimates.  

The following assumptions apply to this thesis: 

1. AMA-provided data reflects point estimates from Contractor Cost Data 

Reports (CCDR). 

2. All AMA modernization programs are developmental technology despite 

whether they are improvements to legacy systems. 

3. AMA-provided cost data reflects then-years dollars based on a universal 

inflation rate. 

4. Programs that transitioned/restructured before reaching low-rate initial 

production (LRIP) are inadmissible due to their falsely perceived cost-

savings. 

5. Selected acquisition reports (SAR) that fall within six months of a 

milestone event are redundant and therefore excused from analysis. 

6. The earliest SAR acts as the milestone A (MS-A) report since many 

programs are not required to submit a SAR until MS-B. 

F. OVERVIEW OF LITERATURE REVIEW 

To comprehend the existence and magnitude of cost and schedule risk, one must 

understand the factors that lead to overspending. Figure 2 illustrates the many internal and 

external contributors that lead to cost and schedule overrun based on the literature review 

of project risk management experts. Highlighted at the end of each vector, there are 

common problematic categories listed in bold with the corresponding programmatic risk 

factors annotated in the parentheses. The tags along each diagonal of the fishbone diagram 

in Figure 2 illustrate additional contributors within that category. For example, Christian 

Smart, author of Solving for Project Risk Management, emphasizes the Department of 

Defense’s frivolous tendency to consider funding as “money assigned is money spent” 

(MAIMS), which becomes a mechanism (highlighted in orange) for overspending. 

Additionally, he asserts that the defense acquisition environment (mother nature) typically 
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follows Parkinson’s Law which states that “work expands to fill the time available,” and 

Hofstadter’s Law: “It always takes longer than you expect, even when you take into 

account Hofstadter’s Law” (Smart 2021, 9). As a result, over 80% of defense programs 

suffer from cost and schedule overrun (2021). This thesis will primarily focus on the 

“method” and “measurement” aspects of the fishbone diagram in Figure 2. 

 
Figure 2. Fishbone Diagram: Causes of Cost and Schedule Overrun 

G. DEFINITIONS 

The Joint Agency Cost Schedule and Risk Uncertainty Handbook (CSRUH) defines 

risk, opportunity, and uncertainty in the following terms: 

• Risk is the probability of a loss or injury. 
• Opportunity is a favorable event or outcome. 
• Uncertainty is the indefiniteness about the outcome of a situation. 

(Department of Defense [DOD] and National Aeronautics and Space 
Administration [NASA] 2014) 

Figure 3 illustrates the context of each variable with respect to cost estimation. 
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Figure 3. Risk, Opportunity, and Uncertainty in the Context of Cost 

Estimation. Source: DOD and NASA (2014). 

H. OVERVIEW OF METHODOLOGY 

The methodology for accomplishing the research objectives relies on gathering 

historical data from the military’s Cost Assessment Data Enterprise (CADE) database; this 

data leads to the construction of probability distributions that will serve as models for cost 

and schedule behaviors based on the specific commodity and nearest milestone. Next, this 

study captures the uncertainty associated with total program cost by leveraging Monte 

Carlo simulations. The subsequent output provides the data for determining cash reserve 

levels necessary to meet a decision maker’s confidence levels. Analysis of variance tests 

provide the mechanism for testing the trends of variance between factors to identify the 

most effective method for predicting cost growth. The probability of cost overrun serves 

as a metric for capturing potential risk; these inferences then inform program prioritization 

when compared with TRAC’s assessed operational effectiveness.  

This study leverages multiple simulation software platforms found within Excel to 

verify cost modeling efforts. Using a subsection of the historical data from CADE, the k-

fold cross-validation technique acts as the primary mechanism for validating the improved 

methodology. 

I. BENEFITS OF THESIS 

The benefit of this work provides strategic decision makers and the acquisitions 

community a means to incorporate historically based confidence levels in cost estimation. 

Analyzing the historical data of past and present Department of Defense programs can 

provide invaluable insight into the cost-spirals that torment budgeting and prioritizing 
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efforts across all branches of service. Too often, decision makers rely on point estimates 

developed by biased organizations that fail to capture the cost and schedule risk inherent 

to defense contracting.  

This study provides a repeatable methodology using any pool of historical data to 

conceptualize cost trends across industries, focus risk mitigation efforts, and prepare for 

future investments that maximize operational effectiveness. The resulting benefit is a 

comprehensive, credible, and well-documented method for articulating the risk associated 

with acquisition-related decisions (Mislick and Nussbaum 2015).  

The findings of this thesis can lend more credibility to the systems engineering (SE) 

enterprise by employing sound statistical analysis and modeling to mitigate risk and 

promote the qualitative aspect of a systems engineering approach. Capturing cost and 

schedule-related risk is one of the greatest challenges in SE; it is often ill-defined within 

reports, yet it represents a major component of decision analysis. In the realm of resource 

constraints, cost and schedule risk is frequently underappreciated and ignored when 

compared to technical risk (Smart 2020). By replicating the methodology presented in this 

work, systems engineers can improve their understanding of risk mitigation efforts related 

to cost estimates. 

J. ORGANIZATION OF THESIS 

This thesis follows the Naval Postgraduate School’s Systems Engineering 

department writing guide for research work. As such, and to provide context to the 

problem, Chapter II provides a literature review of relevant and credible sources on the 

topics of cost estimation, program management, cost and schedule risk, Monte Carlo 

simulation, and methodology development for risk-informed analysis in acquisition. 

Chapter III highlights the methodology, process, and conditions for determining cost and 

schedule risk using simulations configured with distributions developed from CADE’s 

historical data. Chapter IV employs the methodology, validates the model, and analyzes 

the data against AMA’s estimates to develop findings. Lastly, Chapter V presents insights 

and meaning to the analytical work while highlighting unaddressed areas and topics for 

future research.  
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II. THEORETICAL FRAMEWORK AND LITERATURE 
REVIEW 

This literature review covers four thematic topics that discuss relevant and credible 

research on modeling program risk. The four themes include (1) understanding cost and 

schedule risk, (2) risk analysis methodologies, (3) risk modeling and simulation, and (4) 

Army Modernization Analysis (AMA). The first three themes cover existing studies while 

the fourth encompasses how this thesis introduces new insights on programmatic and 

portfolio risk based on the parametric relationships between commodity and acquisition 

milestone events. Each section identifies how existing literature contributes to the thesis 

objectives outlined in Chapter I. 

A. UNDERSTANDING COST AND SCHEDULE RISK 

This section of the literature review starts by emphasizing the inevitable truth of 

cost and schedule overrun that plagues the government contracting industry. Areas of focus 

include (1) the need for risk management and (2) the ability to integrate cost and schedule 

risk.  

1. The Need for Risk Management 

In support of his recent book on program risk management, Christian Smart (2021) 

analyzed the total cost of 289 Department of Defense and NASA programs before 

concluding that the average cost growth equaled 52%. In addition, the proportion of 

programs that experienced cost overruns exceeded 80% with more than 90% of them 

experiencing schedule delays. Even from the opposite perspective, former Lockheed 

Martin CEO, Norman Augustine, corroborated Smart’s (2021) findings in what he called 

the “Las Vegas Factor of Development Program Planning” where he claimed that the 

average increase for cost of development programs was also 52%.  

As a result of cost overrun, program managers often sacrifice technical performance 

to maintain budget integrity which inherently degrades the combat effectiveness of military 

organizations once those systems arrive at the user level. One of the most effective ways 

of mitigating cost overrun is to simply focus on efforts for holding contractors accountable 
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through good business practices. Yet, all too often, managers tend to focus their attention 

on cost savings opportunities rather than managing and mitigating the overwhelming cost 

consequences that plague more than 80% of defense programs (Smart 2021). By 

recognizing, measuring, and planning for cost-related risks, leaders can better ensure 

program success and thereby improve military modernization efforts. 

Although Smart presents some compelling statistics on overall cost growth, his 

analysis concludes at the macro-level of insight by only delineating between major 

industries such as NASA, DOD, and civil engineering programs. This thesis, however, 

identifies program specific cost risk based on parametric attributes involving commodity 

and milestone events. The net benefit is a more useful tool for understanding, budgeting, 

and selecting programs based on risk tolerances of the decision maker. This effort coincides 

with the third research objective of this thesis: offer data-driven information during 

program selection. 

2. Integrating Schedule Risk 

During the 2002 INCOSE International Symposium, authors David Hulett and Bill 

Campbell composed an article on how to model cost and schedule risk in a single Monte 

Carlo Simulation. Their model presents a compelling method for introducing schedule risk 

when modeling cost while providing insight into how industries create risk based on the 

triple constraints of project management: cost, schedule, and performance. Figure 4 

provides an illustration of the combined effects of cost and schedule growth versus the 

initial estimate at completion (EAC). As seen, the mean of the cumulative distribution for 

total project cost is substantially higher when compounding both cost and schedule risk, 

thus revealing the danger of underestimation should cost be the only factor of project risk 

analysis (Hulett and Campbell 2002). 
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Figure 4. Cost and Schedule Risk Elements Combined. 

Source: Hulett and Campbell (2002). 

Hulett and Campbell’s work highlights the importance of separating independent 

costs and variable costs when modeling cost risk and addresses the concept of a 

“contingency reserve” used by project cost estimators. Their research emphasizes the need 

to analyze project variance to inform estimators rather than relying on the historic 

percentage-based engineering practices. The result is a single cost-based model that 

incorporates schedule delays using cost-per-unit of time to determine the probability 

distribution of total project cost. This thesis leverages a similar approach for determining 

the probability of cost overrun based on cost-integrated schedule delays. Additionally, the 

concept of “contingency cash reserves” echoes Smart’s recommendation for providing 

quantifiable risk management measures. Chapters IV and V of this study apply the insights 

of Smart, Hulett, and Campbell to address the programmatic and portfolio risk associated 

with current Army modernization programs. 

B. RISK ANALYSIS METHODOLOGIES 

This section of the literature review addresses the past and present attempts to 

measure, quantify, and respond to the seemingly inexorable reality of cost overrun. Areas 
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of focus include (1) the qualitative and quantitative approach to risk management, (2) the 

pitfall of integrating expert advice, and (3) RAND’s systems approach to capturing risk 

from 2015. 

1. Qualitative and Quantitative Approach 

Author K. Kansala (1997) is a principal consultant with the Nokia Research Center 

and subject matter expert on software cost estimation. In his article titled “Integrating Risk 

Assessment with Cost Estimation,” Kansala presents a tool that draws from “questionnaires 

and project history to help calculate project risk contingencies” in the software industry 

(1997, 61). Kansala’s method provides an exhaustive approach to dissecting quantifiable 

risk activities based on probability, magnitude, and outcome based on qualitative and 

quantitative responses from industry experts. However, the author admits that his method 

is subjective due to its dependency on input probabilities. Figure 5 illustrates the method 

by which Kansala elicits qualitative (subjective) responses in the bolded “definition of 

probability” section before determining the quantitative magnitude of impact values in the 

shaded “analysis” section along the top of the graphic. 

 
Figure 5. Risk Analysis Input Screen. Source: Kansala (1997). 
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Ultimately, Kansala’s research illuminates the need to derive generally accepted 

industry standards on probability distributions for cost variance based on historical data 

rather than subject matter expert (SME) advice which can often include heuristic bias. This 

motive supports the first objective of this thesis: construct distributions for total program 

cost based on historical data. In doing so, it is possible to reduce potential biases and 

provide objective recommendations to the decision-maker at hand. 

2. Integrating Expert Advice 

Frederick W. Raymond (1999) is a retired government service employee with 30 

years of experience in spacecraft acquisition and procurement management. His article 

titled “Quantify Risk to Manage Cost and Schedule” provides a process-oriented method 

to risk management that leverages quantifiable expert judgment for developing relevant 

triangular distributions that model risk uncertainty (1999). Raymond’s research highlights 

the dichotomy of expert advice being the “crux” of analysis but also the weakest focus on 

the risk management process. Although dated, Raymond demonstrates a traditional method 

for creating a triangular distribution using the minimum, most likely, and maximum 

expected costs based on expert advice. Figure 6 illustrates the basic structure of the 

triangular distribution method. 

 
Figure 6. Risk Uncertainty for Cost or Duration. Source: Raymond (1999). 
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Raymond attempts to mitigate potential bias by statistically quantifying risk factor 

multipliers associated with categorical levels of overall program risk (low, moderate, high, 

and very high). He then uses the multipliers to modify the expert’s estimated best-case 

scenario to determine the apexes of the triangular distribution. Table 1 depicts the proposed 

cost risk factor multipliers developed by Raymond based on his extensive experience in 

project management, evaluation, and estimation. The minimum cost factor multiplier for 

all programs regardless of risk level is the initial point estimate, therefore, the table 

indicates a multiplier of one. The subsequent factors (most likely and maximum) increase 

in value to represent the increased cost overrun as the risk level rises. 

Table 1. Risk Factor Multipliers for Developing Triangular Distribution. 
Source: Raymond (1999). 

 
 

Of note, the factors express exponential growth as risk or variance increase in 

magnitude. Figure 7 illustrates the multiplier growth over the spectrum of risk from low to 

very high (not to exact scale). The lightly shaded area represents the “most likely” factor 

while the dark area illustrates the maximum cost multiplier for each category of risk. 

Raymond’s concept of risk growth relates with this study’s focus on the relationship 

between technology maturity and cost variance.  



15 

 
Figure 7. Graphical Representation of Risk Factors. Source: Raymond 

(1999). 

However, the author admits that the risk factor multipliers merely provide an 

interim example that requires further investigation into historical data before publishing an 

industry-wide standard. Raymond’s research emphasizes the need to analyze large-scale 

data that was once inaccessible. Fortunately, the newly established CADE database that 

this thesis leverages provides a unique opportunity to exploit industry-wide cost data  

toward developing a generally accepted solution for new risk factor multipliers based on 

historical data. 

3. RAND Corporation Methodology Example 

In a more recent study, the RAND Corporation conducted a comprehensive 

research project titled, Developing a Methodology for Risk-Informed Trade-Space Analysis 

in Acquisition to create a risk assessment tool that captures the quantifiable uncertainty 

associated with cost, schedule, and performance trade-offs (Bond et al. 2015). RAND 

achieved its objective by dissecting each program into key technological (KT) components 

before assigning stochastic properties to each based on SME-elicited times, costs, and 

performance values. In conjunction with the U.S. Army Material Systems Analysis 

Activity (AMSAA) Risk Team, the RAND Corporation published a 162-page report on 

how and why the new methodology could illuminate the consequences of cost, schedule, 
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and performance trade-offs. The following 10 items summarize RAND’s sequential steps 

for developing a program’s risk profile: 

1. Identify critical technology within each alternative. 

2. Determine a schedule for each KT component. 

3. Determine the consequence for failed KT. 

4. Choose a critical path that mitigates KT consequences. 

5. Define the cost-schedule relationship. 

6. Draw a stochastic schedule date for each KT component. 

7. Calculate a schedule estimate by aggregating schedule dates. 

8. Calculate a performance estimate by aggregating consequences. 

9. Calculate a cost estimate by aggregating KT costs associated with delivery 

dates. 

10. Obtain distributions for cost, schedule, and performance. 

Interestingly, much like the examples before, the RAND methodology also relies 

on expert opinion rather than quantifiable evidence. Their report highlights the fact that all 

their risk workshop data was based on subjective judgments from SMEs that “cannot be 

validated, nor have experts been calibrated to ensure some stability or realism in their 

opinions” (2015, 82). Moreover, the RAND Excel-based model proved to be hardcoded 

for triangular distributions powered only by the SME-elicited data. As a recommendation 

for further research, RAND suggests the development of distributions built from historical 

data (thesis objective #1). Their report leaves the reader with a desire to investigate the 

benefit of leveraging new and quantifiably based distributions for modeling cost and 

schedule growth. 

C. RISK MODELING AND SIMULATION 

This section of the literature review concentrates the research into the critical 

factors of modeling cost variance (risk). Key points of emphasis speak to (1) the need to 
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identify realistic probability distributions, (2) the importance of accurate cost estimation 

techniques, and (3) the value of Monte Carlo simulations. 

1. Probability Distributions 

Although the triangular distribution is most common when modeling risk, there 

exists counter arguments in its ability to capture realistic activity costs or durations. By 

nature of its design, the triangular distribution terminates at its farthest endpoints and 

therefore fails to capture the extreme outliers and variance that sporadically occur. As such, 

it is incapable of forecasting rare occurrences like the Joint Strike Fighter (JSF) program 

where actual cost doubled the original estimate. Unless the program is definitively bounded 

against a cost ceiling, using the triangular distribution (Figure 6) will often underestimate 

risk (Smart 2021). 

Furthermore, the linear shape of the triangular spread supports an overemphasis on 

the tails of the distribution while neglecting to capture the full probability for values around 

the most likely scenario (Kuhl et al. 2009). In an article written by several esteemed 

professors across multiple engineering disciplines titled, “Introduction to Modeling and 

Generating Probabilistic Input Processes for Simulation,” the authors (Kuhl et al. 2009) 

suggest the use of the Beta distribution in lieu of the triangular. They argue that the natural 

curve of the Beta distribution is more like the Gaussian distribution and therefore better 

represents the realistic phenomenon of random activities. As seen in Figure 8 the Beta 

distribution maintains a finite lower bound at zero while infinitely extending to the right to 

capture the unlikely chance that a program more than doubles in cost. Estimators can 

modify the distribution shape through scaling to best represent a program’s cost behavior. 

Kuhl and his colleagues (2009) developed a mechanism known as the Visual Interactive 

Beta Estimation System (VIBES) to manually fit beta distributions using sliding scales. 
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Figure 8. Probability Density Function of Beta Distribution. Source: 

Hanook et al. (2013). 

In 2014, senior representatives from every branch of service and the National 

Aeronautics and Space Administration (NASA) convened to develop the Joint Agency Cost 

Schedule Risk and Uncertainty Handbook (CSRUH). The intent was to promulgate the best 

practices for establishing a “systematic, structured, repeatable and defendable process for 

delivering comprehensive estimates to Government leadership to get the best possible 

capability with increasingly limited available resources” (DOD and NASA 2014, ii). 

Experts included the Deputies Assistant to the Departments of Army, Air Force, Navy, 

NASA, and Christian Smart from the Missile Defense Agency. After studying every 

relevant distribution associated with cost growth, they concluded that the lognormal 

distribution (Figure 9) dominated all others in terms of frequency used for cost estimating. 
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Figure 9. Lognormal Distribution Probability Density Functions. Source: 

Blanchard and Fabrycky (2011). 

Nonetheless, the most appropriate distribution depends upon the application and 

the data that is available. Rather than choose one method, this thesis will consider all 

distributions relevant to uncertainty and decide based on goodness-of-fit tests. To promote 

consistency of program estimates, the CSRUH outlines the most effective uncertainty 

distributions and their typical applications and parameters in Table 2. 
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Table 2. CSRUH Recommended Uncertainty Distributions. 
Source: DOD and NASA (2014). 

 
 

When determining the goodness-of-fit, the CSRUH recommends using the 

following: Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), and Chi-Squared 

(Chi^2) (DOD and NASA 2014). Furthermore, when comparing the fitted distributions, 

the CSRUH notes the value in employing the Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) to compare the relative goodness-of-fit levels for 

each distribution. By combining quantifiable measures with recent historical data, this 

thesis provides just what the CSRUH recommends: realistic and objective cost estimates 

that capture uncertainty in a way that informs the decision maker (DOD and NASA 2014). 

2. Cost Estimation 

Professors Mislick and Nussbaum serve as NPS faculty and specialize in life-cycle 

cost estimating and modeling for government programs. In their book titled Cost 

Estimation: Methods and Tools, they provide a structured approach to cost estimation (CE) 

in what seems to be a very ubiquitous environment. Chapter 4 (“Data Sources”) led this 
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study’s data collection efforts to the Cost Assessment Data Enterprise (CADE) to find the 

most relevant and exhaustive programmatic data; Chapter 5 (“Data Normalization”) 

provides the standard on how to prepare the sponsor-provided data for analysis regarding 

inflation; Chapter 16 (“Cost Benefit Analysis and Risk Uncertainty”) introduces a powerful 

risk tool/software but does not cover its employment in detail. As such, this study explores 

alternate software platforms that are more widely available to the DOD community. In this 

case, Microsoft Excel will serve as the primary platform and the Risk Simulator add-in 

from Real Options Valuation, Inc. acts as a means for building the visual products. 

3. Excel-based Monte Carlo Simulations 

Mun is the founder, chairman, and CEO of Real Options Valuation, Inc. (ROV). 

He is the creator of several powerful software tools used to manage risk (Mun 2015). Mun’s 

book titled Readings in Certified Quantitative Risk Management provides detailed 

instructions on how to use the Risk Simulator Excel add-in for running Monte Carlo 

simulations. The software associated with Mun’s book provides a powerful tool for 

leveraging ready-built probability distributions when modeling cost and schedule risk. 

Additionally, Risk Simulator provides the powerful and interactive visual products found 

throughout Chapter III and IV of this report. 

D. THESIS FOCUS: PROGRAMMATIC RISK ANALYSIS 

As history proves, cost overrun in defense spending is nearly inescapable; therefore, 

risk management is a necessity. Unfortunately, the previous results of cost-risk analysis 

provide perishable insights in the world of evolving technology and organizations. Most of 

the relevant prior work on the subject is nearing a decade old or too specific to apply to 

strategic-level decisions within AMA. Thankfully, many of their techniques are repeatable 

and compatible for building a novel methodology for capturing risk. To achieve that end, 

this thesis analyzes more than just individual programs, but also the overall portfolio risk 

related to TRAC-provided scenarios. The holistic measure of portfolio risk also serves as 

a metric for comparing the assessed operational impacts of selecting programs. The result 

is a quantifiable recommended cash reserve that supports the decision maker’s desired 

confidence level for maintaining cost and schedule objectives without sacrificing technical 
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performance or operational effectiveness. Finally, the results include program comparisons 

to identify the elements of the portfolios that contribute the most risk and thus aide in the 

prioritization effort. By mitigating subjectivity through data-driven distributions and 

improving foresight via Monte Carlo simulations, this thesis bridges the gap between 

specific program uncertainty and industry trends to develop an objective CE methodology 

that adequately informs investment decisions. 
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III. METHODOLOGY AND DATA PRESENTATION 

To achieve the research objectives outlined in Chapter I, this thesis follows a five-

step methodology: (1) data mining, (2) normalization, (3) distribution construction, (4) 

simulation, and (5) analysis and context of cost positions.  

Figure 10 demonstrates the process by which the methodology follows for 

achieving the desired outcome of generating new cost variance benchmarks for acquisition 

programs based on commodity and milestone. 

 
Figure 10. Thesis Methodology Process Flowchart 

A. DATA MINING AND SCREENING 

The process of data mining isolates the appropriate set of cost data that fits the 

conditions of this study. In this case, the research focuses on current and legacy U.S. Army 

acquisition programs that meet MDAP and ACAT-I requirements. Individual data points 

include each milestone report for prime and subcontractor programs while avoiding those 

that overlap.  

This thesis relies on historical data from the Cost Assessment Data Enterprise 

(CADE) managed by the Office of the Secretary of Defense Cost Assessment and Program 

Evaluation (OSD CAPE). Before 2018, cost analysts had to scour dozens of individual 

service-managed databases to consolidate, organize, and analyze acquisition-related cost 

reports. With the launch of CADE’s online cloud-based portal in December of 2018, 

authorized DOD officials can now query raw data, download detailed reports, submit 
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contractor data, and perform rough analytics on a joint web-based application (CADE 

2021). Military leaders in supervisory roles can grant DOD analysts access to CADE upon 

submission of a company-to-company nondisclosure agreement. Figure 11 illustrates the 

collective intent of CADE by consolidating cost platforms into an effective and easily 

searchable database.  

 
Figure 11. Consolidation of Cost Data Platforms into CADE 

The result is a significant decrease in the time spent on collecting and validating 

cost data. Therefore, estimators and researchers can quickly gather relevant and credible 

data from total program costs down to individual line-item estimates within the work 

breakdown structure (WBS) of major acquisition contracts. 

The CADE portal hosts two main repositories of vetted reports while also providing 

crosstalk with endorsing organizations within each of the sister services. The Cost and 

Software Data Reporting (CSDR) interface presents detailed data reports on every major 

defense acquisition program (MDAP) and Acquisition Category (ACAT) I contract. 

Figure 12 depicts the browsing criteria and filtering functions built within the CSDR 

database. As seen in the bottom left of the figure, there are over 39,000 submissions and 

nearly 10,000 contractor cost data reports (CCDR) available for download. 
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Figure 12. CADE Cost and Software Data Reporting Interface. 

Source: CADE 2021. 

While the scrupulous nature of the CSDR database provides a mechanism for 

investigating individual programs, the Selected Acquisition Report (SAR) interface 

focuses on the comprehensive programmatic summary records and therefore provides the 

most effective means for collecting the data for this study. Figure 13 highlights the SAR 

interface for reviewing program level metrics organized by report type, service, and date 

range.  

 
Figure 13. CADE Selected Acquisition Report (SAR) Interface. 

Source: CADE 2021. 

The selected acquisition report provides the benefit of reviewing consolidated bulk 

data whereas the CSDR database separates all subcontracts from their prime program, 
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thereby possibly introducing potential errors due to double counting. As noted in the far-

right dropdown menu in Figure 13, the available report types include “current and baseline” 

estimates. By choosing this option, the output Excel file generates an organized table that 

presents available SAR data in “base year” dollars (BY$) depending on the start date of 

the contract.  

Table 3. Current and Baseline Bulk SAR Data Snapshot. 
Adapted from NASA and DOD (2021). 

 
 

Using Excel’s filter function, the analyst sorts the data to isolate one service (i.e., 

Army), remove redundant data points (annual/quarterly SAR reports between milestones), 

and filter out incomplete reports. Often, developmental programs do not include current 

estimates due to their infancy while some mature programs lack baseline estimates due to 

their smaller initial size. This is because only those contracts that meet the acquisition 

thresholds for ACAT I or MDAP must submit routine SAR data. The following list 

describes the five-step screening process for identifying the data that acts as the foundation 

of this study’s analysis: 

1. Remove items that lack baseline estimates by unchecking “(blanks)” in 

“Baseline Total $” column of the Excel spreadsheet. This is most often a 

result of smaller programs escalating to the ACAT-I or MDAP tier after 

their inception, thereby introducing a new requirement to submit SAR 

data. Programs that lack baseline data cannot return comparable cost 

growth factors without an initial cost estimate. This step reveals a full 
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report of data capable of CGF comparison and reduces the total number of 

reports from 4,451 to 2,158. 

2. Remove interim and erroneous SAR reports to avoid redundancy and 

unintended weighting of longer duration programs by unchecking 

“(blanks)” in the “Context Tags” column of the Excel spreadsheet. CADE 

analysts add “Context Tags” to every line item upon entry of SAR data to 

indicate the reports status in relation to acquisition milestones (A, B, or 

C). In addition, CADE annotates whether the report is the earliest or latest 

SAR for that program. This step reveals only the major event reports 

associated with earliest/latest estimates and milestones A, B, and C in the 

acquisition life cycle thereby reducing the number of reports from 2,158 to 

389. 

3. Remove the “latest representative SAR” of terminated and transitioned 

programs to prevent unwarranted skewness in the data. This is a two-step 

process. First, one must filter out all programs other than those labeled as 

“terminated” in the “Status” column of the spreadsheet. Then, the analyst 

must filter by “context tag” to reveal the latest representative SAR” before 

manually removing or striking the remaining line items. This process 

repeats itself for programs classified as “transitioned/restructured.” The 

premature ending of programs reflects an inadmissible cost savings since 

they do not deliver the intended operational benefit and therefore become 

an overall cost burden. This step reveals complete estimates for programs 

that are active, operational, transitioned, fully-developed or terminated, 

and thereby reduces the data pool from 389 to 377. 

4. Scope the remaining data by commodity to generate a dataset that captures 

the three commodities of interest (C3I, Ground Vehicles, and Rotary Wing 

Aircraft). During this step, the analyst must scrub related commodity types 

to maximize sample size. For instance, the Joint Light Tactical Vehicle 

(JLTV) falls within the “Ground Combat” category but can certainly relate 
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to ground vehicle interest as well. In this case, each commodity of interest 

includes two listed categories:  

• C3I = (“C3I”) + (“Aircraft C3I”) = 44 reports 

• Rotary = (“Helicopter”) + (“Helicopter System”) = 41 reports 

• Vehicle = (“Ground Vic”) + (“Transport Vic”) = 17 reports 

5. Scope the remaining data by milestone to reveal the final subsets required 

for analysis. In the end, there are 102 relevant reports. 

B. NORMALIZATION OF DATA 

Before this study can build simulations and conduct statistical analysis, the process 

must account for variations across programs to achieve consistent and comparable metrics 

(Mislick and Nussbaum 2015). This thesis concentrates on cost growth factors (CGF) that 

are indifferent of base year (BY) or inflation by calculating comparable ratios for each 

respective data point. As seen in the shaded area on the right of Table 3 in the previous 

section, the “current total” divided by the “baseline total” reveals the respective CGF 

values. 

Fortunately, the availability of consistent base year (BY) metrics between programs 

within the CADE data satisfies the need to normalize against inflation indices. Several cost 

estimating experts proved this point in the 2012 International Cost Estimating and Analysis 

Association (ICEAA) symposium as part of their effort to update S-curve CE benchmarks 

using CGF from SAR data (Lee et al. 2012). Figure 14 outlines the simplicity of using BY 

estimates considering the ineffectual nature of inflation indices.  



29 

 
Figure 14. Proof of Invariance of Cost Growth Using Base Year Estimates. 

Source: Lee et al. 2012. 

To ensure consistency and accuracy across four decades of historical records, 

CADE analysts add “context tags” (column five of Table 3) to each line item to ensure 

uniformity between reports based on changes to programmatic reporting requirements. For 

instance, reports submitted prior to 2001 followed numerical milestones while newer 

reports reflect the alphabetical milestones familiar to today’s acquisition community. This 

effort greatly improves the ability for this study to analyze variance between milestones 

considering the tradeoff between uncertainty and known costs as the program matures 

throughout the system life cycle. Figure15 illustrates the ever-changing methods of cost 

estimation as programs evolve overlaid with the phases of technology maturation running 

along the top of the illustration. Along the bottom of the figure, one can see the decreasing 

uncertainty as estimate fidelity improves and contractors report their actual expenses. 

Chapter IV of this thesis will analyze the differences in cost variance between milestones. 
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Figure 15. Estimating Methodologies Overlaid with System Life Cycle. 

Source: Alexander (2020). 

Initial review of the raw CGF values for all Army programs reveals a right-skewed 

distribution seen in Figure 16. As recommended by the CSRUH, this study leverages the 

Mann-Wald theorem for determining the appropriate bin size. In this case, the method 

dictates 24 bins ranging from 0.5 to 12. In this case, the minimum CGF for a program that 

achieve full operational capability was the first increment of small, unmanned air and 

ground sensors for the Early Infantry Brigade Combat Team (E-IBCT) at -52%, while the 

highest CGF belongs to the Apache Longbow Helicopter at a staggering 1,058% cost 

growth. Chapter IV of this thesis will explore the frequency and probability of experiencing 

dramatic cost growth depicted by the outliers annotated in Figure 16. The obvious right-

skewness and dramatically low kurtosis in the figure indicates the need for transforming 

the data before conducting statistical analysis.  
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Figure 16. Cost Growth Factor Histogram for All Army Programs 

Figure 17 shows the new frequency distribution after transforming the data 

logarithmically. The resulting histogram reveals potential normality. The initial 

transformation acts as an exploratory test for determining the need to conduct distribution 

identification plots via ready-built software statistics packages. This study relies on 

Minitab to test all relevant transformations; Minitab provides an expedited and relatively 

inexpensive platform for conducting statistical analysis. 
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Figure 17. Log Transformed CGF Histogram for All Army Programs 

C. DISTRIBUTION CONSTRUCTION 

Identifying the most appropriate probability distribution for predicting cost growth 

behavior is a critical step for establishing credible results. Instead of applying a catch-all 

distribution that ignores the data-driven approach that this study embraces, this process 

leverages historical CADE data and powerful statistics software packages to identify and 

construct relevant distributions.  

After calculating the CGF for every program at each milestone, the resulting data 

undergoes a “Distribution ID Plot” using Minitab to determine the best fitting probability 

distribution (Figure 18). This process quickly compares all relevant distributions and 

applies a goodness-of-fit test to determine the best fit. 
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Figure 18. Minitab Distribution ID Plot Function.1 

When considering all available distributions, this study limits the feasible 

alternatives to those recommended by the CSRUH and highlighted in Table 2 (Lognormal, 

Triangular, BetaPert, Beta, Normal, Uniform, and Empirical Fit). Considering Christian 

Smart’s caution that “the devil is in the tails” (2020, 171), the Anderson-Darling score for 

each distribution presents the ideal metric for assessing goodness-of-fit since it captures 

the most accuracy along the tails (DOD and NASA 2014). Alternatively, the Kolmogorov-

Smirov test focuses on the center of the distribution while the Chi-Squared offers the 

greatest ease of use, but also includes a sensitivity to the number of bins used to stratify the 

data (DOD and NASA 2014). This process repeats for each commodity and milestone 

report to determine the appropriate distribution parameters for each factor before building 

a cost simulation. Figure 19 includes an example Minitab output for determining the 

distribution parameters outlined on the shaded right-side table. These values provide the 

building blocks for constructing relevant distributions and achieving thesis objective #1. 

 
1 Portions of information contained in this publication/book are printed with permission of 
Minitab, LLC. All such material remains the exclusive property and copyright of Minitab, 
LLC. All rights reserved. 
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Figure 19. Minitab Distribution Overview Pot and Parameters 

D. SIMULATION 

According to the CSRUH, using custom-based simulation data to generate insights 

into cost uncertainty is the ideal method (2014) considering its ability to run thousands of 

stochastic models in mere seconds. After identifying the commodity and nearest milestone 

of each program within the TRAC portfolios, this study builds bespoke simulations to 

assess cost variance. 

Using Excel’s Risk Simulator add-in, this thesis captures the uncertainty associated 

with total program cost by leveraging Monte Carlo simulations influenced by the tailored 

distributions. Consistent with cost estimating industry standards, the simulation profile 

includes 10,000 iterations and generates a probability plot that mirrors Figure 20 (DOD 

and NASA 2014, 54). The top-left portion of Figure 20 provides a mechanism for rapidly 

calculating one-tail and two-tail critical values associated with the DM’s certainty level; 

this procedure satisfies thesis objective #2. 
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Figure 20. Risk Simulator Output Example 

Lastly, using a subset of the historical data from CADE, this research employs a 

cross-validation technique to test the improved methodology by running the simulation 

against real-world baseline estimates reserved for model testing. An analysis of variance 

(ANOVA) test between actual current estimates and modeled results will serve as the 

mechanism for validating the methodology. 

E. ANALYSIS OF COST POSITIONS 

Statistical inferences from the cost variance models allow this study to assess the 

appropriate level of contingency cash reserves associated with TRAC-defined cost 

portfolio positions to inform program prioritization and operational effectiveness. The 

probability plot of total cost generated by Risk Simulator aides in determining the 

necessary cash contingency reserve level based on the decision maker’s confidence level. 

According to Smart, the recommended funding level should reside above 80% to capture 
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the “exception variation” found within the tails of lognormal distributions (2020). The 

difference between the modeled total cost at the dictated confidence level and the TRAC-

provided point estimates reveals the cash reserve level and represents the financial risk 

associated with that scenario. This process achieves thesis objective #3, which is to offer 

data-driven information during program selection. 

By comparing the modeled cost for each funding profile with the assessed 

operational effectiveness benefit, this thesis provides a cost/benefit analysis based on the 

total program cost acting as the predictor to facilitate an informed decision on which 

alternative is best (thesis objective #4). In addition, this research provides updated CGF 

benchmarks by commodity to aide in future cost estimating efforts. 
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IV. RESULTS OF DATA ANALYSIS 

A. DATA MINING AND REFINEMENT 

Using the “bulk” data query from CADE’s SAR database, this study collected 

estimates on every ACAT-I or MDAP program since 1973. The resulting spreadsheet 

yielded 4,480 data points between every service of the DOD. To ensure accuracy of 

analysis, this research screened the data using Excel’s filter function applied in accordance 

with the criteria outlined in Figure 21 and described in this section. Figure 21 illustrates 

the screening process described in Chapter III and the resulting quantity of nonredundant 

and relevant reports for all DOD programs. 

 
Figure 21. Screening Process for CADE Data Refinement 
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Although the number of relevant data reduces dramatically, the net result still 

provides adequate datasets for performing statistical analysis. Table 4 provides the number 

of data points by category that will participate in the upcoming ANOVA tests.  

Table 4. Number of Data Points by Commodity and Milestone Matrix 

Commodity Earliest MS-A MS-B MS-C Latest Total 
C3I 10 0 14 5 15 44 
Rotary Wing 7 0 10 9 15 41 
Vehicles 2 0 6 2 7 17 
Total 19 0 30 16 37 102 

 

According to the author of Cost Estimation: Methods and Tools, the absence of 

Milestone-A reports is not uncommon since many programs forgo the first milestone event 

when operational necessity dictates their importance (Gregory Mislick, personal 

communication, April 23, 2021). However, for the purpose of this study, the earliest SAR 

data points will act as Milestone-A reports since they occur in the first phase of the 

acquisition life cycle.  

B. NORMALIZATION OF DATA AND ANOVA 

After calculating the CGF for each SAR report, the resulting metric provides a 

comparable and unitless measurement of cost overrun or savings so long as the analyst 

ensures that the current and baseline estimates reflect the same base year dollars. In every 

case, CADE analysts converted all SAR data for each specific program into a common 

base year currency to avoid inflation-induced errors. For this study, all costs have been 

baselined to the program’s origination year to facilitate CGF calculation. After confirming 

common base years, the CGF values migrate from Excel to Minitab for ease of statistical 

analysis. This study employs the following analysis techniques to determine the nature of 

the data before answering the key research questions outlined in Chapter I: 

1. Analyze the overall trend of variance in CGF regardless of commodity or 

milestone using a one-way ANOVA test between Army data and the entire 

DOD/DOE database. 
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2. Analyze the trend of variance in CGF between commodities using a one-

way ANOVA between C3I, Rotary, and Vehicle data. 

3. Analyze the trend of variance between CGF milestones using a one-way 

ANOVA between Milestones A, B, C, and the Latest SAR data. 

4. Analyze the trend of variance in CGF within each commodity and 

between milestones using a two-way ANOVA test. 

1. Trend of Variance between Army-DOD 

In this test, the null hypothesis posits that the mean CGF for all Army data is equal 

to the mean CGF of all DOD/DOE data, thereby suggesting that benchmark CGFs would 

be indifferent to their service. Figure 22 summarizes the overall trend of variance within 

the Army data (N = 97) relative to the entire DOD enterprise and the Department of Energy 

(DOE) (N = 377). Considering that the resulting p-value (0.957) is far greater than the 

significance level (α = 0.05), this test concludes that there is no significance statistical 

difference between the Army’s mean CGF value and the entire DOD/DOE. As seen in the 

relatively even interval plot in Figure 22, the Army CGF data demonstrates a balanced 

comparison with the DOD/DOE. Therefore, future analysis includes sister service data to 

promote adequate sample sizes. The increased sample size will aide in the robustness and 

accuracy of findings when modeling the variance between commodities and milestones for 

predicting cost growth. In essence, regardless of military service, the benchmark value for 

CGF appears to fall at approximately 1.55 or 55% cost overrun across all DOD acquisition 

programs. 
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Figure 22. Minitab One-way ANOVA Test Results for Army-DOD 

2. Trend of Variance between Commodities 

In this test, the null hypothesis postulates that the mean CGF for all three 

commodities are equal, thereby suggesting that benchmark CGFs would be indifferent to 

their technology type or commodity classification. Figure 23 reveals the overall trend of 

variance within each commodity relative to one another. In this case, the test fails to reject 

the null hypothesis that all means are equal based on the p-value (0.872) exceeding the 

significance level (α = 0.05). All three commodity types do not appear to have a statistically 

significant different mean CGF values as seen in the balanced interval plot in Figure 23. In 

short, the benchmark values for all three commodities span a similar 1.55 CGF mark seen 

in the DOD/DOE data pool. The overlapping CGF values seen between commodities 

support the application of a single benchmark  toward all ACAT-I and MDAP programs 

regardless of commodity or service.  
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Figure 23. Minitab One-way ANOVA Test Results for C3I-Rotary-Vehicle 

3. Trend of Variance between Milestones 

In this test, the null hypothesis states that the mean CGF of each milestone is equal, 

thereby suggesting that benchmark CGFs would be the same regardless of their relative 

position in the acquisition life cycle. Figure 24 uncovers the overall trend of variance 

between milestones. The test fails to reject the null hypothesis that all means are equal 

based on the p-value (0.454) exceeding the significance level (α = 0.05). That being so, all 

four milestone report types bear no statistically significant difference in CGF. Although 

the interval plot seen in Figure 24 depicts a slight upward trend across milestones, the 

overlapping nature of the confidence intervals could just as easily reveal a negative sloping 

trend should the population means differ from the test results. Essentially, the benchmark 

values for each milestone once again span the equivalent 1.55 CGF mark seen in the 

DOD/DOE and commodity datasets, but the statistical significance is diminishing as 

reflected in the decreasing p-value across the three one-way ANOVA tests. As such, the 

value of this analysis lies within the variance or standard deviation captured within each of 

the factors tested. 
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Figure 24. Minitab One-way ANOVA Test Results for Milestones A, B, C, 

and Latest 

4. Trend of Variance by Commodity and Milestones 

Before conducting the two-way ANOVA test, Excel’s pivot table function 

facilitated the production of a three-dimensional surface plot of CGF averages. Figure 25 

illustrates the average cost growth within each factor relative to the others. The peaks and 

valleys of the graph articulate the high and low CGF values under those specific conditions. 

As seen, the highest average CGF occurs within the rotary commodity at milestone B, 

while the C3I and vehicle areas experience higher cost growth in their latest SAR report 

(arrows indicate high points). The extremes of the surface plot provide insights in potential 

interactions between factors while the two-way ANOVA tests for statistical significance. 
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Figure 25. Surface Plot of Average CGF between Factors 

Finally, the two-factor ANOVA test expresses the statistical significance of 

variance trends between commodity and milestone events. Figure 26 outlines the results of 

the test. In this case, the null hypotheses propose that (1) the means of all commodity 

groups are equal, (2) that the means of all milestone subsets are equal, and (3) that there is 

no interaction between commodity and milestone that effect the main CGF metric. Judging 

from the Minitab output in Figure 26, the two-way ANOVA test fails to reject all three null 

hypotheses considering that the p-values for each factor and their interaction exceed the 

significance level. In other words, commodity, milestone, and their interaction are not 

statistically significant factors in determining a program’s overall CGF. Furthermore, the 

linear model created as part of the two-way ANOVA only explains a mere 8.55% (R-

squared) of variation in a program’s CGF. Thus, one cannot use this model to infer 

statistical relationships between variables outside of the sample data. Once again, the 

overall CGF remains unaffected by commodity, milestone, and the interaction between the 

two factors. Considering that there are no valid interactions between commodity and 

milestone, this study presents two independent cost simulations for comparison to 

determine the ideal method for capturing cost variance within a specific portfolio. 



44 

 
Figure 26. Minitab Two-way ANOVA Test Results for Commodity and 

Milestone 

5. Overall Trend of Variance 

After analyzing the variance trends within and between the commodity and 

milestone factors, this study concludes that there is no significant difference between mean 

CGF values. However, considering that averages do not capture the variation in cost data 

that contributes to risk, the benefit of this study is the measurement of variance within each 

of the categories themselves. Figure 27 illustrates the common thread through every tested 

factor based on the average CGF, thereby confirming the similarity between means. The 

within sample variances indicate areas that modeling and simulation techniques may prove 

useful in gaining insights. To compare the factors based on variation, this study leverages 

the coefficient of variation (CV) statistic recommended by the CSRUH (DOD and NASA 

2014, 57). 
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Figure 27. Adapted Minitab Interval Plot of Mean Confidence Intervals for 

All Factors 

Table 5 illustrates the CV values associated with each variable. The CV values 

provide a normalized metric for capturing the dispersion within each factor (DOD and 

NASA 2014). Equation 1 demonstrates how to calculate CV values in a data set. 

 CV = StDev/Mean (1) 

The rotary commodity and Milestone-B factors harbor the greatest variation with 

CV values of 100% or more (rows shaded in Table 5). In other words, programs involving 

rotary technology nearest milestone-B carry the greatest potential for cost overruns 

considering the relatively equal CGF shared between all variables. This finding 

corroborates the insights gleaned from the 3D surface plot in Figure 25. In the next section, 

this study applies variance trends  toward building bespoke distributions that model a 

program’s cost variance. 
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Table 5. Coefficients of Variation for Cost Growth Factors 

Factor Mean StDev CV 
C3I 1.516 0.757 50% 
Rotary 1.634 1.633 100% 
Vehicle 1.492 0.778 52% 
MS-A 1.183 0.233 20% 
MS-B 1.654 1.900 115% 
MS-C 1.510 0.448 30% 
MS-L 1.698 0.899 53% 

 

C. DISTRIBUTION CONSTRUCTION 

Although commodity type and milestone do not generate a statistically significant 

impact on the mean CGF for any given program, their respective variances influenced the 

overall cost risk associated with specific program portfolios. As such, this thesis identifies 

the appropriate distribution for each variable via Minitab’s “Distribution ID Plot” function. 

During this process, the software attempts to fit the data to distributions recommended by 

the CSRUH, which include the Beta, normal, Weibull, lognormal, and three-parameter log-

normal (TPLN) distributions. In this case, the TPLN does not apply since all CGF values 

are non-negative (DOD and NASA 2014) and Minitab does not test for the Beta 

distribution. Therefore, this research included the exponential distribution as an alternative 

to the Beta. In summary, this study tested the goodness-of-fit for each factor using the 

following distributions: exponential, normal, Weibull, and lognormal. 

1. Distribution Identification Plots 

After specifying the relevant distributions for testing, Minitab generated a 

probability plot and goodness-of-fit test statistics using the Anderson-Darling (AD) 

technique to produce a graphic like Figure 28. Since the AD formula measures the total 

area between the sample and the fitted cumulative density function (CDF), a lower score 

indicates a better fit (DOD and NASA 2014). This research chose the AD goodness-of-fit 

test based on its unique trait for capturing accuracy within the tails and compatibility with 

small sample sizes (Romeu 2003). The shaded areas on the right of Figure 28 highlight the 
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goodness-of-fit graph and AD metric for the lognormal. The near linear trend seen in the 

probability plot indicates a normal distribution of the transformed data that can provide 

statistical inference.  

 
Figure 28. Minitab Probability Plot and Goodness-of-Fit for C3I 

As seen in the shaded right column of Table 6, the lognormal distribution yielded 

the lowest —and therefore the best—AD score for every factor by achieving the lowest 

AD score when compared to the three other alternatives (reference Appendix A for all 

distribution identification plots). Summing the total AD score for each distribution reveals 

obvious choice and dominance of the lognormal vice the exponential, normal, and Weibull 

options.  
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Table 6. Anderson-Darling Scores for Goodness-of-Fit Test 

 Anderson-Darling Scores 
Factor Exponential Normal Weibull Lognormal 
C3I 9.316 4.354 3.772 1.731 
Rotary 8.943 9.145 6.663 2.643 
Vehicle 3.611 2.040 1.769 1.279 
MS-A 6.069 1.330 1.363 1.154 
MS-B 6.519 7.617 5.534 2.876 
MS-C 3.966 0.617 0.634 0.346 
MS-L 6.775 3.558 2.778 1.359 
Total 45.199 28.661 22.513 11.388 

 

2. Individual Distribution Overviews and Parameters 

The next step of the process includes harvesting individual distribution parameters 

for the purpose of modeling the variance associated within each of the identified factors. 

The Minitab “Distribution Overview Plot” provides a mechanism for generating the mean 

and standard deviation parameters that accompany each individual lognormal distribution. 

Figure 29 shows the truncated output (hazard and survivability plots excluded due to 

irrelevance) of the distribution overview plot and parameters for C3I as an example for 

each (see reference Appendix B for the entirety of plots for every factor). In every case, 

the transformed data follow a near linear relationship when plotted along the lognormal 

graph as seen on the right graph of Figure 29.  

 
Figure 29. Minitab Distribution Overview Plot and Parameters for C3I 
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Table 7. Lognormal Distribution Parameters 

Lognormal Parameters 
Factor Mean StDev 
C3I 1.4958 0.5562 
Rotary 1.5401 0.6571 
Vehicle 1.4707 0.5677 
MS-A 1.1821 0.2123 
MS-B 1.5237 0.7216 
MS-C 1.5083 0.4179 
MS-L 1.6748 0.7051 

 

In the following section, this study employs the lognormal distribution to assist in 

building Monte Carlo simulations of cost variance within program portfolios. 

D. SIMULATION 

After collating the lognormal parameters for each factor in Excel, this study 

leveraged the Risk Simulator add-in to perform Monte Carlo simulations for total program 

cost. Beforehand, however, AMA provided obfuscated baseline estimates for three Army 

modernization programs currently in development. At the request of the AFC commander, 

TRAC concealed the program names and source of data due to sensitivity. The availability 

of cost data through TRAC-Monterey proves paramount considering the absence of CSDR 

or SAR estimates on CADE due to the early-stage nature of Army modernization programs. 

This study refers to each of the AMA programs based on their affiliation with the closest 

related commodity. Therefore, the program linked to vehicles is “PROGRAM-V,” the 

rotary-related program is “PROGRAM-R,” and the C3I program is “PROGRAM-C.” 

Using the AMA-provided notional metrics for number of formations, units per formations, 

unit cost, RDT&E, and procurement schedule, this study calculated the total program cost 

each year from 2020 to 2042 using Equation 2 before summing their individual values to 

obtain a baseline estimate for the entire acquisition life cycle of each program. TRAC-

Monterey adjusted all values to represent base year dollars, thereby allowing the 

summation of the annual estimates. 
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 ( )Cost a b c dAnnualBaseline = × × +  (2) 

,Where
a NumberFormations
b UnitsPerFormation
c AvgCostPerUnit
d FixedCosts

=
=
=
=

 

Since no interactions exist between factors, the research focused on two separate 

and distinct scenarios. The first simulation forecasts the actual program costs based on the 

CGFs associated with the closest related commodity types. The second scenario simulates 

the actual program costs based on their assumed milestone events and the related CGFs 

associated with each milestone. All CGFs followed the stochastic parameters outlined in 

the previous section.  

1. Commodity-based Simulation 

Table 8 illustrates the basic set-up for the first scenario. The left-shaded “CGF” 

values represent the stochastically modeled inputs while the right-shaded “Actual Cost” 

values depict the resulting product of the modeled CGF and the “Baseline Estimate.” 

Table 8. Risk Simulator Example Set-up for Input and Outputs 

Lognormal Distribution Parameters 
Factor Mean StDev 
Vehicle 1.4707 0.5677 
Rotary 1.5401 0.6571 

C3I 1.4958 0.5562 
Baseline Estimate CGF Actual Cost 

 $      4,184.67  1.3044  $   5,458.54  
 $      2,680.37  2.3542  $   6,310.07  
 $      1,462.03  1.2662  $   1,851.26  
 $      8,327.07  TOTAL  $   13,619.87  

Risk Simulator automatically highlights simulation inputs with a light 
green fill color and simulation output values in light yellow. 
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After running the simulation for 10,000 iterations, the resulting interactive graphs 

allow the analyst to quickly query confidence level boundaries associated with a decision 

maker’s risk tolerance. Figure 30 portrays the frequency plot on the left and the table of 

statistics on the right. According to Smart’s research, “regardless of the underlying 

distribution, as long the mean and standard deviation are finite, the standard rule for 

exceptional variation of the mean is beyond the 80th percentile” (2021, page 173). Smart 

defines “exceptional variation” distributions as those that have tails that start at the 90th 

percentile (PCTL). In Figure 30, the red vertical line marks the 90th percentile which 

appears to fall directly on the start of the tail of the distribution. Subsequently, this research 

supports a recommendation for funding beyond the 80th percentile. 

 
Figure 30. Risk Simulator Output for Commodity Scenario 

Assuming an 80% confidence level for staying on schedule and without sacrifice 

of technical performance, the commodity scenario dictates a cash reserve of approximately 

$9.27B beyond the initial point estimate for the entire portfolio’s life cycle. The cash 

reserve quantity represents the monetary difference between the forecasted cost found 

using a left-tail confidence interval and the baseline estimate. Figure 31 highlights the stark 

contrast between the estimated and forecasted costs by commodity via bar chart, thereby 

emphasizing the reality of a cost overrun and the necessity of contingency funding.  
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Figure 31. Bar Chart of Baseline versus Forecasted Estimates by 

Commodity 

As a reminder, the simulation inputs are based on 102 real-world historical case 

studies as opposed to subjective assessments used by most risk management 

methodologies. For each program, the forecasted cost at 80% confidence nearly doubled 

after applying the historical cost variance growth factors using the Monte Carlo method. 

As the confidence level increases, the amount of cash reserves required to stay on-schedule 

and on-performance increases dramatically.  

To compare the risk level associated with each program, the cost estimating 

industry uses the coefficients of variations (CV) (DOD and NASA 2014). Table 9 

expresses the mean, standard deviation, and CV for each program as simulated by 

commodity. By comparison, PROGRAM-R (rotary commodity) carries the greatest risk 

with the highest CV at 42.9%, followed by PROGRAM-C (C3I) at 37.7%, and then 

PROGRAM-V at 36.7% in this simulation. When contrasted with cost magnitude and 
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operational effectiveness scores, the CV metric can provide DMs with important 

prioritization insights when making programmatic decisions. 

Table 9. Mean, SD, and CV Statistics for Commodity Simulation 

Program Mean (M$) SD (M$) CV 
Vehicle $6,149 $2,320 37.7% 
Rotary $6,666 $2,861 42.9% 
C3I $2,170 $797 36.7% 

 

2. Milestone-based Simulation 

To apply the milestone concept, the method for calculating the annual costs 

remained the same; however, instead of summing the entire life cycle before multiplying 

by the CGF, the analyst must divide the program into the phases of the acquisition life 

cycle as seen in Figure 32. The following assumptions for bounding the acquisition phases 

relate with the decision points in Figure 32. 

• Milestone A begins immediately and terminates two years before initial 

procurement. 

• Milestone B begins immediately following MS-A and terminates after the 

first year of procurement. 

• Milestone C begins immediately following MS-B and terminates once the 

procurement schedule reaches 33% of the total order.  

• Milestone L begins immediately following MS-C and continues in 

perpetuity. 
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Figure 32. Acquisition Phases of a System Life cycle Diagram. 

Source: AcqNotes (2021). 

After completing 10,000 iterations of the simulation, Figure 33 reveals the 

forecasted results of the total portfolio cost compared to the baseline estimate at 80% 

confidence since this scenario also satisfies Smart’s exceptional variation criteria. That 

being so, the recommended cash reserve for the entire portfolio is $9.58B which coincides 

with the contingency funds recommended in the commodity scenario. As before, the cash 

reserve quantity represents the monetary difference between the forecasted cost found 

using a left-tail confidence interval and the baseline estimate.  
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Figure 33. Bar Chart of Baseline Versus Forecasted Estimates by Milestone 

The disparity between simulation outputs likely resides within the milestone 

assumptions that impact the start and end of each phase in the acquisition process. Since 

the programs in question are all pre-milestone A, the model relies on subjectivity to 

determine the estimated boundaries. Although the milestone assumptions attempt to follow 

the statutory and regulatory requirements dictated by DOD Instruction 5000.2, the actual 

start and end dates of programs vary dramatically. For example, although there are more 

than five hundred F-35s in service, the Joint Strike Fighter program has yet to reach 

milestone C status (Gertler 2020). The milestone-based scenario could certainly benefit 

from further research on event-oriented forecasting. 

With respect to CV, the milestone simulation generated inversed results when 

compared to the commodity scenario. Table 10 displays the mean, SD, and CV for each 

program when modeled against their predicted milestones. In this scenario, the rotary 
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program ranked lowest in risk level with a CV of 27.5% while the C3I program carried the 

highest risk with a CV of 29.9%. However, considering the minimal range between the 

three values, their ranking could just as easily change under the same conditions of this 

simulation. Overall, the milestone-based scenario forecasted near identical results at the 

80% confidence level when compared to the commodity-based simulation but generated 

indistinguishable CV values between programs.  

Table 10. Mean, SD, and CV Statistics for Milestone Simulation 

Program Mean (M$) SD (M$) CV 
Vehicle $6,769 $1,915 28.3% 
Rotary $6,972 $1,916 27.5% 
C3I $2,376 $710 29.9% 

 

Considering the similarity of results between the commodity and milestone 

methods, this study recommends employment of the commodity-based approach over the 

milestone method since it maintains complete objectiveness throughout the process. 

Contrarily, the milestone method invites biases and inaccuracy via the necessary 

assumptions for determining the milestone events of a developmental program. As such, 

this study continues with the validation of the commodity-based methodology. 

E. MODEL VALIDATION 

The similarity of modeled results and exactness of deterministic outcomes between 

the two methods lends to the verification of both models; however, to test the validity of 

the simulation, this thesis relies on a five-fold cross-validation technique that compares the 

simulated results against a subsection of the real-world historical data from CADE. Each 

of the five validation simulations represent a portfolio-based scenario similar to the AMA 

situation at hand. An improvement in the relative accuracy between forecasted and actual 

data provides a mechanism for validating this study’s new methodology for estimating 

portfolio costs.  
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As opposed to the hold-out method of cross-validation where a subset of the 

original data remains untouched throughout the entire process, the k-fold cross-validation 

technique maximizes statistical significance by allowing analysis on the entire dataset. 

Figure 34 illustrates how this study employs the five-fold method. Each row of dots 

numbered as “folds” represents the entire dataset used for analysis. First, this approach 

splits the data into test sets (20%) and training sets (80%) to achieve sufficient subset sizes 

and shape each scenario to reflect a real-world situation. Then, the process includes 

building a model against the training data before running a 10,000-replication simulation 

against each test set to capture the relative error as a means of determining the measure of 

fit. This process repeats for each fold of the validation exercise before comparing the results 

that ultimately determine the model’s prediction performance (Seni and Elder 2010) and 

validity when contrasted with current methods of cost estimation.  

 
Figure 34. K-fold Cross-Validation Technique Diagram 

Based on AMA’s diverse portfolio of Army modernization programs, this study 

assigned programs randomly to the test and training sets. This facilitates the comparison of 

results and highlights the operational perspective needed to validate the new methodology. 

Each portfolio (test set) of the five mutually exclusive scenarios included approximately 

twenty independent programs of mixed commodity types. After performing the Monte 

Carlo simulations, the results provided a computational mean for the minimum, average, 

and maximum percent error (PE) of the entire portfolio’s cost compared to the actual 
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observed values reported in the SAR. Equation 3 articulates the process for calculating the 

relative error inherent to each of the five portfolios. 
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Before analyzing the results of the simulations, it is important to note the relative 

error in AMA’s existing practice. Presently, analysts use the baseline cost estimate to 

budget accordingly without considering the reality of life cycle cost growth when programs 

experience unpredictable circumstances like changing requirements or optimistic 

evaluations. Therefore, the relative percent error for current methodology is the total actual 

portfolio cost minus the total portfolio baseline estimate divided by the total baseline 

(merely switch forecasted cost with baseline cost in Equation 3). After running the five 

scenarios through 10,000 iterations, Table 11 portrays the comparison of PE results 

juxtaposed with the baseline method and accuracy improvement. To fully understand the 

range of error, the table begins (from left to right) with the baseline PE followed by the 

simulated minimum (MIN), 25th percentile, mean, 75th percentile, and maximum (MAX) 

PE before concluding with the overall percentage of improvement (benefit) when 

compared with the baseline using the mean PE. The bottom row of Table 11 articulates the 

average across all five scenarios. 
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Table 11. Comparison of Validation Scenario Results 

Scenario Baseline Forecasted Percent Error Benefit MIN 25th PCTL Mean 75th PCTL MAX 
A 34.9% 0.0% 5.7% 16.2% 22.7% 120.7% 53.6% 
B 53.7% 0.0% 3.7% 9.2% 13.2% 59.0% 82.8% 
C 19.5% 0.1% 16.5% 30.5% 41.4% 149.1% -55.8% 
D 36.5% 0.0% 6.2% 15.5% 22.4% 80.6% 57.5% 
E 22.1% 0.1% 13.0% 24.9% 34.3% 87.9% -12.5% 

AVG 33.3% 0.0% 9.0% 19.2% 26.8% 99.4% 25.2% 
 

As seen, three out of the five scenarios improved their relative accuracy based on 

the positive benefit values in the right-hand column of Table 11. Overall, the average 

improvement is 25.2%; However, this metric only captures the goodness-of-fit of the 

model, not the operational benefit.  

To approach from the operational perspective, this study performed a Pass/Fail test 

on every program in each portfolio to identify those that exceeded their budgeted cost under 

varying constraints. This methodology proves relevant considering that when costs surpass 

their funding level, “the project will have to replan, rescope, reschedule, and sometime 

issue stop-work orders…interruptions in funding, schedule slips, and rescopes introduce 

inefficiencies in the project. As a result, the product is delivered later, at greater cost, and 

with less capability” (Smart 2021, 187); Hence, this test underscores the importance of 

budgeting for cash reserves. Specifically, this validity test compares the actual cost of every 

program in each test-set to identify those that would have theoretically exceeded their 

budget based on three different thresholds: (1) the baseline estimate that AMA currently 

uses to inform budgetary decisions, (2) the mean forecasted program cost based on the 

simulated results of this research, and (3) the 80th percentile forecasted cost that this study 

recommends. Table 12 reveals the number of programs in each scenario that surpassed 

their funded amounts. 

  



60 

Table 12. Number of Overbudget Programs by Scenario and Funding Level 

  Funding Level 

Scenario Portfolio 
Size 

Baseline 
Estimate 

Mean 
Forecast 

80%ile 
Forecast 

A 22 20 7 5 
B 20 16 8 2 
C 20 19 3 1 
D 20 18 4 3 
E 20 20 4 0 

AVG 20.4 18.6 5.2 2.2 

 

From left to right in the shaded columns of Table 12, the number of overbudget 

programs reduces dramatically. In every case, at least 80% of the programs in each 

portfolio surpassed their budgets under current practice compared to the at-most 25% level 

using the proposed 80th percentile of funding. The three funding level alternatives represent 

low, medium, and high consideration for cost overrun. In other words, budgeting at the 

baseline level provides no additional cash reserves other than from programs that 

experience cost savings, thereby inviting the most risk of program interruptions and 

frequent budgetary decisions. Alternatively, the higher funding level situations counteract 

the need to ask for more resources or sacrifice schedule or performance since they include 

a contingency cash reserve based on the modeled cost variance of the entire portfolio. 

However, there is certainly a trade-off between the number of programs that experience 

cost overruns and the amount of surplus money held in reserves. This methodology simply 

provides a mechanism for determining the appropriate balance based on the decision 

maker’s risk tolerance when faced with resource, political, and operational constraints. 
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V. CONCLUSIONS 

After applying a statistical approach to model the probability of cost overrun in 

defense contracting, this thesis proposes an improved methodology for informing decision 

makers on how to consider cost risk and determine contingency cash reserve levels for 

Army modernization portfolios. Across all services and commodities, defense contracts 

experience and average of 55% cost growth over the original point estimates of any given 

program. Decision makers must prepare for the reality of cost overrun. By leveraging 

newly established cost databases (CADE), analysts can now more efficiently and 

effectively create defendable cost estimates and aid in milestone decisions using modeling 

and simulations based on historical information. The result is greater confidence in cost 

estimates, less budgetary constraints and schedule delays, and increased technical 

performance. 

A. RESULTS AND RECOMMENDATIONS 

Based on the statistical analysis performed in this study, evidence supports the 

following insights and recommendations for implementing a credible, repeatable, and 

effectual cost estimating methodology. 

• There is no statistical difference in mean CGF values between 

commodities, milestones, or their subsets. Therefore, a single benchmark 

CGF provides relatively rapid and effective cost growth insight when 

under time constraints. 

• The variance within programs provides insight into their inherent risk 

while coefficients of variation provide the metric for prioritizing risk 

levels between programs or portfolios. 

• Cost variance peaks in milestone B and specific commodities (e.g., 

rotary), therefore, analysts can counter the assumption that increased cost 

overrun before low-rate initial production (LRIP) does not necessarily 

imply that the program’s cost risk is escalating out of control. Further 
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investigation into specific CSDR submissions can provide insight into the 

reasons for cost overrun. 

• Forecasting cost using the milestone approach requires subjective 

assumptions for determining event events of developmental programs 

(AMA). Consequently, this study recommends the commodity-focused 

cost estimating methodology since it promotes conservatism and 

objectivity. 

• Analysis of historical CADE data reveals that the lognormal distribution is 

the best model for cost growth. When coupled with Monte Carlo 

simulation techniques, cost-prediction simulations provide a sound 

mechanism for translating confidence levels into contingency cash reserve 

quantities.  

• When “exceptional variation” (Smart 2021) is present in the simulated 

results for total portfolio cost, the recommended funding is at or above the 

80% confidence level, but an appropriate confidence level for funding can 

rest somewhere between 50% and 90% depending on risk tolerance and 

resource availability. This mitigates the risk of costly budget interruptions 

that hinder schedule and technical performance. 

Implementation of these recommendations would allow cost analysts to provide a 

structured approach to inform budget decisions and program prioritization. The simplicity 

of a single benchmark CGF value manages the expectations of senior leaders while analysts 

provide the due diligence that accounts for historical trends. Leveraging CADE data also 

reduces subjectivity while streamlining the estimating process since SME-elicitation is 

unnecessary. Diversification of portfolios helps to mitigate the increased risk in particular 

commodities but relies on the ability to shift resources between programs. Lastly, modeling 

and simulation provides the means for quantifying the risk and unpredictability that is 

intrinsic to government contracting. Overall, cost growth is undeniable, so, cost estimators 

have an obligation to capture and communicate that truth to the relevant decision makers. 
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The methodology outlined in this thesis drives current practice closer  toward the goal of 

accurate and precise cost prediction. 

B. ADDRESSING THESIS OBJECTIVES 

The overall approach in this study leveraged computational statistical methods of 

analysis to address the thesis objectives. The following summarizes the results of each 

objective.  

THESIS OBJECTIVE #1: Construct distributions for total program cost based on 

historical industry and technology maturation data. This study equated milestone SAR 

data with technology maturation since it is based on the life cycle development of the 

overall system. After collecting, screening, and collating the CADE SAR data, this thesis 

applied Minitab’s distribution ID plots and the Anderson-Darling goodness-of-fit test to 

identify the ideal distribution. This process supported the CSRUB’s recommendation that 

the lognormal distribution is the best model for cost growth factors considering the high 

kurtosis and positive right skew in the data. Table 7 in Chapter IV summarized the mean 

and standard deviation lognormal parameters for each commodity and milestone.  

THESIS OBJECTIVE #2: Leverage Monte Carlo simulations to capture variance 

and confidence levels associated with cost by industry. This study linked industry trends 

with commodity types to complement the context tags in the SAR data. In doing so, the 

variance within each commodity influenced the modeling distributions that powered the 

Monte Carlo simulation for total program cost. The resulting product yielded a frequency 

plot based on 10,000 replications that can support estimates for contingency cash 

requirements associated with the decision maker’s confidence level. This study used the 

Microsoft Excel-based platform named Risk Simulator to generate forecast plots. The 

adjustable Risk Simulator output graphs enabled left-tailed hypothesis tests used to 

determine the appropriate contingency cash reserve level. 

THESIS OBJECTIVE #3: Offer data-driven information during program selection. 

By calculating coefficients of variation (CV) based on the mean and standard deviation of 

each program or commodity’s simulated results, this analysis generated comparable risk 

factors (CV values) that can inform program or portfolio prioritization. As an example, 
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Tables 9 and 10 in Chapter IV articulate the resulting CV values for each commodity and 

milestone. 

THESIS OBJECTIVE #4: Support development of cost positions in the context of 

operational effectiveness. After establishing an appropriate or assumed funding level, 

analysts employing this methodology can compare the forecasted cost for each funding 

profile with the assessed operational effectiveness (OE) benefit (OE data is available with 

TRAC approval but is not included in this study). A cost/OE comparison functions as a 

cost/benefit analysis based on the total program cost acting as the predictor to facilitate an 

informed decision on which alternative is best. The appropriate graph would plot the 

forecasted cost along the x-axis while the OE score would fall on the y-axis. Figure 35 

illustrates an example of the cost/benefit graph used to identify an efficiency frontier along 

the periphery of the data where the alternatives generate the maximum amount of OE with 

the lowest possible cost. Portfolios that fall within the dominated region are exempt from 

consideration since they require more cost for less value. In the hypothetical case 

represented in Figure 35, portfolios two, four, and six are feasible alternatives since they 

dominate the remainder. Overall, this cost/benefit approach is a quick means for narrowing 

the solution space before presenting the risk and reward of the feasible alternatives. 
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Figure 35. Hypothetical Cost/Benefit Graph 

C. FUTURE RESEARCH 

This study discovered that there was no statistical significance between the mean 

CGFs for commodities and milestones. In addition, this thesis serves to educate decision 

makers and analysts on the reality of cost overruns, value of historical data, and power of 

modeling and simulation. However, the CADE database contains more data than this study 

can manage. Consequently, this thesis recommends the following areas for further 

research. 

• Develop a regression model that leverages continuous and categorical 

predictors such as RDT&E, engineering costs, contract-type, or outside 

assessments of government contractors. These factors may prove more 

significant in their predicting power for program specific estimates. 

• Investigate the correlation between proportional costs in each of the 

funding categories within the baseline SAR and the final estimate. This 

effort will aide in developing a regression model that harnesses the 

predictive power of program-specific variables. 
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• Examine the effects of “expected shortfall” and “semi-deviation” as cost 

growth occurs (Smart 2021, 188). Expected shortfall offers an additional 

risk measure that highlights the anticipated cost and schedule growth that 

will occur should a program reach a specific percentile of growth (Smart 

2021). Alternatively, the semi-deviation principle offers acts as another 

risk measure capable of identifying the cash reserve quantity should cost 

overruns exceed the mean (Smart 2021). Both of these risk measures 

would enhance this methodology by including adaptive triggers for budget 

adjustments. 
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APPENDIX A. DISTRIBUTION IDENTIFICATION PLOTS 

 
Figure 36. Minitab Probability Plot and Goodness-of-Fit for C3I Systems 

 

Figure 37. Minitab Probability Plot and Goodness-of-Fit for Rotary Systems 
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Figure 38. Minitab Probability Plot and Goodness-of-Fit for Vehicles 

 
Figure 39. Minitab Probability Plot and Goodness-of-Fit for Milestone A 
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Figure 40. Minitab Probability Plot and Goodness-of-Fit for Milestone B 

 

Figure 41. Minitab Probability Plot and Goodness-of-Fit for Milestone C 
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Figure 42. Minitab Probability Plot and Goodness-of-Fit for Latest SAR 



71 

APPENDIX B. DISTRIBUTION OVERVIEW PLOTS AND 
PARAMETERS 

 
Figure 43. Minitab Distribution Overview Plot and Parameters for C3I 

Systems 

 
Figure 44. Minitab Distribution Overview Plot and Parameters for Rotary 

Systems 
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Figure 45. Minitab Distribution Overview Plot and Parameters for Vehicles 

 
Figure 46. Minitab Distribution Overview Plot and Parameters for Milestone 

A 

 
Figure 47. Minitab Distribution Overview Plot and Parameters for Milestone 

B 
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Figure 48. Minitab Distribution Overview Plot and Parameters for Milestone 

C 

 
Figure 49. Minitab Distribution Overview Plot and Parameters for Latest 

SAR 
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