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Abstract 

 

Purpose: The objective of this study was to clarify the characteristics of the upper limb 

stretch reflex in wrestlers.  

 

Methods: Ten wrestlers and 11 control subjects participated in the study. The experiment 

was divided into two sessions. In the extension perturbation session, participants either 

relaxed or flexed the elbow when they felt a perturbation (abrupt elbow extension 

induced by a dynamometer). This was done 30 times by each subject for both sessions.  In 

the flexion perturbation session, participants also relaxed or extended the elbow when 

they felt a perturbation (abrupt elbow flexion). During the tasks, the stretch reflex was 

monitored by recording the surface electromyographic (EMG) activities of the right 

biceps and triceps brachii. The EMG reflex components were divided into three periods 

based on the time after the perturbation: M1 = 20 - 50ms, M2 = 50 - 80ms, and M3 = 80 - 

100ms. The averaged background EMG activity just before the disturbance was 

subtracted from the EMG activity in each period. The resultant value was integrated to 

obtain reflex magnitudes of M1 - M3.  

 

Result: For the triceps brachii, in the relaxation task, the wrestler group showed a 

significantly smaller value for M2 than did the control group. In the extension task, the 

wrestler group showed a significantly larger value for M3 than did the control group. 

There was no difference in M1 between the two groups. For the biceps brachii, there was 

no significant difference between any reflex components.  
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Conclusion: Our results suggest that high level wrestlers have specific characteristics of 

the long latency stretch reflex in the triceps brachii that are modulated in a 

situation-specific manner. 

 

Key Words: stretch reflex・wrestling・upper limb・motor control   
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Introduction 

A main aim of combat sports such as wrestling and judo is to take down a standing 

opponent. Combat sport athletes have an excellent balance ability as compared to control 

subjects (1). Leg attack is an important and frequently used move. To be successful 

against experienced wrestlers, the balance of the opponent first needs to be disrupted (2). 

This is termed a “set-up” and can be accomplished in several ways. These set-ups include 

fake attacks as well as changes in the tempo or speed of an attack. An effec tive set-up 

alters the center of gravity of the opponent and makes the opponent’s posture unstable. 

We recently demonstrated that, for men’s elite freestyle wrestling, an effective set up 

before a leg attack improves the success rate of the leg attack and also increases the 

points awarded to the attacker (3). Wrestlers almost always use their hands to seize an 

opponent’s arms. In addition, when wrestlers engage in close proximity, it is critical to 

react quickly to an unpredictable disturbance from the opponent. Therefore, not only 

voluntary reactions but also reflexive actions must be swiftly recruited in the rapid 

changes of motion that occur during a match. However, little is known about the control 

of reflexes that govern the excitability of muscles in the arms of wrestlers. 

 

In the current study, we focus on the stretch reflex, which is made up of short -latency 

and long-latency components. The former is a monosynaptic reflex which occurs at the 

spinal level, while the latter appears to involve a spinal polysynaptic reflex or be 

organized at supraspinal levels (4, 5). The magnitude of the stretch reflex can be 

modified by different task instructions (6-9). For example, MacKinnon et al. (10) 

recorded the electromyogram (EMG) during a perturbation to the wrist (a quick 

extension). The subjects were given three ways to react to the perturbation: “Passive” 
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(not react to the disturbance), “Resist” and “Extend”. There were no differences among 

the three tasks for the short-latency stretch reflex, but the task instructions affected the 

magnitude of the EMG for the long-latency reflex. The effect was largest for “Resist”, 

less for “Extend”, and least for “Passive”. This result suggests that the short -latency 

stretch reflex is less affected by signals from supraspinal structures, while the 

long-latency stretch reflex could well be influenced by the subject’s intention (10). 

 

Plastic changes in the spinal reflex of athletes have been reported in several previous 

studies. For example, the magnitude of the stretch reflex in the soleus muscle of ballet 

dancers is smaller than in that of sedentary people, may be because they maintain 

unstable postures during ballet dancing (11, 12). The dancers appear to stabilize their 

standing posture by suppressing the reflex. On the other hand, experienced swimmers 

had a larger stretch reflex in soleus muscle as compared to non-trained individuals (13). 

Swimmers practice for a long time in the low gravity environment of water, which 

effectively reduces their body weight. Load-related afferent information is suppressed, 

and this likely results in a higher excitability of the reflex on a chronic basis. Thus, the 

stretch reflex in athletes is plastic, and can be modulated by experiences that occur 

during sports and training.  

 

The objective of this study was to determine the characteristics of the upper limb 

stretch reflex in wrestlers, as well as to investigate its task dependency. We hypothesized 

that stretch reflexes, which occur more quickly than voluntary reactions, would be 

augmented in amplitude in wrestlers as compared to non-wrestlers.  
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Materials and Methods 

Participants 

Participants were male adults with no known history of neurological disease. The ten 

wrestlers (20.4 ± 1.2 years old, 169.5 ± 6.3 cm) had all wrestled more than five years and 

had placed in national competitions. The eleven control subjects (23.2 ± 0.8 years old, 

172.8 ± 5.8 cm) were individuals who did not exercise regularly. All subjects were right 

side dominant in accordance with the Edinburgh inventory (14). Before the experiment, 

written informed consent was obtained from all subjects. The study was approved by the 

Human Research Ethics Committee of Waseda University.  

 

Participants sat on a dynamometer (Biodex system 4, Biodex Medical System Inc, 

USA) with the body secured to the dynamometer with straps. The right arm was fixed to 

the dynamometer at the neutral position of 70 degrees shoulder abduction, 30 degrees 

shoulder horizontal flexion, and 75 degrees elbow flexion (Fig. 1).  

 

The EMGs of the right biceps brachii (BB) and the triceps brachii (TB) were recorded 

with bipolar surface electrodes 40 mm in diameter (Vitrode M, Nihon Kohden, Japan) 

with an inter-electrode distance of 40 mm. The sampling rate was 2000 Hz. The EMG 

signals were amplified with a Multichannel Amplifier (x 500, MEG – 6018, Nihon 

Kohden, Japan), and bandpass filtered (15 - 1000Hz). We saved data of the EMG signal, 

torque, position and angular velocity in PC software (Labchart ver.8, AD instrument, 

USA) through an A / D converter (ML880 Power lab 16/30, AD instrument, USA).  
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Protocol 

We conducted two sessions, one involving elbow extension perturbation, and another 

involving elbow flexion perturbation. The order of the sessions was randomized, with a 

10-minute break between sessions, and counter-balanced across subjects. Initially, the 

participant’s maximum voluntary contraction (MVC) of BB and TB during elbow flexion 

and extension, respectively, were assessed (at the neutral position, twice).  

 

In the extension perturbation session, by watching the torque displayed on a monitor, 

the participants first kept isometric elbow flexion torque at 10% of the MVC. Then, in 

order to evoke the stretch reflex in BB, the elbow was extended 20 degrees using the 

dynamometer (Fig. 1). Subjects were asked to respond, once they detected the 

perturbation, in the relax task by relaxing the pre-contracted muscles as quickly as 

possible, and in the flexion task by contracting flexor muscles as quickly and strongly as 

possible. Participants conducted each of two tasks 30 times, respectively, in a random 

order. There was a 15-second break between trials and participants took a 5-minute break 

every 20 trials.  

 

In the flexion perturbation session, by watching the torque displayed on a monitor, 

participants first kept isometric elbow extension torque at 10% of the MVC. Then, in 

order to evoke the stretch reflex in TB, the elbow was flexed 20 degrees using the 

dynamometer (Fig. 1). Subjects were asked to respond, once they detected the 

perturbation, in the relax task, by relaxing the pre-contracted muscles as quickly as 

possible, and in the extension task by contracting extensor muscles as quickly and 

strongly as possible. Participants conducted each of the two tasks 30 times, respectively, 
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in a random order. Subjects were allowed to rest ad libitum during the session. 

 

The mean angular velocity in the 100 ms period from the start of perturbation did not 

significantly differ between the two sessions (25.6 ± 0.5 degrees/ s in the extension 

perturbation session, and 26.5 ± 0.3 degrees/ s in the flexion perturbation session, p > 

0.05). 

 

Analysis 

Thirty perturbations were applied in each task, meaning that in total, 120 perturbations 

were given to each subject. BB and TB EMGs for each trial were first rectified. Then, we 

conducted two types of analyses. 

 

First, we checked how often the short latency stretch reflexes were elicited in each task 

and for each subject (Table 1). We defined a reflex in a trial as occurring when peak 

muscle activity within the M1 window exceeded twice the averaged activity over a 50 ms 

period before the perturbation was initiated. This definition of the short latency reflex 

followed that utilized by Dietz et al., (7).  

 

Second, we obtained the magnitude of the three reflex components by following the 

definition of Yamamoto and Ohtsuki (15): M1 (20 - 50 ms after perturbation), M2 (50 - 

80 ms after perturbation), and M3 (80 - 100 ms after perturbation). Following this: (1) 

The EMGs of thirty trials in each task (relax, flexion or extension) for each subject were 

averaged. (2) Background EMGs (bEMGs) of both agonist and antagonist muscles were 

obtained as average values in the 50 ms time window just before perturbation onset. (3) 
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The averaged EMG was normalized using the bEMG (16), because the level of the bEMG 

affects reflex size (17-19). (4) The normalized background muscle activity (100%) for 

each subject was subtracted from the normalized EMG, which was denoted as “net 

EMG”. (5) The size of each reflex component (M1, M2 or M3) for each subject was 

obtained as the average of the net EMG in each time window (20). (6) Finally, this value 

was averaged for each subject group. 

 

Statistical analysis 

The data were analyzed using a statistical software package (SPSS statistics version 24, 

IBM, U.S.A). To compare the subject’s height between the controls and wrestlers, we 

conducted an unpaired t-test. To compare the frequency of the short latency stretch reflex 

between tasks and groups for both muscles, we conducted a Two-way ANOVA. To 

compare the bEMG, pre contraction torque, and angular velocity between the controls 

and wrestlers, we conducted an unpaired t-test for each muscle (BB/TB) and task 

(relax/flexion or extension). To compare the reflex size between the controls and 

wrestlers, we conducted a Mann-Whitney U test, because some data had non-normal 

distributions for each muscle (BB/TB), task (relax/flexion or extension) and reflex 

section (M1, M2, and M3). To compare differences in the magnitude of the reflex size 

between the relax and flexion/extension tasks, we conducted a Mann-Whitney U test, 

because some data had non-normal distributions for each muscle (BB/TB) and reflex 

section (M1, M2, and M3) using the average of all subjects. Significant differences were 

recognized at p < 0.05 in all cases. 

 

 

ACCEPTED



 

Results 

EMG and kinematic pattern during the tasks 

There was no significant difference in height between the control group and the wrestler 

group (p = 0.224, r = 0.280). There was no significant difference in the frequency of 

occurrence of a short latency stretch reflex between tasks and groups in either muscle 

(TB interaction: F (1, 19) = 0.239, p = 0.630; BB Interaction: F (1, 19) = 0.500, p = 

0.825) (Table 1). Figure 2 shows the rectified/averaged EMG waveforms in TB as well as 

the trajectories of elbow angle after flexion perturbation for a single subject. In the 

extension and relax tasks, the perturbation was given while the subject maintained a 

weak TB contraction. After this perturbation, multiple reflex components were observed 

in the TB EMG. Under the perturbation tasks (e.g. relax and contraction tasks), when 

comparing the control and wrestler groups, there were no significant differences in 

bEMG activity, pre-contraction torque, or angular velocities (Table 2).  

 

TB stretch reflex induced by flexion perturbation 

Figure 3 shows the grand averaged waveforms of elbow angle displacement and  net 

EMG for TB in the control (n = 11) and wrestler groups (n = 10) for the flexion 

perturbation task. After flexion perturbation of the elbow joint,  clear reflex components 

were elicited at latencies around 20 ms (M1) and 50 ms (M2). Although M1 magnitudes 

did not differ between contraction and relax tasks (p = 0.320, r = -0.15), marked 

differences in M2 (p < 0.001, r = -0.71) and M3 (p < 0.001, r = -0.81) amplitude were 

observed between the extension and relax tasks. As for the difference between subject  

groups, peak amplitude of M2 for the relax task in the wrestler group was smaller than 

that of the control group (p = 0.035, r = -0.46). In contrast, the later components, at about 
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80 ms from the perturbation (M3) of the extension task in the wrester group, were 

enhanced as compared to the control group (p = 0.020, r = -0.51). M3 components were 

not generated in the relax task in either subject group.  

 

Figure 4 shows the amplitudes of the three reflex components for TB. In the relax task 

(Fig. 4a), there was no significant difference between the control group and the wrestler 

group in either the M1 (p = 0.573, r = -0.12) or M3 (p = 0.139, r = -0.32) components. 

However, M2 amplitudes in the wrestler group were significantly smaller than in the 

control group (p = 0.035, r = -0.46). Interestingly, for the extension task (Fig. 4b), M3 

amplitudes in the wrestler group was significantly larger than in the control group (p = 

0.020, r = -0.51). In contrast, there was no significant difference between the control 

group and the wrestler group for M1 (p = 0.159, r = -0.31) or M2 (p = 0.833, r = -0.05) 

amplitudes. 

 

BB stretch reflex induced by extension perturbation 

Figure 5 shows the grand averaged waveforms for elbow angle displacement and the net 

EMG of BB for the control and wrestler groups of the extension perturbation task. After 

extension perturbation of the elbow joint, M1 did not differ between flexion and relax 

tasks (p = 0.538, r = -0.10), nor between the control and wrestler groups (relax: p = 0.526, 

r = -0.14, flexion: p = 0.260, r = -0.25). M2 (p < 0.001, r = -0.57) and M3 (p < 0.001, r = 

-0.78) were different between the two tasks. However, there was no significant difference 

between the control group and wrestler group in any of the components or tasks (relax = 

Fig. 6a; M2: p = 0.526, r = -0.14, M3: p = 0.944, r = -0.02, flexion = Fig. 6b; M2: p = 

0.673, r = -0.09, M3: p = 0.181, r = -0.29). 
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Discussion  

One of the main findings of the present study was that the magnitude of the stretch 

reflex response in the M2 and M3 components for TB differed between wrestlers and 

controls. When we made the EMG measurements at the MVC of elbow flexion or 

extension, only slight activity was observed from the electrodes over the antagonist. 

Thus, although we cannot deny the possibility that crosstalk from other muscles occurred, 

we believe that its influence on the results was minimal or nonexistent. The degree of 

modulation of the stretch reflex response depends upon the velocity of the perturbation 

(21) and activity level of the background EMG (17-19). In the present study, we 

attempted to keep these factors as constant as possible. In fact, bEMG activity and 

angular velocity of the perturbation were not significantly different between the two 

groups (Table 2). Thus, the difference in stretch reflex magnitudes could not be attributed 

to differences in these parameters during the tasks of both groups. As a result, this 

protocol can steadily elicit reflexes in both muscles of the two groups (Table1). Thus, the 

amplitude and angular velocity of the perturbation were large enough to elicit the stretch 

reflex. 

 

Moreover, modulation of the long latency components can be altered by task (6-8). In 

this study, the participants conducted two tasks, contracting or relaxing the target muscle 

in response to the perturbation as soon as possible once they felt the perturbation. When 

the participants were instructed to resist the perturbation, the long latency component (= 

M2 and M3) was greater than the relax task, while a short latency component (= M1) did 

not differ between the tasks (Fig. 3 and Fig. 5). This result is in line with previous studies 

in that the long latency component was affected by the task instruction (6-8), which 

ACCEPTED



 

would be related to the change of corticospinal excitability at least in part (21). This 

confirms that the participants performed the tasks correctly.  

 

Neurological considerations 

In this study, for BB, there were no significant differences between the control and the 

wrestler groups for any of the reflex components. On the other hand, there were 

significant differences between the groups of the M2 and M3 components for TB. 

However, there was no difference in the M1 component. There are several hypotheses 

about the reflex arc which is involved in the long latency component, for, example, a 

polysynaptic spinal reflex (22), input from supraspinal levels (10), and being generated 

via signals from non-muscular proprioceptors (23). One possibility for the difference in 

the long latency components between the groups might be that it reflects the 

characteristics of wrestling training and motor capability that top level wrestlers 

necessarily possess. The stretch reflex is made up of short-latency and long-latency 

components. The former is a monosynaptic reflex which occurs at the spinal level, while 

the latter is considered to involve a spinal polysynaptic reflex with potential inputs via 

supraspinal arcs (4, 5). Matthews et al., (1990) measured the stretch reflex of hand 

muscles in patients with the Klippel-Feil syndrome. The patients had “axons descending 

from neurons in the motor cortex unusually bifurcate and make connections to 

homologous motor neurons on both sides of the body.” (5, 24). They observed both long 

and short latency components in the muscle which was stretched, as in normal subjects. 

Furthermore, they observed only the long latency component in the contralateral muscle  

in the patients. This result strongly suggests that the long latency component involves a 

response via the cortex. Moreover, utilizing transcranial magnetic stimulation Lewis et 
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al., (2004) indicated that cortical excitation increased with a timing that suggested a long 

latency component (25).   

 

The ability to anticipate an opponent’s action and tactics are important in combat 

sports (26). In wrestling, the competitors engage in a very small area, so they have to 

react quickly to any unpredictable perturbation. Wrestlers need to pay close attention to 

various situations, such as the opponent’s hand movement or a postural shi ft that 

indicates a leg attack. Depending on the situation, they have to resist or relax the arm 

muscles that are gripping the opponent. In this study, we observed different reflex 

responses between wrestlers and controls in the long latency component which would 

thus be associated with cortical excitation (5, 25). This would indicate that wrestlers had 

specific characteristics in the modulation of cortical excitation. In line with this result, 

fencers showed characteristic cortical activity in the event-related potential (ERP) seen 

during a go/no-go task (27). Before the go/no-go stimulus was delivered, fencers showed 

higher cortical activity, which is related to motor preparation and attentional control, 

than did the novices. Additionally, Kendo competitors, who are required to handle their 

sword in a delicate manner, had a higher ERP than control subjects when they needed to 

adjust grip strength as quickly and accurately as possible to obtain the desired target 

force (28). These examples support the concept that long term sport training can enhance 

motor-related cortical activity in a way appropriate to each sport. Likewise, differences 

between wrestlers and controls in the long latency reflex component would thus reflect 

the specific characteristics of the cortical excitation system found in high level wrestlers. 

However, in this study, we only measured EMGs, so we could not identify which factors 

caused the difference in the reflex between wrestlers and the control subjects who 

ACCEPTED



 

exercised sparingly. The subject’s height was not different between the groups and, thus, 

it is unlikely that the difference in reflex response was due to a difference in height. 

Forgaard et al., (29) showed that the long latency component can be affected by a 

voluntary reaction; that is, M3 may partly involve voluntary input. A previous study 

showed that the latency of a voluntary reaction is 100 ms (30). Thus, dealing only with 

the present results, it is possible that the faster reaction time of the wrestlers was caused 

a difference in M3 between the groups. In future studies, we need to investigate what 

factors change the wrestlers’ M3 component in more detail.  

 

Previous studies on the stretch reflex in athletes have focused mainly on the short 

latency stretch reflex (11-13). These studies revealed that the short latency stretch reflex 

of lower limbs can be suppressed in dancers (11, 12) or enhanced in swimmers (13), 

although without any specific directive on how to respond to a perturbation. Thus, 

modulation of the short latency reflex in those specific athletic groups could be attributed 

to a long duration of exercise involving specific postural or gravitational situations 

encountered in ballet or swimming. In this study, wrestlers showed dynamic changes 

(enhancement or suppression) in the long latency stretch reflex (M2 and M3 components 

in TB) in a situation-specific manner, while there was no change in the short latency 

stretch reflex (M1 component). The latter may reflect the fact that the “automatic” 

property of M1 is unsuitable for situation-specific modulation. 

 

Functional implications 

Difference in reflex activities between the wrestlers and controls might reflect the 

characteristics of wrestling training and/or the techniques that wrestlers are required to 
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master in order to succeed in matches. Both contraction and relaxation are important 

action repertoires in actual wrestling matches, in which perturbation is frequently applied 

to one’s upper limbs by an opponent (31). For example, when a wrestler has to respond to 

an opponent’s leg attack and/or set up, just countering it with an intentional voluntary 

reaction is too late. Thus, wrestlers need to develop involuntary reflexes to deal with the 

opponent’s actions. Interestingly, sometimes it is important for wrestlers to not 

automatically react to an opponent’s attack. Also, in some cases, distancing themselves 

from their opponent can be an important factor for success in wrestling (32). In other 

cases, they may have to close the distance, or maintain an optimal distance. Thus, 

wrestlers’ reflexes need to be altered in a situation-specific manner. In addition, when 

the protagonists are pushing each other back and forth, they may need to absorb the 

opponent’s balance. TB has a role in absorbing the pressure (33). Therefore, the ability to 

change the response to a disturbance generated by an opponent depends on the particular 

situation and is very important for success in wrestling (26). To execute these complex 

actions involuntarily, and thus very rapidly, modulation of reflex activities (M2 and M3) 

is essential. Since the control group was not accustomed to reacting to reacting to 

unpredictable perturbations, modulation of their reflexes would be expected to be smaller 

than those of the wrestlers. 

 

In this study the wrestlers showed a characteristic, unique response only in TB, and not 

in BB. As noted above, the major role of TB is to respond defensively to an unexpected 

and sudden action of the opponent such as setting up for a leg attack. Thus, the best TB 

response should be involuntary and very quick. On the other hand, the role of BB is 

mainly to pull an opponent’s arm or leg when trying to execute an attack. This mainly 
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involves voluntary movements and reflexes likely play a minor role. Thus, the 

contrasting roles of TB and BB might have led to a divergent modulation of M2/M3 

responses that are specific to wrestlers. 

 

Conclusion 

The present study analyzed the characteristics of the upper limb stretch reflex in 

wrestlers. The wrestlers exhibited a modulation of the long latency reflex components, 

but not the short-latency portion. This was done in a task-dependent manner. It involved 

not only enhancement but also suppression. It was suggested that the responses seen 

would aid wrestlers by modulating the gain of the reflex so as to respond to an 

unpredictable perturbation as quickly and adequately as possible. Interestingly, 

differences between the wrestlers and control group in the long latency reflex component 

were observed only in TB and not in BB. This suggests that the changes observed are 

related to the special functional role of TB in wrestling.  Wrestlers have specific 

characteristics of the long latency stretch reflex for TB, and these reflexes have been 

altered in a situation-specific manner. This study will provide useful information for 

coaches and athletes from a new perspective. Moreover, these findings will help 

wrestling coaches and athletes make plans for training, practices, and match strategies.  
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Figure legend 

 

Fig. 1. Experimental set up for delivering a perturbation to the right arm with a 

dynamometer. 

 

Fig. 2. A representative response of a control subject’s averaged joint angle and 

full-wave rectified and averaged EMG activity during the flexion perturbation task. The 

top and bottom panels indicate elbow angle and the triceps brachii (TB) EMG, 

respectively. The black and blue lines show the extension task and relax task, 

respectively. 

 

Fig. 3. The averaged net EMG of the TB for each group. Zero on the horizontal axis 

(dashed line) shows the start of the perturbation. The upper trace depicts change of elbow 

angle and the lower trace shows muscle activity for each group. The black line represents 

the wrestler group and the grey line represents the control group. The solid line 

represents the extension task while the dotted line represents the relax task.  

 

Fig. 4. The magnitude of the average of net EMG activity for TB. Left graphs (a) show 

the result of the relax task and right graphs (b) show the result of the ex tension task. 

There was significant difference in the relax task in M2 section and in the extension task 

in M3 section between groups (*p < 0.05). White bars and gray bars represent the 

average of net EMG activity of the control group and the wrestler group, respectively. 

 

Fig. 5. The averaged net EMG of the BB for each group. Zero of the horizontal axis 
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(dashed line) indicates the start of perturbation. The upper trace shows the change of 

elbow angle and the lower trace shows muscle activity for each group. The black line 

represents the wrestler group and the grey line represents the control group. The solid 

line represents the flexion task and the dotted line represents the relax task.  

 

Fig. 6. Size of the average of net EMG activity for BB. Left graphs (a) show the result of 

the relax task, and right graphs (b) show the result of the flexion task. White bars and 

gray bars represent the average of net EMG activity of the control group and the wrestler 

group, respectively. 
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Figure 1 

 

 

  ACCEPTED



 

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Table 1 The frequency of short latency stretch reflex in each group, task, and muscle. 

  
Control Wrestler 

Muscle Task Average (%) Average (%) 

TB 

Relax 94.2±6.0 96.7±4.5 

Extension 94.8±8.0 98.3±2.4 

BB 

Relax 89.4±8.5 86.7±6.1 

Flexion 90.6±5.4 88.7±7.6 
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Table 2 The value of bEMG, precontraction torque, and angular velocity of perturbation. 

Muscle Task 
bEMG  

(%MVC) 

Torque 

(%MVC) 

Angular velocity 

(deg/s) 

  
control wrestler p-value control wrestler p-value control wrestler p-value 

TB 

Relax 8.96±1.9 7.78±1.8 0.153 9.54±1.9 9.11±0.6 0.500 26.6±0.3 26.4±0.6 0.231 

Extension 8.68±1.4 7.67±1.9 0.188 9.51±1.8 9.05±0.8 0.474 26.5±0.3 26.4±0.3 0.253 

BB 

Relax 7.41±4.5 4.94±1.7 0.111 9.31±1.1 9.56±0.6 0.546 25.8±0.4 25.5±0.5 0.090 

Flexion 7.61±4.8 4.91±1.5 0.099 9.54±1.1 9.71±0.6 0.670 25.7±0.4 25.5±0.5 0.382 
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