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Abstract 

Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on 

macrophages and microglia that senses and responds to disease associated signals to regulate 

the phenotype of these innate immune cells. The TREM2 signaling pathway has been 

implicated in a variety of diseases ranging from neurodegeneration in the central nervous 
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system to metabolic disease in the periphery. We report here that TREM2 is a thyroid hormone 

regulated gene and its expression in macrophages and microglia is stimulated by thyroid 

hormone.  Both endogenous thyroid hormone and sobetirome, a synthetic thyroid hormone 

agonist drug, suppress pro-inflammatory cytokine production from myeloid cells including 

macrophages that have been treated with the SARS-CoV-2 spike protein which produces a 

strong, pro-inflammatory phenotype. Thyroid hormone agonism was also found to induce 

phagocytic behavior in microglia, a phenotype consistent with activation of the TREM2 pathway.  

The thyroid hormone antagonist NH-3 blocks the anti-inflammatory effects of thyroid hormone 

agonists and suppresses microglia phagocytosis. Finally, in a murine experimental autoimmune 

encephalomyelitis (EAE) multiple sclerosis model, treatment with Sob-AM2, a CNS-penetrating 

sobetirome prodrug, results in increased Trem2 expression in disease lesion resident myeloid 

cells which correlates with therapeutic benefit in the EAE clinical score and reduced damage to 

myelin. Our findings represent the first report of endocrine regulation of TREM2 and provide a 

unique opportunity to drug the TREM2 signaling pathway with orally active small molecule 

therapeutic agents. 

Introduction 

Thyroid hormone (TH) provides essential regulation of many critical processes in 

vertebrate biology.1 Thyroxine (T4) is the predominant form of TH produced in and secreted 

from the thyroid gland, but its deiodinated metabolite 3,5,3’-triiodothyronine (T3) is the active 

form of TH that binds thyroid hormone receptors (TR) with high affinity. TRs bind to regulatory 

DNA sequences called thyroid hormone response elements (TRE) in the promoter regions of 

TH regulated genes, and T3 binding to TR in the cell nucleus activates TR to either stimulate or 

suppress transcription of these genes. Through such regulation of target genes TH action plays 

an important developmental role in the central nervous system (CNS) and periphery, as well as 

regulation of metabolism and homeostasis in many organs and cell types in the periphery. It is 
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known that TH exerts effects on the immune system, in particular the innate immune cells, such 

as TR-expressing tissue-resident macrophages and microglia in the CNS; however, the 

mechanistic basis of TH-dependent effects on innate immunity is not well understood.2 

Triggering receptor expressed on myeloid cells (TREM2) has emerged recently as a 

major regulator of the innate immune response and an important new therapeutic target 

connected to a number of diseases in the CNS and periphery.3 Expressed as a cell surface 

protein on macrophages and microglia, activation of TREM2 initiates a signal transduction 

cascade that triggers a switch in these cells away from a pro-inflammatory phenotype to an anti-

inflammatory, phagocytic, restorative phenotype. Homozygous loss of function mutations in 

TREM2, or DAP12, a molecule that interacts with TREM2 to facilitate TREM2 signaling, causes 

Nasu-Hakola disease, a rare inborn error resulting in premature dementia, loss of myelin, and 

bone abnormalities.4 In addition, heterozygous TREM2 missense variants have been shown to 

be risk factors for common neurodegenerative diseases such as Alzheimer’s disease (AD), 

frontotemporal dementia, Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS).3, 5-6 

In the periphery,TREM2 expressed on circulating monocytes and tissue-resident macrophages 

has been implicated to play a beneficial role in controlling/resolving obesity/excess adiposity,7 

non-alcoholic steatohepatitis (NASH),8 and hepatocellular carcinoma.9 In most of these 

diseases it appears that activation of the TREM2 pathway by increasing surface expression of 

TREM2 on macrophages and/or microglia and/or activating TREM2 with an agonist ligand is 

likely to be therapeutically beneficial. One of the main obstacles to targeting TREM2 for 

therapeutic benefit is that it falls into the category of “undruggable” or at least difficult to drug 

targets. This results from the nature of the ligands that bind to and activate TREM2. The general 

consensus is that TREM2 does not bind to a single, discrete ligand, but instead binds and is 

activated by various proteins, lipids, and other debris arising from damaged cells.10  

Here we report the discovery that Trem2 is a positively regulated thyroid hormone target 

gene. TREM2 expression and signaling through the TREM2 pathway is increased both in vitro 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


4 

 

and in vivo by treatment with T3, or the peripheral and CNS-penetrating thyromimetic agents 

sobetirome and Sob-AM2, respectively. This discovery effectively renders TREM2 “druggable” 

by systemically dosed small molecules with sufficient drug-like properties for targeting the 

TREM2 pathway in either the CNS or periphery. 

Results 

Our interest in TREM2 was initiated from reports that microglia and macrophages 

increased phagocytic capacity upon treatment with the retinoid X receptor (RXR) agonist 

bexarotene,11 and treatment of TREM2-expressing myeloid lineage cells with other nuclear 

receptor agonists including PPAR and LXR also stimulated phagocytosis.12 Based on 

comprehensive genome-wide studies in mice, it has been reported that the Trem2 gene is 

regulated by an RXR-dependent enhancer.13 Because a major biological function of RXR is to 

form heterodimers at positively-regulated response elements with thyroid hormone receptor 

(TR) and other members of nuclear receptor family including PPAR and LXR, we examined this 

enhancer from murine macrophages. We found the following sequence embedded in the 

putative RXR enhancer of Trem2—AGGGAG-GTTA-AGGTCA—which is a canonical DR4 

thyroid hormone response element (TRE) (Fig.1).  The AGGGAG is a consensus half-site for 

binding RXR, and AGGTCA is a consensus half-site for TR; the four intervening nucleotides 

(GTTA) make this a positively regulated DR4 TRE which should increase TREM2 expression 

upon binding thyroid hormone agonists to TR (Fig. 1a).  

We verified that TREM2 expression is indeed positively regulated by thyroid hormone in 

both murine (Fig. 2a) and human (Fig. 2b) microglia, murine macrophages (Fig. 2c), and in 

mouse brain homogenate (Fig. 2d). Sobetirome is a synthetic T3 agonist drug that has a larger 

therapeutic index (TI) than T3, and Sob-AM2 is a prodrug of sobetirome that greatly facilitates 

delivery of sobetirome to the CNS from a systemic dose (Fig. 1b).14-16 We examined the ability 

of these agents to drive Trem2 expression and found that sobetirome stimulates Trem2 
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expression in mouse and human microglia (Fig. 2a,b), and hypothyroid mice treated with Sob-

AM2 (i.p.) had increased Trem2 expressed in brain compared to hypothyroid control (Fig. 2d). 

To verify the involvement of TR in the observed TREM2 regulation by TH, the TR antagonist 

NH-3 (Fig. 1b) was employed in combination with T3.17 NH-3 was not only found to block T3 

induction of Trem2 expression in murine microglia, but to suppress Trem2 expression 

significantly below the basal level observed in vehicle treated cells (Fig. 2a). As mentioned 

above, activation of the TREM2 signaling pathway induces both a pro-phagocytic and an anti-

inflammatory response in monocytes and macrophages. We found that expression of the 

phagocytic marker Cd68 was increased in microglia by treatment with either T3 or sobetirome, 

and the T3 effect was blocked by the TR antagonist NH-3 (Fig. 2e).  In addition, expression of 

the pro-inflammatory cytokine interleukin-1β (IL-1β) was significantly decreased by T3 and 

sobetirome in mouse primary microglia (Fig. 2f).  

We next examined thyroid hormone regulated gene expression of the pro-inflammatory 

cytokine interleukin-6 (IL-6) to test the breadth of anti-inflammatory effects that would expected 

by thyromimetic stimulation of the TREM2 pathway.  We tested whether IL-6 expression 

stimulated from an inflammatory challenge in macrophages could be suppressed by 

thyromimetic stimulation of TREM2 expression. (Fig. 3). It has been shown that macrophages 

incubated with coronavirus (SARS-CoV and SARS-CoV-2) spike S1 protein induce the 

production of pro-inflammatory cytokines including IL-6.18-21 RAW 264.7 cells stimulated with 

SARS-CoV-2 spike S1 protein induced a surge in IL-6 expression compared to unstimulated 

cells, and this response was significantly attenuated upon treatment with T3 (Fig. 3a). T3 

treatment also significantly suppressed Il6 (Fig. 3b) and Il1b expression (Fig. 3c) in mouse 

primary lung macrophages stimulated with S1 protein. Concomitant with suppression of these 

pro-inflammatory cytokines, we observed stimulation of Trem2 expression by T3 in primary lung 

macrophages (Fig. 3d).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


6 

 

The finding that TH agonists upregulate both TREM2 and CD68 expression predicts that 

phagocytosis will be stimulated by these drugs. This prompted us to directly examine 

phagocytosis, which is an established consequence of TREM2 signaling pathway activation in 

myeloid lineage cells. In order to ascertain the phagocytic response upon drug treatment, 

mouse primary microglia were cultured on glass coverslips and treated with drugs in the 

presence of fluorescent beads used as a phagocytosis substrate that can be monitored and 

quantified by fluorescence microscopy.22 Cellular bead uptake was evaluated via 3D volume 

visualization down orthogonal axes to confirm complete entrapment as shown in Fig. 4g. 

Microscopy of cells stained for CD11b microglial expression showed that T3 and sobetirome 

treatment significantly increased phagocytosis compared to vehicle control as judged by the 

number of beads engulfed by the microglia (Fig. 4a-c’). Conversely, the T3 antagonist NH-3 

treatment was found to suppress phagocytic uptake of beads compared to vehicle-treated 

control (Fig. 4d,d’). Quantification of these microscopy data demonstrate that TH agonists 

stimulate, while TH antagonists block, phagocytosis in microglia (Fig. 4h). These results 

corroborate existing literature reporting augmented phagocytosis upon T3 treatment in 

macrophages.23   

We have shown previously that CNS-penetrating thyromimetics stimulate myelin repair 

in different murine models of demyelination.24 One such model is experimental autoimmune 

encephalomyelitis (EAE), which is a demyelination model stimulated by an autoimmune attack 

that has parallels to the human disease multiple sclerosis.  The autoimmune insult in EAE 

produces demyelination and axonal degeneration, particularly in the lumbar spinal cord region in 

mice.  We have shown that in mice with EAE, T3, sobetirome, and Sob-AM2 treatment reduces 

clinical disease scores and demyelination and axonal degeneration within the spinal cord.25 

Thus, the question arises as to whether this results in part from thyromimetic stimulation of the 

TREM2 signaling pathway in microglia and macrophages to induce phagocytosis of myelin 
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debris, which is known to be a prerequisite to myelin repair.26 EAE was induced in C57Bl/6 mice 

within a 21-day treatment regimen, where mice were administered once daily injections of 

vehicle, T3, or Sob-AM2 starting 7 days after immunization before disease onset and continuing 

until day 21 when euthanasia and tissue collection occurred. Spinal cord sections co-stained 

with DAPI and TREM2 antibodies in the dorsal white matter of the lumbar section of spinal 

cords were analyzed for TREM2 content (Fig. 5a-c). Compared to vehicle, TREM2 protein 

expression was increased approximately four-fold and three-fold by T3 and Sob-AM2 treatment, 

respectively (Fig. 5d). Immunohistochemical analysis of this same spinal cord region showed 

that the population of CD11b positive cells, which correspond to microglia and/or macrophages, 

were not statistically different between Sob-AM2 treated mice and vehicle (see Supplementary 

Fig. S6).25 This indicates that the increase in TREM2 staining was not a result of increased 

myeloid cells in the spinal cord lesions. This increase in TREM2 protein expression observed by 

immunohistochemical analysis of spinal cord sections was confirmed by ELISA of spinal cord 

homogenate from unprocessed/unstained samples of the same groups (Fig. 5e). Improvement 

in EAE clinical scores (Fig. 5f) was observed in the mouse cohorts which were stained and 

correlates with augmented TREM2 expression.  

Discussion 

 TREM2 has emerged as a central node in the innate immune response governing 

whether myeloid lineage macrophages and microglia have a pro-inflammatory or anti-

inflammatory, restorative, healing phenotype in response to pathological insults.  Here we report 

the discovery that TREM2 is a direct target for regulation by thyroid hormone. The promoter 

region of the TREM2 gene contains a consensus DR4-TRE which presents binding sites for the 

RXR-TR heterodimer that stimulates TREM2 expression in response to thyroid hormone 

agonists. We found that TREM2 expression was increased in both microglia and macrophages 

by addition of either T3 or the synthetic T3 analog sobetirome, and this T3 agonist induction of 
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TREM2 was blocked by the T3 antagonist NH-3. We also found that the proinflammatory 

cytokines IL-1β and IL-6 that are downregulated by induction of the TREM2 pathway were 

downregulated by T3 and sobetirome in microglia and macrophages that have been stimulated 

with the pro-inflammatory SARS-CoV-2 spike protein.  Activation of the TREM2 pathway 

induces phagocytosis in these myeloid cells and T3 and sobetirome were found to induce 

phagocytosis in microglia whereas the T3 antagonist NH-3 blocked phagocytosis. Finally using 

the murine EAE model we showed that demyelinated regions of the spinal cord from mice 

treated with Sob-AM2, a CNS-penetrating prodrug of sobetirome, contained more TREM2 

positive cells than control mice. Importantly, mice treated with Sob-AM2 had reduced clinical 

impairment, demyelination and axonal degeneration, suggesting that thyromimetic stimulation of 

TREM2 could result in protection in the inflammatory disease EAE. To our knowledge, ours is 

the first report that TREM2, and by extension the TREM2 pathway, is subject to endocrine 

regulation. 

 It has become increasingly apparent that thyroid hormone action plays a role in 

modulating innate immunity.27 Control of intracellular T3 levels in macrophages has been shown 

to be critical for these cells to respond appropriately to inflammatory signals.28-29 In addition, 

thyroid status dictates the degree to which rats respond to an inflammatory insult in which 

hypothyroidism induces increased pro-inflammatory cytokine production while hyperthyroidism 

inhibits this response.30 Administration of T3 blocks NLRP3 inflammasome activation, which 

depends upon NF-kB activation and results in IL-1β production and release, in different models 

of liver injury.31-32 In a model of kidney injury, deletion of the TRα isoforms result in increased 

injury, and isolated macrophages lacking TRα produce excessive levels of IL-1β compared to 

WT control.33 In addition to these examples of driving the transition to an anti-inflammatory 

phenotype in macrophages, TH has also been shown promote phagocytosis in macrophages,23 

a response that we recapitulated here in microglia treated with T3.  Collectively, these myeloid 
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cell observations from both in vitro and in vivo experiments can be explained by thyroid 

hormone activation of the TREM2 pathway. 

 The sequelae of Nasu-Hakola disease provides genetic evidence that functional TREM2 

and its signaling pathway in myeloid cells is essential for a normal, disease-free human 

lifespan.4 Over the past few years it has become increasingly apparent that the biology of the 

TREM2 signaling pathway is more involved in responding to pathological conditions as opposed 

to homeostatic physiology.3 For example, TREM2 is known to play a major role in a disparate 

collection of diseases including neurodegenerative diseases,5, 34 metabolic diseases,7-8 

infectious diseases,35-36 cancer,9, 37-39 and stroke.40 Heterozygous missense mutations in TREM2 

are associated with strong increased risk of developing late onset Alzheimer’s disease (AD),41-42 

and increased cerebrospinal fluid (CSF) levels of the soluble extracellular domain of TREM2 

(sTREM2) has been shown to correlate with less disease severity in AD.43 This suggests that 

increased expression of TREM2 and/or increased signaling through the TREM2 pathway in 

microglia may be therapeutically beneficial in AD. It has also been known for some time that 

decreased thyroid hormone action in the CNS is detrimental while increased thyroid hormone 

action in the CNS correlates with clinical benefit in AD and other diseases of cognitive 

impairment.44-50 Our finding that TREM2 is a thyroid hormone regulated gene whose expression 

is increased by T3 acting on TR in microglia suggests a mechanistic connection between 

elevated levels of T3 in the CNS and clinical benefit in AD and related disorders. The beneficial 

effect of increased T3 in the brain may in part relate to increased stimulation of TREM2 

expression in microglia and increased activity through the TREM2 pathway.  

Another neurodegenerative disease that TREM2 appears associated with is multiple 

sclerosis (MS), an autoimmune disease that causes inflammatory demyelination and 

degeneration of axons in the CNS. Similar to AD, sTREM2 levels in the CSF are elevated in 

both relapsing remitting and primary progressive MS patients compared to CSF from patients 
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with non-inflammatory neurological disease.51 In addition, TREM2-expressing myeloid cells 

have been detected in CSF and in demyelinating lesions upon autopsy from MS subjects.51 

Macrophages and microglia release proinflammatory cytokines and probably contribute to 

demyelination and axonal degeneration in MS. In addition, microglia and macrophages play an 

important role in clearing myelin debris in demyelinating lesions that occur in MS via 

phagocytosis, which is a prerequisite to forming new myelin from mature oligodendrocytes.26 

We have shown previously that the thyroid hormone receptor agonists sobetirome and Sob-

AM2 promote remyelination in murine gliatoxin and genetic models of demyelination, and have 

further shown that like thyroid hormone, these agents stimulate oligodendrogenesis in vitro and 

in vivo.24 Our findings presented here that sobetirome induces TREM2 expression through TR 

activation in myeloid cells which stimulates phagocytosis in microglia constitutes a second 

beneficial mechanism of action in addition to oligodendrogenesis for thyroid hormone agonists 

as myelin repair agents. 

This leads to the question of how the TREM2 pathway can be best engaged by drugs for 

therapeutic benefit. One approach would be to develop TREM2 agonists or antagonists that 

engage TREM2 directly to activate or block downstream signaling. A problem with this approach 

is that endogenous ligands for TREM2 appear to be a heterogenous collection of molecules 

associated with cell damage as opposed to a discrete metabolite or protein which is more 

amenable to drug discovery approaches. Some success has been reported with anti-TREM2 

antibodies that act as agonists upon TREM2 binding,52-53 but the challenge with biologic agents 

such as antibodies is their intrinsic limits on distribution to different tissues and compartments 

affected by disease. For example, distribution from blood to the CNS is difficult with antibodies, 

and many of the diseases that would benefit from TREM2 engagement are localized in the 

CNS. Our findings that TREM2 is a thyroid hormone regulated gene and that TREM2 

expression and the TREM2 pathway can be activated or blocked by T3 agonists or antagonists 
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opens the door to a therapeutic approach based on orally active small molecules. A number of 

studies have demonstrated that increased expression of TREM2 in microglia and/or 

macrophages alone serves to activate the TREM2 signaling pathway,43, 54-56 and this is 

consistent with our observations that T3 agonists increase TREM2 expression and activate the 

TREM2 pathway, whereas the T3 antagonist NH-3 blocks TREM2 expression and downstream 

signaling such as that involved in phagocytosis. The T3 agonist sobetirome would be 

representative of a drug candidate designed to stimulate the TREM2 pathway in the periphery 

for therapeutic benefit. Sobetirome therapy would be indicated, for example, for diseases of the 

liver that may benefit from activation of TREM2 such as NASH,8 immune-mediated damage 

following liver injury,57 and hepatocellular carcinoma.9 Alternatively, for peripheral diseases that 

may benefit from temporary blockade of the TREM2 pathway such as early in respiratory viral 

infection35 and certain cancers in which a robust immune response would be beneficial,38-39 the 

T3 antagonist NH-3 could be employed.  However, during later stages of viral infection when 

cytokine storm can present, as can occur in COVID-19 critical illness, activation of the TREM2 

pathway by sobetirome to drive macrophages to transition to an anti-inflammatory, resolving 

phenotype would be more appropriate for therapeutic benefit.58-59 The CNS-penetrating 

sobetirome prodrug Sob-AM2 would be the appropriate agent for AD, MS, and other 

neurodegenerative diseases for which therapeutic benefit would potentially come from TREM2 

activation in the CNS while minimizing TREM2 activation and other thyromimetic activity in the 

periphery. And finally, should there be an application for blocking TREM2 activation in the CNS, 

the N-methyl amide prodrug of antagonist NH-3 provides enhanced distribution of NH-3 to the 

CNS while minimizing T3 antagonism in the periphery.60 

In conclusion, we have found that TREM2 is a direct target gene of thyroid hormone, 

making TREM2 and its signaling pathway in macrophages and microglia subject to regulation by 

a major endocrine system. To our knowledge ours is the first report of endogenous regulation of 
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TREM2 at the level of gene expression, and it is likely to have important physiological and 

pathophysiological ramifications for TREM2-mediated innate immunity. This finding also 

represents a path toward developing small molecule therapeutics that either activate or 

suppress the TREM2 signaling pathway selectively in the CNS or periphery. The ability to “drug” 

TREM2 and its pathway with small molecule agents possessing good, drug-like properties 

would be an important medical advance for the diverse collection of diseases that intersect with 

TREM2 biology. 

Methods 

Reagents. T3 was purchased and used as received from Sigma-Aldrich. Sobetirome, Sob-AM2, 

and NH-3 were prepared as described in the literature.14, 61-62 Vehicle and drug stocks for cell 

culture experiments were prepared in dimethyl sulfoxide (DMSO). For in vivo experiments, all 

drugs were prepared at concentrations suitable for an i.p. injection of 150 μL per 26-g mouse. 

T3 drug stocks were prepared in 8 mM NaOH in saline and sobetirome and Sob-AM2 drug 

stocks were prepared in 50% DMSO in saline solutions. Vehicle stock solutions of 50% DMSO 

in saline (vehicle for sobetirome and Sob-AM2) or 8 mM NaOH in saline (T3 vehicle) were 

prepared and administered within the appropriate experiments. Drug concentrations are 

described in the figure legends for individual experiments. SARS-CoV-2 S1 protein was 

purchased from ACROBiosystems (#S1N-C52H3) and used as received. Information on other 

specific reagents is listed below within the Methods description for that particular experiment.  

Study approval and animals. All experiments were approved by the IACUC committee at the VA 

Portland Health Care System (VAPORHCS) or OHSU. Wild-type C57BL/6 mice, aged 8 to 10 

weeks, were purchased from Jackson Laboratory and housed in climate-controlled rooms with a 

12-hour light/12-hour dark cycle with ad libitum access to food and water. Mice were made 

hypothyroid by receiving 0.1% (w/v) methimazole and 0.2% (w/v) potassium perchlorate 

(Sigma-Aldrich) in drinking water for 2 weeks.63  
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Cell culture. Mouse (ScienCell, #M1900-57) and human primary (Celprogen, #37089-01) 

microglia cells were purchased from and cultured according to the manufacturer’s protocol. 

RAW 264.7 cells were purchased fromm ATCC (ATCC® TIB-71™) and cultured according to the 

manufacturer’s protocol in DMEM containing 10% FBS. Mouse primary lung macrophages were 

purchased from CellBiologics (#C57-2313F) and cultured according to the manufacturer’s 

protocol in DMEM containing 10% FBS. All cells were incubated at 37°C in the presence of 5% 

CO2. For experiments, cells were plated in either 6, 12, or 24 well plates at ~2 x 105 cells per 

well.  

RT-qPCR. All cell cultures were serum-starved for 24 h before drug treatment, then treated with 

either DMSO vehicle, 10 nM T3, 1 μM sobetirome, or 2 μM NH-3 in the presence of 10 nM T3 

for 24 h before RNA extraction. For mouse whole brain data, male C57Bl/6 mice (8-10 weeks 

old) were made hypothyroid according to standard procedure.63 Mouse cohorts were 

administered DMSO vehicle, 3.05 μmol/kg T3, or 30.5 μmol/kg Sob-AM2 and euthanized 6 h 

post-injection. Brains were immediately stored in 10-fold excess RNALater (Thermo Fisher) for 

RNA preservation. RNA was purified using either the RNeasy Mini Kit (Qiagen) or the PureLink 

RNA Mini kit with TRIzol extractions (Life Technologies) and quantified using a NanoDrop. PCR 

reactions were run on 1 μg of RNA per sample to afford cDNA using the QuantiTect Reverse 

Transcription kit (Qiagen). RT-qPCR was performed on an Applied Biosciences 7500 Real-Time 

PCR system following the QuantiTect SYBR Green PCR kit protocols (Qiagen) using 

Cyclophilin A (Ppia) and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as 

housekeeping genes for mouse and human samples, respectively. Samples were run with 

technical duplicates and results were analyzed using the ΔΔCt relative quantification method.64  

Mouse primers: f-Ppia 5′-AGGGTGGTGACTTTACACGC-3′, r-Ppia 5′-

CTTGCCATCCAGCCATTCAG-3′; f-Trem2 5’-GACCTCTCCACCAGTTTCTCC-3’, r-Trem2 5’-

TACATGACACCCTCAAGGACTG-3’; f-Cd68 5’-TTCTGCTGTGGAAATGCAAG-3’, r-Cd68 5’-
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GAGAAACATGGCCCGAAGT-3’; f-Il1b 5′-TCCAGGATGAGGACATGAGCAC-3′, r-Il1b 5′-

GAACGTCACACACCAGCAGGTTA-3′, f-Il6 5’-GTTGCCTTCTTGGGACTGATG-3’, r-Il6 5’-

CATACAATCAGAATTGCCATTGC-3’.54, 65-68 

Human primers: f-GAPDH 5’-CAGGAGGCATTGCTGATGAT-3’, r-GAPDH 5’-

GAAGGCTGGGGCTCATTT-3’; f-TREM2 5’-ACAGAAGCCAGGGACACATC-3’, r-TREM2 5’-

CCTCCCATCATCTTCCTTCA-3’.69-70 

Phagocytosis assay and immunocytochemistry. Mouse primary microglia cells were plated onto 

poly-L-lysine coated glass coverslips at ~5 x 104 cells per coverslip seated within a 12 well plate 

(3 coverslips per group, 4 groups total). Cells were treated with DMSO vehicle, 10 nM T3, 1 μM 

sobetirome, or 2 μM NH-3 in the presence of 10 nM T3 for 24 h before the addition of 3 μL of a 

fluorescent latex bead suspension (L0280, Sigma) in complete DMEM in a ~100:1 bead-to-cell 

ratio for 2 h before the end of the experiment. Each well was then stripped of media, washed 

with PBS, and cells were fixed with 4% paraformaldehyde in PBS for 10 min at room 

temperature. The cells were then permeabilized with PBS containing 0.05% saponin (saponin 

was included in all subsequent incubations and washes) and stained for microglial marker 

CD11b using monoclonal rat anti-mouse CD11b (1:200 dilution, AbD Serotec, #MCA711) in 

conjunction with Alexa Fluor 488-conjugated donkey anti-mouse secondary antibody (1:400 

dilution,Thermo Fisher, A21202). Coverslips were then washed and mounted with ProLong® 

Gold antifade reagent (Life Technologies). Two fields per coverslip were imaged for a total of six 

fields of microglial cells per group imaged with a Zeiss ApoTome.2 at 20x magnification 

collecting z-stack images to verify the entrapment of fluorescent beads within the CD11b-

stained cell field. Images were acquired and processed with ZEN 2 (blue edition) version 3.1 

software (Zeiss), ImageJ/FIJI, and IMARIS software (Bitplane). Blue fluorescent beads were 

colorized to red during image post-processing in IMARIS for ease of visualization.                            
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EAE experiment, histology, and immunofluorescence. Immunization of female C57BL/6 mice 

(The Jackson Laboratory, Bar Harbor, ME, ages 8-10 weeks) with 200 µg of myelin 

oligodendrocyte glycoprotein (MOG) 35-55 (PolyPeptide Laboratories, San Diego, CA) in 

complete Freund’s adjuvant containing 400 µg of Mycobacterium tuberculosis per mouse 

(subcutaneous injection of 0.2ml volume), followed by pertussis toxin (List Biological labs Inc), 

was administered via intraperitoneal (i.p.) injection at day 0 (75ng per mouse) and day 2 (200ng 

per mouse) after immunization. All mice were scored for clinical signs of EAE daily using a 9-

point scale and received one-time daily i.p. injections of vehicle (50% DMSO or 8mM NaOH, 

both in saline) or drug (T3 0.4 mg/kg or Sob-AM2 1 mg/kg) starting at day 7 through euthanasia 

on day 21 post-immunization. Each group contained 6-8 mice and the experiment was repeated 

3 times. At 21 days post-immunization, mice were euthanized with carbon dioxide and spinal 

columns were removed. Columns were immersed in 4% paraformaldehyde (PFA) for 24-48 

hours, then spinal cords were extracted and fixed in a microwave for 1 hour. Free-floating 40 μm 

lateral sections were collected from the lumbar region using a vibratome, then stored in PBS at 

4°C. Tissues were permeabilized with 0.05% Triton X-100 in PBS for 30 minutes, washed in 

PBS, then blocked with 5% donkey serum in PBS for 3 hours. Sections were incubated in 

primary monoclonal anti-TREM2 antibody (EMD Millore, MABN2320, 1:250) in blocking buffer 

overnight at 4°C. Tissues were washed in PBS, then incubated in Alexa Fluor 647-conjugated 

goat anti-rat secondary antibody (Thermo Fisher, A21247, 1:200) and DAPI (1:50000) in PBS 

overnight at 4°C. Sections were washed and mounted on slides using ProLong® Gold antifade 

reagent (Life Technologies) and imaged using Zeiss 780 laser scanning confocal microscope at 

20x. Cells expressing TREM2 were quantified within the region of dorsal white matter. Images 

were acquired and processed with ZEN 2 (blue edition) version 3.1 software (Zeiss), 

ImageJ/FIJI, and IMARIS software (Bitplane). TREM2 was colorized white in ImageJ/FIJI during 

post-processing for ease of visualization. Quantification of TREM2 concentration via ELISA was 
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performed using a TREM2 ELISA kit (Reddot Biotech Inc). following the manufacturer’s 

instructions.  

Statistical analysis. Statistical significance was determined using 1-way ANOVA with Dunnett’s 

post-test or two-tailed, unpaired Student’s t tests between two groups and then plotted together 

graphically as denoted in each figure legend (P < 0.05). For in vivo experiments, there were no 

differences in effects between the different vehicles (8 mM NaOH in saline or 50% DMSO in 

saline), so data from the different vehicles were combined into a single vehicle control group. 

Replicates for each experiment were as stated in the specific figure legend and in the 

corresponding methods. Sample sizes for animal experiments were informed by previous 

literature accounts or from preliminary data to minimize total animal numbers as appropriate. 

Analysis was carried out in GraphPad Prism 8 without further modifications. The ROUT method 

was used to identify and eliminate outliers. Significance level was set to *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001, and ****P ≤ 0.0001. All graphs show mean ± SEM. 

Conflict of interest 

 The authors declare the following competing financial interest(s): S.J.F. and T.S.S. are 

inventors of licensed patent applications claiming central nervous system-penetrating prodrugs 

of nuclear receptor modulators and their uses, including drugs acting on the thyroid hormone 

receptors. T.S.S., D.B., and B.E. are co-founders of Autobahn Therapeutics, and T.S.S. is a 

Senior Advisor to Autobahn Therapeutics. 

Author contributions 

 S.J.F. and T.S.S. conceived of the project and experiments. S.J.F. and H.M. performed 

cell culture experiments and RT-qPCR. S.J.F. performed the phagocytosis assay and 

associated immunocytochemistry and microscopy. G.M., E.P., E.C., and P.C. conducted the 

EAE experiment and tissue procurement. S.J.F. and M.J.D. stained spinal cords and performed 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


17 

 

the associated microscopy and data analysis. S.J.F. synthesized the relevant compounds and 

performed overall data analysis. B.E., B.A.N., and D.B. provided advice on experimental design. 

S.J.F. and T.S.S. wrote the manuscript with input from P.C., B.E., B.A.N., and D.B. 

Acknowledgments 

 This research was supported by NIH grants DK52798 (T.S.S.) and GM133804 (B.A.N.), 

and the National Multiple Sclerosis Society grants RG 5199A4 and RG-1607-25053 to D.B., RG 

5106A1/1 and RG-2001-35775 to B.E., the Race to Erase MS to D.B., the OHSU Laura Fund 

for Innovation in Multiple Sclerosis to D.B. and T.S.S.  We would like to thank the Advanced 

Light Microscopy Core (supported by NIH P30 NS061800) at OHSU for technical assistance. 

 

References 

1. Yen, P. M., Physiological and Molecular Basis of Thyroid Hormone Action. Physiological 

Reviews 2001, 81 (3), 1097-1142. 

2. De Vito, P.; Incerpi, S.; Pedersen, J. Z.; Luly, P.; Davis, F. B.; Davis, P. J., Thyroid 

Hormones as Modulators of Immune Activities at the Cellular Level. Thyroid 2011, 21 (8), 879-

890. 

3. Deczkowska, A.; Weiner, A.; Amit, I., The Physiology, Pathology, and Potential 

Therapeutic Applications of the TREM2 Signaling Pathway. Cell 2020, 181 (6), 1207-1217. 

4. Xing, J.; Titus, A. R.; Humphrey, M. B., The TREM2-DAP12 signaling pathway in Nasu-

Hakola disease: a molecular genetics perspective. Res Rep Biochem 2015, 5, 89-100. 

5. Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, 

L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; Greco, D. J.; Smith, S. T.; Tweet, G.; Humulock, Z.; 

Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; 

Hartmann, K.; Madi, A.; Ulrich, J. D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


18 

 

Lemere, C.; Ikezu, T.; Heppner, F. L.; Litvak, V.; Holtzman, D. M.; Lassmann, H.; Weiner, H. L.; 

Ochando, J.; Haass, C.; Butovsky, O., The TREM2-APOE Pathway Drives the Transcriptional 

Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 2017, 47 (3), 

566-581.e9. 

6. Ulrich, J. D.; Holtzman, D. M., TREM2 Function in Alzheimer’s Disease and 

Neurodegeneration. ACS Chemical Neuroscience 2016, 7 (4), 420-427. 

7. Jaitin, D. A.; Adlung, L.; Thaiss, C. A.; Weiner, A.; Li, B.; Descamps, H.; Lundgren, P.; 

Bleriot, C.; Liu, Z.; Deczkowska, A.; Keren-Shaul, H.; David, E.; Zmora, N.; Eldar, S. M.; 

Lubezky, N.; Shibolet, O.; Hill, D. A.; Lazar, M. A.; Colonna, M.; Ginhoux, F.; Shapiro, H.; Elinav, 

E.; Amit, I., Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-

Dependent Manner. Cell 2019, 178 (3), 686-698.e14. 

8. Xiong, X.; Kuang, H.; Ansari, S.; Liu, T.; Gong, J.; Wang, S.; Zhao, X.-Y.; Ji, Y.; Li, C.; 

Guo, L.; Zhou, L.; Chen, Z.; Leon-Mimila, P.; Chung, M. T.; Kurabayashi, K.; Opp, J.; Campos-

Pérez, F.; Villamil-Ramírez, H.; Canizales-Quinteros, S.; Lyons, R.; Lumeng, C. N.; Zhou, B.; Qi, 

L.; Huertas-Vazquez, A.; Lusis, A. J.; Xu, X. Z. S.; Li, S.; Yu, Y.; Li, J. Z.; Lin, J. D., Landscape 

of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene 

Analysis. Molecular Cell 2019, 75 (3), 644-660.e5. 

9. Tang, W.; Lv, B.; Yang, B.; Chen, Y.; Yuan, F.; Ma, L.; Chen, S.; Zhang, S.; Xia, J., 

TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the PI3K/Akt/β-

catenin pathway. Oncogenesis 2019, 8 (2), 9. 

10. Kober, D. L.; Brett, T. J., TREM2-Ligand Interactions in Health and Disease. Journal of 

Molecular Biology 2017, 429 (11), 1607-1629. 

11. Natrajan, M. S.; de la Fuente, A. G.; Crawford, A. H.; Linehan, E.; Nuñez, V.; Johnson, 

K. R.; Wu, T.; Fitzgerald, D. C.; Ricote, M.; Bielekova, B.; Franklin, R. J. M., Retinoid X receptor 

activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. 

Brain 2015, 138 (12), 3581-3597. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


19 

 

12. Savage, J. C.; Jay, T.; Goduni, E.; Quigley, C.; Mariani, M. M.; Malm, T.; Ransohoff, R. 

M.; Lamb, B. T.; Landreth, G. E., Nuclear Receptors License Phagocytosis by Trem2+ Myeloid 

Cells in Mouse Models of Alzheimer's Disease. The Journal of Neuroscience 2015, 35 (16), 

6532-6543. 

13. Daniel, B.; Nagy, G.; Hah, N.; Horvath, A.; Czimmerer, Z.; Poliska, S.; Gyuris, T.; 

Keirsse, J.; Gysemans, C.; Van Ginderachter, J. A.; Balint, B. L.; Evans, R. M.; Barta, E.; Nagy, 

L., The active enhancer network operated by liganded RXR supports angiogenic activity in 

macrophages. Genes & Development 2014, 28 (14), 1562-1577. 

14. Meinig, J. M.; Ferrara, S. J.; Banerji, T.; Banerji, T.; Sanford-Crane, H. S.; Bourdette, D.; 

Scanlan, T. S., Targeting Fatty-Acid Amide Hydrolase with Prodrugs for CNS-Selective 

Therapy. ACS Chemical Neuroscience 2017, 8 (11), 2468-2476. 

15. Meinig, J. M.; Ferrara, S. J.; Banerji, T.; Banerji, T.; Sanford-Crane, H. S.; Bourdette, D.; 

Scanlan, T. S., Structure–Activity Relationships of Central Nervous System Penetration by Fatty 

Acid Amide Hydrolase (FAAH)-Targeted Thyromimetic Prodrugs. ACS Medicinal Chemistry 

Letters 2019, 10 (1), 111-116. 

16. Scanlan, T. S., Sobetirome: a case history of bench-to-clinic drug discovery and 

development. Heart Failure Reviews 2010, 15 (2), 177-182. 

17. Nguyen, N.-H.; Apriletti, J. W.; Cunha Lima, S. T.; Webb, P.; Baxter, J. D.; Scanlan, T. 

S., Rational Design and Synthesis of a Novel Thyroid Hormone Antagonist That Blocks 

Coactivator Recruitment. Journal of Medicinal Chemistry 2002, 45 (15), 3310-3320. 

18. Wang, W.; Ye, L.; Ye, L.; Li, B.; Gao, B.; Zeng, Y.; Kong, L.; Fang, X.; Zheng, H.; Wu, Z.; 

She, Y., Up-regulation of IL-6 and TNF-α induced by SARS-coronavirus spike protein in murine 

macrophages via NF-κB pathway. Virus Research 2007, 128 (1), 1-8. 

19. Dosch, S. F.; Mahajan, S. D.; Collins, A. R., SARS coronavirus spike protein-induced 

innate immune response occurs via activation of the NF-κB pathway in human monocyte 

macrophages in vitro. Virus Research 2009, 142 (1), 19-27. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


20 

 

20. chen, y.; Feng, Z.; Diao, B.; Wang, R.; Wang, G.; Wang, C.; Tan, Y.; Liu, L.; Wang, C.; 

Liu, Y.; Liu, Y.; Yuan, Z.; Ren, L.; Wu, Y., The Novel Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes. medRxiv 

2020, 2020.03.27.20045427. 

21. Theobald, S.; Simonis, A.; Kreer, C.; Zehner, M.; Fischer, J.; Albert, M.-C.; Malin, J.; 

Gräb, J.; Winter, S.; Silva, U. S. d.; Böll, B.; Köhler, P.; Gruell, H.; Suàrez, I.; Hallek, M.; 

Fätkenheuer, G.; Jung, N.; Cornely, O.; Lehmann, C.; Kashkar, H.; Klein, F.; Rybniker, J., The 

SARS-CoV-2 spike protein primes inflammasome-mediated interleukin-1- beta secretion in 

COVID-19 patient-derived macrophages. Research Square: 2020. 

22. Lian, H.; Roy, E.; Zheng, H., Microglial Phagocytosis Assay. Bio-protocol 2016, 6 (21), 

e1988. 

23. Perrotta, C.; Buldorini, M.; Assi, E.; Cazzato, D.; De Palma, C.; Clementi, E.; Cervia, D., 

The Thyroid Hormone Triiodothyronine Controls Macrophage Maturation and Functions: 

Protective Role during Inflammation. The American Journal of Pathology 2014, 184 (1), 230-

247. 

24. Hartley, M. D.; Banerji, T.; Tagge, I. J.; Kirkemo, L. L.; Chaudhary, P.; Calkins, E.; 

Galipeau, D.; Shokat, M. D.; DeBell, M. J.; Van Leuven, S.; Miller, H.; Marracci, G.; Pocius, E.; 

Banerji, T.; Ferrara, S. J.; Meinig, J. M.; Emery, B.; Bourdette, D.; Scanlan, T. S., Myelin repair 

stimulated by CNS-selective thyroid hormone action. JCI Insight 2019, 4 (8). 

25. Chaudhary, P.; Marracci, G. H.; Calkins, E.; Pocius, E.; Bensen, A. L.; Scanlan, T. S.; 

Emery, B.; Bourdette, D. N., Thyroid hormone and thyromimetics inhibit myelin and axonal 

degeneration and oligodendrocyte loss in EAE. bioRxiv 2020, 2020.12.20.423638. 

26. Lloyd, A. F.; Miron, V. E., The pro-remyelination properties of microglia in the central 

nervous system. Nature Reviews Neurology 2019, 15 (8), 447-458. 

27. Montesinos, M. d. M.; Pellizas, C. G., Thyroid Hormone Action on Innate Immunity. 

Frontiers in Endocrinology 2019, 10 (350). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


21 

 

28. van der Spek, A. H.; Surovtseva, O. V.; Jim, K. K.; van Oudenaren, A.; Brouwer, M. C.; 

Vandenbroucke-Grauls, C. M. J. E.; Leenen, P. J. M.; van de Beek, D.; Hernandez, A.; Fliers, 

E.; Boelen, A., Regulation of Intracellular Triiodothyronine Is Essential for Optimal Macrophage 

Function. Endocrinology 2018, 159 (5), 2241-2252. 

29. Anne, H. v. d. S.; Eric, F.; Anita, B., Thyroid hormone metabolism in innate immune 

cells. Journal of Endocrinology 2017, 232 (2), R67-R81. 

30. Rittenhouse, P. A.; Redei, E., Thyroxine Administration Prevents Streptococcal Cell 

Wall-Induced Inflammatory Responses*. Endocrinology 1997, 138 (4), 1434-1439. 

31. Vargas, R.; Videla, L. A., Thyroid hormone suppresses ischemia-reperfusion-induced 

liver NLRP3 inflammasome activation: Role of AMP-activated protein kinase. Immunology 

Letters 2017, 184, 92-97. 

32. Dong, X.; Yang, H.; Li, C.; Liu, Q.; Bai, Q.; Zhang, Z., Triiodothyronine alleviates 

alcoholic liver disease injury through the negative regulation of the NLRP3 signaling pathway. 

Exp Ther Med 2018, 16 (3), 1866-1872. 

33. Furuya, F.; Ishii, T.; Tamura, S.; Takahashi, K.; Kobayashi, H.; Ichijo, M.; Takizawa, S.; 

Kaneshige, M.; Suzuki-Inoue, K.; Kitamura, K., The ligand-bound thyroid hormone receptor in 

macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities. Scientific 

Reports 2017, 7 (1), 43960. 

34. Konishi, H.; Kiyama, H., Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in 

Neural Diseases. Frontiers in Cellular Neuroscience 2018, 12 (206). 

35. Wu, K.; Byers, D. E.; Jin, X.; Agapov, E.; Alexander-Brett, J.; Patel, A. C.; Cella, M.; 

Gilfilan, S.; Colonna, M.; Kober, D. L.; Brett, T. J.; Holtzman, M. J., TREM-2 promotes 

macrophage survival and lung disease after respiratory viral infection. Journal of Experimental 

Medicine 2015, 212 (5), 681-697. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


22 

 

36. Chen, Q.; Zhang, K.; Jin, Y.; Zhu, T.; Cheng, B.; Shu, Q.; Fang, X., Triggering receptor 

expressed on myeloid cells-2 protects against polymicrobial sepsis by enhancing bacterial 

clearance. American journal of respiratory and critical care medicine 2013, 188 (2), 201-12. 

37. Donatelli, S. S.; Zhou, J. M.; Gilvary, D. L.; Eksioglu, E. A.; Chen, X.; Cress, W. D.; 

Haura, E. B.; Schabath, M. B.; Coppola, D.; Wei, S.; Djeu, J. Y., TGF-β-inducible microRNA-183 

silences tumor-associated natural killer cells. Proceedings of the National Academy of Sciences 

of the United States of America 2014, 111 (11), 4203-8. 

38. Yao, Y.; Li, H.; Chen, J.; Xu, W.; Yang, G.; Bao, Z.; Xia, D.; Lu, G.; Hu, S.; Zhou, J., 

TREM-2 serves as a negative immune regulator through Syk pathway in an IL-10 dependent 

manner in lung cancer. Oncotarget 2016, 7 (20), 29620-29634. 

39. Zhang, X.; Wang, W.; Li, P.; Wang, X.; Ni, K., High TREM2 expression correlates with 

poor prognosis in gastric cancer. Human pathology 2018, 72, 91-99. 

40. Gervois, P.; Lambrichts, I., The Emerging Role of Triggering Receptor Expressed on 

Myeloid Cells 2 as a Target for Immunomodulation in Ischemic Stroke. Frontiers in immunology 

2019, 10, 1668. 

41. Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; 

Cruchaga, C.; Sassi, C.; Kauwe, J. S. K.; Younkin, S.; Hazrati, L.; Collinge, J.; Pocock, J.; 

Lashley, T.; Williams, J.; Lambert, J.-C.; Amouyel, P.; Goate, A.; Rademakers, R.; Morgan, K.; 

Powell, J.; St. George-Hyslop, P.; Singleton, A.; Hardy, J., TREM2 Variants in Alzheimer's 

Disease. New England Journal of Medicine 2012, 368 (2), 117-127. 

42. Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P. V.; Snaedal, J.; 

Bjornsson, S.; Huttenlocher, J.; Levey, A. I.; Lah, J. J.; Rujescu, D.; Hampel, H.; Giegling, I.; 

Andreassen, O. A.; Engedal, K.; Ulstein, I.; Djurovic, S.; Ibrahim-Verbaas, C.; Hofman, A.; 

Ikram, M. A.; van Duijn, C. M.; Thorsteinsdottir, U.; Kong, A.; Stefansson, K., Variant of TREM2 

associated with the risk of Alzheimer's disease. The New England journal of medicine 2013, 368 

(2), 107-16. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


23 

 

43. Ewers, M.; Franzmeier, N.; Suárez-Calvet, M.; Morenas-Rodriguez, E.; Caballero, M. A. 

A.; Kleinberger, G.; Piccio, L.; Cruchaga, C.; Deming, Y.; Dichgans, M.; Trojanowski, J. Q.; 

Shaw, L. M.; Weiner, M. W.; Haass, C., Increased soluble TREM2 in cerebrospinal fluid is 

associated with reduced cognitive and clinical decline in Alzheimer's disease. Science 

translational medicine 2019, 11 (507). 

44. Sampaolo, S.; Campos-Barros, A.; Mazziotti, G.; Carlomagno, S.; Sannino, V.; Amato, 

G.; Carella, C.; Di Iorio, G., Increased Cerebrospinal Fluid Levels of 3,3′,5′-Triiodothyronine in 

Patients with Alzheimer’s Disease. The Journal of Clinical Endocrinology & Metabolism 2005, 

90 (1), 198-202. 

45. Accorroni, A.; Giorgi, F. S.; Donzelli, R.; Lorenzini, L.; Prontera, C.; Saba, A.; Vergallo, 

A.; Tognoni, G.; Siciliano, G.; Baldacci, F.; Bonuccelli, U.; Clerico, A.; Zucchi, R., Thyroid 

hormone levels in the cerebrospinal fluid correlate with disease severity in euthyroid patients 

with Alzheimer's disease. Endocrine 2017, 55 (3), 981-984. 

46. Hogervorst, E.; Huppert, F.; Matthews, F. E.; Brayne, C., Thyroid function and cognitive 

decline in the MRC Cognitive Function and Ageing Study. Psychoneuroendocrinology 2008, 33 

(7), 1013-22. 

47. Davis, J. D.; Podolanczuk, A.; Donahue, J. E.; Stopa, E.; Hennessey, J. V.; Luo, L.-G.; 

Lim, Y.-P.; Stern, R. A., Thyroid hormone levels in the prefrontal cortex of post-mortem brains of 

Alzheimer's disease patients. Curr Aging Sci 2008, 1 (3), 175-181. 

48. Johansson, P.; Almqvist, E. G.; Johansson, J. O.; Mattsson, N.; Hansson, O.; Wallin, A.; 

Blennow, K.; Zetterberg, H.; Svensson, J., Reduced cerebrospinal fluid level of thyroxine in 

patients with Alzheimer's disease. Psychoneuroendocrinology 2013, 38 (7), 1058-66. 

49. Choi, H. J.; Byun, M. S.; Yi, D.; Sohn, B. K.; Lee, J. H.; Lee, J. Y.; Kim, Y. K.; Lee, D. Y., 

Associations of thyroid hormone serum levels with in-vivo Alzheimer's disease pathologies. 

Alzheimer's research & therapy 2017, 9 (1), 64. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


24 

 

50. Juárez-Cedillo, T.; Basurto-Acevedo, L.; Vega-García, S.; Sánchez-Rodríguez Martha, 

A.; Retana-Ugalde, R.; Juárez-Cedillo, E.; Gonzalez-Melendez Roberto, C.; Escobedo-de-la-

Peña, J., Prevalence of thyroid dysfunction and its impact on cognition in older mexican adults: 

(SADEM study). Journal of endocrinological investigation 2017, 40 (9), 945-952. 

51. Piccio, L.; Buonsanti, C.; Cella, M.; Tassi, I.; Schmidt, R. E.; Fenoglio, C.; Rinker, J., 

2nd; Naismith, R. T.; Panina-Bordignon, P.; Passini, N.; Galimberti, D.; Scarpini, E.; Colonna, 

M.; Cross, A. H., Identification of soluble TREM-2 in the cerebrospinal fluid and its association 

with multiple sclerosis and CNS inflammation. Brain 2008, 131 (Pt 11), 3081-91. 

52. Cignarella, F.; Filipello, F.; Bollman, B.; Cantoni, C.; Locca, A.; Mikesell, R.; Manis, M.; 

Ibrahim, A.; Deng, L.; Benitez, B. A.; Cruchaga, C.; Licastro, D.; Mihindukulasuriya, K.; Harari, 

O.; Buckland, M.; Holtzman, D. M.; Rosenthal, A.; Schwabe, T.; Tassi, I.; Piccio, L., TREM2 

activation on microglia promotes myelin debris clearance and remyelination in a model of 

multiple sclerosis. Acta Neuropathologica 2020, 140 (4), 513-534. 

53. Piccio, L.; Buonsanti, C.; Mariani, M.; Cella, M.; Gilfillan, S.; Cross, A. H.; Colonna, M.; 

Panina-Bordignon, P., Blockade of TREM-2 exacerbates experimental autoimmune 

encephalomyelitis. European journal of immunology 2007, 37 (5), 1290-301. 

54. Jiang, T.; Tan, L.; Zhu, X.-C.; Zhang, Q.-Q.; Cao, L.; Tan, M.-S.; Gu, L.-Z.; Wang, H.-F.; 

Ding, Z.-Z.; Zhang, Y.-D.; Yu, J.-T., Upregulation of TREM2 Ameliorates Neuropathology and 

Rescues Spatial Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease. 

Neuropsychopharmacology 2014, 39 (13), 2949-2962. 

55. Lee, C. Y. D.; Daggett, A.; Gu, X.; Jiang, L. L.; Langfelder, P.; Li, X.; Wang, N.; Zhao, Y.; 

Park, C. S.; Cooper, Y.; Ferando, I.; Mody, I.; Coppola, G.; Xu, H.; Yang, X. W., Elevated 

TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological 

Phenotypes in Alzheimer's Disease Models. Neuron 2018, 97 (5), 1032-1048.e5. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


25 

 

56. Takahashi, K.; Prinz, M.; Stagi, M.; Chechneva, O.; Neumann, H., TREM2-transduced 

myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal 

model of multiple sclerosis. PLoS medicine 2007, 4 (4), e124. 

57. Perugorria, M. J.; Esparza-Baquer, A.; Oakley, F.; Labiano, I.; Korosec, A.; Jais, A.; 

Mann, J.; Tiniakos, D.; Santos-Laso, A.; Arbelaiz, A.; Gawish, R.; Sampedro, A.; Fontanellas, 

A.; Hijona, E.; Jimenez-Agüero, R.; Esterbauer, H.; Stoiber, D.; Bujanda, L.; Banales, J. M.; 

Knapp, S.; Sharif, O.; Mann, D. A., Non-parenchymal TREM-2 protects the liver from immune-

mediated hepatocellular damage. Gut 2019, 68 (3), 533-546. 

58. Mehta, P.; McAuley, D. F.; Brown, M.; Sanchez, E.; Tattersall, R. S.; Manson, J. J., 

COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 2020, 395 

(10229), 1033-1034. 

59. Merad, M.; Martin, J. C., Pathological inflammation in patients with COVID-19: a key role 

for monocytes and macrophages. Nature Reviews Immunology 2020, 20 (6), 355-362. 

60. Ferrara, S. J.; Scanlan, T. S., A CNS-Targeting Prodrug Strategy for Nuclear Receptor 

Modulators. Journal of Medicinal Chemistry 2020, 63 (17), 9742-9751. 

61. Placzek, A. T.; Ferrara, S. J.; Hartley, M. D.; Sanford-Crane, H. S.; Meinig, J. M.; 

Scanlan, T. S., Sobetirome prodrug esters with enhanced blood–brain barrier permeability. 

Bioorganic & Medicinal Chemistry 2016, 24 (22), 5842-5854. 

62. Placzek, A. T.; Scanlan, T. S., New synthetic routes to thyroid hormone analogs: d6-

sobetirome, 3H-sobetirome, and the antagonist NH-3. Tetrahedron 2015, 71 (35), 5946-5951. 

63. Hackenmueller, S. A.; Marchini, M.; Saba, A.; Zucchi, R.; Scanlan, T. S., Biosynthesis of 

3-Iodothyronamine (T1AM) Is Dependent on the Sodium-Iodide Symporter and Thyroperoxidase 

but Does Not Involve Extrathyroidal Metabolism of T4. Endocrinology 2012, 153 (11), 5659-

5667. 

64. Pfaffl, M. W., A new mathematical model for relative quantification in real-time RT–PCR. 

Nucleic Acids Research 2001, 29 (9), e45-e45. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


26 

 

65. Ferrara, S. J.; Bourdette, D.; Scanlan, T. S., Hypothalamic-Pituitary-Thyroid Axis 

Perturbations in Male Mice by CNS-Penetrating Thyromimetics. Endocrinology 2018, 159 (7), 

2733-2740. 

66. Humbert-Claude, M.; Duc, D.; Dwir, D.; Thieren, L.; Sandström von Tobel, J.; Begka, C.; 

Legueux, F.; Velin, D.; Maillard, M. H.; Do, K. Q.; Monnet-Tschudi, F.; Tenenbaum, L., Tollip, an 

early regulator of the acute inflammatory response in the substantia nigra. Journal of 

Neuroinflammation 2016, 13 (1), 303. 

67. Sun, Y.; Ma, J.; Li, D.; Li, P.; Zhou, X.; Li, Y.; He, Z.; Qin, L.; Liang, L.; Luo, X., 

Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in 

epileptic seizures. Journal of Neuroinflammation 2019, 16 (1), 66. 

68. Zhao, H.; Liu, A.; Shen, L.; Xu, C.; Zhu, Z.; Yang, J.; Han, X.; Bao, F.; Yang, W., 

Isoforskolin downregulates proinflammatory responses induced by Borrelia burgdorferi basic 

membrane protein A. Exp Ther Med 2017, 14 (6), 5974-5980. 

69. Min, Z.; Tang, Y.; Hu, X.-T.; Zhu, B.-L.; Ma, Y.-L.; Zha, J.-S.; Deng, X.-J.; Yan, Z.; Chen, 

G.-J., Cosmosiin Increases ADAM10 Expression via Mechanisms Involving 5’UTR and PI3K 

Signaling. Frontiers in Molecular Neuroscience 2018, 11 (198). 

70. Rai, V.; Rao, V. H.; Shao, Z.; Agrawal, D. K., Dendritic Cells Expressing Triggering 

Receptor Expressed on Myeloid Cells-1 Correlate with Plaque Stability in Symptomatic and 

Asymptomatic Patients with Carotid Stenosis. PLOS ONE 2016, 11 (5), e0154802. 

 

                     

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428149doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428149


27 

 

 

Figures and figure legends 

 

 

 

 

Figure 1: RXR-TR heterodimer associated with a DR4-TRE located in the promoter region of 
TREM2 (a, PDB ID: 2NLL and 4ZO1) and endogenous and synthetic TR ligands used in this 
study (b).  
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Figure 2: RT-qPCR demonstrating that T3 and thyromimetics regulate TREM2 expression in 
vitro and in vivo. TR agonists T3 (10 nM) and sobetirome (1 μM) upregulate TREM2 in mouse 
(a) and human (b) primary microglia, (c) mouse macrophage cell line RAW 264.7, (d) 
hypothyroid mouse whole brain extract (3.05 μmol/kg T3 and 30.5 μmol/kg Sob-AM2), and alter 
the transcript levels of TREM2 pathway-connected genes by upregulating (e) Cd68 and 
downregulating (f) Il1b in mouse primary microglia (n = 3-5 as denoted). In contrast, TR 
antagonist NH-3 (2 μM NH-3 with 10 nM T3) downregulated Trem2 (a) and Cd68 (e) in mouse 
primary microglia. Statistical significance was determined by a 2-tailed, unpaired t test for 
comparisons between vehicle and group then were plotted together. Asterisks represent 
significant difference from vehicle unless otherwise noted (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). 
All graphs show mean ± SEM. 
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Figure 3: RT-qPCR of mouse RAW264.7 macrophage cells (a) and mouse primary lung 
macrophages (b-d) stimulated with 10 μg/mL SARS-CoV-2 S1 protein with and without 
treatment with 10 nM T3 (n = 5-7 as denoted). T3 treatment suppresses pro-inflammatory 
cytokine expression (Il6 and Il1b, a-c) and upregulates Trem2 expression following inflammatory
stimulation  with the S1 protein(d). Statistical significance was determined by a 2-tailed, 
unpaired t test for comparisons between vehicle and group then were plotted together. Asterisks 
represent significant difference from vehicle unless otherwise noted (*P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001). All graphs show mean ± SEM. 
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Figure 4: T3 stimulates and NH-3 blocks phagocytosis by microglia. C57BL/6 mouse primary 
microglia cells in culture were treated with DMSO vehicle (a + a’), 10 nM T3 (b + b’), 1 μM 
sobetirome (c + c’), or 2 μM NH-3 (d + d’) for 24 h before 2 μm diameter fluorescent beads 
(~100/cell) were introduced 2 h before cells were fixed and stained for Cd11b (green). (e) 
Elongated morphology of an unactivated/ramified microglia cell. (f) Morphology of an activated 
microglia cell upon treatment with sobetirome (see supporting information). (g) Three-
dimensional view of beads inside the uppermost cell in the sobetirome treatment group (image 
generated in Imaris). (h) Quantification of phagocytosed beads per treatment group. Scale bars 
are 20 μm (a-d), 10-20 μm (a’-d’), and 8-10 μm (e-g) as noted. Statistical significance was 
determined by a 2-tailed, unpaired t test for comparisons between vehicle and group then were 
plotted together. Asterisks represent significant difference from vehicle unless otherwise noted 
(*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). All graphs show mean ± SEM. 
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Figure 5: Treatment of EAE mice with T3 and Sob-AM2 upregulates TREM2 expression in 
diseased spinal cord regions. (a-c) EAE mice were treated with vehicle, T3 (0.4 mg/kg), or Sob-
AM2 (1 mg/kg) i.p. for 15 days (day 7-21). (a-c) Representative immunofluorescence images 
showing TREM2 protein expression within the dorsal white matter in the lumbar section of spinal
cord. Scale bars: 100 μm. (d) Cells expressing TREM2 (white) within the dorsal white matter 
were quantified. T3 and Sob-AM2 increased TREM2 expression four-fold and three-fold 
compared to vehicle, respectively. Data represents images from vehicle (n = 18), T3 (n = 12), 
and Sob-AM2 (n = 12). Two sections were used from each mouse. Significance was determined 
using one-way ANOVA (P < 0.05). (e) ELISA measurement of TREM2 in spinal cord extracts 
from the same cohorts of EAE mice (n = 3) used in a-d. (f) Daily EAE clinical disease scores 
from vehicle (n = 18), T3 (0.4 mg/kg, n = 15), and Sob-AM2 (1 mg/kg, n = 28) treated cohorts. 
Statistical significance was determined by a two-tailed, unpaired t test comparing vehicle and 
treatment group per day with each t test performed independently. Asterisks represent 
significant difference from vehicle unless otherwise noted. (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). 
All graphs show mean ± SEM. 
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