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ARTICLE INFO ABSTRACT

Keywords: As urban populations continue to grow through the 21st century, more people are projected to be at risk of
Urban flood exposure to climate change-induced extreme events. To investigate the complexity of urban floods, this study
Vulnerability ) applied an interlinked social-ecological-technological systems (SETS) vulnerability framework by developing an
lizziﬁtzzzloglcal-technologlcal systems urban flood vulnerability index for six US cities. Indicators were selected to reflect and illustrate exposure,
Mapping sensitivity, and adaptive capacity to flooding for each of the three domains of SETS. We quantified 18 indicators

and normalized them by the cities’ 500-yr floodplain area at the census block group level. Clusters of flood
vulnerable areas were identified differently by each SETS domain, and some areas were vulnerable to floods in
more than one domain. Results are provided to support decision-making for reducing risks to flooding, by
considering social, ecological, and technological vulnerability as well as hotspots where multiple sources of
vulnerability coexist. The spatially explicit urban SETS flood vulnerability framework can be transferred to other
regions facing challenging urban floods and other types of environmental hazards. Mapping SETS flood
vulnerability helps to reveal intersections of complex SETS interactions and inform policy-making for building
more resilient cities in the face of extreme events and climate change impacts.

1. Introduction many cities are located in river floodplains or along the coast, urban

areas are frequently exposed to floods; approximately /3 of urban land

Flooding is a major form of hazard that affects millions of people
worldwide. According to the OECD (2016), global flood damage exceeds
$40 billion annually. Together with growing populations in flood-prone
areas, climate change and rising sea levels are projected to increase the
number of people vulnerable to flood disasters to two billion people by
2050 (UNESCO World Water Assessment Programme, 2012). Because
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in the United States is located in high-risk flood zones, affecting nearly a
quarter-million people living in those zones (Qiang, Lam, Cai, & Zou,
2017). Flood damages in the United States have costed nearly $17
billion per year between 2010 and 2018 (ASFPM, 2020). With increases
in frequency and intensity of precipitation driven by climate change
(Kunkel et al., 2020), flood zones are likely to expand by 40-45 % by the
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end of the 21st century (American Rivers, 2020). Nevertheless, drainage
patterns and flood-mitigation infrastructure in most cities are not
designed to adapt to the anticipated climate change-induced urban
flooding hazards, thus posing potential technological risk to cities
(Gimenez-Maranges, Pappalardo, La Rosa, Breuste, & Hof, 2020; Moh-
tar, Abdullah, Maulud, & Muhammad, 2020; Rosenzweig et al., 2018). It
is this city level that emerges as a critical geographic level for under-
standing and mitigating flood hazards. Moreover, integrating the mul-
tiple domains of social, ecological and technological concerns is critical
at the urban scale.

Following the IPCC’s vulnerability conceptual framework (McCarthy
et al., 2001), which separately considers exposure (the extent to which
an entity experiences a hazard, usually based on location and timing),
sensitivity (how much the entity is likely to be affected if exposed to the
hazard, as a consequence of internal characteristics), and adaptive ca-
pacity (the potential for an entity to adjust when influenced by a hazard,
thus reducing impact), many studies have conducted flood vulnerability
assessments at national (Khajehei, Ahmadalipour, Shao, & Moradkhani,
2020) and regional (Cheng, 2019a) scales. However, only a few studies
have investigated intra-city-level flood vulnerability (Gu et al., 2018),
despite heterogeneous distributions of people and nature within the city.
Previous studies show socially and economically disadvantaged groups
tend to be particularly exposed to flood hazards in urban areas (Collins,
Grineski, Chakraborty, & Flores, 2019). For example, after Hurricane
Harvey, people with disabilities were disproportionately affected by
flooding (Chakraborty, Grineski, & Collins, 2019).

Flood vulnerability assessment is a vital tool for flood mitigation
(Nasiri, Yusof, & Ali, 2016), as municipal governments strive to reduce
potential damages resulting from anticipated extreme events. An indi-
cator approach to flood vulnerability assessment has been frequently
adopted in the past decade (Table 1). Following pioneering research
conducted by Miiller, Reiter, and Weiland (2011), who developed in-
dicators across multiple scales, many studies used a combination of so-
cial, physical, and environmental indicator variables (Erena & Worku,
2019; Salazar-Briones, Ruiz-Gibert, Lomeli-Banda, &
Mungaray-Moctezuma, 2020). They used widely available geospatial
data and/or interview data to select or weigh appropriate indicators,
showing spatial variation in flood vulnerability at the urban scale. For
example, Nasiri, Yusof, Ali, and Hussein (2019) developed a
district-level flood vulnerability index comprising 25 indicators that
encompass social, economic, environmental, and physical components
in Kuala Lumpur City, Malaysia. Based on experts’ opinions, they
eventually selected 10 indicators, identifying different components of
vulnerability indicators that are disproportionately associated with
district-level flood vulnerability within the city. However, these studies
did not examine ecological or technological vulnerability explicitly.

Table 1
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Kim, Eisenberg, and Bondank (2017) suggested the importance of urban
flood vulnerability assessment by combining social and technological
system domains, while jointly assessing the traffic load on roadways and
hydrologic capacity of stormwater drainage in Phoenix, USA. Borrowing
from concepts of landscape ecology, Han et al. (2020) found that an
increasing number of small patch sizes and leapfrogging and
edge-expanding types of development were positively correlated to
flood occurrence. Ferrari, Oliveira, Pautasso, and Zezere (2019) further
extended the previous approach by using 59 indicators in two European
cities and reported high local variability in flood vulnerability, which is
undetectable from national- or continental-scale data. Ferrari et al.’s
study also showed that urban inequalities are related to disparities in
flood vulnerability.

While some previous studies included environmental indicators in
vulnerability analysis as reported in Table 1, these studies did not suf-
ficiently examine such indicators in relation to S and T domains
collectively. Moreover, environmental indicators typically have focused
on hydrometeorological and topographic indicators, rather than
ecological ones as the current paper does. In fact, assessments are
seldom performed across all domains — social, ecological and techno-
logical - that are potentially at risk from flooding: i.e., the people, nat-
ural systems, and the infrastructure built by cities to support their way of
life. Most previous flood vulnerability studies examined social vulner-
ability (Cutter, Boruff, & Shirley, 2003) or social and physical vulnera-
bility (Cho & Chang, 2017).

We consider cities and urban regions as dynamic social-ecological-
technological systems (SETS) (Grimm, Pickett, Hale, & Cadenasso,
2017; McPhearson et al., 2016; Markolf et al., 2018), that experience
flooding both within and across SETS domains, and that capture in-
teractions among the components. Thus, a more holistic approach is
needed to assess flood vulnerability of complex urban SETS and to
improve planning that builds resilience in SETS domains (Cheng, Yang,
Ryan, Yu, & Brabec, 2017). The integration of S, E, and T with exposure,
sensitivity and adaptability is an innovative addition to urban sustain-
ability. The social dimension directly addresses society. The applica-
bility to six cities underscores its relevance to cities and transferability to
other cities. Sustainable development addresses convergence of envi-
ronment, economy, and equity, which requires understanding of com-
plex systems and the interconnected components. SETS provides a
framework to examine the complex relationship between environment,
infrastructure, and equity to advance understanding of the context for
impacts and response to distribution of hazards in society.

Additionally, these earlier studies mostly focused on one or two cities
(with the exception of Sterzel et al., 2020), and few, if any, have
addressed the ecological domain of flood vulnerability (Romer et al.,
2012; WeiBhuhn, Miiller, & Wiggering, 2018). By ecological

Representative indicator-based studies on empirical urban flood vulnerability that used indicators mapped to social, ecological, and technological domains.

Ecological vulnerability indicators Technological vulnerability

indicators

Building structure

Authors Study region Social vulnerability indicators
Adelekan (2011) Abeokuta, Gender, age, education, income, occupation, past flood N/A
Nigeria experience, risk perception, length of residence

Miiller et al. (2011) Santiago, Chile

experience, knowledge

Erena and Worku
(2019)

Dire Dawa City,
Ethiopia

sanitation, industries

Salazar-Briones Mexicali, Baja

et al. (2020) California, service, education, household infra
Mexico
Nasiri et al. (2019) Kuala Lumpur, Population density, flood experience
Malaysia

Sterzel etal. (2020)  Coastal cities

worldwide

Age, gender, education, household size, employment status,

Population, population density, early warning, past Slope
experience, age >65, gender, education, family size,
insurance, communication, cultural heritage, access to

Age <14 and > 60, unemployed, replying on medical

Population, urban expansion, income, slum population

Green space per building block Constructional materials,
position of building, flood
protection infrastructure,
Building materials, emergency
service, dikes-levees,
evacuation route

Slope, proximity to inundation area N/A
topographic wetness index, land use
& soil type, sub-basin flow
Rainfall amount, # of river, open Proportion of low cost
land buildings,

Length of drainage system
Wetland, cyclone, flood occurrence N/A




H. Chang et al.

vulnerability, we refer to an ecosystem’s inability to cope with or adjust
in response to floods, in contrast to technological vulnerability, which
we define as infrastructure’s diminished capacity to recover and adapt to
floods. Thus, we seek to fill the gap in the literature by using the SETS
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framework. The SETS approach has been recently used in
cross-comparative flood risk management (Chang et al, 2021),
co-developing scenario visions of urban resilience and sustainability
(Iwaniec, Cook, Davidson, Berbés-Blazquez, Georgescu et al., 2020, b),
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Fig. 1. Relative location of six study cities in the United States with average annual precipitation (1981-2010) as background and major roads and waterways in each

city with elevation as background.
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constructing a climate justicescape (Cheng, 2019b), and reviewing
nature-based solutions for flood resilience (Keeler et al., 2019). Here, we
undertook a comparative study of SETS vulnerability across six cities to
answer the following research questions:

(1) What are the spatial patterns of urban flood vulnerability when
using social (S), ecological (E), and technological (T) indicators
separately? Which of these factors and their combination explain
the spatial variation of flood vulnerability?

(2) To what degree do the vulnerable areas identified by each of S, E,
and T indicators spatially correlate with each other?

(3) How are the vulnerability indicators clustered together to explain
the combined SETS flood vulnerability across the study cities?

(4) What are the added values of investigating flood vulnerability
using a SETS framework so that it can potentially be applied to
other areas? How does the SETS framework reveal the hidden
dimensions of flood vulnerability?

2. Study area

The study areas consist of six US cities — Atlanta, Baltimore, Miami,
New York, Phoenix, and Portland — that vary in their geographical, cli-
matic, and hydrologic characteristics (Fig. 1, Table 2). These cities
encompass different climate and urbanization gradients, with popula-
tion density ranging from dispersed (~1000 people/km? in Atlanta and
Phoenix) to compact (>10,000 people/km? in New York City). All cities
have experienced major floods in past decades, and most have experi-
enced increasing precipitation intensity in more recent years (Cooley &
Chang, 2020). Documented changes in extreme precipitation are more
pronounced for the Northeast and Midwest than for other regions
(Janssen, Wuebbles, Kunkel, Olsen, & Goodman, 2014), but all regions
are expected to show increases under future climate change (Swain
et al., 2020). Additionally, we have been studying these cities as part of
the Urban Resilience to Extremes Sustainability Research Network
(UREx SRN), with the goal of promoting knowledge co-production with
city practitioners for climate change adaptation (Munoz-Erickson,
Miller, & Miller, 2017; Iwaniec, Cook, Davidson, Berbés-Blazquez,
Georgescu et al., 2020; Cook et al. 2021). Social equity and environ-
mental justice issues, as they relate to extreme weather-induced hazards,
including floods, are a growing concern in our study cities (e.g., Fahy,
Brenneman, Chang, & Shandas, 2019 and Cheng, 2019b). Lastly, and
critically, data availability for a cross-city comparison study was a key
component for delineating the study areas.

3. Data and methods
3.1. SETS vulnerability framework

The SETS vulnerability framework (Fig. 2) combines three di-
mensions of vulnerability—exposure, sensitivity, adaptive capaci-
ty—within each of the three domains of SETS: social, ecological, and
technological systems that comprise urban areas. We define the
vulnerability dimensions following the well-established literature
(Kasperson & Kasperson, 2001, McCarthy et al., 2001, Turner et al.,
2003, Polsky, Neff, & Yarnal, 2007). Our explicit point is that there are

Sustainable Cities and Society 68 (2021) 102786

S, E, and T domains for each of the exposure, sensitivity, and adapt-
ability dimensions. The goal is not to make assessments more complex,
but rather to account for the complexity inherent to each domain of
SETS in urban contexts by providing a structure for it, and thereby
enable researchers to have a flexible framework that can be adapted to
their needs. First, as shown in Fig. 2, there are nine SETS urban flood
vulnerability realms: Social, ecological, and technological domains
within each of the three vulnerability dimensions, i.e., exposure, sensi-
tivity and adaptive capacity. Second, we selected two representative
indicators in each of the nine SETS urban flood vulnerability realms in
light of data availability and the need to maintain consistency in the
metrics across the cities (as identified in Table 3). Social vulnerability
indicators represent demography (age, language proficiency), neigh-
borhood (population density), and socioeconomic characteristics (in-
come, percentage renter) (Rufat, Tate, Burton, & Maroof, 2015, Kirby
et al., 2019). Ecological vulnerability indicators represent land-surface
characteristics (slope, land cover), landscape quality (proximity to
hazard, fragmentation), and greenness (wetland, productivity). Tech-
nological vulnerability indicators represent built infrastructure (trans-
portation, green infrastructure), public facilities (critical infrastructure,
roads, emergency centers), and buildings. These indicators were care-
fully chosen based on a review of the literature (Table 3) and in-depth
discussion among the authors based on commonalities, feasibility, and
data availability for a cross-city comparison. Additionally, we identified
indicators that offer spatially detailed information appropriate for use at
the census block group scale. As a result, indicators that are only
available at the city or regional scale were excluded in our analysis.

The purpose of this study is to expand and contribute to flood
vulnerability assessments by introducing the three domains of SETS and
identify where they intersect and are either synergistic or antagonistic.
The indicators chosen in this study are not meant to be comprehensive;
thus, we may be limited to accounting for a factor that is particularly
important in one city but not all six cities. While some indicators may
not be easy to classify across the three vulnerability dimensions (e.g.,
green infrastructure can be either T or E (Childers et al., 2019), we
assigned each indicator to only one dominant vulnerability dimension to
avoid double counting. However, this study aims to provide, by using
the SETS framework, the methodology for selecting vulnerability in-
dicators that can be applied at different spatial scales or to study areas
that have specific attributes (for example, vulnerability to coastal
flooding).

3.2. Data

Flood hazard area delineation was obtained from the Federal Man-
agement Agency (FEMA)’s 500-AA flooding (FEMA, 2020). We included
all census block groups within the 500-year floodplain. Although the
100-year floodplain is more commonly used for municipal regulatory
planning purposes, using 500-year floodplain maps has a couple of ad-
vantages. First, recent studies (Blessing, Sebastian, & Brody, 2017;
Highfield, Norman, & Brody, 2013) point out that the current FEMA
100-year maps are inaccurate, potentially underestimating flood-prone
areas in the current climate. Second, with increasing precipitation in-
tensity under climate change scenarios, it is reasonable to assume that
flood hazard zones will expand in the future. For each census block

Table 2
Selected geographic, climatic, and hydrological characteristics in the study areas of six cities in the United States.
Portland Phoenix Baltimore Atlanta New York Miami
City
Climate 915 mm annual 211 mm annual 1034 mm annual 1263 mm annual 1174 mm 1572 mm annual
(Mean annual precipitation, annual prep. prep. prep. prep. annual prep. prep.
temperature range) 7.8-17.2°C 17.2-30.6°C 10-18.9°C 11.7 - 22.2°C 8.9-16.7°C 21.1-28.9°C
Population (2016) 656,097 1,611,990 605,597 474,560 8,461,961 455,973
Population density (2016) 1784/km?> 1083/km?> 2863/km? 1082/km? 10,807/km? 3303/km?
Impervious surface areas (%) (2016) 56 % 52 % 55 % 40 % 78 % 58 %
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Urban SETS Flood Vulnerability
EXPOSURE

Critical

Building

infrastructure area

infrastructure

Emergency
center

Impervious

surface

Road
density

Fig. 2. The urban SETS flood vulnerability framework including selected exposure, sensitivity, and adaptive capacity indicators in each of the three SETS domains:

social, ecological, and technological.

group, we obtained data from multiple agencies to compute the socio-
demographic, ecological and infrastructure indicators (Table 3). These
data either were already organized at the scale of the census block group
or were prepared in ArcGIS 10.7 (ESRI 2020) so that they could be
appropriately used at that scale.

3.3. Methods

3.3.1. Indicator construction and vulnerability score

Given that census block group size differs substantially in each city,
the raw data were converted or standardized to either % or density by
dividing by census block group population or area. The converted in-
dicator values were then standardized between 0 and 1 using the
minimum-maximum rescaling formula below (for exposure and sensi-
tivity indicators) (Iyengar and Sudarshan, 1982).

V= Xi — Ximin

Ximax - Xim[n

Where V; = normalized value of indicator X;j, Ximin, and Ximqy represent

the minimum and maximum values of a specific indicator i, respectively.
For indicators that are inversely related to urban flood vulnerability,

the following formula was used for standardization (e.g., higher lan-

guage proficiency reduces vulnerability).
Ximax - Xi

V,' = o

Ximax - Ximin

We then used these normalized values to estimate urban flood
vulnerability using the following formula.

Ex, + Ex, + St; + St
Ad, + Ad,

V, =

Ex; = exposure indicator 1, Ex; = Exposure indicator 2, St; =
sensitivity indicator 1, Sty = sensitivity indicator 2, Ad; = adaptive ca-
pacity indicator 1, Ady = adaptive capacity indicator 2

The final composite vulnerability score (Vs) is then normalized again
to have a range between 0 and 1 (0 = the least vulnerable, 1 = most
vulnerable).

3.3.2. Geospatial analysis

We used ArcGIS 10.7 to combine each indicator layer to produce
social, ecological, and vulnerability maps. The vulnerability scores were
mapped by quartile. We overlaid all possible permutations of individual
S, E, and T top quartile flood vulnerability maps to identify which census
block groups were vulnerable in one or more domains of SETS. In other
words, we categorized the vulnerable areas into seven classes (i.e., S, E,
T, S-E, S-T, E-T, S-E-T) and mapped the classes.

3.3.3. Statistical analysis

We used global Moran’s I to identify if the spatial patterns of flood
vulnerability were clustered, dispersed, or random in ArcGIS 10.7.
Moran’s I value close to zero indicates random spatial distribution, while
positive and negative values indicate clustering (similar neighborhoods
are next to each other) or dispersed (dissimilar neighborhoods are next
to each other) spatial patterns, respectively (Moran, 1950). Pearson’s
correlation coefficients were used to examine the direction and strength
of the relationship between pairs of S, E, and T for each city.

We conducted a principal component analysis (PCA) to derive major
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Table 3
The selected SETS flood vulnerability indicators, their sources, and justifications of selection.
Category Indicator Source Justification (hypothesized relationship) References
People (+) More people living in a place, more people ~ Rufat et al. (2015)
. (total number of people on ACS 2016 peop s place, peop i o .
Social 3 are exposed to floods Erena and Worku (2019)
expostire floodplain)
P Population density ACS 2016 (+) Densely populated areas are more Cutter et al. (2003),
(# of people /area) vulnerable to floods Cutter (2016)
Cutter et al. (2003); Cutter (2016);
English proficiency (-) English speaking people understand flood utter € ‘1 ¢ . ) " C,r ( . )
(% English speaking people) ACS 2016 information better Borden, Schmidtlein, Emrich, Piegorsch,
Social sensitivity and Cutter (2007); Foster et al. (2019)
Age ACS 2016 (+) Older people are less mobile, need more Cutter et al. (2003); Cutter (2016);
(% population over 65 years) assistance during floods Borden et al. (2007); Foster et al. (2019)
Median income ACS 2016 (+) Higher income people have more means to ~ Rufat et al. (2015),
Social (Household median income) cope with floods Gu et al. (2018)
adaptive o . Ma and Smith (2020); Manturuk,
% le wh - have fe h
capacity Renter (% people who are ACS 2016 () Renters have fewer resources to cope wit Lindblad, and Quercia (2010); Gu et al.
renters) floods
(2018)
N . (-) Higher slope variation could lower water
High 1 DEM
*Standard deviation of slope (-) fr:in S:CSE :ittlon velocity and reduce erodibility/erosion and Pratt and Chang (2012)
. y water quality degradation
Ecological -
exposure Proximity of ecosystem (park,
floodplain) to Toxic Release Environmental (-) Closer to hazards sites can have higher . . e
A . ) Kiaghadi and Rifai (2019)
Inventory (TRI) and Superfund Protection Agency (EPA) probability of contaminant release
sites
Combination of shape index and  Derived from city (+) Sites with higher shape i'ndex (meaning less  Askins (1 99A5'); Bcvcrs: and Flather ,
Ecological average patch size vegetation layers square shape) and smaller size patches are (1999); Martinez-Morales (2005); Ewers
. more sensitive to flood damage and Didham (2007)
sensitivity (+) Bare soils are more erodible leading to
% bare soil within the area NLCD 2016 . . . s Zong and Chen (2000)
higher sedimentation
National Wetland Wetlands absorb flood wat dded
“% wetland within the area ational etlands S0 .e ands absorb flood water as adde Chan et al. (2018)
Ecological Inventory (NWI) benefits
1 f ith high
adaptive Productivity (+) based on USGS Global (+) Wetland 'a nd. .0 rest ecos?/stems with 1 g er . .
. . . . . . . resource availability (and higher productivity) Danielson et al. (2017), Wilson et al.
capacity Normalized Difference in Visualization Viewer are able to resist disturbance and/or rebound (2019)
Vegetation Index (NDVI) (GloVis) (2016—2017) .
more quickly
o o . . Laudan, Rozer, Sieg, Vogel, and Thieken
Buils % buil LiDAR/Shapefile f;
1-11 c.hng area (% building area ! R./S apetiie from (+) Buildings that are exposed to floods (2017), ten Veldhuis, Clemens, and
within the area) each city GIS department N ;
Technological Gelder (2011)
ex osurge Critical infrastructure (CI)
P (# of CI (water/wastewater, Energy Information (+) Critical infrastructure that are exposed to Wilbanks and Fernandez (2014);
power plant, gas terminal) in the Administration (EIA) floods Guidotti et al. (2016)
area)
Road density Each city’s GIS (+) Higher volume of traffic is sensitive to Pregnolato, Ford, Glenis, Wilkinson, and
. (Total lengths of roads/area) department floods Dawson (2017), Kim et al. (2017)
Technological Impervious surface
itivi NLCD IMPERVI I i f: i i
sensitivity (% impervious surface from high C RVIOUS (+) Impervious surface area increase direct Palla and Gnecco (2015)
. 2016 runoff
resolution)
“Green Infrastructure (GI) Each city GIS and
density environmental (+) GI retain rainwater and reduces peak flow  Fahy and Chang (2019)
Technological (Total # Gl/area) protection departments
R Emergency centers
adaptive (distance of emergency centers
capacity — sency City offices of emergency  (-) Emergency centers provide assistance to the

(e.g., hospitals, schools,
community centers to centroid of
CBG)

management

community during floods

Cutter et al. (2003)

ACS = American Community Survey; NLCD = National Land Cover Data.

" Standard deviation of the slope is included as an exposure indicator in the E domain because it represents a structural property of landscape that leads to water
pooling. We intentionally differentiate constructed wetlands or green infrastructure (in the technological adaptive capacity domain) from natural wetlands (in the
ecological adaptive capacity domain) so natural wetlands can fall into the E domain and the other engineered structures fall into the T domain.

components that capture most variation in the chosen indicators across
all six study cities (Jolliffe, 2002). The varimax with Kaiser normaliza-
tion rotation method was used for creating a rotated component matrix
(Kaiser, 1958). The absolute values of the correlation coefficient be-
tween individual indicators and each component higher than 0.4 (and
statistically significant) were used to select each component’s indicator
variables. The saved components were then used as predictors in re-
gressions for explaining variation of combined flood vulnerability across

all six cities.

4. Results
4.1. Social vulnerability map

In Portland, the highly vulnerable areas are located north and central
downtown along the Willamette River and a neighborhood north of
Johnson Creek in Southeast Portland (Fig. 3). With high population
density, the downtown areas have a high proportion of renters and aged
people, even though median income is relatively high. Neighborhoods in
the Johnson Creek area have low median income and high percentage
renters, with a high percentage of non-English speaking people relative
to other Portland neighborhoods. In contrast, with higher income, lower
percentage renters, and predominantly English-speaking people living
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Fig. 3. Quartile maps showing census block group-scale social vulnerability to flooding for six US cities.

in low-density neighborhoods, southwest and northwest Portland have
relatively low social vulnerability.

In Phoenix, the entire city is within the 500-year floodplain. Socially
vulnerable areas are located primarily along both sides of the east-west
interstate highway (I-10) and near the airport (Figs. 1-3), and in a west-
side community north of I-10. These areas are characterized by low
median income and low percentage English speakers; the latter has a
high percentage of renters. A legacy of discriminatory housing practices
in South Mountain Village (south of I-10) has concentrated these more
socially vulnerable populations in these areas. One additional census
block group in northeast Phoenix has high social vulnerability. This area
is among the larger, newer census block groups in the north, and has a
high percentage of renters and low median household income, but is
dominated by young English-speakers, in contrast to the two southern/
western areas of high vulnerability. Thus, low income, low percentage
English-speaking, and high percentage renters contribute most to the
pattern of high social vulnerability. Interestingly, older residents (>65
years of age) are concentrated in areas near preserves that tend to be
wealthier.

In Baltimore, areas with the highest social vulnerability indicator
score are located in more dense communities in general (Fig. 3). These
communities also have a higher percentage of renters and lower median
income. They include areas in downtown Baltimore, Fredrick Avenue,
and neighborhoods along Gwynns Falls west of the city, where streams
were covered for low-income apartment housing development. Other
socially vulnerable areas include east Baltimore, where several major
highways (I-95, 1-895, 40) intersect with Herring Run. Those areas have
higher population density, lower median income, lower percentage
English-speaking people, and higher percentage renters than the rest of

Baltimore.

In Atlanta, the entire city is in the 500-year floodplain. Within the
city, many of the more socially vulnerable areas are low-income, but
even some higher-income areas feature moderate to high levels of social
vulnerability, due to population age in some areas and percentage
renters in other areas. Higher population density (central sections) and
the large numbers of people (in east and south-east sections) contributed
to increased social vulnerability scores in several census block groups.
Overall, English proficiency is highly variable among the vulnerable
areas; however, low English proficiency in low-income areas contrib-
uted to some of the highest social vulnerability scores in the city.

In New York City, very high population densities drive social
vulnerability outcomes (Fig. 3). For example, areas such as the Lower
East Side are denser than the city average. In terms of social sensitivity,
several areas have low English proficiency, such as the South Bronx
where portions in flood-prone areas also have high proportions of
Spanish-speaking populations. Financial vulnerability is an important
consideration, and coastal areas of Brooklyn exemplify elderly pop-
ulations with lower incomes on average. Social adaptive capacity is
reflected in the high percentage renters in New York City in general.
Many of them live in coastal areas vulnerable to flooding, such as in
Canarsie in Brooklyn. Median income is highly variable in the vulner-
able areas. Some of these areas have lower incomes, for example, the
Lower East Side of Manhattan, East Harlem, and the South Bronx.

In Miami, social vulnerability is highest in parts of neighborhoods in
central Miami along the Miami River and the Little River (Fig. 3). Social
vulnerability is also higher in parts of neighborhoods farther away from
these low-lying riverside areas (former wetland transverse glades).
Other pockets exist on the east side of the city. Given that there is not
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much variation in percentage English speaking across the city, the
spatial pattern of social vulnerability is best defined by higher popula-
tion number and density, higher percentage renters, and lower median
income level in some areas around the Miami and Little Rivers, and
apparently opposite patterns of percentages elderly and English-
speaking. High median income seems to offset percentage elderly,
contributing to relatively low social vulnerability in the coastal census
block groups.

4.2. Ecological vulnerability map

The ecological dimension introduces a substantially different
element from environmental characteristics, since the latter focuses on
issues such as air and water quality whereas the former is concerned
holistically with communities of living organisms and their relationship
to environmental factors. In Portland, the most ecologically vulnerable
areas are located in the northwestern tip of the city, where the Will-
amette and the Columbia Rivers join (Fig. 4). The areas are character-
ized as disturbed wetlands with a low amount of vegetation, and are
near superfund sites. Other highly vulnerable areas include the northern
section of Johnson Creek, which runs through the southern part of the
city from east to west. Extensive industrial and commercial activities
with little or fragmented vegetation make the Johnson Creek area
ecologically vulnerable. In contrast, with higher productivity, large
patch size, and higher slope variation, the southwestern neighborhoods
have relatively low ecological vulnerability.

In Phoenix, high ecological vulnerability is concentrated in highly
urbanized areas, again near the interstate highways and airport,
whereas the low-vulnerability areas are the desert and mountain
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preserves in the northern, central, and southern parts of the city where
large ecosystem patches have greater adaptive capacity. In contrast,
patches in densely populated urban areas are smaller and more isolated,
and thus more susceptible to damage. Even though all of Phoenix is in
the 500-year floodplain, the areas of high ecological vulnerability
around the river and the Grand Canal (east-west “rivers” shown in Fig. 4)
are extremely flat, have extensive bare soil, and are in close proximity to
TRI sites. Proximity to TRI sites also contributes strongly to the high
vulnerability along the I-17 corridor (running north-south in the west;
Fig. 1). Wetlands, concentrated along rivers and canals, do not
contribute much to altering the pattern of ecological vulnerability.

In Baltimore, areas with the highest ecological vulnerability score
are located in the downtown core of the city and highly urbanized areas
adjacent to the harbor, where greenspace is fragmented into smaller
urban parks with fewer wetlands, and where slope variation is low
(Fig. 4). TRI sites are also concentrated near downtown areas. Addi-
tionally, ecologically vulnerable areas are found in east Baltimore,
where multiple highways intersect with Herring Run. This area is rela-
tively flat and is close to TRI sites. In contrast, parks adjacent to the
floodplain in less densely developed neighborhoods of the city (i.e., the
northern part of the city) tend to be larger, contiguous green spaces,
making them less ecologically vulnerable.

In Atlanta, high ecological vulnerability often occurs around indus-
trial, semi-industrial, and post-industrial sites of low ecological pro-
ductivity, and near TRI sites, such as by the Chattahoochee River and the
railyard in the northwest, and scattered through the southeast (Fig. 4).
Intensive urbanization, larger shape index and smaller patch size, and
lower productivity contribute to vulnerability in the urban cores (i.e.,
downtown, Midtown, and Buckhead). Elsewhere, the vegetated Atlanta
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suburbs reduce vulnerability. In northern, central-eastern, and south-
western areas, the proximity of large ecosystem patches (preserves and
wooded areas) along floodwater sources reduces ecological vulnera-
bility. Wetlands are rare throughout the city but do help mitigate
vulnerability near the rivers and creeks.

In New York City, the distribution of ecological vulnerability is
moderated by different indicators across the studied area. For instance,
in areas such as Jamaica Bay, vulnerability is high due to the low de-
viation in the slope values, which reflect a flat, constant topography that
increases exposure, and fragmented habitat as reflected in the shape
index and patch-size variable (Fig. 4). Specific industrial and post-
industrial areas in the city such as Newtown Creek, Wall Street and
the coast of the Hudson River show considerable ecological vulnerability
due to the presence of polluted sites recorded in EPA Superfund and the
TRL Finally, the distribution of wetlands is the main vulnerability driver
in the outer census block groups of the coastline, most notably in the
Rockaways Peninsula, Coney Island, and the shores of Northern Queens
and Southeast Bronx.

In Miami, empty lots in downtown likely contribute to the high
percentage of bare soils, which likely contributes to sediment loading of
waterways, increasing ecological vulnerability. A clear spatial pattern of
percentage wetlands exists, with many wetlands concentrated along
waterways and the coast (Fig. 4). Given the value of waterfront property
and development pressure, this suggests high vulnerability of coastal
areas lacking wetland conservation. Interestingly, only a subset of these
wetland areas has relatively high productivity. The lower ecological
vulnerability in the south part of the city seems to be driven by higher
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percentage wetland and productivity, larger green areas or with lower
edge to area, farther distance from TRI, and lower percentage bare soils.

4.3. Technological vulnerability map

In Portland, the highly technologically vulnerable areas are located
in the northeastern corner and central downtown areas (Fig. 5). The
central downtown areas have a high density of buildings and critical
infrastructure, serving as gas terminal hub. The northeastern corner,
where the airport is located, has a high percentage impervious surface.
The relatively low vulnerability in southeastern and southwestern areas
is attributed to a high presence of green spaces with permeable surfaces.

In Phoenix, primary drivers of technological vulnerability are asso-
ciated with the indicators that are closely related to urbanized land uses
(Fig. 5). In particular, combined effects of both exposure and sensitivity
indicators such as percentage building area, road density, and percent-
age impervious surface largely contribute to the top quartile of tech-
nological vulnerability in the broader Phoenix downtown area as well as
along the busy highways (i.e., I-10 and I-17 crossing the city from east to
west and from south to north, respectively). Other peripheral areas of
the city (i.e., northwestern and southwestern edges) also appear
vulnerable because these areas deliver less technological adaptive ca-
pacity due to limited availability of green infrastructure systems and/or
emergency centers.

In Baltimore, the areas with the highest technological vulnerability
score are located in the city’s downtown area (Fig. 5), where there is
dense commercial development and many hospital campuses with high

Portland

mmm— Km

m—— Rivers

City Boundary

0 5 10
mm  Km

Baltimore New York

Atlanta

0 5 10

Km

Fourth Quartile
Third Quartile [ Top Quartle N

Second Quartile

Fig. 5. Quartile maps showing census block group scale technological vulnerability to flooding for six US cities.



H. Chang et al.

impervious surface area and low green infrastructure density. Industrial
communities adjacent to Baltimore Harbor in the southwest of the city,
with high percentages impervious surface and low green infrastructure
density, were also identified as being technologically vulnerable.

In Atlanta, technological vulnerability concentrates in the heavily
urbanized areas—particularly the three urban cores of downtown,
Midtown, and Buckhead—and along the major highways (Fig. 5). Road
density and impervious surfaces are contributing factors throughout the
city, especially near the highways. Other infrastructural areas, including
a railyard, also contribute to vulnerability. Hotspots (top quartile of
technological vulnerability) also occur in residential areas near down-
town. Higher green infrastructure density provides technological
adaptive capacity in the northern and central-eastern regions of Atlanta.

In New York City, technological exposure is reflected in the tradi-
tional, historical coastal locations of many water, electric, and
communication utilities, and sensitivity occurs in terms of the generally
dense road networks and impervious surfaces throughout New York
City, including in flood-prone vulnerable areas (Fig. 5). Technology
adaptive capacity is exemplified by green infrastructure and its potential
for absorbing floodwaters and primarily filtering to support water
quality. Emergency centers, of which there are over 60 designated ones
(and others included in emergencies) (Zimmerman, Restrepo, Joseph, &
Llopis, 2017), are by definition not located in floodplains for protection,
however, many vulnerable areas rely upon rapid connectivity to such
facilities.

Redevelopment east of downtown and in north Miami, as well as
open space in areas along the Miami River and some coasts, contribute
to lower technological exposure there (Fig. 5), with the notable excep-
tion of downtown and Brickell neighborhoods. Technological vulnera-
bility seems to be related to higher green infrastructure density and
lower impervious surface cover and street density, and higher building
density in other areas south of the Miami River.

4.4. Spatial autocorrelation of SETS flood vulnerability maps

Moran’s I values indicate weak spatial autocorrelations in most
vulnerability maps (Table 4). S, E, and T maps are all positively spatially
correlated in Phoenix, Baltimore, Atlanta, and New York City, showing
clustered patterns. The degree of clustering is generally higher in social
and ecological vulnerability maps than in technological vulnerability
maps, except for Portland. In Portland, both social and ecological
vulnerability maps are randomly distributed, while the technological
vulnerability map shows a high degree of clustering (I=0.78). In
contrast, technological vulnerability is randomly distributed in Miami,
with clustering in social and ecological vulnerability.

4.5. Correlation between S, E, T maps in each city

At least one pair of vulnerability scores (i.e., between S and E or S
and T or E and T) is significantly correlated for all cities except Miami
(Table 5); however, correlations are weak (0.05 < r < 0.42, p < 0.05). In
New York City, both S-T and E-T pairs are significantly related to each
other, although they are also weakly correlated. In Phoenix and Atlanta,
social and ecological indicators are weakly correlated to each other,
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whereas in Portland, social and technological indicators are moderately
correlated.

4.6. S- E-T vulnerability map

In Portland, the S-E combined vulnerability area is found in south-
east Portland, north of Johnson Creek (Fig. 6). Two census block
groups—one in northeast Portland along the Columbia River where the
airport is located and the other in southwest Portland along the Will-
amette River—show high vulnerability by E and T. Two census block
groups along the Willamette River are vulnerable for all SETS domains.
These areas are characterized by high presence of industrial lands with
low income, little vegetation, and close proximity to TRI sites along the
river.

The pattern of combined S-E vulnerability in Phoenix (Fig. 6) is
clustered along the interstate highways (east-west I-10, north-south I-
17, and diagonal I-60), and in the three areas of high social vulnera-
bility, the west-side community north of I-10 (Maryvale), South Moun-
tain Village south of the Salt River, and the new, low-income, renter
community in the northeast, reflecting the legacy of past restrictive and
redlining policies. There are few census block groups with overlapping
S-T or S- E-T vulnerability, but those that show this combined vulnera-
bility all are associated with the interstate highway corridors.

In Baltimore, vulnerability is primarily dominated by social factors,
except for the highly industrialized communities in the coastal flood-
plain adjacent to the harbor, which is dominated by ecological and eco-
technical vulnerability (Fig. 6). These communities are characterized by
dense urban development, including critical facilities such as hospitals,
and the few remaining greenspaces are highly fragmented. A couple of
communities in south and east Baltimore are vulnerable both socially
and ecologically, and are close to TRI sites and highways.

In Atlanta, areas of vulnerability often cluster around the highways
and other major infrastructural features (Fig. 6). Combined vulnerability
areas are most prominent around downtown, where development co-
locates many of the factors likely to exacerbate flooding as well as
exposing sensitive populations and locations to risk. Some other com-
bined vulnerability areas occur near the airport (Fig. 1; south of the main
contiguous city boundary, but with influence extended to nearby areas,
some of which are in the city limits), near the railyard west of Midtown,
and in some areas of development concentrated along the highways.

In New York City, connectivity and compound effects occur for so-
cial, ecological and technological exposure, sensitivity, and adaptive
capacity. The southeastern portion of the city around Jamaica Bay,
which is heavily flood-prone, illustrates the confluence of SETS char-
acteristics (Fig. 6). Exposure occurs as high population densities (S),
high slope variation (E), and numerous utilities and wastewater treat-
ment plants surrounding the Bay (T). Sensitivity occurs as high per-
centage elderly populations (S), irregular and fragmented patches (E),
and relatively high road densities and impervious surfaces (T). Mixed
adaptive capacity is reflected in higher renter populations but higher
income populations in the Rockaways (S), extensive wetlands (E), and
the presence of green infrastructure (T) but long distances to emergency
centers given the Bay’s configuration.

In Miami, domains of urban flood vulnerability are not strongly

Table 4
Moran’s I values for social, ecological, technological vulnerability domains for each of six study cities.
Vulnerability Domains Portland Phoenix Baltimore Atlanta New York City Miami
Social 0.0056 (random) 0.35%* 0.10* (clustered) 0.10** (clustered) 0.21 ** (clustered) 0.18** (clustered)
(clustered)
Ecological —0.011 (random) 0.53** (clustered) 0.16* (clustered) 0.33%* (clustered) 0.20%* (clustered) 0.15** (clustered)
Technological 0.78"* 0.041** (clustered) 0.44"* (clustered) 0.0022* (clustered) 0.87** (clustered) 0.0053 (random)
(clustered)

" Statistically significant at the 0.05 level.
" Statistically significant at the 0.01 level.
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Table 5

Correlation coefficient between S-E, S-T, and E-T vulnerability categories in each city.
Vulnerability Domains Portland Phoenix Baltimore Atlanta New York City (n=2361) Miami

(n=58) (n=966) (n=133) (n=305) (n=297)

S-E —0.034 0.097** 0.118 0.227** 0.027 —0.049
S-T 0.420%* —0.006 0.017 —0.012 0.087+* —0.022
E-T 0.033 0.053 0.245%* —0.075 0.052 —0.017

" Correlation is statistically significant at the 0.01 level.
" Significant at the 0.05 level.
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Fig. 6. Combined top-quartile social (S), ecological (E), and technological (T) vulnerability to flooding for six US cities.

correlated to each other. However, the intersecting S- E-T flood
vulnerable areas are located along the edge of Wynwood intersected by
I-95. Other famous tourist locations like areas of Little Havana and the
Omni neighborhood also emerge as having intersecting S- E-T urban
flood vulnerability. The predominant spatial patterns are in single do-
mains of social, ecological, and technological vulnerability, with some
clustered (although not significant) S-T south along the Miami River in
areas of the West Flagler, Little Havana, and Riverside neighborhoods.

4.7. Cross-city comparison

According to the principal component analysis (PCA) results, the first
six components explained approximately 60 % of the variation in the
vulnerability data across all cities (Table 6). The first two components
(components 1 and 2) represent a combination of social, ecological, and
technological domains, and explained 26 % of variation. The other
components represent ecological and technological elements (compo-
nents 3 and 6) and social (component 4) and technological elements
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(component 5). While most indicators were included in a specific
component once, building density and street density indicators were
included twice in different components, suggesting that built environ-
mental characteristics are important for understanding urban flood
vulnerability. When these six components were used in stepwise
regression analysis, 44 % of the combined S- E-T flood vulnerability
variation was explained by the six components. All but component 4
were positively related to the combined S- E-T flood variability. The first
two components, which include all S, E, and T indicators, were statis-
tically the most significant.

5. Discussion

5.1. Importance of considering SETS domains in urban flood vulnerability
analysis

The urban SETS flood vulnerability framework developed in this
study advances a systematic approach to understanding urban
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Table 6
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Principal components and selected vulnerability indicators in each component and associated vulnerability domains.

PCA component

Selected indicators (numbers in parenthesis show correlation coefficient*)

Variation explained by this component

Component 1 (S- E-T)
Component 2 (S- E-T)
Component 3 (E-T)
Component 4 (S)
Component 5 (T)
Component 6 (E-T)

English (-0.65), income (0.81), renter (0.65)
Distance to emergency (0.82)
Bare soil (0.46), critical infrastructure (0.85)

Population (0.58), Age>65 (-0.85), slope sd (0.70), productivity (0.70), street density (-0.62),
Population density (0.75), wetland (-0.43), building density (0.80), impervious surface (0.62)
SI-patch index (-0.62), street density (0.41), impervious surface (-0.53), GI density (0.60)

14.91 %
11.53 %
10.69 %
9.95 %
6.77 %
6.43 %

* Correlation coefficient higher than 0.4 was selected for inclusion.

vulnerability to flooding. Many previous flood vulnerability studies have
focused on respective SETS domains, yet recognize a need for integrated
vulnerability assessments across these domains. For social vulnerability,
for example (e.g., Cutter et al., 2003), a growing body of literature in
recent years addresses the importance of integrating physical and
institutional aspects of vulnerability (e.g., Cho & Chang, 2017). More-
over, only a few studies have explicitly investigated flood vulnerability
in the ecological domain. Our results indicate the importance of
considering ecological indicators; in this case, productivity and wetlands
are included in the first two PCA components. Thus, our study extends
earlier endeavors by embracing the neglected ecological aspect of urban
flood vulnerability assessment. While nature-based solutions, such as
green infrastructure and restored wetlands, are gaining popularity in
cities worldwide (Chan et al., 2018; Frantzeskaki et al., 2019; Keeler
et al., 2019; Ruangpan et al., 2020), such efforts have not been widely
incorporated into analyses of urban flood vulnerability to date, except
for a few studies that examined the effectiveness of green infrastructure
in flood mitigation (e.g., Fahy & Chang, 2019). Similarly, many tech-
nological vulnerability studies typically have not included social and
ecological domains (Kim et al., 2017).

5.2. Spatialization of urban flood vulnerability

As one of the few studies examining flood vulnerability across mul-
tiple cities and multiple elements, the current study illuminates the
multifaceted domains of flood vulnerability at a finer spatial scale.
Within the 500-year floodplain, there are substantial spatial variations
in social, ecological, and technological domains of vulnerability. This
spatial heterogeneity of flood vulnerability suggests that hazardscapes
(i.e., the spatial distribution of risk and vulnerability) could be deeply
rooted in historical land development (Chang et al., 2021), past
discriminatory practices such as redlining (Grove, Cox, & Barnett,
2020), and inappropriate zoning or lack of zoning in some cities. For
example, in Phoenix, Baltimore, and Atlanta, the development of
housing and infrastructure are not spatially random, and in many in-
stances, these incompatible land uses are co-located in low-income or
minority neighborhoods, to the detriment of these socially vulnerable
groups. Exploring historical land-use and demographic information
about today’s vulnerable spaces often reveals legacies of past injustice.
The legacy of past discrimination against minority populations, where
restrictions and redlining happened, resulted in the concentration of
low-income, non-English-speaking populations in specific areas of our
study cities (Bolin, Grineski, & Collins, 2005; Grove et al., 2018, 2020;
York et al., 2014), as highways and low-income and high renter neigh-
borhoods are co-located. Additionally, the siting of polluting industry
(as measured by proximity to TRI sites) near rivers and coastlines con-
tributes to high ecological and social vulnerability in some neighbor-
hoods in Miami, New York City, and Portland. Our findings agree with
other studies that identified spatial inequity with respect to the exposure
of certain groups of residents (e.g., economically disadvantaged groups)
residing in flood-prone zones (La Rosa & Pappalardo, 2020; Qiang,
2019).
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5.3. Implications for flood resilience planning

The urban SETS flood vulnerability framework provides useful
framing and information for flood resilience planning, design, and pol-
icy. Our analyses reveal interactions among the three domains (S, E, and
T) along three dimensions (exposure, sensitivity, and adaptive capacity)
of vulnerability in each city. With limited resources and capacity to
address flood vulnerability, cities may seek to identify neighborhoods
with overlapping areas of high S, E, and T vulnerability (as revealed by
our quartile S- E-T maps), rather than to reduce vulnerability in only one
domain. Alternatively, a city can target specific types of solutions to
reduce S, E, T, S-E, or S-T exposure and increase adaptive capacity
(Iwaniec, Cook, Davidson, Berbés-Blazquez, & Grimm, 2020). For
example, reducing exposure in one domain (e.g., high concentration of
people along coastlines), combined with increasing adaptive capacity in
another (e.g., expansion of wetlands), may serve as a way to increase
resilience and reduce vulnerability, using all domains of the urban SETS
vulnerability framework. Correlation results show that in some cities,
for example, Atlanta and Phoenix, social and ecological vulnerabilities
are significantly related, suggesting that these cities have opportunities
to improve neighborhoods that are both socially and ecologically
vulnerable. In this regard, city planners might develop green spaces with
a focus on equitable distribution throughout the city, and with the
intention of increasing social capital to enhance adaptive capacity in
poorer neighborhoods. Knowing that social vulnerability is co-located
with ecologically vulnerable areas can help city planners promote so-
cial protections against displacement of low-income residents for plan-
ning ecological improvements in consideration of social and
environmental equity. For example, ecological investments in high S-E
vulnerability areas might be accompanied by affordable housing policies
and meaningful engagement of residents in decision-making and siting,
to avoid gentrification and displacement (Cheng, 2019a, b, Foster et al.,
2019).

The methods and framework used in the current study are transfer-
able to other types of hazards such as heat that, like flooding, have
spatially defined SETS domains (Fahy et al., 2019). As cities are expe-
riencing more cascading hazards with combinations of more than one
extreme event, the urban SETS vulnerability framework can offer a
useful decision tool for disaster experts and city practitioners.

5.4. Limitations of the current approach and future research suggestions

We developed representative indicators for assessing flood vulnera-
bility across six study cities based on previous practice and a new urban
SETS flood vulnerability framework, subject to data availability for all
cities that has the advantage of compatibility among the cities. Yet, this
study is not intended to be a comprehensive or definitive guide to urban
SETS flood vulnerability analysis. Rather, we hope it will serve as a
palimpsest on which further exploration of SETS vulnerability can be
done, with an expanded set of variables or with more regional speci-
ficity, as future researchers see fit. We acknowledge that vulnerability
indicators should be further developed with the consultation and
engagement of city practitioners and other stakeholders, and that the
resulting distributions of SETS vulnerability to flooding or other hazards



H. Chang et al.

may vary greatly, depending on what indicators are considered for
analysis. Each city faces unique opportunities and challenges in using
specific indicators, which should be considered when updating flood
vulnerability maps. For example, measures of ecosystem productivity
relying on greenness metrics such as NDVI may be less appropriate for
arid-land cities like Phoenix than they are for cities with high canopy
cover, such as Portland or Baltimore. Additionally, we applied the
framework using an equal weight for all vulnerability indicators. Given
that some specific indicators might be more influential than others in a
specific regional context (Papathoma-Kohle, Cristofari, Wenk, & Fuchs,
2019), future research could consider conducting stakeholder in-
terviews or surveys to identify their subjective ranking on indicators
(Luke et al., 2018). To incorporate stakeholders’ perspectives into flood
vulnerability analysis, one can use multicriteria decision making, such
as the analytical hierarchy process (Hong & Chang, 2020; Ouma &
Tateishi, 2014).

The current analysis, which employed widely available existing flood
exposure maps, has limitations for assessing future flood vulnerability.
As climate change is likely to increase the frequency of extreme weather
events and thus the occurrence and distribution of floods (Kundzewicz
et al., 2013; Wing et al., 2018), the analysis points to the need for up-
dates using the latest climate-change projections and hydrologic
modeling. Additionally, our study addresses only fluvial (riverine)
flooding, not including pluvial flooding, which may become more
prevalent with the changing climate (Rosenzweig et al., 2018). The
flood-prone areas beyond the 500-year floodplain are excluded in our
analysis, except for Atlanta, Phoenix, and Miami, where their 500-year
floodplains encompass all city areas. Future research can take advan-
tage of the output maps derived from combined modeling of fluvial and
pluvial flooding, such as those used in Japan (Tanaka, Kiyohara, &
Tachikawa, 2020), in the UK (Muthusamy, Rivas Casado, Salmoral,
Irvine, & Leinster, 2019), and in the US (Zhang, Ye, & Yu, 2020).

6. Conclusions

This study reveals the value of using the SETS framework for eval-
uating flood vulnerability at the census block group scale across six US
cities. First, vulnerability to flooding in each SETS domain exhibits a
clustered distribution in most cities. We observed unique hotspots of
social, ecological, or technological vulnerability, suggesting that the
SETS framework offers complementary views for understanding urban
vulnerability to flooding across cities. Second, S-E, S-T, and E-T
vulnerability are spatially correlated to each other in some cities, sug-
gesting that these cities have opportunities to improve flood mitigation
in more than one domain simultaneously. Third, when all 18 indicators
are used to explain the combined S- E-T vulnerability, six PCA compo-
nents explain 44 % of the variance in flood vulnerability across all six
cities. The first two components contain indicators that represent all
domains of SETS, indicating that failure to consider all three SETS do-
mains in terms of the three dimensions of vulnerability (exposure,
sensitivity, and adaptive capacity) will lead to underestimation of sys-
tem vulnerability.

The findings of this study offer several implications for cities un-
dertaking spatial planning for climate resilience and sustainable devel-
opment. As indicated earlier, S, E, and T are integrated with exposure,
sensitivity and adaptability which is an important contribution to urban
sustainability and its societal dimensions. The relevance to cities is
underscored by the application to six U.S. cities and other cities can
benefit from these findings. An understanding of complex, inter-
connected components is critical to an understanding of sustainable
development. SETS provides a framework to examine the complex
relationship between environment, infrastructure, and equitable distri-
bution of hazards in society. Because areas that are vulnerable to floods
are spatially confined to specific areas, municipalities can target the
neighborhoods in which hotspots (top 25 % of vulnerability scores) of
more than one SETS domain overlap. If a neighborhood lacks green
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space or contains infrastructure that makes it vulnerable to floods, cities
can invest in such neighborhoods to improve existing conditions, while
also improving social resilience. Additionally, the urban SETS flood
vulnerability framework can be further refined with local stakeholders’
explicit engagement, including community members, by adding or
subtracting indicators and assigning weights. As the flood resilience
agenda of community members might differ from that of city practi-
tioners or other experts (Grove et al., 2020), it is essential to hear
different voices and incorporate these diverse perspectives into future
resilience planning. The urban SETS flood vulnerability framework of-
fers a platform for engaging diverse stakeholders to co-produce knowl-
edge to achieve flood resilience under changing demographics and
climate to ensure the sustainability of equitable economic investment on
infrastructure and technological systems to reduce flooding vulnera-
bility and enhance resilience in ecosystems and communities.
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