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Abstract: High-strength hot-press-formed (HPF) steels with a fully martensitic microstructure are
being widely used in the fabrication of automotive body structure, and 2.0 GPa-strength HPF steel has
recently been commercially launched. However, heat-affected zone (HAZ) softening is unavoidable
in welding martensitic steel. In this study, the HAZ softening characteristic of 2.0 GPa HPF steel
was investigated by applying a high-brightness laser welding process, wherein the heat input was
controlled by varying the welding speed. Microstructural evaluation and hardness test results
showed that the base metal with a fully martensitic microstructure was changed to the same type of
fully martensitic microstructure in the weld metal, while relatively soft microstructures of tempered
martensite and ferrite phase were partially formed in the intercritical HAZ (ICHAZ) and subcritical
HAZ (SCHAZ) areas. In the tensile test, the joint strength was 10–20% lower than that of the base
metal, and the fracture initiation was estimated at the ICHAZ/SCHAZ boundary, where the lowest
hardness was confirmed by the nanoindentation technique.

Keywords: hot-press-formed steel; high-strength steel; 2 GPa strength; laser welding; heat-affected
zone; softening; tempered martensite; ferrite

1. Introduction

The strength of steel utilized in the automobile body structures has been increasing
rapidly, and the proportion of martensite-based ultra-high-strength steel (UHSS) has been
expanding drastically in the last two decades [1–4]. Among modern martensite-based
UHSS, fully martensitic steel and hot-press-formed (HPF) steel have higher strength owing
to the higher martensitic phase fraction than that in martensite-ferrite dual-phase (DP) steel
and transformation-induced plasticity steel, which have a partial martensite fraction [4–6].

HPF steel, a boron-alloy steel, has a ferritic-pearlitic microstructure with a tensile
strength of approximately 600 MPa before the HPF process. During the HPF process, an
HPF-steel sheet is heated for complete austenization and then quenched in a water-cooled
die; this process enables the achievement of high dimensional accuracy owing to the high
temperature forming process and a fully martensitic microstructure formation owing to
the rapid cooling. Based on the process characteristics, HPF is also termed press hardening,
hot forming, or die quenching. Since 2010, HPF steel has been widely commercialized in
the automotive industry, and 22MnB5 steel with a tensile strength of 1.5 GPa has been most
commonly applied [7]. Many automotive companies have successfully applied HPF steel
to passenger-safety-related components, such as the bumper beams and center pillars, and
automobile manufacturers are focused on expanding their applications to higher-grade
HPF steel with higher carbon content [8].
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Because HPF steel has a fully martensitic microstructure, relatively soft tempered
martensite is formed at the heat-affected zone (HAZ) while welding: this is termed as the
HAZ softening effect. The HAZ softening effect is unavoidable in welding the martensite-
based UHSS; therefore, laser welding with a relatively low heat input is preferred to
minimize the size and magnitude of HAZ softening. Most previous studies have inves-
tigated the laser weldability of 1.5 GPa grade HPF steel using a CO2 laser [9] and high
brightness lasers [10] and found substantial hardness degradation of the HAZ when the
peak temperature was near the austenization (Ac1) temperature. Steel manufacturers such
as SSAB AB and ThyssenKrupp Steel released higher grades of HPF steel. Furthermore,
the laser overlap weldability has been evaluated on 1.8 GPa grade and 1.9 GPa grade HPF
steel [11]. The detrimental influence of surface layers such as the AlSi coating layer and the
surface oxide layer on the laser-weld strength was investigated on 1.5 GPa HPF steel [12]
and 1.8 GPa HPF steel [13]. The commercial 2.0 GPa HPF steel has been launched, but
studies on the welding of 2.0 GPa grade HPF steel have not been reported yet.

In this study, the mechanical and metallurgical behavior of laser welds was inves-
tigated on 2.0 GPa HPF steel. A high brightness laser was chosen as the power source
to minimize the thermal effect on the welds, and the microstructural transformation at
different locations was observed by microscopy. The cause of HAZ softening and its effect
on the tensile strength of the welds were studied through microstructural analysis.

2. Experimental Procedure

Boron-alloyed steel, Docol® PHS CR 2000, with a thickness of 1.2 mm was used as the
base metal (BM). The specimens were machined to a dimension of 150 × 120 mm (Figure 1),
and the oxide scales on the specimen surface were removed using fine sandpaper to prevent
dilution of the oxide layer into the weld metal (WM) [13]. The chemical composition of the
BM was analyzed using an optical emission spectrometer (Table 1), and it was matched
with the range in the technical specifications provided by the steelmaker SSAB AB [14].
Then, the specimens were heat-treated according to the manufacturer’s guidelines. The
specimens were heated for 5 min in a furnace at a temperature of 950 ◦C to complete
the austenitic phase transformation and then quenched in a water-cooled die where the
temperature was maintained constantly at 25 ◦C. The cooling rate in the cooling die was
estimated to be 100 K/s.
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Figure 1. Welding joint preparation.

Table 1. Chemical composition of the base metal (wt%).

C Si Mn P S Cr B Nb Ti

0.346 0.25 1.20 0.011 0.001 0.14 0.0015 0.044 0.01

A fiber laser system (IPG photonics, Oxford, MA, USA) with a wavelength of 1070 nm
with the laser output power set at 2 kW was used. The laser beam was delivered to a laser
optics (IPG photonics, Oxford, MA, USA) device with a focal distance of 200 mm through
an optical fiber with a diameter of 200 µm. The laser beam was irradiated perpendicularly
onto the specimen placed at the focal position. At the focal point the laser beam had a
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beam diameter of 0.27 mm (Figure 2). The welding speed was varied from 6 to 8 m/min:
shielding gas was not supplied in this study.
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Figure 2. Measured laser beam profile.

Mechanical and metallurgical tests were performed on the welded specimens. After
laser welding, three tensile-test specimens were machined based on the ISO 4136 standard
for each condition (Figure 3) and the static tensile tests were carried out at a head speed of
1 mm/min (Shimadzu, Kyoto, Japan). The welded specimen was polished and etched with
3% nital solution (3 mL HNO3 and 100 mL ethanol) and the microstructure was observed
by optical microscopy (OM, Olympus, Kyoto, Japan) and field-emission scanning electron
microscopy (FE-SEM, Thermo Fisher Scientific, Waltham, MA, USA). The micro-Vickers
hardness (Matsuzawa, Akita, Japan) was measured on the cross-section with an indent
spacing of 0.1 mm along the specimen centerline, according to the ASTM E384-99 standard; the
applied load and holding time for hardness measurement were 1.96 N and 10 s, respectively.
In addition, nanoindentation hardness tests were carried out in the lower-hardness region
between the intercritical HAZ (ICHAZ) and the subcritical HAZ (SCHAZ) with a load of
0.2 N and a holding time of 20 s, according to the ISO 14577-1:2015 standard.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 9 
 

through an optical fiber with a diameter of 200 μm. The laser beam was irradiated 

perpendicularly onto the specimen placed at the focal position. At the focal point the laser 

beam had a beam diameter of 0.27 mm (Figure 2). The welding speed was varied from 6 

to 8 m/min: shielding gas was not supplied in this study. 

-0.6 -0.3 0.0 0.3 0.6
-15

-10

-5

0

5

10

15

F
o
c
a
l 
p
o
s
it
io

n
 (

m
m

)

Beam diameter (mm)

0.27 mm

 

Figure 2. Measured laser beam profile. 

Mechanical and metallurgical tests were performed on the welded specimens. After 

laser welding, three tensile-test specimens were machined based on the ISO 4136 standard 

for each condition (Figure 3) and the static tensile tests were carried out at a head speed 

of 1 mm/min (Shimadzu, Kyoto, Japan). The welded specimen was polished and etched 

with 3% nital solution (3 mL HNO3 and 100 mL ethanol) and the microstructure was 

observed by optical microscopy (OM, Olympus, Kyoto, Japan) and field-emission 

scanning electron microscopy (FE-SEM, Thermo Fisher Scientific, Waltham, MA, USA). 

The micro-Vickers hardness (Matsuzawa, Akita, Japan) was measured on the cross-

section with an indent spacing of 0.1 mm along the specimen centerline, according to the 

ASTM E384-99 standard; the applied load and holding time for hardness measurement 

were 1.96 N and 10 s, respectively. In addition, nanoindentation hardness tests were 

carried out in the lower-hardness region between the intercritical HAZ (ICHAZ) and the 

subcritical HAZ (SCHAZ) with a load of 0.2 N and a holding time of 20 s, according to the 

ISO 14577-1:2015 standard. 

 

Figure 3. Configuration of tensile test specimen. 

3. Results and Discussion 

3.1. Microstructure and Mechanical Properties of Base Metal 

Figure 4a shows the BM microstructure. Martensite blocks consisting of parallel laths 

were observed with no indication of carbides precipitation and retained austenite. The 

BM had a fully martensitic microstructure with an average hardness of 609 HV. Figure 4b 

shows the stress–strain curves of the BM after the HPF process: the average values of 

tensile strength and elongation were 2.08 GPa and 3.36%, respectively. 

Figure 3. Configuration of tensile test specimen.

3. Results and Discussion
3.1. Microstructure and Mechanical Properties of Base Metal

Figure 4a shows the BM microstructure. Martensite blocks consisting of parallel
laths were observed with no indication of carbides precipitation and retained austen-
ite. The BM had a fully martensitic microstructure with an average hardness of 609 HV.
Figure 4b shows the stress–strain curves of the BM after the HPF process: the average
values of tensile strength and elongation were 2.08 GPa and 3.36%, respectively.
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3.2. Welding Test Result

Full penetration was achieved under bead-on-plate welding conditions, and the higher
the welding speed, the narrower the bead width. Sound weld beads were formed except for
a slight underfill (Figure 5). In the cross-sectional images, white bands were observed in the
HAZ between the WM and BM. According to a previous study [12], that white band region
indicated the ICHAZ, which had a peak temperature between the austenite transformation
temperatures of AC1 and AC3. The ICHAZ of laser-welded HPF steel contains relatively
soft ferrite owing to partial austenization, while other regions comprise martensite and
tempered martensite.
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The microstructure of the weld specimen with a welding speed of 7 m/min was
analyzed using OM and SEM. The WM has a microstructure of lath martensite owing
to the high cooling rate of laser welding (Figure 6a), which is similar to that of the BM
(Figure 4a). A previous study on laser welding on 1.5 GPa HFP steel reported that the
WM of 1.5 GPa HFP steel has a finer martensitic microstructure with a smaller packet
size than the BM [15]. Although the cooling rate during laser welding is much faster than
that during the HPF process [16,17], the BM of 2.0 GPa HPF was almost fully hardened
through the HPF process owing to the high carbon content, which resulted in a similar
microstructure in both the BM and WM. The upper critical HAZ (UCHAZ), where the
peak temperature is between the AC3 and the melting temperatures, is composed of coarse
grain HAZ (CGHAZ) adjacent to the WM and fine grain HAZ (FGHAZ) adjacent to the
ICHAZ. Both CGHAZ and FGHAZ showed a martensitic structure owing to the high
cooling rate. The martensite packet in the FGHAZ is slightly finer than that in the CGHAZ,
but the microstructural difference is not significant (Figure 6b,c): the microstructure of the
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ICHAZ differs from that of other regions. In the ICHAZ, martensite was formed in the
prior-austenite grain boundary, and ferrite (or ferrite/carbide) was formed in the rest of the
areas (Figure 6d). Ferrite has different polishing and etching characteristics from those of
martensite and tempered martensite, which resulted in white bands on the cross-sections
in Figure 5. In the SCHAZ, the austenite phase transformation did not occur because the
peak temperature was below the AC1 temperature, and tempered martensite with carbide
precipitates was observed (Figure 6e).
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Figure 6. SEM images of bead-on-plate welds (welding speed: 7 m/min): (a) weld metal;
(b) coarse grain heat-affected zone; (c) fine grain heat-affected zone; (d) intercritical heat-affected zone;
(e) subcritical heat-affected zone; (f) base metal.

Compared to the BM, the WM and UCHAZ had similar or higher hardness, while
lower hardness was measured in the ICHAZ and SCHAZ (Figure 7). As the welding speed
increased from 6 to 8 m/min, the width of the high-hardness zone of the WM and UCHAZ
decreased. The softening of the ICHAZ and SCHAZ was caused by the formation of a
relatively soft microstructure of ferrite and tempered martensite, as shown in Figure 6.

Nanoindentation hardness testing was carried out in the lower-hardness area of the
ICHAZ and SCHAZ on the specimen with a welding speed of 7 m/min. Hardness was
measured at 13 locations along a line oblique to the HAZ boundaries (Figure 8a). The
lowest hardness value of 323.7 HV was observed at location 7 (Figure 8b), which was
placed on the exact boundary between the ICHAZ and SCHAZ as shown in the SEM
image (Figure 8a). Ferrite and tempered martensite were simultaneously observed in the
microstructure of the lowest-hardness zone (Figure 9). It was confirmed that the most
softened location was the ICHAZ/SCHAZ boundary where the peak temperature was
equal to the AC1 temperature.
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In the range of welding speeds of 6–8 m/min, there was no significant variation in the
hardness of the WM and the tensile strength of the welds, except for a slightly lower tensile
strength at the lowest welding speed (Figure 10). The crack initiation location in the tensile
tests is indicated by the red arrows in Figure 11. The fractures were estimated to be initiated
at the boundary of the ICHAZ and SCHAZ, which is consistent with the location of the
lowest hardness in Figures 7 and 8. An examination of the fracture surfaces revealed that
the fracture mode was ductile (Figure 12). The fracture surfaces contain dimple features
that indicate a ductile fracture, and there are finer dimples at the fracture surface of the
top and bottom parts than those of the middle part. Moreover, a surface similar to the
cleavage facet, indicated by red arrows in Figure 12, was observed in the middle part of
the fractured surface.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 9 
 

In the range of welding speeds of 6–8 m/min, there was no significant variation in the 

hardness of the WM and the tensile strength of the welds, except for a slightly lower 

tensile strength at the lowest welding speed (Figure 10). The crack initiation location in 

the tensile tests is indicated by the red arrows in Figure 11. The fractures were estimated 

to be initiated at the boundary of the ICHAZ and SCHAZ, which is consistent with the 

location of the lowest hardness in Figures 7 and 8. An examination of the fracture surfaces 

revealed that the fracture mode was ductile (Figure 12). The fracture surfaces contain 

dimple features that indicate a ductile fracture, and there are finer dimples at the fracture 

surface of the top and bottom parts than those of the middle part. Moreover, a surface 

similar to the cleavage facet, indicated by red arrows in Figure 12, was observed in the 

middle part of the fractured surface. 

6 7 8

1.2

1.6

2.0

2.4

T
e
n
s
ile

 s
tr

e
n
g
th

 (
G

P
a
)

Welding speed (m/min)  

Figure 10. Tensile strength of bead-on-plate welds. 

   

   

Welding speed 6 m/min Welding speed 7 m/min Welding speed 8 m/min 

Figure 11. Fractured specimens after tensile test. 

  

Figure 10. Tensile strength of bead-on-plate welds.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 9 
 

tensile strength at the lowest welding speed (Figure 10). The crack initiation location in 

the tensile tests is indicated by the red arrows in Figure 11. The fractures were estimated 

to be initiated at the boundary of the ICHAZ and SCHAZ, which is consistent with the 

location of the lowest hardness in Figures 7 and 8. An examination of the fracture surfaces 

revealed that the fracture mode was ductile (Figure 12). The fracture surfaces contain 

dimple features that indicate a ductile fracture, and there are finer dimples at the fracture 

surface of the top and bottom parts than those of the middle part. Moreover, a surface 

similar to the cleavage facet, indicated by red arrows in Figure 12, was observed in the 

middle part of the fractured surface. 

6 7 8

1.2

1.6

2.0

2.4

T
e
n
s
ile

 s
tr

e
n
g
th

 (
G

P
a
)

Welding speed (m/min)  

Figure 10. Tensile strength of bead-on-plate welds. 

   

   
Welding speed 6 m/min Welding speed 7 m/min Welding speed 8 m/min 

Figure 11. Fractured specimens after tensile test. 

  

Figure 11. Fractured specimens after tensile test.



Appl. Sci. 2021, 11, 5774 8 of 9Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 9 
 

 

 Top Middle Bottom 

1k× 

   

5k× 

   

Figure 12. Scanning electron microscopy (SEM) images of fractured specimen (welding speed: 7 m/min). 

4. Conclusions 

In this study, laser welding was applied to HPF steel with 2.08 GPa strength, and the 

following results were obtained: 

(1) The tensile strength of the laser BOP joint was degraded over a range between 1.6 

GPa and 1.8 GPa. A slightly lower strength was obtained at the lowest welding speed. 

(2) The hardness of the WM and the UCHAZ is similar or higher than that of the BM, 

while relatively lower hardness was measured in the ICHAZ and the SCHAZ, which 

is estimated as a fracture initiation location in the tensile test. 

(3) The lowest hardness area in the HAZ coincided exactly with the boundary of the 

ICHAZ and the SCHAZ, composed of the soft microstructures of ferrite and 

tempered martensite, developed at the peak AC1 temperature. 

(4) When designing the parts using HPF steel, it is necessary to understand the thermal 

softening and microstructural non-uniformity of the welded joint. 

Author Contributions: Investigation, K.K. and C.K.; Methodology, K.K. and N.K.; Supervision, 

N.K. and M.K.; Writing—original draft, K.K., M.K. and C.K.; Writing—review and editing, M.K. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This research was supported by the Future Material Discovery Project of the National 

Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning 

(MSIP) of Korea (2016M3D1A1023534). We also acknowledge the financial support provided 

through the MOTIE (Ministry of Trade, Industry, and Energy) in Korea, under the Industrial 

Strategic Technology Development Program (20002809) 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: This research was supported by the Future Material Discovery Project of the 

National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future 

Planning (MSIP) of Korea (2016M3D1A1023534). We also acknowledge the financial support 

provided through the MOTIE (Ministry of Trade, Industry, and Energy) in Korea, under the 

Industrial Strategic Technology Development Program (20002809). 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 12. Scanning electron microscopy (SEM) images of fractured specimen (welding speed: 7 m/min).

4. Conclusions

In this study, laser welding was applied to HPF steel with 2.08 GPa strength, and the
following results were obtained:

(1) The tensile strength of the laser BOP joint was degraded over a range between
1.6 GPa and 1.8 GPa. A slightly lower strength was obtained at the lowest
welding speed.

(2) The hardness of the WM and the UCHAZ is similar or higher than that of the BM,
while relatively lower hardness was measured in the ICHAZ and the SCHAZ, which
is estimated as a fracture initiation location in the tensile test.

(3) The lowest hardness area in the HAZ coincided exactly with the boundary of the
ICHAZ and the SCHAZ, composed of the soft microstructures of ferrite and tempered
martensite, developed at the peak AC1 temperature.

(4) When designing the parts using HPF steel, it is necessary to understand the thermal
softening and microstructural non-uniformity of the welded joint.
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