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(a) View 1 (b) View 2 (c) Anaglyph (d) Aligned (e) Ours

Figure 1: Stereo pairs (a, b) were imaged through glass and exhibit undesired reflections. The transmitted and reflective images

are subject to parallax that is difficult to separate as shown in the anaglyph (c). Our reflection-invariant flow aligns the two

views with respect to the transmitted image, causing all remaining parallax (in the reflection on the tissue box, for example) to

be due to reflections as shown in anaglyph (d). Our synthesis network exploits this parallax to remove reflections (e).

Abstract

Traditional reflection removal algorithms either use a

single image as input, which suffers from intrinsic ambigui-

ties, or use multiple images from a moving camera, which is

inconvenient for users. We instead propose a learning-based

dereflection algorithm that uses stereo images as input. This

is an effective trade-off between the two extremes: the paral-

lax between two views provides cues to remove reflections,

and two views are easy to capture due to the adoption of

stereo cameras in smartphones. Our model consists of a

learning-based reflection-invariant flow model for dual-view

registration, and a learned synthesis model for combining

aligned image pairs. Because no dataset for dual-view re-

flection removal exists, we render a synthetic dataset of

dual-views with and without reflections for use in training.

Our evaluation on an additional real-world dataset of stereo

pairs shows that our algorithm outperforms existing single-

image and multi-image dereflection approaches.

1. Introduction

Of the billions of pictures taken every year, a significant

portion are taken through a reflective surface such as a glass

Work primarily done while Simon and Xuaner were interns at Google.

window of a car or a glass case in a museum. This presents

a problem for the photographer, as glass reflects some of the

incident light from the same side as the photographer back

towards the camera, corrupting the captured images with

reflected image content. Formally, the captured image I is

the sum of the image being transmitted through the glass T

and the image of the light being reflected by the glass R:

I[x, y, c] = T [x, y, c] +R[x, y, c]. (1)

The task of reflection removal is estimating the image T

from an input image I . A solution to this problem has

significant value, as it would greatly broaden the variety of

circumstances in which photography can occur.

Equation 1 shows the core difficulty of single-image re-

flection removal: the problem is inherently underconstrained,

as we have six unknowns at each pixel but only three obser-

vations. Most single-image techniques for reflection removal

try to mitigate this problem by using image priors to dis-

ambiguate between reflection and transmission. Despite

significant progress, most algorithms still cannot cleanly sep-

arate them. In fact, even humans may have difficulty when

just given a single image. For example, it is difficult to tell

whether the white spot next to the snowman in Figure 1(a) is

a reflection or not without having a second perspective.
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(a) Ablation - Using One View (b) Ours - Using Two Views

Figure 2: Comparison of a single-view ablation (a) to our

proposed dual-view reflection removal (b). Reasoning jointly

about both views allows our proposed approach to handle

challenging scenes like this one. In comparison, the single-

view ablation fails to remove all present reflections due to

the underconstrained nature of the single-image setting.

The ambiguity of the single-image case led to the develop-

ment of multi-image techniques. Figure 1(a) and 1(b) show

two views of a scene in which the camera translates slightly.

Because the reflective and transmissive layers do not have

the same distance from the camera, the scene content of

the reflective layer moves differently from the transmissive

layer when switching between the two views as shown in

Figure 1(c). This parallax can help to disambiguate between

reflection and transmission, thereby simplifying the task of

recovering the constituent images. For this reason, practi-

cal systems for reflection removal rely on acquiring many

images or entire videos of the same subject under different

viewpoints [24, 39]. However, this setup is burdensome

as it requires users to manually move their camera while

capturing many images, and it assumes a static scene.

This points to a fundamental tension between single-

image and multi-image techniques. We explore a compro-

mising solution in which we take as input two views of the

same scene produced by a stereo camera (Figure 2). Though

binocular stereo is not new, smartphones are adopting cam-

era arrays, thereby increasing the practicality of algorithms

designed for stereo images. This presents an opportunity for

high-quality dual-view dereflection that is as convenient as

any single-image technique, requiring just a single button

press and being capable of capturing non-static scenes.

Still, it is not trivial to extend existing single- or multi-

image dereflection algorithms to dual-view input. Most

multi-image algorithms [39, 43] use hand-tuned heuristics

based on motion parallax and require at least 3 to 5 frames

as input, as two views are often not enough to make this

problem well-posed. And most single-image dereflection al-

gorithms [8, 16, 38, 45] are trained on images with synthetic

(a) Traditional Optical Flow (b) Reflection-Invariant Flow

Figure 3: Aligned stereo anaglyphs by warping I2 to I1 with

traditional optical flow (a), and our reflection-invariant opti-

cal flow (b). Contrast adjusted for visualization. Traditional

flow aligns all image content, minimizing the parallax in both

transmission and reflection. With our reflection-invariant op-

tical flow, all remaining parallax is in the reflection.

reflections, a strategy which does not generalize to dual-view

input due to the need for realistic motion parallax.

To address these issues, we combine merits of both ap-

proaches and propose a learned approach that utilizes mo-

tion parallax. We first align the two input images using the

motion of only the transmissive layer. Ignoring reflective

content during registration produces aligned images where

the transmissive layer is static while the reflection “moves”

across aligned views, reducing the transmission-reflection

separation problem to one of simply distinguishing between

static and moving edges, as shown in Figure 3(b). Unlike

traditional flow approaches, which align both transmissive

and reflective image content as shown in Figure 3(a), we

explicitly train an optical flow network to be invariant to

reflections. After performing this reflection-invariant align-

ment, we supervise a image synthesis network to recover the

transmission from the transmission-aligned views.

While this framework is conceptually simple, training

such a model requires difficult-to-acquire dual-view imagery

that is subject to reflections. It is even more difficult to

obtain such data with accurate ground truth optical flow of

the transmissive layer. As such, we resort to employing

computer graphics and render virtual environments to create

such a dataset. We also collect a real-world dual-view dataset

with ground truth transmission for evaluation purposes, and

show that our approach generalizes well to this data.

2. Related Work

The task of reflection removal is a narrow sub-problem

of the classical problem of inferring a complete model of

the physical world that generated an observed image [4],

which has been extensively studied throughout the history of
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φflow

F1�2
←−ω (I2, F1�2)
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Figure 4: Our dual-view reflection removal. Given images I1 and I2, our reflection-invariant optical flow network φflow

estimates the motion F1�2 between the unknown transmissive layers of the inputs, which is then used to warp I2 towards I1
to “undo” that motion. Our synthesis network φsyn can then use these aligned images to leverage the parallax between the

reflective layers (and the lack thereof between the transmissive layers) to synthesize I1’s transmissive layer T1.

computer vision. Reflection removal is similar in nature to

other blind signal separation problems in computer vision,

such as disentangling reflectance and shading [3] or sepa-

rating haze from transmitted scene content [12]. Due to the

ill-posed nature of reflection removal, many past works used

additional information to constrain the problem. A common

strategy is to use multiple images captured from different

viewpoints as input, taking advantage of how transmitted

content is constant across images while the reflective content

changes [11, 22, 24, 39]. These approaches require signifi-

cant labor from the photographer, and also assume a static

scene. Another approach is to use multiple images from the

same view but with different polarization [18, 30], which

leverages the relationship between the angle of incidence of

light on the reflecting surface and its polarization. Though ef-

fective, these techniques require a static scene and the rather

exotic ability to modify a camera’s polarization.

Automatic single-image reflection removal techniques are

an attractive alternative to multi-image solutions [35]. Prior

to the rise of deep learning, single-image reflection tech-

niques would usually impose beliefs about the natural world

or the appearance of reflected images, and then recover the

transmittance and reflectance that best satisfy those priors.

These approaches require the manual construction of regular-

izers on edges or relative smoothness [20, 23, 31, 42], then

solving an expensive and/or non-convex optimization prob-

lem. With deep learning, the focus shifted towards training

a network to map from the input image to the transmis-

sion [8, 21, 36, 40, 45]. Though effective, these techniques

depend critically on the quality of training data.

Our work addresses an unexplored approach that lies be-

tween single-image and multi-image cases. By combining

the information present in stereo imagery with the effec-

tiveness of a neural network trained on vast amounts of

synthetic data, our approach produces higher-quality output

than single-image approaches while requiring none of the

labor or difficulty of multi-image approaches.

Stereo cameras are closely related to dual-pixel sensors,

wherein a single camera has a sensor with “split” pixels,

thereby allowing it to produce limited light fields [10, 34].

Dual-pixel reflection removal has been explored with promis-

ing results [28], but it is unclear how such a technique might

generalize to stereo. First, the dual-pixel disparity is only sig-

nificant in cameras with large apertures, like DSLRs but not

smartphones. When using a DSLR though, reflections are

out of focus and are heavily blurred which in itself already

provides important cues. Second, due to the interplay be-

tween focus distance and dual-pixel images, one can simply

threshold the dual-pixel disparity to separate reflection edges

from transmitted content as done in [28]. Such a universal

threshold does unfortunately not exist for stereo images.

3. Method

Given images I1 and I2 captured from two different view-

points, our goal is to estimate T1, an image that contains only

the transmissive content of I1. We have found that a single

network is unable to synthesize T1 from I1 and I2 directly,

presumably due to the difficulty of simultaneously aligning

and combining these images. We hence decompose this task

into: reflection-invariant motion estimation, warping to ac-

count for transmission parallax, and transmission synthesis.

We recover the optical flow F1�2 between the transmissive

layers of I1 and I2 using a network φflow as

F1�2 = φflow (I1, I2) (2)

This step depends critically on φflow being trained to be in-

variant to reflection, as we describe in Section 3.1. We then

use this optical flow to account for the inter-frame transmis-

sion motion via differentiable sampling [13]. Specifically,

we use backward warping←−ω and warp I2 to I1 according to

the estimated optical flow F1�2 to generate I2�1 as

I2�1 =←−ω (I2, F1�2) , (3)

Because our optical flow is reflection-invariant, I2 is warped

such that only its transmissive content matches that of I1.

This allows us to apply a synthesis model that takes as input

the image of interest I1 and its warped counterpart I2�1, and

estimates the first image’s transmissive layer T1 as

T1 = φsyn (I1, I2�1) . (4)

Combining these Equations 2–4 gives our complete reflec-

tion removal pipeline, which we also visually summarize in

Figure 4, where φflow and φsyn are neural networks.
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I1 I2

(a) Input (b) L1 (c) LF (d) LLPIPS

Figure 5: Training with ℓ1 distance led to low-frequency artifacts (b), and using squared distance between VGG features led to

checkerboard artifacts (c). We hence train our synthesis model using LPIPS, which produces good results (d).

3.1. Reflection­Invariant Optical Flow

Most learning-based optical flow models assume that

each pixel has a single motion and train on datasets where

this assumption holds [5, 6]. However, in the presence of

reflections, each pixel can have two valid motions: that of

the transmission and that of the reflection. Applying learned

flow models trained on existing datasets to images containing

reflections produces motion estimates that are a compromise

between the two true underlying motions, causing them to

work poorly for our dereflection task. We hence train a

reflection-invariant flow estimation network using our own

synthetic dataset which we introduce in Section 3.3. We

do so by adopting the architecture of PWC-Net [32] and

supervising it for 1.5 · 106 iterations with 8 samples per

batch and a learning rate of 10−4 using TensorFlow’s default

Adam [17] optimizer on our new synthetic dataset.

Thanks to our new dataset, our flow model is largely in-

variant to reflections. In comparison, a model supervised on

a reflection-free version of our dataset is subject to a signif-

icant drop in its flow prediction accuracy once reflections

are introduced (Section 4.1). This reflection-invariant flow

estimate is critical to make our dereflection approach work

and an ablation of our pipeline with a regular optical flow

network fails to produce convincing results (Section 4.2).

3.2. Dual­View Transmission Synthesis

Given the first view I1 and the aligned second view I2�1,

we utilize a neural network to synthesize the desired trans-

missive layer T1 of I1. In doing so, the aligned view I2�1

provides important cues which allow the synthesis network

to produce high-quality results despite the presence of signif-

icant reflections. Because our optical flow network produces

motion estimates that are invariant to reflections, transmis-

sive image content in these warped images is aligned but

reflective content is not aligned as long as there is motion

parallax between them. This reduces the burden on the syn-

thesis model, as even a pixel-wise minimum of two images

should produce good results, as demonstrated in [33].

We use a GridNet [9] with the modifications from

Niklaus et al. [26] for our synthesis network, using five

rows and four columns where the first two columns perform

downsampling and the last two columns perform upsampling.

GridNets are a generalization of U-Nets [29], which are of-

ten used for image synthesis tasks. In essence, GridNets

allow information within the network to be processed along

multiple streams at different resolutions, which enables them

to learn how to combine features across different scales.

We supervise this synthesis model on our dual-view

dataset, which we describe in Section 3.3. Instead of di-

rectly using the ground truth optical flow to warp I2 towards

I1, we use the prediction of our reflection-invariant optical

flow network. This forces the trained synthesis model to be

more robust with respect to misaligned transmissions that

may be introduced by erroneous optical flow estimates.

We analyzed several possible loss functions to supervise

our synthesis model. The simplest of which is the ℓ1 distance

between the predicted transmission layer and ground truth.

However, a synthesis model supervised with just L1 is prone

to low-frequency artifacts as shown in Figure 5(b). We

additionally explored a loss based on the squared distance

between VGG features [15], which some recent dereflection

algorithms have used successfully [45]. However, we noticed

subtle checkerboard artifacts when supervising our synthesis

model on this LF as shown in Figure 5(c) (even when using

bilinear upsampling instead of transposed convolutions [27]).

We thus used the LPIPS metric [44], which linearly weights

feature activations using a channel-wise vector w as

LLPIPS =
∑

ℓ

∥

∥

∥
wℓ ⊙

(

Φℓ
(

T
pred
1

)

− Φℓ
(

T
gt
1

)

)∥

∥

∥

2

2

. (5)

Specifically, we use version “0.1” of this metric, using

AlexNet [19] to compute feature activations, and where the

weights w have been linearly calibrated to minimize the

perceptual difference in accordance with a user study [44].

Our synthesis model trained using LLPIPS is able to produce

pleasant results that are not subject to checkerboard artifacts,

as shown in Figure 5(d). This perceptual loss serves a sim-

ilar purpose as adversarial losses, which have also been an

effective mean for the task of reflection removal [45].

We train our proposed dual-view transmission synthesis

model using TensorFlow’s default Adam [17] optimizer with

a learning rate of 5 · 10−5, which took a total of 1.5 million

iterations with 4 samples per batch to fully converge.
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I1

I2

I1

I2

I1

I2

(a) Unity Editor (b) Rendered Views (c) Warped Images (d) Warped Renders

Figure 6: Our training dataset consists of three different types of images: 60% are fully-rendered images generated using the

Unity engine (a) and consist of scenes with complex geometry (b), 30% are real images that lack ground-truth geometry and

have instead been warped using random homographies to generate the second view (c), and 10% are warped rendered images

to make sure that the model does not “cheat” (d). Note that because (b) is fully rendered, its reflective layer originates from the

same domain as the transmissive layer (both are mountains), while the two layers in (c) may have different sources.

3.3. Dual­View Training Data

Existing learning-based methods for dereflection combine

pairs of images to synthesize training data [8, 45]. This

approach works well for monocular approaches, but it does

not generalize to our dual-view approach. After all, whatever

reflection we add to a stereo pair should be geometrically

consistent across the two views which requires difficult-to-

acquire depth maps. Furthermore, training our reflection-

invariant flow network requires ground truth optical flow

between the transmissive layers of the two views. However,

acquiring ground truth flow is a challenging problem with

previous work having exploited hidden fluorescent textures,

computer graphics, and high frame-rate videos [2, 5, 14].

For these reasons, we rely on computer graphics to synthe-

size our training data. We acquired 20 virtual environments

from professional artists, 17 of which are used for training

and 3 of which are used for evaluation. These environments

vary greatly, and include indoor scenes, cityscapes, and natu-

ralistic scenes. We render them with Unity, which allowed us

to collect arbitrary views together with a ground-truth inter-

frame optical flow. Views are generated by pre-recording

camera paths through the scene, from which we sample cam-

era locations for I1. We generate I2 by randomly shifting

the position of I1 by up to 0.5 meters and randomly rotating

the camera by up to 10 degrees. To model reflections, we

create a translucent mirror that is placed in front of the two

cameras. We uniformly sample the mirror’s alpha blending

factor α ∼ U(0.6, 0.9), and apply a Gaussian blur with a

random σ ∼ U(0.0, 0.1) to the reflective image to mimic

depth of field. We then alpha-blend the transmissive and

reflective images to get the rendered output for I1 and I2.

Training only on synthetic data may result in poor perfor-

mance on real-world data, due to a significant gap between

the two domains [25]. To address this, we augment our

synthetic data with additional training data that has been gen-

erated using real-world images. We first randomly sample

two images and blend them to get the input for one view,

and apply two homography transforms to the two images

independently to synthesize the image in the other view. This

basically assumes that the transmissive and reflective layers

are on independent planes. Although this over-simplifies the

geometry of the real world compared with our fully-rendered

data, it helps the network to better fit to the statistics of real-

world images. We collected 7000 images with a Creative

Commons license for this purpose and manually selected

those with pleasant visual aesthetics, which yielded a subset

of 1000 images in total. As shown Figure 6(c), this data is

closer to real world imagery but it lacks real motion parallax.

Warping image I2 to image I1 according to the transmission

flow is hence free from disocclusions. This is not the only

unrealistic aspect of this approach though, since reflections

may not originate form the same scene like as in the picture

of a hotel room that exhibits reflections of a mountain.

To make sure that our model does not “cheat” by identify-

ing which images are real and taking advantage of our simple

proxy geometry, we also applied the same homography-

based image formation model that was used for our real-

world data to our rendered data, as shown in Figure 6(d).

Lastly, many reflections in the real world stem from light

sources which yield saturated bright spots in the image. To

model this, we augment the reflective layer with a mask

of bright spots obtained from binarized fractal noise: we

compute the fractal noise from Perlin noise at 4 octaves with

a persistence uniformly drawn from ρ ∼ U(0.3, 1.0) before

binarizing the mask based on a threshold of 1. To avoid

unnatural discontinuities, we further apply a Gaussian blur

with σ ∼ U(1, 5) to this binary mask. Examples of such

saturated bright spots are shown in Figure 6(c) and 6(d).

When using this training dataset, we randomly sample

60% of the batches from our rendered data, 30% from our

warped images, and 10% from our warped renderings.
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(a) Camera (b) Setup

Figure 7: A picture of our custom-built camera rig consisting

of five synchronized Google Pixel phones (a) as well as a

schematic reenactment of the data capturing setup (b).

I T I T

(a) Without Alignment (b) With Alignment

Figure 8: The images in our dataset and their respective

transmissions are misaligned due to refraction (a), as can be

seen at the stairs. We align them to account for this (b).

4. Experiments

We evaluate on rendered and real-world images.

Rendered test set: To build a rendered test set, we used

3 virtual worlds that are not used in training and rendered

60 different samples. We also recorded the corresponding

ground truth transmission image without reflection and the

ground truth optical flow between the transmission layers.

Real-world test set: To build a real-world test set, we use

a camera rig of five phones as shown in Figure 7 and syn-

chronize them using [1]. To test that our approach works

for different stereo configurations, we always use the cen-

ter camera as the reference view and one of the other four

cameras as the second view. For each of the 20 scenes we

captured, we obtained the transmission and between 2 and

4 sets of images with reflections by placing different types

of glass in front of the camera. As discussed in [39], the

transmission shifts between the image capturing with the

glass and without the glass due to refractions unless the glass

is infinitely thin. Therefore, we register the image captured

through glass to the ground truth transmission (image cap-

tured without glass) using an affine transform calculated

by [7]. An example of this alignment is shown in Figure 8.

rendered test w/o refl. rendered test w/ refl.

EPE
mean

EPE
median

ABS
mean

ABS
median

EPE
mean

EPE
median

ABS
mean

ABS
median

Zeros 24.90 22.88 24.54 24.00 24.90 22.88 24.54 24.00

Oracle 0.0 0.0 3.13 2.88 0.0 0.0 3.13 2.88

Train w/o refl. 1.14 0.84 4.02 3.56 4.52 2.67 6.10 5.56

Train w/ refl. 1.53 1.05 4.23 3.67 2.39 1.26 4.68 4.06

Table 1: Flow accuracy on our rendered test set. We trained

two versions of our flow network, one using our rendered

test set w/ reflections and one w/o reflections. We also report

the accuracy of zero and ground truth motion as bounds.

(a) Robust Flow [41] (b) Ours

Figure 9: Comparisons with [41], a robust optical flow via

classic energy minimization, on examples from their paper.

4.1. Reflection­Invariant Optical Flow

Metrics: Following optical flow literature [2], we use two

metrics to evaluate flow accuracy: 1) the end-point error

(EPE) between the estimated flow and the true flow, and 2)

the absolute difference (ABS) between the first frame and the

second frame warped to the first frame using the estimated

flow. For the ABS metric, as we only calculate the motion

of the transmission layer, we only warp the ground truth

transmission layer without reflection even though the motion

was estimated from the input images with reflection. We also

mask out the occluded pixels based on the true transmission

optical flow when calculating the ABS metric.

Results: Table 1 shows the quantitative results. To better

understand the scale of EPE and ABS, we also report these

metrics for zero flow (all pixels are static) and ground truth

transmission flow (“Oracle”). Note that because of lighting

changes between left and right views, the ABS error of the

ground truth flow is not zero. When evaluating on input with

reflection, the flow network trained with reflection is more

robust than the one trained without reflection, with 47% less

mean EPE error and 23% less mean ABS error. We analyze
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rendered test set real-world test set

images
used

PSNR
↑

SSIM
↑

LPIPS
↓

PSNR
↑

SSIM
↑

LPIPS
↓

Zhang-like 1 23.92 0.872 0.137 22.39 0.742 0.124

Mono 1 26.31 0.928 0.068 22.35 0.752 0.110

Concat 2 25.81 0.927 0.069 22.10 0.752 0.111

Regular Flow 2 17.61 0.827 0.099 17.73 0.684 0.128

Ours 2 26.60 0.938 0.058 22.82 0.765 0.104

Table 2: Results from our ablation study, showing the impor-

tance of GridNet and reflection-invariant optical flow.

rendered test set real-world test set

quantitative users quantitative users

PSNR
↑

SSIM
↑

LPIPS
↓

prefer
ours

PSNR
↑

SSIM
↑

LPIPS
↓

prefer
ours

Input 23.38 0.887 0.155 99% 22.25 0.761 0.114 95%

Zhang et al. 22.21 0.811 0.217 99% 21.47 0.725 0.172 87%

Wen et al. 22.34 0.856 0.185 100% 21.56 0.744 0.142 94%

Li & Brown 22.00 0.794 0.243 100% 20.49 0.671 0.227 98%

Ours - Mono 26.31 0.928 0.068 94% 22.35 0.752 0.110 92%

Ours 26.60 0.938 0.058 − 22.82 0.765 0.104 −

Table 3: Quantitative evaluation of the recovered transmis-

sion image, together with the results from a user study with

responses from 20 participants across 9 rendered test im-

ages and 20 real test images. Users were asked to compare

our dual-view result to one of five baselines. We report the

percentage of times that users preferred our method.

the effect of this difference in the context of our reflection

removal pipeline in the ablation study in Section 4.2.

Related: Optical flow estimation on layered compound im-

ages has previously been studied by Yang et al. [41], who

proposed a solution based on classic energy minimization.

We were unable to use this technique as a baseline on our

benchmark, as the implementation provided by the authors

does not allow for arbitrary images to be processed (it re-

quires some external optical flow estimate as input). We

hence compare to this technique by instead applying our

dereflection pipeline to the example images used by [41]. As

can be seen in Figure 9, our proposed approach produces

significantly improved reflection removal results.

4.2. Dual­View Transmission Synthesis

Metrics: To quantitatively evaluate the quality of reflec-

tion removal, we use three evaluation metrics: PSNR, the

hand-designed similarity metric SSIM proposed by Wang et

al. [37], and the learned similarity metric LPIPS proposed

by Zhang et al. [44]. Because the transmission coefficient

of glass is less than 1.0, the transmission captured through

the glass is dimmer than the image captured without glass.

As a result, there is an unknown scaling factor between the

PSNR: 22.60 PSNR: 22.74

(a) Ours - Mono (b) Ours

Figure 10: A result from our mono baseline (a) and our

approach (b). They have a comparable PSNR, yet 19 out of

20 participants in a user study preferred the result of (b).

estimated transmission and the ground truth. To make our

evaluation invariant to this unknown scaling factor, we first

scale the estimated transmission by searching for the gain

s and bias b that minimize ‖s · T pred
1

+ b − T
gt
1
‖2, before

computing the error metrics using the scaled estimate.

Ablation: We analyzed different components of our pro-

posed network composition in an ablation study and tried

four variations: 1) “Zhang-like”, i.e., training the model

from Zhang et al. [45] on our dataset, 2) “Mono”, by only

using a single input, 3) “Concat”, by concatenating the input

images without explicitly aligning them first, and 4) “Regu-

lar Flow”, by replacing the flow network with the one trained

on images without reflection. Table 2 shows the quantitative

results. “Mono” outperforms “Zhang-like”, which shows

that the GridNet network architecture is well suited to this

task. Also, our network with reflection invariant flow outper-

forms both “Concat” and “Regular Flow”. This exemplifies

the importance of reflection-invariant alignment.

Quantitative: The quantitative comparison of the recovered

transmission image is shown in Table 3, it includes compar-

isons to four baseline algorithms: two single-frame reflection

removal algorithms by Zhang et al. [45] and Wen et al. [38],

one multi-frame algorithm by Li and Brown [22], and a

single-image ablation of our approach (“Ours - Mono”). Our

proposed dual-view approach outperforms all baselines on

all metrics, demonstrating the effectiveness of our method.

However, using the input image itself as a baseline already

shows surprisingly good results, especially on the real-world

test dataset. This raises the question of whether or not tradi-

tional quality metrics are suitable for evaluating reflection

removal. This is exemplified by Figure 10, which shows

example results with similar PSNR but a strong preference

by human examiners for one over the other. We thus subse-

quently further compare the results though a user study.
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Input Truth Zhang et al. [45] Wen et al. [38] Li & Brown [22] Ours - Mono Ours

Figure 11: Qualitative comparison. Please see the supplementary material for a tool-supported visual comparison.

User study: We conducted an A/B user study with 20 par-

ticipants that were not related to this project, including 2
professional photographers, to further evaluate our results.

We chose subsets for each test set to keep the number of

comparisons for each participant below 200. For our ren-

dered test set, we chose 3 challenging samples from each

virtual test world resulting in 9 images. For our real-world

test set, we chose the center and right cameras from the first

capture in each set, resulting in 20 images. We asked each

participant to select “the best looking images”. The results

of this are included in Table 3. Overall, our approach is

preferred over the baselines in the vast majority of cases.

Qualitative: We show a representative example result in

Figure 11, which shows that our proposed dual-view ap-

proach can better remove challenging reflections in our test

data. Please also consider the supplementary material for a

comparison tool which includes many more examples.

4.3. Dual­Pixel Reflection Removal

Recently, Punnappurath et al. [28] proposed a dual-pixel

reflection removal technique. Dual-pixel images superfi-

cially resemble stereo pairs in that they both capture two

perspectives of a scene. However, this dual-pixel technique

performs poorly when applied to our stereo data: it achieved

a PSNR/SSIM/LPIPS score of 17.82/0.774/0.230 on our ren-

dered test set and 14.52/0.567/0.350 on our real-world test

set (examples shown in Figure 12). This is consistent with

recent work on dual-pixel imagery for depth estimation [10],

which has shown that dual-pixel footage is sufficiently dif-

ferent from stereo in terms of photometric properties that it

benefits from being treated as a distinct problem domain.

(a) Dual Pixels [28] (b) Ours

Figure 12: On our stereo data, the recent dual-pixel tech-

nique [28] flattens textures and does not catch all reflections.

5. Conclusion

In this paper, we presented a new learning-based dual-

view reflection removal approach. Unlike the traditional re-

flection removal techniques, which either take a single frame

or multiple frames as input, we proposed to use dual-view in-

puts, which yields a nice trade-off between the convenience

of capturing and the resulting quality. To train this learned

dual-view dereflection approach, we created a new dual-view

dataset by rendering realistic virtual environments. We also

designed a new composite network consisting of a reflection-

invariant optical flow estimation network and a dual-view

transmission synthesis network. We have shown promising

experimental results on both synthetic and real images with

challenging reflections, outperforming previous work.
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