
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2021

Artifact Mitigation in High-Fidelity Hypervisors

Norine, Christopher; Shaffer, Alan; Singh, Gurminder
HiCSS

Norine, Christopher, Alan Shaffer, and Gurminder Singh. "Artifact Mitigation in
High-Fidelity Hypervisors." Proceedings of the 54th Hawaii International Conference
on System Sciences. 2020.
http://hdl.handle.net/10945/67386

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/479441308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Artifact Mitigation in High-Fidelity Hypervisors

Christopher Norine
Naval Postgraduate School
christopher.norine@nps.edu

Alan Shaffer
Naval Postgraduate School

alan.shaffer@nps.edu

Gurminder Singh
Naval Postgraduate School

gsingh@nps.edu

Abstract

The use of hypervisors for cyber operations has

increased significantly over the past decade, resulting
in a concomitant increase in the demand for higher
fidelity hypervisors that do not exhibit the markers, or
artifacts that identify the execution platform type
(virtualized or bare metal), prevalent in most currently
available virtualization solutions. To address this need,
we present an in-depth examination of a specific subset
of virtualization artifacts in order to design and
implement a method of mitigation that reduces the
detectability of these artifacts. Our analysis compares
the performance of a bare metal machine, a virtual
machine without artifact mitigation, and a virtual
machine with our proof-of-concept mitigation technique
applied to a temperature sensor. Results of the
implementation are analyzed to determine the potential
impact on system performance and whether our
mitigation technique is appropriate for extending high-
fidelity hypervisors.

1. Introduction

High-fidelity hypervisors are becoming a required
asset in the cyber operations community. From malware
analysis and honeypot operations to training
environments for testing cutting-edge cyber tools and
techniques, virtualization offers a safe and isolated
environment within which to research and test new
methods. A downside to operating within virtual
machines is that they often lead to artifacts (or markers)
that, upon discovery, may allow an observer to realize
they are not operating on a bare metal machine. While
most of these artifacts are a byproduct of tighter host-
guest integration and proper separation between host
machine and guest virtual machine, there may be a
desire to hide or mitigate these artifacts.

First, malware analysis can greatly benefit from a
high-fidelity hypervisor. Dinaburg et al. described how
“malware authors are incentivized to complicate
attempts at understanding the internal workings of their
creation” [1]. These complications include techniques

that can be described as anti-debugging, anti-
instrumentation, and anti-VM to frustrate would-be
analysts and prevent deeper understanding of the
malware. Indeed, Chen et al. characterized the
prevalence of evasion techniques in modern malware.
According to their research, over 40% of the 6,900 total
malware samples they examined reduced their
malicious behavior whenever a debugger was attached,
or when the malware suspected it was executing within
a virtual machine [2]. Artifact mitigation enables a high-
fidelity hypervisor to show no signs of its virtualized
environment, allowing analysts to more fully explore
the functionality of target malware.

Second, an organization running a honeypot would
benefit greatly from a high-fidelity hypervisor. A
virtualized environment is ideal for the execution of a
honeypot, therefore malware that encounters such a
system will likely attempt to determine if the
environment is virtualized or not [2]. A high-fidelity
hypervisor with artifact mitigation would be a better
environment for honeypots to operate in, as they would
exhibit the behaviors of a bare metal machine without
any of the artifacts typically present in virtual machines.

Lastly, it is essential for cyber operators to have a
holistic environment in which to develop, test, train and
rehearse their cyber tools and techniques. From an
offensive standpoint, it would be impractical to test
offensive cyber operations (OCO) on a bare metal
machine, since the results will likely damage or corrupt
these test systems. Recovery will ultimately take time
away from the cyber operators, and either reduce the
total time spent training and testing or increase the time
it takes to reach a working solution. Either scenario is
understandably not ideal or desirable. By offering a
high-fidelity hypervisor that is able to present a system’s
“digital twin,” we are able to suppress the artifacts that
affect feedback to the operator while still providing a
target environment that behaves exactly as its bare metal
equivalent would.

For these reasons, it is essential to examine the
different aspects that reduce the fidelity of an off-the-
shelf hypervisor. In doing so, we attempt to design and
implement mitigation measures that are able to increase
the overall fidelity of hypervisors, while ensuring that

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 7027
URI: https://hdl.handle.net/10125/71466
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

execution of the hypervisors and guest operating
systems are not compromised.

The key contributions of this work include:
1. Design and implementation of smokescreen, a

DRAKVUF plugin used to mitigate virtual-
ization artifacts.

2. Implementation of a test framework to analyze
the performance and mitigation capabilities of
virtualized environments with and without the
new plugin, as compared to a bare metal system.

2. Background and Related Work

The goal of a high-fidelity hypervisor is to present a
virtualized machine that is indistinguishable from a
physical machine, or a “digital twin” of sorts. The aim
here is to improve upon the equivalence property of
virtual machines described by Popek and Goldberg [3].
It is important to point out that our goal is a higher
fidelity virtualized experience, not a more accurate
emulation experience. Emulation is defined by Mallach
as “a process whereby one computer is set up to permit
execution of programs written for another computer”
[4].

With emulation, translation of the program to be
executed is required, which is not a requirement for
virtualization. Previous research into high-fidelity
hypervisors has included an approach by Zhang, Xie,
Dong, Yang, and Zhou, who were able to synchronize
the operations of a virtualized machine and a physical
component emulator to create a more holistic virtualized
environment [5]. Although primarily intended to show
that cyber physical system (CPS) software controllers
do not require a physical setup to be able to test and
develop, it presents a potential avenue to increase the
fidelity of currently available hypervisor solutions
without sacrificing performance and tipping off
observers to the presence of a hypervisor.

2.1. Hypervisor Overview

Hypervisors are designed to run virtual machines
with low overhead. Typical hypervisors can operate on
a single machine or can utilize cloud or other distributed
resources to support many virtual machines that operate
concurrently. Hypervisors may run as a layer between
hardware and guest operating system (a Type 1
hypervisor), or as a user-level application running on
another operating system (a Type 2 hypervisor). An
example of a Type 1 hypervisor is the Xen Hypervisor,
and an example of a Type 2 hypervisor is VMware
Workstation.

A Type 1 hypervisor maintains full control of the
host system and its resources. Since these hypervisors
occupy the same level as an operating system, they

typically act in both capacities as virtual machine
monitor for VMs, and as operating system for the host.
For this reason, Type 1 hypervisors tend to enjoy lower
amounts of overhead, as compared to their Type 2
counterparts.

A Type 2 hypervisor has full control of the host CPU
during VM execution. Compared to Type 1 hypervisors,
Type 2 hypervisors have additional overhead incurred
as the host OS and hypervisor execute switches, similar
to CPU context switches, to achieve virtualization [6].

In addition to hypervisor types, virtualization can
also be categorized into binary translation, full
virtualization, and paravirtualization.

Binary translation is a form of recompilation where
instructions are translated from the source instruction set
to a target instruction set (i.e., x86 machine instructions
are translated into the equivalent ARM machine
instructions). This is different from emulation, where
the translation is simply executing the target instructions
by utilizing a corresponding set of instructions from the
source instruction set [4]. This translation can either be
done statically (where recompilation occurs prior to
runtime) or dynamically (where program instructions
are translated as they are read). This method of
virtualization is generally considered difficult since a
translator program tends to be very specialized and a
significant amount of extra work tends to be required to
extend the translator to support new target instruction
sets [7].

Full virtualization (also known as hardware
virtualization) involves the guest system being
completely unaware of the presence of the hypervisor.
Instructions that are sensitive or privileged must be
caught by the hypervisor without being observable by
the guest OS. Although full virtualization does not
require any specialized instruction sets or device drivers
within the guest OS, it can incur significant performance
penalties as the CPU executes context switches to allow
the hypervisor to handle sensitive or privileged
instructions.

Paravirtualization (PV) is a virtualization method
where the guest OS is fully aware of the hypervisor. The
guest OS contains a specialized kernel and other
virtualization-aware device drivers that can take
advantage of the communication channels that typically
exist between the hypervisor and VMs. Although PV
guests require less overhead due to utilization of the
communication channels between hypervisor and VM,
it comes at the cost of reduced security, as
vulnerabilities in PV drivers can expose the hypervisor
to an attacker [8], and the added requirement for
specialized drivers.

Page 7028

2.2. Hypervisor Artifacts

Virtualization artifacts are markers or indicators of
either the presence of a VMM, or of the fact that a
system is virtualized. Most of these artifacts fall within
one of three categories: service, process, or file system
artifacts; memory artifacts; and virtualization-specific
artifacts, which are further broken down into hardware-
specific and capability-specific artifacts.

Service, process, or file system artifacts are
exemplified by paravirtualization-specific drivers. By
utilizing paravirtualization and the hypervisor-guest
communication channels, it is possible to greatly reduce
the performance overhead of a hypervisor, making a
strong case for their use. However, for ease of use most
hypervisors are transparent about paravirtualization
drivers, causing many artifacts within the guest itself.
For example, a VMware Workstation guest running
Windows XP with PV-aware drivers installed has over
50 references to “VMware” in the file system and over
300 references in the registry [9].

Memory artifacts tend to involve references to the
hypervisor itself within the system memory. This can be
observed in the way that the operating system stores
essential tables and references. For example, the
Interrupt Descriptor Table (IDT) is a kernel structure
that holds a list of pointers to the operating system
interrupts [9]. Since the hypervisor and guest OS both
contain and maintain their own IDT they cannot be
located at the same physical memory address, so tools
such as The Red Pill [10] that are able to inspect the IDT
pointer can determine if a machine is virtualized or not.

Virtualization-specific artifacts typically result from
the fact that most hypervisors are transparent with their
paravirtualization drivers within a guest OS. On a Linux
guest, within locations such as system logs or the
various virtual file system directories (e.g., /proc or
/sys), or from the output of commands such as “dmesg”,
it is possible to discover references to the hypervisor [9].
This type of artifact can also be caused by the extended
instruction sets typically seen in PV guests. For
example, VMware and Xen add additional machine
instructions to the processor instruction set that allow
usage of the hypervisor-guest communication channel.
Tools such as VMDetect will intentionally execute these
instructions with the goal of detecting whether
execution was successful or not, where success would
indicate that the system was virtualized [9].

2.3. Hypervisor Detection

Current hypervisor detection techniques include
count-based detection and register inspection-based
detection. Research at the University of Minnesota
quantified timing artifacts within virtual machines.

Thompson et al. discovered that by executing a loop of
NOP instructions alongside a loop of CPUID
instructions (a privileged instruction requiring
hypervisor intervention) and comparing the ratio of total
instructions executed, detectable differences were
observable between virtual and bare metal machines
[11]. This is due to the additional latency introduced by
the hypervisor trapping these sensitive instructions for
handling before returning control to the guest [12].

Another method of hypervisor detection exploits the
presence of sensitive but unprivileged instructions or
instruction set extensions like those implemented in PV
guests. The Red Pill [10] and Paranoid Fish [13] both
utilize the SIDT (Store Interrupt Descriptor Table
register) instruction to discover the hypervisor, while
software tools like ScoopyNG [14] and VMDetect [9]
exploit the presence of additional instruction sets to
expose the hypervisor.

2.4. Detection Mitigation

Current detection mitigation techniques and
software tools tend to center around modification of the
hypervisor configuration. Liston et al. discovered the
existence of undocumented configuration options for
VMware hypervisors that, when set a certain way,
would effectively “break” the hypervisor-guest
communication channels and defeat both The Red Pill
and ScoopyNG [9]. The downside to this technique is
that these configuration options are not documented or
officially supported, meaning there is no guarantee that
a software update will not render the mitigation
technique ineffective.

Another mitigation method uses a proof-of-concept
application called VMmutate to obfuscate the presence
of a VMware hypervisor through modification of the
VMX configuration parameters. The tool will either
modify or disable the VMware “magic value” that must
be present to utilize the extended instruction set to
communicate with the hypervisor. These mitigation
techniques were found to be enough to defeat The Red
Pill as well as portions of the ScoopyNG suite [8].

The downside to these techniques is that they tend to
require extensive hypervisor configuration or virtual
machine memory alterations. Either of these can lead to
less portable solutions as the hypervisor and PV
tools/drivers are modified.

3. System Design

For our research, we decided on an appropriate
hypervisor and targeted guest system by examining the
most commonly used hypervisors and operating systems
being run by web servers on the internet. According to
W3Techs, most web servers utilize a Unix-based

Page 7029

operating system, with Ubuntu being the most common
[15]. Therefore, we chose to use Ubuntu 16.04.6 LTS as
it is still within its support window through the
maintainer, Canonical, and is also likely to continue
being used “in the wild.”

We elected to use a Type 1 hypervisor over an
application-based Type 2 hypervisor as the former is
more common in commercial environments.
Specifically, the open source Xen hypervisor was
chosen due to its wide adoption within the tech sector.
Additionally, we used the DRAKVUF software suite,
which was originally built to work alongside the Xen
hypervisor, allowing us to leverage that capability to
achieve a working solution faster and more efficiently.

3.1. DRAKVUF

DRAKVUF is a software suite designed as a
“virtualization based agentless black-box binary
analysis system” [16]. Although originally developed
for malware analysis, we found that by utilizing specific
features of DRAKVUF, we could attempt to mitigate
artifacts found in VMs. The tool allowed us to both
examine and manipulate execution of binaries within a
VM without having to install any additional analysis
software with the guest host.

3.2. LibVMI

The XenAccess Project was originally conceived to
be a Xen hypervisor-specific solution for virtual
machine introspection. From this project, LibVMI was
derived as an offshoot meant to be more platform-
agnostic and able to support different hypervisors. For
our research, it provided the ability to monitor (by
reading VM memory) and control (by writing VM
memory) from outside the guest VM, allowing us to
remain undetected from the VM’s perspective [17].
Utilizing LibVMI with the Rekall profile (discussed
next) we were able to bypass the oft-used
KdDebuggerData (KDBG) structure, which may be
corrupted or encoded depending on the guest operating
system.

3.3. Rekall

Rekall is a Python-based open source framework
that is used for “extraction and analysis of digital
artifacts (in) computer systems” [18]. It functions by
analyzing the currently running kernel to determine its
configuration, and then uses that configuration along
with the kernel source headers to catalogue the locations
of kernel structures. That catalogue is output as a

standardized JSON (JavaScript Object Notation) file for
use by DRAKVUF.

This tailored catalogue file provides important
information such as the base address of the kernel
structure itself, and additionally provides address offset
of various kernel memory objects and system call
locations. By utilizing these locations, we can leverage
DRAKVUF and LibVMI to trap any system calls we
determine necessary without any modification to the
guest VM or its kernel.

3.4. DRAKVUF Plugins

The last essential component in our design is the
powerful plugin system that is built into DRAKVUF.
We developed and integrated a plugin called
smokescreen that monitors VM execution and traps any
system calls that would attempt to execute artifact-
exposing binaries. If any call is trapped, smokescreen
replaces the pathname of the binary to be executed with
a path to a modified version that would suppress the
artifacts and generate a reasonable output. Details of the
smokescreen implementation are provided below.

4. System Implementation

We investigated the possibility of mitigating device
and capability artifacts that arise from a VM not having
access to host hardware devices, such as temperature
sensors found on modern computers. While many
sensor devices are emulated by the hypervisor, this is
not always the case. For example, a stock Ubuntu
16.04.6 LTS installation operating as a fully virtualized
guest with the Xen hypervisor does not have access to
the temperature sensor normally found in a CPU, so
attempts to query those sensors are typically met with
an error or failure condition. This also can include other
system sensors such as light or motion sensors that also
are not be exposed to the VM.

4.1. Hardware Component Emulation

We chose to implement a temperature sensor found
on an Intel Core i7-6700 CPU due to its common usage.
Research of the product specifications and datasheet for
this CPU was done to ascertain whether a model for the
temperature sensor could be found, or if one could
potentially be derived from other specifications.
References to TCASE describe it as “the maximum
temperature allowed at the processor Integrated Heat
Spreader (IHS)” and corresponds to a linear model
where the maximum temperature was a function of the
power utilization at a particular point [19]. We used this
linear model to estimate a potential maximum CPU

Page 7030

temperature within a VM utilizing only current
processor utilization statistics, which are available in a
guest VM.

4.2. Software Component

The system’s software component primarily consists
of a modified version of the Linux sensors program,
which is part of the lm-sensors software toolkit. The
unmodified program, shown in Figure 1, outputs data
from the contents of various files in the system’s virtual
file systems that contain the raw output values of system
hardware sensors. The sensors program reads this file
data, formats it as appropriate, and then outputs it for a
user process. However, in a virtualized environment one
is more likely to encounter an error condition, as those
sensors are not exposed to the VM and are thus
unreadable, exposing an artifact of virtualization.

Figure 1. Unmodified sensors execution flow

We modified the sensors binary to mitigate the lack

of sensors being exposed to the VM (a capability/device
artifact). The modified binary would suppress the error
condition where no sensor data was found and replace it
with a lookup function that estimates the desired sensor
data. While a simple approach would have been to have

the program output a static value at runtime, for example
an average temperature across most workplace
environments, our goal of increasing the hypervisor
fidelity meant that the output should reasonably reflect
the current state of the apparent bare metal machine and
its environment.

To this end, we implemented a library-type function
call that, when invoked, would sample the current
utilization statistics within the VM and execute a lookup
of the appropriate TCASE temperature value. This
modified flow is shown in Figure 2. System utilization
was determined by querying the /proc/loadavg file,
which outputs a 1-, 5-, and 10-minute running average
of CPU load across all cores as a floating-point value.
By utilizing the 1-minute average as an instantaneous
approximation of current system utilization, and the 5-
and 10-minute averages as the “effect” of a cooling
solution (e.g., the higher the long term utilization, the
more likely the cooling fans have also been working to
manage temperature for a longer period of time), we
were able to implement a simple lookup function that
scaled with system utilization. The result of this lookup
was the value returned by sensors.

Figure 2. Modified sensors execution flow

4.3. Means of Implementation

We developed smokescreen as a plugin for
DRAKVUF (implemented in C/C++) to monitor VM
execution and trap any system calls that would attempt
to execute artifact-exposing binaries. If any call is
trapped, smokescreen will replace the pathname of the
binary to be executed with a path to a modified binary
that would suppress the artifacts and output a reasonable
estimated output value.

Page 7031

To understand how smokescreen is able to modify
pathnames without VM corruption, knowledge of 64-bit
Sysv calling conventions was also required. Since the
introspection and modification actions taken are
executed at a low-level, they require knowledge of CPU
registers and their memory values for any kernel system
call on which we wish to perform introspection.

Our plugin itself was implemented as an extension
of the base plugin class (per the specification) and
consists of a total of seven files. Two of the files consist
of the plugin itself, one is a header file containing our
temperature estimation function, a patch file for the
source code of sensors, two files that describe the
system calls and file paths to be modified respectively,
and finally a recompiled (i.e. modified) version of
sensors that has our patch applied. The plugin files
consist of smokescreen.cpp and smokescreen.h per
plugin specification. The temperature lookup function is
a single file, temp_lib.h, and is required to be co-located
within the sensors/lib folder of the lm-sensors source
code. This ensures that our patched sensors binary can
compile correctly. The patch file must be applied to
main.c of the sensors binary prior to compilation to
ensure the function residing in temp_lib.h is executed
correctly and prevents the leakage of VM artifacts.

The system call list is passed as a command line
argument to DRAKVUF (via the -S argument) which
can be either a relative or absolute path, while the list of
binaries is located per the plugin initialization source
code (for our research, it is at
/home/xen/xen/binary_list.txt). This location is
modifiable within the smokescreen.cpp file as well.
Lastly, the modified sensors binary must be located at a
configuration-dependent path (in our case, /fake/usr/bin
on the guest VM) but this location is also easily
modifiable within the smokescreen.cpp source file.

For the actual implementation, we found we needed
to trap the execve() kernel system call. This system call
requires three parameters: a pointer to the fully qualified
path name as a string, a pointer to an argument vector,
and a pointer to an environmental variable vector.
According to AMD64 Sysv calling conventions, these
parameters are found in the registers RDI, RSI, and
RDX, respectively. For the purposes of our
modifications, the argument and environmental variable
vectors are not required to be modified for smokescreen
execution. Since modification of the argument vector
(i.e. command line arguments passed to sensors at
execution time) would likely expose our modifications,
it is best to leave it untouched which will ensure that our
modified version will preserve functionality not directly
related to our work, such as a version or help message.
Similarly, the program does not utilize the
environmental variables directly and modifying them

may have unintended side effects during execution, so it
is best left unmodified.

The plugin execution flow, shown in Figure 3,
follows five steps:

1. Retrieve and lock (pause) the instance of the
monitored VM.

2. Identify the pathname of the binary to be
executed through VM introspection.

3. Compare the pathname to our predefined list of
binaries that require redirected execution.

4. If a match is found, extract and modify the
pathname to be the path to our modified binary.
If not, execution of the VM will be resumed
immediately with no modifications made.

5. Release (un-pause) the VM and allow execution
to resume.

Figure 3. Smokescreen execution flow

During step 1, a reference to the VM instance

allowed us to access to the values stored within the CPU
registers as well as the contents of the VM’s memory
through virtual and physical memory addresses. As we
are concerned with the execve() system call, it is

Page 7032

important that we are able to extract the pathname from
the VM’s RDI register for the given (caller) process. As
DRAKVUF (via LibVMI) traps these calls,
smokescreen’s callback function is executed and able
to query LibVMI for the VM’s vmi_instance_t struct.
This struct, in conjunction with the drakvuf_trap_info_t
struct passed to the callback, allows us to gather
important information such as the caller’s PID (Process
Identification number) and a complete snapshot of the
CPU’s registers and their values. When the system call
we are waiting for is executed, RDI contains a pointer
to a string representation of the file path to be executed.

Step 2 is executed via LibVMI’s vmi_read_str_va()
function. Smokescreen accomplishes this by asking for
the contents of the RDI register for a specific VM’s PID.
This call returns to us a pointer to the string containing
the fully qualified pathname of the binary to be
executed.

Step 3 is done by taking the extracted pathname and
executing a string comparison to our predefined list of
binaries (which is established at plugin initialization).
From there, step 4 branches into two possibilities. If a
match is found, we construct a new pathname which
leads to our modified binary and proceed to write the
new string back to the original memory location
referenced in the VM’s RDI register. If no match is
discovered, the VM is immediately released and
execution continues with no modification to the register
or memory contents.

Finally, we release the vmi_instance_t struct, which
allows execution to continue within the VM. Unless the
user of the guest VM is meticulously monitoring
execution of all binaries on the system, it is unlikely that
this process will be observed within the system in real
time.

In summary, we have designed and implemented a
system that can replace execution of binaries that could
potentially leak the presence of a hypervisor with little
impact to the guest VM. By placing modified binaries
within the VM and utilizing VM introspection, we are
able to successfully redirect execution and obfuscate the
presence of our modified binaries, as the guest system
still believes it is executing the original (un-altered)
files. Therefore, even if a user were to examine the
binaries they believe are being executed, there is no
outward indication of any issue, since the unmodified
files contain no markers or indicators that they are not
actually the files being executed. Although we are
forced to introduce file system artifacts (through the
mere presence of the modified binaries within the guest
VM), there is no requirement within the implementation
of smokescreen to follow any naming convention that
may enable easy identification, thus further obfuscating
their presence on the guest VM.

5. System Testing

To test our system’s ability to achieve artifact
mitigation, we needed to examine the detectability of
VM introspection when redirecting the guest system’s
execution. To this end, we examined the runtime of the
modified sensors program in three environments: a bare
metal machine, a VM where no introspection occurred,
and a VM where introspection did occur. In the three
environments, we compared the performance cost of
virtualization as well as the additional cost of
introspection and memory manipulation. Success would
mean the introspected VM executed the modified
sensors program with similar runtimes to the other two
environments.

To time our various environments, we created a
Python script to perform multiple system calls that
execute sensors, both unmodified and modified. For
each execution, the individual runtime is calculated and
stored. After all iterations were run, the statistics were
extracted from each environment, and analysis was
conducted to calculate each average runtime, standard
deviation, and 95% confidence interval for the average.
For the purposes of our research, negative timing results
(likely a result of out-of-order execution as well as
application caching) were discarded to prevent data
skew. The results of our testing follow.

5.1. Bare Metal Machine

The bare metal machine utilized the same test
hardware and ran the same Ubuntu 16.04.6 LTS
distribution as the virtual machines. Lm-sensors was
installed and executed with no modification to the
sensors program. Several sensors were detected out-of-
the-box and did not require any additional
configuration. This setup effectively acted as a baseline
for comparison against the VM test environments. As
shown in Table 1, we were able to establish a baseline
of 2.886ms with most values falling within +/- 0.5ms of
that value.

Table 1. Bare metal timing

5.2. Unmodified Virtual Machine

To establish a comparison between an introspected
VM and a non-introspected VM, we chose to utilize the
Dom0 VM (as opposed to the guest VM) for a few

Page 7033

reasons. First, per the architecture of the Xen
Hypervisor, the Dom0 VMM (virtual machine monitor)
is simply another virtual machine that has access to the
hardware level, so we were able to execute the sensors
program without any additional configuration, and
meaningful values (i.e., real sensor data) was output.
Second, our research design ensured that both the
hypervisor and guest were running the same kernels and
had access to a similar amount of resources, providing a
nearly identical environment to the guest virtual
machine. As shown in Table 2, we saw that the
execution time of sensors increased by over 1ms on
average (from 2.886 to 4.022ms) resulting in a wider
standard deviation. This is likely attributable to the fact
that there is some resource sharing and context switches
between the VM and the hypervisor taking place.

Table 2. Unmodified guest VM timing

5.3. Introspected Virtual Machine

Finally, our guest machine was tested with
DRAKVUF running simultaneously on the hypervisor
with smokescreen implemented and running as a part
of the DRAKVUF instance. The guest VM executed the
modified sensors program. As shown in Table 3,
introspection incurred a relatively large penalty when
compared to the non-introspected VM. The average
execution time jumped to 8.85ms, with a much wider
range of execution times experienced. This was likely
due to a combination of processing required by
smokescreen and resource sharing described earlier
with the non-introspected VM. Although introspection
incurred a time penalty of approximately 120%, the
actual amount of time is still very small, and could likely
be attributed to resource sharing among processes or
other high-priority processes preempting sensors during
its execution.

Table 3. Modified guest VM timing

6. Conclusions

In this paper we designed and implemented
smokescreen as a DRAKVUF plugin meant to
potentially mitigate the capability and device artifacts
common in modern VMs. Although other solutions may
provide increased fidelity [5], we felt that a solution that
existed (mostly) outside of the guest machine was an
important factor in achieving our view of a high-fidelity
hypervisor. Our results indicate that smokescreen
provides increased fidelity but at the cost of increased
execution time. The benefits and limitations of our
solution follow.

6.1. External Solution

Utilizing DRAKVUF [16] allowed us to keep the
majority of our solution outside of the guest VM. Our
implementation showed that it is possible to redirect
execution of artifact-leaking binaries in a way that is
difficult to detect through analysis of the original
binaries. This results from the fact that there are no
indicators that they are not the original binaries being
executed.

By utilizing LibVMI’s API, the limitations of VM
introspection quickly became apparent. While
introspection does provide access to CPU register and
memory contents, it does not allow us access directly to
devices or files. This forced our implementation to
introduce file system artifacts of its own, since we are
unable to modify the file contents of the binaries that
leak the device/capability artifacts. Similarly, since we
are unable to directly manipulate files within the guest
VM through introspection, we do not have the ability to
modify the system files that would normally contain the
raw sensor values. This required us to modify the
various binaries rather than executing our calculations
outside the VM and injecting the expected data by the
unmodified binaries.

Currently, process injection (where the plugin
replaces the binary after it is loaded into memory in the
guest VM directly from the hypervisor) is not
implemented in smokescreen, requiring us to introduce
our own file system artifacts into the guest VM.
However, when process injection is fully implemented,
smokescreen will act as a natural building block after
any self-induced artifacts are retrieved from the virtual
machine, achieving our goal of mitigating artifacts
through minimal-to-no guest VM modification.

6.2. Performance Implications

Determining the overall impact to our system’s
performance and whether it would be considered a

Page 7034

significant impact to our hypervisor is an important
consideration. The cost of our solution’s introspection is
a 206% increase in average execution time of sensors.
In this case, it is unlikely that the increased amount of
time required would raise suspicions, as the difference
is less than 6ms between the bare metal machine and our
introspected VM. However, as the number of VMs
increases and the number of different binaries that are
required to be trapped also increases, it is possible that
the overall system could experience a more noticeable
slowdown. This could become a limiting factor in the
deployment of our solution.

7. References

[1] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether:
Malware analysis via hardware virtualization
extensions,” in Proceedings of the 15th ACM
Conference on Computer and Communications
Security, New York, NY, USA, 2008, pp. 51–62, doi:
10.1145/1455770.1455779.

[2] Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J.
Nazario, “Towards an understanding of anti-
virtualization and anti-debugging behavior in modern
malware,” in 2008 IEEE International Conference on
Dependable Systems and Networks With FTCS and
DCC (DSN), Jun. 2008, pp. 177–186, doi: 10.1109/
DSN.2008.4630086.

[3] G. J. Popek and R. P. Goldberg, “Formal requirements
for virtualizable third generation architectures,”
Commun. ACM, vol. 17, no. 7, pp. 412–421, Jul. 1974,
doi: 10.1145/361011.361073.

[4] E. G. Mallach, “On the relationship between virtual
machines and emulators,” in Proceedings of the
workshop on virtual computer systems, New York, NY,
USA, Mar. 1973, pp. 117–126, doi: 10.1145/800122.
803952.

[5] Y. Zhang, F. Xie, Y. Dong, G. Yang, and X. Zhou,
“High fidelity virtualization of cyber-physical systems,”
Int. J. Model. Simul. Sci. Comput., vol. 04, no. 02, p.
1340005, May 2013, doi: 10.1142/S1793962313400
059.

[6] E. Bugnion, J. Nieh, and D. Tsafrir, “Hardware and
software support for virtualization,” Synth. Lect.
Comput. Archit., vol. 12, no. 1, pp. 1–206, Feb. 2017,
doi: 10.2200/S00754ED1V01Y201701CAC038.

[7] S. Bansal and A. Aiken, “Binary translation using
peephole superoptimizers,” in Proceedings of the 8th
USENIX conference on Operating systems design and
implementation, 2008, pp. 177–192, Accessed: Jan. 20,

2020. [Online]. Available: https://www. usenix.org/
legacy/events/osdi08/tech/full_papers/bansal/bansal.pdf

[8] M. Carpenter, T. Liston, and E. Skoudis, “Hiding
virtualization from attackers and malware,” IEEE
Secur. Priv. Mag., vol. 5, no. 3, pp. 62–65, May 2007,
doi: 10.1109/MSP.2007.63.

[9] T. Liston, E. Skoudis, “On the cutting edge: Thwarting
virtual machine detection,” presented at SANS at Night,
2006. [Online]. Available: https://handlers.sans.org/
tliston/ThwartingVMDetection_Liston_Skoudis.pdf.

[10] J. Rutkowska, “Red Pill... or how to detect VMM using
(almost) one CPU instruction,” The Invisible Things,
Nov. 2004. [Online]. Available: http://web.archive.org/
web/20110726182809/http://invisiblethings.org/papers/r
edpill.html.

[11] C. Thompson, M. Huntley, and C. Link, “Virtualization
detection: New strategies and their effectiveness,” Univ.
of Minn., Minneapolis, MN, USA, 2010. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.302.7877&rep=rep1&type=pdf.

[12] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin,
“Compatibility is not transparency: VMM detection
myths and realities” in Proc. of the 11th Work. On
HotOS, 2007. [Online]. Available: https://www.usenix.
org/legacy/events/hotos07/tech/full_papers/garfinkel/ga
rfinkel_html/index.html.

[13] A. Ortega, “a0rtega/pafish,” GitHub. Accessed on Jan.
14, 2020. [Online]. Available: https://github.com/
a0rtega/pafish.

[14] T. Klein, “trapkit.de - ScoopyNG.” Trapkit, Accessed
Jan. 14, 2020. [Online]. Available: http://www.trapkit.
de/tools/scoopyng/index.html.

[15] W3Techs, “Usage of web servers broken down by
operating systems.” Accessed Jun. 15, 2020. [Online].
Available: https://w3techs.com/technologies/cross/
web_server/operating_system.

[16] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster,
S. Vogl, and A. Kiayias, “Scalability, Fidelity and
Stealth in the DRAKVUF Dynamic Malware Analysis
System,” 2014.

[17] GitHub, “libvmi/libvmi: The official home of the
LibVMI project is at https://github.com/libvmi/libvmi.”
Accessed Feb. 04, 2020. [Online]. Available:
https://github.com/libvmi/libvmi.

[18] Rekall Forensics, “Rekall Forensics.” Accessed Jun. 19,
2020. [Online]. Available: http://www.rekall-
forensic.com/.

[19] Intel, “6th Generation Intel® processor families for S-
Platforms, datasheet, volume 1 of 2.” Accessed: May
09, 2020. [Online]. Available: https://cdrdv2.intel.com/
v1/dl/getContent/332687.

Page 7035

