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Abstract 
 
The use of hypervisors for cyber operations has 

increased significantly over the past decade, resulting 
in a concomitant increase in the demand for higher 
fidelity hypervisors that do not exhibit the markers, or 
artifacts that identify the execution platform type 
(virtualized or bare metal), prevalent in most currently 
available virtualization solutions. To address this need, 
we present an in-depth examination of a specific subset 
of virtualization artifacts in order to design and 
implement a method of mitigation that reduces the 
detectability of these artifacts. Our analysis compares 
the performance of a bare metal machine, a virtual 
machine without artifact mitigation, and a virtual 
machine with our proof-of-concept mitigation technique 
applied to a temperature sensor. Results of the 
implementation are analyzed to determine the potential 
impact on system performance and whether our 
mitigation technique is appropriate for extending high-
fidelity hypervisors.  

1. Introduction  

High-fidelity hypervisors are becoming a required 
asset in the cyber operations community. From malware 
analysis and honeypot operations to training 
environments for testing cutting-edge cyber tools and 
techniques, virtualization offers a safe and isolated 
environment within which to research and test new 
methods. A downside to operating within virtual 
machines is that they often lead to artifacts (or markers) 
that, upon discovery, may allow an observer to realize 
they are not operating on a bare metal machine. While 
most of these artifacts are a byproduct of tighter host-
guest integration and proper separation between host 
machine and guest virtual machine, there may be a 
desire to hide or mitigate these artifacts. 

First, malware analysis can greatly benefit from a 
high-fidelity hypervisor. Dinaburg et al. described how 
“malware authors are incentivized to complicate 
attempts at understanding the internal workings of their 
creation” [1]. These complications include techniques 

that can be described as anti-debugging, anti-
instrumentation, and anti-VM to frustrate would-be 
analysts and prevent deeper understanding of the 
malware. Indeed, Chen et al. characterized the 
prevalence of evasion techniques in modern malware. 
According to their research, over 40% of the 6,900 total 
malware samples they examined reduced their 
malicious behavior whenever a debugger was attached, 
or when the malware suspected it was executing within 
a virtual machine [2]. Artifact mitigation enables a high-
fidelity hypervisor to show no signs of its virtualized 
environment, allowing analysts to more fully explore 
the functionality of target malware. 

Second, an organization running a honeypot would 
benefit greatly from a high-fidelity hypervisor. A 
virtualized environment is ideal for the execution of a 
honeypot, therefore malware that encounters such a 
system will likely attempt to determine if the 
environment is virtualized or not [2]. A high-fidelity 
hypervisor with artifact mitigation would be a better 
environment for honeypots to operate in, as they would 
exhibit the behaviors of a bare metal machine without 
any of the artifacts typically present in virtual machines. 

Lastly, it is essential for cyber operators to have a 
holistic environment in which to develop, test, train and 
rehearse their cyber tools and techniques. From an 
offensive standpoint, it would be impractical to test 
offensive cyber operations (OCO) on a bare metal 
machine, since the results will likely damage or corrupt 
these test systems. Recovery will ultimately take time 
away from the cyber operators, and either reduce the 
total time spent training and testing or increase the time 
it takes to reach a working solution. Either scenario is 
understandably not ideal or desirable. By offering a 
high-fidelity hypervisor that is able to present a system’s 
“digital twin,” we are able to suppress the artifacts that 
affect feedback to the operator while still providing a 
target environment that behaves exactly as its bare metal 
equivalent would.  

For these reasons, it is essential to examine the 
different aspects that reduce the fidelity of an off-the-
shelf hypervisor. In doing so, we attempt to design and 
implement mitigation measures that are able to increase 
the overall fidelity of hypervisors, while ensuring that 
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execution of the hypervisors and guest operating 
systems are not compromised.  

The key contributions of this work include: 
1. Design and implementation of smokescreen, a 

DRAKVUF plugin used to mitigate virtual-
ization artifacts. 

2. Implementation of a test framework to analyze 
the performance and mitigation capabilities of 
virtualized environments with and without the 
new plugin, as compared to a bare metal system. 

2. Background and Related Work 

The goal of a high-fidelity hypervisor is to present a 
virtualized machine that is indistinguishable from a 
physical machine, or a “digital twin” of sorts. The aim 
here is to improve upon the equivalence property of 
virtual machines described by Popek and Goldberg [3]. 
It is important to point out that our goal is a higher 
fidelity virtualized experience, not a more accurate 
emulation experience. Emulation is defined by Mallach 
as “a process whereby one computer is set up to permit 
execution of programs written for another computer” 
[4].  

With emulation, translation of the program to be 
executed is required, which is not a requirement for 
virtualization. Previous research into high-fidelity 
hypervisors has included an approach by Zhang, Xie, 
Dong, Yang, and Zhou, who were able to synchronize 
the operations of a virtualized machine and a physical 
component emulator to create a more holistic virtualized 
environment [5]. Although primarily intended to show 
that cyber physical system (CPS) software controllers 
do not require a physical setup to be able to test and 
develop, it presents a potential avenue to increase the 
fidelity of currently available hypervisor solutions 
without sacrificing performance and tipping off 
observers to the presence of a hypervisor. 

2.1. Hypervisor Overview 

Hypervisors are designed to run virtual machines 
with low overhead. Typical hypervisors can operate on 
a single machine or can utilize cloud or other distributed 
resources to support many virtual machines that operate 
concurrently. Hypervisors may run as a layer between 
hardware and guest operating system (a Type 1 
hypervisor), or as a user-level application running on 
another operating system (a Type 2 hypervisor). An 
example of a Type 1 hypervisor is the Xen Hypervisor, 
and an example of a Type 2 hypervisor is VMware 
Workstation. 

A Type 1 hypervisor maintains full control of the 
host system and its resources. Since these hypervisors 
occupy the same level as an operating system, they 

typically act in both capacities as virtual machine 
monitor for VMs, and as operating system for the host. 
For this reason, Type 1 hypervisors tend to enjoy lower 
amounts of overhead, as compared to their Type 2 
counterparts. 

A Type 2 hypervisor has full control of the host CPU 
during VM execution. Compared to Type 1 hypervisors, 
Type 2 hypervisors have additional overhead incurred 
as the host OS and hypervisor execute switches, similar 
to CPU context switches, to achieve virtualization [6].  

In addition to hypervisor types, virtualization can 
also be categorized into binary translation, full 
virtualization, and paravirtualization. 

Binary translation is a form of recompilation where 
instructions are translated from the source instruction set 
to a target instruction set (i.e., x86 machine instructions 
are translated into the equivalent ARM machine 
instructions). This is different from emulation, where 
the translation is simply executing the target instructions 
by utilizing a corresponding set of instructions from the 
source instruction set [4]. This translation can either be 
done statically (where recompilation occurs prior to 
runtime) or dynamically (where program instructions 
are translated as they are read). This method of 
virtualization is generally considered difficult since a 
translator program tends to be very specialized and a 
significant amount of extra work tends to be required to 
extend the translator to support new target instruction 
sets [7]. 

Full virtualization (also known as hardware 
virtualization) involves the guest system being 
completely unaware of the presence of the hypervisor. 
Instructions that are sensitive or privileged must be 
caught by the hypervisor without being observable by 
the guest OS. Although full virtualization does not 
require any specialized instruction sets or device drivers 
within the guest OS, it can incur significant performance 
penalties as the CPU executes context switches to allow 
the hypervisor to handle sensitive or privileged 
instructions. 

Paravirtualization (PV) is a virtualization method 
where the guest OS is fully aware of the hypervisor. The 
guest OS contains a specialized kernel and other 
virtualization-aware device drivers that can take 
advantage of the communication channels that typically 
exist between the hypervisor and VMs. Although PV 
guests require less overhead due to utilization of the 
communication channels between hypervisor and VM, 
it comes at the cost of reduced security, as 
vulnerabilities in PV drivers can expose the hypervisor 
to an attacker [8], and the added requirement for 
specialized drivers. 
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2.2. Hypervisor Artifacts 

Virtualization artifacts are markers or indicators of 
either the presence of a VMM, or of the fact that a 
system is virtualized. Most of these artifacts fall within 
one of three categories: service, process, or file system 
artifacts; memory artifacts; and virtualization-specific 
artifacts, which are further broken down into hardware-
specific and capability-specific artifacts. 

Service, process, or file system artifacts are 
exemplified by paravirtualization-specific drivers. By 
utilizing paravirtualization and the hypervisor-guest 
communication channels, it is possible to greatly reduce 
the performance overhead of a hypervisor, making a 
strong case for their use. However, for ease of use most 
hypervisors are transparent about paravirtualization 
drivers, causing many artifacts within the guest itself. 
For example, a VMware Workstation guest running 
Windows XP with PV-aware drivers installed has over 
50 references to “VMware” in the file system and over 
300 references in the registry [9]. 

Memory artifacts tend to involve references to the 
hypervisor itself within the system memory. This can be 
observed in the way that the operating system stores 
essential tables and references. For example, the 
Interrupt Descriptor Table (IDT) is a kernel structure 
that holds a list of pointers to the operating system 
interrupts [9]. Since the hypervisor and guest OS both 
contain and maintain their own IDT they cannot be 
located at the same physical memory address, so tools 
such as The Red Pill [10] that are able to inspect the IDT 
pointer can determine if a machine is virtualized or not. 

Virtualization-specific artifacts typically result from 
the fact that most hypervisors are transparent with their 
paravirtualization drivers within a guest OS. On a Linux 
guest, within locations such as system logs or the 
various virtual file system directories (e.g., /proc or 
/sys), or from the output of commands such as “dmesg”, 
it is possible to discover references to the hypervisor [9]. 
This type of artifact can also be caused by the extended 
instruction sets typically seen in PV guests. For 
example, VMware and Xen add additional machine 
instructions to the processor instruction set that allow 
usage of the hypervisor-guest communication channel. 
Tools such as VMDetect will intentionally execute these 
instructions with the goal of detecting whether 
execution was successful or not, where success would 
indicate that the system was virtualized [9]. 

2.3. Hypervisor Detection 

Current hypervisor detection techniques include 
count-based detection and register inspection-based 
detection. Research at the University of Minnesota 
quantified timing artifacts within virtual machines. 

Thompson et al. discovered that by executing a loop of 
NOP instructions alongside a loop of CPUID 
instructions (a privileged instruction requiring 
hypervisor intervention) and comparing the ratio of total 
instructions executed, detectable differences were 
observable between virtual and bare metal machines 
[11]. This is due to the additional latency introduced by 
the hypervisor trapping these sensitive instructions for 
handling before returning control to the guest [12].  

Another method of hypervisor detection exploits the 
presence of sensitive but unprivileged instructions or 
instruction set extensions like those implemented in PV 
guests. The Red Pill [10] and Paranoid Fish [13] both 
utilize the SIDT (Store Interrupt Descriptor Table 
register) instruction to discover the hypervisor, while 
software tools like ScoopyNG [14] and VMDetect [9] 
exploit the presence of additional instruction sets to 
expose the hypervisor. 

2.4. Detection Mitigation 

Current detection mitigation techniques and 
software tools tend to center around modification of the 
hypervisor configuration. Liston et al. discovered the 
existence of undocumented configuration options for 
VMware hypervisors that, when set a certain way, 
would effectively “break” the hypervisor-guest 
communication channels and defeat both The Red Pill 
and ScoopyNG [9]. The downside to this technique is 
that these configuration options are not documented or 
officially supported, meaning there is no guarantee that 
a software update will not render the mitigation 
technique ineffective. 

Another mitigation method uses a proof-of-concept 
application called VMmutate to obfuscate the presence 
of a VMware hypervisor through modification of the 
VMX configuration parameters. The tool will either 
modify or disable the VMware “magic value” that must 
be present to utilize the extended instruction set to 
communicate with the hypervisor. These mitigation 
techniques were found to be enough to defeat The Red 
Pill as well as portions of the ScoopyNG suite [8].  

The downside to these techniques is that they tend to 
require extensive hypervisor configuration or virtual 
machine memory alterations. Either of these can lead to 
less portable solutions as the hypervisor and PV 
tools/drivers are modified.  

3. System Design 

For our research, we decided on an appropriate 
hypervisor and targeted guest system by examining the 
most commonly used hypervisors and operating systems 
being run by web servers on the internet. According to 
W3Techs, most web servers utilize a Unix-based 
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operating system, with Ubuntu being the most common 
[15]. Therefore, we chose to use Ubuntu 16.04.6 LTS as 
it is still within its support window through the 
maintainer, Canonical, and is also likely to continue 
being used “in the wild.”  

We elected to use a Type 1 hypervisor over an 
application-based Type 2 hypervisor as the former is 
more common in commercial environments. 
Specifically, the open source Xen hypervisor was 
chosen due to its wide adoption within the tech sector. 
Additionally, we used the DRAKVUF software suite, 
which was originally built to work alongside the Xen 
hypervisor, allowing us to leverage that capability to 
achieve a working solution faster and more efficiently. 

3.1. DRAKVUF 

DRAKVUF is a software suite designed as a 
“virtualization based agentless black-box binary 
analysis system” [16]. Although originally developed 
for malware analysis, we found that by utilizing specific 
features of DRAKVUF, we could attempt to mitigate 
artifacts found in VMs. The tool allowed us to both 
examine and manipulate execution of binaries within a 
VM without having to install any additional analysis 
software with the guest host.   

3.2. LibVMI 

The XenAccess Project was originally conceived to 
be a Xen hypervisor-specific solution for virtual 
machine introspection. From this project, LibVMI was 
derived as an offshoot meant to be more platform-
agnostic and able to support different hypervisors. For 
our research, it provided the ability to monitor (by 
reading VM memory) and control (by writing VM 
memory) from outside the guest VM, allowing us to 
remain undetected from the VM’s perspective [17]. 
Utilizing LibVMI with the Rekall profile (discussed 
next) we were able to bypass the oft-used 
KdDebuggerData (KDBG) structure, which may be 
corrupted or encoded depending on the guest operating 
system.  

3.3. Rekall 

Rekall is a Python-based open source framework 
that is used for “extraction and analysis of digital 
artifacts (in) computer systems” [18]. It functions by 
analyzing the currently running kernel to determine its 
configuration, and then uses that configuration along 
with the kernel source headers to catalogue the locations 
of kernel structures. That catalogue is output as a 

standardized JSON (JavaScript Object Notation) file for 
use by DRAKVUF.  

This tailored catalogue file provides important 
information such as the base address of the kernel 
structure itself, and additionally provides address offset 
of various kernel memory objects and system call 
locations. By utilizing these locations, we can leverage 
DRAKVUF and LibVMI to trap any system calls we 
determine necessary without any modification to the 
guest VM or its kernel.  

3.4. DRAKVUF Plugins 

The last essential component in our design is the 
powerful plugin system that is built into DRAKVUF. 
We developed and integrated a plugin called 
smokescreen that monitors VM execution and traps any 
system calls that would attempt to execute artifact-
exposing binaries. If any call is trapped, smokescreen 
replaces the pathname of the binary to be executed with 
a path to a modified version that would suppress the 
artifacts and generate a reasonable output. Details of the 
smokescreen implementation are provided below. 

4. System Implementation 

We investigated the possibility of mitigating device 
and capability artifacts that arise from a VM not having 
access to host hardware devices, such as temperature 
sensors found on modern computers. While many 
sensor devices are emulated by the hypervisor, this is 
not always the case. For example, a stock Ubuntu 
16.04.6 LTS installation operating as a fully virtualized 
guest with the Xen hypervisor does not have access to 
the temperature sensor normally found in a CPU, so 
attempts to query those sensors are typically met with 
an error or failure condition. This also can include other 
system sensors such as light or motion sensors that also 
are not be exposed to the VM.   

4.1. Hardware Component Emulation 

We chose to implement a temperature sensor found 
on an Intel Core i7-6700 CPU due to its common usage. 
Research of the product specifications and datasheet for 
this CPU was done to ascertain whether a model for the 
temperature sensor could be found, or if one could 
potentially be derived from other specifications. 
References to TCASE describe it as “the maximum 
temperature allowed at the processor Integrated Heat 
Spreader (IHS)” and corresponds to a linear model 
where the maximum temperature was a function of the 
power utilization at a particular point [19]. We used this 
linear model to estimate a potential maximum CPU 
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temperature within a VM utilizing only current 
processor utilization statistics, which are available in a 
guest VM. 

4.2. Software Component 

The system’s software component primarily consists 
of a modified version of the Linux sensors program, 
which is part of the lm-sensors software toolkit. The 
unmodified program, shown in Figure 1, outputs data 
from the contents of various files in the system’s virtual 
file systems that contain the raw output values of system 
hardware sensors.  The sensors program reads this file 
data, formats it as appropriate, and then outputs it for a 
user process. However, in a virtualized environment one 
is more likely to encounter an error condition, as those 
sensors are not exposed to the VM and are thus 
unreadable, exposing an artifact of virtualization. 
 

 
Figure 1. Unmodified sensors execution flow 

 
We modified the sensors binary to mitigate the lack 

of sensors being exposed to the VM (a capability/device 
artifact). The modified binary would suppress the error 
condition where no sensor data was found and replace it 
with a lookup function that estimates the desired sensor 
data. While a simple approach would have been to have 

the program output a static value at runtime, for example 
an average temperature across most workplace 
environments, our goal of increasing the hypervisor 
fidelity meant that the output should reasonably reflect 
the current state of the apparent bare metal machine and 
its environment.  

To this end, we implemented a library-type function 
call that, when invoked, would sample the current 
utilization statistics within the VM and execute a lookup 
of the appropriate TCASE temperature value. This 
modified flow is shown in Figure 2. System utilization 
was determined by querying the /proc/loadavg file, 
which outputs a 1-, 5-, and 10-minute running average 
of CPU load across all cores as a floating-point value. 
By utilizing the 1-minute average as an instantaneous 
approximation of current system utilization, and the 5- 
and 10-minute averages as the “effect” of a cooling 
solution (e.g., the higher the long term utilization, the 
more likely the cooling fans have also been working to 
manage temperature for a longer period of time), we 
were able to implement a simple lookup function that 
scaled with system utilization. The result of this lookup 
was the value returned by sensors. 

 

 
Figure 2. Modified sensors execution flow 

4.3. Means of Implementation 

We developed smokescreen as a plugin for 
DRAKVUF (implemented in C/C++) to monitor VM 
execution and trap any system calls that would attempt 
to execute artifact-exposing binaries. If any call is 
trapped, smokescreen will replace the pathname of the 
binary to be executed with a path to a modified binary 
that would suppress the artifacts and output a reasonable 
estimated output value.  
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To understand how smokescreen is able to modify 
pathnames without VM corruption, knowledge of 64-bit 
Sysv calling conventions was also required. Since the 
introspection and modification actions taken are 
executed at a low-level, they require knowledge of CPU 
registers and their memory values for any kernel system 
call on which we wish to perform introspection. 

Our plugin itself was implemented as an extension 
of the base plugin class (per the specification) and 
consists of a total of seven files. Two of the files consist 
of the plugin itself, one is a header file containing our 
temperature estimation function, a patch file for the 
source code of sensors, two files that describe the 
system calls and file paths to be modified respectively, 
and finally a recompiled (i.e. modified) version of 
sensors that has our patch applied. The plugin files 
consist of smokescreen.cpp and smokescreen.h per 
plugin specification. The temperature lookup function is 
a single file, temp_lib.h, and is required to be co-located 
within the sensors/lib folder of the lm-sensors source 
code. This ensures that our patched sensors binary can 
compile correctly. The patch file must be applied to 
main.c of the sensors binary prior to compilation to 
ensure the function residing in temp_lib.h is executed 
correctly and prevents the leakage of VM artifacts.  

The system call list is passed as a command line 
argument to DRAKVUF (via the -S argument) which 
can be either a relative or absolute path, while the list of 
binaries is located per the plugin initialization source 
code (for our research, it is at 
/home/xen/xen/binary_list.txt). This location is 
modifiable within the smokescreen.cpp file as well. 
Lastly, the modified sensors binary must be located at a 
configuration-dependent path (in our case, /fake/usr/bin 
on the guest VM) but this location is also easily 
modifiable within the smokescreen.cpp source file. 

For the actual implementation, we found we needed 
to trap the execve() kernel system call. This system call 
requires three parameters: a pointer to the fully qualified 
path name as a string, a pointer to an argument vector, 
and a pointer to an environmental variable vector. 
According to AMD64 Sysv calling conventions, these 
parameters are found in the registers RDI, RSI, and 
RDX, respectively. For the purposes of our 
modifications, the argument and environmental variable 
vectors are not required to be modified for smokescreen 
execution. Since modification of the argument vector 
(i.e. command line arguments passed to sensors at 
execution time) would likely expose our modifications, 
it is best to leave it untouched which will ensure that our 
modified version will preserve functionality not directly 
related to our work, such as a version or help message. 
Similarly, the program does not utilize the 
environmental variables directly and modifying them 

may have unintended side effects during execution, so it 
is best left unmodified. 

The plugin execution flow, shown in Figure 3, 
follows five steps: 

1. Retrieve and lock (pause) the instance of the 
monitored VM.  

2. Identify the pathname of the binary to be 
executed through VM introspection. 

3. Compare the pathname to our predefined list of 
binaries that require redirected execution. 

4. If a match is found, extract and modify the 
pathname to be the path to our modified binary. 
If not, execution of the VM will be resumed 
immediately with no modifications made. 

5. Release (un-pause) the VM and allow execution 
to resume. 

 

 
Figure 3. Smokescreen execution flow 

 
During step 1, a reference to the VM instance 

allowed us to access to the values stored within the CPU 
registers as well as the contents of the VM’s memory 
through virtual and physical memory addresses. As we 
are concerned with the execve() system call, it is 
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important that we are able to extract the pathname from 
the VM’s RDI register for the given (caller) process. As 
DRAKVUF (via LibVMI) traps these calls, 
smokescreen’s callback function is executed and able 
to query LibVMI for the VM’s vmi_instance_t struct. 
This struct, in conjunction with the drakvuf_trap_info_t 
struct passed to the callback, allows us to gather 
important information such as the caller’s PID (Process 
Identification number) and a complete snapshot of the 
CPU’s registers and their values. When the system call 
we are waiting for is executed, RDI contains a pointer 
to a string representation of the file path to be executed. 

Step 2 is executed via LibVMI’s vmi_read_str_va() 
function. Smokescreen accomplishes this by asking for 
the contents of the RDI register for a specific VM’s PID. 
This call returns to us a pointer to the string containing 
the fully qualified pathname of the binary to be 
executed. 

Step 3 is done by taking the extracted pathname and 
executing a string comparison to our predefined list of 
binaries (which is established at plugin initialization). 
From there, step 4 branches into two possibilities. If a 
match is found, we construct a new pathname which 
leads to our modified binary and proceed to write the 
new string back to the original memory location 
referenced in the VM’s RDI register. If no match is 
discovered, the VM is immediately released and 
execution continues with no modification to the register 
or memory contents.  

Finally, we release the vmi_instance_t struct, which 
allows execution to continue within the VM. Unless the 
user of the guest VM is meticulously monitoring 
execution of all binaries on the system, it is unlikely that 
this process will be observed within the system in real 
time. 

In summary, we have designed and implemented a 
system that can replace execution of binaries that could 
potentially leak the presence of a hypervisor with little 
impact to the guest VM. By placing modified binaries 
within the VM and utilizing VM introspection, we are 
able to successfully redirect execution and obfuscate the 
presence of our modified binaries, as the guest system 
still believes it is executing the original (un-altered) 
files. Therefore, even if a user were to examine the 
binaries they believe are being executed, there is no 
outward indication of any issue, since the unmodified 
files contain no markers or indicators that they are not 
actually the files being executed. Although we are 
forced to introduce file system artifacts (through the 
mere presence of the modified binaries within the guest 
VM), there is no requirement within the implementation 
of smokescreen to follow any naming convention that 
may enable easy identification, thus further obfuscating 
their presence on the guest VM.  

5. System Testing 

To test our system’s ability to achieve artifact 
mitigation, we needed to examine the detectability of 
VM introspection when redirecting the guest system’s 
execution. To this end, we examined the runtime of the 
modified sensors program in three environments: a bare 
metal machine, a VM where no introspection occurred, 
and a VM where introspection did occur. In the three 
environments, we compared the performance cost of 
virtualization as well as the additional cost of 
introspection and memory manipulation. Success would 
mean the introspected VM executed the modified 
sensors program with similar runtimes to the other two 
environments.  

To time our various environments, we created a 
Python script to perform multiple system calls that 
execute sensors, both unmodified and modified. For 
each execution, the individual runtime is calculated and 
stored. After all iterations were run, the statistics were 
extracted from each environment, and analysis was 
conducted to calculate each average runtime, standard 
deviation, and 95% confidence interval for the average. 
For the purposes of our research, negative timing results 
(likely a result of out-of-order execution as well as 
application caching) were discarded to prevent data 
skew. The results of our testing follow. 

5.1. Bare Metal Machine 

The bare metal machine utilized the same test 
hardware and ran the same Ubuntu 16.04.6 LTS 
distribution as the virtual machines. Lm-sensors was 
installed and executed with no modification to the 
sensors program. Several sensors were detected out-of-
the-box and did not require any additional 
configuration. This setup effectively acted as a baseline 
for comparison against the VM test environments. As 
shown in Table 1, we were able to establish a baseline 
of 2.886ms with most values falling within +/- 0.5ms of 
that value.  

 
Table 1. Bare metal timing 

 

5.2. Unmodified Virtual Machine 

To establish a comparison between an introspected 
VM and a non-introspected VM, we chose to utilize the 
Dom0 VM (as opposed to the guest VM) for a few 
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reasons. First, per the architecture of the Xen 
Hypervisor, the Dom0 VMM (virtual machine monitor) 
is simply another virtual machine that has access to the 
hardware level, so we were able to execute the sensors 
program without any additional configuration, and 
meaningful values (i.e., real sensor data) was output. 
Second, our research design ensured that both the 
hypervisor and guest were running the same kernels and 
had access to a similar amount of resources, providing a 
nearly identical environment to the guest virtual 
machine. As shown in Table 2, we saw that the 
execution time of sensors increased by over 1ms on 
average (from 2.886 to 4.022ms) resulting in a wider 
standard deviation. This is likely attributable to the fact 
that there is some resource sharing and context switches 
between the VM and the hypervisor taking place. 

 
Table 2. Unmodified guest VM timing 

 

5.3. Introspected Virtual Machine 

Finally, our guest machine was tested with 
DRAKVUF running simultaneously on the hypervisor 
with smokescreen implemented and running as a part 
of the DRAKVUF instance. The guest VM executed the 
modified sensors program. As shown in Table 3, 
introspection incurred a relatively large penalty when 
compared to the non-introspected VM. The average 
execution time jumped to 8.85ms, with a much wider 
range of execution times experienced. This was likely 
due to a combination of processing required by 
smokescreen and resource sharing described earlier 
with the non-introspected VM. Although introspection 
incurred a time penalty of approximately 120%, the 
actual amount of time is still very small, and could likely 
be attributed to resource sharing among processes or 
other high-priority processes preempting sensors during 
its execution. 

 
Table 3. Modified guest VM timing 

 

6. Conclusions 

In this paper we designed and implemented 
smokescreen as a DRAKVUF plugin meant to 
potentially mitigate the capability and device artifacts 
common in modern VMs. Although other solutions may 
provide increased fidelity [5], we felt that a solution that 
existed (mostly) outside of the guest machine was an 
important factor in achieving our view of a high-fidelity 
hypervisor. Our results indicate that smokescreen 
provides increased fidelity but at the cost of increased 
execution time. The benefits and limitations of our 
solution follow. 

6.1. External Solution 

Utilizing DRAKVUF [16] allowed us to keep the 
majority of our solution outside of the guest VM. Our 
implementation showed that it is possible to redirect 
execution of artifact-leaking binaries in a way that is 
difficult to detect through analysis of the original 
binaries. This results from the fact that there are no 
indicators that they are not the original binaries being 
executed. 

By utilizing LibVMI’s API, the limitations of VM 
introspection quickly became apparent. While 
introspection does provide access to CPU register and 
memory contents, it does not allow us access directly to 
devices or files. This forced our implementation to 
introduce file system artifacts of its own, since we are 
unable to modify the file contents of the binaries that 
leak the device/capability artifacts. Similarly, since we 
are unable to directly manipulate files within the guest 
VM through introspection, we do not have the ability to 
modify the system files that would normally contain the 
raw sensor values. This required us to modify the 
various binaries rather than executing our calculations 
outside the VM and injecting the expected data by the 
unmodified binaries.    

Currently, process injection (where the plugin 
replaces the binary after it is loaded into memory in the 
guest VM directly from the hypervisor) is not 
implemented in smokescreen, requiring us to introduce 
our own file system artifacts into the guest VM. 
However, when process injection is fully implemented, 
smokescreen will act as a natural building block after 
any self-induced artifacts are retrieved from the virtual 
machine, achieving our goal of mitigating artifacts 
through minimal-to-no guest VM modification. 

6.2. Performance Implications 

Determining the overall impact to our system’s 
performance and whether it would be considered a 
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significant impact to our hypervisor is an important 
consideration. The cost of our solution’s introspection is 
a 206% increase in average execution time of sensors. 
In this case, it is unlikely that the increased amount of 
time required would raise suspicions, as the difference 
is less than 6ms between the bare metal machine and our 
introspected VM. However, as the number of VMs 
increases and the number of different binaries that are 
required to be trapped also increases, it is possible that 
the overall system could experience a more noticeable 
slowdown. This could become a limiting factor in the 
deployment of our solution. 
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