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Darcy-Reynolds forces during intrusion into granular-fluid beds

Joshua Strader,! Neil Causley,’ Joshua A. Dijksman,? and Abram H. Clark!

! Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943
2 Physical Chemistry and Soft Matter, Wageningen University and Research,
Stippeneng 4, 6708 WE Wageningen, Netherlands
(Dated: July 28, 2021)

We experimentally study intrusion into fluid-saturated granular beds by a free-falling sphere,
varying particle size and fluid viscosity. We test our results against Darcy-Reynolds theory, where
the deceleration of the sphere is controlled by Reynolds dilatancy and the Darcy flow resistance. We
find the observed intruder dynamics are consistent with Darcy-Reynolds theory for varied particle
size. We also find that our experimental results for varied viscosity are consistent with Darcy-
Reynolds theory, but only for a limited range of the viscosity. For large viscosities, observed forces
begin to decrease with increasing viscosity, in contrast with the theoretical prediction.

I. INTRODUCTION

Intrusion or impact into a granular-fluid mixtures is a common process with relevance in, e.g., bio-inspired loco-
motion problems @, E] or shock absorption applications B] Each of the constituent phases of this system (granular
flows or fluid flows) is already challenging enough to describe, and the combination is even more difficult. There has
been extensive recent work on steady-state rheology of granular fluid mixtures, including generalizations of inertial
rheology descriptions for granular flows @ﬁ] as well as rheological studies of shear-thickening behavior B@] Steady
state analyses of granular and suspension flows often assume a weak coupling between the dynamics of both phases
or only mild gradients (space or time) in the flow rate or the local stress. These analysis therefore offer few han-
dles to understand more complex flow situations such as intrusion, which inherently involves compaction or dilation
and propagation phenomena ] Thus, in addition to the utility of describing the impact or intrusion process
for practical applications, intrusion is a useful benchmark to probe the limits of existing theories and uncover new
physics. This has been recognized by a diverse and expanding set of works on intrusion ﬂﬂ, @—Iﬂ] In particular,
understanding how relevant data during an impact (e.g., crater size ﬂE, @], or peak forces ﬂﬁ, @]) depends on sys-
tem parameters (e.g., intruder speed, intruder size, or grain stiffness) often yields significant insight about underlying
physics, especially inherently transient processes that by definition cannot be captured by steady-state descriptions.

A notable example of such a process was recently highlighted by Jerome et al. ﬂﬂ] When intrusion occurs into a
granular bed in which the packing fraction ¢ is compacted above a critical volume fraction ¢. (due to, e.g., external
vibrations [22, 23] or aging from other mechanisms [24, [25]), there is an initial transient where the bed dilates, due
to Reynolds dilatancy [2G]. Generally, the bed will be saturated in some fluid (e.g., air or water), and the fluid will
be sucked into the expanding pore structure. For sufficiently small particles and a sufficiently viscous fluid, Darc
pressure ﬂﬂ] begins to play an increasingly dominant role during the granular bed expansion. Jerome et al.
formulated a basic theory that combined these two effects, called Darcy-Reynolds theory (DRT), to describe the
dynamics of spheres impacting granular beds that were fully immersed in a fluid. The authors showed explicitly that
DRT could explain the dependence on ¢ of the force response during intrusion into fluid-saturated granular beds.

Although the ¢-dependence of the impact response was confirmed to agree with DRT ], several other parameters
like viscosity 7y of the interstitial fluid or the particle diameter d play a crucial role in this theory, but the scaling
behavior for these parameters was tested only for a few cases. If tested and confirmed, this would provide a framework
that could be used for, e.g., prediction of robotic locomotion behavior @] or tunable granular-fluid mixtures. One
particular example motivating this study is the use of a ferrofluid as the viscous fluid. Ferrofluids @] consist of
nanometer-sized iron particles coated in a surfactant suspendend in a simple fluid (e.g., alcohol or a petroleum-based
fluid). Ferrofluids behave approximately as viscous fluids, but with a viscosity that depends on the applied magnetic
field. Thus, the viscosity can be changed in situ during some deformation of the material to achieve desired results.
Since Darcy-Reynolds pressure increase with increasing 7y, this could provide a way to externally tune the flow
behavior of granular-fluid mixtures.

Here, we demonstrate how DRT predicts scaling laws for intrusion into fluid-grain mixtures as a function of particle
size and fluid viscosity. We then experimentally test these scaling laws with impact experiments by dropping spheres
from a height H into fluid-saturated granular beds with varying particle size d and fluid viscosity 7n;; see Fig. Di(a).
In both cases, we find results that are consistent with DRT over a range of parameter values. We observe some
change to the phenomenology for large d; we show that this can be explained using DRT. However, we also observe
a qualitative discrepancy for the predicted behavior for large n; which cannot be reconciled with DRT. Increasing
1f should lead to increasing Darcy-Reynolds forces. Instead, we observe that for large 7y, increasing ns leads to
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FIG. 1. (a) Sketch of the experiment. The magnet releases the sphere, which is connected to the accelerometer (ADXL) via
a threaded rod. The magnet is dropped from height H onto the submersed settled particle bed (sample). (b) Sketch of the
mechanism slowing down the spherical intruder impacting the bed of particles with diameter d and packing fraction ¢o9. Under
influence of the penetration of the intruder with speed V, diameter D and mass m the particles will bulge out from the bed
surface (long dashed line). At penetration depth z = § the particle have been sheared in a region with size L. This shear
required dilating the packing and thus the local absorption of fluid with viscosity n;(B) whose properties may depend on the
applied magnetic field strength B. (c) SEM image of the glass beads used, showing slight polydispersity and a mild roughness
(d) SEM image of dried ferrofluid on the glass beads. The individual ferrofluid nanoparticles are too small to observe yet the
leftovers from capillary bridges are clearly visible. Image width in (c,d) is 200 micrometer.

decreasing forces during impact. Viscosity is controlled by adding glycerol to water as well as by using a ferrofluid
and tuning the viscosity with an external applied magnetic field; both methods yield similar results. Our results
demonstrate that Darcy-Reynolds theory as formulated describes variation in d over a wide range but breaks down
for large viscosities, at least for the particles and fluids studied here. However, the overall agreement between the
glycerol-water mixtures and the ferrofluid suggest that ferrofluids could be used to construct tunable complex fluids,
where the applied magnetic field controls the viscosity and hence impact hardness.

II. DARCY-REYNOLDS THEORY

We first reproduce the derivation of Darcy-Reynolds theory that appears in the main text and the Supplemental
Material of Jerome et al. ﬂﬂ] The key idea is that intrusion of an object requires shear in the particulate phase. Such
shear gives rise to frictional stress as set by some effective friction coefficient. Additionally, when a packing is denser
than its “critical state” solid fraction ¢.—i.e. the density it would have during steady-state shear—then the material
will dilate when sheared until asymptotically approaching ¢., a process known as Reynolds dilatancy. This induces
fluid flow into the expanding pores. Under certain conditions the pore fluid pressure P; can locally reach values much
larger than any other local pressure scale, such as gravity, in which case Py dominates the dynamics. The key hurdle
is then to find an expression for Py for the situation sketched in Fig. [I(b).

It is reasonable to assume that the rate of dilation is linearly proportional to the shear rate % @] Thus, the first
assumption of this theory is that the dilation obeys a simple differential equation,

10
S5 = a0 - é0) (1)

To approximate the magnitude of «, we take finite differences, i.e., ¥ — §v/dt. We assume that the strain needed over
which dilation happens is v ~ 0.1 [30-B2], and d¢/8t — 6¢4/0t, with d¢ ~ ¢. — ¢, yielding a = 1/(¢d7). If ¢ ~ 0.6,
then a ~ 20. We use this approximation later to confirm that our comparison between theory and experiments is
reasonable.

As previously stated, when the granular phase dilates, fluid from elsewhere in the material must fill this volume
opened up via dilation. If the particle diameter d is small, then the Darcy flow resistance of the fluid through the



pore structure is dominant. The Darcy law states that

(1—9)(Vy—V,) = —%VPf, 2)

where  oc d? is the permeability, ns is the fluid viscosity, and Py is the pore pressure. Assuming that the particle
and fluid phases are both incompressible, i.e., 0¢/0t +V - (¢Vp) = 0 and 9¢/0t + V - (¢Vp) = 0, then taking the
divergence of Eq. @) yields (1/¢)0¢/0t = —(k?/ns)V? Py, assuming that spatial dependence in ¢ can be neglected
(i.e., V¢ = 0). Combining with Eq. () yields

V2P, = ”—Ijaw(a; — o). (3)

This equation represents a local constitutive law, which can then be extended to impact of a sphere into a saturated
granular bed, with initial volume fraction ¢g, using several more assumptions. During impact, there is a shearlike
deformation that occurs beneath the intruder. The first important assumption is that this shear deformation occurs
over a length scale L, which is proportional to the square root of the instantaneous contact area between the intruder
and the fluid-grain mixture. In this picture, Py then sets the pressure scale for a frictional intrusion-resisting force.
This represents a qualitative difference between Darcy-Reynolds theory and recent theories that have been proposed
to describe impact into dense suspensions, where propogating dynamically jammed fronts play a crucial role m, [14,
[1d, @] Something like Darcy-Reynolds theory likely describes why these these dynamically jammed fronts remain
solidified, due to very small (e.g., cornstach) particles with very low associated permeability. However, the theories
describing each of these two systems cannot be directly applied to the other; we discuss further at the end of the
Discussion section.

A. The role of shear length scale L

Assuming that the shear length scale L is set by the square root of the contact area between the ball and the
material, the shear rate is 4 ~ v/L, where v is the speed of the intruder. The pore-pressure effects also act over length
scale L, so V2P; ~ Py /L% Thus, Eq. @) becomes

Py~ HaLv(é - 6.), (4)

which sets the characteristic pressure on the sphere by the material. Assuming that Darcy-Reynolds pressure dominate
all other forces, and that the intruder predominantly feels a frictional slowing down force, the equation of motion can
be written as

mz = —ArL*Py, (5)

where m is the sphere mass, z is the penetration depth (v = 2, a = %), and A is an effective friction coefficient. The
effective mass density ps can be defined as ps = 6m/7wD?, where D is the sphere diameter.

B. Testable predictions from Darcy-Reynolds Theory

If the Darcy-Reynolds pressure is very large, then the penetration depth of the sphere is small, i.e., z < D (this
is observed experimentally for small grains). In this case, L? ~ Dz by a small-angle approximation. Combining, one
obtains

_mAay DY2AG s,

m .
_psDSZ = 2

z (6)

where A¢ = ¢ — ¢.. After integrating in time, Eq. (@) yields a dimensionless equation of motion
dz/dt = —(2/5)z°/% +1, (7)

where Z = z/Vt,,, t = t/t;,, and

D 77fD —2/5
t = T (GAapS d2vA¢) : (8)



The initial conditions are given by z(0) = 0 and £(0) = V, where V is the initial velocity at impact. This means that
the dimensionless velocity at impact is V = 1, since dZ/di = 2/V and z = V at initial impact.

Numerically solving Eq. (@) yields a deceleration-versus-time curve that rises, peaks at characteristic time set by
tm, and decreases. Such a curve can be seen in the Supplemental Material of Ref. ] as well as in comparison to our
experimental data in Fig. 2(b) (dashed line). The peak dimensionless acceleration amax = amaxtm/V is therefore

VooV 1y D 2/
Qmax OC = =5 (6Aapsd2VA¢> . 9)

This equation predicts, for example, a peak force scaling via amayx oc d=%57%*V1¢, which can be explicitly tested.

The derivation of Eq. (@) contains several assumptions. The breakdown of the validity of these assumptions leads to
measurably different scaling behaviors. One assumption discussed by Jerome is that ¢. can be strain rate dependent,
shifting the solidification response during impact. Other deviations are possible; for example, in the case that the
Darcy-Reynolds pressure is not sufficiently large to preserve z < D throughout the impact, then Eq. (@) onward
must be reevaluated. In the case where the Darcy-Reynolds pressure is dominant but still small enough that the
penetration depth becomes similar to or larger than D, the contact area is simply proportional to the intruder cross
sectional area, meaning that L ~ D, not L ~ v/Dz. This means that Eq. (@) becomes

o 6Aa77fA¢2

Thus, in this limit, the force on the impacting sphere is proportional to its speed, suggesting amax < V. Note that
this linear dependence on velocity is reminiscent of Stokes drag, although the physical mechanism is different.
Equation ([I0) predicts exponential decay in the velocity and acceleration, specifically

5= —Ke*t/f, (11)
T

where 7 = %. However, we note that during the initial stages of penetration, L? ~ Dz would still be valid, so
ngAP

we expect a buildup of the force before exponential decay takes over as the intruder passes through different scaling
regimes.

The equations in this section contain specific predictions about the dynamics, which are testable via experiments,
as we show below. We note that there are other assumptions in these equations which may not always be valid,
such as the assumption that A is a constant that is independent of any system parameter. It is also reasonable to
consider that the pore-pressure effects act over the particle scale d, giving V2 Py ~ Py/d* and hence additional scaling
dynamics that we did not explore in detail. These and other assumptions may be responsible for deviations from
these predictions, as we discuss below.

IIT. EXPERIMENTAL METHODS

To test the predictions from the previous section, we perform experiments of spherical intruders dropped into fluid-
saturated granular beds. Since the dependence on A¢ was already confirmed in Ref. M], we vary other parameters,
especially V', d, and ny. We also vary m and D, but over more modest range. We use five distinct sets of glass beads
(Mo-Sci), with d ranges of (1) 53-75, (2) 75-106, (3) 180-212, (4) 300-425, and (5) 600-850 in units of pm,.

A. Details of the fluids

We vary 77y in two ways. First, we add glycerol to water in various concentrations, using data from M] to estimate
the viscosity of the resulting mixture. By volume glycerol was diluted with water in 25% increments and then
converted to mPas for data analysis. Using these increments we achieve viscosity of 1 mPas (water), 2.4 mPas (25%
glycerol), 7.9 mPas (50% glycerol), 24 mPas (75% glycerol), and 1412 mPas (100%). All viscosity experimental data
was collected in an ambient temperature between 21.7-24.4 °C, minimizing the impact of viscosity variance due to
temperature variance.

Second, we use Ferrotec EFH1 Ferrofluid to conduct similar test to the glycerol, where we adjust the viscosity with
an external magnetic field. The ferrofluid has a base viscosity of 6 mPas ﬂ%}r, and we increase the viscosity by adding
an external magnetic field using arrays of permanent magnets as well as a large solenoid for smaller adjustments. We
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FIG. 2. (a) Acceleration a = —% as a function of time for impacts with similar impact speed, V &~ 1 m/s, for each of the five

values of d. (b) Dimensionless acceleration @ as a function of dimensionless time ¢, as defined in Eq. (@). Smaller grains collapse
well, where the assumptions leading up to this equation are valid. (c) Three representative curves of acceleration versus time
for the largest beads, where the assumptions for Eq. (7)) are not valid. These larger grains are better captured by Eq. ([[)); see
text for discussion.

measure the magnetic field using a Hall probe, and we verify that it is fairly constant over the volume where the
impact will take place (less than 50% variation). Magnetic readings were taken from edge to edge in the container to
ensure symmetric magnetic forces on each side of the impact zone. We characterize the profile by a single number, By,
corresponding to the magnetic field at the point where the impact will take place. We take data for By = 0 mT (no
field), 3 mT, 9 mT, 14 mT, and 31 mT. Based on @], we estimate that viscosity will increase by roughly two orders
of magnitude over this range of Bg. We return to this point below in Sec.[[Vl when we describe results from impacts
into ferrofluid-saturated beds. We used SEM to identify the interaction between the beads and ferrofluid, as shown in
Fig.[Id). After drying the silica beads and ferrofluid mixture SEM images show that the silica beads are covered in
ferrofluid particles. Importantly, there are characteristic fluid contact marks left where the ferrofluid collected at the
contact points while drying. The ferrofluid appears to have maintained fluid like properties depositing the nanometer
sized iron oxide particles as it dried which suggests that the ferrofluid retains its fluid-like properties also on a scale
much smaller than d. There are also no large cohesive-looking ferrofluid particle agglomerations present that would
interfere with direct solid-solid silica bead contacts.

B. Sample Preparation

Samples are prepared by filling a 8x8 cm acrylic container with an open top with the relevant fluid to a level of
roughly 10 cm. We then slowly add particles of given size until the particle packing level is at approximately the
same height as the fluid. By weighing both the fluid and the grains as they are poured, we can estimate the volume
ratio and thus packing fraction of the suspension. We observe ¢ & 0.59 for all samples with the exception the largest
beads (d = 600 to 850 um), where ¢ ~ 0.60 is observed. We assume that ¢ > ¢., which is corroborated by the fact
that we observe a strong solidification during impact, consistent with the results for ¢ > ¢, in Ref. ]

Our sample preparation protocol depends on the fluid used. For water-based suspensions, we stir the suspension
after impact and let it settle. For the more viscous samples stirring is challenging to do without introducing bubbles.
After each impact the material furthest from the impact is moved to fill the impact crater and we wait for it to settle.
Because the more viscous samples did not settle when completely stirred, settling experiments were done on to ensure
that ¢ does not change significantly from run to run via the application of the protocol. Visual inspection shows that
¢ did not change in any significant manner until after many hours to days of settling. Because all the viscosity impact
data was collected in less than four hours we minimize the risk of ¢ changing due to settling. We further verify that
¢ is not playing a role in our measurements by the fact that there is no significant change in the small fluid layer
at the top of the sample. We also perform multiple sets of experiments with the same sample, and we find that our
measurements are repeatable.



C. Generating impacts

Steel spheres are fixed to the end of threaded rods and dropped from various heights H by releasing them using an
electromagnet. Impact velocities are inferred by V' = y/2¢gH, where g is the gravitational acceleration; we also confirm
these velocities using high-speed video for selected cases. We measure the acceleration using an onboard accelerometer
(Sparkfun with ADXL377). We vary m and D by adding mass or using different diameter steel spheres. A sketch of
the setup is shown in Fig. [[(a).

IV. EXPERIMENTAL RESULTS
A. Phenomenology

Figure 2a) shows a(t) for five impacts, one for each range of d, all with impact velocity V' ~ 1.1 + 0.1 m/s. These
curves clearly demonstrate that, consistent with the Darcy-Reynolds picture, smaller d leads to more sharply peaked
deceleration profiles with larger values of apmay. Figure 2(b) shows —a, where @ = d?Z/dt?, plotted as a function of
t for each of the five curves shown in Fig. 2(a). For the three smallest particle size ranges (d = 53 — 75 ym, d = 75
— 106 pm, and d = 180 — 212 pm), the Darcy-Reynolds pressure is sufficiently large that z < D is satisfied during
the bulk of the trajectory, meaning that Eq. (@) is valid. The rescaled experimental results for the samller agree well
with a numerical solution of Eq. (), which is shown as a black dashed line.

To rescale the experimental data in Fig. 2Ib), we need to set t,, for each curve. Several parameters in ¢, are not
directly measurable or known a priori, but a suitable collapse (at least for small d) is found by setting 6 AaA¢ = 80.
The packing fraction differential A¢ is of order 1072, meaning that the product A« is of order 103. Above, we
estimated o ~ 20, meaning that the effective friction coefficient A ~ 50. While this value appears very high for a
friction coefficient, we note that it is not a simple friction coefficient and that a previous study on granular intrusion
found a value of approximately 35 for a similar parameter ﬂﬂ] Additionally, we note that the assumptions leading up
to Eq. @) may affect the value of a. In any case, the quantities are within reasonable physical bounds, and assuming
6AaA¢ = 80 yields good agreement between the experimental trajectories and the theoretical prediction of Eq. (@)
for small d.

In contrast, for the two largest particle sizes, the Darcy-Reynolds pressure is much smaller, meaning that the sphere
is able to penetrate more deeply into the material. In this case, z < D is not satisfied, so it is not surprising from
the theoretical prediction that arises from solving Eq. () numerically that the experimental results do not match
the Jerome predictions. This argument can be made quantitative by estimating the penetration depth z* at peak
deceleration in the following way. By assuming that the average deceleration between ¢ = 0 and the time tyax
corresponding to the peak deceleration is equal to half of the peak value (corresponding to approximating the rise in
deceleration as linear), then 2* & Vipax — Gmaxt2../4. We can then use 2*/D as a dimensionless measure of how far
the sphere has penetrated relative to its own diameter at ty,x. For the smallest particles, with d = 53 — 75 um, we
find typical values of z*/D ~ 0.1, meaning that z < D is a reasonable approximation. For the largest particles, with
d = 600 — 850 um, we find typical values of z*/D ~ 1 or larger.

The data for d = 600 — 850 um in particular appears to be better described by a sharp rise followed by quasi-
exponential decay, consistent with Eq. ([[II). Figure [X(c) shows acceleration versus time for three impacts into beds
with d = 600 — 850 pum and with initial velocities V' =~ 1, 1.5, and 2 m/s; the data for V' &~ 1 is the same curve shown

in panel (a). Note that the axes are rescaled using ™ = %, as defined in conjunction with Eq. (), as well

as the impact velocity V' on the horizontal axis. The solid black line shows the theoretical prediction from Eq. (ITI).
Note that the values used in the rescaling here are fully determined by the collapse in panel (b), using 6 AaA¢ = 80,
leaving no free parameters.

B. Scaling results for V and d

FigureBl(a) shows apayx versus V for all five particle sizes. Equation (@) shows that DRT predicts amax oc V16, under
several assumptions, including z < D. Experimental results are more consistent with this prediction for smaller d (red
squares, green stars, and black triangles) and larger V' where these assumptions are valid. For large d (e.g., blue circles
and magenta triangles), we observe ama.x x V, as predicted by Eq. ([Il) and consistent with the collapse in Fig. [2(c).
Figure B(b) and (c) show the result of fits to the amax-versus-V data in Fig. Bla) of the form am.x = BV? (error
bars represent 95% confidence intervals). We find good agreement with the prediction from Eq. @ that B oc d—%8.
The best fit for the exponent § is consistently smaller than the prediction of 8 ~ 1.6 from Eq. (@), even for small d
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FIG. 3. (a) amax versus V for all five values of d. Smaller beads obey the scaling law in Eq. (@), as expected, since z < D for
these impacts. Larger beads obey amax  V from Eq. (), as expected, since z ~ D for these impacts; see text for discussion.
(b,c) We perform linear fits to the logarithmic data in panel (a) to obtain the best fit for the function amax = BV?. DRT
predictions are shown: B o< d~°® for panel (b); 8 = 1.6 for small beads and 8 = 1 for large beads in panel (c).

where we would expect it to be valid. However, we note that the low value of 8 for the smallest particles seems to
be caused by outliers at low V; the large-V data appears very consistent with 8 ~ 1.6. Overall, amax o< V6 appears
to be highly consistent with the data at small d. For larger d, where the Darcy-Reynolds pressure is smaller and we
expect Eq. () to be applicable, we find ama.x x V as expected. Overall, our data for varied d agree well with the
predictions of Darcy-Reynolds theory.

C. Viscosity dependence

Turning now to the impact behavior for varied ny, Fig. @ shows results for impacts at varying V' and 7, with
constant particle size d = 75-106 um. Fig.@a) shows typical acceleration curves with similar V'~ 1.2 but with varied
1. The solid curves represent water-glycerol mixtures, and the dash-dotted curve (6 cp) represents the ferrofluid with
no applied magnetic field. These curves appear qualitatively similar to those in Fig. 2l However, in contrast with the
predictions of DRT, the peak value amax shows non-monotonic behavior as 7y is increased: amax increases with 7y
up to ny = 7.9 cp but then decreases dramatically as n; is further increased. This decrease in amax is qualitatively
inconsistent with DRT.

As stated in Sec. [, one motivation of these experiments was to move toward tunable particle-fluid mixtures. In
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FIG. 4. Acceleration vs time for different impacts into beds with d = 75 — 106 pm and varying fluid viscosity. Panel (a) shows
impacts with V' & 1 where 7y is varied by adding glycerol to water. Panel (b) shows impacts with V' ~ 2.5 where 7y is varied
by using a ferrofluid and changing the external magnetic field. A zero-field ferrofluid impact result is also shown in panel (a)
for the ferrofluid (dash-dotted line).



(a) (b) (c)
* lcp . . . w50 . . . 1.8
< 24cp 200
DRT
0] ° 79 cp 1.6 ° 350 16
* 24 cp
= 1412 cp H - 300 0.4 y
o 6cp ® * 4 250 )
IR @ L, e
| *
% / ] e 200 } 1.2
= ° 9 i Q @
®
: 1. - : i
S 102t X *
08
3
. 100
N 06
L]
‘ ‘ — i 04
05 1 15 2 10° 10t 102 10° 10° 10t 102 10°
V (m/s) ns (cp) ns (cp)

FIG. 5. (&) amax versus V for all values of ny. (b,c) We perform linear fits to the logarithmic data in panel (a) to obtain the
best fit for the function amax = BV?. DRT predictions are shown: B n(;'4 for panel (b); 8 = 1.6 in panel (c). Similar to the
data from Fig. @] we find that DRT breaks down for ny > 10 cp, and forces begin to decrease with increasing viscosity.

particular, if the viscous fluid were replaced with a ferrofluid, then the particle-fluid mixture could be strengthened in
situ by applying an external magnetic field. Our results for glycerol-water mixtures, shown in Fig. ll(a), suggest that
this may not be the case. Figure @(b) shows that the breakdown of thickening at higher viscosities reproduces when
the viscous fluid is no longer glycerol-water mixtures but is instead replaced by a ferrofluid. The initial viscosity of
the ferrofluid is ¢ = 6 cp, which is just below the value of ny ~ 10 cp where we expect to see the largest values of
Gmax for the range of V' we study here. Therefore, we expect that as the applied magnetic field is increased, we should
see a slight increase in amax followed by a decline. Figure [@(b) shows five curves of a(t) with similar V' ~ 2.5 m/s
with five different magnetic field strengths, By = 0, 3, 9, 14, and 31 mT. We again find that amax increases with ny
(which we vary indirectly through Bp) and then begins to decrease. Importantly, we find this result consistently for
all values of V. FigureBa) shows data for amax versus V. The data for ny = 1 cp (water), marked with green stars,
are the same data shown with deep red stars in Fig. Bl FigureBlb) and (c) show results of best fits to these data in
the form amax = BV?. We again find that best fits for 3 tend to be slightly smaller than the prediction of 3 = 1.6
from Eq. @). The best fits for B increase in a way that is consistent with the prediction of B o< 77(]3'4 from Eq. (@) for
1 cp (water), 2.4 cp (25% glycerol), 6 cp (zero-field ferrofluid) and 7.9 c¢p (50% glycerol). However, for larger values
of ny, we observe that B begins to decrease, consistent with Fig. @

V. DISCUSSION

Here we have followed Jerome et al. ﬂ2_1|] to derive equations describing the dynamics of a sphere impacting a fluid-
saturated granular bed, where the granular phase is compacted above the critical volume fraction such that it dilates
under shear. The dilation (Reynolds) caused by the impact forces fluid to flow into the expanding pore structure, and
the resulting Darcy pressure dominates the force on the intruder. We have expanded on the derivation from Ref. ]
to include the case where the sphere penetration depth becomes similar to or larger than its diameter.

The predictions from this theory were experimentally confirmed by Jerome et al. ﬂ2_1|] with regard to the dependence
on A¢. Here, we performed additional experiments to test the theory’s predictions on other parameters, specifically
impact velocity V', particle size d, and fluid viscosity ny. Our experimental results confirm the predictions of DRT
for variation in d over more than an order of magnitude. For small d, DRT as formulated in Ref. ] works well. For
larger d, a key approximation (z < D) for the context of impact dynamics is no longer applicable, so the equation
of motion describing the impacting sphere’s dynamics must be modified. However, with this modification, DRT still
captures the observed behavior over a large range of d. When we vary 7y, we observe good agreement with DRT for
1y between 1 and 10 cp, specifically that amax o< n?y‘*. However, for ny > 10 cp, we observe that forces generated
during impact begin to decrease as 1y is further increased. We validate this result with two methods: varying 7 by
adding glycerol to water as well as by using a ferrofluid with an externally applied magnetic field. Both approaches
show that the forces generated during impact begin to decrease with increasing n; at ny ~ 10 cp. This is qualitatively
inconsistent with DRT, suggesting that a new theory is required. One possibility is that the frictional behavior of the
grain-grain contacts changes drastically with a very viscous fluid (recall, a constant effective friction coefficient A was



assumed for all d and 7¢). For large n¢, grains may not be able to squeeze out the fluid to make frictional, solid-solid
contact. A similar mechanism is often invoked to explain shear thickening behavior in dense suspensions ﬂg]

Finally, as pointed out in ﬂﬂ], the pore-pressure effects from DRT could help explain the dramatic response of
impact into shear-thickening suspensions. Shear-thickening suspensions differ from saturated granular beds, in that
the particles are not making solid-solid contact in the absence of driving. However, in these systems, ¢. decreases
as stress is applied, causing dilation and thereby inducing a large Darcy pressure that solidifies the material. We
emphasize that there are some key differences between the system discussed here and impact into dense suspensions,
such as the fact that propagation phenomena play a key role in the impact response of shear-thickening suspensions
but are not considered in DRT. However, DRT likely plays an important role in impact behavior into shear-thickening
suspensions, primarily by holding together the dynamic solidlike region often observed in shear-thickening impact
experiments.

VI. ACKNOWLEDGEMENTS

We acknowledge funding from the Office of Naval Research under Grant No. N0001419WX01519 and by the Office
of Naval Research Global Visiting Scientist Program VSP 19-7-001. We thank Drago Grbovic for taking SEM images.

[1] K. N. Nordstrom, D. S. Dorsch, W. Losert, and A. G. Winter, Microstructural view of burrowing with a bioinspired digging
robot, [Phys. Rev. E 92, 042204 (2015).

[2] A. Kudrolli and B. Ramirez, Burrowing dynamics of aquatic worms in soft sediments, PNAS 116, 25569 (2019).

[3] S. Glirgen, M. C. Kushan, and W. Li, Shear thickening fluids in protective applications: a review, Prog. Polym. Sci. 75,
48 (2017).

[4] F. Boyer, E. Guazzelli, and O. Pouliquen, Unifying suspension and granular rheology, [Phys. Rev. Lett. 107, 188301 (2011).

[5] M. Trulsson, B. Andreotti, and P. Claudin, Transition from the viscous to inertial regime in dense suspensions,
Phys. Rev. Lett. 109, 118305 (2012).

[6] E. Guazzelli and O. Pouliquen, Rheology of dense granular suspensions, J. Fluid Mech. 852, P1 (2018).

[7] T. Péahtz, O. Durdn, D. N. de Klerk, I. Govender, and M. Trulsson, Local rheology relation with variable yield stress ratio
across dry, wet, dense, and dilute granular flows, Phys. Rev. Lett. 123, 048001 (2019).

[8] E. Brown and H. M. Jaeger, Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to
jamming, Reports on Progress in Physics 77, 046602 (2014).

[9] M. Wyart and M. E. Cates, Discontinuous shear thickening without inertia in dense non-brownian suspensions,
Phys. Rev. Lett. 112, 098302 (2014).

[10] R. Seto, R. Mari, J. F. Morris, and M. M. Denn, Discontinuous shear thickening of frictional hard-sphere suspensions,
Phys. Rev. Lett. 111, 218301 (2013).

[11] P. Umbanhowar and D. I. Goldman, Granular impact and the critical packing state, Phys. Rev. E 82, 010301 (2010).

[12] S. R. Waitukaitis and H. M. Jaeger, Impact-activated solidification of dense suspensions via dynamic jamming fronts,
Nature 487, 205 (2012).

[13] A. H. Clark, A. J. Petersen, L. Kondic, and R. P. Behringer, Nonlinear force propagation during granular impact,
Phys. Rev. Lett. 114, 144502 (2015).

[14] E. Han, I. R. Peters, and H. M. Jaeger, High-speed ultrasound imaging in dense suspensions reveals impact-activated
solidification due to dynamic shear jamming, Nature communications 7, 1 (2016).

[15] D. I. Goldman and P. Umbanhowar, Scaling and dynamics of sphere and disk impact into granular media,
Phys. Rev. E 77, 021308 (2008).

[16] I. R. Peters and H. M. Jaeger, Quasi-2d dynamic jamming in cornstarch suspensions: visualization and force measurements,
Soft Matter 10, 6564 (2014).

[17] D. Van Der Meer, Impact on granular beds, Annu. rev. of fluid mech. 49, 463 (2017).

[18] A. M. Walsh, K. E. Holloway, P. Habdas, and J. R. de Bruyn, Morphology and scaling of impact craters in granular media,
Phys. Rev. Lett. 91, 104301 (2003).

[19] J. S. Uehara, M. A. Ambroso, R. P. Ojha, and D. J. Durian, Low-speed impact craters in loose granular media,
Phys. Rev. Lett. 90, 194301 (2003).

[20] N.  Krizou and A. H. Clark, Power-law scaling of early-stage forces during granular impact,
Phys. Rev. Lett. 124, 178002 (2020).

[21] J. J. S. Jerome, N. Vandenberghe, and Y. Forterre, Unifying impacts in granular matter from quicksand to cornstarch,
Phys. Rev. Lett. 117, 098003 (2016).

[22] E. R. Nowak, J. B. Knight, M. L. Povinelli, H. M. Jaeger, and S. R. Nagel, Reversibility and irreversibility in the packing
of vibrated granular material, Powder technol. 94, 79 (1997).

[23] L. A. Pugnaloni, M. Mizrahi, C. M. Carlevaro, and F. Vericat, Nonmonotonic reversible branch in four model granular
beds subjected to vertical vibration, [Phys. Rev. E 78, 051305 (2008).


https://doi.org/10.1103/PhysRevE.92.042204
https://doi.org/10.1103/PhysRevLett.107.188301
https://doi.org/10.1103/PhysRevLett.109.118305
https://doi.org/10.1103/PhysRevLett.123.048001
https://doi.org/10.1088/0034-4885/77/4/046602
https://doi.org/10.1103/PhysRevLett.112.098302
https://doi.org/10.1103/PhysRevE.82.010301
https://doi.org/10.1103/PhysRevLett.114.144502
https://doi.org/10.1103/PhysRevE.77.021308
https://doi.org/10.1103/PhysRevLett.91.104301
https://doi.org/10.1103/PhysRevLett.90.194301
https://doi.org/10.1103/PhysRevLett.124.178002
https://doi.org/10.1103/PhysRevE.78.051305

10

[24] P. A. Gago and S. Boettcher, Universal features of annealing and aging in compaction of granular piles, PNAS 117, 33072
(2020).

[25] B. Allen and A. Kudrolli, Granular bed consolidation, creep, and armoring under subcritical fluid flow,
Phys. Rev. Fluids 3, 074305 (2018).

[26] O. Reynolds, LVII. On the dilatancy of media composed of rigid particles in contact. With experi-
mental illustrations, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20, 469 (1885),
https://doi.org/10.1080/14786448508627791.

[27] H. Darcy, Les fontaines publiques de dijon ed 1856 (Hachette Livre-Bnf, 2012).

[28] S. Agarwal, A. Karsai, D. I. Goldman, and K. Kamrin, Surprising simplicity in the modeling of dynamic granular intrusion,
Science Advances 7, eabe0631 (2021).

[29] K. Raj, B. Moskowitz, and R. Casciari, Advances in ferrofluid technology, Journal of magnetism and magnetic materials
149, 174 (1995).

[30] K. Sakaie, D. Fenistein, T. J. Carroll, M. van Hecke, and P. Umbanhowar, Mr imaging of reynolds dilatancy in the bulk
of smooth granular flows, EPL 84, 38001 (2008).

[31] A.J. Kabla and T. J. Senden, Dilatancy in slow granular flows, Phys. Rev. Lett. 102, 228301 (2009).

[32] V. V. Vasisht and E. Del Gado, Computational study of transient shear banding in soft jammed solids,
Phys. Rev. E 102, 012603 (2020).

[33] M.-A. Brassard, N. Causley, N. Krizou, J. A. Dijksman, and A. H. Clark, Viscous-like forces control the impact response
of dense suspensions, J. Fluid Mech. XXX (2021).

[34] J. B. Segur and H. E. Oberstar, Viscosity of glycerol and its aqueous solutions,
Industrial & Engineering Chemistry 43, 2117 (1951), https://doi.org/10.1021/ie50501a040.

[35] [Efh series audio ferrofluidtype: Efhl (2018).

[36] R. Patel, R. Upadhyay, and R. Mehta, Viscosity measurements of a ferrofluid: comparison with various hydrodynamic
equations, Journal of colloid and interface science 263, 661 (2003).

[37] T. A. Brzinski, P. Mayor, and D. J. Durian, Depth-dependent resistance of granular media to vertical penetration,
Phys. Rev. Lett. 111, 168002 (2013).


https://doi.org/10.1103/PhysRevFluids.3.074305
https://doi.org/10.1080/14786448508627791
https://arxiv.org/abs/https://doi.org/10.1080/14786448508627791
https://doi.org/10.1103/PhysRevLett.102.228301
https://doi.org/10.1103/PhysRevE.102.012603
https://doi.org/10.1021/ie50501a040
https://arxiv.org/abs/https://doi.org/10.1021/ie50501a040
https://ferrofluid.ferrotec.com/products/ferrofluid-educational-fluid/efh/efh1/
https://doi.org/10.1103/PhysRevLett.111.168002

	Darcy-Reynolds forces during intrusion into granular-fluid beds
	Abstract
	I Introduction
	II  Darcy-Reynolds Theory
	A The role of shear length scale L
	B Testable predictions from Darcy-Reynolds Theory

	III Experimental Methods
	A Details of the fluids
	B Sample Preparation
	C Generating impacts

	IV Experimental Results
	A Phenomenology
	B Scaling results for V and d
	C Viscosity dependence

	V Discussion
	VI Acknowledgements
	 References


