
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2021

Novel Approaches to Feasibility Determination

Solow, Daniel; Szechtman, Roberto; Yücesan, Enver
ACM

Solow, Daniel, Roberto Szechtman, and Enver Yücesan. "Novel Approaches to
Feasibility Determination." ACM Transactions on Modeling and Computer Simulation
(TOMACS) 31.1 (2021): 1-25.
http://hdl.handle.net/10945/67395

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



1

Novel Approaches to Feasibility Determination

DANIEL SOLOW, Case Western Reserve University, USA

ROBERTO SZECHTMAN, Naval Postgraduate School, USA

ENVER YÜCESAN, INSEAD, Singapore

This article proposes two-stage Bayesian and frequentist procedures for determining whether a number of

systems—each characterized by the same number of performance measures—belongs to a set Γ defined by

a finite collection of linear inequalities. A system is “in (not in) Γ” if the vector of the means is in (not in)

Γ, where the means must be estimated using Monte Carlo simulation. We develop algorithms for classifying

the systems with a user-specified level of confidence using the minimum number of simulation replications

so the probability of correct classification over all r systems satisfies a user-specified minimum value. Once

the analyst provides prior values for the means and standard deviations of the random variables in each

system, an initial number of simulation replications is performed to obtain current estimates of the means and

standard deviations to assess whether the systems can be classified with the desired level of confidence. For

any system that cannot be classified, heuristics are proposed to determine the number of additional simulation

replications that would enable correct classification. Our contributions include the introduction of intuitive

algorithms that are not only easy to implement, but also effective with their performance. Compared to

other feasibility determination approaches, they also appear to be competitive. While the algorithms were

initially developed in settings where system variance is assumed to be known and the random variables are

independent, their performance remains satisfactory when those assumptions are relaxed.
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1 INTRODUCTION, BACKGROUND, AND NOTATION

We introduce two-stage Bayesian and frequentist algorithms for feasibility determination in a sto-
chastic setting, where the objective is to determine whether each system in a finite, but potentially
large, collection belongs to a given set Γ ⊂ Rm based on a number of performance measures esti-
mated through Monte Carlo simulation.
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1:2 D. Solow et al.

While our discussion will be anchored in computer simulation, feasibility determination has
broader applications. We will illustrate this broader relevance through a number of examples from
various industries. An area where this challenge is particularly relevant is open innovation through
“crowdsourcing,” a practice facilitated by web-based platforms where monetary rewards are of-
fered by organizations seeking help in addressing succinctly defined problems such as debottle-
necking a chemical process to increase its throughput. An open innovation platform such as In-

nocentive or Hypios receives thousands of proposed solutions whose feasibility must be verified
through some kind of noisy experiment before the best solution could be selected and the award
could be attributed to the winning solution.

Another interesting application of the feasibility determination problem is in agricultural re-
search and development. The identification of robust seeds (say, against diseases or extreme
weather conditions) necessitates the “crossing” of a large number of varieties until the desired
traits can be obtained [11]. This combinatorial problem not only requires tens of millions of dol-
lars, but also necessitates long development cycles of 9 to 12 years. A recent approach, in silico

breeding, relies on computer simulation modeling to enable the identification of a feasible set of
hybrid seeds (for example, whose germination rate exceeds 95%) among billions of genotypes be-
fore expensive field trials are undertaken with varieties in that set.

Other applications include the determination of a set of investment portfolios whose expected
payoff exceeds a desired threshold with a certain probability. Finally, in multi-market entry, “seed-
ing” strategies are deployed for new product introductions [14]. The allocation of limited resources
(e.g., an advertising budget) among multiple markets to achieve a certain level of market penetra-
tion turns out to be an important feasibility determination problem in the field of Marketing.

Feasibility determination has recently attracted much attention within the context of ranking
and selection (R&S) in the presence of stochastic constraints. Traditionally, the overwhelming
majority of the R&S research has focused on a single unconstrained performance measure: Given
a finite set of competing design alternatives, R&S has been concerned with the efficient use of a
limited computational budget to identify the design with the best performance, where performance
is estimated through expensive Monte Carlo simulation experiments.

R&S procedures aim at allocating the experimental budget in an efficient way among alterna-
tive designs that appear to be good and designs whose performance remains highly uncertain.
Competing systems therefore receive additional simulation replications based on their potential
of contributing useful information to the R&S process. Typically using Bayesian statistical models,
the expected improvement (EI) approach allocates the simulation replications one at a time in an
adaptive manner based on a probabilistic forecast that quantifies the potential of the additional
replication to improve the current estimate of the performance measure (Chick and Inoue [5],
Chick et al. [6], Frazier et al. [8], and Xie and Frazier [24]). Optimal computing budget allocation,
or OCBA [4], is a Bayesian heuristic technique that identifies inferior systems rapidly to eliminate
them from further experimentation and allocate the remaining computing budget to those designs
that appear to be good. Ryzhov [15] has recently established the asymptotic equivalence of the
OCBA and EI methodologies in the sense that they asymptotically produce virtually identical sim-
ulation budget allocations in the absence of any feasibility constraints. Frequentist approaches,
however, offer a statistical guarantee whereby, when the (unknown) performance of the best sys-
tem differs by more than an indifference parameter specified by the analyst, the probability of
selecting the best system is at least 1 − α .

Under the assumption of normality, Lee et al. [13] have recently extended the OCBA approach
to the selection of the best design under stochastic constraints. To the best of our knowledge,
Santner and Tamhane [16] is the first paper to propose a two-stage procedure that incorporates a
constraint on variance. In a setting where R&S is based on a primary performance measure subject
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Novel Approaches to Feasibility Determination 1:3

to the feasibility of a (possibly correlated) secondary performance measure, Andradottir et al. [1]
and Andradottir and Kim [2] propose a two-phase approach whereby phase I identifies feasible
systems while phase II selects the best among them. With the objective of accelerating the first
phase, Batur and Kim [3] have introduced efficient procedures for finding a set of feasible or near-
feasible systems in the presence of orthant constraints. We will benchmark our algorithms with
theirs in our numerical evaluations.

To address the problem of feasibility determination, Szechtman and Yücesan [19] use large-
deviations theory whereby they estimate the large deviations rate functions “on the fly.” Unfortu-
nately, unless the probability distribution associated with the performance measure of interest has
finite support, it may not be possible to control the estimation error—hence, making it impossible
to achieve the desired probability of correct selection. However, Gao and Chen [9] show that such
heuristics work well in practice. Hunter and Pasupathy [12] avoid this problem by assuming that
the underlying distributional family of the simulation estimator is known or assumed; as a result,
the form of the large deviations rate function is known.

Our contributions to this growing literature include the introduction of intuitive algorithms that
are not only easy to implement, but are also effective and seem to be competitive compared with
other feasibility determination approaches.

Throughout this article, the following notation is used (in which all vectors are column vectors):

r = the number of systems to be classified.
m = the number of performance measures associated with each system.
c = the number of linear constraints defining the feasibility set Γ.
i = a subscript that denotes system i , taking values from 1 to r .
j = a subscript that denotes the j th component of a system, ranging from 1 to m.
k = a subscript that denotes the k th constraint of the set Γ, ranging from 1 to c .

AT = the transpose of the matrix A.
a2 = (a2

1, . . . ,a
2
m )T , where aT = (a1, . . . ,am ).

Φ = the cumulative distribution function of the standard normal random variable
Z ∼ N (0, 1).

The remainder of the article is organized as follows: The next section formally defines the prob-
lem and outlines the proposed classification approach. In Section 3, conditions are identified under
which the system can be readily classified. If the system cannot be readily classified, a Bayesian and
a non-Bayesian approach to determine the number of additional replications required for classifi-
cation are introduced in Section 4 and Section 5, respectively. The complete algorithm is depicted
in Section 6, while numerical experiments are presented in Section 7. Section 8 provides the con-
cluding remarks and highlights venues for future research.

2 OVERVIEW OF THE PROBLEM AND THE PROPOSED

CLASSIFICATION APPROACH

This section introduces the intuition behind our algorithms and discusses the assumptions we
have made in constructing the algorithms. Recall that we consider a collection of r systems, each
with unknown performance measure μ1, . . . , μr ∈ Rm , where μi = E[Xi ] for some random vector
Xi ∈ Rm . The objective is to determine whether each μi is (or is not) in a set Γ, called the feasible

region, defined by a finite collection of linear inequalities. Specifically, given a (c ×m) matrix A,
with rows aT

�
, � = 1, . . . , c , and a vector b ∈ Rc , the feasible region is defined as

Γ = {x ∈ Rm : Ax ≤ b}.
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1:4 D. Solow et al.

Without loss of generality, we assume that Γ has a non-empty interior and that no constraint
is redundant, meaning that {x ∈ Rm : a

T
�

x ≤ b�,∀� � k } ⊂ Γ for any k ∈ {1, . . . , c}, as it is always
possible to find (and remove) redundant constraints by solving a linear program (see Reference
[21] for more details).

System i is said to be in Γ if μi ∈ Γ and not in Γ if μi � Γ. However, because μi is unknown, in
Stage 1 of the proposed algorithms, simulation is performed to obtain, say,ni , initial i.i.d. replicates
Xi (1), . . . ,Xi (ni ) that are used to form an estimate, say, μi (ni ), of μi . Based on μi (ni ), one can
choose either to classify the system as in Γ or not in Γ, or else to perform additional simulation
replications. It is important to note that any classified system might be incorrectly classified. This
happens when system i is classified as in Γ when in fact μi � Γ or when system i is classified as
not in Γ when in fact μi ∈ Γ. When a system is classified as in Γ or not in Γ, one would like some
degree of assurance that such a system is correctly classified. To that end, the analyst is asked
to choose a desired level of confidence in the form of a fraction, 1 − β , for which the algorithms
developed here guarantee that any classified system is correctly classified with probability 1 − β .

For any system i that is not classified in Stage 1, the goal of Stage 2 of the proposed algorithm
is to determine the number, Δni , of additional simulations to perform, resulting in a new estimate,
μi (ni + Δni ), of μi . While one could, in theory, continue this process until all systems are classified
with probability 1 − β , doing so could be prohibitive in terms of the total number of computer sim-
ulations needed. Furthermore, computational experiments reported in Section 7 showed that more
than 90% of systems were classified at the end of Stage 2; therefore, this process is often repeated
only once. A variety of Bayesian and Non-Bayesian heuristics are proposed for determining the
number of additional replications to perform in Stage 2, each with the goal of being able to classify
the system with probability 1 − β , although there is no guarantee of doing so.

To implement these algorithms, the following three assumptions are made in the subsequent
development:

Assumption 1 (Known Variances): The true variances, σ 2
i , of the m random variables of each

system i are known.
This assumption significantly simplifies the development of the subsequent algorithms. In prac-

tice, however, these variances are not known. In Section 7, modifications to the algorithms that
allow for unknown variances are proposed and computational results are presented.

Assumption 2 (Independence): The m random variables in each system i are pairwise inde-
pendent of each other, so the covariance matrix Σi is a diagonal matrix with diagonal elements
σ 2

i = (σ 2
i1, . . . ,σ

2
im ).

This assumption is made without loss of generality, because when the m random variables in
each system are not pairwise-independent of each other, it is possible to work in a transformed
y coordinate system defined by the eignevectors, say, v

1, . . . , vm , of the true covariance matrix Σ
(assumed to be known), as shown by the dotted axes in Figure 1. This is accomplished by using the
(m ×m) matrixV whose columns are the eigenvectors of Σ, to convert any vector x in the original
coordinate system to the following vector in the y coordinate system:

y = V −1x .

In particular, the linear inequalities that define Γ become the following in they coordinate system:

AVy ≤ b .

The proposed algorithms are then applied in the y coordinate system.

Assumption 3 (Classifiability): No system i “lies” on the boundary of the feasible region, that
is, μi � ∂Γ.
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Novel Approaches to Feasibility Determination 1:5

Fig. 1. A transformed coordinate system when the random variables in a system are correlated.

This assumption means that for a sequence of posterior means μi (n) converging to μi , for large
enough n, all subsequent posterior means in the sequence will either be inside Γ or outside Γ.
This enables one to have some degree of confidence in correct classification when the system is
classified based on the posterior mean.

The proposed algorithms require prior estimates of μi and Σi , say, μi (0) ∈ Rm and Σi (0) (an
(m ×m) diagonal matrix with its j th diagonal element equal toσ 2

i j (0)). It is assumed that the analyst

provides these initial estimates and that the simulation provides i.i.d. samples Xi (1),Xi (2), . . . ,
from N (μi , Σi ). It is well known [10] that after n samples are drawn from system i ,

μi j |Xi j (1),Xi j (2), . . . ,Xi j (n) ∼ N (μi j (n),σ 2
i j (n)), (1)

where

μi j (n) =
μi j (0)/σ 2

i j (0) + nX̄i j (n)/σ 2
i j

1/σ 2
i j (0) + n/σ 2

i j

, (2)

σ 2
i j (n) =

1

1/σ 2
i j (0) + n/σ 2

i j

, (3)

X̄i j (n) = n−1
∑

k

Xi j (k ). (4)

The function σ 2
i j (n) defined in Equation (3) has the following mathematical properties that are

exploited in the subsequent development of the allocation algorithms:

(1) σ 2
i j (n) monotonically decreases to 0 as n → ∞.

(2) σ 2
i j (n) and σi j (n) are convex in n on [0,∞), when n is continuous.

In summary, the two-stage algorithms proposed here use the following general steps for classi-
fying the r systems:
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1:6 D. Solow et al.

Step 0. Obtain, from the analyst, values μi (0) and σ 2
i (0), and the desired value of 1 − β . Per-

form n0 initial simulation replications for each system i to obtain initial estimates
μi (n0) and σ 2

i (n0) using Equations (2) and (3).
Step 1. Using the current estimates, classify with probability 1 − β as many of the systems as

possible, either as in Γ or not in Γ.
Step 2. Determine for which of the remaining systems additional simulation replications will

be performed.
Step 3. For each system i identified in Step 2, determine the number of additional simulation

replications, Δni , to perform. Perform the additional simulation replications for those
systems to obtain new estimates of the means and variances in Equations (2) and (3).

Step 4. Classify all of the r systems based on the current estimates of the means and variances.

Note that “correct classification” is defined slightly differently under the Bayesian and frequen-
tist perspectives. In our Bayesian setting, we ensure that the average probability of correct classifi-
cation over all systems achieves the nominal confidence level. This means that while some systems
may be correctly classified at a much higher confidence level than the one specified by the ana-
lyst, others may be below the desired confidence level as long as we achieve, on expectation, the
confidence level targeted by the analyst. Our frequentist heuristic, however, tries to classify each
system with the desired level of confidence. To illustrate this nuance with an example, imagine
that we are trying to identify investment opportunities whose payoff exceeds a certain threshold
value. In our Bayesian heuristic, the reported portfolio would achieve, on expectation, the nomi-
nal probability of correct classification with some investment opportunities clearing the threshold
value with a much higher probability while others at a probability of correct classification that
is lower than the desired level. The frequentist heuristic, however, would report a portfolio that
contains only individual investment opportunities that exceed the threshold value at the desired
level of confidence.

In the foregoing algorithm, it is possible to perform Step 1 and Step 3 for each system inde-
pendently of the other systems—thus allowing for the use of parallel processing. As such, from
here on, the subscript i is dropped and the subsequent analysis is performed for one arbitrary
system. Thus, for a given system, μ = (μ1, . . . , μm ) and σ 2 = (σ 2

1 , . . . ,σ
2
m ) are the true means and

variances of that system while μ(n) = (μ1 (n), . . . , μm (n)) and σ 2 (n) = (σ 2
1 (n), . . . ,σ 2

m (n)) are the
posterior mean and variance in Equations (2) and (3) after obtaining the n simulation replications
X(1), . . . ,X(n) and Σ(n) is the diagonal matrix whose j th diagonal element is σ 2

j (n).

After performingn simulation replications to obtain the estimates μ(n) in Equation (2) andσ 2 (n)
in Equation (3), Step 1 requires determining whether the system can be classified as in Γ or not in Γ
with probability 1 − β . How this is done is addressed in Section 3. In the event that a system cannot
be classified with the desired probability, two different approaches for determining the number of
additional simulation replications to perform are presented in Sections 4 and 5, respectively. The
complete algorithm is presented in Section 6 and the results of computational experiments are
reported in Section 7.

3 CLASSIFYING A SYSTEM

Given the posterior mean, μ(n), and posterior variance,σ 2 (n), in Step 1 of the proposed algorithm,
it is necessary to determine whether the system can be classified as in Γ or not in Γ with probability
1 − β . The way this is done depends on whether μ(n) ∈ Γ or μ(n) � Γ, as described now.
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Novel Approaches to Feasibility Determination 1:7

3.1 Case 1: μ(n) � Γ

The system can be classified as not in Γ if P (μ � Γ |X(1), . . . ,X(n)) ≥ 1 − β , obtained after per-
forming n simulation replications X(1), . . . ,X(n). Finding this probability directly is not practical
whenm is large, because doing so requires finding the area under a multivariate normal density in
m dimensions over a half-space defined by a constraint of Γ, which requires significant computa-
tional effort (see, for example, Chapter 4 of Traub and Verschultz [22]). A more practical approach
is based on the fact that, for any hyperplaneH = {x ∈ Rm : wTx = w̃ } separating Γ from μ(n) with
Γ ⊂ {x ∈ Rm : wTx ≤ w̃ } and μ(n) ∈ {x ∈ Rm : wTx > w̃ },

P (μ � Γ |X(1), . . . ,X(n)) ≥ P(wTμ > w̃|X(1), . . . ,X(n)).

Such a hyperplane exists, because Γ, being the intersection of half-spaces, is convex and μ(n) �
Γ. Furthermore, as μ j |X(1), . . . ,X(n) ∼ N (μ j (n),σ 2

j (n)), it follows that the linear combination

wT μ |X(1), . . . ,X(n) ∼ N (wT μ(n),
∑

j w
2
j σ

2
j (n)) and so by subtracting this mean and dividing by

this standard deviation, the foregoing probability inequality becomes:

P (μ � Γ |X(1), . . . ,X(n)) ≥ Φ(s ), where s =
wT μ(n) − w̃

(
∑

j w
2
jσ

2
j (n))1/2

. (5)

If Φ(s ) ≥ 1 − β , then the system is classified as not in Γ with probability 1 − β .
As any separating hyperplane defined by (w, w̃ ) might result in classifying the system, it would

be desirable to find the best such hyperplane, that is, the hyperplane (w, w̃ ) that maximizes Φ(s ) in
Equation (5). Finding this best hyperplane can, in theory, be accomplished by solving the following
linearly constrained nonlinear optimization problem in the variables (w, w̃,v,γ ):

max
wT μ (n)−w̃

(
∑

j w 2
j σ 2

j (n))1/2 ≡ log(wT μ(n) − w̃ ) − 1
2 log[

∑
j w

2
jσ

2
j (n)]

s.t.
wT = vTA
w̃ = wT μ(n) − γ
wT μ(n) −vTb = 1
v ≥ 0 and 0 ≤ γ ≤ 1.

(6)

Note that any values ofw and w̃ that satisfy the constraints of Equation (6) constitute a separating
hyperplane for Γ and μ(n). This is because, for any value of x with Ax ≤ b,

wTx = vTAx ≤ vTb = wT μ(n) − 1 = w̃ + γ − 1 ≤ w̃ .

In contrast,

wT μ(n) = w̃ + γ ≥ w̃ .

While finding the best separating hyperplane requires solving the nonlinear program in Equa-
tion (6), other separating hyperplanes, though not the best one, are readily available. In particular,
any constraint of Γ for which μ(n) is not feasible provides such a separating hyperplane and so can
be used to try and classify the system. Specifically, let L = {� : aT

�
μ(n) > b� } be the set of violated

constraints at μ(n). For any � ∈ L, Equation (5) becomes

P (μ � Γ |X(1), . . . ,X(n)) ≥ Φ(s� ) where s� =
aT
�
μ(n) − b�

(
∑

j a
2
�j
σ 2

j (n))1/2
. (7)

Thus, if there exists an � ∈ L for which Φ(s� ) ≥ 1 − β in Equation (7), then the system is classified
as not in Γ with probability 1 − β .
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1:8 D. Solow et al.

Fig. 2. The rectangle of size t centered at x̄ in the direction d .

If the system cannot yet be classified as not in Γ with the desired probability using any of the
foregoing separating hyperplanes, then it is necessary to determine the number of additional sim-
ulation replications, if any, to perform. Two different approaches for doing so are presented in
Sections 4 and 5.

3.2 Case 2: μ(n) ∈ Γ

After performing n simulation replications X(1), . . . ,X(n), the system can be classified as in Γ if
P (μ ∈ Γ |X(1), . . . ,X(n)) ≥ 1 − β . Finding this probability directly is not practical, because doing
so requires finding the area under a multivariate normal density in m dimensions over Γ, which
requires significant computational effort. Therefore, two alternative approaches for classifying the
system are now presented.

3.2.1 Using Confidence Rectangles to Classify a System. The first method for attempting to
classify a system is to use a (1 − β ) ∗ 100% confidence rectangle centered at μ(n). Given vectors
x̄ , d ∈ Rm with d > 0, for every real number t ≥ 0, them-dimensional rectangle of size t centered
at x̄ in the direction d is shown in Figure 2 form = 2 and is defined as:

R (x̄ , d, t ) = {x ∈ Rm : x̄ − td ≤ x ≤ x̄ + td }. (8)

Notice that as t increases from 0 to ∞, the rectangle expands from the center x̄ to cover all of
Rm .

Of particular interest here is a (1 − β ) ∗ 100% confidence rectangle centered at μ(n) in the di-
rection σ (n) of size z, where z is a number with the property that the rectangle contains μ with
probability 1 − β . As μ follows a normal distribution with parameters given in Equation (1) and the
m random variables in the system are independent of each other (by the Independence Assump-
tion in Section 2), the size of the rectangle needs to be zα = Φ−1 (1 − α/2), where α = 1 − (1 − β )m .
In summary, the (1 − β ) ∗ 100% confidence rectangle for μ is:

R (μ(n), σ (n), zα ) = {x ∈ Rm : μ(n) − zασ (n) ≤ x ≤ μ(n) + zασ (n)}.

In the subsequent analysis, it is often necessary to shrink the confidence rectangle centered at
μ(n), either by decreasing the level of confidence or by increasing the number of simulation

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 1, Article 1. Publication date: December 2020.



Novel Approaches to Feasibility Determination 1:9

Fig. 3. Confidence rectangles that allow and do not allow a system to be classified.

replications (corresponding to increased sampling while retaining the desired confidence level).
In this approach, the center of the rectangle is temporarily fixed with the notation μlast = μ(n).
Therefore, the following more general notation is used for the rectangle centered at μlast in the
direction σ (ñ) of size t ≥ 0:

Rt (ñ) = R (μlast , σ (ñ), t ) = {x ∈ Rm : μlast − tσ (ñ) ≤ x ≤ μlast + tσ (ñ)}. (9)

The way the confidence rectangle Rz (n) is used to classify the system when μ(n) ∈ Γ is illus-
trated in Figure 3, where it is seen that if the confidence rectangle is contained completely within
Γ, then the system is classified (perhaps incorrectly) as in Γ. However, if the confidence rectan-
gle “spills out” of Γ, then the system cannot yet be classified with the desired level of confidence,
in which case additional simulation replications are needed to shrink the rectangle. In that re-
gard, as m gets larger, the number of additional replications needed will be overestimated, since
α = 1 − (1 − β )m .

As seen in Figure 3, ifRz (n) lies entirely in Γ, then the system is classified as in Γ with probability
1 − β . One way to check this is to see whether all 2m extreme points of the confidence rectangle
are in Γ for, if so, Rz (n) ⊂ Γ. This approach is computationally practical only for small values ofm.
Whenm is large, an alternative approach using the c constraints of Γ is available to determine not
only whether Rz (n) ⊂ Γ, but also for any sized rectangle centered at μ(n) in the direction σ (ñ), for
any integer ñ ≥ 0, as shown in the following proposition.

Proposition 3.1. Given μlast = μ(n) and an integer ñ ≥ 0, define, for each constraint k = 1, . . . , c
of Γ,

τ̂k (ñ) =
bk − aT

k
μlast

aT
k
d

, where dj =

{
+σj (ñ) if ak j ≥ 0
−σj (ñ) if ak j < 0

(10)

and

τ̂ (ñ) = min{τ̂k (ñ) : k = 1, . . . , c}.
If t ≤ τ̂ (ñ), then Rt (ñ) ⊂ Γ. Furthermore, for any t > τ̂ (ñ), Rt (ñ) � Γ.

As a result of Proposition 3.1, if z ≤ τ̂ (n), then the confidence rectangleRz (n) ⊂ Γ and the system
is classified as in Γ with probability 1 − β .

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 1, Article 1. Publication date: December 2020.



1:10 D. Solow et al.

3.2.2 Using Hyperplanes of Γ to Classify a System. The second approach for attempting to clas-
sify a system is to use the hyperplanes that define Γ, together with the following inequality:

P (μ � Γ |X(1), . . . ,X(n)) = P (∪c
�=1

a
T
�
μ > b� |X(1), . . . ,X(n))

≤ c max�=1, ...,c P (aT
�
μ > b� |X(1), . . . ,X(n)).

(11)

The Gaussian conjugate prior assumption (cf. Equations (1)–(4)), together with a Chernoff bound
(Dembo and Zeitouni [7]) results in,

c max
�=1, ...,c

P (aT
� μ > b� |X(1), . . . ,X(n)) ≤ exp ��log(c ) − min

�=1, ...,c

(aT
�
μ(n) − b� )2

2
∑m

j=1 a
2
�j
σ 2
�j

(n)
�� .

We conclude that the union bound used in Equation (11) is tight for n of order larger than log(c ).
The system is classified as in Γ with probability 1 − β if P (μ � Γ |X(1), . . . ,X(n)) ≤ β . From the

inequality in Equation (11) to be satisfied, a sufficient condition is that

max
�=1, ...,c

P (aT
� μ > b� |X(1), . . . ,X(n)) ≤ β/c . (12)

As μ j |X(1), . . . ,X(n) ∼ N (μ j (n),σ 2
j (n)), the linear combination aT

�
μ |X(1), . . . ,X(n) ∼

N (aT
�
μ(n),

∑
j a

2
�j
σ 2

j (n)); hence, by subtracting this mean and dividing by this standard de-

viation, the inequality in Equation (12) becomes:

max
�=1, ...,c

Φ(s� ) ≤ β/c, where s� =
aT
�
μ(n) − b�

(
∑

j a
2
�j
σ 2

j (n))1/2
. (13)

In summary, if Equation (13) is satisfied, then the system is classified as in Γ with probability 1 − β .
When a system cannot be classified as either in Γ or not in Γ at the desired level of confidence,

it is necessary to determine the number of additional simulation replications, if any, to perform.
Various approaches for doing so in such a way that the system might be classified with probability
1 − β after performing those additional replications are proposed in Sections 4 and 5, after which
the complete algorithm is presented in Section 6.

4 A BAYESIAN APPROACH FOR DETERMINING THE REQUIRED NUMBER OF

ADDITIONAL SAMPLES

In this section, we present a Bayesian approach to determine the number of additional replica-
tions required to classify a system with probability 1 − β , in expectation. This is an extension of
the adaptive algorithms introduced by Szechtman and Yücesan [20] who consider only linear con-
straints that form an orthant. Another interesting empirical Bayesian method has been proposed
by Singham and Szechtman [17] for multiple comparisons with a standard where false discovery
rates are controlled. While their methodology is quite distinct, the standard in their setting may be
interpreted as one of the constraints in our setting. Our method depends on whether the current
posterior mean, μ(n), is in Γ or not.

4.1 Determining the Number of Additional Samples When μ(n) � Γ

When μ(n) � Γ, the goal is to determine the smallest number of additional samples, Δn, required
to have the posterior probability that a system’s mean performance is correctly classified to be not
in Γ be at least 1 − β , in expectation. This is accomplished by solving the following optimization
problem for each violated constraint � ∈ L:

min Δn
s.t. EX(n+1), ...,X(n+Δn)[P (aT

�
μ > b� |X(1), . . . ,X(n + Δn))] ≥ 1 − β

Δn ∈ N .
(14)
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The interpretation of Equation (14) is that Δn is the number of additional samples required so the
system is classified correctly with probability 1 − β , in expectation.

From Equations (1–4) it follows that the distribution ofaT
�
μ |X(1), . . . ,X(n) is normal with mean

m∑
j=1

a�, j

μ j (0)

σ 2
j (0)
+

nX̄ j (n)

σ 2
j

1/σ 2
j (0) + n/σ 2

j

,

and variance
m∑
j=1

a2
�, j

1

1/σ 2
j (0) + n/σ 2

j

.

Likewise, the distribution of X j (n + 1) |X j (1), . . . ,X j (n) is normal with mean

γj (n) =
μ j (0)/σ 2

j (0) + nX̄ j (n)/σ 2
j

1/σ 2
j (0) + n/σ 2

j

(15)

and variance

νj (n)2 = σ 2
j +

1

1/σ 2
j (0) + n/σ 2

j

. (16)

If Δn independent new samples X j (n + 1), . . . ,X j (n + Δn) ∼ N (γj (n),ν2
j (n)) are drawn, then

EX(n+1), ...,X(n+Δn)[P (aT
� μ > b� |X(1), . . . ,X(n + Δn))]

=

∫
P (X(n + 1), . . . ,X(n + Δn) ∈ dxn+1, . . . ,dxn+Δn |X(1), . . . ,X(n))

×P (aT
� μ > b� |X(1), . . . ,X(n + Δn))

= EZ1, ...,Zm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Φ

�						�
−b� +

∑m
j=1 a�, j

μj (0)

σ 2
j

(0)
+

nX̄j (n )+Δnγj (n )+
√

Δnνj (n )Zj

σ 2
j

1/σ 2
j (0)+(n+Δn)/σ 2

j(∑m
j=1

a2
�, j

1/σ 2
j (0)+(n+Δn)/σ 2

j

)1/2

�





�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= P

�						�
Z0 ≤

−b� +
∑m

j=1 a�, j

μj (0)

σ 2
j

(0)
+

nX̄j (n )+Δnγj (n )+
√

Δnνj (n )Zj

σ 2
j

1/σ 2
j (0)+(n+Δn)/σ 2

j(∑m
j=1

a2
�, j

1/σ 2
j (0)+(n+Δn)/σ 2

j

)1/2

�





�
,

for independent Z0,Z1, . . . ,Zm ∼ N (0, 1) and a violated constraint � ∈ L. Since we end up with a
linear combination of independent normal random variables, we conclude that

EX(n+1), ...,X(n+Δn)[P (aT
� μ > b� |X(1), . . . ,X(n + Δn))]

= Φ

�						�
−b� +

∑m
j=1 a�, j

μj (0)

σ 2
j

(0)
+

nX̄j (n )+Δnγj (n )

σ 2
j

1/σ 2
j (0)+(n+Δn)/σ 2

j(∑m
j=1 a

2
�, j

(
1

1/σ 2
j (0)+(n+Δn)/σ 2

j

+
Δnν 2

j (n)/σ 4
j

(1/σ 2
j (0)+(n+Δn)/σ 2

j )2

))1/2

�





�
.
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Replacing for the value of γj and ν2
j (n) as in Equations (15–16) leads after some algebra to

EX(n+1), ...,X(n+Δn)[P (aT
� μ > b� |X(1), . . . ,X(n + Δn))]

= Φ
�				�

−b� +
∑m

j=1 a�, jγj(∑m
j=1 a

2
�, j

(σ 2
j /σ 2

j (0)+n)2+Δn (2σ 2
j /σ 2

j (0)+2n+1)

(1/σ 2
j (0)+n/σ 2

j )(σ 2
j /σ 2

j (0)+n+Δn)2

)1/2

�



�
, (17)

for � ∈ L.
For Δn = 0 and every violated constraint � ∈ L,

Φ
�				�
−b� +

∑m
j=1 a�, jγj(∑m

j=1

a2
�, j

1/σ 2
j (0)+n/σ 2

j

)1/2

�



�
< 1 − β,

while, since −b� +
∑m

j=1 a�, jγj > 0 for μ(n) � Γ, it easily follows from Equation (17) that

EX(n+1), ...,X(n+Δn)[P (aT
� μ > b� |X(1), . . . ,X(n + Δn))] ≥ 1 − β

for Δn sufficiently large.
Hence, as in Equation (7), a value of Δn > 0 to classify a system can be found by solving

min
Δn∈N:∀�∈L

Φ
�				�

−b� +
∑m

j=1 a�, jγj(∑m
j=1 a

2
�, j

(σ 2
j /σ 2

j (0)+n)2+Δn (2σ 2
j /σ 2

j (0)+2n+1)

(1/σ 2
j (0)+n/σ 2

j )(σ 2
j /σ 2

j (0)+n+Δn)2

)1/2

�



�
≥ 1 − β . (18)

A conservative bound for Δn can be computed analytically, since

(σ 2
j /σ

2
j (0) + n)2 + Δn(2σ 2

j /σ
2
j (0) + 2n + 1)

(1/σ 2
j (0) + n/σ 2

j ) (σ 2
j /σ

2
j (0) + n + Δn)2

≤
(σ 2

j /σ
2
j (0) + n)2 + Δn(2σ 2

j /σ
2
j (0) + 2n + 1)

(1/σ 2
j (0) + n/σ 2

j ) (n + Δn +mink=1, ...,m σ 2
k
/σ 2

k
(0))2

,

in the denominator above, meaning that

min
Δn∈N:∀�∈L

Φ
�				�

−b� +
∑m

j=1 a�, jγj(∑m
j=1 a

2
�, j

(σ 2
j /σ 2

j (0)+n)2+Δn (2σ 2
j /σ 2

j (0)+2n+1)

(1/σ 2
j (0)+n/σ 2

j )(σ 2
j /σ 2

j (0)+n+Δn)2

)1/2

�



�
≥ min

Δn∈N:∀�∈L
Φ
�				�

−b� +
∑m

j=1 a�, jγj(
(n + Δn +mink=1, ...,m {σ 2

k
/σ 2

k
(0)})−2

∑m
j=1 a

2
�, j

(σ 2
j /σ 2

j (0)+n)2+Δn (2σ 2
j /σ 2

j (0)+2n+1)

(1/σ 2
j (0)+n/σ 2

j )

)1/2

�



�
.

Therefore, a conservative value of Δn can be found by solving the quadratic equation

(−b� +∑m
j=1 a�, jγj

Φ−1 (1 − β )

)2

= (n + Δn + min
k=1, ...,m

σ 2
k/σ

2
k (0))−2

m∑
j=1

a2
�, j

(σ 2
j /σ

2
j (0) + n)2 + Δn(2σ 2

j /σ
2
j (0) + 2n + 1)

(1/σ 2
j (0) + n/σ 2

j )
, (19)

for each violated constraint � ∈ L, and then settingu equal to the smallest positive root of Equation
(19) among the violated constraints. This upper bound guarantees that the roots in Equation (18)

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 1, Article 1. Publication date: December 2020.



Novel Approaches to Feasibility Determination 1:13

can be found using bisection in O (logu/ log 2) iterations. The benefit of this approach is that it
yields a closed-form expression, in terms of a quadratic equation, for the number of extra samples
required to classify each violated constraint �. The bound is tight when the variance ratiosσ 2

k
/σ 2

k
(0)

are small in relation to n, or have small variabilty.

4.2 Determining the Number of Additional Samples When μ(n) ∈ Γ

When μ(n) ∈ Γ, with

P (aT
� μ > b� |X(1), . . . ,X(n)) = Φ

�				�
−b� +

∑m
j=1 a�, jγj(∑m

j=1

a2
�, j

1/σ 2
j (0)+n/σ 2

j

)1/2

�



�
> β/c,

for � = 1, . . . , c , we wish to find the number of additional samples that make the posterior prob-
ability that a system’s mean performance is correctly classified to be in Γ be at least 1 − β , in
expectation.

Consider again

EX(n+1), ...,X(n+Δn)[P (aT
� μ > b� |X(1), . . . ,X(n + Δn))]

= Φ
�				�

−b� +
∑m

j=1 a�, jγj(∑m
j=1 a

2
�, j

(σ 2
j /σ 2

j (0)+n)2+Δn (2σ 2
j /σ 2

j (0)+2n+1)

(1/σ 2
j (0)+n/σ 2

j )(σ 2
j /σ 2

j (0)+n+Δn)2

)1/2

�



�
,

for any constraint � = 1, . . . , c . The numerator of the expression in the parentheses on the right-
hand side is negative when the posterior mean is in Γ, ensuring that EX(n+1), ...,X(n+Δn) [P (aT

�
μ >

b� |X(1), . . . ,X(n + Δn))]→ 0 as Δn increases. Hence, as in Equation (13), we solve for the integer
value of Δn for which

min
Δn

max
�=1, ...,c

Φ
�				�

−b� +
∑m

j=1 a�, jγj(∑m
j=1 a

2
�, j

(σ 2
j /σ 2

j (0)+n)2+Δn (2σ 2
j /σ 2

j (0)+2n+1)

(1/σ 2
j (0)+n/σ 2

j )(σ 2
j /σ 2

j (0)+n+Δn)2

)1/2

�



�
≤ β/c . (20)

This problem can be solved by finding a root of

Φ
�				�

−b� +
∑m

j=1 a�, jγj(∑m
j=1 a

2
�, j

(σ 2
j /σ 2

j (0)+n)2+Δn (2σ 2
j /σ 2

j (0)+2n+1)

(1/σ 2
j (0)+n/σ 2

j )(σ 2
j /σ 2

j (0)+n+Δn)2

)1/2

�



�
= β/c,

for � = 1, . . . , c , and then returning the largest of the c roots.

5 A NON-BAYESIAN APPROACH FOR DETERMINING THE REQUIRED NUMBER OF

ADDITIONAL SAMPLES

When additional simulation replications are performed, the estimates of the means may change.
However, for the approach proposed now, it is assumed that those estimates remain fixed for a
given system at μ(n) = μlast .

As in the Bayesian case, determining the number of additional simulations to perform when a
system cannot be classified with probability 1 − β depends on whether the current estimate of the
mean, namely, μlast , is in or not in Γ. Non-Bayesian approaches for doing so in each of these cases
are now proposed.
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5.1 Determining the Number of Additional Samples When μl ast � Γ

Recall from Section 3.1 that when a system for which μlast � Γ is not classified at the desired level

of confidence, then for every violated constraint � ∈ L = {� : aT
�
μlast > b� }, Φ(s� ) < 1 − β , where

s� is defined in Equation (7). The approach proposed now for determining the number of additional
simulation replications is based on the observation that, for any such violated constraint, had n
been large enough, the value of σ (n) from Equation (3) would have been sufficiently small so
Equation (5) would allow the system to be classified as not in Γ with probability 1 − β . Thus, the
goal is to determine n∗ > n so σ (n∗) in Equation (5) would allow the system to be classified as
not in Γ with probability 1 − β , for then the number of additional simulation replications to be
performed using this approach is Δn = n∗ − n.

To that end, if the violated constraints at μlast do not allow the system to be classified, then each
such constraint � ∈ L provides a separating hyperplane for which one can compute the smallest
number of samples,n� , that would have provided a value ofσ (n� ) in Equation (3) for which Φ(s� ) ≥
1 − β , thus allowing the system to be classified as not in Γ using Equation (7). Thinking of ñ as a
continuous variable, the desired value of n� is the smallest value of ñ > n for which σ (n� ) results
in Φ(s� ) = 1 − β , that is, n� is the smallest value of ñ > n for which

f (ñ) = a2T
� σ 2 (ñ) − ��

aT
�
μlast − b�

Φ−1 (1 − β )
��

2

= 0. (21)

Assuming that n is continuous, the function f : [0,∞) → R1 in (21) is convex and f (n) > 0 while
limñ→∞ f (ñ) < 0; hence, one can use the approach described in Appendix A to find a zero of f ,
namely, n� . The number of additional samples to collect for this system is then

Δn = n∗ − n, where n∗ = min{�n��}. (22)

Note that an even smaller value for Δn can be obtained by using the best separating hyperplane,
defined in Equation (6), although finding this separating hyperplane requires solving the associated
nonlinear program.

5.2 Determining the Number of Additional Samples When μl ast ∈ Γ

When the current estimate of the mean μlast , obtained after performing n simulation replications,
is in Γ and the system cannot be classified with probability 1 − β , determining the number of
additional simulation replications depends on whether confidence rectangles (see Section 3.2.1) or
hyperplanes (see Section 3.2.2) are used to classify the system.

5.2.1 Using Confidence Rectangles. The following heuristics are based on the observation that,
had n been large enough, the value of σ (n) would have been sufficiently small so the confidence
rectangle centered at μlast lies entirely in Γ, thus allowing the system to be classified as in Γ with
probability 1 − β .

Heuristic 1: The objective of this first heuristic is to determine the minimum number of sam-
ples, n∗, that would shrink the confidence rectangle so Rz (n∗) ⊂ Γ. From Proposition 3.1, the de-
sired value for n∗ is the smallest value of ñ for which τ̂ (ñ) ≥ z. There is such a value for n∗, be-
cause τ̂ (n) < z and τ̂ (ñ) → ∞ as ñ → ∞, since σ (ñ) → 0 monotonically as ñ → ∞. As a result, it
is possible to use bisection on the interval [n,∞) to find n∗. However, because of the mathematical
properties of the functions τ̂k (ñ) in Equation (10), a more efficient alternative is available. To this
end, consider the following functions дk : [0,∞) → R1, for each k = 1, . . . , c:

дk (ñ) =
1

τ̂k (ñ)
=

aT
k
d

bk − aT
k
μlast

=

∑m
j=1 a

T
k j
dj

bk − aT
k
μlast

=

∑m
j :ak j ≥0 ak jσj (ñ) −∑m

j :ak j <0 ak jσj (ñ)

bk − aT
k
μlast

. (23)
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The function in Equation (23), being the sum of nonnegative constants times the convex functions
σj (ñ), is also convex. Finally, finding the value of ñ for which τ̂ (ñ) = z is equivalent to finding the
0 of the following function f : [0,∞) → R1:

f (ñ) = max
{
дk (ñ) : k = 1, . . . , c

} − 1

z
. (24)

Since the function f in Equation (24) is the maximum of convex functions, it is also convex and
has a zero, because f (n) > 0 while limñ→∞ f (ñ) < 0. Assuming that n is continuous, this zero can
be found using the approach described in Appendix A.

In summary, when Rz (n) is not contained inside Γ, it is possible to use a subgradient Newton
method on the function f in Equation (24) to find n∗ = min{ñ > n : τ̂ (ñ) ≥ z} for then Rz (n∗) ⊂ Γ.
Then the number of additional simulation replications to be performed is Δn = n∗ − n.

Heuristic 2: The number of additional simulation replications under Heuristic 1 requires per-
forming a subgradient Newton algorithm. The heuristic proposed here avoids this need. Rather
than finding n∗ so Rz (n∗) ⊂ Γ, Heuristic 2 attempts to find first the largest value of t > 0 so
Rt (n) ⊂ Γ, which, according to Proposition 3.1, is t = τ̂ (n). The desired value for n∗ is the smallest
integer ñ > n so Rz (ñ) ⊂ Rt (n) ⊂ Γ. The value of n∗ can be found using the formula for σ 2

j (n) in

Equation (3) to compute, for each coordinate j = 1, . . . ,m, the value, n̂j , so

σj (n̂j ) =
t

z
σj (n).

Using Equation (3) and solving for n̂j results in the following value:

n̂j =

[(z
t

)2

− 1

] ��
σ 2

j (n)

σ 2
j (0)

�� +
(z
t

)2

n and so n∗ = max{�n̂j �}. (25)

The number of additional simulation replications to be performed using this heuristic is then Δn =
n∗ − n.

5.2.2 Using Hyperplanes. Determining the number of additional simulation replications when
hyperplanes are used to classify the system is based on the observation that, had n been large
enough, the value of σ (n) from Equation (3) would have been sufficiently small so Equation (13)
would allow the system to be classified as in Γ with probability 1 − β . Thus, the goal is to determine
n∗ > n so σ (n∗) in Equation (13) would allow the system to be classified as in Γ with probability
1 − β , for then the number of additional simulation replications to be performed is Δn = n∗ − n.

If the constraints of Γ do not allow the system to be classified, then each constraint � provides
the ability to compute the smallest number of samples, n� , that would have provided a value of
σ (n� ) in Equation (3) for which Φ(s� ) ≤ β/c . Defining n∗ = max� {n� } would then allow the system
to be classified as in Γ using Equation (13). Thinking of ñ as a continuous variable, the desired value
of n� is the smallest value of ñ > n for which σ (n� ) results in Φ(s� ) = β/c , that is, n� is the smallest
value of ñ > n for which

f (ñ) = a2T
� σ 2 (ñ) − ��

aT
�
μlast − b�

Φ−1 (β/c )
��

2

= 0. (26)

Assuming that n is continuous, the function f : [0,∞) → R1 in Equation (26) is convex and f (n) >
0 while limñ→∞ f (ñ) < 0; hence, one can again use the approach described in Appendix A to find
a zero of f , namely, n� . The number of additional samples to perform for this system is then given
in Equation (22).
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Fig. 4. The flow logic of the Bayesian and frequentist algorithms.

From here on, Δn(β ) refers to the number of additional simulation replications to perform for a
system—in addition to the n that have already been performed—given a desired probability 1 − β
of correct classification.

6 THE COMPLETE ALGORITHM

The algorithms for classifying the r systems as in or not in Γ when Γ is defined by a finite col-
lection of linear inequalities are summarized in Figure 4. All three algorithms start by taking an
initial sample of n(0) from each system to assess whether the estimated mean is in Γ. If the sam-
ple average is not in Γ , a separating hyperplane is used to determine whether the system can be
classified with the desired (user-specified) level of confidence. If such a classification is possible,
the algorithm stops. Otherwise, there are two possible approaches for determining the additional
number of samples that would enable classification: a Bayesian approach using Equation (18) or
a frequentist approach using Equation (21). After the additional Δ(n) samples are collected, the
system is classified based on the updated estimate of the sample mean. However, if the estimated
mean based on the initial sample is in Γ, then there are several possible ways to proceed. In a
purely frequentist approach, one can construct a rectangle centered at the sample average using
Equation (10). If this rectangle is not fully contained in the feasible region, one can determine the
additional number of samples using Equations (23) or (24) to “shrink” the confidence rectangle so
it is completely contained within Γ. Alternatively, one can find a separating hyperplane to deter-
mine whether the system can be classified with the desired (user-specified) level of confidence. If
such a classification is possible, the algorithm stops. Otherwise, there are two possible approaches
for determining the additional number of samples that would enable classification: a Bayesian ap-
proach using Equation (20) or a frequentist approach using Equation (25). After the additional Δ(n)
samples are collected, the system is classified based on the updated estimate of the sample mean.
Results of computational experiments with these algorithms are presented in Section 7.
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Table 1. Parameter Settings for the Experiments

Level n0 μi j (0) σi j (0) σi j σi j ρi j

HIGH 5 (−1, −1) 10 10 unknown 0.7
LOW 10 (1, 1) 1 1 known 0.3

7 COMPUTATIONAL RESULTS

In this section, we illustrate the performance of the algorithms through simple numerical exam-
ples. First, we demonstrate the validity of the algorithms (i.e., their ability to deliver the desired
probability of correct classification) under various experimental settings, including the cases with
unknown variances and correlated performance metrics. We then compare the performance of our
algorithms to that of the feasibility determination algorithm proposed by Batur and Kim [3]. Two
of the algorithms are not only effective in their performance, but, compared with other feasibility
determination approaches, they also appear to be competitive.

7.1 Validity

In this subsection, the performance of the three algorithms, namely, Bayes, separating hyperplanes,
and rectangles as summarized in Figure 4, is illustrated through small examples. In Figure 4, the
numbers in parentheses refer to the equations used to determine the additional number of simula-
tion replications needed for correct classification. In the examples, the feasible region, Γ, is defined
to be the negative quadrant in m = 2 dimensions. To demonstrate the validity and the robustness
of the algorithms, five key parameters associated with classifying r = 1, 000 systems with con-
fidence 1 − β = 0.95 are varied: the number of initial samples, n0; the prior value for the mean,
μi j (0); the prior value for the variance, σ 2

i j (0), both specified by the analyst; and the true variance,

σ 2
i j , whereby we also investigate the setting where the actual variance is not known, but must be

estimated in the first stage of the algorithms using the initial sample.
The parameter settings are shown in Table 1. Experimenting with two levels for each parameter

results in 32 design points. The HIGH settings, i.e., the parameter value with an H, are meant to
depict more challenging conditions for the three algorithms. For instance, the design point with
HHHHH represents the most challenging setting for the algorithms with a small initial sample of
n0 = 5, the prior mean, μi j (0) = (−1,−1), in Γ, a high prior value for σi j (0) = 10, and a high value
for σi j , which, if unknown, would be estimated from the initial samples, based on the values in
Table 1. The LOW settings are more forgiving.

The observed average confidence level at each of the design points for all three algorithms is
shown in Figure 5, while the average performance of the three algorithms is summarized in Table 2,
where the observed confidence level, the average number of samples required to achieve the de-
sired confidence level, the median number of samples required to achieve the desired confidence
level, and the average number of systems that are incorrectly classified (all averaged over 10 in-
dependent macro replications at each design point) are tabulated for the desired confidence level,
1 − β = 0.95.

Several observations are in order. First, the Bayesian algorithm appears to be the most robust
approach for feasibility determination in the sense that it delivers the desired confidence level
under all experimental settings—including the one with unknown variances. Unfortunately, there
is no “free lunch”: The Bayesian algorithm achieves this robust performance by requiring a large
sample size to consistently deliver the desired level of confidence. Second, while the non-Bayesian
algorithm based on hyperplanes requires three to ten times fewer samples than the Bayesian ap-
proach, its performance deteriorates in settings where the prior value of the mean is in Γ. This is
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Fig. 5. Observed average confidence levels for the algorithms.

Table 2. Observed Average Performance (Standard Error) of the Three Algorithms

Bayes Known Variance Unknown Variance Overall

β̂ 0.9715 (0.0073) 0.9760 (0.0026) 0.9737

Avg Sample Size 19,284 (8868) 67,297 (22676) 43,291

Median Sample Size 150.46 (75.64) 9.16 (0.65) 79.81

Avg Incorrectly Classified 2.5 (0.43) 4.7 (0.55) 3.6

Hyperplanes

β̂ 0.9165 (0.0218) 0.9025 (0.0201) 0.9095

Avg Sample Size 5,670 (3032) 6,374 (3930) 6,022

Median Sample Size 14.73 (2.03) 29.18 (6.05) 19.22

Avg Incorrectly Classified 2.11 (0.67) 8.57 (2.19) 5.34

Rectangles

β̂ 0.7083 (0.0877) 0.8756 (0.0218) 0.7920

Avg Sample Size 18,446 (7428) 50,475 (21303) 34,461

Median Sample Size 13.59 (2.78) 10.15 (1.41) 11.87

Avg Incorrectly Classified 2.03 (0.46) 4.85 (0.66) 3.44

a challenging setting where all constraints must be checked to ensure correct classification. The
performance further degrades in settings where the initial sample size is small and the true (known
or unknown) variance is large. Third, the non-Bayesian algorithm based on rectangles is the most
vulnerable. While it is mostly dominated by the first two algorithms, its performance is anemic in
settings with a small initial sample and large variances, where the true variance is estimated from
the data. In fact, the most challenging setting for all three algorithms is the one where the vari-
ances, σ 2

i j , are high, for which the achieved estimated confidence level is as low as 0.8978 for the

Bayesian algorithm, 0.7270 for the hyperplane, and an anemic 0.0391 for the rectangles. A larger
value for the initial sample size, n0, offers only partial relief. Overall, we recommend our Bayesian
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Table 3. Observed Average Performance (Standard Error) of the Three Algorithms in Correlated Settings

Alg. Setting Correlation β̂ Avg Sample Size Med Sample Size Avg Incorr Class’d

Bayes HLLHL HIGH 0.9447 (0.0021) 511.02 (7.11) 393.4 (4.42) 5 (1.26)

LOW 0.9590 (0.0010) 527 (5.77) 400.7 (3.24) 2.6 (0.22)

UNCORR 0.9755 (0.0013) 305 (2.10) 270.8 (3.51) 2.2 (0.37)

HHLHL HIGH 0.8778 (0.0025) 911.3 (23.35) 666.4 (48.97) 2.6 (0.6)

LOW 0.9152 (0.0035) 1,211.9 (272.27) 719.1 (3.15) 3 (1.05)

UNCORR 0.8978 (0.0018) 1,166.8 (115.84) 836 (8.09) 2.8 (0.73)

Hyper- HLLHL HIGH 1.0 (0.0) 20.1 (0.05) 20.2 (0.04) 0.0 (0.0)

planes LOW 1.0 (0.0) 20.4 (0.04) 20.1 (0.03) 0.0 (0.0)

UNCORR 1.0 (0.0) 20.8 (0.06) 20.0 (0.04) 0.0 (0.0)

HHLHL HIGH 0.7794 (0.0029) 21.2 (2.14) 19.5 (1.67) 0.0 (0.0)

LOW 0.7799 (0.0015) 21.2 (1.67) 20.3 (1.32) 0.0 (0.0)

UNCORR 0.7270 (0.0013) 20.7 (0.97) 20.0 (0.66) 0.0 (0.0)

algorithm provided that the execution cost of each simulation replication is not prohibitively high.
In that case, the non-Bayesian approach with the hyperplanes may provide a rough-cut solution.
In fact, if the prior value of the variance provided by the analyst is not too high, the hyperplanes
approach delivers the desired confidence level provided that the initial sample size is not too low.

Finally, we have relaxed Assumption 2 by considering settings where performance metrics are
correlated. As described in Section 2, this is done through a transformation of the coordinate axes
for the correlated random variables. The results are summarized in Table 3 where the Bayes and the
separating hyperplanes heuristics are tested at two design points: HLLHL (i.e., n0 = 5, μ0 = (1, 1),
σ0 = 1, σ = 10, and known variance), where both algorithms have exceeded the desired probability
of correct determination, and HHLHL (i.e., n0 = 5, μ0 = (−1,−1), σ0 = 1, σ = 10, and known vari-
ance), where both algorithms failed to achieve the desired probability of correct determination in
the uncorrelated setting. The performance of the hyperplanes heuristic appears to be robust at
both design points and insensitive to the level of correlation. The Bayesian heuristic maintains its
robustness in the setting with low correlation, but suffers a slight performance degradation when
the correlation is high. Overall, their performance is consistent.

The settings where the covariance matrix is unknown and must therefore be estimated from the
samples are a bit more complicated. The estimator of the matrix is asymptotically consistent; in fact,
it is well known that the covariance matrix can be estimated with relative error ϵ in O ((t/ϵ )2m)
replications with probability 1 − 2 exp(−t2m); see Vershynin [23]. Hence, in a finite-sample setting,
the estimated covariance matrix may not even be positive definite, which would create a fatal flaw
in the algorithm.

7.2 Comparison with the Method of Batur and Kim [3]

In this section, we compare the performance of the Bayesian and the frequentist heuristics us-
ing separating hyperplanes with the procedures proposed by Batur and Kim [3]. In particular, our
heuristics are applied to the setting Kim and Batur describe in their Table 1, which is reproduced be-
low as Table 4 for completeness, and contrasted with the experimental results they report in Table 3
of their paper, where the feasible region is the negative quadrant and the tolerance level for each
constraint is given by ϵ = 1/

√
n0. Recall that the tolerance level is a parameter, which is analogous

to the indifference zone parameter in classical R&S, representing the minimum difference that is
worth detecting. As shown in Figure 6, the systems therefore fall into three categories: “desirable,”
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Fig. 6. Comparison with the Method of Batur and Kim [3].
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Table 4. Parameter Settings from Table 1
of Batur and Kim [3]

desirable
D1 μ j = −ϵ , j = 1, . . . ,m
D2 μ j = −jϵ , j = 1, . . . ,m
D3 μ j = −10ϵ , j = 1, . . . ,m

acceptable
A1 μ1 = μ2 = −2ϵ, μ j = −ϵ/2, j = 3, 4, . . . ,m
A2 μ j = 0, j = 1, . . . ,m
A3 μ j = ϵ/2, j = 1, . . . ,m

unacceptable
U1 μ1 = μ2 = −2ϵ, μ j = ϵ , j = 3, 4, . . . ,m
U2 μ j = ϵ , j = 1, . . . ,m
U3 μ j = jϵ , j = 1, . . . ,m

denoted by D1,D2, and D3; “acceptable,” denoted byA1 andA3; “undesirable,” denoted byU 1,U 2,
and U 3, designating feasible, infeasible but acceptable, and infeasible systems, respectively.

We note that this is not an “apples-to-apples” comparison, as the performance metrics used
in the two papers are slightly different. In particular, Batur and Kim [3] define a correct decision

as the event whereby the set of feasible systems reported by their algorithms not only contains
all desirable (truly feasible) systems, but may also contain some of the acceptable ones with the
probability of a correct decision at or above the nominal confidence level. In our Bayesian setting,
we try to ensure that the average probability of correct classification over all systems achieves
the nominal confidence level. This means that while some systems may be correctly classified at
a much higher confidence level than the one specified by the analyst, others may be below the
desired confidence level as long as we achieve, in expectation, the confidence level targeted by
the analyst. Our frequentist heuristic using hyperplanes, however, tries to classify each system
with the desired level of confidence. To illustrate with an example, imagine that we are trying to
identify investment opportunities whose payoff exceeds a certain threshold value. The algorithms
of Batur and Kim [3] would report, with the desired level of confidence, a portfolio that includes
all investment opportunities that exceed the threshold value (i.e., desirable ones) as well as some
opportunities that fall into the indifference zone (i.e., acceptable ones). In our Bayesian heuristic,
however, the reported portfolio would achieve, in expectation, the nominal probability of correct
classification with some investment opportunities clearing the threshold value with a much higher
probability while others at a probability of correct classification that is lower than the desired level.
Finally, the frequentist heuristic will report a portfolio that contains only the desirable investment
opportunities that exceed the threshold value at the postulated level of confidence. However, as
they present one of the best feasibility determination approaches in the literature, Batur and Kim
[3] provide a natural benchmark.

Even though we had developed our algorithms under the assumption of known variances, in
our experiments, we have estimated the variances based on the initial sample. As expected, for
the Bayesian setting, violating this assumption resulted in an increase in the average total sample
size as well as a slight degradation in the performance of the algorithm. The frequentist heuristic,
however, has been quite robust in achieving perfect probability of correct classification; however,
this performance is obtained with significantly higher average sample sizes. Given that Batur and
Kim [3] do not report variances in their results, we cannot directly compare the volatility in the
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performance of these procedures. Note that all of the algorithms had to spend considerably more
effort in correctly classifying a system inside the feasible region.

As is the case with other multi-stage algorithms that rely on Bayesian updating, if the analyst
does not have an accurate estimate of the prior values of the system parameters, it is advisable
to initialize the procedure with a small initial sample size, say, n0 = 1. An inaccurate prior value
coupled with a large initial sample size, say, n0 = 10, anchors the procedure on the wrong point,
necessitating a larger number of additional samples for correct classification.

8 CONCLUSIONS AND FUTURE RESEARCH

This work was concerned with determining whether a number of systems—each characterized by
the same number of random variables—belongs to a set Γ defined by a finite collection of linear
inequalities. Specifically, a system is in (not in) Γ if the mean of its random variables is in (not in)
Γ. Unfortunately, the means of the systems are unknown; they must therefore be estimated using
Monte Carlo simulation. Various heuristics have been proposed for classifying a number of the
systems with a user-specified level of confidence, 1 − β , with the minimum number of simulation
replications. The heuristics are based on a Bayesian approach in which the user specifies initial
estimates of the means and standard deviations of the random variables in each system. After
performing some initial simulation replications, the current estimates of the means and standard
deviations are used to determine which systems, if any, can be classified at the user’s level of
confidence. For each of the remaining unclassified systems, heuristics are used to estimate the
number of additional simulation replications to perform to hopefully classify the system at the
desired level of confidence. The way this is done depends on whether the current estimate of
the mean of a system is, or is not, in Γ. Computational experiments with the algorithms indicate
that they are easy to implement and efficient with respect to the average number of replications
needed to achieve the desired performance level.

While the algorithms were originally developed under the assumptions that system variance is
known and the random variables are independent, their performance remains satisfactory when
those assumptions are relaxed individually. It would be interesting to relax the two assumptions
simultaneously, as we may run into issues of invetibility with the estimated covariance matrix.
This is the subject of current investigation.

Another possible measure of performance is to classify a user-specific fraction of the r systems,
each with a user-specified minimum probability of correct classification. This is the focus of our
current work. Additionally, we are investigating the setting where the set Γ is defined by a finite
set of differentiable nonlinear inequalities.

APPENDIX

Appendix A: Finding a Zero of a Convex Function

In the algorithms developed here, it is sometimes necessary to solve a slightly modified version of
the following zero-finding problem:

Problem 1: Given a convex function h : R1 → R1, find x∗ ∈ R1 such that h(x∗) = 0.

Solow and Li [18] developed a subgradient Newton method to solve Problem 1 that has some
very desirable properties as a result of h being convex. In particular, starting anywhere, the algo-
rithm either terminates finitely—in which case, a zero of h is found or else there is no zero of h.
Alternatively, if the algorithm generates an infinite sequence of points, then that sequence either
converges to a zero of h or diverges to ±∞, in which case, h has no zero.
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Turning to the application at hand, it is sometimes necessary to solve the following variation of
Problem 1:

Problem 2: Given a convex function h : [0,∞) → R1, find a point x∗ ∈ [0,∞) such that h(x∗) = 0.

The next proposition provides conditions under which the algorithm in Reference [18] will find
such an x∗ (see Appendix B for the proof).

Proposition 1. Ifh : [0,∞) → R1 is a convex function on [0,∞) that has a zero, then the algorithm

in Equation [18] will find such a point provided that the algorithm is started at a point x ∈ [0,∞) for

which h(x ) ≥ 0.

Appendix B: Proofs of Propositions

This Appendix contains proofs for all of the propositions.

Proof of Proposition 3.1. For an integer ñ > 0 it is first shown that if t ≤ τ̂ (ñ), then Rt (ñ) ⊂ Γ,
in which for each k = 1, . . . , c:

τ̂k (ñ) =
bk − aT

k
μlast

aT
k
d

, where dj =

{
+σj (ñ) if ak j ≥ 0,
−σj (ñ) if ak j < 0,

(27)

and
τ̂ (ñ) = min{τ̂k (ñ) : k = 1, . . . , c}.

For any constraintk of Γ, consider the following feasible and bounded linear programming problem
and optimal solution:

max aT
k
y

s.t. y ∈ R (μlast ,σ (ñ), τ̂k (ñ))
y∗j =

{
μlast + τ̂k (ñ)σj (ñ) if ak j ≥ 0,
μlast − τ̂k (ñ)σj (ñ) if ak j < 0.

(28)

From the definition ofd and τ̂k (ñ) in Equation (27), it follows thataT
k
y∗ = aT

k
(μlast + τ̂k (ñ)d ) = bk .

To show that Rt (ñ) ⊂ Γ, let y ∈ Rt (ñ) = R (μlast ,σ (ñ), t ) ⊂ R (μlast ,σ (ñ), τ̂k (ñ)) (because t ≤
τ̂k (ñ)), and soy is feasible for the LP in Equation (28). As such,aT

k
y ≤ aT

k
y∗ = bk . Thus,y is feasible

for each constraint k of Γ and so Rt (ñ) ⊂ Γ.
It remains to show that if t > τ̂ (ñ), then Rt (ñ) � Γ. As t > τ̂ (ñ), there is a constraint k of Γ for

which t > τ̂k (ñ) and consider the following feasible and bounded linear programming problem
and optimal solution:

max aT
k
y

s.t. y ∈ Rt (ñ)
y∗j =

{
μlast + tσj (ñ) if ak j ≥ 0,
μlast − tσj (ñ) if ak j < 0.

(29)

But then the point y∗ ∈ Rt (ñ) while, from the definition of d and τ̂k (ñ) in Equation (27), it follows
that

aT
ky
∗ = aT

k (μlast + td ) > aT
k (μlast + τ̂k (ñ)d ) = bk .

This means that y∗ ∈ Rt (ñ) but y∗ � Γ and so the proof is now complete.

Proof of Proposition 1 in Appendix A. Suppose Solow’s subgradient algorithm is started at a
point x0 ∈ [0,∞) for whichh(x0) > 0 and assume thath has a zero. The result is proved for the case
when h is differentiable on [0,∞). Suppose first that h′(x0) < 0. In this case, the algorithm gener-
ates a monotonically increasing sequence of points, so each xk ∈ [0,∞). If for any k , h′(xk ) ≥ 0
then Reference [18] showed that the functionh has no zero, which contradicts the assumption that
h has a zero. Thus, if the sequence generated by the algorithm is finite, then, as shown in Refer-
ence [18], the point at which the algorithm stops is a zero of h. However, if the sequence generated
by the algorithm is infinite, then the monotonically increasing sequence must be bounded above
for, if not, as shown in Reference [18], the function h has no zero. As such, the monotonically

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 1, Article 1. Publication date: December 2020.



1:24 D. Solow et al.

increasing and bounded sequence generated by the algorithm must converge to a point x∗ and,
again, as shown in Reference [18], h(x∗) = 0.

Turning now to the case when h′(x0) > 0, as shown in Reference [18], the sequence of points
generated by the algorithm is monotonically decreasing with the function value at each such point
xk being strictly positive. Furthermore, h′(xk ) > 0 for, if not, then, as shown in Reference [18], the
function h has no zero, which contradicts the assumption that h has a zero.

If, for some first value of k , xk+1 < 0 and hence outside the domain of h, then the function has
no zero, as is now shown. From the gradient inequality for a convex function, it follows that for
all x > xk ,

h(x ) ≥ h(xk ) + h′(xk ) (x − xk ) > h(xk ) > 0.

Thus, there is no value of x > xk for which h(x ) = 0. It remains to show that there is no value of
x ∈ [0,xk ) with h(x ) = 0, so suppose there is such a value for x . As xk+1 = xk − h(xk )/h′(xk ) < 0
and h′(xk ) > 0, it follows that h(xk ) − h′(xk )xk > 0. From the gradient inequality for a convex
function, it follows that

h(x ) ≥ h(xk ) + h′(xk ) (x − xk ) = h(xk ) − h′(xk )xk + h′(xk )x > h′(xk )x ≥ 0.

This means that, if h′(x0) > 0, then the sequence of points generated by the algorithm is within
the domain of h and is monotonically decreasing and bounded below by 0. Thus, if the sequence
generated by the algorithm is finite, then, as shown in Reference [18], the point at which the
algorithm stops is a zero of h. However, if the sequence generated by the algorithm is infinite, then
the monotonically decreasing sequence is bounded below by 0 and must converge to a point x∗,
which, as shown in Reference [18], satisfies h(x∗) = 0. This completes the proof.
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