Simulating Dislocation Densities with Finite Element Analysis

Ja'Nya Breeden Jay Gopalakrishnan Saurabh Puri Dow Drake

Portland State University

August 23, 2021

Why Simulations?

- This project is on building mathematical simulation tools.
- We need accurate and fast simulation tools.
- Ex. Sleipner A:
	- A major oil platform collapsed due to inaccurate FEA
	- Shear stresses were underestimated
	- Total loss: \$ 700 M

Why Simulations?

• In this project, we will build simulation tools for dislocation mechanics

What are dislocations?

- Any defect in a perfect crystal lattice caused by atoms being out of place
	- A perfect crystal lattice is any structure consisting of uniform planes of atoms
- Dislocations can be good or bad
	- Intentionally used to strengthen materials
	- Can also cause catastrophic failures in material structures
- Dislocations in pictures ...

Edge Dislocations

Edge dislocations consist of an additional half-plane of atoms in a lattice

Screw Dislocations

• In a screw dislocation, the lattice plane shifts and causes the atomic structure to take a helical shape

Burgers vect

Ahmed et al. Copper Experiments

- Copper samples are taken and cyclically hardened to examine how fatigue affects the material
- Cyclic strain causes a pattern to appear in the microstructure of the copper lattice
- Dislocation walls are represented within the patterns formed as a result of the cyclic hardening

Microscopic Copper Dislocation Walls

(a) Patterns formed by cyclic strain. (b) White lines represent the

dislocation walls.

 \bullet Our model represents a dislocation wall by a dislocation density function α .

Model Features

- Study continuum models which examine dislocation densities
- PDEs involving deformation encapsulate models which include diffusive and convective terms
- Simulate solutions of the nonlinear PDE using the FEM

Nonlinear System of Time-Dependent PDEs

$$
\partial_{x}\phi = \alpha \tag{1}
$$

$$
\partial_t \alpha = \partial_x \left(|\alpha|\tau \right) + \partial_x \left(\frac{|\alpha|}{4} \partial_x \alpha \right) \tag{2}
$$

Functions to be found:

- \bullet α dislocation density
- $\bullet \phi$ plastic deformation

Known data:

- $g(t)$ applied strain
- \bullet τ internal shear stress (known function: $g - \phi$)
- Boundary conditions: α is set to 0 at the left and right boundaries

Linear PDE

Recall:

$$
\partial_t \alpha = \partial_x \left(|\alpha|\tau \right) + \partial_x \left(\frac{|\alpha|}{4} \partial_x \alpha \right)
$$

Simpler:

$$
f = \partial_x (cu) + \partial_x (K \partial_x u) \tag{3}
$$

- $\Omega = (-1, 1)$ where zero Dirichlet conditions are applied to the left and right boundaries
- c represents the convection coefficient
- K represents the diffusivity of the material
- We use a mathematical tool to verify exact solutions

Convective and Diffusive Solutions from Standard FEM

[Introduction](#page-1-0) [Model](#page-8-0) [Initial FEM Testing](#page-10-0) [Simulations](#page-14-0) [Conclusion](#page-23-0) [Standard FEM](#page-10-0) [DG FEM](#page-12-0)

Failure of Standard FEM for Small Diffusion

Figure: Effect of increasing the ratio of K and c.

Convective and Diffusive solutions from DG FEM

DG Method Stability

Problem Setup

- We define the sign of a dislocation wall as the sign of its dislocations.
- **Consider two dislocation walls of opposite and the same sign.**
- Observe dislocation walls of zero applied strain and a small final value for applied strain.
- \bullet $g(t)$ represents the applied strain.

Opposite Dislocation Walls: No Applied Strain

Opposite Dislocation Walls: No Applied Strain

Figure: Internal shear stress under no strain

Adjacent Dislocation Walls: No Applied Strain

Adjacent Dislocation Walls: No Applied Strain

Figure: Internal shear stress under no strain

Opposite Dislocation Walls: Ramped Applied Strain

Figure: α when $g(t) = 0.02$

Opposite Dislocation Walls: Internal Shear Stress

- Internal shear stress increases and decreases as the dislocation walls cancel
- Video Progression

Adjacent Dislocation Walls: Ramped Applied Strain

Adjacent Dislocation Walls: Internal Shear Stress

- Internal shear stress simply increases within the system as there is little change in α
- Video Progression

Discussion & Conclusions

- DG FEM was determined to be better than standard FEM.
- Applying DG FEM to the nonlinear model outputs the expected results.
- The results of these simulations imply that two nearby dislocation walls with opposite sign will tend to attract and cancel under applied strain.
- Even under applied strain, the adjacent dislocation walls didn't seem to cancel.

What's Next?

- Implement a new drag model with the nonlinear model.
- \bullet Simulate a different mathematical model that computes shear stress from α .

Impact on Community

- Better analysis of material deformations
- Production of more durable materials
- Safer living conditions for citizens

References

[1] Hull, D. and Bacon, D. J. Introduction to Dislocations Elsevier 2011

[2] Ahmed, Jobayer and Roberts, Steve and Wilkinson, Angus J

Characterizing dislocation structures in bulk fatigued copper single crystals using electron channeling contrast imaging (ECCI)

Philosophical Magazine Letters 76: 237-246, 1997