Simulating Dislocation Densities with Finite Element Analysis

Ja'Nya Breeden Jay Gopalakrishnan Saurabh Puri Dow Drake

Portland State University

August 23, 2021

Why Simulations?

- This project is on building mathematical simulation tools.
- We need accurate and fast simulation tools.
- Ex. Sleipner A:
 - A major oil platform collapsed due to inaccurate FEA
 - Shear stresses were underestimated
 - Total loss: \$ 700 M

Why Simulations?

• In this project, we will build simulation tools for dislocation mechanics

What are dislocations?

- Any defect in a perfect crystal lattice caused by atoms being out of place
 - A perfect crystal lattice is any structure consisting of uniform planes of atoms
- Dislocations can be good or bad
 - Intentionally used to strengthen materials
 - Can also cause catastrophic failures in material structures
- Dislocations in pictures ...

Edge Dislocations

• Edge dislocations consist of an additional half-plane of atoms in a lattice

Screw Dislocations

• In a screw dislocation, the lattice plane shifts and causes the atomic structure to take a helical shape

Ahmed et al. Copper Experiments

- Copper samples are taken and cyclically hardened to examine how fatigue affects the material
- Cyclic strain causes a pattern to appear in the microstructure of the copper lattice
- Dislocation walls are represented within the patterns formed as a result of the cyclic hardening

Microscopic Copper Dislocation Walls

(a) Patterns formed by cyclic strain.

(b) White lines represent the dislocation walls.

 \bullet Our model represents a dislocation wall by a dislocation density function $\alpha.$

Model Features

- Study continuum models which examine dislocation densities
- PDEs involving deformation encapsulate models which include diffusive and convective terms
- Simulate solutions of the nonlinear PDE using the FEM

Nonlinear System of Time-Dependent PDEs

$$\partial_{\mathbf{x}}\phi = \alpha$$
 (1)

$$\partial_t \alpha = \partial_x \left(|\alpha| \tau \right) + \partial_x \left(\frac{|\alpha|}{4} \partial_x \alpha \right)$$
(2)

Functions to be found:

- $\bullet \ \alpha$ dislocation density
- $\bullet~\phi$ plastic deformation

Known data:

- g(t) applied strain
- au internal shear stress (known function: $g \phi$)
- Boundary conditions: α is set to 0 at the left and right boundaries

Linear PDE

Recall:

$$\partial_t \alpha = \partial_x \left(|\alpha| \tau \right) + \partial_x \left(\frac{|\alpha|}{4} \partial_x \alpha \right)$$

Simpler:

$$f = \partial_x(cu) + \partial_x(\mathcal{K}\partial_x u) \tag{3}$$

- $\Omega = (-1, 1)$ where zero Dirichlet conditions are applied to the left and right boundaries
- c represents the convection coefficient
- K represents the diffusivity of the material
- We use a mathematical tool to verify exact solutions

Convective and Diffusive Solutions from Standard FEM

Introduction Model Initial FEM Testing Simulations Conclusion

Standard FEM DG FEM

Failure of Standard FEM for Small Diffusion

Figure: Effect of increasing the ratio of K and c.

Convective and Diffusive solutions from DG FEM

Standard FEM DG FEM

DG Method Stability

Problem Setup

- We define the sign of a dislocation wall as the sign of its dislocations.
- Consider two dislocation walls of opposite and the same sign.
- Observe dislocation walls of zero applied strain and a small final value for applied strain.
- g(t) represents the applied strain.

Problem Setup Equilibrium Models Ramped Applied Strain

Opposite Dislocation Walls: No Applied Strain

Opposite Dislocation Walls: No Applied Strain

Figure: Internal shear stress under no strain

Adjacent Dislocation Walls: No Applied Strain

Adjacent Dislocation Walls: No Applied Strain

Figure: Internal shear stress under no strain

Opposite Dislocation Walls: Ramped Applied Strain

Figure: α when g(t) = 0.02

Opposite Dislocation Walls: Internal Shear Stress

- Internal shear stress increases and decreases as the dislocation walls cancel
- Video Progression

Adjacent Dislocation Walls: Ramped Applied Strain

Figure: α when g(t) = 0.01

Adjacent Dislocation Walls: Internal Shear Stress

- Internal shear stress simply increases within the system as there is little change in α
- Video Progression

Discussion & Conclusions

- DG FEM was determined to be better than standard FEM.
- Applying DG FEM to the nonlinear model outputs the expected results.
- The results of these simulations imply that two nearby dislocation walls with opposite sign will tend to attract and cancel under applied strain.
- Even under applied strain, the adjacent dislocation walls didn't seem to cancel.

What's Next?

- Implement a new drag model with the nonlinear model.
- Simulate a different mathematical model that computes shear stress from α .

Impact on Community

- Better analysis of material deformations
- Production of more durable materials
- Safer living conditions for citizens

What's Next? Impact

References

- [1] Hull, D. and Bacon, D. J. Introduction to Dislocations *Elsevier* 2011
- [2] Ahmed, Jobayer and Roberts, Steve and Wilkinson, Angus J

Characterizing dislocation structures in bulk fatigued copper single crystals using electron channeling contrast imaging (ECCI)

Philosophical Magazine Letters 76: 237-246, 1997