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Abstract. A basic requirement for a mathematical model is often that its solution (output) shouldn’t
change much if the model’s parameters (input) are perturbed. This is important because the exact values
of parameters may not be known and one would like to avoid being misled by an output obtained using
incorrect values. Thus, it’s rarely enough to address an application by formulating a model, solving the
resulting optimization problem and presenting the solution as the answer. One would need to confirm
that the model is suitable, i.e., “good,” and this can, at least in part, be achieved by considering a
family of optimization problems constructed by perturbing parameters as quantified by a Rockafellian
function. The resulting sensitivity analysis uncovers troubling situations with unstable solutions, which
we referred to as “bad” models, and indicates better model formulations. Embedding an actual problem
of interest within a family of problems via Rockafellians is also a primary path to optimality conditions
as well as computationally attractive, alternative problems, which under ideal circumstances, and when
properly tuned, may even furnish the minimum value of the actual problem. The tuning of these
alternative problems turns out to be intimately tied to finding multipliers in optimality conditions and
thus emerges as a main component of several optimization algorithms. In fact, the tuning amounts to
solving certain dual optimization problems. In this tutorial, we’ll discuss the opportunities and insights
afforded by Rockafellians.

Keywords: optimization models, Rockafellian functions, sensitivity analysis, optimality conditions,
normal cones, subgradients, Rockafellian relaxation.

1 Introduction

An optimization model for a particular real-world problem isn’t unique. With numerous alternatives

being available to the modeler, which one is better? There’s the usual trade-off between a “large,”

presumably accurate, but computationally costly model, and a “small,” coarse model easily solved.

There’s also the issue of sensitivity to changes in model parameters, which is a main subject of this

tutorial. Will our decision change significantly if we perturb the parameters slightly? This is a major

concern because the “true” values of the parameters may not be known and one wouldn’t like to be

misled by a solution obtained using incorrect values. In fact, practitioners of optimization know very

well that it isn’t enough to obtain a solution and present it as the answer to a decision maker. One

would need to explore the effect of changes to model parameters. Show that a recommended course of

action isn’t a modeling artifact. Convince the decision maker that the model is “valid” and produces

reasonable results. A systematic approach addressing these issues is to consider a family of optimization

problems constructed by changing parameters of concern. The resulting sensitivity analysis uncovers
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troubling situations with unstable solutions and helps us to distinguish between “good” and “bad”

models.

Viewing a model of interest as producing a family of optimization problems also gives rise to algo-

rithmic approaches. It enables us to assess whether the model has computationally attractive properties

and thus is good in that sense. Optimality conditions, multiplier vectors and relaxations stem from

this perspective as well. Under ideal circumstances and when properly tuned, the relaxations may even

furnish the minimum value for the actual model. The tuning of these relaxations is in of itself a process

of optimization; it amounts to solving certain dual problems.

We organize our thinking about families of problems using the fundamental concept of a Rockafellian,

which can be traced back to the middle of the last century with the pioneering work of Rockafellar [27],

Gale [13] and others. Under the name “bifunction,” the concept was formalized by Rockafellar in the

seminal text [28, Chapter 29], extended to infinite dimensions in [29] and beyond the convex case in [30].

The name “Rockafellian” appears in [38], with “perturbation function” [40] and “bivariate function”

[7] also being found in the literature.

1.1 Definition (Rockafellian). For the problem of minimizing ϕ : Rn → [−∞,∞], we say that f :

R
m × R

n → [−∞,∞] is a Rockafellian with anchor ū ∈ R
m if

f(ū, x) = ϕ(x) ∀x ∈ R
n.

In a practical setting, we think of ϕ in the definition as the objective function produced by a par-

ticular modeling effort. Since the function is permitted to take the value ∞, it accounts for constraints

implicitly as discussed further in the next section. Of course, a minimizer of ϕ is useful and indicates

a possible course of action, but it alone fails to indicate the effect of changing parameter values. An

associated Rockafellian f specifies explicitly the dependence on m parameters and defines the family of

problems {
minimize

x∈Rn

f(u, x), u ∈ R
m

}
,

among which the actual problem of minimizing ϕ emerges as

minimize
x∈Rn

f(ū, x).

In this tutorial, we show that the expanded view involving the whole family of problems reveals con-

cerning modeling assumptions underpinning the actual problem, quantifies the effect of changes in the

perturbation vector u away from the anchor ū, furnishes optimality conditions for the problem with

associated computational possibilities and defines relaxations as well as supporting dual problems.

Our scope covers a vast number of models. The actual problem can be convex or nonconvex, smooth

or nonsmooth. It can involve constraints, including restrictions to integer values. It can be the result

of a complicated modeling process that accounts for uncertainty in various ways. For example, ϕ might

be an expectation of the form E[g(ξ, x)] and then the perturbation vector u could specify modeling

assumptions about the probability distribution of the random vector ξ. We note, however, that the

perturbation vector u rarely represents directly an inherently random quantity such as future product
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demand or environmental condition, which one can’t expect to know at the time of decision making,

and rather it represents modeling assumptions about that quantity and other factors.

Sensitivity analysis of linear programs is well-known and the “economic interpretation” of dual

variables in that context is often the crowning accomplishment of many introductory optimization

courses. Besides the restriction to linear settings, the classical treatment suffers from a limited array of

perturbations. Typically, one would only deal with changes on the right-hand side of the constraints,

but one could imagine other possibilities as well. There’s an extensive literature on more general, local

stability results for optimization and variational problems examining metric regularity and calmness

[39, 16, 25], tilt-stability [26, 12, 18, 11, 14], full-stability [23], connections with iterative schemes [17]

and specifics of nonlinear programming [15]; see also the monographs [5, 34, 8, 20] and the surveys

[24, 6]. Global sensitivity analysis emerges via the truncated Hausdorff distance in [3, 4, 35, 36]. A

review of all these concepts goes beyond this tutorial and we focus instead on an introductory analysis

based on epi-convergence and the Rockafellar condition for optimality as developed in [38], which in

turn relies on [34]. Even this more limited scope allows us to address a vast array of applications and

gain significant insight about strengths and weaknesses of a model.

The tutorial starts in the next section with basic notation and some motivating examples. Section 3

presents the epigraphical point of view, which is the foundation for subsequent developments. Section

4 applies the concepts to Rockafellians to determine whether a model is overly sensitive to parametric

changes. Section 5 reviews the fundamental concepts of normal cones and subgradients, which are

subsequently utilized in Section 6 to quantify local changes in minimum values. Optimality conditions

emerging from Rockafellians are the subject of Section 7. The chapter ends with an extended discussion

of algorithmic possibilities stemming from a Rockafellian including those associated with dual problems.

2 Notation and Examples

We often represent an optimization problem by just an objective function ϕ : Rn → R, where the

extended real line

R = R ∪ {−∞,∞} = [−∞,∞]

allows us to express constraints implicitly by setting ϕ(x) = ∞ for infeasible x ∈ R
n. In this setting,

the domain of ϕ, denoted by

domϕ =
{
x ∈ R

n
∣∣ ϕ(x) <∞

}
,

specifies the feasible set; decisions producing an objective function value of infinity are considered

intolerable. If ϕ(x) ∈ R for all x ∈ R
n, then ϕ is real-valued and this is also specified by writing

ϕ : Rn → R. Generally, the minimum value and set of minimizers of ϕ : Rn → R become

inf ϕ = inf
{
ϕ(x)

∣∣ x ∈ R
n
}
, argminϕ =

{
x ∈ domϕ

∣∣ ϕ(x) ≤ inf ϕ
}
.

We note that the pathological case with ϕ(x) = ∞ for all x ∈ R
n has inf ϕ = ∞, which in fact is

attained at all x ∈ R
n. Still, the definition specifies that argminϕ = ∅ in that case because domϕ = ∅.

This is meaningful because we don’t want to consider a “cost” of infinity to be optimal. In fact, the
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problem of minimizing ϕ is infeasible. We say that ϕ : Rn → R is proper if ϕ(x) > −∞ for all x ∈ R
n

and ϕ(x) <∞ for some x ∈ R
n. Thus, a proper objective function rules out an infeasible problem, but

argminϕ could still be empty as the example ϕ(x) = exp(−x) illustrates. Near-minimizers exist more

broadly. For ε ≥ 0, the set of near-minimizers of ϕ is

ε- argminϕ =
{
x ∈ domϕ

∣∣ ϕ(x) ≤ inf ϕ+ ε
}
.

If ε > 0 and inf ϕ > −∞, then this set is nonempty as illustrated in Figure 1.

= exp( )

-argmin

Figure 1: Example of near-minimizers when argminϕ is empty.

While it can be useful to hide the details of a model by representing it by a single function, a more

detailed analysis and computations should leverage the structural properties of the model. A traditional

format is to specify an optimization problem using a real-valued objective function as well as a number of

real-valued functions to define equality and inequality constraints. In addition to the glaring imbalance

between the detailed specification of the feasible set in terms of many constraint functions and the

lack of details about the objective function, the format fails to bring forth any “simple” constraints

that should be treated differently than more complicated constraints. From a modeling point of view,

there’s also something artificial about singling out one function as objective and the rest as constraints.

For example, when designing a system, we might seek a low cost and a low risk of poor performance.

To insist on having a single objective function would force us to prioritize cost over risk or vice versa.

Moreover, the quantity, being it cost or risk, that has been downgraded to a constraint is subject to a

strict requirement of equaling or not exceeding a threshold. In reality, violations might be acceptable

if appropriately penalized.

To account for a variety of situations, we often specify optimization models using four components:

X ⊂ R
n (basic feasible set)

f0 : R
n → R (primary quantity of interest)

F : Rn → R
m (m secondary quantities of interest)

h : Rm → R (monitoring function for secondary quantities)
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These components produce an optimization problem in composite form:

minimize
x∈X

f0(x) + h
(
F (x)

)
. (2.1)

For example, f0(x) might be the initial cost associated with decision x and F (x) = (f1(x), . . . , fm(x))

could be subsequent costs under m different scenarios about future operating conditions each occurring

with probability pi. Then, it would be meaningful to set

h(z) =
∑m

i=1
pizi, where z = (z1, . . . , zm),

so that the term h(F (x)) becomes the expected subsequent cost across the scenarios. In another setting,

the secondary quantities might be subject to strict requirements expressed by

fi(x) = 0, i = 1, . . . ,m

or, equivalently, F (x) = 0. These requirements are captured by setting

h(z) = ι{0}m(z),

where ιD (Greek letter iota) is the indicator function of the set D defined as

ιD(z) =

{
0 for z ∈ D

∞ otherwise.

Thus, F (x) = 0 if and only if ι{0}m(F (x)) <∞. Since we always assume that α+∞ = ∞ regardless of

α ∈ R, a decision x that fails to satisfy the equality requirements would cause f0(x) + h(F (x)) = ∞,

which indeed implies an infeasible decision. The composite form, especially in the context of certain

monitoring functions, is also referred to as “extended nonlinear programming” [31].

Let’s examine some additional examples in more detail.

2.1 Example (goal optimization). Consider a situation with several quantities of interest (cost, risk,

damage, etc.) and the goal of finding a decision that makes all these quantities low. This vague

problem statement is a rather common take-away from a first meeting with a prospective client! Of

course, there’s little hope that one can find a decision that minimizes every quantity at the same time

and the goal becomes to identify decisions that balance the various concerns. This leads to the broad

area of multi-objective optimization [19]. One approach is then to identify for each quantity of interest

a goal τi and a weight θi. If fi : R
n → R specifies the values of the ith quantity of interest across the

decision space, then we can adopt the model

minimize
x∈X

m∑

i=1

θimax
{
0, fi(x)− τi

}
, (2.2)

where X is a basic feasible set that restricts the decisions. This is referred to as goal optimization and

falls within the composite form of (2.1).
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Detail. Let f0(x) = 0, F (x) = (f1(x), . . . , fm(x)) and

h(z) =
∑m

i=1
θimax{0, zi − τi}

in (2.1) and we recover (2.2). The resulting model leads to decisions that are as “close” as possible to

satisfying all the goals. We note that lowering fi(x) below the goal τi has no benefit, but any value

above incurs a per-unit penalty of θi.

( )

0.2 1.00.4

Figure 2: Monitoring function for inventory level.

2.2 Example (naval resupply at sea). The US Navy operates worldwide without much need to enter

ports for the purpose of resupply. This is achieved by a remarkably low number of transport ships that,

as needed, rendezvous with the battle groups at sea. With their numerous moving “customers,” the

transport ships are faced with a major logistical challenge. Naval planners use an optimization model to

coordinate this effort [9]. The model tracks the inventory of four commodities (dry stores and food, ship

fuel, aircraft fuel and ordnance) for each battle group and one might have expected to find constraints

of the kind “inventory of commodity c on day d for battle group b must be nonnegative.” However,

this isn’t the case; transport ships are just encouraged to resupply through a system of penalties and

rewards. US Navy ships are allowed to have negative inventory according to the model! This isn’t

a result of poor modeling. In fact, as we see in this tutorial, there’s much merit to the approach.

Penalties turn out to produce good models, while (hard) constraints are problematic and easily lead to

bad models.

Detail. The model in [9] specifies the actions (where to sail, when to rendezvous, what to offload,

etc.) for all the transport ships across a planning horizon of up to 180 days. Suppose that the vector

x specifies all these actions as well as auxiliary variables and

fbcd(x) is the inventory of commodity c on day d for battle group b under decision x,

which can be determined based on (assumed) known consumption rates. The decision x is constrained

by limitations of the transport ships and many other concerns, which we here simply specify by the

feasible set X. The feasible set, however, doesn’t prevent negative values of fbcd(x). The objective
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function only encourages high values of fbcd(x). Omitting some details, the model takes the composite

form (2.1) with f0(x) = 0 and

F (x) =
(
fbcd(x), ∀b, c, d

)
h(z) =

∑
b,d,c

hc(zbcd),

where z is the vector with components zbcd and hc : R → R is a monitoring function, which might

depend on the commodity c; see Figure 2. An increasingly large penalty is invoked as the inventory

level decreases, while a reward is associated with high levels (above 40% capacity in Figure 2); an

inventory above 100% capacity of the battle group is prevented by constraints in X.

Our assessment of optimization models is carried out in the context of certain perturbations as

defined by a Rockafellian. For a problem of the composite form (2.1), one might consider a Rockafellian

f : Rm × R
n → R given by

f(u, x) = ιX(x) + f0(x) + h
(
F (x) + u

)
,

which then examines the effect of changes to the secondary quantities of interest. Here, the anchor is

ū = 0 so the actual problem is recovered by minimizing f(0, x) over x ∈ R
n. For example, if h(z) =

ι(−∞,0]m(z), then the Rockafellian specifies a change from the constraint F (x) ≤ 0 to F (x)+u ≤ 0. This

corresponds to the typical “right-hand side” perturbation of linear programming sensitivity analysis and

captures changes to resource budgets. For goal optimization, with h as in Example 2.1, this Rockafellian

represents a change in goal for the ith quantity of interest from τi to τi − ui.

Any given model can be associated with many different Rockafellians, reflecting concerns about

various parameters. The model would be considered good relative to a Rockafellian f : Rm × R
n → R

with anchor ū if the Rockafellian exhibits certain desirable properties such as

minimizers and minimum value of f(u, · ) tend to those of f(ū, · ) as u→ ū.

We omit a formal definition and instead give a simple example illustrating that these convergence

properties are far from automatically satisfied.

argmin

1

10

5

Figure 3: The minimum value p(u) = inf f(u, · ) as function of u in Example 2.3.
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2.3 Example (constraint perturbation). The problem of minimizing x2+1 subject to (x−2)(x−4)+1

≤ 0 can be associated with a Rockafellian defined by

f(u, x) = x2 + 1 + ι(−∞,0]

(
g(x) + u

)
and g(x) = (x− 2)(x− 4),

with ū = 1 as its anchor. Let p(u) = inf f(u, · ) so that p(1) becomes the minimum value of the actual

problem. It turns out that p(u) doesn’t tend to p(1) if u approaches 1 from above. In fact, p(u) = ∞ for

u > 1, while p(1) = 10. Thus, the Rockafellian highlights the sensitivity to changes on the right-hand

side of the constraint in the actual problem. This would have raised concerns about the validity of the

model had it represented a real-world situation with constraint parameters being subject to modeling

assumptions.

Detail. The feasible set dom f(u, · ) is given by the constraint (x − 2)(x − 4) + u ≤ 0. A simple

application of the quadratic equation produces

dom f(u, · ) =
{[

3−
√
1− u, 3 +

√
1− u

]
if u ≤ 1

∅ otherwise.

As functions of u, the minimizers and minimum values become

argmin f(u, · ) =





{0} if u < −8{
3−

√
1− u

}
if − 8 ≤ u ≤ 1

∅ otherwise

p(u) = inf f(u, · ) =





1 if u < −8

11− u− 6
√
1− u if − 8 ≤ u ≤ 1

∞ otherwise.

At every u < 1, p is continuous. However, at the anchor ū = 1, the minimum value makes a jump from

10 to ∞; see Figure 3.

3 Epigraphs

The key concept for understanding changes to minimizers and minimum values as well as several other

aspects is that of an epigraph. For a function ϕ : Rn → R, its epigraph is defined as

epiϕ =
{
(x, α) ∈ R

n × R
∣∣ϕ(x) ≤ α

}
.

In contrast to the graph of ϕ, which consists of the points (x, α) with ϕ(x) = α, the epigraph captures

the crucial distinction between ϕ(x) = ∞ and ϕ(x) = −∞ in a manner that’s tailored to minimization

problems. The former value designates x as infeasible, while the latter value specifies that x must be a

minimizer of ϕ. Figure 4 shows the epigraphs of f(0, · ), f(3/4, · ) and f(1, · ) as defined in Example 2.3.

These epigraphs appear to converge in the sense that the “wedge” epi f(u, · ) approaches the vertical
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epi 1,

4

10

5

321

10

5

43214321

epi 3/4,epi 0, 10

5

Figure 4: Epigraphs of f(0, · ), f(3/4, · ) and f(1, · ) in Example 2.3. Arrows indicate that the epigraphs extend
upward indefinitely.

line segment epi f(1, · ) as u → 1 from below. Moreover, the corresponding minimizers and minimum

values converge as already established in Example 2.3. This isn’t a coincidence. It turns out that

convergence of epigraphs essentially guarantees convergence of minimizers and minimum values.

To make precise the meaning of epigraphs converging, we define the point-to-set distance between

x̄ ∈ R
n and C ⊂ R

n as the distance between x̄ and the closest point in C. Specifically,

dist(x̄, C) = infx∈C ‖x− x̄‖2 when C 6= ∅ and dist(x̄, ∅) = ∞.

In the following, we use superscript ν (Greek nu) to index elements in a sequence, which then runs over

the natural numbers N = {1, 2, . . . }.

3.1 Definition (epi-convergence). For functions {ϕ,ϕν : R
n → R, ν ∈ N}, we say that ϕν epi-

converges to ϕ, written ϕν →e ϕ, when

epiϕ is a closed set and dist(z, epiϕν) → dist(z, epiϕ) ∀z ∈ R
n+1.

Figure 5 illustrates epi-convergence in the context of Example 2.3: For any point z ∈ R2,

dist
(
z, epi(f(u, · )

)
→ dist

(
z, epi(f(1, · )

)

when u→ 1 from below. The figure visualizes the situation with z = (1, 5), in which case one obtains

dist
(
z, epi

(
f(u, · )

))
=

√(
2−

√
1− u

)2
+

(
6− u− 6

√
1− u

)2
for u ∈ [−8, 1].

Certainly, the distance tends to
√
29 as u → 1 from below and this is indeed the distance from z to

epi f(1, · ). The situation is similar for other z.

The next theorem summarizes the main consequences of epi-convergence; see [38, Theorems 4.14,

5.5] for a proof and further details.

3.2 Theorem (epigraphical approximations). Suppose that the functions ϕν : Rn → R epi-converge

to a proper function ϕ : Rn → R. Then, the following hold:
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epi 1,

4

10

5

321

10

5

43214321

epi 3/4,epi 0,

dist , epi 0,

10

5 dist , epi 3/4, dist , epi 1,

Figure 5: Epi-convergence in Example 2.3 as indicated by the convergence of the distance from z to the epigraphs.

(a) Every cluster point of a sequence {xν ∈ εν - argminϕν , ν ∈ N}, with εν → 0, is a minimizer of ϕ.

Thus, in particular, if xν converges to x̄ and each xν is a minimizer of ϕν , then x̄ is a minimizer of

ϕ.

(b) Every cluster point x̄ of a sequence {xν , ν ∈ N}, with ϕν(xν) ≤ αν and αν → α, satisfies ϕ(x̄) ≤ α.

(c) If there’s a compact set B such that B ∩ argminϕν is nonempty for all ν, then inf ϕν → inf ϕ.

We observe that the theorem imposes essentially no assumptions on the functions besides their

epi-convergence; convexity and/or smoothness aren’t required. Item (b) furnishes the guarantee that a

point with a low function value according to the approximation ϕν also has a low value according to

the actual function ϕ.

The following proposition is often helpful in establishing epi-convergence; see [38, Theorem 4.15].

Occasionally, we abbreviate “there exist(s)” by the symbol ∃.

3.3 Proposition (characterization of epi-convergence). For ϕ,ϕν : Rn → R, ϕν →e ϕ if and only if the

following hold at each x ∈ R
n:

(a) ∀xν → x, one has liminf ϕν(xν) ≥ ϕ(x)

(b) ∃xν → x such that limsupϕν(xν) ≤ ϕ(x).

4 Stability

Let’s now bring in the concept of epi-convergence to examine whether an optimization model is good in

the sense that, relative to a particular Rockafellian, minimizers and minimum values change continuously

as model parameters are perturbed. The following theorem, which is an immediate consequence of

Theorem 3.2, shows that the key property to check is epi-convergence of the Rockafellian.

4.1 Theorem (stability). Suppose that f : Rm × R
n → R is a Rockafellian with anchor ū ∈ R

m for

the problem

minimize
x∈Rn

ϕ(x).

10



Let p(u) = inf f(u, · ) and P (u) = argmin f(u, · ), i.e., the minimum values and minimizers of f(u, · )
viewed as functions of u. If f(ū, · ) is proper and, for any uν → ū, one has f(uν , · )→e f(ū, · ) as well as
a compact set B ⊂ R

n such that B ∩ argmin f(uν , · ) is nonempty for all ν, then the following hold:

(a) p is a continuous function at ū, i.e., uν → ū implies that p(uν) → inf ϕ

(b) P is outer semicontinuous at ū, i.e., uν → ū implies that any cluster point x̄ of {xν ∈ P (uν), ν ∈ N}
satisfies x̄ ∈ argminϕ.

The stability property in the theorem is typically desirable and one might seek to develop models

that satisfy the stated assumptions. Let’s examine several common cases.

4.2 Example (regularization as perturbation). In data analytics and algorithms relying on proximal

point methods, an optimization problem of minimizing a continuous function f0 : R
n → R over a

nonempty closed set X is often modified by a regularization term involving a penalty parameter. The

penalty parameter is rarely fixed. What is the effect of changing it? Specifically, the actual problem is

minimize
x∈X

f0(x) + θ0r(x),

where θ0 ∈ [0,∞) is the penalty parameter and r : Rn → [0,∞) is a continuous function; for instance

r(x) = ‖x‖1 as in lasso regression. With the value of the penalty parameter in focus, we define a

Rockafellian f : R× R
n → R for the problem as

f(u, x) = ιX(x) + f0(x) + θ(u)r(x),

where θ(u) tends to θ(0) = θ0 as u→ 0. It turns out that regardless of θ0 ∈ [0,∞), the actual problem

is stable in the sense of Theorem 4.1 under changes to the penalty parameter as long as a boundedness

assumption holds.

Detail. Let uν → 0. We use Proposition 3.3 to confirm that f(uν , · )→e f(0, · ). For (a) in the propo-

sition, let xν → x. We consider two cases. If x ∈ X, then ιX(x) = 0 and

liminf f(uν , xν) = liminf
(
ιX(xν) + f0(x

ν) + θ(uν)r(xν)
)

≥ liminf
(
f0(x

ν) + θ(uν)r(xν)
)
= f0(x) + θ(0)r(x) = f(0, x).

If x 6∈ X, then ιX(x) = ∞ and xν 6∈ X for all ν sufficiently large because X is closed. Thus,

liminf f(uν , xν) = ∞, which matches f(0, x). For (b) in the proposition, let x be arbitrary and take

xν = x for all ν. Then,

limsup f(uν , xν) = limsup
(
ιX(x) + f0(x) + θ(uν)r(x)

)
= ιX(x) + f0(x) + θ(0)r(x) = f(u, x)

and we conclude that f(uν , · )→e f(0, · ). Since f(ū, · ) is proper in view of the nonemptyness of X,

Theorem 4.1 applies as long as one can determine a compact set B that “reaches” at least some

minimizers in argmin f(uν , · ) regardless of ν. If X is compact, then this is trivially the case but many

other possibilities exist as well.
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4.3 Example (risk-averse decision making). Suppose that we would like to select a decision x from a

nonempty compact set X ⊂ R
n such that a cost g(ξ, x) is minimized, where g : Rm × R

n → R. The

difficulty is that the cost depends on ξ, which is uncertain and can take values in a finite set Ξ ⊂ R
m

each occurring with probability pξ. One modeling possibility is to select x such that the cost across the

worst (1− α)100% outcomes is minimized, where α ∈ (0, 1) conveys the level of risk averseness. If α is

near 1, then x is selected such that the very worst outcomes are made less costly as much as possible.

If α is near 0, then the average cost governs the decision. For ᾱ ∈ (0, 1), these modeling choices result

in the following problem

minimize
x∈X,γ∈R

γ +
1

1− ᾱ

∑

ξ∈Ξ

pξ max
{
0, g(ξ, x) − γ

}
;

see [38, Section 3.C] for further details about such superquantile minimization as well as [32, 33] for

applications in engineering design and in finance, where it’s called CVaR minimization. In practice, it’s

often difficult to know the right level of risk averseness. Under the assumption that g(ξ, · ) is continuous
for all ξ ∈ Ξ, it turns out that the minimum value for the problem changes continuously as α varies in

(0, 1). In this sense, the underlying model is good.

Detail. Let’s express α = eu/(1 + eu), with u ∈ R, and adopt a Rockafellian of the form

f
(
u, (γ, x)

)
= ιX(x) + γ + (1 + eu)

∑

ξ∈Ξ

pξ max
{
0, g(ξ, x) − γ

}
.

The actual problem is recovered by minimizing f(ū, · ), where ū = ln(ᾱ/(1 − ᾱ)) is the anchor. Let’s

check the assumptions of the Stability Theorem 4.1. Trivially, f(ū, · ) is proper because X is nonempty.

The required epi-convergence can be established using Proposition 3.3 as in the previous example and

we omit the details.

Let uν → ū. The existence of a compact set B ⊂ R
1+n such that B ∩ argmin f(uν , · ) is nonempty

for all ν is confirmed as follows. For xν ∈ X and γν → ∞, f(uν, (γν , xν)) → ∞ because the term inside

the summation is nonnegative. For xν ∈ X and γν → −∞, minξ∈Ξ,ν∈N g(ξ, x
ν) is bounded from below

because Ξ is a finite set, X is compact and g(ξ, · ) is continuous. Thus,

γν + (1 + eu
ν

)
∑

ξ∈Ξ

pξ max
{
0, g(ξ, xν)− γν

}

involves a first term tending to −∞ and a second term tending to ∞, with the second term overpowering

the first one due to the coefficient (1 + eu
ν

), which is greater than one. So, in this case as well,

f(uν , (γν , xν)) → ∞. We’ve shown that the distance from the origin to argmin f(uν , · ) can’t become

arbitrarily large.

4.4 Example (composite form). Let’s consider a problem of the composite form (2.1) with a nonempty

closed set X ⊂ R
n, continuous f0 : Rn → R, real-valued h : Rm → R and continuous F : Rn → R

m.

We’re concerned about changes to F and this leads to a Rockafellian f : Rm × R
n → R defined as

f(u, x) = ιX(x) + f0(x) + h
(
F (x) + u

)
,

12



with anchor 0. Under a boundedness assumption, the Stability Theorem 4.1 applies and the underlying

model is then good in the sense that minimizers and minimum values vary continuously as specified in

the theorem. Since the naval resupply problem in Example 2.2 satisfies these assumptions, we conclude

that the resulting logistical plans are actually rather stable relative to changes in the inventory levels

and this can be part of the reason the model has been accepted by US Navy planners.

Detail. Since X is nonempty and h is real-valued, f(0, · ) is proper. Let uν → 0. We use Proposition

3.3 to confirm that f(uν , · )→e f(0, · ). For part (a) of that proposition, let xν → x. We consider two

cases. If x ∈ X, then ιX(x) = 0 and

liminf f(uν , xν) = liminf
(
ιX(xν) + f0(x

ν) + h
(
F (xν) + uν

))

≥ liminf
(
f0(x

ν) + h
(
F (xν) + uν

))
= f0(x) + h

(
F (x)

)
= f(0, x)

by the continuity of f0, h and F . If x 6∈ X, then ιX(x) = ∞ and, because X is closed, xν 6∈ X as well for

all ν sufficiently large. Thus, liminf f(uν , xν) = ∞, which matches f(0, x). For (b) in the proposition,

let x be arbitrary and take xν = x for all ν. Then,

limsup f(uν , xν) = limsup
(
ιX(x) + f0(x) + h

(
F (x) + uν

))
= ιX(x) + f0(x) + h

(
F (x)

)

again using the continuity of h. We’ve established that f(uν , · )→e f(0, · ). The existence of a compact

set X as required by the Stability Theorem 4.1 needs to be verified separately, but this is trivial if X

is compact and it holds in other cases as well.

The above analysis relies heavily on the fact that the monitoring function h is real-valued and con-

tinuous. While this is acceptable when examining goal optimization (Example 2.1) and naval resupply

(Example 2.2), it would not hold in the case of (hard) constraints subject to right-hand side pertur-

bations as in Example 2.3. In fact, that example shows one can’t extend the present results without

additional assumptions. This highlights the fundamental advantage of modeling requirements using

penalties instead of constraints: under perturbations of the underlying functions, penalties produce

good models while constraints might not.

4.5 Example (penalty approach). Suppose that the actual problem of interest is

minimize
x∈Rn

ϕ(x) = ιX(x) + f0(x) + ι(−∞,0]m
(
F (x)

)
, (4.1)

where X is nonempty closed and both f0 : R
n → R and F : Rn → R

m are continuous. As discussed in

Examples 2.3 and 4.4, the underlying model here can be bad in the sense that small changes in F (x)

might cause large changes in the minimizers and minimum values. It might be prudent to adjust the

modeling of the secondary quantities of interest and adopt the alternative problem

minimize
x∈Rn

ιX(x) + f0(x) + θ
m∑

i=1

max
{
0, fi(x)

}
, (4.2)

13



where θ ∈ [0,∞) is a penalty parameter and F (x) = (f1(x), . . . , fm(x)). For any fixed θ, the alternative

problem is a special case of that in Example 4.4 and therefore comes with the desirable stability

properties. However, we can go further and make connections with (4.1) as well.

Detail. Let’s consider the Rockafellian given by

f(u, x) = ιX(x) + f0(x) + θ(u)

m∑

i=1

max
{
0, fi(x) + ui

}

associated with (4.2), where the penalty parameter is also made dependent on u. If uν → 0, θ(uν) → ∞
and

θ(uν)max
{
0,maxi=1,...,m u

ν
i

}
→ 0 as ν → ∞, (4.3)

then f(uν , · )→e ϕ. Thus, Proposition 3.2 can be brought in to verify that minimizers and minimum

values of a perturbed version of (4.2) converge not only to those of (4.2) but also to those of the actual

problem.

To verify the claimed epi-convergence we bring in Proposition 3.3. If xν → x, then liminf f(uν, xν) ≥
ϕ(x) by arguments similar to those in Example 4.4. Let xν = x and consider three cases. (i) If x 6∈ X,

then ιX(x) = ∞ and limsup f(uν , xν) = ϕ(x) = ∞. (ii) If x ∈ X and fi(x) > 0 for some i, then

ϕ(x) = ∞ and limsup f(uν , xν) can’t exceed that value. (iii) If x ∈ X and fi(x) ≤ 0 for all i, then

limsup f(uν , xν) = f0(x) +
m∑

i=1

limsup
(
θ(uν)max

{
0, fi(x) + uνi

})

≤ f0(x) +
m∑

i=1

limsup
(
θ(uν)max

{
0, uνi

})
= f0(x) = ϕ(x)

and the claim about epi-convergence follows from Proposition 3.3.

We note that the requirement (4.3) has no ramification if uνi approaches zero from below. However,

if uνi is positive, then one has to make sure that the penalty parameter θ(uν) grows sufficiently slowly

so that the product with uνi vanishes.

5 Normal Cones and Subgradients

While continuity of minimum values as u varies provides indications of a good model, the property

fails to quantify how fast the values might change. This raises the question of gradients of minimum

value functions, but these might not be defined due to nonsmoothness. Moreover, to develop optimality

conditions in a general setting we also need to consider nonsmooth functions; see for example the kinks

in Figure 2. To address these challenges, we turn to subgradients and supporting normal cones.

5.1 Definition (normal cone). For x̄ ∈ C ⊂ R
n, a vector v ∈ R

n is normal to C at x̄ in the regular

sense, or simply a regular normal, if 1

〈v, x− x̄〉 ≤ o
(
‖x− x̄‖2

)
for x ∈ C.

1The term o(‖x− x̄‖2) for x ∈ C has the property that o(‖x− x̄‖2)/‖x − x̄‖2 → 0 when x ∈ C → x̄ with x 6= x̄.
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The set of all such regular normal vectors is denoted by N̂C(x̄).

A vector v ∈ R
n is normal to C at x̄ in the general sense, or simply a normal, if

vν → v for some vν ∈ N̂C(x
ν) and xν ∈ C → x̄.

The set of all such normal vectors is NC(x̄), the normal cone of C at x̄.

Figure 6 illustrates some common situations. On the left, where the boundary of the set C is smooth

at x̄, the regular normal vectors all point in the same direction; recall that 〈v, x − x̄〉 is nonpositive

when the angle between v and x− x̄ is at least 90 degrees. At the corner point x′, the regular normal

vectors fan out as it becomes easier to form an angle of at least 90 degrees with points in C.

C( ) = C( )

C = {0}
C( )

C( ) = C( )

C C

Figure 6: Normal vectors and normal cones.

On their own, regular normal vectors fail to provide a solid basis for the treatment of “complicated”

sets with inward kinks and other irregularities as seen on the right in Figure 6. At the inward kink,

N̂C(x̄) = {0} since the zero vector is the only vector v that achieves nonpositive 〈v, x − x̄〉 for x in

C even locally. We achieve a robust notion of “normality” by considering the situation at points near

x̄ and this leads to the enrichment of vectors in NC(x̄) that aren’t regular normals. Figure 6 shows

as dashed arrows regular normal vectors at nearby points approaching x̄ from the right. In the limit,

these vectors give rise to the normal vectors at x̄ pointing northwest. Likewise, points approaching x̄

from the left result in the normal vectors at x̄ pointing northeast. In all these illustrations, we think of

normal vectors at a point in the sense of “floating arrows” and place them relative to that point in C.

One could just as well visualize normal vectors as forming a cone emanating from the origin.

While normal vectors are important in expressions of optimality conditions, they also define sub-

gradients for arbitrary functions via their epigraphs.

5.2 Definition (subgradients). For ϕ : Rn → R and x̄ with ϕ(x̄) finite, a vector v is a subgradient of

ϕ at x̄ if

(v,−1) ∈ Nepiϕ

(
x̄, ϕ(x̄)

)
.

The set of all subgradients of ϕ at x̄ is denoted by ∂ϕ(x̄).

Figure 7 illustrates the normal cones of epiϕ at four different points. Near x3, the function ϕ varies

smoothly and the normal vectors at (x3, ϕ(x3)) all point in the same direction, which gives just one
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Figure 7: Normal vectors (v,−1) of epigraphs produce subgradients v.

vector of the form (v,−1). Thus, there’s just one subgradient and it’s given by this v. The value of

this v appears to be roughly 1, which means that ∂ϕ(x3) = {1}. Of course, this coincides with the

slope of ϕ at x3. This is confirmed by the first part of the following proposition; under smoothness,

subgradients reduce to gradients. A proof is immediate from the definitions.

5.3 Proposition (subgradients and gradients). For ϕ : Rn → R and a point x̄, suppose that ϕ is

smooth in a neighborhood of x̄. Then,

∂ϕ(x̄) =
{
∇ϕ(x̄)

}
.

At (x2, ϕ(x2)) in Figure 7, the epigraph of ϕ has a kink and the normal vectors fan out in many

directions. The vectors of the form (v,−1) in the normal cone appear to have v ∈ [−1/2, 1], which

makes this interval the set of subgradients of ϕ at x2, i.e., ∂ϕ(x2) = [−1/2, 1]. The values −1/2 and 1

correspond to the slope of ϕ on the left-side and the right-side of x2, respectively.

At points to the right of x4, the value of ϕ jumps to infinity. This produces a normal cone of epiϕ at

(x4, ϕ(x4)) that also includes “horizontal” vectors, which aren’t of the form (v,−1). Still, any normal

vector that “tilts down” a bit can be made sufficiently long so it becomes in the form (v,−1). Thus,

∂ϕ(x4) = [1,∞).

At x1, we have the peculiar behavior that epiϕ is “vertical” and all the normal vectors are of the

“horizontal” kind. Thus, there aren’t any normal vectors of the form (v,−1) and ∂ϕ(x1) = ∅.
As in the case of differential calculus, there’s an extensive set of rules that allow us to easily compute

subgradients in many practical situations; we refer to [38, Section 4.I] for details and simply summarize

two key facts here.

5.4 Proposition (sum rule). For ϕ1, ϕ2 : Rn → R and a point x̄, suppose that ϕ1 is smooth in a
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neighborhood of x̄ and ϕ2 is finite at x̄. If ϕ is the function given by ϕ(x) = ϕ1(x) + ϕ2(x), then

∂ϕ(x̄) = ∇ϕ1(x̄) + ∂ϕ2(x̄).

5.5 Proposition (indicator function). For X ⊂ R
n and x̄ ∈ X, one has

∂ιX(x̄) = NX(x̄).

By combining these proposition, we see that the function given by ϕ(x) = f0(x) + ιX(x) has

∂ϕ(x) = ∇f0(x) +NX(x)

at any point x ∈ X provided that f0 is smooth. Regardless of the details of a function, we obtain the

following fundamental optimality condition; see [38, Theorem 4.73].

5.6 Theorem (Fermat Rule for optimality). For ϕ : Rn → R and x⋆ with ϕ(x⋆) ∈ R, one has

x⋆ local minimizer of ϕ =⇒ 0 ∈ ∂ϕ(x⋆).

In Figure 7, 0 ∈ ∂ϕ(x2) = [−1/2, 1], which means x2 satisfies the Fermat Rule for optimality. This

also illustrates the fact that while a function might be nonsmooth at just “a few” points, it tends to

occur where we most care: at local minimizers. Consequently, we can’t simply ignore the kinks in a

function.

The Fermat Rule and our definition of subgradients apply to general functions. Convexity or

smoothness isn’t needed. In the case of a convex function ϕ : Rn → R, Definition 5.2 coincides with

the subgradients from convex analysis, which are often stated as those v ∈ R
n with

ϕ(x) ≥ ϕ(x̄) + 〈v, x − x̄〉 ∀x ∈ R
n. (5.1)

In the literature, our subgradients are sometimes referred to as “general,” “limiting” or “Mordukhovich”

subgradients; see the commentary of [34] for further details and explanation of why they have emerged

as more central than “Clarke subgradients.”

A special situation occurs when a function becomes “infinitely steep” or jumps to infinity at a point

as takes place at x1 and x4 in Figure 7. The “horizontal” normal vectors of the epigraph in such cases

are important in dealing with constraint qualifications and related issues, and are given a specific name.

We recall that a function ϕ : Rn → R is lower semicontinuous (lsc) if epiϕ is a closed set.

5.7 Definition (horizon subgradients). For a lsc function ϕ : Rn → R and a point x̄ with ϕ(x̄) finite,

a vector v is a horizon subgradient of ϕ at x̄ if

(v, 0) ∈ Nepiϕ

(
x̄, ϕ(x̄)

)
.

The set of all horizon subgradients of ϕ at x̄ is denoted by ∂∞ϕ(x̄).
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In Figure 7, ∂∞f(x1) = (−∞, 0] and ∂∞f(x4) = [0,∞). At the points x2 and x3, there aren’t any

“horizontal” normal vectors and thus ∂∞ϕ(x2) = ∂∞ϕ(x3) = {0}. The situation at x3 can be settled

by the following general fact, which is a direct consequence of the definitions.

5.8 Proposition (horizon subgradients for smooth functions). If ϕ : Rn → R is smooth in a neighbor-

hood of x̄, then ∂∞ϕ(x̄) = {0}.

Just as the case for subgradients, horizon subgradients can often be easily computed using a series

of calculation rules. We recall two main facts; see [38, Section 4.I] for further details.

5.9 Proposition (expressions for horizon subgradients). If X ⊂ R
n and x̄ ∈ X, then the indicator

function ιX has

∂∞ιX(x̄) = NX(x̄).

If h : Rm → R is proper, lsc and convex and ū ∈ domh, then

∂∞h(ū) = Ndom h(ū).

A function ϕ : Rn → R is locally Lipschitz continuous at x̄ when there are δ ∈ (0,∞) and κ ∈ [0,∞)

such that ∣∣ϕ(x)− ϕ(x′)
∣∣ ≤ κ‖x− x′‖2 whenever ‖x− x̄‖2 ≤ δ, ‖x′ − x̄‖2 ≤ δ.

If ϕ is locally Lipschitz continuous at every x̄ ∈ R
n, then ϕ is locally Lipschitz continuous.

5.10 Proposition (subgradients and local Lipschitz continuity). Suppose that ϕ : Rn → R is lsc and

x̄ is a point at which ϕ is finite. Then,

ϕ is locally Lipschitz continuous at x̄ ⇐⇒ ∂∞ϕ(x̄) = {0}.

Under these circumstances, ∂ϕ(x̄) is nonempty and compact.

epi

,1

,

Figure 8: Normal vectors (v,−1) produce subgradients v of monitoring function in naval resupply problem.
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5.11 Example (naval resupply at sea; subgradients). The monitoring function in the naval resupply

problem in Example 2.2 is expressed by a piecewise affine function of the form

hc(γ) = max
i=1,...,m

αiγ + βi,

where αi, βi are given. This function is nonsmooth, but convex. Its subgradients are given by the

formula

∂hc(γ) =

{ m∑

i=1

µiαi

∣∣∣∣
m∑

i=1

µi = 1, µi = 0 if αiγ + βi < hc(γ), µi ≥ 0 otherwise

}
.

Detail. Figure 8 illustrates the epigraph of hc and a corresponding normal cone, which in turn produces

the subgradients. At most points, the set of subgradients contains only a single value, the slope αi of

the corresponding line segment. However, when the graph of hc has a kink, the normal cone at that

point widens as in the figure and includes all convex combinations of the adjacent slope coefficients.

6 Quantitative Analysis

With the confidence that subgradients are defined for arbitrary functions, we now return to the main

subject of assessing whether a particular model is good in the sense that the resulting minimum value

doesn’t change much as a parameter of concern varies. While Section 4 furnishes conditions under

which the minimum value changes continuously, we now step further and quantify the rate of change.

This provides a deeper understanding of the sensitivity to changes in model parameters. In particular,

one might be able to identify which of the parameters are more significant and these can then receive

additional scrutiny.

Certain pathological cases might occur if a problem is unbounded in some sense and these are avoided

by imposing a boundedness assumption. Specifically, in the context of a function f : Rm × R
n → R

with values f(u, x), we say that the function is level-bounded in x locally uniformly in u when

∀ū ∈ R
m and α ∈ R ∃ε > 0 and a bounded set B ⊂ R

n

such that
{
x ∈ R

n
∣∣ f(u, x) ≤ α

}
⊂ B when ‖u− ū‖2 ≤ ε.

Informally, the property amounts to having, for each ū and α, a bounded level-set {x | f(ū, x) ≤ α}
with the bound remaining valid under perturbation around ū.

Under this assumption, we can, at least partially, characterize the subgradients of the minimum

values of a Rockafellian. Since minimum values rarely vary smoothly with parametric changes, we

indeed need to bring in subgradients as gradients may not be defined. The following theorem is given

in [38, Theorem 5.13]. For refinements, we refer to [21, 22] and also [2] for the convex case.

6.1 Theorem (subgradients of min-value function). For a proper lsc function f : Rm ×R
n → R, with

f(u, x) level-bounded in x locally uniformly in u, let

p(u) = inf f(u, · ) and P (u) = argmin f(u, · ) ∀u ∈ R
m.
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Then, at any ū ∈ dom p, one has

∂p(ū) ⊂
⋃

x̄∈P (ū)

{
y ∈ R

m
∣∣ (y, 0) ∈ ∂f(ū, x̄)

}
.

If f is convex, then p is convex, the inclusion holds with equality and each set in the union coincides.

Typically, f in the theorem is a Rockafellian with anchor ū for an actual problem of minimizing

ϕ : Rn → R. Then, p(ū) is the minimum value of the actual problem and ∂p(ū) estimates the effect of

perturbation on the minimum value. Neither smoothness nor convexity is needed in the first part of

the theorem. Though, convexity allows us to sharpen the result from an inclusion to an equality.

In essence, if the subgradients of the Rockafellian are small in length, then the subgradients of the

minimum value function are also small. Consequently, the effect on the minimum value of perturbing

u away from ū is also small. In contrast, if the Rockafellian has large subgradients, then the change in

minimum value can be substantial and this calls into question the suitability of the formulation.

6.2 Example (perturbation of inequality). Let’s return to Example 2.3, but with the constraint in

the actual problem now being g(x) ≤ 0. The Rockafellian then has anchor ū = 0. Using Theorem 6.1,

one can show that

∂p(0) = {2}.

Figure 9 visualizes the minimum value function p and its affine approximation given by this subgradient,

i.e.,

u 7→ p(0) + 2(u− 0) = 5 + 2u.

Detail. We compute the subgradients of the Rockafellian using Proposition 5.4 and this produces

∂f(u, x) = (0, 2x) + ∂ι(−∞,0]

(
g(x) + u

)
.

The last term can be calculated using a chain rule (see [38, Theorem 4.64]) so that

∂f(u, x) = (0, 2x) + (1,∇g(x))N(−∞,0]

(
g(x) + u

)
= (0, 2x) + (1, 2x− 6)Y (u, x),

for (u, x) ∈ dom f , where Y (u, x) = [0,∞) if g(x) + u = 0 and Y (u, x) = {0} otherwise. Thus,

(y, 0) ∈ ∂f(0, x) ⇐⇒ 0 = 2x+ y(2x− 6) for some y ∈ Y (0, x).

Since we trivially observe that x̄ = 2 is the unique minimizer of the actual problem, and this makes

P (ū) = {2} in Theorem 6.1, the previous equivalence produces a unique y = 2. Consequently,

∂p(0) ⊂ {2}.

We see directly that f is convex so the inclusion can be replaced by an equality. Moreover, in view of

the convexity inequality (5.1),

p(u) ≥ 5 + 2u ∀u ∈ R
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Figure 9: Minimum value function p and its estimates in Example 6.2.

and this is also confirmed by Figure 9.

If we shift the focus to ū = 1 as in Example 2.3, then the above analysis breaks down because there

aren’t any subgradients of p at 1; the slope becomes vertical at 1 in Figure 9.

For problems in the composite form, we obtain the following detailed result; see [38, Proposition

5.16].

6.3 Proposition (sensitivity in composite optimization). For smooth f0 : R
n → R, smooth F : Rn →

R
m, proper, lsc and convex h : Rm → R and nonempty closed X ⊂ R

n, consider the problem

minimize
x∈X

f0(x) + h
(
F (x)

)

and the associated Rockafellian f : Rm × R
n → R given by

f(u, x) = ιX(x) + f0(x) + h
(
F (x) + u

)
.

Suppose that f(u, x) is level-bounded in x locally uniformly in u. Let p(u) = inf f(u, · ), P (u) =

argmin f(u, · ) and, for x ∈ P (u),

Y (u, x) =
{
y ∈ ∂h

(
F (x) + u

) ∣∣ −∇f0(x)−∇F (x)⊤y ∈ NX(x)
}
.

Then, for ū ∈ dom p, one has

∂p(ū) ⊂
⋃

x̄∈P (ū)

Y (ū, x̄).

We note that the actual problem in the proposition might be neither smooth nor convex. Still, we

obtain a rather specific expression for the subgradients of the minimum value function. In particular,

if all the y-vectors in Y (ū, x̄) are small, then we conclude that the minimum value changes just a little

under perturbation of u away from ū and this would indicate a good model formulation.
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6.4 Example (economic order quantity in inventory management). A store manager needs to deter-

mine how many units to order of a given product each time the product runs out. The number of units

sold per year is ρ > 0, which means that an order quantity of x units results in ρ/x orders per year.

Suppose that each one of these orders has a fixed cost of β > 0. (The cost of the units doesn’t factor in

here because the total number of units ordered across the whole year is always ρ.) The manager also

faces an inventory cost of α > 0 per unit and year. With an order quantity x, the average inventory

is x/2 so the annual inventory cost becomes αx/2. The manager would like to determine an order

quantity x such that both the ordering cost βρ/x and the inventory cost αx/2 are low. Let’s adopt the

goal optimization model (cf. Example 2.1)

minimize
x∈X⊂R

max
{
βρ/x− τ, 1

2αx− σ
}
,

where τ, σ are the goals for the ordering cost and the inventory cost, respectively. What’s the effect of

changing the goals?

Detail. For perturbation u ∈ R
2 of the goals, let’s adopt the Rockafellian given by

f(u, x) = ιX(x) + h
(
F (x) + u

)
,

where h(z) = max{z1, z2} and

F (x) =
(
f1(x), f2(x)

)
=

(
βρ/x− τ, 12αx− σ

)
.

Then, the anchor of f is ū = 0 and the actual model corresponds to minimizing f(0, · ). Assuming that

X is a nonempty closed subset of the positive numbers, then the assumptions of Proposition 6.3 are

satisfied as long as f1 is extended in a smooth manner from being defined on the positive numbers to

all of R. (This is only a technical issue as we don’t consider order quantities below 1 anyway.) We can

show that in the notation of Proposition 6.3,

Y (u, x) =
{
y ∈ R

2
∣∣ βρy1x−2 − 1

2αy2 ∈ NX(x)

y1 + y2 = 1; yi ≥ 0 if fi(x) + ui = f(u, x), yi = 0 otherwise; i = 1, 2
}

for x ∈ P (u). In general, one would employ an algorithm to compute a minimizer x⋆ of the model at

hand under ū, which hopefully also computes the corresponding multipliers in Y (ū, x⋆). If we assume

that σ = τ = 0 and X isn’t active at a minimizer, then we obtain the unique minimizer analytically by

solving f1(x) = f2(x), which produces

x⋆ =
√

2βρ/α, with Y (0, x⋆) =
{(

1
2 ,

1
2

)}
.

Then, by Proposition 6.3, the minimum value function p(u) = inf f(u, · ) actually has∇p(0) = (1/2, 1/2).

This provides the insight that if the current goal of zero ordering cost is changed to a small positive

number τ , which corresponds to setting u = (−τ, 0), then the change in minimum value is approximately

〈∇p(0), u〉 = −τ/2. The negative value is reasonable as raising the goal value reduces the shortfall.

22



7 Optimality Conditions

The existence of a convenient optimality condition is a major advantage as we analyze and solve an

optimization problem. In the nonconvex setting, computational methods might be entirely centered

on satisfying the condition. A model can therefore be thought of as having good properties if the

resulting optimization problem has an approachable optimality condition. Again, Rockafellians enter

as key quantities. The next theorem is a major extension of the Fermat Rule in Theorem 5.6; see [38,

Theorem 5.10].

7.1 Theorem (Rockafellar condition for optimality). For the problem of minimizing ϕ : Rn → R,

suppose that x̄ ∈ R
n is a local minimizer, f : Rm × R

n → R is a proper lsc Rockafellian with anchor

ū ∈ R
m and the following qualification holds:

(y, 0) ∈ ∂∞f(ū, x̄) =⇒ y = 0. (7.1)

Then,

∃ȳ ∈ R
m such that (ȳ, 0) ∈ ∂f(ū, x̄).

This condition is sufficient for x̄ to be a (global) minimizer of ϕ when f is convex.

The auxiliary vector y ∈ R
m, referred to as a multiplier vector, is associated with the perturbation

vector u and broadens the view of such quantities beyond Lagrange multipliers from the classical

Karush-Kuhn-Tucker condition. Every Rockafellian for a problem defines an optimality condition, at

least as long as the qualification (7.1) holds. The Rockafellian might now be chosen more with the

goal of obtaining a useful optimality condition, than based on concerns about sensitivity analysis. Still,

by matching y in Theorem 6.1 with y here, we realize that solving the Rockafellar condition amounts

to determining (x, y), with y furnishing sensitivity information relative to perturbations according to

the chosen Rockafellian. This means that solving a problem in this broader sense not only results in a

recommended course of action (x), but also a measure of stability of the underlying model (y) that can

help us verify its validity.

For problems in the composite form and the Rockafellian given in Proposition 6.3, the optimality

condition specializes as stated in [38, Theorem 4.75].

7.2 Theorem (optimality for composite problem). For smooth f0 : Rn → R, smooth F : Rn → R
m,

closed X ⊂ R
n and proper, lsc and convex h : Rm → R, suppose that the following qualification holds

at x⋆:

y ∈ Ndom h

(
F (x⋆)

)
and −∇F (x⋆)⊤y ∈ NX(x⋆) =⇒ y = 0. (7.2)

If x⋆ is a local minimizer of the problem

minimize
x∈X

f0(x) + h
(
F (x)

)
,

then

∃y ∈ ∂h
(
F (x⋆)

)
such that −∇f0(x⋆)−∇F (x⋆)⊤y ∈ NX(x⋆).
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The theorem can be specialized further in many directions. We limit the attention to the classical

case of equality constraints, which goes back to Lagrange.

7.3 Example (smooth objective and equality constraint functions). For smooth functions fi : R
n → R,

i = 0, 1, . . . ,m, consider the problem

minimize
x∈Rn

f0(x) subject to fi(x) = 0, i = 1, . . . ,m.

If x⋆ is a local minimizer with {∇fi(x⋆), i = 1, . . . ,m} linearly independent, then one can apply Theorem

7.2 to conclude that there is y ∈ R
m such that

∇f0(x⋆) +
∑m

i=1
yi∇fi(x⋆) = 0, fi(x

⋆) = 0, yi ∈ R, i = 1, . . . ,m.

Detail. The problem is of the composite form with X = R
n, F (x) = (f1(x), . . . , fm(x)) and h(z) =

ι{0}m(z). This monitoring function is proper, lsc and convex, with

∂h(0) = R
m

so the multiplier vector y is unrestricted. Since NX(x) = {0}, the gradient condition in Theorem 7.2

reduces to

∇f0(x⋆) +∇F (x⋆)⊤y = 0.

The domain of h is {0}m. Consequently, Ndom h(z) = R
m if z = 0 and Ndom h(z) is otherwise not

defined. The qualification (7.2) therefore specializes to checking whether y ∈ R
m and ∇F (x⋆)⊤y = 0

imply y = 0. But, this is just the linear independence assumption.

8 Algorithmic Approaches

A Rockafellian associated with a particular problem also specifies algorithmic possibilities via problem

relaxations. The strength of the resulting relaxations can be used to assess whether the underlying

model is computationally attractive in the first place. Moreover, these relaxations define a dual problem,

which highlights the many opportunities that lie beyond the classical dual problems of linear and convex

programming.

This section starts with the construction of relaxations and then defines the corresponding dual

problems.

8.1 Rockafellian Relaxation

A relaxation of a minimization problem is an alternative problem with a minimum value no higher than

that of the actual one. To make this concrete, let’s consider ϕ : Rn → R, the actual problem

minimize
x∈Rn

ϕ(x)
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and an associated Rockafellian f : Rm × R
n → R with anchor 0. (The focus on 0 instead of a more

general ū as the anchor promotes symmetry below, without much loss of generality because one can

always shift the perturbation vector by redefining f .) We can’t do worse if permitted to optimize the

perturbation vector u together with x. Thus, the problem

minimize
u∈Rm,x∈Rn

f(u, x)

is a relaxation of the actual problem. Regardless of y ∈ R
m, this is also the case for

minimize
u∈Rm,x∈Rn

f(u, x)− 〈y, u〉 (8.1)

because u = 0 remains a possibility. In summary, for any y ∈ R
m,

infx∈Rn ϕ(x) = infx∈Rn f(0, x) ≥ inf(u,x)∈Rm×Rn

{
f(u, x)− 〈y, u〉

}
. (8.2)

A benefit from bringing in a vector y is that we now can tune the relaxation by selecting y appropriately.

We return to this subject below.

We immediately have an approach to addressing the actual problem: (i) Solve the relaxation (8.1)

for some y ∈ R
m and obtain a lower bound on inf ϕ. (ii) Use any (heuristic) method to obtain a

candidate solution x̄. (iii) Bound the optimality gap ϕ(x̄)− inf ϕ of x̄ using

ϕ(x̄)− inf(u,x)∈Rm×Rn

{
f(u, x)− 〈y, u〉

}
.

If this quantity is sufficiently close to zero, then x̄ might be deemed acceptable, making further efforts

to find an even better solution superfluous. An optimality gap is measured in the units of the objective

function and is thus well understood by a decision maker in most cases. We refer to this approach as

Rockafellian relaxation.

Of course, Rockafellian relaxation is only meaningful when the Rockafellian has been selected in such

a manner that (8.1) is easier to solve than the actual problem. This is often the case because “lifting”

of the problem to a higher dimension, involving both x and u, allows for more flexibility. Moreover,

some common choices of Rockafellians lead to explicit expressions for the minimization over u in (8.1).

Let’s denote by

l(x, y) = infu∈Rm

{
f(u, x)− 〈y, u〉

}
(8.3)

the resulting minimum value after such optimization over u. The function l : Rn × R
m → R given by

this formula is the Lagrangian of f . If the Lagrangian corresponding to a particular Rockafellian can

be expressed in a convenient form, then the solution of (8.1) might simplify.

8.1 Example (Lagrangian for equalities and inequalities). For fi : R
n → R, i = 0, 1, . . . ,m, and

gi : R
n → R, i = 1, . . . , q, let’s consider the problem

minimize
x∈Rn

f0(x) + ιD
(
F (x)

)
,
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where D = {0}m × (−∞, 0]q and

F (x) =
(
f1(x), . . . , fm(x), g1(x), . . . , gq(x)

)
.

A Rockafellian f : Rm+q × R
n → R for the problem is defined by

f(u, x) = f0(x) + ιD
(
F (x) + u

)
.

The actual problem is then to minimize f(0, · ) and the Lagrangian has

l(x, y) =

{
f0(x) +

〈
F (x), y

〉
if ym+1, . . . , ym+q ≥ 0

−∞ otherwise.

Detail. With x ∈ R
n and y ∈ R

m+q, the Rockafellian f produces the Lagrangian given by

l(x, y) = infu∈Rm+q

{
f0(x) + ιD

(
F (x) + u

)
− 〈y, u〉

}
.

If there’s yi < 0 for some i ∈ {m+1, . . . ,m+ q}, then we can select uj = −fj(x) for all j ∈ {1, . . . ,m}
and uj = −gj(x) for all j ∈ {m+ 1, . . . ,m + q} \ {i} so that ιD(F (x) + u) remains zero as ui → −∞.

But, then

f0(x) + ιD
(
F (x) + u

)
− 〈y, u〉 → −∞

and l(x, y) = −∞.

If yi ≥ 0 for all i ∈ {m+1, . . . ,m+ q}, then ū, with components ūj = −fj(x) for all j ∈ {1, . . . ,m}
and ūj = −gj(x) for all j ∈ {m+ 1, . . . ,m+ q}, solves

minimize
u∈Rm+q

f0(x) + ιD
(
F (x) + u

)
− 〈y, u〉

and this results in

l(x, y) = f0(x)− 〈y, ū〉 = f0(x) +
〈
y, F (x)

〉
.

This establishes the claimed formula for the Lagrangian.

For h : Rm → R, we recall that the function h∗ : Rm → R defined by

h∗(v) = supu∈Rm

{
〈v, u〉 − h(u)

}

is the conjugate of h. This helps us to express Lagrangians for problems in the composite form as seen

next; a proof is given by [38, Proposition 5.28].

8.2 Proposition (Lagrangian for composite function). For f0 : Rn → R, F : Rn → R
m and proper,

lsc and convex h : Rm → R, consider the problem

minimize
x∈X⊂Rn

f0(x) + h
(
F (x)

)
.

The Rockafellian given by

f(u, x) = ιX(x) + f0(x) + h
(
F (x) + u

)

recovers the actual problem as minimizing f(0, · ) and produces a Lagrangian with

l(x, y) = ιX(x) + f0(x) +
〈
F (x), y

〉
− h∗(y).
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Let’s consider a concrete application of Rockafellian relaxation.

8.3 Example (constrained shortest path problem). Let (V,E) be a directed graph with vertex set

V and edge set E. Each edge (i, j) ∈ E connects distinct vertices i, j ∈ V , and it possesses length

cij ∈ [0,∞) and weights Dkij ∈ [0,∞) for k = 1, . . . , q. A directed s-t path is an ordered set of

edges of the form {(s, i1), (i1, i2),. . . , (iν−1, t)} for some ν ∈ N. Given two distinct vertices s, t ∈ V , the

shortest-path problem seeks to determine a directed s-t path such that the sum of the edge lengths along

the path is minimized. This is a well-studied problem that can be solved efficiently using specialized

algorithms; see [1, Chapters 4 and 5].

For nonnegative dk, k = 1, . . . , q, the task becomes significantly harder if the sum of the weights Dkij

along the path can’t exceed dk for each k. This is the constrained shortest-path problem, which can

be addressed by Rockafellian relaxation—also called Lagrangian relaxation in the present context. In

routing of a drone through a discretized 3-dimensional airspace, the weights D1ij might represent fuel

consumption along edge (i, j), which can’t exceed a capacity d1. Figure 10 illustrates a route satisfying

such a fuel constraint while minimizing exposure to enemy radars expressed by cij ; cf. [37].
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Figure 10: Route for a drone through a 3-dimensional airspace to a destination (solid line) that minimizes
exposure to enemy radars (circles) while satisfying a fuel constraints [37]. Altitude changes to leverage terrain
masking aren’t shown.

Detail. The constrained shortest-path problem is formulated as follows. Suppose that m is the number

of vertices in V and n is the number of edges in E. Let A denote the m × n-vertex-edge incidence

matrix such that if edge e = (i, j), then Aie = 1, Aje = −1 and Ai′e = 0 for any i′ 6= i, j. Also, let

bs = 1, bt = −1 and bi = 0 for i ∈ V \{s, t} and collect them in the vector b. For each k = 1, . . . , q, we

place the edge weights {Dkij, (i, j) ∈ E} in the vector Dk. The q × n-matrix D has Dk as its kth row.

Let d = (d1, . . . , dq). With c being the vector of {cij , (i, j) ∈ E}, the constrained shortest-path problem
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may then be formulated as (cf. [1, p. 599])

minimize 〈c, x〉 subject to Ax = b, Dx ≤ d, x ∈ {0, 1}n.

A point x̄ ∈ {0, 1}n satisfying Ax = b corresponds to an s-t path with x̄ij = 1 if edge (i, j) is on the

path and x̄ij = 0 otherwise. We assume there’s at least one such path. Then, 〈c, x̄〉 gives the length of

the path and 〈Dk, x̄〉 the kth weight of the path.

In the absence of the weight-constraint Dx ≤ d, the model reduces to one for the shortest-path

problem and this opens up an opportunity for applying Rockafellian relaxation via Proposition 8.2. Let

X =
{
x ∈ {0, 1}n

∣∣ Ax = b
}
,

which is nonempty by assumption, and consider the Rockafellian given by

f(u, x) = ιX(x) + 〈c, x〉+ ι(−∞,0]q(Dx− d+ u).

The actual problem corresponds to minimizing f(0, · ) over R
n. These definitions fit the setting of

Proposition 8.2 and

l(x, y) = ιX(x) + 〈c, x〉 + 〈Dx− d, y〉 − ι[0,∞)q(y),

where we use the fact that the conjugate of ι(−∞,0]q is ι[0,∞)q ; see [38, Example 5.29]. Thus, the

chosen Rockafellian results in a Lagrangian without the constraint Dx ≤ d. The minimization of this

Lagrangian with respect to x is nothing but a shortest-path problem on the directed graph, but with

edge lengths changed from cij to cij +
∑q

k=1Dkijyk, which can be solved efficiently using specialized

algorithms. The resulting minimum value, modified by 〈d, y〉, yields a lower bound on the minimum

value of the constrained shortest-path problem as seen from (8.2). The lower bound can be used to assess

the optimality gap for any candidate path, for example obtained by a greedy search or an enumeration

algorithm; see [10].

8.2 Dual Problems

Rockafellian relaxation produces a lower bound on the minimum value of the actual problem regardless

of the choice of auxiliary vector y. However, it would be useful to tune this vector so that the lower

bound becomes as high as possible. The underlying model may also be good in the sense that the

lower bound associated with the chosen Rockafellian can be brought the whole way up to the minimum

value of the actual problem. This could present a major computational advantage: with a properly

tuned y, minimization of the Rockafellian modified by a linear term can largely substitute for the actual

problem. The process of tuning y involves optimization and gives rise to dual problems.

The notation y for the auxiliary vector in Rockafellian relaxation isn’t coincidental. It’s deeply

connected with multiplier vectors emerging from the Rockafellar condition for optimality; see Theorem

7.1. In fact, solving a dual problem can be a viable approach to determining a multiplier vector and

thus identify sensitivity of the minimum value to perturbations, for example via Proposition 6.3.
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To make the setting concrete, let ϕ : Rn → R and consider the problem

minimize
x∈Rn

ϕ(x),

with an associated Rockafellian f : Rm × R
n → R anchored at 0. Via the corresponding Lagrangian

l : Rn × R
m → R, given by (8.3), this produces a dual problem

maximize
y∈Rm

ψ(y) = infx∈Rn l(x, y).

Since inf ϕ ≥ ψ(y) for all y by (8.2), the dual problem indeed aims to find the best lower bound on

inf ϕ. Since every Rockafellian associated with the actual problem defines a dual problem, there are

endless possibilities. One might choose a Rockafellian that produces a simple dual problem solvable

by standard algorithms. This has been the traditional approach in linear programming. In the setting

of Example 8.1, with all functions being affine, the Rockafellian adopted there (focusing on right-hand

side perturbations) recovers the usual linear programming dual problems; see [38, Example 5.41] for

details. But, this is just one possibility. Beyond the convex case, the dual problems tend to become less

tractable but much depends on the structure of the actual problem as well as the choice of Rockafellian.

One property is common across all dual problems: the objective function is concave. We realize this

by writing

−ψ(y) = − infx,u
{
f(u, x)− 〈y, u〉

}
= supx,u

{
〈y, u〉 − f(u, x)

}
.

Thus, −ψ is convex by virtue of being given by the pointwise supremum across a collection of affine

functions. Interestingly, regardless of convexity of the actual primal problem and the chosen Rockafel-

lian, the dual objective function ψ is concave, which makes subgradient, cutting plane and proximal

point methods at least conceptually available.

Traditionally, the term “Lagrangian” has often been limited to the function emerging in the context

of equality and inequality constraints under right-hand side perturbations; see Example 8.1. Even with

the broader definition in (8.3), we view a Lagrangian as a secondary quantity stemming from a more

fundamental Rockafellian. Still, Lagrangians remain important in saddle point theory, which connects

the multipliers from optimality conditions with dual variables, serve as a bridge to game theory and

promote an elegant symmetry with the actual problem, also expressible in terms of a Lagrangian. We

refer to [38, Chapter 5] for details.

In our setting, however, we can completely bypass Lagrangians. Specifically, for any Rockafellian

f : Rm × R
n → R and the corresponding Lagrangian l, the dual objective function has

ψ(y) = infx l(x, y) = infu,x
{
f(u, x)− 〈u, y〉

}

= − supu,x
{
〈u, y〉+ 〈x, 0〉 − f(u, x)

}
= −f∗(y, 0).

Consequently, a dual objective function can just as well be defined directly in terms of the conjugate

of the underlying Rockafellian.

The usefulness of a dual problem depends on the size of the resulting duality gap

inf ϕ− supψ.
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If it’s large, then the corresponding Rockafellian relaxation might not be practically helpful. We say

that a Rockafellian possesses strong duality relative to the actual problem when the duality gap is zero.

Then, the actual problem has the good property that its minimum value can be determined by solving

a convex optimization problem! We indeed have strong duality in linear programming under the usual

right-hand side perturbations provided that the actual problem isn’t infeasible. However, strong duality

is far from automatic.

8.4 Example (failure of strong duality). For the problem of minimizing x3 subject to x ≥ 0 and the

Rockafellian given by

f(u, x) = x3 + ι(−∞,0](−x+ u),

we obtain a Lagrangian of the form

l(x, y) =

{
x3 − xy if y ≥ 0

−∞ otherwise;

see Example 8.1. The dual objective function has ψ(y) = −∞ for all y ∈ R, while the minimum value

of the actual problem is zero so the duality gap is ∞.

Detail. In this case, the Lagrangian isn’t convex in its first argument. However, strong duality may

fail even under convexity. Consider the problem

minimize
x∈R2

e−x1 subject to g(x) ≤ 0, where g(x) =

{
x21/x2 if x2 > 0

∞ otherwise,

and a Rockafellian of the form

f(u, x) =

{
e−x1 if g(x) + u ≤ 0

∞ otherwise.

Similar to Example 8.1, this produces a Lagrangian with

l(x, y) =





e−x1 + yg(x) if x ∈ dom g, y ≥ 0

∞ if x 6∈ dom g

−∞ otherwise.

Consequently, the dual objective function has ψ(y) = 0 if y ≥ 0, but ψ(y) = −∞ otherwise. The

maximum value of the dual problem is therefore 0. The actual problem has minimum value of 1. Thus,

the duality gap is 1 even though l(· , y) is convex regardless of y ∈ R.

Despite these discouraging examples, there are large classes of problems beyond linear optimization

problems for which strong duality holds. The following result summarizes key insights from [34, Theorem

11.39] in the convex setting. For strong duality without convexity, we refer to Section 6.B in [38].

Generally, we denote by intC the interior of a set C ⊂ R
n, which informally equals C without its

boundary points.
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8.5 Theorem (strong duality). For the problem of minimizing ϕ : Rn → R and a proper, lsc and

convex Rockafellian f : Rm × R
n → R with anchor 0, the corresponding dual objective function ψ

satisfies strong duality provided that 0 ∈ int(dom p), where p is the minimum value function given by

p(u) = inf f(u, · ).
If in addition p(0) > −∞, then

∂p(0) = argmaxψ,

which must be a nonempty and bounded set.

In Example 6.2, dom p = (−∞, 1] so we certainly have 0 ∈ int(dom p) and strong duality holds; see

Figure 9. Moreover, p(0) = 5 and ∂p(0) = {2}, which imply that the dual problem has 2 as its unique

maximizer, with 5 as maximum value. We can determine all of this based on Theorem 8.5 without

having a detailed formulation for the dual problem. The formula for ∂p(0) supplements Theorem 6.1,

but most significantly it highlights the profound role played by a dual problem. Under the conditions

of the theorem, solving the dual problem furnishes both the minimum value of the actual problem as

well as its sensitivity to perturbations as defined by a Rockafellian.

In a specific setting, strong duality is guaranteed by ensuring that the constraint functions leave

some “slack,” which often is easily verified.

8.6 Example (Slater constraint qualification). For smooth convex functions f0, gi : Rn → R, i =

1, . . . , q and the problem

minimize
x∈Rn

f0(x) subject to gi(x) ≤ 0, i = 1, . . . , q,

let’s consider the Rockafellian given by

f(u, x) = f0(x) + ι(−∞,0]q
(
G(x) + u

)
, with G(x) =

(
g1(x), . . . , gq(x)

)
.

The resulting dual problem satisfies strong duality provided that the following Slater condition holds:

∃x̄ such that gi(x̄) < 0, i = 1, . . . , q.

Detail. Let p(u) = inf f(u, · ). Under the Slater condition, there exist x̄ ∈ R
n and δ > 0 such that

gi(x̄) + ui ≤ 0 when |ui| ≤ δ for all i. Consequently, p(u) ≤ f0(x̄) ∈ R when ‖u‖∞ ≤ δ, which means

that 0 ∈ int(dom p) and strong duality holds by Theorem 8.5.

In the setting of Theorem 7.2, specialized to convex inequality constraints, the Slater condition

ensures that the qualification (7.2) holds; see [38, Examples 4.49, 5.47] for details.

The Slater condition is by no means necessary for strong duality. For example, consider the problem

of minimizing x subject to x2 ≤ 0 and the Rockafellian given by

f(u, x) = x+ ι(−∞,0](x
2 + u).

We obtain directly that

p(u) = inf f(u, · ) =
{
−√−u for u ≤ 0

∞ otherwise
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so the requirement 0 ∈ int(dom p) of the Strong Duality Theorem 8.5 doesn’t hold. The corresponding

Lagrangian has

l(x, y) =

{
x+ yx2 for y ≥ 0

−∞ otherwise

by Example 8.1 and the dual objective function has

ψ(y) =

{
−1/(4y) for y > 0

−∞ otherwise.

Consequently, p(0) = supψ = 0 so strong duality holds, but the Slater condition fails.

The requirement 0 ∈ int(dom p) in the Strong Duality Theorem 8.5 is ensured when f(u, · ) ap-

proximates f(0, · ) in a certain sense for u near zero. This is formalized in the next statements, which

highlight the role of suitable approximations to ensure strong duality; see [38, Theorem 5.49, Corollary

5.50].

8.7 Theorem (strong duality from epi-convergence). For the problem of minimizing ϕ : Rn → R and

a proper Rockafellian f : Rm × R
n → R with anchor 0, suppose that there are uν → 0 and yν ∈ R

m

such that the following hold:

(a) f(uν , · )→e f(0, · )

(b) there is a compact set B such that B ∩ argmin f(uν , · ) is nonempty for all ν.

(c) liminf 〈yν , uν〉 ≤ 0

(d) inf f(uν, · ) = supψν = ψν(yν),

where

ψν(y) = infx l
ν(x, y) and lν(x, y) = infu

{
f(uν + u, x)− 〈y, u〉

}
.

Let ψ be the dual objective function produced by f via (8.3). Then,

inf ϕ = supψ > −∞.

The theorem shows that if we can construct perturbed functions via a Rockafellian and they epi-

convergence to the actual objective function as well as possess a strong duality property, then the

resulting dual problem indeed reproduces the minimum value of the actual problem provided that

assumption (c) also holds.

Since uν → 0, assumption (c) certainly holds when {yν , ν ∈ N} is bounded. One can view ψν as a

dual objective function produced by the Rockafellian of the form f ν(u, x) = f(uν + u, x). The vector

yν then solves the dual problem associated with f ν. Thus, it’s plausible that {yν , ν ∈ N} could be

bounded.
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In some cases, assumption (c) is automatic even when {yν , ν ∈ N} is unbounded. For example, if

f(u, x) = f0(x) + ι(−∞,0]m
(
F (x) + u

)

for f0 : R
n → R and F : Rn → R

m, both smooth, then

ψν(y) = infx∈Rn f0(x) +
〈
F (x) + uν , y

〉
− ι[0,∞)m(y)

by Proposition 8.2. Thus, a maximizer yν of ψν is necessarily nonnegative. We can then choose uν ≤ 0

so that 〈yν , uν〉 ≤ 0 and f(uν, · )→e f(0, · ), which can be seen by working directly from Proposition 3.3.

The theorem isn’t restricted to any particular type of Rockafellian. Still, in the convex case, several

aspects simplify.

8.8 Corollary For the problem of minimizing ϕ : Rn → R and a proper, lsc and convex Rockafellian

f : Rm × R
n → R with anchor 0, suppose that there’s a compact set B ⊂ R

n and uν ∈ int(dom p) → 0

such that f(uν , · )→e f(0, · ) and B∩argmin f(uν, · ) is nonempty for all ν, where p is the minimum value

function given by p(u) = inf f(u, · ). Let ψ be the dual objective function produced by f via (8.3).

If inf ϕ <∞, then

inf ϕ = supψ

and this value is finite.

8.9 Example (Slater constraint qualification; cont.). The corollary confirms the strong duality asser-

tion towards the end of Example 8.6 even though the Slater condition fails.

Detail. In this case, the Rockafellian, given by f(u, x) = x+ ι(−∞,0](x
2+u), is proper, lsc and convex.

Moreover, p(u) = −√−u for u ≤ 0 and p(u) = ∞ otherwise. Thus, one can take uν = −1/ν in the corol-

lary and then f(uν , · )→e f(0, · ); the compactness condition holds since dom f(uν , · ) ⊂ dom f(u1, · ).
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