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Abstract: Sex determination triggers the differentiation of the bi-potential gonad into either an
ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad
differentiation, while in mammals, this mechanism has been supplanted by the testis-determining
gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad
towards ovarian developmental pathways by limiting the bioavailability of the key testis factor
SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating
the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses
to investigate the precise mechanism through which oestrogen impacts these pathways to activate
β-catenin—a factor essential for ovarian development. We show that oestrogen can activate β-
catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through
changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen
influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9
pro-testis activity to β-catenin pro-ovary activity through activation of MAP3K1. Our findings define
a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic
cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.

Keywords: oestrogen; SOX9; β-catenin; MAP3K1; gonad differentiation

1. Introduction

Sex determination triggers the differentiation of the bi-potential gonad into either
an ovary or testis, a process that is critical for establishing the corresponding secondary
sex characteristics. In vertebrates, sex can be determined either by environmental or
genetic cues and the switch mechanisms are highly variable [1]. In environmental sex
determination (ESD), an external cue such as temperature, social changes or pH causes the
activation of aromatase (the enzyme that converts testosterone to oestrogen) and triggers
the bi-potential gonad to form an ovary [2]. In contrast, in genetic sex determination (GSD),
a gene is the critical switch. Despite having a genetic sex determining mechanism, most
species with GSD are oestrogen sensitive and exposure during early developmental stages
can trigger ovarian development, even in genetic males. Oestrogen-induced sex reversal
has been reported in all vertebrate groups [3–9], suggesting a fundamental and conserved
role for oestrogen in modulating the core pathways required for gonad determination.

In mammals, SRY on the Y chromosome directs the differentiation of a testis through
the activation of the transcription factor SOX9 [10,11]. SOX9 is both necessary and sufficient
to drive testis development [12,13]. At embryonic (E) day 10.5 of mouse development,
SOX9 is initially present in the cytoplasm of XX and XY somatic cells in the bipotential
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gonads [14]. Upon peak Sry expression in XY gonads, SOX9 is rapidly translocated to
the nucleus where it activates expression of the key testis developmental genes Amh, Fgf9
and Ptgds [15]. In the absence of Sry, the cytoplasmic pool of SOX9 disappears [14] and
subsequent expression of Rspo1, Ctnnb1, Wnt4 and FoxL2 further suppresses the male
developmental pathway to trigger formation of an ovary [15]. Ctnnb1 encodes β-catenin,
a Wnt signalling protein that is activated by Rspo1 in an ovary-specific manner from
E12.5 [16]. Interestingly, the ectopic stabilisation of β-catenin in mice can inhibit expression
of Sox9 and Amh [17] and cause male-to-female sex reversal [18], demonstrating its ability
to suppress the male developmental program and promote ovarian development. There
exists an inherent antagonism between these pro-testis and pro-ovary factors, where the
stabilisation of β-catenin can promote ovarian development and suppress testis formation
while the nuclear translocation of SOX9 is essential for testis development and suppresses
ovarian pathways. Indeed, mutations affecting SOX9 nuclear import can cause XY gonadal
dysgenesis in humans [19,20], demonstrating this is an integral step for mammalian testis
development to proceed.

While oestrogen is not intrinsically required for early mammalian ovarian development—as
demonstrated in mice [21,22]—exogenous exposure of the bi-potential gonad to oestrogen
can suppress male developmental pathways in marsupials [23]. Oestrogen blocks nuclear
translocation of SOX9 in mammalian Sertoli cells, leading to decreased expression of SOX9
target genes that are essential for male development, while promoting activation of ovarian
genes [23]. We have demonstrated this mechanism of oestrogen action in the human testis-
derived cell line NT2/D1 [24] and in tammar wallaby, where it resulted in male-to-female
sex reversal [23]. Together, this suggests that the mechanisms by which oestrogen drives
ovarian development in non-mammalian vertebrates have remained intact in mammals.

We previously demonstrated that oestrogen causes cytoplasmic retention of SOX9 via
non-genomic signalling cascades that rapidly activate ERK1/2 (a member of the mitogen
activated protein kinase (MAPK) family) and promote the stabilisation of microtubules [25].
ERK1/2 is known to be oestrogen responsive across a broad range of cell types [26–29] and
its activation is also observed in MAP3K1 gain-of-function mutations that are associated
with XY gonadal dysgenesis in humans [30,31]. Therefore, the MAP3K1 cascade acts as
a key mediator of the antagonistic ovary and testis developmental pathways in gonad
somatic cells. Increased MAP3K1 activity leads to hyper-phosphorylation of downstream
MAPKs ERK1/2 and p38, alongside increased binding to RHOA, ROCK, and AXIN [32].
Gain-of-function mutations in MAP3K1 can be rescued by increased activity of another
MAP3K, MAP3K4 [32], which is required for the initial expression of Sry in mice [33].
Thus, the activation of the MAP3K1 cascade presents as a possible mechanism through
which oestrogen can activate ERK1/2 to mediate a cell fate shift from pro-testis (SOX9) to
pro-ovarian pathways (β-catenin/WNT4).

The ability of oestrogen to promote the tilt towards ovarian developmental pathways
not only relies on the suppression of SOX9 but also the subsequent activation of ovarian
genes. We have confirmed the activation of FOXL2 and WNT4 following exogenous
oestrogen treatment in wallaby XY gonads and human NT2/D1 cells [23]; however, it
has not been established if oestrogen can promote β-catenin stabilisation in the testis.
Long-term oestrogen treatment can increase Ctnnb1 transcription in the mouse prostate [34]
and uterus [35] and trigger its nuclear localisation in human endometrial cells [36]. β-
catenin activity is also dependent on its phosphorylation status and can therefore be rapidly
influenced by non-genomic oestrogen receptor signalling. The most well characterised
of these is phosphorylation of Ser33/Ser37/Thr41 by GSK3β [37], which leads to the
ubiquitination and degradation of β-catenin [38]. β-catenin can also be phosphorylated at
Ser552 by AKT and PKA [39,40], which promotes its transcriptional activity. While there is
currently no evidence that oestrogen can directly stimulate phosphorylation of β-catenin,
oestrogen can activate its protein kinases, including AKT in a breast cancer cell lines [41]
and neurons [42], and PKA in testicular germ cell cancers [43]. Together, this suggests
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oestrogen could regulate β-catenin activity through the activation of kinases; however, the
action of oestrogen on these kinases in the gonads is unknown.

Here, we examine the impact of short- or long-term exposure to oestrogen on the
MAP3K1 and MAP3K4 cascades by proteomics and phosphoproteomics to determine if
oestrogen can cause a shift from pro-testis to pro-ovary gene regulatory networks through
these pathways. From these investigations, we have defined a previously unknown mecha-
nism through which oestrogen can mediate gonad somatic cell determination pathways
and provided novel insights into the response of testis cells to exogenous oestrogen.

2. Results
2.1. EE2 Treatment Causes Non-Genomic and Genomic Changes in NT2/D1 Cells

We utilised differential SILAC based mass spectrometry to quantify changes to the
proteome and phosphoproteome of NT2/D1 cells after a brief (30 min) or prolonged (48 h)
exposure to oestrogen (EE2). We examined significantly changed proteins (p < 0.05) with a
cut-off of log2 fold change (log2FC) of 0.25 and 0.5, as this aligns with the subtle changes
we have observed in our previous studies in these cells. After brief exposure, we observed
14.2% of quantified proteins changed significantly by a log2 fold change (log2FC) of 0.25 (ei-
ther direction; 519 of 3651), while 3.8% changed by a log2FC of 0.5 (140 of 3651; Figure 1A),
demonstrating that oestrogen can rapidly impact a broad range of pathways after only
30 min. As expected, we observed greater changes after prolonged exposure, where 23.7%
of quantified proteins changed significantly by a log2FC of 0.25 (930 of 3922) and 9.1%
changed by a log2FC of 0.5 (358 of 3922; Figure 1A). From our phosphoproteomic data,
we identified a total of 1282 phosphorylated proteins, which contained 2595 phosphosites
in cells treated with EE2 for 30 min, and 1268 phosphorylated proteins, which contained
2652 phosphosites in cells treated for 48 h (localisation probability ≥ 0.75). Following
oestrogen exposure for 30 min, 28% (727 of 2595) of phosphosites significantly changed
by a log2FC of 0.25, and 21.1% of phosphosites changed by a log2FC of 0.5 (547 of 2595).
Together, these findings demonstrate that oestrogen can rapidly alter signalling cascades by
changing protein phosphorylation. We observed a similar number of phosphosite changes
in cells treated for 48 h, where we observed 29.5% (782 of 2652) changed by log2FC 0.25
and 23.7% changed by log2FC of 0.5 (629 of 2652; Figure 1B).

To examine any consistent changes between timepoints, we determined which pro-
teins had significantly changed both after 30 min and 48 h of EE2 treatment. 23 proteins
significantly increased by a log2FC of >0.25 and 67 significantly decreased by a log2FC of
<−0.25 across both datasets (Figure 2). Examination of proteins that had any significant
changes to a phosphosite in both datasets revealed 55 proteins with phosphosites that
changed a log2FC of >0.25 and 129 proteins with phosphosites that changed a log2FC of
<−0.25 (Figure 2). This demonstrates that some of the non-genomic changes occurring after
30 min of oestrogen were maintained through to 48 h.

We next compared our dataset of significantly altered proteins (p < 0.05, log2FC < −0.25
or >0.25) to the Dragon database of oestrogen responsive genes (ERGs; Figure 3) [44].
Proteins altered after 30 min of oestrogen exposure represent non-genomic targets (as there
is not sufficient time for activated ERs to elicit genomic responses), while proteins altered
after the 48-h timepoint reflect both non-genomic targets, as well as genomic changes.
Thus, the comparison between the ERG list and our two treatment timepoints provides
novel insights into the non-genomic and genomic targets of oestrogen signalling. We
identified 34 ERGs that overlapped solely with proteins impacted after 30-min of oestrogen
exposure (non-genomic targets) and 89 ERGs that overlapped solely with proteins impacted
after 48-h of oestrogen exposure (likely genomic targets), while 21 genes overlapped with
proteins from both proteomic datasets (additional likely non-genomic targets). We observed
144 proteins overlapping between our two treatment periods that were unique from the
ERG dataset, as well as 320 and 676 unique to the 30-min and 48-h treatments, respectively.
These provide an expanded list of oestrogen responsive proteins in the human genome.
There was still a large proportion of proteins that were unique to each dataset, which is
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unsurprising given the differences between timepoints in our datasets. Overall, however,
it is important to consider that the regulation of proteins versus genes is a major difference
when comparing to an ERG list, particularly given that alterations to translation and post-
translational modifications can create a myriad of changes between the transcription of a
gene and the activity of a protein.

Figure 1. Volcano plots of proteomic (A) and phosphoproteomic (B) changes following 100 nM EE2 for 30 min or 48 h.
p = 0.05 is indicated by the horizontal dotted red line, open circle plot points are non-significant (p > 0.05) and closed
circle plot points are significant (p < 0.05). The log2 fold change (FC) is indicated by the colour of plot points, vertical
dotted red lines indicate 0.25 and 0.5 log2FC. Purple = log2FC > 0.25, pink = log2FC > 0.5, dark green = log2FC < −0.25,
green = log2FC < −0.5.
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Figure 2. The number of proteins and phosphoproteins significantly upregulated or downregulated after 30 min (red) and
48 h (blue) and those similarly changed in both datasets are shown in the overlapping space.

Figure 3. The number of proteins significantly changed in both 30 min (blue) or 48 h (yellow) of EE2
treatment datasets in NT2/D1 cells and their overlap with known oestrogen (E; red) responsive genes.
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2.2. GO Terms Related to the Cytoskeleton and RNA Processing Are Enriched Following
EE2 Treatment

To understand the global effects of oestrogen treatment on NT2/D1 cells, we per-
formed Gene Ontology (GO) enrichment analysis using PANTHER (http://www.pantherdb.
org, accessed on 5 April 2020) [45] on proteins that were significantly changed (p < 0.05,
log2FC > 0.25 or <−0.25) and assessed changes to biological processes and cellular com-
ponents. The percentage of expected and observed proteins and the enrichment for each
corresponding GO term is presented for the global proteome (Figure 4) and phosphopro-
teome (Figure 5). Specific values can be found in Tables S1 and S2. Analysis of the global
proteome after 30 min of EE2 treatment revealed changes primarily to terms related to
the cytoskeleton, metabolism, ribosomes/RNA processing and the nuclear pore complex
(Figure 4). After 48 h, we observed some changes to the biological processes and cellular
components enriched (Figure 4; arrowheads indicate unique terms), including a greater
emphasis on terms related to ribosomes, ribonucleoprotein complex and RNA processing,
as well as the addition of terms related to intracellular protein transport. GO terms related
to the cytoskeleton and metabolic processes were present at both timepoints. Interestingly,
pathway enrichment analysis of the phosphoproteome revealed similar GO terms were
enriched, including terms related to the cytoskeleton, RNA processing and ribonucleo-
protein complex (Figure 5). We observed conservation of these terms from 30 min to 48 h
of EE2 treatment and the GO pathway with the greatest enrichment in both phospho-
proteome datasets was ‘regulation of supramolecular fibre organisation’ (GO:1902903),
a term associated with cytoskeleton regulation. Some unique terms (Figure 5; indicated
by arrowheads) were present in the 48-h EE2 treatment, such as ‘reproductive process’
(GO:0022414)—which included the sex differentiation gene ATRX, the gap junction protein
GJA1 and the sperm protein NASP—‘cell–cell junction (GO:0005911)’, and others related to
transcriptional changes.

2.3. EE2 Treatment Leads to Activation of the MAP3K1 Cascade, However, Not the
MAP3K4 Cascade

To understand the impact of oestrogen specifically on the MAP3K1 and MAP3K4
cascades and β-catenin—which have a critical role in gonad determination—we examined
the members of these cascades and any changes to their abundance or phosphorylation
(Figure 6A). Specific log2FCs and p-values of proteins and phosphosites shown in Figure 6
are presented in Tables S3–S5. Non-significant findings are also included in these analyses
where there is relevant biological context.

PAK1 lies upstream of MAP3K1 and was significantly upregulated after 48 h of EE2
treatment. While we detected no change in the abundance of MAP3K1, we observed a
non-significant (30 min p = 0.129; 48 h p = 0.112) increase in phosphorylation of Ser923 at
both timepoints. This site is uncharacterised but has been detected in a large number of
datasets (www.phosphosite.org, accessed on 5 April 2020), suggesting it may be important
in the regulation of MAP3K1 activity. The downstream targets of MAP3K1—MAP2K1
and MAP2K2—increased in abundance after 48 h; however, only MAP2K2 was significant.
We also observed an increase in the phosphorylation of MAPK1 (ERK2) at Tyr187 (a site
that leads to activation) after 30 min, consistent with our previous findings showing
that EE2 activated ERK1/2 in NT2/D1 cells [25]. This was statistically non-significant
(p = 0.106), although all replicates showed a consistent trend with increasing abundance
(raw values for each replicate were log2FC 0.95, 0.80, 0.55 and 3.11). The binding partners of
MAP3K1, RHOA and its downstream effectors ROCK1 and ROCK2 increased in abundance,
suggesting they may be promoting the activation of MAP3K1. RHOA was significantly
upregulated after 48 h of EE2 treatment, while ROCK2 significantly increased in abundance
after 30 min and upregulated after 48 h (non-significant). ROCK1 increased in abundance
after 48 h, however this was not significant. MAP3K4 had no change in abundance or
phosphorylation and there was no consistent effect on its downstream targets: MAP2K3
increased in abundance after 48 h and MAP2K6 (also a target of MAP3K1) decreased after
30 min (non-significant), while there was only one change to a downstream p38 MAPK,

http://www.pantherdb.org
http://www.pantherdb.org
www.phosphosite.org
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MAPK14, which was downregulated after 48 h. We detected no significant changes in the
phosphorylation of these targets.

Figure 4. PANTHER Gene Ontology (GO) terms significantly enriched in the proteome following 30 min or 48 h of EE2
treatment. Terms clustered together by the grey/white background indicate those related by hierarchy. The horizontal
bar plot denotes the percentage total number of expected and observed proteins for PANTHER biological processes and
cellular components that were significantly enriched (Fishers exact test; corresponding fold enrichment show on the far
right) following either 30 min (top) or 48 h (bottom) of EE2 treatment.
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Figure 5. PANTHER Gene Ontology (GO) terms significantly enriched in the phosphoproteome following 30 min or 48 h of
EE2 treatment. Terms clustered together by the grey/white background indicate those related by hierarchy. The horizontal
bar plot denotes the percentage total number of expected and observed proteins for PANTHER biological processes and
cellular components that were significantly enriched (Fishers exact test; corresponding fold enrichment show on the far
right) following either 30 min (top) or 48 h (bottom) of EE2 treatment.
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Figure 6. Proteins involved in MAP3K1/MAP3K4 cascades in response to oestrogen and analysis of the activity of key
kinases. (A) Fold changes to MAP3K4 and MAP3K1 pathways and related proteins following EE2 treatment for 30 min (left
half of oval) and 48 h (right half of oval). Significant (p < 0.05) fold changes (FC) for proteins (oval) and phosphoproteins
(rectangle) are surrounded with a solid line, while non-significant (p > 0.05) changes are surrounded with a dashed line.
Indirect relationships are indicated by a dashed line. Proteins with no detected significant change are indicated by a grey fill
(N/A). EE2 treatment led to upregulation of proteins involved in the MAP3K1 cascade (B) Target substrate phosphosite (PS)
log2FCs for key kinases involved in the MAP3K1/MAP3K4 cascades after 30 min and 48 h of EE2 treatment. Grey triangles
in the top right corners of the tiles indicate this substrate phosphosite is phosphorylated by more than one kinase. A decrease
in phosphorylation indicates reduced activity of the corresponding kinase. (C) Number of substrates with a significant
change on either the phosphosite (red) or protein (blue) level for each of the key kinases in the MAP3K1/MAP3K4 cascades
following EE2 treatment for 30 min or 48 h. Protein level phosphorylation indicates that the target protein had a change in
phosphorylation, but not at the precise phosphosite recorded as being a target of that kinase. A large differential between
the number of protein and site level changes may indicate a larger change in kinase activity than was shown in (B).

We specifically examined β-catenin as we have shown exogenous oestrogen leads to
an increase in expression of its downstream targets. β-catenin decreased slightly in abun-
dance after 48 h of EE2 treatment despite a downregulation in two proteins that promote
its degradation: GSK3β [38] and KCTD1 [46]. KCTD1 decreased significantly in abundance
after 48 h of EE2 treatment, while GSK3β decreased in abundance at both timepoints, but
this was only significant after 48 h of EE2 treatment. We did observe a change to the phos-
phorylation of β-catenin at a known activation site, Ser552. After 30 min of EE2 treatment,
the phosphorylation of β-catenin at Ser552 significantly increased in abundance but this
was not maintained at 48 h. The upstream kinases of Ser552 are PRKACA (the catalytic
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subunit of PKA) and AKT1. AKT1 had no change in abundance or phosphorylation, while
there was no detectable change in the abundance or phosphorylation of PRKACA, we did
detect changes to the regulatory subunits of PKA: PRKAR1A, PRKAR1B and PRKAR2A
that inhibit the activity of PKA. Both PRKAR1A, and PRKAR1B were downregulated after
48 h of EE2 treatment and there was reduced phosphorylation of PRKAR1A at Ser83 (an
activation site) at both timepoints, indicating it likely had reduced activity. In contrast,
PRKAR2A initially decreased in abundance after 30 min of EE2 treatment, but this was
reversed after 48 h; furthermore, we detected an increase in its phosphorylation at Ser99 at
both timepoints, suggesting its activation.

2.4. Oestrogen Alters the Activity of Kinases Involved in the MAP3K1/3K4 Cascades

To further understand the activity of the kinases mentioned above, we assessed the
fold changes to phosphorylation of their known target substrates (Figure 6B) and the
number of site or protein level changes (Figure 6C). All results presented for Figure 6B,C
are significant changes (log2FC difference of 0.25, p < 0.05) and shown in Tables S4 and S5.
Only 5% of the phosphoproteome has identified kinases [47]. Due to this limitation, protein
level changes provide an insight into the potential activity of a kinase and are important
for further investigation. Although MAPK1 had an increase in phosphorylation at an
activation site, its known target substrates showed an overall decrease in phosphorylation
at both timepoints. This trend in decreased phosphorylation of target substrates was the
same for MAPK3, which together with MAPK1 forms the ERK1/2 complex. Many of
the substrates targeted by ERK1/2 were also substrates for other kinases, suggesting the
overall decrease may not be due to an alteration in ERK1/2 kinase activity. Despite this,
examination of protein level phosphorylation demonstrated that MAPK1 and MAPK3 had
the largest number of substrates exhibiting a significant change, suggesting that there is
very likely a change to their activity.

MAPK8 (JNK1), which is downstream of both MAP3K1 and MAP3K4, showed no
detectable changes; however, its substrates showed a general trend towards decreased
phosphorylation. MAPK14 had the smallest number of changes to substrates, consistent
with its downregulation after 48 h of EE2 treatment. While AKT1 had no detectable changes
to its phosphorylation or abundance, it demonstrated an overall trend towards activation
at both timepoints where all but one of its substrates had increased phosphorylation;
furthermore, it had a large number of protein-level substrates with altered phosphorylation,
suggesting a change to its activity. The catalytic subunit of PKA, PRKACA, triggered
increased phosphorylation of three of four target substrates after 30 min. Similar to ERK1/2
and AKT1, there were a large number of protein-level changes to its target substrate
phosphorylation, particularly at 30 min, suggesting a potential change in its activity at this
timepoint. In combination with the above data on the regulatory subunits of PKA, these
results suggest PKA is activated after 30 min of EE2 treatment. GSK3β—the kinase that
targets β-catenin for degradation—had three substrates with reduced phosphorylation
after 30 min and two with reduced phosphorylation after 48 h, which is consistent with
its downregulation following EE2 treatment. Finally, three target substrates of PAK1
demonstrated increased phosphorylation after 30 min, although two of these are not
unique to PAK1. Despite being upregulated after 48 h of EE2 treatment, only one substrate
of PAK1 had altered phosphorylation at this timepoint, suggesting there was no increase in
its kinase activity.

2.5. β-Catenin pSer552 Is Localized to the Nucleus Following EE2 Treatment, but
Non-Phosphorylated β-Catenin Remains Unchanged

To further characterize the activation of β-catenin detected in our phosphoproteome
analyses, we performed immunofluorescence of non-phosphorylated (at Ser33, Ser37 and
Thr41) β catenin and β-catenin pSer552. β-catenin phosphorylation at Ser33, Ser37 and
Thr41 by GSK3β targets it for degradation and the absence of phosphorylation at these
sites is considered ‘active’ β catenin [37]; however, β-catenin can be transcriptionally
active following phosphorylation at Ser552 independent of the phosphorylation status
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at Ser33, Ser37 and Thr41. Examination of non-phosphorylated β-catenin in control and
30-min EE2 treated cells revealed no differences (Figure 7A; visualised in red). In both
control and EE2 treated cells, non-phosphorylated β-catenin was present largely at the cell
membrane and in the cytoplasm, but not in the nucleus where it activates transcription.
These immunofluorescence results confirm what we observed in our mass spectrometry
experiments where there was no change to these specific phosphosites following EE2
treatment. We confirmed the activation of β-catenin at Ser552 following oestrogen treatment
by immunofluorescence. In control cells, β-catenin pSer552 was present primarily at the
cell membrane with a small amount in the cytoplasm (Figure 7B; visualized in red), very
similar to the staining of active β-catenin. In contrast, in cells treated with EE2 for 30 min,
β-catenin pSer552 increased considerably throughout the cell, and was primarily located
in the nucleus, indicating β-catenin may be transcriptionally active following increased
phosphorylation at Ser552.

Figure 7. Immunofluorescence staining of active (non-phosphorylated Ser33, Ser37, Thr41) and phosphorylated (pSer552)
β-catenin in NT2/D1 cells after 30 min of culture. (A) Active β-catenin (red) was present at the cell membrane of both control
and 30-min EE2 treated NT2/D1 cells, indicating oestrogen had no effect on its localisation. (B) β-catenin pSer552 (red) was
present primarily at the cell membrane of control NT2/D1 cells, with a small amount throughout the cytoplasm. NT2/D1
cells treated with 100 nM EE2 for 30 min showed a marked increase in the nuclear (DAPI; blue) localisation of β-catenin
pSer552, as well as an increase in the overall signal, demonstrating activation of β-catenin through phosphorylation at this
site. Scale bar = 20 µm.

3. Discussion

It is well established that oestrogen can influence gonad determination to promote
formation of an ovary in a wide range of vertebrates, including mammals [3,4,6,8]. We have
previously demonstrated that exposure to oestrogen can cause the cytoplasmic retention of
SOX9 in testis cells, leading to a decrease in expression of genes that drive male develop-
ment and increased expression of pro-ovarian genes [23,24]. We showed that oestrogen
treatment rapidly activated ERK1/2 to promote microtubule stabilisation, resulting in the
cytoplasmic retention of SOX9 [25]. The MAP3K1/3K4 cascades can activate ERK1/2 and
cause a shift from pro-testis (SOX9) to pro-ovarian (β-catenin) activity in the gonads. Thus,
we examined the potential for the MAPK pathways to be impacted by rapid and long-term
exposure to oestrogen through proteomic and phosphoproteomic analyses.

Gene Ontology (GO) term analyses of our proteomic datasets have demonstrated
that oestrogen can target a broad range of processes in testis-derived NT2/D1 cells. We
primarily observed changes to pathways related to RNA processing and the cytoskeleton.
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Oestrogen has previously been implicated in altering pathways related to translation and
RNA processing in breast cancer cells [48], particularly PI3K/AKT/mTOR signalling [49].
Interestingly, the mTOR pathway is essential for spermatogenesis and maintaining the
blood-testis barrier [50], suggesting oestrogen influence of this pathway could be a mecha-
nism behind its detrimental effect on male fertility. Another key process affected by EE2
treatment was regulation of the cytoskeleton. Our previous research has demonstrated that
oestrogen can rapidly target microtubules in NT2/D1 cells to promote cytoplasmic reten-
tion of SOX9 [25]—thus, the association of oestrogen treatment with cytoskeleton-related
GO terms further reinforces this finding and suggests a broader role for the cytoskeleton in
influencing cell fate following oestrogen treatment.

We previously showed oestrogen treatment increases ERK1/2 activity in the testis-
derived NT2/D1 cell line and is associated with a shift in the expression profile towards
an ovarian cell fate [25]. We confirmed activation of ERK1/2 in our phosphoproteomic
data—specifically, increased MAPK1 phosphorylation at Tyr187 after 30 min of EE2 treat-
ment. However, kinase-substrate analyses showed an overall decrease in the phosphory-
lation of ERK1/2 target substrates. We hypothesise this is because many of the ERK1/2
substrates are known targets of other kinases. Seven of the nine ERK1/2 target substrates
are localised to the cytoplasm, suggesting that the decrease in ERK1/2 substrate phospho-
rylation could be caused by the nuclear accumulation of pERK1/2, resulting in less active
ERK1/2 in the cytoplasm. Furthermore, we also observed a large number of protein-level
phosphorylation changes of ERK1/2 substrates, and some of these demonstrated increased
phosphorylation (data not shown). This suggests that ERK1/2 may be activating other
substrates that have been missed in our site-level analyses.

We also observed upregulation of MAP2K2 (MEK2), which lies in between MAP3K1
and ERK1/2, further supporting activation of this cascade. The activation of ERK1/2
mirrors the effects of increased MAP3K1 activity in gain-of-function mutations that are
associated with XY gonadal dysgenesis [30,31]; furthermore, we have demonstrated that
ERK1/2 mediates oestrogen-induced suppression of SOX9 [25], demonstrating an elegant
link between the MAP3K1 cascade and the ability of oestrogen to influence gonad determi-
nation pathways. Together, our data suggests activation of the MAP3K1 cascade but no
change to the MAP3K4 cascade following oestrogen treatment. Interestingly, this mirrors
the results observed in tammar wallaby, where oestrogen treatment of XY gonads led to an
increase in transcription of MAP3K1 but no change to MAP3K4 [51].

Gain-of-function MAP3K1 mutations that are known to lead to XY gonadal dysge-
nesis involve the upregulation of RHOA and ROCK1 [30–32]—thus, the upregulation of
RHOA and ROCKs in our datasets further suggest oestrogen has promoted the activation
of MAP3K1. Activation of RHOA in chondrocytes is also associated with cytoplasmic
retention of SOX9 and decreased SOX9 expression [52,53], supporting the link between
RHOA upregulation and the suppression of SOX9 by oestrogen in the gonads.

β-catenin is the critical factor that can promote ovarian development downstream of
MAP3K1 activation [32] and ectopic stabilisation of β-catenin in mice can induce XY sex
reversal through suppression of Sox9 transcription [18]. Therefore, we examined changes
to β-catenin and its regulators to determine if the activation of MAP3K1 had successfully
resulted in the activation of this ovarian factor. We observed a reduction in two pro-
teins that promote β-catenin degradation—KCTD1 and GSK3β—following EE2 treatment,
suggesting exogenous oestrogen is promoting β-catenin activity by blocking its normal
degradation. KCTD1 binds to β-catenin and promotes its cytoplasmic localisation and
degradation [46] and GSK3β triggers the destabilisation of β-catenin through phosphoryla-
tion at Ser33, Ser37 and Thr41 [38]. Although we observed a downregulation in GSK3β
at both timepoints, as well as reduced GSK3β kinase activity, there were no changes to
GSK3β-mediated phosphorylation of β-catenin in our mass spectrometry data. Further-
more, we observed no change in the localisation of non-GSK3β-phosphorylated (active)
β-catenin in cells treated with EE2 for 30 min. Together, these data suggest exogenous
oestrogen did not reduce GSK3β-mediated degradation of β-catenin. Previous research in
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neurons has demonstrated a transient effect of oestrogen on reducing GSK3β activity [54],
suggesting the effect of oestrogen on GSK3β-induced phosphorylation of β-catenin may
similarly be a brief occurrence in NT2/D1 cells.

While there was no apparent change to the overall degradation of β-catenin by GSK3β,
we did observe activation of β-catenin through significantly increased phosphorylation of
Ser552 after 30 min of EE2 treatment and further confirmed this and its nuclear localisation
by immunofluorescence. Activation of β-catenin can occur through phosphorylation of
Ser552 independently of GSK3β and can promote β-catenin transcriptional activity [39,40].
Indeed, we have previously confirmed that genes downstream of β-catenin activation,
WNT4 and FOXL2, show increased expression in NT2/D1 cells following prolonged
EE2 exposure [24]. β-catenin can also decrease expression of both SOX9 and AMH in
NT2/D1 cells and embryonic mouse gonads [17], an effect we have also reported following
exogenous oestrogen treatment [24]. These data suggest that oestrogen treatment does not
impact GSK3β-mediated degradation of β-catenin (at these timepoints), but that oestrogen
can induce β-catenin to become transcriptionally active independently of this, through
phosphorylation at Ser552.

Overall, the activation of β-catenin results in the antagonism of SOX9 and directly
promotes expression of ovarian development pathways. It is well known that oestrogen
is essential for maintaining granulosa cell fate in adulthood by reinforcing the activation
of pro-ovarian factors and suppression of pro-testicular factors [55]. Our findings are in
line with the activation of the MAP3K1 cascade and a shift towards a granulosa-like cell
fate. It further suggests that the activation of β-catenin by phosphorylation is an important
initial response to oestrogen. This oestrogen response is later consolidated by the combined
upregulation of both β-catenin and the genomic responses to activated ERα. The activation
of β-catenin in Sertoli cells following exogenous oestrogen treatment is a novel finding and
refines our understanding of how oestrogen mediates gonad somatic cell fate.

It is unclear which kinase—AKT1 or PKA—is responsible for the phosphorylation
of β-catenin at Ser552. Our kinase-substrate analyses suggested that AKT1 and PRKACA
(PKA) had increased activity after 30 min of EE2 treatment, and only AKT1 appeared active
after 48 h. Interestingly, brief oestrogen treatment of neurons can activate AKT to cause
dissociation of β-catenin from its inhibitor GSK3β, eventually leading to decreased activity
of GSK3β [56]; this illustrates that there exists a dual action of AKT to promote β-catenin
activity by inhibiting GSK3β, as well as phosphorylating β-catenin, and further suggests
oestrogen is likely activating AKT in NT2/D1 cells.

The activation of β-catenin in human testis-derived cells following oestrogen treatment
has not previously been reported and is a major finding in understanding how oestrogen
can influence gonad somatic cell fate. We have established that oestrogen can limit the
bioavailability of SOX9 rapidly and lead to suppression of its downstream targets while
also promoting the expression of β-catenin target genes such as WNT4 and FOXL2. Here,
we show that oestrogen can activate β-catenin within 30 min, and this occurs alongside
the cytoplasmic retention of SOX9. It is well established that there exists antagonism
between SOX9/pro-testis factors and β-catenin/pro-ovary factors in the gonad and we
have demonstrated that oestrogen promotes the shift from SOX9 to β-catenin. We have
further linked this into the role of the MAP3K1 cascade in mediating this shift in SOX9
and β-catenin through its activation, suggesting this pathway is a mechanism through
which oestrogen influences gonad somatic cell fate. From these findings, we have defined a
previously unknown mechanism through which oestrogen can promote a switch in gonad
somatic cell fate and provided novel insights into the impacts of oestrogen exposure on the
testis. We hypothesise that this is the ancestral mechanism that allows oestrogen to drive
ovarian differentiation across vertebrates and is important for maintaining granulosa cell
fate in adult mammals.
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4. Materials and Methods
4.1. Cell Culture, Oestrogen Treatments, and SILAC

The human testis-derived embryonal carcinoma NTERA-2 clone D1 [NT2/D1] (cells
were purchased from ATCC.org; ATCC CRL-1973) cell line shares many properties with
Sertoli cells. They express SOX9, show activation of SOX9 target genes, suppression
of female markers, and endogenously express oestrogen receptors, making them most
akin to an adult Sertoli cell [57,58]. For stable isotope labelling with amino acids in cell
culture (SILAC) [59], cells were maintained at 37 ◦C, 5% CO2 in Dulbeccos Modified Eagles
Medium for SILAC (Thermo Fisher Scientific, Sydney, Australia) with 10% fetal bovine
serum (Gibco, Sydney, Australia) and antibiotic-antimycotic (Gibco, Sydney, Australia).
These cells were labeled with L-Lysine-2HCl, 13C6, 15N2 and L-Arginine-HCl, 13C6,
15N4 (Thermo Fisher Scientific, Waltham, MA, USA). Control cells were maintained as
previously described [24,25]. Labelled cells were treated for 30 min (n = 4) or 48 h (n = 3)
with 100 nM 17 α-ethynylestradiol (EE2; Sigma Aldrich, Sydney, Australia) dissolved in
ethanol. EE2 was chosen due to its longer half-life in culture, its biological relevance given
its widespread use and pervasiveness in our environment [60,61], and established use in
our previous studies. The final concentration of ethanol added to culture was <0.05%. An
identical amount of ethanol was added to control cells, which were grown in the absence
of oestrogen.

4.2. Protein Digestion and Phosphopeptide Enrichment

Proteins were extracted from control and labelled NT2/D1 cells treated with EE2 for
either 30 min (n = 4) or 48 h (n = 3). Each sample was lysed in RIPA buffer (25 mM Tris-HCl
pH7.4, 150 mM NaCl, 0.1% (w/v) SDS, 1% (v/v) Triton X-100) supplemented with Halt
Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific, Sydney, Australia).
Lysates were cleared by centrifugation at 13,000 rpm for 20 min at 4 ◦C. Proteins were
precipitated with acetone, and subsequently re-dissolved in digestion buffer (8 M urea in
50 mM TEAB [pH 8.0]). Protein concentrations were measured using a Pierce Bradford
Assay Kit (Thermo Fisher Scientific, Sydney, Australia). Protein samples (1 mg) from
corresponding control and EE2 treated cells were mixed 1:1 and reduced, alkylated and
digested (Pierce Trypsin Protease, Thermo Scientific, Sydney, Australia). An aliquot of
100 µg of the digested peptides were fractionated into 8 fractions using Pierce High pH
Reversed-Phase Peptide Fractionation Kit (Thermo Fisher Scientific, Sydney, Australia) and
used to determine the global proteome. The remaining peptides were acidified and purified
by solid phased extraction using Oasis HLB cartridges (Waters, Sydney, Australia) and used
for phosphopeptide enrichment using a titanium dioxide (TiO2) enrichment method [62].
Eluted phosphorylated peptides were freeze-dried before LC-MS/MS analysis.

4.3. LC-MS/MS

Samples were analysed by LC-MS/MS using the Q-Exactive Plus mass spectrome-
ter (Thermo Scientific) fitted with nanoflow reversed-phase-HPLC (Ultimate 3000 RSLC,
Dionex, CA, USA) as previously described [63].

4.4. Data Processing

All raw data were processed using MaxQuant [64] for SILAC-based approaches [65].
Database searches were conducted against the Swissprot reviewed Homo Sapiens database
(www.uniprot.org, accessed on 5 April 2019). Default parameters in MaxQuant were used
wherever applicable. False discovery rate (FDR) was set to 1% on both protein and peptide
level and only peptides with a length of a minimum of 7 amino acids were considered.
Carbamidomethylation of cysteine was set as fixed modification and oxidation of methion-
ine and N-terminal acetylation were set as variable modifications. For phosphoproteomics
data, phospho(STY) was included as variable modifications. The appropriate SILAC labels
were selected and match between runs feature activated. Protein identification required
a minimum of two peptides with at least one razor or unique peptide. Protein groups

www.uniprot.org
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identified in MaxQuant were imported into Perseus [66] for further analysis. Results were
filtered to remove potential contaminants, reverse hits, and hits only identified by site. For
phosphoproteomic data, the phospho(STY)sites.txt file was imported into Perseus software
for analysis. We removed any phosphopeptides with a localisation probability of <0.75.
Normalised heavy/light (H/L) ratios were log2 transformed and represent the fold change
of proteins following EE2 treatment. Values have been presented as averages for each
treatment. Significance was determined by one sample T-test with Benjamin-Hochberg
FDR adjusted p < 0.05. To analyse enrichment of Gene Ontology (GO) terms, proteins
that significantly changed in abundance (p < 0.05, log2FC > or <0.25) were searched using
the PANTHER database (http://www.pantherdb.org, accessed on 5 April 2020) [45] for
biological processes and cellular components that were statistically enriched (Fisher’s exact
test, FDR p < 0.05). Proteomic data obtained by mass spectrometry have been deposited in
the ProteomeXchange Consortium via the PRIDE partner repository and are linked to the
dataset identifier PXD026927.

4.5. Kinase-Substrate Analysis of the MAP3K1 and MAP3K4 Cascades

We performed kinase-substrate analysis to elucidate the overall activity of kinases
involved in the MAP3K1 and MAP3K4 cascades. Substrate-kinase relationships were
searched using a combination of Phosphomatics (https://www.phosphomatics.com, ac-
cessed on 5 April 2020) [67], Signor 2.0 (https://signor.uniroma2.it, accessed on 5 April
2020) [68], and PhosphoSitePlus (https://www.phosphosite.org, accessed on 5 April
2020) [69] to determine the upstream kinases responsible for significantly changed phos-
phosites. A comparison of the number of site- or protein-level changes for each kinase was
also performed.
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ER Oestrogen receptor
NT2/D1 NTERA-2 clone D1
SOX9 Sex-determining region Y box transcription factor 9
SRY Sex-determining region Y
AMH Anti-Mullerian hormone
FGF9 Fibroblast growth factor
PTGDS Prostaglandin D synthase
FOXL2 Forkhead box L2
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RSPO1 R-spondin 1
WNT4 Wnt family member 4
FST Follistatin
ERK1/2 Extracellular regulated kinases 1/2
MAP3K Mitogen-activated protein kinase kinase kinase
RHOA Ras homolog family member A
ROCK Rho-associated coiled coil containing protein kinase
GSK3β Glycogen synthase kinase 3β
FRAT1 FRAT regulator of Wnt signalling pathway 1
GADD45γ Growth arrest and DNA damage-inducible protein γ

PKA Protein kinase A
AKT AKT serine/threonine kinase
PAK1 p21 (RAC1) activated kinase 1
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