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Abstract

Manufacturing of cell therapy products requires sufficient understanding of the cell

culture variables and associated mechanisms for adequate control and risk analysis.

The aim of this study was to apply an unstructured ordinary differential equation-

based model for prediction of T-cell bioprocess outcomes as a function of process

input parameters. A series of models were developed to represent the growth of

T-cells as a function of time, culture volumes, cell densities, and glucose concentra-

tion using data from the Ambr®15 stirred bioreactor system. The models were suffi-

ciently representative of the process to predict the glucose and volume provision

required to maintain cell growth rate and quantitatively defined the relationship

between glucose concentration, cell growth rate, and glucose utilization rate. The

models demonstrated that although glucose is a limiting factor in batch supplied

medium, a delivery rate of glucose at significantly less than the maximal specific con-

sumption rate (0.05 mg 1 � 106 cell h�1) will adequately sustain cell growth due to a

lower glucose Monod constant determining glucose consumption rate relative to the

glucose Monod constant determining cell growth rate. The resultant volume and

exchange requirements were used as inputs to an operational BioSolve cost model to

suggest a cost-effective T-cell manufacturing process with minimum cost of goods

per million cells produced and optimal volumetric productivity in a manufacturing set-

tings. These findings highlight the potential of a simple unstructured model of T-cell

growth in a stirred tank system to provide a framework for control and optimization

of bioprocesses for manufacture.
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1 | INTRODUCTION

The launch of CAR-T cell therapy products including Kymriah and

Yescarta are the first in a significant pipeline of T-cell based

therapeutic products.1,2 Such cell-based immunotherapies are set to

change the treatment options for a range of previously hard to treat

or fatal hematological malignancies.3,4 However, as a new therapeutic

class based on a relatively unexplored bioprocess input material,
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primary T-cells manufacturing technology is particularly immature.3

The knowledge of process control and its impacts on product quality,

such as population distributions and yield, are significantly under-

studied relative to more established biopharmaceuticals.5 This lack of

knowledge restricts the opportunity for operational optimization that

might drive down costs and/or create more consistent product.6

Recent work in manufacturing processes has shown amenability to

suspension scaled production and described some of the changes in

the environment.7 However, these descriptions fall short of providing

the level of process understanding required for risk assessment of

process deviations or selection of optimal process operation.8,9 For

example, given process constraints, such as a restricted bioreactor vol-

ume, the optimal medium exchange or concentrated batch feed strat-

egy and the risk of any associated control deviations.10,11

The current manufacturing process for CAR-Ts uncovers how a

cellular therapy with a complex manufacturing process has been suc-

cessfully scaled out, streamlined, and optimized to ensure supply of

the high-quality T-cell product to the global market.9

The CAR-T cell therapy manufacturing process begins by collect-

ing the nonmobilized peripheral blood mononuclear cells (PBMC) from

a patient through leukapheresis.10 The leukapheresed PBMC is

cryopreserved within 24 h after collection at �120�C for further

processing. Dependent upon the patient's need PBMCs are then

thawed under controlled conditions, followed by cell washing and

T-cells selection and enrichment. T-cells are activated using

CD3/CD28 antibody-coated paramagnetic beads before a transduc-

tion step using viral vectors. Following transduction and removal of

excess vector and other residuals the cells are expanded in static cul-

tures and then in bioreactors.8,12 Cell expansion continues ex vivo

until sufficient number of cells that meet the final product dose

requirements have been achieved. To harvest the cells, the CAR-Ts

are isolated from the beads, washed, and formulated in infusible

media. The critical quality attributes of cells are evaluated to deter-

mine multiple parameters including: appearance, identity, safety,

purity, potency, and quality of the final product.

During the industrial manufacturing of CAR-Ts for global clini-

cal trial applications, multiple steps were taken to improve process

performance and robustness and to maintain the quality of the

product. The key process changes included: enhancement of pro-

cess control to ensure product consistency, introducing the auto-

mation process and closed systems to ensure reproducibility while

preventing the risk of contamination. Further validation of analyti-

cal methods was also applied to improve the consistency of the

final product.13

T-cell based immunotherapy will require a consistent quality

product in a suitable bioprocess format for manufacturing at scale. In

order to ensure and maintain the quality of clinically relevant T-cell

populations, a variety of quality control (QC) panel tests have been

carried out by manufacturers to evaluate the expression levels of mul-

tiple T-cell surface antibodies including: CD4+/CD8+, CD45, and

CCR7.14,15 The presence or absence of these phenotypic markers will

determine the diversity of T-cell subpopulations hence mandate the

process condition including: feeding composition and rates to achieve

targeted sub populations of T-cells that can be clinically relevant. For

example, Naive T-cells are CD45RA+, CD45RO�, CD62L+, and

CCR-7+. These markers change to CD45RA0 , CCR-70 in CD8+ TEM

cells. Thus, based on the expression level of these and other pheno-

typic markers T-cell subsets and subpopulations can be sorted,

expanded, and analyzed for functional activities during immune

responses against pathogenic agents or CAR-T cell therapies.16,17

The ongoing, continuous process improvements will result in fur-

ther enrichment in the manufacturing of CAR-Ts including reduction

in the throughput time from receipt of leukapheresis material to

patient bedside.8 One example of process improvement was demon-

strated by the collaborative study conducted by National Cancer Insti-

tute and Kite Pharma, a Gilead company which underlined the

significant correlation between the functionality of an anti-CD19

CAR-T-cell product before treatment, polyfunctional strength index,

and response in non-Hodgkin lymphoma patients. Their findings show

a high potential to predict the cancer patients objective response to

CAR-T cell therapy before treatment, while highlighting the improve-

ment achieved both in preinfusion product potency testing and cell

product optimization.4

In common with all therapeutics, the industry standard for pro-

cess development is a risk-based approach driven by robust experi-

mental data.16 Mathematical models that describe process outcomes

in terms of process control variables are at the heart of such an

approach.17 They can support quantitative estimates of risk based on

simulations of operating variation, either via methods such as the

Monte-Carlo analysis of model parameters or control variable distribu-

tions, or extrapolation/interpolation to assess alternative operating

conditions. Diverse outcomes will develop from variation in input cells

and reagent indicating that process is highly dependent on process

operation and specific autocrine and paracrine responses of T-cell

subsets and sub populations.16,17 Applying mathematical modeling,

therefore, is a cost-effective approach that untangle, and control

T-cells bioprocesses by predicting variability in process outcomes with

respect to input variability thus identify process operation with

acceptable risk and opportunities for process optimization.

Independent modeling approaches have previously been devel-

oped to provide a framework for bioprocess optimization of cell ther-

apy manufacturing (Advanced Bioprocess Design, UK),17,18 and,

separately, the cost analysis of cell therapy manufacture (BioSolve,

Biopharm Services, UK).19,20 The bioprocess optimization is based on

an ordinary differential equation approach to describe key process

mechanisms in a low parameter (and generally unstructured) form that

directly relate to process operation. The application of this framework

in providing insight to T-cell manufacturing process optimization is

reported in this article. The aim of this study was to describe how this

modeling approach can be applied, with limited process data, to define

medium exchange process operation limits in a stirred tank culture

format. Therefore, to show how the approach can be evolved to pro-

vide further process insight as more analytical data, such as nutrient

concentrations, becomes available. Gaining these insights will further

assist in evaluation of the process optimization and risk understanding

in cell therapy applications.
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The second modeling approach was to use BioSolve commercial

software as an independent model to provide an insight into the cost

impact of defined optimized T-cell process choices and scale-up. Previ-

ous work in this area focused on cell therapy manufacturing processing

platforms that relied on scale-out.19,20 Most autologous cell therapies will

require low-batch volumes, typically less than 5 L and hence do not take

advantage of economies of scale. The smaller volumes, the larger number

of batches and the variability of starting and finished cell materials pose

a challenge to current processing platforms that rely on unscalable

processing platforms.21 Using scalable technologies would provide maxi-

mum flexibility, control, and monitoring in the cell culture platform to

accommodate for the heterogeneity in the type and number of cells

available initially from the patient.22 Using modeling approaches such as

the ones shown in this article would enable a preliminary analysis of the

optimal way to process cells for a given starting cell number, best feeding

strategy, and cost impact, before any experimentation or processing is

undertaken. With further data, such a model could also indicate how cell

growth can be sustained while selectively affecting the growth of specific

sub-population of T-cells, hence would be highly applicable in T-cell/

CAR-T cell therapy manufacturing processes.22

2 | MATERIALS AND METHODS

2.1 | CD3+/CD28+ cell culture

Frozen PBMC vials were supplied by the Axol Bioscience (Cambridge, UK)

with informed consent and national research ethics committee (NREC)

ethical approval. Following the thaw of PBMC vial, CD3+/CD28+ T-cells

were isolated and activated via positive selection using Dynabeads®

human T-activator CD3+/CD28+ antibody labeled microbeads with ratio

of 3:1 dynabeads per cells according to the manufacturer's instructions

(Gibco™ by Life Technologies, UK). The activated T-cells were then inocu-

lated at a density of 1 � 106 cells ml�1 in RPMI (Thermofisher, UK) sup-

plementedwith 10% (v/v) Fetal Bovine Serum, Heat Inactivated, US origin

Gibco (Fisher Science, UK), 1% (v/v) L-Glutamine (200 mM)

(Thermofisher, UK) and 100 IUHuman IL-2 IS (Miltenyi Biotec, DE).

Cells were cultured in T25 tissue culture flasks in humidified

atmospheric O2 and 5% CO2 conditions at 37�C (5% CO2 in air) for

7 days prior to bioreactor culture; they were fed daily from day 2 of

culture by addition of 5 ml fresh medium. On day 7, dynabeads were

removed from cells, cells were centrifuged at 300g for 10 min and

were re stimulated by addition of fresh dynabeads with ratio of 1:1.

Cells were seeded in the Ambr®15 bioreactor system (Sartorius

Stedim, DE); nonsparged vessels were preconditioned as described

previously,23 and temperature, impeller speed, pH, and DO were set

to 37�C, 450 RPM, pH 7.3, and 100%, respectively.

2.2 | Ambr®15

Ambr®15 is an automated parallel processing bioreactor that can be

employed in capturing data, monitoring, controlling culture

parameters in different experiments. The sensors in cooled worksta-

tion monitor culture temperature range with individual set point,

closed-loop control of pH and DO, independent control of O2, CO2,

and N2 for each microbioreactor. There are user defined temperature

and stirring set point for each culture station with extended low speed

stirring range, from 150 to 2500 rpm. The workstation consists of an

Integrated Ambr® Analysis Module for automated at-line pH calibra-

tion and in-process checks and Integrated ViCell XR and Cedex HiRes

cell counters. Ambr®15 Liquid Handler Automated liquid handling

robotics (LHR) manage all liquid transfer steps during the culture pro-

cess: media, feed, and reagents are dispensed using 1 and 5 ml sterile

pipette tips—samples are taken from the microbioreactors using 1 ml

sterile pipette tips—larger volumes of microbioreactor culture are

removed in a single step using the Rapid Vessel Drain. Ambr®15

microbioreactor vessel Mimics the characteristics of lab scale bioreac-

tors to enable optimal cell growth, productivity and product quality.

Each vessel with sparge tube for gassing into impeller mixing zone, or

without for headspace gassing has the capacity of 10–15 ml working

volumes.

2.3 | Culture analysis

2.3.1 | Cell count and viability

Online cell counting and viability was measured using a Vi-Cell XR

(Beckman Coulter, USA) set to the following parameters: minimum

diameter (m) = 6, max diameter (m) = 20, cell brightness (%) = 85, cell

sharpness= 100%, viable cell spot brightness (%)= 65, viable spot area

(%)= 10, minimum circularity = 0.8. The selected parameters for T-cell

counts were based on the previous setup for T cell count and literature.

A coefficient of variation of 4% was calculated for counts from parallel

bioreactor technical replicates. Visual checks (50 images per each

count) were conducted to validate the T-cell count identification of the

samples. The cell count for two replicates of each sample was carried

out every 3 h and initiated at inoculation point in Ambr®15 bioreactor.

2.3.2 | Flow cytometry of T-cells subpopulation
markers

Cells from each vessel were sampled (1 � 105/tube) into flow buffer

containing: phosphate-buffered saline (PBS) and 1% bovine Serum

albumin (BSA) and centrifuged at 300g for 10 min following removal

of dynabeads. Cell pellets were resuspended and mixed with the

appropriate volume of antibodies to a final volume of 100 μl in flow

buffer. The Antibody Panel consisted of 1.1 μl of CD8-VioGreen

500 nm human, CD4-PerCP-Vio700nm human Clone REA623,

CD45RO-APC-Vio770 nm human Clone REA611, CD45RA-PE-

Vio770 human Clone REA562 and CD197 (CCR7)-VioBlue 450 human

clone REA546 per 1 � 105 cell 20 μl�1 cell suspension samples

(Miltenyi Biotec, DE). Cells were incubated for 10 min at 4�C, washed

once with flow buffer and analyzed using a BD FACSCantoTM II flow
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cytometer (BD Biosciences, USA) and gated against specific isotype

and fluorescence-minus-one controls.

2.3.3 | Specific consumption/production rate of
Metabolites

Duplicate metabolites samples were collected daily from each vessel

(500 μl) and were centrifuged at 300 g for 10 min. The supernatant

containing spent media was collected and stored at �20�C prior to

analysis. Spent media was analyzed for glucose and lactate using the

Cedex Bio-HT (Roche, DE) to calculate the specific metabolite rate

mmol cell�1 days�1.

2.4 | Modeling and model evaluation for
manufacturing

2.4.1 | Unstructured ODE model

Hypotheses for alternative mechanisms of cell growth and growth

inhibition were proposed (as described in the results) and expressed

mathematically using a tailored Ordinary Differential Equation (ODE)

modeling framework previously described.18,19 T-cells in the Ambr®15

bioreactor were subject to varying media exchange and initial density

culture regimes and cell counts recorded. Candidate models were

fitted to minimize least squares deviation. The model was iterated to

both validate original parameters and include additional explanatory

elements such as the nutrient glucose.

In brief, an ODE paradigm was used to model the evolution of

system components over time. Media or cell density change opera-

tions were modeled as step changes in, with forward Euler used to

obtain model variable evolution between these time-points. Optimiza-

tion was performed via an exhaustive search of parameter space

(i.e., a brute force screen of all combinations of parameter values). An

acceptable model fit was considered to show no gross systematic

deviations in residuals across the model experimental space.

2.4.2 | BioSolve process

The economics of optimal process options for media exchange

regimes and initial culture densities were modeled using BioSolve Pro-

cess (Biopharm Services, UK) commercial software. BioSolve is a

Microsoft® Excel-based software used in the pharmaceutical industry

for modeling monoclonal antibodies, vaccines, cell and gene therapies,

and products derived from mammalian and microbial production pro-

cesses.24,25 This software has an extensive database with default

costs, equipment, consumable, and material details, which are updated

yearly. The BioSolve Process version 8.0 was used for this evaluation.

The cost analysis presented in this work focused on the cost of

goods (CoGs) per million cells generated, and materials categories

which included: culture media, dynabeads addition, the starting PBMC

material, and in-process QC tests. The PBMC cost was obtained from

Biosolve model and assumed to be 201.38 USD/vial. The process

used in Biosolve for the generation of PBMC has been previously

described.26,19 The entire experimental set-up, protocol and results

for the T-cell process described in Step 1 of the Materials and

Methods section was simulated in BioSolve. This was also the case for

the QC tests performed, namely viable cell count and identity by flow

cytometry analysis, accounting for 1388.60 USD/batch. The small-

scale model based on the Ambr®15 bioreactor system (Sartorius

Stedim) used for the experiments shown in this article were scaled-up

to a standard 2 L single-use stirred tank reactor cell culture system to

quantify the cost impact of optimized process options on a target 2 L

scale for autologous T-cell therapy manufacture.

3 | RESULTS AND DISCUSSION

Our initial objectivewas to develop amodel that described the T-cell num-

ber in the bioprocess over time (yield) in terms of change in the culture

environment by the cells. The aim was to determine the quality impact on

T-cells of exceeding the point at which growth could bemaintained tomir-

ror a manufacturing scenario where medium exchange was delayed or

poorly optimized. Modeling the system in terms of unstructured parame-

ters describing cell generated inhibition, rather than in terms of specific

nutrients andmetabolites, could represent a common scenario early in the

process development path. Therefore, this modeling approach is based on

growth data that are available in the absence of significant analytical data

on the process environment (Figure 1).

3.1 | Constructing a simple feed model for T-cell
growth and inhibition

A growth rate, a constant specific production rate of an inhibitory fac-

tor (arbitrarily set at 1 inhibitory unit produced per 1 � 106 cell h�1),

an inhibition of growth rate by generated inhibitory factor units

(defined by a threshold and sensitivity parameter), and a cell decay

promoted by the same mechanism, were modeled as previously

described. Model parameters were optimized by simultaneous fitting

of experimental datasets obtained from T-cells cultured in the

Ambr®15 system under diverse operational scenarios including two

start culture densities: high-cell density: 1.1 � 106 cell ml�1 and low-

cell density: 0.6 � 106 cell ml�1 and different medium dilution timings:

at 24 or 37 h post inoculation that was described as model 1.

Results from Figure 2 and Table 1 indicated a reasonable fit (assessed

visually by good trend following with no large systematic deviation in

residuals with time or across experimental conditions; growth rate:

0.012 cell h) with a simultaneous and common parameter optimization

across all experimental conditions. The model 1 and experimental data

suggested that culture growth rate could be approximated as a function of

cell time in the systemwith a high degree of confidence and its consistent

with a cell driven exhaustion of the medium. Cells proliferated exponen-

tially in both medium dilution timing scenarios at 24 and 37 h before
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entering the inhibition phase at around 73 and 120 h post inoculation in

high cell density and low cell density conditions. Beyond the inhibition

point, T-cells growth declined significantly as a sign of system exhaustion

with the number of cells reached to below the initial seeding density

(0.7� 106 cell ml�1). However, as expected starting seeding density had a

dominant impact on time to system exhaustion with T-cells in the high cell

density scenario entering the inhibition phase much earlier than cells in

low seeding density condition in both feeding dilution strategies. Overall,

model 1 suggests an ability to predict system exhaustion as a function of

operational parameters starting cell density and dilution time.

3.2 | Development of a glucose dependent Monod
model for T-cell growth and inhibition

Given the initial model suggested cell activity driven was by growth

inhibition, it was probable that this was due to depletion of a key

nutrient or accumulation of a toxic metabolites (Figure 2a,b). Without

overcoming this inhibition, the model implies that bulk batch medium

exchange will limit T-cell volume productivity to approximately

1 � 106 cells produced per ml of volume exchanged. Preliminary anal-

ysis of medium sampled during model 1 development indicated rapid

depletion of glucose; thus, it was hypothesized that glucose availabil-

ity could directly be modeled to predict cell growth. A new glucose

dependent model was defined describing the system as T-cells includ-

ing: a growth rate, a constant specific consumption rate of glucose, a

promotion of T-cell growth rate by glucose (defined by Monod kinet-

ics), a promotion of glucose consumption rate by T-cells (defined by

Monod kinetics) and a cell decay rate inhibited by glucose (defined by

a threshold and sensitivity parameter as previously described). Once

again, glucose dependent model parameters were optimized using

fitting of simultaneous experimental datasets obtained from T-cells

cultured in the Ambr®15 system which represent different start cul-

ture densities (high-cell density: 0.8 � 106 cell ml�1 and low-cell

F IGURE 1 Ambr®15 automated
bioreactor

F IGURE 2 Growth of T-cells reseeded into fresh culture medium in the Ambr®15 bioreactor at two different initial culture densities (high-cell
density: 1.1 � 106 cell ml�1 and low-cell density: 0.6 � 106 cell ml�1) and with different timing of a dilution feed. (a) 0.33 proportional volume
dilution at 24 h post inoculation, (b) 0.33 proportional volume dilution at 37 h post inoculation. Lines represent a model 1 fit of cell growth,
growth inhibition, and cell death based on cell mediated medium exhaustion
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density: 0.375 � 106 cell ml�1) and different medium dilution timings

(24 or 37 h) to support robust parameter optimization across different

operational scenarios. Optimized parameter values and optimized

model fit to data are shown in Table 2 and Figure 3. The glucose

dependent model predicted cell growth based on variation in initial

cell density and feeding rates and indicated that cell growth linked to

metabolites specific consumption/production rate.

The parameter optimization for the Monod kinetics indicated that

the concentration of glucose at which the specific rate of glucose use

rate is half the maximal (half-effect…) was significantly higher than the

glucose concentration that was inhibitory for growth or caused cell

death (half-effect, threshold) (Figure 3a–e). These findings suggested

that delivery of glucose at a feed rate significantly under the maximum

specific consumption parameter value of 0.05 mg 1 � 106 cell h�1

should adequately sustain growth as consumption rate of glucose will

reduce before detrimental concentrations are reached.

3.3 | Validation of glucose supply model

To validate the effect of glucose concentration on T-cell growth, a fur-

ther culture was conducted in which glucose was provided using differ-

ent feed strategies including: a 1% h�1 dilution of standard glucose

medium (glucose concentration: 2.06 mg ml�1), a 1.13% h�1 dilution

with high-glucose medium (glucose concentration: 4.11 mg ml�1) and a

0.57% h�1 dilution with extra high-glucose medium (glucose concentra-

tion: 8.22 mg ml�1) (Figure 4a–c). In the latter 2 conditions the total glu-

cose delivery remained the same and targeted to initially deliver the

0.05 mg 1 � 106 cell h�1 which was consumed by the cells in the previ-

ous experiment and in the presence of excess glucose. The first scenario

of standard medium at 1% h�1 would deliver 0.02 mg ml�1 h�1 glucose

to the cells which was approximately 50% under the calculated T-cells

glucose consumption rate in the previous experiment. The design of

experimental conditions was based on the ODE model calculations that

the initial seeding density of T-cell culture at 0.8 � 106cell ml�1 would

require 0.04 mg ml�1 h�1 glucose supplementation from the start with

assumption of 0.05 mg 1 � 106 cell h�1 for glucose consumption rate.

The data were tested against the same model and optimized

parameter values as previously defined. The growth rate required

adjusting due to faster proliferation (0.17 h�1) but all other model

parameters with respect to metabolic behavior remained the same.

Data fit to the model was reasonable for the low-glucose delivery,

suggesting an adequate parameter optimization from the initial data

set and confirming that an 'undersupply' of glucose sustained the con-

tinual growth rate over the full culture period—even though by the

end of the culture period delivery rate was approximately 25% of the

suggested feed based on optimized specific consumption rate param-

eter (Figure 2a). Further, the cultures with glucose delivered closer to

the measured consumption rate both became growth inhibited early,

seen as a lack of fit of cell numbers and glucose relative to the model

predictions. Inhibition at a similar time point despite the different bulk

dilutions suggested that this is related to the glucose supply (which

was matched) rather than any other factor (Table 3).

3.4 | Development of an optimized glucose supply
model of T-cell growth and inhibition

To confirm the robustness of the model to multiple inputs, and further

establish the sensitivity of the system to glucose supply, a further

experiment was conducted in which 1% h�1 dilution feeds with glu-

cose at 2.056, 2.467, and 2.878 mg ml�1 were supplied to each ves-

sel. Once again, the lower rate of glucose provision sustained the

culture in line with the model predictions, with the higher glucose pro-

vision causing earlier growth reduction (Figure 5a–c).

TABLE 1 Range and resolution of optimized input parameter
values for model 1

Parameter Value Unit

Growth rate (GR) 0.012 h�1

Death rate 0.007 h�1

Creation of inhibition

(arbitrary)

1 Inhibition units created.

Million cell h�1

Threshold of growth

inhibition

63 Inhibition units

Sensitivity of growth

inhibition

0.4 Unitless (modulator of

inhibition)

Threshold of death

promotion

80 Inhibition units

Sensitivity of death

promotion

4000 Unitless (modulator of

promotion)

Note: The values for variety of parameters including growth rate,

threshold and sensitivity for growth inhibition, and promotion of cell death

were explored to define the optimized values for model variables.17,18

Best fit: GR = 0.012, GR thresh = 63, GR taut = 0.4, Death rate = 0.007,

Death thresh = 80, Death taut = 4000.

TABLE 2 Optimized parameter values for model 2 (Monod
kinetics) that implies glucose can be fed slower than 0.05 and growth
will continue17

Parameter Value Unit

GR 0.01 h�1

Glc Sp rate 0.05 mg million cell h�1

Monod Glc_GR 0.005 mg ml�1

Decay Glc threshold 0.05 mg ml�1

Monod Glc_GLc use 0.2 mg ml�1

Decay Glc taut 30

Cell decay 0.007 h�1

Abbreviations: Glc, glucose; Glc Sp rate, glucose specific consumption

rate; GR, specific growth rate; Monod Glc_GR, Monod constant

determining specific growth rate as a function of Glc concentration (i.e.,

concentration of glucose at which specific growth rate is half maximal

[half-effect]); Monod Glc_GLc use, Monod constant determining specific

glucose consumption as a function of glucose concentration (i.e.,

concentration of glucose at which specific glucose consumption rate is

half maximal).
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F IGURE 3 Growth curves of T-cells and glucose depletion model 2 (glucose dependant, Monod kinetic model) from different initial culture
densities (high-cell density: 0.8 � 106 cells ml�1 and low-cell density: 0.275 � 106 cells ml�1) and with different timing of a dilution feed with no
added glucose. Lines represent a model fit of cell growth and inhibition based on glucose depletion. (a) No feed and no cell dilution, (b) 24 h feed
0.33 dilution, high density, (c) 37 h feed 0.33 dilution high density, (d) 24 h 0.33 dilution low density, (e) 37 h feed 0.33 dilution low density

F IGURE 4 Growth curves of T-cells and glucose depletion in model 3, (glucose supply model) with different feeding dilution rates and
glucose concentration in the bulk medium. (a) 1% dilution rate with 2.056 mg ml�1 glucose, (b) 1.13% dilution rate with 4.112 mg ml�1 glucose,
(c) 0.57% dilution rate with 8 mg ml�1 glucose. Showing that glucose supplied at a lower rate than the maximal consumption rate established in
the glucose feed model sustains growth longest indicating a substantially lower glucose demand than that consumed at higher glucose
concentrations
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The results of optimized glucose model indicated that glucose

reached a steady-state level at approximately 100 h post inoculation

in all conditions, but the level at which the glucose stabilized varied

and depended on the rate of glucose delivery. This was evident by

measurement of higher glucose concentration in the bulk medium in

conditions with feed at 2.4 and 2.8 mg ml�1 at steady state level.

These findings qualitatively validated the experimental results of the

optimized glucose supply strategies which indicated the highest glu-

cose concentration at the steady state level in 2.8 mg ml�1 feeding

scenario (0.5 mg ml�1) in comparison to the measured glucose in

1% h�1 dilution feed with no added glucose (0.2 mg ml�1).

The optimized glucose supply model showed that the increased

glucose concentration in the feeds sustained the growth beyond the

lower glucose provision in the native medium. However, despite

maintaining steady state glucose at different levels both conditions

became growth inhibited around 140 h suggesting a further inhibitory

factor beyond glucose availability. Beyond this point, T-cells growth

continued to decline considerably due to the system exhaustion and

cells number did not recover from day 5 post inoculation (Table 4).

3.5 | The impact of T-cell's culture parameters on
phenotypic commitment

3.5.1 | Monod Kinetics model

In the Monod Kinetics model, Comparison of phenotypic data between

static culture and Ambr®15 system's different feeding frequency and

seeding density conditions showed sensitivity of SCM/TCM, TEM and

effector populations in both CD4+ and CD8+ subsets (Figure 6a,b).

However, CD8+ subpopulations changed more significantly over time

TABLE 3 Optimized parameter values for model 3 that glucose is

detrimental at 1.13% feeding rate and inhibits cell growth

Parameter Value Unit

GR 0.017 h�1

Glc Sp rate 0.08 mg million cell h�1

Monod Glc_GR 0.005 mg ml�1

Decay Glc thresh 0.05 mg ml�1

Monod Glc_GLc use 0.2 mg ml�1

Decay Glc taut 30

Cell Decay 0.007 h�1

Note: 1% feeding rate with no glucose addition shows no growth

inhibition.17

Abbreviations: Glc, glucose; Glc Sp rate, glucose specific consumption

rate; GR, specific growth rate; Monod Glc_GR, Monod constant

determining specific growth rate as a function of Glc concentration (i.e.,

concentration of glucose at which specific growth rate is half maximal

[half-effect]); Monod Glc_GLc use, Monod constant determining specific

glucose consumption as a function of glucose concentration (i.e.,

concentration of glucose at which specific glucose consumption rate is

half maximal).

F IGURE 5 Growth curves of T-cells and glucose depletion in model 4, (optimized glucose supply model) with different feeding dilution rates
and glucose concentration in the bulk medium. (a) 1% dilution rate with 2.4 mg ml�1, (b) 1% dilution rate 2.84 mg ml�1 glucose, (c) 1% dilution
rate with 2 mg ml�1 glucose (no added glucose). Validation that glucose is not restrictive; give glucose at normal 20% and 40% above base feed
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that was evident by a sharp decline of SCM/TCM population (p value:

0.016) followed by an increase in both effectors, Naive and TEM

populations between day 2 and day 5 (p value: 0.001 and 0.016, respec-

tively). In addition, the results of statistical analysis suggested that

starting seeding density had a dominant influence on effector and

SCM/TCM populations and CD4+/CD8+ ratio (p value: 0.002 and

0.003) (Table S1). Other subpopulations including CD4+ TEM, CD8+

SCM/TCM were also sensitive to variation in starting cell density but

change in dilution frequency had minimum effect in shifting the T-cell

subpopulations as only CD8+ SCM/TCM expression level changed sig-

nificantly over time (p value: 0.041) (Figure 6a,b).

3.5.2 | Glucose supply model

Phenotype analysis of the glucose supply model revealed that regard-

less of the fluctuation in both CD4+ and CD8+ SCM/TCM

populations in different dilution feed scenarios, there were no sub-

stantial phenotype shift in any of the feed condition (Figure 6c,d).

Some subpopulations seemed to be more sensitive to the effect of

time in culture including CD4+ subset and CD8+ effector populations

that manifested as an increase between day 3 and day 6 post inocula-

tion in all feeding conditions (p value: 0.005, 0.001, and 0.001, respec-

tively) (Table S2). This finding was in contrast with percentage of

CD4+ SCM/TCM populations that declined in all feeding conditions

at the later timepoints (D3–D6) and when T-cells entered the exhaus-

tion phase in the culture. Irrespective of feeding conditions, all CD4+

sub populations increased over time and exhibited the highest growth

by day 6 post inoculation (Figure 6c,d).

CD4+/CD8+ ratio was significantly changed over time in all feed-

ing dilution condition (p value: 0.049 and 0.001) while no meaningful

phenotypic changes were reported between different feeding dilu-

tions and glucose supply conditions (Figure 6c,d). This was evident as

only CD8+ TEM subpopulation showed significant sensitivity to dif-

ferent dilution rate and glucose supply conditions between day 3 and

day 6 (p value: 0.045) (Table S2).

3.5.3 | Optimized glucose supply model

In the optimized glucose supply model, CD8+ subpopulations showed

more sensitivity to variation in feeding dilution and additional glucose

in T-cell culture at later timepoints in comparison with CD4+

(Table S3). Evidently, only CD8+ SCM/TCM population were signifi-

cantly influenced by the increase in concentration of glucose in the

bulk medium while other factors including dilution rates and time

showed to be less effective in influencing T-cells sub-populations.

Phenotype analysis at the point of growth inhibition at day 7 showed

a strong selective effect on CD8+ cells over CD4+ indicating a rela-

tively high sensitivity of CD8+ to limitation in nutrient supply and cul-

ture exhaustion as detailed in Figure 6e,f.

Phenotypically, there was no detected difference in any of the

conditions sensitivity to both time and dilution rates between day

3 and day 6 prior to the point of growth inhibition excluding the

CD8+ TEM population. This finding suggested that there was no

short-term driving effect of cell time accumulation on phenotype in

the optimized glucose supply model (Figure 6e,f). CD4+/CD8+ ratio

varied significantly at the later time points in culture prior to and

after cells entering the inhibitory in all feeding scenarios while, addi-

tional glucose proved to have a less dominant effect in variation of

CD4+/CD8+ ratio. Unlike most of CD4+ subpopulations that

showed no statistically significant changes over the time, dilution or

glucose supply conditions, CD8+ SCM/TCM and TTEM populations

manifested substantial variation between growth and inhibition

phases in all scenarios (p value: 0.020 and 0.010, respectively)

(Table S3).

Comparison of phenotypic changes between Monod Kinetics model,

Glucose supply and the optimized glucose supply model revealed that

apart from CD8+ effector population sensitivity over time, there were

no commonalities in the influence of feed, or glucose supply on different

T-cell sub populations. In contrast, time in culture proved to be the main

factor that influences CD4+/CD8+ ratio in both glucose and optimized

glucose models. Unlike CD4 populations that remained stable between

growth and inhibition phase, CD8+ populations showed more significant

variation over time in all three feed models.

Phonotypic data analysis of Monod Kinetics and optimized glu-

cose supply models suggested that CD4+ effector populations were

markedly affected by both change in feeding dilution and initial

seeding density in culture (p value: 0.023 and 0.005, respectively),

whereas CD8+ naïve populations were mostly sensitive to the time in

culture and transition from growth phase to exhaustion in both

models (p value: 0.001 and 0.024).

Despite some commonalities between the effect of different

feeding and glucose supply conditions on selection of CD4+ and

TABLE 4 Optimized parameter values for model 4 (optimized
glucose supply model) that shows growth rate is higher as is glucose
consumption

Parameter Value Unit

GR 0.015 h�1

Glc Sp rate 0.05 mg million cell h�1

Monod Glc_GR 0.005 mg ml�1

Decay Glc thresh 0.05 mg ml�1

Monod Glc_GLc use 0.2 mg ml�1

Decay Glc taut 30

Cell Decay 0.007 h�1

Note: This validation reveals that glucose was not restrictive and

approximately the same restriction points in all three conditions imply

total dilution rather than glucose concentration being the issue.17

Abbreviations: Glc, glucose; Glc Sp rate, glucose specific consumption

rate; GR, specific growth rate; Monod Glc_GR, Monod constant

determining specific growth rate as a function of Glc concentration (i.e.,

concentration of glucose at which specific growth rate is half maximal

[half-effect]); Monod Glc_GLc use, Monod constant determining specific

glucose consumption as a function of glucose concentration (i.e.,

concentration of glucose at which specific glucose consumption rate is

half maximal).
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CD8+ sub populations, variation in the initial phenotypic data from

the same donor seemed to have the main influence on the outcome

of the process. Differences in phenotypic pool of T-cells after the

manual expansion and prior to inoculation massively dictated the

expression level of subpopulations at later time point of culture and

beyond other parameters including dilution rates, starting seeding

density and additional glucose supply.

3.6 | Scaling up T-cell process: Applications of a
cost model in manufacturing settings

The ODE model data were used to inform volumes and densities as

input to a Biosolve process model operating at a theoretical 2 L scale

(Figure 7). The volume productivity of a cell culture medium (cells

that can be produced per ml of volume exhausted) defines the

F IGURE 6 Results of phenotype variation in CD4+ and CD8+ T-cells cultured under different dilution rates and glucose concentration in the
bulk medium for (a and b) Monod kinetics model, (c and d) glucose supply, and (e and f) optimized glucose supply models. Adjusting the feeding
rates did not appear to have any effect on diverging the T-cells' subpopulation growth. Variation in T-cells' starting subpopulations seems to
dictate the outcome of process regardless of provision of glucose supply and feeding strategies
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combination of bioreactor volume and volume exchange rate

required to deliver a given yield of product (Figure 7). Without a

change in volume productivity of medium, then a reduction in bio-

reactor volume must be matched with a proportional increase in

fluid exchange. The initial model of batch exchange, both non-

specific and glucose dependent, indicated a volume productivity of

approximately 1.5 � 106 cell ml�1. The low-glucose feed has a sig-

nificant impact on volume productivity. The 1% h�1 feed rate with

2.056 g L�1 glucose supported 3 � 106 cell ml�1, increasing the

number of cells that can be yielded from a given bioreactor scale

for a given rate of medium exchange (Figure 7).

The results of the BioSolve process model indicated that the

materials cost category was the biggest cost driver of T-cell process

ranging between 23% and 30% after fixed Labor costs (48%–53%), in

line with previous published work.26,19 Scaling up to 2 L scale reduced

the resulting CoGs, improved productivity and involved relatively less

materials consumption, as it took advantage of economies of scale

(results not shown). Perfusion process was found to be the most cost-

effective process with highest volumetric productivity and the lowest

CoGs per million cells produced (Figure 8a). Even though perfusion

had the highest relative consumption of media, the higher final cell

densities achieved at the end of the perfusion process drove produc-

tivities up and resulted in lower costs (16.5 USD/million cells). The

Optimized Fed-batch low-density process with single addition at 37 h

achieved the highest CoGs and lowest productivity. As mentioned

previously, this was driven by the low final cell densities achieved by

this process. This optimized process option had the highest materials

cost derived from higher requirements of dynabeads—a factor of

higher starting cell densities.

The results of sensitivity analysis revealed that final cell density

had the highest impact upon final CoGs per million cells for all opti-

mized scenarios that were evaluated by the BioSolve model. It also

indicated that the dynabeads cost per Kg also had a very significant

impact on the final CoGs. These changes impacted the optimal sce-

narios with a higher starting cell density more significantly and sim-

ilarly to the effect of changes in dynabeads addition ratio in T-cell

culture (Figure 8).

3.7 | Applications of a simple unstructured ODE
model on T-cell growth and phenotypic commitment

Application of a simple unstructured model of T-cell growth in a

stirred tank system was explored in this article. The first iteration of

the model can provide an operator with a framework for operation

with respect to timings and volume of medium delivery to maintain an

uninhibited growth. The Second iteration indicates how glucose deliv-

ery can be controlled to sustain cell growth. Furthermore, through

showing the (predominantly CD4+) population selective effects of

exceeding the supported growth period, the model informs risk

assessment of process operation on product quality. It was proposed

that model is developed hierarchically and systematically (Table S4).

F IGURE 7 The results of CoGs, volumetric productivity and costs of materials derived from BioSolve process model (Biopharm Services, UK)
for optimal T-cell processes at 2 L bioreactor scale. Perfusion process was the most cost-effective process with lowest CoGs per million cells and
highest volumetric productivity. Optimal T-cell processes: Baseline protocol with no media addition and low-cell density of 0.5 � 106 cells ml�1.
Low-cell density: 0.5 � 106 cells ml�1, high-cell density: 1.0 � 106 cells ml�1, perfusion culture with dilution rate of 2% was assumed to be
consisted of low-cell density: 0.5 � 106 cells ml�1
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Initially, the rate at which culture medium would need to be

exchanged to maintain cell growth was determined (simple feed

model). The finding from the feed model indicated gross system

behavior without identification of individual components.

Variation in starting material and proportion of subpopulations

resulted in different outcome at end points regardless of effect of dif-

ferent experimental condition including: dilution rate and frequency

and addition of glucose in the bulk media. Analysis of Flow cytometry

data demonstrated variation in percentage of CD4+, CD8+, and T-cell

subpopulations at D0. These batch-to-batch deviations caused diverse

outcome for T-cell sup-population proportion for model 1 and model

2 experiments with identical starting cell density and feeding condi-

tions. Phenotype analysis of experimental data demonstrated that cell

density seemed to have a leading effect in supporting the clinically rel-

evant T-cell subpopulations when compared with the feeding time.

The effect of seeding density was opposite in two subsets of T-cells:

CD4+ and CD8+. CD8+ T-cells exhibited higher percentage of TEM,

effectors and naive cells in at later timepoints particularly in LD condi-

tions. Higher cell density supports higher percentage of TSCM/TCM

populations of T-cells at later time points (D2 and D5) while low-cell

density encouraged the growth of more mature T-cells including TEM

and effector T-cells. However, time of feeds appeared to have less

significant effect on growth of CD4+ sub populations.

The results from different dilution feed with additional glucose

supply suggested that provision of glucose in the bulk medium is one

of the key factors that supports T-cell growth and proliferation.

F IGURE 8 The results of sensitivity analysis derived from BioSolve process model (Biopharm Services, UK) for optimal T-cell processes at 2 L
bioreactor scale. Initial cell density and dynabeads were found to have the biggest impact upon resulting CoGs per million cells. (a) Baseline
protocol with no media addition and low-cell density of 0.5 � 106 cells ml�1. The cell density of the optimized batch feeds at 37 h was assumed
as (b) 0.5 � 106 cells ml�1 and (c) 1.0 � 106 cells ml�1 for low- and high-cell density, respectively. (d) Perfusion culture with dilution rate of 2%
consisted of low-cell density: 0.5 � 106 cells ml�1. Variables used for sensitivity analysis include: starting cell density (up to 1.5 � 106 cells ml�1),
final cell density (5.0 � 105–1.0 � 107 cells ml�1), dynabeads cell ratio (up to 1:4), and cost of media per liter and dynabeads per Kg (100 times
decrease up to 10 times increase in cost). High, very high, low, and very low in graphs refer to the qualitative significance of variables impact
on CoGs
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Therefore, limitation in glucose supply act as the first inhibitory ele-

ment in T-cell culture and triggers cell death when T-cells reach the

exhaustion phase. However, our data also indicated T-cells can utilize

glucose at very low concentrations; this finding is in line with the

results of other studies as Thompson et al. demonstrated that even at

0.02 mM glucose, can support T-cell proliferation and viability.27,28

The data from the ODE model demonstrated a higher volume

productivity in dilution glucose feed scenario in comparison with

batch exchange conditions. The dilution per volume unit was reported

as 3.36 at 140 h post inoculation. This finding highlighted that 1%

dilution feed is more efficient model with higher growth rate and cell

hour supported per volume unit. Cells reached inhibition phase in 1%

feed glucose model regardless of glucose concentration which under-

line the role of secondary and tertiary inhibitory factors that prevent

cell growth or initiate the cell death in the culture once glucose is opti-

mized. In batch exchange model higher initial cell density reached the

limit (6 � 107 cells h�1 ml�1) after 48 h whereas lower seeding den-

sity with the same growth rate reached the inhibition at later time

points (72 h). This finding suggests that initial cell density is one of

crucial elements in determining the extent of T-cell growth and

exhaustion phase hence efficiency of the process.

T-cells have a cytoplasmic pool of Glut1 that are transported to the

cell surface following activation and is linked closely to a peak in glucose

uptake between 48 and 72 h post activation.29,30 If Glut1 is blocked, the

capacity of proliferating naïve T-cells to transform into TSCM is severely

compromised. A similar impairment can be caused by inhibition of the

mitochondrial pyruvate carrier (MPC) with the small molecule

UK5099.31,29 This indicates that, unlike effector T-cells, TSCM converts

glucose into pyruvate and, therefore, does not produce significant

amounts of lactate despite high internalization of glucose. As a result,

Glut1 blockade could be an effective strategy to generate more selective

sub-populations of T-cells such as long-lived TSCM.3,32 Increased expres-

sion of Glut1 and glucose uptake are associated with higher cellular

growth and proliferation in thymocytes.33,34

Following immune activation, metabolic rates significantly

increase in T-cells as a result of proliferative expansion and the pro-

duction of cytokines.35,36 This process demands substantial amounts

of energy and cellular biosynthesis which leads to an increased

demand for nutrients, including glucose, glutamine and amino acids

such as serine and arginine, to supply fuel for bioenergetic and biosyn-

thetic pathways.37,38 Effector T-cells have high rates of glucose and

glutamine uptake, which are metabolized by aerobic glycolysis and the

tricarboxylic acid cycle.39,40 Operational costs will be driven down

with a smaller unit with less reagents and volume; particularly if allo-

geneic products take off large batch production costs are driven

down. While CD4+ T-cells appear to have selectively increased capac-

ity for mitochondrial respiration of glucose, both CD4+ and CD8+ T-

cells can oxidize alternative fuels such as glutamine if required.41,35

The results of phenotype analysis of CD4+ versus CD8+ population %

revealed that the number CD8+ subset increased from �14% at day 0

to �22% at day 4 which was followed by a substantial decrease to

�12% at day 7. This indicated that the CD8+ subset might be more

sensitive to the effect of inhibitory agents and prior to reaching the

growth inhibition at day 7 as shown in optimized glucose model

experiment (Figure 6c,d). These findings are aligned with the results of

other T-cell studies which suggest that different T-cell subsets and

populations may require a more tailored and specific culture condi-

tions and medium composition in order to support cell growth and to

prevent initiation of an premature/undesirable exhaustion.39,42,43

Previous cost analysis of cell therapy products using BioSolve

saw the same trends seen here, whereby fixed costs were the main

cost driver for small-scale operations, irrespective of the type of tech-

nology used.26,19 Secondary drivers were materials costs, highlighting

the importance of the optimization of process parameters such as: the

quantities of media added, media components, among others. When

compared to the author's previous work, the most noticeable impact

of the introduction of scalable bioreactor technology in T-cell

processing, was the reduction of the costs per million cells

produced,19,20 achieved by the ability to optimize, and improve volu-

metric productivities. In the context of autologous cell therapies, the

resulting cost per batch (or per patient) could be three times higher

using these scalable technologies (results not shown).44 However, the

cost benefit of being able to accommodate for the inherent variability

of starting cell densities related to the patient cells collected, and the

value to maintain tight control over product quality attributes, are yet

to be defined upon the cost-effectiveness of the therapeutic. These

would be expected to play a significant role in the final process

configuration.

4 | CONCLUSION

A simple ODE model of cell growth was introduced to specify key

parameters for efficient culture operation. It has also demonstrated

that this user-friendly model is simple enough to be built and tested

with low data and represent the complexity of cell dynamic and biol-

ogy to a degree that is acceptable for manufacturing applications.

The data from our model indicated that culture growth rate could

be approximated as a function of cell time in the system and both

starting cell density and timing of feed have a great influence on T-cell

system growth and point of growth inhibition.

Furthermore, our model showed that glucose is linked to the

growth rate and that a delivery of glucose at a feed rate substantially

under the maximal specific consumption parameter value of 0.05 mg

1� 106 cell h�1 will adequately sustain cell growth in the system.

Data generated by BioSolve model predicted that the optimized

glucose supply model can be employed for process optimization in

manufacturing settings including 2 L bioreactor scale while providing

most cost-effective T-cell process with the lowest CoGs per million

cells produced and the highest volumetric productivity.

However, the effect of glucose stochiometric feed and other sec-

ondary inhibitory factors in triggering T-cell growth inhibition remains

to be explored. For example, presence of other key metabolite factors

(lactate, ammonia), amino acids and cytokine concentrations in the

bulk media may lead to a delayed growth inhibition and phenotypic

commitment in the T-cell system at the later time points. Employing
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objective gating strategies including SPADE may shed more lights to

the effect of these feeding scenarios and medium compositions on T-

cell phenotype data particularly on the clinically relevant subsets and

subpopulations.

These results can be further validated by evaluating the impact of

stoichiometric feed and optimized cytokines provision on the pheno-

type of clinical T-cell lines including the virally transduced T-cell and

CAR-Ts.
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