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Simple Summary: Polyphagous leaf-mining flies of the genus Liriomyza are pests that pose a serious
threat to agricultural and horticultural industries. The endosymbiotic bacterium Wolbachia has been
proposed as a useful biocontrol strategy for managing pests, but few studies have so far examined
Wolbachia in leafminers. We find a high incidence of related Wolbachia in a survey of infections in
13 dipteran leafminer species collected from Australia and elsewhere which could potentially be
useful for the incompatible insect technique (IIT) of pest suppression. We performed curing and
crossing experiments on L. brassicae to demonstrate the presence of cytoplasmic incompatibility (CI)
needed for IIT, providing a foundation for future transfection of CI Wolbachia from L. brassicae to other
Liriomyza pests. Overall, these findings highlight a high incidence of Wolbachia in leaf-mining Diptera,
potential horizontal transmission events and possible applications of Wolbachia-based biocontrol
strategies for Liriomyza pests.

Abstract: The maternally inherited endosymbiont, Wolbachia pipientis, plays an important role in
the ecology and evolution of many of its hosts by affecting host reproduction and fitness. Here, we
investigated 13 dipteran leaf-mining species to characterize Wolbachia infections and the potential for
this endosymbiont in biocontrol. Wolbachia infections were present in 12 species, including 10 species
where the Wolbachia infection was at or near fixation. A comparison of Wolbachia relatedness based
on the wsp/MLST gene set showed that unrelated leaf-mining species often shared similar Wolbachia,
suggesting common horizontal transfer. We established a colony of Liriomyza brassicae and found
adult Wolbachia density was stable; although Wolbachia density differed between the sexes, with
females having a 20-fold higher density than males. Wolbachia density increased during L. brassicae de-
velopment, with higher densities in pupae than larvae. We removed Wolbachia using tetracycline and
performed reciprocal crosses between Wolbachia-infected and uninfected individuals. Cured females
crossed with infected males failed to produce offspring, indicating that Wolbachia induced complete
cytoplasmic incompatibility in L. brassicae. The results highlight the potential of Wolbachia to suppress
Liriomyza pests based on approaches such as the incompatible insect technique, where infected males
are released into populations lacking Wolbachia or with a different incompatible infection.

Keywords: leaf-mining diptera; agromyzidae; Wolbachia; wsp; MLST; cytoplasmic incompatibility

1. Introduction

The genus Liriomyza is one of the most widely studied and well-documented groups
in the Agromyzidae. Since the 1990s, three polyphagous species-Liriomyza huidobrensis
(Blanchard), Liriomyza trifolii (Burgess) and Liriomyza sativae Blanchard-have colonized
many new areas around the globe [1,2], likely through an increasing international trade
in vegetable and horticultural products which has led to their spread on infested plant
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material [3]. Introduced leaf-mining pests are prone to outbreaks and rapidly become un-
controllable, which has allowed the establishment of these species in most countries [3–7].
This includes Australia, where L. sativae and L. huidobrensis have become established pests
and L. trifolii has recently invaded, posing a significant economic threat to Australian
agricultural and horticultural industries [8–10].

Adults and larvae of Liriomyza flies cause damage to host plants. Female flies damage
plants by puncturing the epidermis of host plant leaves with their ovipositor for feeding
and egg-laying [11,12]. The leaf punctures also provide entry sites for plant pathogenic
bacteria and fungi [13–15]. Males and female flies feed on the exudates from the punctures
made by females [11]. Most damage is caused by the larval stage tunneling through
the palisade and spongy mesophyll cells, producing serpentine mines and reducing the
photosynthetic capacity of plants [16], with severely infested leaves falling off plants.

Liriomyza spp. are classic secondary pests, triggered by pest management approaches
to control leafminer pests, which routinely rely on insecticide applications [17,18]. In-
discriminate use of broad-spectrum insecticides such as methomyl, methamidophos and
permethrin has led to adults evolving insecticide resistance [19–21], while larvae are inac-
cessible to many insecticides because they are embedded in the foliar tissue and pupate in
soil [12,22]. There is a higher activity of detoxification enzymes in larvae in comparison to
adults, leading to rapid detoxification or sequestration of insecticides [23]. Translaminar
insecticides such as abamectin and cyromazine can provide effective chemical control as
they penetrate the leaves and kill larvae [24,25]. However, these insecticides have been re-
ported to impact beneficial parasitoid populations [24], they are more expensive than older
broad-spectrum insecticides and resistance to these chemicals has been documented [20,21].

Biological control is a safe and sustainable approach that exploits natural enemies
(microorganisms, parasitoids, predators and pathogens) to reduce or suppress pest popula-
tions [26–28]. Augmentative releases of the eulophid parasitoid, Diglyphus isaea (Walker),
are widely used for Liriomyza control in ornamental and vegetable greenhouses world-
wide [29,30]. The system works well in many vegetable crops because Liriomyza spp. do
not attack the harvested produce, and it can also be used successfully for some ornamental
crops where mined lower leaves are removed at harvest [30]. In these cases, early releases
of parasitoids prevent mining on the upper leaves close to the flowers [30]. Despite this, it
can be difficult to establish D. isaea in winter in greenhouses when growth lights attract and
kill adult parasitoids [31]. Another challenge is that the sex ratios of commercially reared
D. isaea may be extremely male-biased (up to 77% male) [32], resulting in high costs which
can make augmentative biological control of leafminers expensive [33,34]. This has led to
interest in developing additional control strategies. For instance, releases of sterile L. trifolii
males could be undertaken in combination with releases of D. isaea, with synergistic effects
suggested in trials on potted chrysanthemums [35].

The incompatible insect technique (IIT) involves endosymbiont-induced cytoplasmic
incompatibility (CI) when males with an infection mate with females lacking the infection
and cause embryonic mortality in filial generations; the CI generated from the repeated
release of infected males then leads to a gradual suppression of a target population [36].
Wolbachia represent a group of intracellular endosymbiotic bacteria which are considered
the most ideal candidate for IIT. This bacterium can cause CI, male-killing, feminization of
genetic males and parthenogenesis induction [37,38]. Among these, CI is the most common
phenotype that Wolbachia impose on their hosts [39] and can be either unidirectional or
bidirectional [40]. Unidirectional CI can occur when infected males from one strain mate
with uninfected females from a different strain while the reciprocal cross is compatible;
bidirectional CI can occur when both strains are infected with different Wolbachia and
crosses in both directions are incompatible [40].

The ability of Wolbachia to cause CI along with its widespread nature has led to
interest in its use as a potential environmentally-friendly biocontrol agent. Studies on
IIT to control populations of insect disease vectors and agricultural pests have achieved
encouraging results both in the field and laboratory. These include field experiments on
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Aedes polynesiensis in the South Pacific islands [41], on Culex quinquefasciatus in the south-
western Indian Ocean islands [42], on Aedes albopictus in riverine islands in Guangzhou,
China [43], and on Ae. aegypti in semi-rural village settings in Thailand [44]. They also
include laboratory experiments targeting the medfly Ceratitis capitata [45]. Compared with
other sterile insect techniques (SIT) which involve radiation or genetic modification of
males, Wolbachia-based IIT seems to impose a relatively low fitness burden on released
males and the method is not governed by challenging regulatory pathways [46].

Even though Wolbachia endosymbionts have not yet been used in the control of leaf-
mining insects, they have been described from some leafminers including L. trifolii where
they cause CI [47,48]. Apart from affecting the reproduction of hosts, Wolbachia may also
have other important effects on the life history of leaf-mining herbivorous insects. For
instance, in the phytophagous leaf-mining moth, Phyllonorycter blancardella (Lepidoptera:
Gracillariidae) Wolbachia affects host plant physiology, producing the ‘green-island’ pheno-
type (photosynthetically active green patches) that enhances larval fitness [49]. In addition,
Wolbachia can alter mtDNA haplotypes and potentially cause reproductive isolation in
leafminers, as recently documented in Phytomyza plantaginis Goureau (Diptera: Agromyzi-
dae) where two mtDNA haplotypes separate parthenogenic and bisexual populations both
infected by Wolbachia [50].

Given the potential applications of endosymbionts in pest control, we set out to
investigate the incidence of Wolbachia in 13 dipteran leaf-mining species and (by comparing
the relatedness of Wolbachia strains against a host phylogeny) the occurrence of horizontal
transmission in the Liriomyza group (c.f. Drosophila [51]). We then investigated Wolbachia
in Liriomyza brassicae (Riley), a non-pest agromyzid from southern Australia, where we
identified a similar Wolbachia as present in the three pest Liriomyza species. We were
unable to have cultures of these three species as they are not present in southern Australia.
In L. brassicae, we considered Wolbachia density across developmental stages and sexes,
and the ability of Wolbachia to generate CI. This initial work represents a first step in a
longer-term goal of exploring the feasibility of using Wolbachia-induced CI as a novel
environmentally friendly tool for the control of Liriomyza pests.

2. Materials and Methods
2.1. Insect Materials, L. brassicae Cultures and Antibiotic Treatments

Six agromyzid leaf-mining species (Liriomyza brassicae, Liriomyza chenopodii, Phytomyza
plantaginis, Phytomyza syngenesiae, Phytoliriomyza praecellens and Cerodontha milleri) and
two drosophilid leafminers (Scaptomyza australis and Scaptomyza flava) were collected from
different locations in Australia. Liriomyza brassicae collections were also supplemented by
overseas collections from collaborators. Specimens of L. sativae, L. trifolii, L. huidobrensis,
L. chinensis and L. bryoniae were obtained from multiple locations and various hosts around
the world (Figure 1, Table S1). Specimens were preserved in 95% ethanol and stored at
−80 ◦C or for a few days at −20 ◦C until use. Species identifications were confirmed by
Mallik Malipatil (Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Australia)
and verified by DNA barcoding based on mitochondrial COI [8].

A laboratory-reared strain of Wolbachia-infected L. brassicae was established from
individuals collected from Flemington Bridge (latitude −37.787, longitude 144.939) in Mel-
bourne, Victoria, Australia. The strain was reared on bok choy (Brassica rapa ssp. chinensis)
at 25 ◦C, 60–70% relative humidity under a photoperiod of 16L:8D in 30 × 30 × 62 cm
insect-proof cages. Bok choy was grown from seeds (Eden Seeds, Beechmont, Australia).
Plants at 6–7 true leaf stage at one month old (Growth Stage 1–Leaf Production) were used
for rearing flies. This population had been maintained in the laboratory for over a year
(around 18 generations) at the time of the experiments.
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from the offspring of parents which were completely cured of Wolbachia as assessed by 
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Hercules, CA, USA) method [8]. To confirm infection status, conventional PCR was per-
formed, and the amplification of the wsp (Wolbachia surface protein) gene was taken as 
evidence of the presence of Wolbachia. The universal primer set was used to obtain wsp 
sequences, and the amplification was performed following an established protocol 
(http://pubmlst.org/wolbachia (accessed on 1 June 2021)) [52]. For the species P. plantaginis 
and P. syngenesiae, new Wolbachia-specific primers were designed to increase the specific-
ity of wsp sequences given that universal primers were not specific enough (Table S2). The 

Figure 1. Sampling locations for leaf-mining species in this study. Sampling sites less than 200 km apart were merged, and
the colors represent different leaf-mining species. (A) Overall sampling map; (B) Enlarged view of the red frame in (A).

To develop an uninfected L. brassicae strain, we placed a bunch of petioles of developed
and healthy bok choy true leaves in 1 mg/mL tetracycline hydrochloride solution in a
container (6.5 cm diameter base, 8 cm high) for two days to let leaves fully absorb the
solution. The container was wrapped in foil to avoid tetracycline photodegradation.
Meanwhile, 20 unmated infected pairs were placed in 35 mL vials (Genesee Scientific, San
Diego, CA, USA) separately and covered with mesh, with honey streaked on the mesh as a
food source. Two days later, leaves in good condition (i.e., turgid, unwilted) were provided
to 20 pairs of flies separately in polypropylene cups (6.5 cm diameter base, 9 cm diameter
top, 14 cm high). The lids of the cups were perforated and covered with mesh. Honey was
streaked on the mesh to increase the longevity of mating pairs. We collected female and
male individuals from the cups after three days to detect their Wolbachia infection status by
using quantitative PCR (qPCR) (see below). Mined bok choy leaves were placed in fresh
tetracycline solution until pupae were collected. When the next generation emerged, we
selected a subset of flies to check their Wolbachia infection status, and the remaining flies
were treated with tetracycline for two further generations following the methods described
above. We then established 20 iso-female lines and generated lines from the offspring of
parents which were completely cured of Wolbachia as assessed by qPCR (see below, no
Wolbachia signal detected). We cultured these lines for another three generations to expand
the Wolbachia cured colony.

2.2. Wolbachia Detection in 13 Dipteran Leaf-Mining Species

DNA was extracted from single individuals using the Chelex® 100 resin (Bio-Rad,
Hercules, CA, USA) method [8]. To confirm infection status, conventional PCR was
performed, and the amplification of the wsp (Wolbachia surface protein) gene was taken
as evidence of the presence of Wolbachia. The universal primer set was used to obtain
wsp sequences, and the amplification was performed following an established protocol
(http://pubmlst.org/wolbachia (accessed on 1 June 2021)) [52]. For the species P. plantagi-
nis and P. syngenesiae, new Wolbachia-specific primers were designed to increase the speci-
ficity of wsp sequences given that universal primers were not specific enough (Table S2).
The PCR thermal conditions were the same as above. PCR products were sent to Macrogen
(Seoul, Korea) for purification and Sanger sequencing. Wolbachia infected leafminer spec-
imens verified by sequencing were always included as positive controls, and water was
used as a negative control in all Wolbachia screening.

2.3. MLST System for Wolbachia Classification

Wolbachia supergroup designations are routinely used to describe the major phyloge-
netic subdivisions of this bacterial group [52]. Phylogenetic analyses based on wsp remain
the primary methods for Wolbachia supergroup designations [53]. However, due to the

http://pubmlst.org/wolbachia
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level of recombination in Wolbachia pipientis and close relatives, reliable Wolbachia strain
characterization requires a multi-locus strain typing (MLST) approach [52,54]. Here, we
selected two agromyzid species (P. praecellens and L. brassicae) and used a standard multi-
locus strain typing (MLST) approach to validate their supergroup status as determined
from the wsp gene. We identified the Wolbachia strains by comparing results with the MLST
database. The MLST sequences of these two species were concatenated into a supergene
alignment with 2079 nucleotides based on five housekeeping genes (gatB, coxA, hcpA, ftsZ
and fbpA), which were amplified with universal primers and the methods followed the
published protocol (http://pubmlst.org/wolbachia (accessed on 1 June 2021)) [52]. PCR
products were sequenced directly as described earlier.

2.4. Wolbachia Density Estimation in L. brassicae

For rapid monitoring of Wolbachia in L. brassicae, we developed a robust screening
assay that was able to simultaneously detect Wolbachia infection and quantify density in
L. brassicae. We selected actin as a housekeeping gene due to its stability across develop-
mental stages and sexes [55]. The sequences of the L. sativae actin gene [56] (GenBank
No. DQ452369) and L. brassicae wsp gene from this study (GenBank No. MW047082)
were used to design specific qPCR primers through an online primer designing tool
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on 1 June 2021)). A stan-
dard curve and sensitivity analyses were applied to assess the performance of the qPCR
assay and estimate its efficiency (Figures S1 and S2).

Wolbachia density of L. brassicae in different developmental stages and different gen-
erations were quantified using qPCR. Genomic DNA was extracted from F0, F1 and F2
generations of L. brassicae, including the 3rd instar larvae (24 individuals), 5-day-old pupae
(24 individuals) and adult flies emerged within 24 h (12 females and 12 males). DNA
was extracted as described above and then diluted 1: 2 with DEPC treated water. 2 µL
of this diluted DNA was used as a template in real-time quantitative PCR using actin
and wsp primers (Table S2). PCR reactions were performed using a Roche LightCycler®

480 system following the cycling conditions outlined by Lee and colleagues [57], except
that the annealing temperature was 55 ◦C for 20 s instead of 58 ◦C for 15 s (the optimal
annealing temperature was determined by conventional gradient PCR in this study). Each
sample had three technical replicates, and Cp average values were applied for analyses.
Differences between the Cp of the wsp and actin of L. brassicae individuals were transformed
by 2[(Cp of actin) − (Cp of wsp)] to obtain approximate estimates of Wolbachia density.

2.5. Crossing Experiments

Individual puparia collected from infected lines and treated lines were put in separate
1.7 mL centrifuge tubes to emerge. In different crossing conditions, crosses were established
with a single male and a single female. Sexes of adults were identified under a dissecting
microscope, and crosses were performed within 24 h of adult emergence. For each cross,
a pair of virgin individuals were put in 35 mL vials (Genesee Scientific, San Diego, CA,
USA). Vials were covered with mesh and honey was streaked onto the mesh to prolong
the lifespan of flies. To increase the chance of mating (which normally occurs 10–12 h
after emergence [58]), pairs were left for 48 h and then transferred to insect-proof cages
(20 cm × 17.5 cm × 12.5 cm) with two developed and healthy bok choy true leaves (one-
month-old) placed in a 5.5 cm diameter base × 4 cm diameter top × 10 cm high conical
bottle containing water and sealed with parafilm to avoid flies drowning in the water. The
lids of cages were cut out and partly covered with mesh so honey could spread on the
surface. Three days later, live pairs of flies were placed in 100% ethanol for subsequent
validation of the Wolbachia status. The mined leaves were kept in 150 mL polypropylene
boxes (FPA Australia Pty Ltd., Melbourne, Australia) lined with paper towel and monitored
every day. The number of 1st instar larvae (determined under the microscope), puparia
and adults of each sex were counted. Each cross was replicated six times.

http://pubmlst.org/wolbachia
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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2.6. Data Analyses

The wsp sequences were aligned and edited with Geneious 9.1.8 [59]. For phyloge-
netic analysis, sequences of the wsp gene and MLST genes from a range of species were
retrieved from GenBank and analyzed together with our data. The MLST sequences were
concatenated into a supergene alignment with 2079 nucleotides. Nucleotide diversity
was calculated using DnaSP 6 [60]. The haplotypes detected in the present study were
compared with published sequences. Identical sequences were removed from the final data
set so that each haplotype was only represented once. The relationship of leafminer species
and their corresponding Wolbachia infection was analyzed with maximum likelihood (ML)
inference using IQtree 1.4.2 [61]. To assess nodal support, we performed 1000 ultrafast
bootstrap replicates and a SH-aLRT test with 1000 replicates. A MLST phylogenetic tree was
generated using the Neighbour-Joining (NJ) method [62] through MEGA X [63] based on
Kimura 2-parameter distances with 1000 replicates of bootstrapping [64]. DNA sequences
from the present study have been submitted to GenBank.

Statistical analyses of experimental data were performed using SPSS statistics version
24.0 for Windows (SPSS Inc., Chicago, IL, USA). Wolbachia densities in the larval and pupal
stages of L. brassicae were analyzed using general linear models (GLMs), with life stage
and generation included as factors. We performed a separate analysis for Wolbachia density
in adults, with sex and generation included as factors. Pairwise comparisons between
life stages within a generation were undertaken with t tests. For crossing experiments of
L. brassicae, the normal distribution of data was checked with a Kolmogorov-Smirnov test
in Graphpad Prism (GraphPad Software Inc., San Diego, CA, USA). We then used one-way
ANOVA tests to compare offspring numbers and sex ratios (after arcsin transformation)
between crosses, excluding the cross between Wolbachia-infected males and uninfected
females which produced no offspring. We also ran pairwise comparisons (t-tests) to test
the effect of tetracycline treatment on the offspring number and sex ratio of offspring from
infected and uninfected female parents (when mated with uninfected males) and offspring
from infected and uninfected male parents (when mated with uninfected females) to assess
any potential effects of antibiotic treatments.

3. Results
3.1. Wolbachia Detection Based on wsp Sequences This Population Had Been Maintained

Leaf-mining species from different populations were tested for Wolbachia infection
status through the amplification of a fragment of the wsp gene. We found that all indi-
viduals of L. huidobrensis, L. chinensis, L. bryoniae, L. brassicae, L. chenopodii, P. plantaginis,
P. syngenesiae, P. praecellens, S. australis and S. flava tested were positive for Wolbachia, while
all C. milleri individuals tested negative. For L. trifolii, individuals from four countries (USA
(a laboratory colony), Kenya, Timor-Leste and Fiji) were positive for Wolbachia, but those
from Indonesia (a recent incursion) were negative. For L. sativae, Wolbachia frequencies
differed between populations (Table 1 and Table S1). Of the 27 populations tested for
this species, four populations (Sao Bay-Vietnam, Vero Beach-USA (a laboratory colony),
Liquisa–Timor-Leste and Ermera-Timor-Leste) showed a high proportion of individuals
(>90%) positive for Wolbachia. An additional three populations (Thursday Island–Australia,
Seloi Kraik-Timor-Leste and Seloi Malere-Timor-Leste) had only a single individual positive
for Wolbachia.

We constructed a maximum likelihood (ML) tree to link different leaf-mining species
and their Wolbachia by using the 3′ region of COI for species and partial sequences of the
wsp gene. Prior published wsp sequences from other insect species were included to allocate
the new infections to Wolbachia supergroups [52] (Figure 2). The sequence alignment based
on the wsp sequences suggests the same leaf-mining species can be infected with different
Wolbachia strains (Figure 2, Table 2 and Table S3). We found four different wsp alleles
(wLsatA, wLsatB, wLsatC and wLsatD) in L. sativae from different populations, which span
phylogenetic supergroups A and B. The wsp alleles of L. sativae from Sao Bay (Vietnam) was
wLsatC which belongs to Wolbachia subgroup A. On the other hand, wsp alleles of L. sativae
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from Timor-Leste (containing two Wolbachia alleles: wLsatA and wLsatB) and Thursday
Island (wLsatD) belonged to Wolbachia subgroup B. Additionally, the alignment of wsp
sequences showed that L. trifolii detected in Kirinyaga (Kenya) was wLtriA, which was
different to L. trifolii USA, Fiji and Japan (wLsatD) and Timor-Leste (wLsatA). Furthermore,
we found the wsp alleles of L. huidobrensis from Bali (Indonesia) and Nairobi County (Kenya)
were wLhuiA, whereas the wsp allele detected in L. huidobrensis from Tarome and Kalabar
(Australia) was wLsatA.

Table 1. Overall Wolbachia infection rates in leafminer species at the population and individual levels.

Species Populations Tested Populations Positive
for Wolbachia Individuals Tested Individuals Positive

for Wolbachia

Liriomyza sativae 27 7/27 328 44/328

Liriomyza trifolii 7 6/7 63 51/63

Liriomyza huidobrensis 4 4/4 45 45/45

Liriomyza bryoniae 1 1/1 20 20/20

Liriomyza chinensis 1 1/1 12 12/12

Liriomyza brassicae 11 11/11 342 342/342

Liriomyza chenopodii * 5 5/5 120 120/120

Phytomyza plantaginis 7 7/7 173 173/173

Phytomyza syngenesiae 9 9/9 360 360/360

Phytoliriomyza praecellens * 1 1/1 8 8/8

Cerodontha milleri * 2 0/2 24 0/24

Scaptomyza australis * 3 3/3 72 72/72

Scaptomyza flava 2 2/2 12 12/12

* Species native to Australia.

At the same time, our results suggest that different leaf-mining species may share the
same Wolbachia strain (Figure 2, Table 2 and Table S3). The sequence alignment results
based on wsp indicated that Wolbachia alleles from P. praecellens from Royal Park (Aus-
tralia) and L. sativae from Sao Bay (Vietnam) were both wLsatC. wLsatA was the most
common allele, shared by eight leaf-mining species (L. huidobrensis, L. sativae, L. trifolii,
L. brassicae, L. chenopodii, P. plantaginis, P. syngenesiae and S. australis). We also found that
the Wolbachia allele in L. trifolii (California-USA, and Fiji) and in L. sativae (Thursday Island-
Australia) were identical to the sequence from L. trifolii mentioned in Tagami et al. [47]
when comparing their wsp sequences (wLsatD). It is worth noting that there is only a single
base-pair difference between wLsatA and wLsatD. Moreover, the wsp allele of L. huidobren-
sis (Indonesia and Kenya) and S. flava (Australia and Hawaii) were both wLhuiA, which
suggests that L. huidobrensis and S. flava may share the same Wolbachia strain. Interestingly,
Wolbachia superinfections were detected in P. syngenesiae in one population (Flemington
Bridge–Australia) based on sequencing data; we found 192 individuals were infected with
wLsatA as determined from screens with primers specific to this infection, but three of
these individuals were diagnosed as having two different wsp alleles (wLsatA and wLsatC)
based on universal primers. In eight other Australian populations, only one allele (wLsatA)
was found in P. syngenesiae (Table 2 and Table S3).
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Figure 2. Maximum-likelihood phylogenetic tree to reveal relationships among Wolbachia strains and leafminer species. The
phylogeny is inferred by IQTREE based on 3′ end COI sequences of leaf-mining species, and wsp sequences of Wolbachia
detected from corresponding leaf-mining species. Published wsp sequences from other insect species were included to
allocate the infections to Wolbachia supergroups (the Wolbachia wsp alleles in this study are labeled in bold, additional wsp
alleles refer to Baldo et al. [52]). Numbers beside nodes are IQTREE ultrafast bootstrap and SH-aLRT values. ML bootstrap
values > 60% are shown on branches.

Table 2. Wolbachia infection supergroup allocation and allele names corresponding to host species based on Wolbachia
wsp sequences.

Species Country Location Wolbachia Supergroup Wolbachia wsp Allele

Liriomyza sativae Timor-Leste Seloi Malere, Aileu B wLsatA

Liriomyza sativae Timor-Leste Seloi Kraik, Alieu B wLsatB

Liriomyza sativae Timor-Leste Liquisa, Dato B wLsatA

Liriomyza sativae Timor-Leste Ermera, Mertutu B wLsatA

Liriomyza sativae Vietnam Sao Bay A wLsatC

Liriomyza sativae Australia Thursday Island, QLD B wLsatD

Liriomyza trifolii USA California B wLsatD

Liriomyza trifolii Kenya Kirinyaga County B wLtriA

Liriomyza trifolii Japan Shizuoka, Hamamatsu B wLsatD

Liriomyza trifolii Timor-Leste Bazartete, Leoreka B wLsatA

Liriomyza trifolii Japan Miyagi B wLsatD

Liriomyza trifolii Fiji Qereqere, Sigatoka Valley B wLsatD

Liriomyza trifolii Fiji Wainibokasi, Nausori B wLsatD

Liriomyza trifolii Fiji Koronivia, Nausori B wLsatD
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Table 2. Cont.

Species Country Location Wolbachia Supergroup Wolbachia wsp Allele

Liriomyza huidobrensis Indonesia Bali A wLhuiA

Liriomyza huidobrensis Kenya Nairobi County A wLhuiA

Liriomyza huidobrensis Australia Tarome, QLD B wLsatA

Liriomyza huidobrensis Australia Kalabar, QLD B wLsatA

Liriomyza bryoniae Netherlands Berkel en Rodenrijs B wLbryA

Liriomyza bryoniae Japan Hamamatsu, Shizuoka B wLbryB

Liriomyza chinensis Indonesia Tabanan Regency, Bali B wLchiA

Liriomyza brassicae Timor-Leste Seloi Malere B wLsatA

Liriomyza brassicae Timor-Leste Seloi Kraik B wLsatA

Liriomyza brassicae Australia Melbourne locations, VIC a B wLsatA

Liriomyza brassicae Australia Bruce, ACT B wLsatA

Liriomyza brassicae Australia Lesmurdie, WA B wLsatA

Liriomyza chenopodii Australia Melbourne locations, VIC b B wLsatA

Phytomyza plantaginis Australia Flemington Bridge, VIC B wLsatA

Phytomyza plantaginis Australia Glenrowan, VIC B wLsatA

Phytomyza plantaginis Australia Stanhope, VIC B wLsatA

Phytomyza plantaginis Australia Elmore, VIC B wLsatA

Phytomyza plantaginis Australia Romsey, VIC B wLsatA

Phytomyza plantaginis Australia Lismore, NSW B wLsatA

Phytomyza plantaginis Australia Bruce, ACT B wLsatA

Phytomyza syngenesiae Australia Flemington Bridge, VIC A/B wLsatC/wLsatA

Phytomyza syngenesiae Australia Werribee South, VIC B wLsatA

Phytomyza syngenesiae Australia Glen Waverley, VIC B wLsatA

Phytomyza syngenesiae Australia Fitzroy North, VIC B wLsatA

Phytomyza syngenesiae Australia Werribee VIC B wLsatA

Phytomyza syngenesiae Australia Bruce, ACT B wLsatA

Phytomyza syngenesiae Australia Yanakie, VIC B wLsatA

Phytomyza syngenesiae Australia Lesmurdie, WA B wLsatA

Phytomyza syngenesiae Australia Ballina, NSW B wLsatA

Phytoliriomyza
praecellens Australia Royal Park, VIC A wLsatC

Scaptomyza flava Australia Flemington Bridge, VIC A wLhuiA

Scaptomyza flava Australia Shoreham, VIC A wLhuiA

Scaptomyza australis Australia Royal Park, VIC B wLsatA

Scaptomyza australis Australia Flemington Bridge, VIC B wLsatA

Scaptomyza australis Australia Shoreham, VIC B wLsatA
a Includes Flemington Bridge, Gladstone Park, Northcote, Fitzroy North, Thomastown, Werribee and Werribee South populations.
b Includes Flemington Bridge, Werribee, Werribee South, Glen Waverley, Fitzroy North and Werribee populations. QLD = Queensland,
VIC—Victoria, ACT = Australian Capital Territory, WA = Western Australia, NSW = New South Wales.

3.2. MLST System for Wolbachia Classification

Our study demonstrates that the MLST phylogenetic analyses were consistent with
the above wsp phylogenetic analyses; the Wolbachia from P. praecellens was allocated to
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the A-supergroup, and the infection from L. brassicae was allocated to the B-supergroup
(Figure 3). Allelic profiles for the five housekeeping genes of Wolbachia from P. praecellens
were (22) gatB, (23) coxA, (24) hcpA, (3) ftsZ and (23) fbpA. A comparison of sequences from
the five MLST genes with those in the databases was consistent with the notion that the
Wolbachia strain detected in P. praecellens represents Dsim_A_wRi, which was also identified
in Drosophila simulans and shows CI [52,65]. For L. brassicae, the five allelic profiles were (9)
gatB, (280) coxA, (40) hcpA, (7) ftsZ and (9) fbpA. A comparison of sequences from the five
MLST genes with those in the databases suggested that this Wolbachia strain represented a
new strain, which we have named Lbra_B_1.

3.3. Wolbachia Density Estimation in L. brassicae

Given that Wolbachia strain Lbra_B_1 is prevalent among different leaf-mining species,
we selected L. brassicae as a model species to investigate its Wolbachia density across different
generations and developmental life stages. Wolbachia density was quantified using qPCR.
In adults, Wolbachia density was stable across three generations, with no significant effect
of generation on density (General Linear Model: F2,66 = 0.194, p = 0.824). However,
Wolbachia density differed between the sexes, with females having a higher density than
males (F1,66 = 416.216, p < 0.001) (Figure 4). This difference was evident in each generation
(Figure 4). Wolbachia density increased during development, with higher densities in
puparia compared with larvae (F1,92 = 186.528, p < 0.001), a difference that was evident in
both the F1 and F2 generations (Figure 4) There was also a significant effect of generation
in this comparison, with higher densities in the F1 generation compared with the F2
generation (F1,92 = 18.274, p < 0.001).
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Figure 3. Phylogenetic placement of Wolbachia from two leaf-mining species (Phytoliriomyza praecellens and Liriomyza
brassicae) collected in Australia based on MLST genes within a collection of insects taken from Baldo et al. [52]. The neighbor-
joining tree (K2P model, 1000 bootstrap replicates) is based on multiple alignments of concatenated DNA sequences
encoding the coxA, fbpB, ftsZ, gatB and hcpA genes. Bootstrap values are shown for all nodes. ML bootstrap values > 60%
are shown on branches. The two species included in this study are shown in bold.
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Figure 4. Wolbachia density in (A) F0, (B) F1 and (C) F2 generations across different developmental stages and sexes of
Liriomyza brassicae. Dots represent data from individual flies while horizontal lines and error bars are means and 95%
confidence intervals. Data are shown on a log scale. Significance levels for comparisons between sexes and life stages within
a generation are shown (t-tests, ***, p < 0.001).

3.4. Crossing Experiment of L. brassicae

To determine the influence of Wolbachia infection on L. brassicae, we performed recip-
rocal crosses between Wolbachia-infected and treated individuals. High hatching rates were
observed when the crosses were performed between the same strains or between infected
females and treated males (Table 3). The number of larvae/puparia/adults did not differ
between crosses when the incompatible cross was excluded (One-way ANOVA: larvae:
F2,15 = 0.413, p = 0.669; puparia: F2,15 = 0.566, p = 0.580; Adults: F2,15 = 0.448, p = 0.648). The
emergence rate of adults in these crosses was also relatively high, while sex ratios did not
differ significantly from 1:1 in any cross where flies emerged (t-test, theoretical mean of 50%
males or females, all p > 0.05). However, no leafmines were observed in crosses between
infected males and treated females, and no offspring emerged, indicating complete CI
(Table 3).

Table 3. Crossing experiments to detect the influence of Wolbachia infection on Liriomyza brassica offspring. The number
of 1st instar, pupae and adults are shown, along with the percent emergence of puparia and the percent of offspring that
were female. The difference between offspring from uninfected and infected females (when mated to uninfected males) and
the difference between offspring from uninfected males and infected males (when mated with infected females) was also
assessed via t-tests (on arcsin proportions in the case of proportional data) and are included below.

Cross Female Male 1st Instar a Pupae a Adults a Percent Emergence
of Puparia Percent of Female

1 Uninfected b Uninfected b 148.1 ± 29.3 136.1 ± 29.1 114.5 ± 27.5 83.8 ± 5.7 56.6 ± 7.6
2 Infected 0 0 0 0 -
3 Infected Uninfected b 138.8 ± 26.9 125.6 ± 24.2 103.0 ± 18.3 82.4 ± 6.4 46.1 ± 3.9
4 Infected 133.5 ± 28.4 119.6 ± 27.9 102.8 ± 26.5 85.8 ± 6.1 54.1 ± 4.6

Statistical comparisons (t-test statistic, df, p value)
1 versus 3 0.573, 10, 0.579 0.678, 10, 0.512 0.851, 10, 0.414 0.399, 10, 0.698 2.973, 10, 0.014 -
3 versus 4 0.333, 10, 0.745 0.396, 10, 0.699 0.012, 10, 0.990 0.920, 10, 0.378 3.216, 10, 0.009 -

a Mean ± Standard Deviation; b Antibiotic-treated uninfected strain.

4. Discussion

In recent years, there has been increasing interest in the biology of Wolbachia and
its application as a tool for the management or modification of insect populations. The
distribution of Wolbachia among its dipteran leafminer hosts represents an important first
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step in developing such applications. This study presents the first broad-scale study
to screen natural populations of leaf-mining flies for Wolbachia, mainly focusing on the
Agromyzidae from Australia. Our results indicate that Wolbachia is present in 10 agromyzid
species (L. sativae, L. huidobrensis, L. trifolii, L. bryoniae, L. chinensis, L. brassicae, L. chenopodii,
P. plantaginis, P. syngenesiae and P. praecellens) and two drosophilid species (S. flava and
S. australis).

While the Australian specimens we considered were largely adventive species, the
specimens of P. praecellens, C. milleri, L. chenopodii and S. australis represent indigenous
species. Both groups clearly show a potentially high incidence of Wolbachia infection. More
extensive sampling of these species is required to establish the incidence of Wolbachia across
the geographic range of these species, since Wolbachia infection frequencies in leafminers
and other insects can be quite variable. In Japan, Tagami et al. [48] previously found that
40 L. trifolii individuals were infected out of 226 tested. They detected Wolbachia in only
one out of eight field collections and found infections present at different frequencies
within laboratory colonies, consistent with our results showing a variable incidence of
Wolbachia in this species. Tagami et al. [48] also found that five collections of L. sativae
(116 individuals) were uninfected, which contrasts with the fact that we found several
infected L. sativae populations. Overall, our field collections suggest that the incidence
of Wolbachia across leafminers species and within species is high, with only C. milleri
uninfected by Wolbachia, but the L. sativae and L. trifolii results also highlight the potentially
high level of polymorphism present in some species.

The phylogenetic tree based on wsp sequences obtained from all agromyzid and
drosophilid species analysed indicates seven Wolbachia strains (wLsatA, wLsatB, wLsatD,
wLbryA, wLbryB, wLchiA and wLtriA) belonging to Wolbachia subgroup B and two Wol-
bachia strains (wLhuiA and wLsatC) belonging to Wolbachia subgroup A. Tagami et al. [47,48]
detected two strains of Wolbachia in L. trifolii and L. bryoniae (both from Wolbachia B super-
groups) and showed that one strain of Wolbachia (wLsatD) induced strong CI in L. trifolii.
In our study, wLsatA was the most common strain shared by eight different leaf-mining
flies and only one base-pair different from wLsatD based on wsp. MLST analysis indicates
that the wLsatA based Wolbachia strain of L. brassicae is a new Wolbachia strain (Lbra_B_1),
and the crossing experiments indicate that this strain causes strong CI effect on hosts.
Additionally, we note that the sequence of the wsp allele wLsatC (found in P. praecellens and
P. syngenesiae) is the same as the Wolbachia wRi strain. This Wolbachia strain was detected
in Drosophila simulans in the 1980s in southern California and has been shown to induce
strong CI [65].

The presence of Wolbachia in the vast majority of leafminers surveyed here and the fact
it is near fixation in many species, suggests that Wolbachia spreads relatively easily in this
group through horizontal transmission. Natural Wolbachia infections can spread from low
initial frequencies [51]. “Super spreader” Wolbachia, aided by reproductive manipulations
such as CI, tend to spread readily due to low fitness costs in novel hosts and high maternal
transmission rates [51]. In this study, the superinfection (wLsatA and wLsatC) we detected
at one site in P. syngenesiae based on the wsp sequencing suggests that phylogenetically
distant Wolbachia strains may be readily maintained in the same leaf-mining species. This
suggests that at least some species of agromyzids would be ready recipients of Wolbachia
infections, increasing the likely success of microinjections. A high rate of natural horizontal
transfer of Wolbachia in leafminers may account for the presence of similar Wolbachia
strains in unrelated species. Plant-mediated horizontal transmission might explain the
high Wolbachia infectious rate within phytophagous leaf-mining species and the presence
of identical strains in evolutionarily distant species [66]. All of these findings point to the
presence of Wolbachia strains with strong CI and high rates of horizontal transmission in
leafminers suitable for future manipulations.

For L. sativae, prior studies have suggested that all members of the L. sativae-A clade
(22 specimens tested) were infected with a single Wolbachia subgroup A strain [4], whereas
none of the members of the L. sativae-W+L clades (86 specimens tested) had this infection.
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Parish et al. [67] found no Wolbachia infections in L. sativae (Clade-B) from Brazil (64 speci-
mens tested). However, our study indicates that some populations of the L. sativae-W clade
are infected by the Wolbachia subgroup A strain, while others are infected by the subgroup
B strain. Moreover, we found that L. sativae (haplotype S.01, Clade-A) from Florida was
infected with Wolbachia (NCBI blast tool showed ~93% similar to Wolbachia endosymbiont
of Aptinothrips stylifer, GenBank: MT224213) although we excluded this sample due to poor
sequence quality. Our Wolbachia screening results are therefore consistent with Scheffer
and Lewis [4] in indicating that L. sativae-A clade is infected with Wolbachia. Detection of
Wolbachia in other clades may depend on geographical context and perhaps sample size.
Parish et al. [67] did not find Wolbachia infections in L. brassicae (12 specimens) (note the
CO1 haplotypes of L. brassicae in Brazil are B.02-B.05, while the haplotype from Australia
and Timor-Leste is B.01), L. huidobrensis (6 specimens) and Calycomyza malvae (6 specimens).
These results contrast with our findings on larger samples of L. brassicae and L. huidobrensis,
with all populations of these species that were tested having Wolbachia. Some populations
of L. sativae, L. trifolii and L. huidobrensis shared the same wsp allele wLsatA, and it is possible
that populations of these species are infected with Wolbachia strain Lbra_B_1 and cause CI.

Selection on Wolbachia tends to operate via the female host to favor strong maternal
transmission to the female generation, while a low level of Wolbachia in males could reduce
any deleterious fitness effects associated with the Wolbachia infection [68]. Consistent with
this prediction and the pattern seen in some Drosophila [68], we found that Wolbachia in
L. brassicae differed substantially between the sexes and this may be a consequence of sex-
specific selection associated with transmission. It remains to be seen if this sex difference
in density is also present in other Liriomyza species. It would be interesting to compare
the competitiveness of male flies with natural Wolbachia infections against those sterilized
through irradiation.

Following the incursion of L. sativae and L. huidobrensis into Australia, there have
been recent detections of L. trifolii in the Torres Strait (QLD, Australia), in Kununurra (WA,
Australia) and in the Northern Peninsula Area of Cape York Peninsula in 2021 [10]. It will
be worth tracking the Wolbachia status of all these incursions in a range of locations, and to
establish patterns of CI across infections from these species to test for the feasibility of an
IIT strategy. Tagami et al. [47] raised several challenges that would need to be overcome
for an IIT approach against leafminers. In particular, IIT may be too expensive if flies
are raised on plants rather than on artificial media, and an efficient sex sorting system
would need to be developed. Sultan et al. [69] looked at mechanical sorting of puparia of
L. trifolii but this proved difficult, and a genetic sexing method may be required. IIT would
likely be restricted to greenhouses initially given costs. IIT may also be more feasible if
used against small populations early in the growing season, and if IIT is combined with
parasitoids such as Dacnusa sibirica, which is often released early in the growing season
overseas to supplement overwintering D. sibirica [70]. In these systems, D. isaea is then
released weekly once leafminer numbers build up later in the season [71]. As apparent
from experience with SIT, an IIT method will likely need to be combined with other IPM
strategies such as parasitoid releases, which represent an effective way of suppressing
Liriomyza pests [35,71]. Additionally, the combination of an IIT approach with traditional
insecticides seems cost-effective and promising, where insecticides are used to reduce the
population to a lower level before using an IIT approach.

Overall, results from this study provide information for understanding Wolbachia
infections in different leaf-mining species, as well as patterns of variation within species.
Our findings indicate a high incidence of infection within and across species and suggest
that transfections across species are likely to have a high chance of success when using
other Liriomyza or dipteran species as infection sources. Our results provide a starting
point for developing Wolbachia as a future biocontrol agent. Future work could consider
further genomic analysis of the Wolbachia strains from different leafminers species, tissue
localization of the Wolbachia infection and the generation of transinfections to investigate
incompatibility relationships among the Wolbachia from the different leafminers species.
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