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Abstract
In this contribution, we introduce a generalized Kalman filter with precision in recursive form when the stochastic model is
misspecified. The filter allows for a relaxed dynamic model in which not all state vector elements are connected in time. The
filter is equipped with a recursion of the actual error-variance matrices so as to provide an easy-to-use tool for the efficient
and rigorous precision analysis of the filter in case the underlying stochastic model is misspecified. Different mechanizations
of the filter are presented, including a generalization of the concept of predicted residuals as needed for the recursive quality
control of the filter.

Keywords Kalman filter · Stochastic model · Generalized filter · Predicted residual · Error-variance matrices · Minimal
detectable bias (MDB)

1 Introduction

The recursive Kalman filter (Kalman 1960; Koch 1999;
Simon 2006; Teunissen 2007; Grewal and Andrews 2008)
is known to be a ‘best’ filter in the minimum variance sense
in case the underlying model is correctly specified. In practi-
cal applications, however, it may be challenging to correctly
specify the stochastic model. Due to a lack of information,
for instance, one may be unsure about the variance matri-
ces that need to be specified and thus be forced to make use
of approximations, or alternatively, because of computational
constraints, onemay have to oversimplify the model, thereby
neglecting particular stochastic contributions. An example of
the first case occurs in the context of precise point position-
ing (PPP), where often the uncertainty in the PPP corrections
is either neglected or approximated in the mechanization of
the Kalman filter (Zumberge et al. 1997; Kouba and Heroux
2001; Li et al. 2014; Teunissen and Khodabandeh 2015).
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Examples of the latter can be found in the context of naviga-
tion, where the characteristics of the assumed system noise
may be too simplistic to catch the actual uncertainty in the
dynamic behaviour of the system (Salzmann 1993).

With an incorrectly specified stochastic model, the recur-
sive Kalman filter loses its property of being ‘best’. Although
this is a pitfall, a far more serious problem than not being
‘best’ is the lack of a proper quality description that goes
along with it. With an incorrectly specified stochastic model,
also all the error-variance matrices that are recursively pro-
duced by the Kalman filter become incorrect and thus fail
to provide a means for describing the actual quality of the
filter. As an illustrative example, consider a GNSS short-
baseline set-up in which codemeasurements of two receivers
are processed to deliver, next to other parameter solutions,
also filtered solutions of the relative code biases of the two
receivers. Their single-epoch time series are presented in the
left panel of Fig. 1. The temporal behaviour of the code biases
is assumed to follow a random-walk process, while the cor-
responding relative clock offsets are assumed unlinked in
time (Odijk et al. 2015; Zhang et al. 2020). Let us nowassume
that the code biases’ system noise is incorrectly specified to
0.2 nsec/

√
sec (instead of 0.5 nsec/

√
sec). As shown in the

right panel of Fig. 1, the Kalman filter would then report
a ‘misspecified’ quality description of the filtered solutions
(thick red lines) rather than the ‘actual’ ones (dashed green
lines). The results also indicate that such misspecified choice
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Fig. 1 Estimation of relative code biases/clock offsets between two u-
blox [ZED-F9P] receivers: (left) code-bias time series; (right) square
root of theKalmanfilter (KF) error variances.Assuming the codebiases’

system noise is incorrectly specified to 0.2 nsec/
√
sec (instead of 0.5

nsec/
√
sec), the Kalman filter reports the ‘misspecified’ error variances

(thick red lines) rather than the ‘actual’ ones (dashed green lines)

does affect not only the quality description of the code-bias
solutions, but also that of other parameters like the receiver
clock offsets.

In this contribution, we showhow in case of amisspecified
stochastic model the actual error-variance matrices of the fil-
ter can be computed recursively and thus provide an efficient
online way to describe and study the actual quality of the fil-
ter. This will be done for a generalized version of the Kalman
filter, namely one inwhich the dynamicmodel is relaxed such
that not all state-vector components are required to be linked
in time. We believe this generalization to be necessary as the
measurement model in many practical applications contains
state-vector elements that are not connected in time. As such
cannot be treated with the standard Kalman filter, the ‘engi-
neering’ solution is often to set the corresponding part of
the variance matrix of the system noise to very large values,
thereby mimicking numerically an infinite system noise. As
this is unsatisfactorily and clearly not rigorous, we show how
a rigorous Kalman-filter-based solution to this problem can
be formulated. Our solution is different from the information
filter, which would use instead of the state-vector estimation,
the information vector and information matrix (Khodaban-
deh et al. 2018). We thereby also show the need to generalize
the concept of predicted residuals or ‘innovations’ (Kailath
1970), as the relaxed dynamicmodel now only allows certain
functions of the observables to be predicted.

This contribution is organized as follows. In Sect. 2, we
give a brief review of the standard Kalman filter with a spe-
cial attention to its assumed stochastic model. In Sect. 3, we
generalize the Kalman filter by allowing that not all state-
vector components are linked in time. Its dynamic model is
assumed valid for only some functions of the state vector,
and these functions are permitted to vary in time. Differ-
ent mechanizations of the corresponding recursive filters are
presented. In Sect. 4, we study the error-variance matrices
of the different state vectors in case the generalized filter is
executed with an incorrect stochastic model. We show how
they can be computed in recursive form and thus evaluated

online parallel to the actual running of the filter. In Sect. 5, we
pay special attention to the predicted residuals, the concept
of which needs to be generalized since our relaxed dynamic
model now only allows certain functions of the observables
to be predicted. We show how they can be used in the recur-
sive testing for the detection of model biases and how the
incorrectly specified stochastic model affects the precision
of predicted residuals and corresponding test statistics. We
also show how the recursive form of the affected precision of
the predicted residuals can be used to study how well biases
can still be detected even under the usage of a misspecified
stochastic model.

We make use of the following notation: We use the under-
score to denote a random vector. Thus, x is random, while
x is not. E(.) and D(.) denote the expectation and disper-
sion operator, while C(., .) denotes the covariance operator.
Thus, D(x) = C(x, x) represents the variance matrix of x .
Error-variance matrices are denoted with the capital letter P .
For two positive-definite matrices, M1 and M2, the matrix
inequality M1 ≥ M2 means that M1 − M2 is positive semi-
definite.

2 Kalman filter and its assumptions

In this section, we briefly review the Kalman filter with a
special attention to its underlying stochastic assumptions.

2.1 Model assumptions

First, we state the measurement and dynamic model assump-
tions.

Themeasurementmodel:The linkbetween the randomvector
of observables y

i
and the random state vector xi is assumed

given as

y
i
= Ai xi + ni , i = 0, 1, . . . , t, (1)
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together with

E(x0) = x0 (unknown), E(ni ) = 0, (2)

and

C(x0, ni ) = 0, C(ni , n j ) = Riδi j , i = 0, 1, . . . , t (3)

with δi j being the Kronecker delta. The time index and
number of epochs after initialization are indicated by i and
t , respectively. Thus, the zero-mean measurement noise ni
is assumed to be uncorrelated in time and to be uncorre-
lated with the initial state vector x0. The design matrices
Ai ∈ R

mi×n and variance matrices Ri ∈ R
mi×mi are

assumed given, with A0 of full rank, rank(A0) = n, and
all Ri positive definite. The design matrices Ai (i ≥ 1) need
not be of full rank. Note that we assume the mean x0 of the
initial state vector to be unknown.

The dynamic model: The linear dynamic model, describing
the time evolution of the random state vector xi , is given as

xi = Φi,i−1xi−1 + di , i = 1, 2, . . . , t (4)

with

E(di ) = 0, C(x0, di ) = 0, (5)

and

C(di , n j ) = 0, C(di , d j ) = Siδi j , i, j = 1, 2, . . . , t (6)

where Φi,i−1 denotes the transition matrix and the random
vector di is the system noise. The system noise di is thus
also assumed to have a zero mean, to be uncorrelated in time
and to be uncorrelated with the initial state vector and the
measurement noise.

2.2 The Kalman filter

TheKalman filter is a recursive best linear predictor (BLP) in
case the means of xi , i = 0, . . . , t , are known and a recursive
BLUP (best linear unbiasedpredictor) in case thesemeans are
unknown (Teunissen and Khodabandeh 2013). In our case,
it is a recursive BLUP, since we assume x0 unknown.

As x0 is unknown, the initialization of the filter requires
the BLUP of x0, which is given as

x̂0|0 = (AT
0 R

−1
0 A0)

−1AT
0 R

−1
0 y

0
. (7)

Note that the variance (vc)-matrix of x̂0 − x0 is given as
Q0|0 = (AT R−1

0 A0)
−1 + Qx0x0 , in which Qx0x0 is the

unknown vc-matrix of x0. In our case, however, we do not

need the vc-matrix of the estimation error x̂0 − x0, but rather
the vc-matrix of the BLUP error x̂0 − x , which is given as

P0|0 = (
AT
0 R

−1
0 A0

)−1
. (8)

Following the initialization and any other measurement
update, we have the time update (TU) in which the linear
dynamic model is used to predict the state-vector one epoch
ahead. The TU and its error-variance matrix are given as

x̂ t |t−1 = Φt,t−1 x̂ t−1|t−1,

Pt |t−1 = Φt,t−1Pt−1|t−1Φ
T
t,t−1 + St .

(9)

With any measurement epoch, we have a measurement
update (MU) to improve upon the state-vector TU. The MU
and its error variance can be given in two different forms, the
information form or the variance form. TheMU information
form is given as

x̂ t |t = x̂ t |t−1 + Kt (yt − At x̂ t |t−1),

Pt |t = [P−1
t |t−1 + AT

t R
−1
i Ai ]−1 (10)

with gain matrix Kt = Pt |t AT
t R

−1
t . The MU variance form

is given as

x̂ t |t = x̂ t |t−1 + Kt (yt − At x̂ t |t−1),

Pt |t = [I − Kt At ]Pt |t−1
(11)

with the gain matrix expressed as Kt = Pt |t−1AT
t (Rt +

At Pt |t−1AT
t )−1.

Although we will focus ourselves in the following on the
first two moments of the Kalman filter, the random vectors
x0, ni and di will be assumed normally distributed when
required.

3 Generalized Kalman filter

In the standard Kalman filter, it is assumed that a dynamic
model is available for the complete state vector xt (cf. 4).
In many practical applications, however, this is not the case.
It often happens that a dynamic model is only valid for a
part of xt . As the other part will then have to be modelled
as unlinked in time, the ‘engineering’ solution is often to
set the corresponding part of the vc-matrix St to very large
values, thereby mimicking numerically an infinite system
noise. This is rather unsatisfactorily and clearly not rigorous.
Below we show how a rigorous solution to this problem can
be formulated.
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3.1 A relaxed dynamic model

Instead of the dynamic model (4), we assume that only of
certain functions of the state vector,

zi = FT
i xi , i = 0, 1, . . . , t (12)

a dynamic model is available,

zi = Φz
i,i−1zi−1 + dzi , i = 1, . . . , t . (13)

Thus, zi denotes the ‘linked-in-time’ state vectors. As we
assume the functions to be linearly independent, the matrices
Fi ∈ R

n×pi are all of full column rank. The simplest case
of such functions occurs when a dynamic model is avail-
able for only one part of xi , say for the first p components.
Then, the functions take the simple form FT

i = [Ip, 0]. In
the above formulation, we allow, however, general functions
which may also be time dependent. They are therefore per-
mitted to change over time.

As with (5) and (6), the system noise dzi of (13) is assumed
to obey

E(dzi ) = 0, C(x0, d
z
i ) = 0, (14)

and

C(dzi , n j ) = 0, C(dzi , d
z
j ) = Szi δi j , i, j = 1, 2, . . . , t . (15)

3.2 A reparametrizedmeasurement model

For the purpose and ease of deriving the generalized Kalman
filter,we reparametrize the observation equation y

i
= Ai xi+

ni (cf. 1) so that it becomes parametrized in zi and in a part
that is annihilated by FT

i .
Recall that for the standard Kalman filter, it was sufficient

to assume A0 to be of full column rank. All the other design
matrices Ai , i �= 0, were allowed to be rank defect. For
the present case, this is still allowed, provided that all the
matrices [Fi , AT

i ]T , i �= 0, are of full column rank. Note
that this condition is automatically fulfilled if Fi = In . The
reparametrization that we choose is given as

xi = Mi F
+
i zi + Giui (16)

with Gi being a basis matrix of the null space of FT
i . Thus,

FT
i Gi = 0 and matrix [Fi ,Gi ] is square and nonsingular.

Moreover,

Mi = In − Gi (G
T
i A

T
i R

−1
i AiGi )

−1GT
i A

T
i R

−1
i Ai

F+
i = Fi (F

T
i Fi )

−1. (17)

Thus, ui denotes the ‘unlinked-in-time’ state vectors. Note,
since FT

i Gi = 0 and FT
i F+

i = Ipi , that (16) indeed satisfies
FT
i xi = zi . Also note that AiGi is of full column rank, since

[Fi , AT
i ]T is of full column rank and Gi is a basis matrix

of the null space of FT
i . As AiGi is of full column rank,

the inverse in the expression of Mi exists. Also note that Mi

is idempotent, MiMi = Mi . It is an oblique projector that
projects along the range space of Gi and onto the null space
of GT

i A
T
i R

−1
i Ai .

It is not difficult to verify that the squarematrix [Mi F
+
i ,Gi ]

is invertible and thus that (16) is a genuine reparametrization.
If we substitute the reparametrization into the observation
equations y

i
= Ai xi + ni , we obtain the reparametrized

observation equations as

y
i
= Az

i zi + Au
i ui + ni (18)

with

Az
i = P⊥

Au
i
Ai F

+
i and Au

i = AiGi (19)

in which P⊥
Au
i
Ai = Ai Mi , P⊥

Au
i

= Imi − PAu
i

and

PAu
i

= Au
i (A

uT
i R−1

i Au
i )

−1AuT
i R−1

i is the orthogonal pro-
jector (idempotent matrix) that projects onto the range space
(column space) of Au

i = AiGi . Orthogonality is here with
respect to themetric of R−1

i , i.e. PT
Au
i
R−1
i P⊥

Au
i

= 0.An impor-

tant property of the reparametrized observation Eq. (18) is
that the range spaces of its design matrices, Az

i and Au
i , are

mutually orthogonal in the metric of R−1
i . Hence,

AzT
i R−1

i Au
i = 0. (20)

This implies that the measurement updates for zi and ui can
be determined independently from each other, thereby easing
the derivation of the generalized Kalman filter. Hence, the
solution ût |t will then be solely driven by the observable y

t
and is thus given as

ût |t = (AuT
t R−1

t Au
t )

−1AuT
t R−1

t y
t
. (21)

We will now first determine the filter for zt and then for xt .

3.3 The filter for zt

In some applications, one may be interested solely in the
recursive estimation of the state-vector components for
which a dynamicmodel is available and, thus, in the recursive
estimation of zt = FT

t xt , rather than in that of the complete
state vector xt . We present this recursive filter in information
form and variance form.
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The initialization of the z-filter takes (7) and (8) as input,
to give

ẑ0|0 = FT
0 x̂0|0 with Pz

0|0 = FT
0 P0|0F0. (22)

Following the initialization, we have the time update (TU) in
which the linear dynamic model (13) is used to predict the
state-vector components one epoch ahead. Similar to (9), the
TU and its error-variance matrix are given as

ẑt |t−1 = Φz
t,t−1 ẑt−1|t−1,

Pz
t |t−1 = Φz

t,t−1P
z
t−1|t−1Φ

zT
t,t−1 + Szt .

(23)

To determine the measurement update (MU), we first for-
mulate it in information form, whereby now good use can be
made of the orthogonality property (20) of the reparametrized
observation Eq. (18). Due to this orthogonality, it follows
that ẑt |t = [(Pz

t |t−1)
−1 + AzT

t R−1
t Az

t ]−1[(Pz
t |t−1)

−1 ẑt |t−1 +
AzT
t R−1

t y
t
], which can be written in the more familiar MU

information form as

ẑt |t = ẑt |t−1 + K z
t (yt − Az

t ẑt |t−1)

Pz
t |t =

[
(Pz

t |t−1)
−1 + AzT

t R−1
t Az

t

]−1 (24)

with K z
t = Pz

t |t A
zT
t R−1

t . Similar to the variance form (11),
the MU variance form of the z-filter is given as

ẑt |t = ẑt |t−1 + K z
t (yt − Az

t ẑt |t−1)

Pz
t |t = [Ipt − K z

t A
z
t ]Pz

t |t−1
(25)

with K z
t = Pz

t |t−1A
zT
t [Rt + Az

t P
z
t |t−1A

zT
t ]−1. Note, since

AzT
t R−1

t Az
t = AzT

t R−1
t At F

+
t , that K z

t A
z
t = K z

t At F
+
t and

that therefore the residual y
t
− Az

t x̂ t |t−1 in (24) and (25) can

be replaced by y
t
− At F

+
t x̂ t |t−1.

The above shows that the whole cycling sequence of TUs
and MUs can be done solely in terms of estimations of
zt , without the need to resort to an estimation of the com-
plete state vector xt . Note, however, although both (24) and
(25) have the same structure as the MUs of the standard
Kalman filter (cf. 10 and 11), that Az

t ẑt |t−1 (or At F
+
t ẑt |t−1)

is not a predictor of y
t
. The residual y

t
− Az

t ẑt |t−1 (or

y
t
− At F

+
t ẑt |t−1) in (24) and (25) is therefore not a pre-

dicted residual, this in contrast to vt = y
t
− At x̂ t |t−1, which

is the predicted residual of the standard Kalman filter. We
will come back to this in Sect. 5.

3.4 The filter for xt

As there is no dynamic model for the complete state vector
xt , time updates of it like (9) do not exist. However, for every

epoch a solution x̂ t |t can be determined, either from ẑt |t−1
and y

t
, or from ẑt |t and y

t
.

First, we present the information form of x̂ t |t based on

ẑt |t−1 and y
t
. As [Ft , AT

t ]T is of full column rank, we have

x̂ t |t = Px
t |t [Ft (Pz

t |t−1)
−1 ẑt |t−1 + AT

t R
−1
t y

t
], with Px

t |t =
[Ft (Pz

t |t−1)
−1FT

t + AT
t R

−1
t At ]−1. This can be written in the

more familiar update form as

x̂ t |t = F+
t ẑt |t−1 + K x

t (y
t
− At F

+
t ẑt |t−1)

Px
t |t = [Ft (Pz

t |t−1)
−1FT

t + AT
t R

−1
t At ]−1 (26)

with K x
t = Px

t |t AT
t R

−1
t . When one insists on using (26),

for instance, because it automatically provides x̂ t |t for every
epoch, one still will have to compute ẑt |t in order to proceed
with the next time update. Hence, when using (26), the MUs
of the z-filter, (24) or (25), get replaced by (26) and

ẑt |t = FT
t x̂ t |t with Pz

t |t = FT
t Px

t |t Ft . (27)

Note, when (26) is substituted into (27), that one indeed gets
(24) again. This follows, since FT

t F+
t = In , FT

t K x
t = K z

t
and K z

t A
z
t = K z At F+.

With (26) and (27), the computation of x̂ t |t is an inte-
gral part of the generalized Kalman filter. Its computation is
needed to be able to proceed with the next time update. This
canbe avoided if one computes x̂ t |t from ẑt |t and yt , insteadof
from ẑt |t−1 and y

t
. From the reparametrization, (16) follows

x̂ t |t = �t F
+
t ẑt |t + Gt ût |t , which, with (21) and by recog-

nizing that ẑt |t and ût |t are uncorrelated, C(ẑt |t , ût |t ) = 0,
can be written, together with its error-variance matrix, in the
update form

x̂ t |t = F+
t ẑt |t + Gx

t (yt − At F
+
t ẑt |t )

Px
t |t = Mt F

+
t Pz

t |t F
+T
t MT

t + Gx
t RtGxT

t
(28)

with Mt = In −Gx
t At andGx

t =Gt (AuT
t R−1

t Au
t )

−1AuT
t R−1

t .
Note that the error variance Px

t |t is the sum of two terms.
In the first term, we recognize Pz

t |t ≤ Pz
t |t−1, thus showing

the improvement in precision that y
t
brings through ẑt |t . The

addition of the positive semi-definite second termGx
t RtGxT

t ,
however, reflects the increase in uncertainty due to the pres-
ence of the additional state-vector components for which no
dynamic model is available. Also note the flexibility in for-
mulation (28). In contrast to (26), the continuation of the
filter is not affected, whether one decides to compute x̂ t |t or
not. Finally, note that the variance form of (26) is obtained
if (25) is substituted into (28). For a summarizing flowchart
and a comparison of the x-filter and z-filter, see Fig. 2.
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Fig. 2 Flowchart of the
generalized Kalman filter:
x-filter (left) versus z-filter
(right). The step inside the green
box is optional

x̂0|0, Px
0|0 (7) and (8)

ẑ0|0, P z
0|0 (22)

Initialization

t 1

ẑt|t−1, P z
t|t−1 (23)ẑt|t−1, P z

t|t−1 (23)

ẑt|t, P z
t|t (24)x̂t|t, Px

t|t (26)

x̂t|t, Px
t|t (28)ẑt|t, P z

t|t (27)

t t+ 1t t+ 1

TUz TUz

MUzMUx

MUxMUz

4 State-vector error-variancematrices

In this section, we consider some of the basic stochastic
assumptions of the Kalman filter misspecified. This will
affect the precision description of the Kalman filter, and in
particular, it will make the P-matrices fail to be the error-
variance matrices of the executed filter. We determine the
correct error-variance matrices and show how they can still
be computed in recursive form.

4.1 Recursive error-variancematrices

We assume the vc-matrices Ri and Szi of the measurement
and system noise, ni and d

z
i , to be misspecified. Their correct

vc-matrices are denoted with an overbar, R̄i and S̄zi . Thus,
we assume

C(ni , n j ) �= Riδi j ⇒ C(ni , n j ) = R̄iδi j

C(dzi , d
z
j ) �= Szi δi j ⇒ C(dzi , d

z
j ) = S̄zi δi j .

(29)

With this assumption, the generalized Kalman filter of the
previous section is executed using the wrong vc-matrices,
namely Ri and Szi , and will thus provide a precision descrip-
tion through its P-matrices that is incorrect. We denote the
correct error-variance matrices using an overbar as P̄ z

t |t−1,

P̄ z
t |t and P̄ x

t |t . The following lemma shows how they can be
computed in recursive form, thereby making use of the infor-
mation provided by the filter.

Lemma 1 (Error-variance matrix recursion) The error-
variance matrices of the generalized Kalman filter, having
misspecified vc-matrices for its measurement and system

noise (cf. 29), are given in recursive form as

(a) P̄ z
t |t−1 = Φz

t,t−1 P̄
z
t−1|t−1Φ

zT
t,t−1 + S̄zt

(b) P̄ z
t |t = Lz

t P̄
z
t |t−1L

zT
t + K z

t R̄t K
zT
t

(c) P̄ x
t |t = Lx

t P̄
z
t |t−1L

xT
t + K x

t R̄t K xT
t

(d) P̄ z
t |t = FT

t P̄ x
t |t Ft

(e) P̄ x
t |t = Hx

t P̄
z
t |t H xT

t + Gx
t R̄tGxT

t

(30)

for t = 1, . . ., with Lz
t = [Ipt − K z

t A
z
t ], Lx

t = [In −
K x
t At ]F+ and Hx

t = [In − Gx
t At ]F+. The initial error-

variance matrix is given as P̄z
0|0 = FT

0 A+
0 R̄0A

+T
0 F0, with

A+
0 = (AT

0 R
−1
0 A0)

−1AT
0 R

−1
0 .

Proof For the proof, see “Appendix”. 	

Note, in (30), that the gainmatrices K z

t and K
x
t are to be com-

puted by the assumed (and not correct) variance matrices.
The above result provides a very useful tool for the efficient
precision analysis of Kalman filters. In many practical appli-
cations, one may either be not too sure about the vc-matrices
that one needs to specify or one may be forced, for instance,
because of numerical constraints, to oversimplify the model,
thereby neglecting particular stochastic contributions. With
the above lemma, one has an easy-to-use tool available to
do an online recursive sensitivity analysis of the generalized
Kalman filter, whereby the computations can be done in par-
allel to the recursion of the filter itself.

It depends on the mechanization of the generalized
Kalman filter which of the above error variances are used in
the recursion. In case of only the z-filter, only (30)(a)+(b)
are needed, giving the recursion P̄ z

t−1|t−1 → P̄ z
t |t−1 →

P̄ z
t |t . Would x̂ t |t be included based on (26) and (27), then

(30)(a)+(c)+(d) are needed, giving the recursion P̄ z
t−1|t−1 →
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Fig. 3 Relation between assumed (Pt |t ), actual (P̄t |t ) and optimal

( ¯̄Pt |t ≤ P̄t |t ) Kalman-filter error variances: (left) Pt |t ≤ P̄t |t since too
optimistic assumed stochastic model; (middle) Pt |t ≤≥ P̄t |t mixture of

pessimistic and optimistic stochastic model; (right) Pt |t ≥ P̄t |t since
too pessimistic assumed stochastic model

P̄ z
t |t−1 → P̄ x

t |t → P̄ z
t |t . For x̂ t |t based on (28), however, the

recursion is that of the z-filter, while (30)(e) is used to tap off
P̄ x
t |t from P̄ z

t |t .
In case of the standard Kalman filter, we have Ft = In

and Gt absent, and the results of Lemma 1 reduce to

(a) P̄t |t−1 = Φt,t−1 P̄t−1|t−1Φ
T
t,t−1 + S̄t

(b) P̄t |t = Lt P̄t |t−1LT
t + Kt R̄t K T

t
(31)

with Lt = [In − Kt At ].
When comparing P̄t |t of (31) with Pt |t of (10) or (11), and

knowing that Pt |t is an incorrect error-variance matrix when
R̄i �= Ri and/or S̄i �= Si , for some i ≤ t , one should be care-
ful not to draw the automatic conclusion that Pt |t gives a too
optimistic precision description and that the actual precision
is poorer. Only in two extreme cases can one make a definite
statement concerning the relation between the assumed error
variance Pt |t and the actual error variance P̄t |t . When com-
paring Pt |t with P̄t |t , one is comparing the error-variance of
the same linear estimator x̂ t |t under two different stochastic
regimes. The assumed error variance is therefore too opti-
mistic (Pt |t ≤ P̄t |t ) if the assumed stochastic model is too
optimistic. Likewise, the assumed error variance is too pes-
simistic (Pt |t ≥ P̄t |t ) if the assumed stochastic model is too
pessimistic. In all other cases, the assumed error variance Pt |t
can be either too optimistic or too pessimistic.

Next to the assumed and actual error variance, we may

also consider the optimal error variance ¯̄Pt |t , which is the
error variance when the Kalman filter is based on the correct
stochastic model, R̄i and S̄i . Based on the filter’s ‘best’ prop-

erty, we have ¯̄Pt |t ≤ P̄t |t . And when we compare Pt |t with¯̄Pt |t , we can make use of the property that the error variance
of a Kalman filter improves if its stochastic model improves.

Therefore, Pt |t ≤ ¯̄Pt |t , if the stochastic model under which
Pt |t is computed can be seen as an improvement of that under

which ¯̄Pt |t is computed, and vice versa. This is summarized

in Table 1. Similar conclusions hold for the error-variance
matrices of the generalized Kalman filter.

Example 1 (Assumed and actual precision compared) To
illustrate the characteristics of the assumed (Pt |t ), actual
(P̄t |t ) and optimal ( ¯̄Pt |t ) error variances, we consider a simple
Kalman filter based on one-dimensional position observ-
ables with a constant-velocity model, i.e. a model in which
the velocity fluctuations are treated as zero-mean system
noise. Then, the state vector consists of position and veloc-
ity, xk = [s(tk), ṡ(tk)]T , and the design matrix, transition
matrix and vc-matrix of the system noise vector are given as
(Teunissen 2007)

Ak = [1 0] , Φk,k−1=
[
1 Δt
0 1

]
, Sk =qs̈

[ 1
3Δt3 1

2Δt2
1
2Δt2 Δt

]

(32)

with qs̈ being the spectral density given and Δt the measure-
ment interval. Figure 3 shows in a qualitative sense how the
actual error variances P̄t |t , computed using the recursions of
Lemma 1, can differ from the assumed Pt |t . Only in the strict
case, when one knows that the assumed stochastic model is
either too optimistic or too pessimistic, can one predict the
relation between Pt |t and P̄t |t beforehand, as shown in Fig. 3
(left and right). In the general case, however, this is not possi-
ble, as shown in Fig. 3 (middle). As this general case usually
prevails in practice (in particular in regard to the settings of
the system noise), one cannot rely on a priori formulated
bounds on the relation between Pt |t and P̄t |t . This therefore
underlines the practical usefulness of having the recursions
of Lemma 1 available for an online and parallel precision
analysis.

Example 2 (Designing for precision). The error-variance
matrices of a (generalized) Kalman filter can be computed
already in a designing phase, i.e. before the actual measure-
ments and experiment are executed. Such computations only
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Fig. 4 Square root of assumed
(Pt |t ; left) and actual (P̄t |t ; right)
error variances for different
choices of assumed stochastic
model (Ri = σ 2, with half of
them smaller than R̄i = σ̄ 2 and
the other half larger than σ̄ 2)
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Table 1 Assumed (Pt |t ), actual
(P̄t |t ) and optimal ( ¯̄Pt |t ≤ P̄t |t )
Kalman-filter error variances in
dependence of actual and
assumed measurement and
system noise

Assumed versus actual error variance Assumed versus optimal error variance

If ∀i ≤ t (Ri ≤ R̄i , Si ≤ S̄i ): Pt |t ≤ P̄t |t If ∃i ≤ t (Ri ≤ R̄i , Si ≤ S̄i );

∀ j �= i : (R j = R̄ j , S j = S̄ j ): Pt |t ≤ ¯̄Pt |t
If ∀i ≤ t (Ri ≥ R̄i , Si ≥ S̄i ): Pt |t ≥ P̄t |t If ∃i ≤ t (Ri ≥ R̄i , Si ≥ S̄i );

∀ j �= i (R j = R̄ j , S j = S̄ j ): Pt |t ≥ ¯̄Pt |t

require knowledge about the design and transition matrices
and the measurement and system noise vc-matrices. Hence,
when for an application certain requirements are specified for
the error-variance matrices, one can design a corresponding
functional and stochastic model so as to meet these require-
ments. Such would then imply an analysis of the dependence
of the error variances on changes in the assumed stochastic
model. This can be done rather straightforwardly with the
standard Pt |t output of the Kalman filter, and Fig. 4 (left)
shows such example based on (32).

However, in case of a misspecified stochastic model, such
an analysis may give a seriously wrong picture, since the
behaviour of the actual error variance P̄t |t for changes in
the assumed stochastic model can be quite different from
the dependence that Pt |t exhibits. As a case in point, assume
that the designer for his/her current application has a prop-
erly designed filter, i.e. one for which the assumed stochastic
model is identical to the actual stochastic model and thus
Pt |t = P̄t |t = ¯̄Pt |t . Now, a new application comes up and
the designer believes that for this new application, a more
optimistic stochastic model can be used and thus designs the
filter accordingly to reach a smaller Pt |t . But if in actual fact
the actual stochasticmodel would have remained unchanged,
the choice of taking a more optimistic stochastic model will
lead to an actual precision that is poorer. Hence, the designer
is then confronted with the case that Pt |t ↓ (designer believes
to get a better precision), while P̄t |t ↑ (the actual preci-
sion gets poorer). The reason for this unwanted change is
that the designer unknowingly replaced a best filter with one
that is not MMSE best and therefore to one that provides a
poorer precision. This will happen, irrespective of whether
the assumed stochastic model was chosen to be an improve-

ment or a deterioration relative to the correct stochastic
model, and Fig. 4 (right) shows such example based on (32).

5 Predicted residuals

Predicted residuals play an important role in the quality
control of Kalman filters (Teunissen 1990; Salzmann 1993;
Gillissen and Elema 1996; Tiberius 1998; Yang et al. 2001;
Perfetti 2006; Teunissen and Khodabandeh 2013; Zhang and
Lu 2021). In this section, we generalize the concept of pre-
dicted residuals, show how their properties are affected by
the stochastic misspecification (29) and discuss its conse-
quences.

5.1 The predicted residual defined

The predicted residual of the standard Kalman filter at epoch
t is defined as y

t
− At x̂ t |t−1. It derives its name from the fact

that At x̂ t |t−1 is a prediction of the observable yt . In the case
of the generalized Kalman filter, however, y

t
= At xt +nt =

Az
t zt + Au

t ut + nt cannot be predicted, since ût |t−1, and
therefore x̂ t |t−1, does not exist. The residual y

t
− Az

t ẑt |t−1
is therefore not a predicted residual. We can generalize the
concept of the predicted residual however by considering
functions of y

t
that can be predicted. Thesemust be functions

that annihilate the contribution of ut . This leads therefore to
the following definition.

Definition 1 (Predicted residual) Let wt = y
t
− Az

t ẑt |t−1

and let Ut ∈ R
m×(mt−n+pt ) be any basis matrix of the null
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space of AuT
t (i.e. UT

t Au
t = 0). Then,

vt = UT
t wt (33)

is a (generalized) predicted residual of epoch t . 	


Note that for the standard Kalman filter (i.e. Ft = In), we
have F+

t = In , Au
t = 0, ẑt |t−1 = x̂ t |t−1 and Ut = Imt ,

from which it follows that (33) will then reduce back to
the standard predicted residual vt = y

t
− At x̂ t |t−1. Also

note, since UT
t Au

t = 0, that UT
t Az

t = UT
t At F+ and that

therefore wt = y
t
− Az

t ẑt |t−1 in (33) may be replaced by

y
t
−At F+ ẑt |t−1,which is the residual that occurs in allmech-

anizations of the generalized Kalman filter (cf. 24, 25, 26,
28).

5.2 Statistical testing

In standard Kalman filtering, the predicted residuals play an
important role in the recursive execution of statistical tests for
detecting and identifying potential biases in the underlying
functional model (measurement and dynamic model). Their
importance in executing such tests stems from their prop-
erties of being zero mean and being uncorrelated in time,
thereby making recursive testing possible. These same prop-
erties also hold true for the predicted residual (33),

E(vt ) = 0 and C(vt , vs) = Qvtvt δts (34)

with Qvtvt = UT
t Qwtwt Ut and Qwtwt = Rt + Az

t P
z
t |t−1A

zT
t .

This implies that the same recursive testing algorithms that
are in use for the standard Kalman filter can be applied to
its generalized version as well. This is the case, for instance,
with Local and global overall model (LOM/GOM) testing.
Their associated test statistics are given as (Teunissen and
Salzmann 1989; Teunissen 1990),

T t = vTt Q
−1
vtvt

vt

rt
(LOM) (35)

and

T s,t = T s,t−1 + [
t∑

i=s

ri ]−1[T t − rt T s,t−1] (GOM) (36)

in which ri = mi − n + pi denotes the local redundancy.
Under a correctly specified Kalman filter, these test statistics
are centrally F-distributed as

T t ∼ F(rt ,∞, 0) and T s,t ∼ F(

t∑

i=s

ri ,∞, 0) (37)

F(
∑t

i=s ri ,∞, 0) denotes F-distribution with
∑t

i=s ri and
∞ degrees of freedom, and noncentrality parameter 0. Local
and global biases are then, respectively, considered detected
when Tt > Fαl (rt ,∞, 0) and Ts,t > Fαg (

∑t
i=s ri ,∞, 0).

The notations Fαl (rt ,∞, 0) and Fαg (
∑t

i=s ri ,∞, 0) are the
critical values having αl and αg as levels of significance,
respectively.

5.3 On the precision of the predicted residuals

The distributional properties, stated in (37), fail to hold, once
the underlying assumed properties of the predicted residuals
fail to hold. Although with the misspecified stochastic model
(29), the predicted residuals will still be normally distributed
and will still have a zero mean, their second moments will
change. The following result shows how (29) affects this
change.

Lemma 2 (Predicted residual variance and between-epoch
covariance).With the actual vc-matrices of the measurement
and system noise (cf. 29), the variancematrix of the predicted
residual (33) and its between-epoch covariance read

Q̄vtvt = UT
t Q̄wtwt Ut , Q̄wtwt = R̄t + At P̄t |t−1A

T
t

C(vt , vt+1) = UT
t Q̄wtwt

(
K̄ z
t − K z

t

)T
ΦzT

t+1,t A
zT
t+1Ut (38)

with K̄ z
t = P̄ z

t |t−1A
zT
t Q̄−1

wtwt
and K z

t = Pz
t |t−1A

zT
t Q−1

wtwt
.

Proof For the proof, see “Appendix”. 	

This result shows that next to the change in vc-matrix of
the predicted residual also time correlation is introduced.
Thus, while the measurement noise and system noise are still
assumed to be uncorrelated in time, the mere misspecifica-
tion of their vc-matrices already introduces time correlation
in the predicted residuals.

The change in the second moments of the predicted resid-
uals will directly impact the statistics of T t as the example
of Fig. 5, based on (32) (Ri = (0.5m)2, q ..

u = 0 m2/s3,
R̄i = (1.0m)2, and q̄ ..

u = 3 · 10−8m2/s3), illustrates. In case
of an incorrect stochastic model, the LOM statistic will fail
to have a mean equal one, as shown in Fig. 5 (top-left); will
be time correlated, as shown in Fig. 5 (top-right); and will
fail to follow the Chi-squared distribution, as shown in Fig. 5
(bottom).
The induced time correlation, C(vt , vt+1) �= 0, due to the
incorrectly assumed stochastic model, also implies that the
GOM test statistic (36) cannot be used anymore as such.
It will not have the F(

∑t
i=s ri ,∞, 0) distribution and the

assumed absence of time correlation under which it is con-
structed fails to hold. The situation with regard to the LOM
test statistic is fortunately somewhat brighter. Although T t
of (35) will also fail to be F-distributed, knowledge of the
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Fig. 5 LOM test statistic
Tt = vTt Q−1

vt vt
vt/rt under

correctly (green) assumed and
incorrectly (red) assumed
stochastic model: (top-left) Tt
time series; (top-right) Tt time
correlation; (bottom) Tt
histograms compared with
χ2(1, 0)-PDF
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correct vc-matrix of the predicted residuals allows one to con-
struct a new LOM test statistic with the sameF-distribution.
If we replace Qvtvt in (35) by Q̄vtvt of (38), we obtain

T̄ t = vTt Q̄
−1
vtvt

vt

rt
∼ F(rt ,∞, 0). (39)

Hence, with knowledge of this distribution one can execute
rigorous testing again.

5.4 Reliability analysis

Although T̄ t of (39) has the same distribution as T t of (37),
it is important to realize that the performance of the testing
with T̄ t will be different from that of testing with T t under a
correctly specified Kalman filter. To illustrate this, we con-
sider the standard Kalman filter and assume that under the
alternative hypothesis the mean of the observable y

t
may be

biased by Ctbt , with matrix Ct known and bt unknown. In
a GNSS context, such may represent the occurrence of out-
liers and/or slips in the GNSS observables. We then have the
following null and alternative hypotheses

E(y
t
|H0) = At xt versus E(y

t
|Ha) = At xt + Ctbt . (40)

Then, vt |Ha ∼ N (Ctbt , Qvtvt ) in case the stochastic model
of the Kalman filter is correctly specified and vt |Ha ∼
N (Ctbt , Q̄vtvt ) in case (29) is true. This implies that T t ∼
F(mt ,∞, λ) and T̄ t ∼ F(mt ,∞, λ̄), with noncentrality

parameters

λ = bTt C
T
t Q−1

vtvt
Ctbt and λ̄ = bTt C

T
t Q̄−1

vtvt
Ctbt . (41)

Hence, under the alternative hypothesis Ha , the two test
statistics, T t and T̄ t , have different distributions. From a reli-
ability analysis standpoint, it is then important to appreciate
that the two noncentrality parameters of (41) have two very
different usages. The noncentrality parameter λ can be used
to analyse the minimal detectable biases (MDBs) in their
dependence on the correctly specified vc-matrices Ri and Si
(i ≤ t). This is the usualway inwhich one studies the strength
of the underlying model for detecting biases with the appro-
priate tests. The noncentrality parameter λ̄, however, allows
one to study the sensitivity of the MDBs in dependence of
the incorrectly specified vc-matrices Ri and Si (i ≤ t) and
thus help answer questions like how well biases can still be
detected even under the usage of a misspecified stochastic
model.

In case of a single bias (i.e. Ct → ct ) with (41), the corre-
spondingMDBs are given as (Baarda 1968; Teunissen 2018)

|bt | =
√

λ̄

cTt Q
−1
vtvt ct

and |b̄t | =
√

λ̄

cTt Q̄
−1
vtvt ct

(42)

in which the reference value of the noncentrality parameter
λ = λ̄ is determined from the chosen level of significance
and power of the test.
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6 Summary and concluding remarks

In this contribution, we introduced a generalized Kalman
filter with precision in recursive form when the stochastic
model ismisspecified. The filter allows for a relaxed dynamic
model in which not all state vector elements are connected in
time. The filter’s flexibility stems from the property that its
dynamic model is assumed to hold for only some functions
of the state vector and that these functions are permitted to
vary in time. Different mechanizations of the corresponding
recursive filters were presented.

Just like the standard Kalman filter, its generalization has
the property of being ‘best’ in the MMSE sense. And just
like with the standard Kalman filter, this property is lost in
case the filter is based on an incorrectly specified stochastic
model. Although losing this optimality property is a pitfall,
we considered a far more serious problem the consequential
lack of a proper quality description of the filter.

We therefore extended the filter with a recursion of its
actual time-update and measurement-update error-variance
matrices, to provide a tool for the efficient precision analysis
of (generalized) Kalman filters. It allows for an easy-to-
execute online recursive sensitivity analysis, whereby the
computations can be done in parallel to the recursion of the
filter itself. The relevance of having such tool available was
further underlined by illustrating through several examples
that the behaviour of the actual filter precision, in response
to changes in the assumed stochastic model, is difficult to
predict a priori.

Next to the error-variance matrices, also the predicted
residuals play an important role in the quality control of recur-
sive filters. Due to the relaxation of the dynamic model, the
concept of predicted residuals had to be generalized to pre-
dictable functions of the observables. It was thereby shown
how their precision is affected by a misspecified stochastic
model. It was hereby also shown that while the measurement
noise and systemnoise are uncorrelated in time, themeremis-
specification of their vc-matrices will already introduce time
correlation in the predicted residuals. Thiswill therefore have
its impact on the distributional properties of the test statistics
used for the detection, identification and adaptation of the
underlying models. In particular, the time correlation of the
predicted residualswill affect the recursive global statistics as
it invalidates the assumptions on which they are constructed.
For the local statistics, fortunately the situation was shown to
be brighter, as the usage of the given recursions of the actual
vc-matrices still allows the construction of test statistics with
known distributions. Finally, we demonstrated, differently
from the traditional minimal detectable bias (MDB), which
relies on a correctly specified model, how the recursive form
of the affected precision of the predicted residuals can be used
to study how well biases can still be detected even under the
usage of a misspecified stochastic model.

7 Appendix

Proof of Lemma 1 The different error states can be written in
their contributing factors as

(a) ẑt |t−1 − zt = Φz
t,t−1(ẑt−1|t−1 − zt ) − dzt

(b) ẑt |t − zt = [Ipt − K z
t A

z
t ](ẑt |t−1−zt )+K z

t (yt−Az
t zt )

= Lz
t (ẑt |t−1 − zt ) + K z

t nt

(c) x̂ t |t − xt = [In − K x
t At ]F+(ẑt |t−1 − zt ) + K x

t nt

+[K x
t At − In](xt − F+

t zt )

= Lx
t (ẑt |t−1 − zt ) + K x

t nt

(d) ẑt |t − zt = FT
t (x̂ t |t − xt )

(e) x̂ t |t − xt = [In − Gx
t At ]F+(ẑt |t − zt ) + Gx

t nt

+[Gx
t At − In](xt − F+

t zt )

= Hx
t (ẑt |t − zt ) + Gx

t nt (43)

where use has been made of K z
t A

u
t = 0, FT

t (xt −F+
t zt ) = 0

and the fact that the null space of both [K x
t At − In] and

[Gx
t At−In] are spannedby the columns ofGt . Application of

the variance propagation law to the error states (43) gives the
result. The error-variance matrix of the initial state follows
from applying the variance propagation law to ẑ0|0 − z0 =
FT
0 A+

0 n0. 	

Proof of Lemma 2 For the predicted residuals vt = y

t
−

Az
t ẑt |t−1 and vt+1 = y

t+1
− Az

t+1 ẑt+1|t , we may, with

the help of zt+1 = Φz
t+1,t zt + dzt , ẑt+1|t = Φz

t+1,t ẑt |t ,
y
t
= Az

t zt+Au
t ut+nt , and ẑt |t = ẑt |t−1+K z

t [yt−Az
t ẑt |t−1],

write

vt = UT
t [nt + Az

t (zt − ẑt |t−1)]
vt+1 = UT

t+1[nt+1 + Az
k+1[Φz

t+1,t L
z
t (zt − ẑt |t−1)

−K z
t nt ] + dzk+1]. (44)

Application of the variance propagation law to the first equa-
tion gives Q̄vtvt . The covariance C(vt , vt+1) follows from
the above two equations by recognizing that only the ran-
dom vectors that the two equations have in common, nt and
zt − ẑt |t−1, contribute to this covariance. 	
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