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Abstract 

Background: ASD and ADHD are prevalent neurodevelopmental disorders that frequently co‑occur and have 
strong evidence for a degree of shared genetic aetiology. Behavioural and neurocognitive heterogeneity in ASD and 
ADHD has hampered attempts to map the underlying genetics and neurobiology, predict intervention response, and 
improve diagnostic accuracy. Moving away from categorical conceptualisations of psychopathology to a dimensional 
approach is anticipated to facilitate discovery of data‑driven clusters and enhance our understanding of the neuro‑
biological and genetic aetiology of these conditions. The Monash Autism‑ADHD genetics and neurodevelopment 
(MAGNET) project is one of the first large‑scale, family‑based studies to take a truly transdiagnostic approach to ASD 
and ADHD. Using a comprehensive phenotyping protocol capturing dimensional traits central to ASD and ADHD, the 
MAGNET project aims to identify data‑driven clusters across ADHD‑ASD spectra using deep phenotyping of symp‑
toms and behaviours; investigate the degree of familiality for different dimensional ASD‑ADHD phenotypes and clus‑
ters; and map the neurocognitive, brain imaging, and genetic correlates of these data‑driven symptom‑based clusters.

Methods: The MAGNET project will recruit 1,200 families with children who are either typically developing, or 
who display elevated ASD, ADHD, or ASD‑ADHD traits, in addition to affected and unaffected biological siblings of 
probands, and parents. All children will be comprehensively phenotyped for behavioural symptoms, comorbidities, 
neurocognitive and neuroimaging traits and genetics.
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Background
Overview
Autism spectrum disorder (ASD) and attention-deficit/
hyperactivity disorder (ADHD) are neurodevelopmen-
tal disorders affecting 1–2% and 5% of the population, 
respectively [175, 220]. ASD is defined by deficits in 
social communication, and restricted and repetitive pat-
terns of behaviour and interests and altered sensory 
processing, whereas ADHD is defined by hyperactivity, 
impulsivity and inattention [16]. In ASD, 30–80% of cases 
exhibit ADHD symptomatology [186, 225], and 20–50% 
of ADHD cases display ASD symptoms [127, 234]. The 
introduction of the DSM-5 has allowed, for the first time, 
the concurrent diagnosis of ASD and ADHD, and the two 
disorders are now recognized to co-occur in up to 50% of 
cases [127, 271]. This comorbidity can be associated with 
a more severe ADHD phenotype and higher treatment 
needs overall [68, 305].

Although ASD and ADHD are diagnosed according to 
a symptomatic and behavioural presentation and devel-
opmental history, both conditions have a strong genetic 
aetiology and are highly heritable with estimates of up 
to 85% for ASD [304] and 70–90% for ADHD [104, 172]. 
Evidence of familiality comes from findings that first 
degree relatives of affected individuals often show sub-
clinical behavioural or neurocognitive difficulties char-
acteristic of ASD and ADHD [132, 205, 233, 243, 257]. 
Furthermore, siblings of children with ASD have a greater 
likelihood of having ADHD than the general population 
[116, 117], and siblings of children with ADHD exhibit 
greater ASD symptoms than healthy controls [197] sug-
gesting shared familiality. It is becoming clear that multi-
ple genes are implicated in ASD and ADHD and these are 
associated with multiple biological systems. The genetic 
links may also transcend diagnostic categories, with twin 
studies providing evidence for shared genetic liability for 
ASD and ADHD [116, 117]. There is also strong evidence 
for a degree of shared genetic aetiology [234], with pop-
ulation-based research suggesting that ASD and ADHD 
symptoms share common genetic variance throughout 
childhood and adolescence [270].

Copy number variations (CNV’s; [88, 290]), de novo 
mutations [143, 210, 230, 240], and common genetic vari-
ation from Genome-Wide Association Studies (GWAS; 
[113, 126]) are all implicated in the genetic aetiology of 
ASD. Similarly, CNVs [103], rare variants [129], and 
GWAS single nucleotide polymorphisms (SNPs; [83]) 

are implicated in the genetics of ADHD. Although there 
is a growing body of literature on the phenotypic, neuro-
biological and genetic overlap between ASD and ADHD 
[11, 127, 146, 234, 264], comprehensive transdiagnostic 
dimensional phenotyping approaches that are agnostic to 
diagnostic category are only beginning to emerge.

The Research Domain Criteria (RDoC) and Hierarchical 
Taxonomy of Psychopathology (HiTOP): complementary 
frameworks for research in ASD and ADHD
Traditional taxonomies, such as the DSM and ICD, 
inherently assume segmentation between diagnostic 
categories. However, high rates of comorbidity between 
specific disorders, for example ASD and ADHD with 
intellectual disability [ID; 274, 278], obsessive compulsive 
disorder (OCD; [166, 183]), oppositional defiant disorder 
(ODD) and conduct disorder (CD; [32, 185]), and depres-
sion and anxiety [90, 268], as well as significant within 
disorder heterogeneity [106] challenge the assumption 
of a clear division between diagnostic categories. As the 
search for biological causes and accurate ways to identify 
psychiatric disorders gains traction, there is a move away 
from categorical conceptualisations of disorders towards 
a more dimensional understanding of psychopathology 
[60, 130, 239]. The National Institute of Mental Health’s 
(NIMH) Research Domain Criteria (RDoC) project [141, 
142] and the Hierarchical Taxonomy of Psychopathol-
ogy (HiTOP) consortium [158] represent complementary 
approaches to addressing the limitations of traditional 
categorical nosologies by using dimensional models of 
psychiatric and neurodevelopmental disorders evaluated 
at multiple levels of measurement. Studying phenotypes 
related to ASD and ADHD as hierarchically organised 
dimensions resolves problems associated with comorbid-
ity and heterogeneity [105, 157].

The principal focus of RDoC is the analysis of dimen-
sional phenomena at multiple levels of analysis across 
several core functional domains. These include behav-
iour, cognition, neural circuits, and genes in areas such 
as social processes and cognitive systems. These elements 
are organised within the RDoC matrix, which is primarily 
intended as a heuristic framework to encourage and facil-
itate psychiatric research that is unconstrained by tradi-
tional diagnostic categories. The primary focus of HiTOP 
is the articulation of the structure of the symptoms of 
psychopathology, which are conceptualised as hierarchi-
cally organised dimensions [158, 163]. These dimensions 

Conclusion: The MAGNET project will be the first large‑scale family study to take a transdiagnostic approach to ASD‑
ADHD, utilising deep phenotyping across behavioural, neurocognitive, brain imaging and genetic measures.
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can be studied at varying levels of generality and specific-
ity to uncover shared and unique genetic, neurobiologi-
cal, and clinical correlates [65, 169, 291]. The RDoC and 
HiTOP approaches are thus complementary: the hierar-
chically organised phenotypic dimensions furnished by 
HiTOP provide the structural framework for exploring 
the functional domains and elements of the RDoC matrix 
[162, 188].

Alignment of ASD and ADHD neurocognitive 
endophenotypes with the RDoC matrix
A number of neurocognitive traits have been identified 
as areas of difficulty for children with ASD and ADHD. 
Some neurocognitive domains are associated with simi-
lar levels of impairment across ASD and ADHD, while 
others appear to differentiate between them. Although 
atypical neurocognitive profiles are frequently observed 
at a group level, not all individuals within a disorder 
show divergence across all behavioural and neurocogni-
tive domains. This heterogeneity has hindered clinical 
translation of group-level findings to individuals (e.g. 
[40, 59, 73, 76, 82, 102, 243, 280, 286]). Within ASD and 
ADHD, deficits are seen on tasks of sustained attention 
and arousal [20, 29, 54, 148, 148, 150, 150, 151, 289], cog-
nitive control, for example inhibition (e.g. [21, 115, 221, 
218, 300, 301]), social processes such as emotion recogni-
tion and/or theory of mind [14, 36, 128, 281], visual and 
verbal working memory [69, 120, 226, 227], and reward 
sensitivity and decision-making [147, 196, 309]. Sensori-
motor abnormalities are common in ASD. In particular, 
oculomotor deficits are robustly associated with ASD 
[112, 149, 194], with emerging evidence for oculomotor 
impairments in ADHD [101]. These areas of neurocog-
nitive divergence broadly align with five RDoC matrix 
domains: positive valence systems, cognitive systems, 
arousal/regulatory systems, social processes and sensori-
motor systems [193, 199].

Relationship between ASD and ADHD within HiTOP model
Although dimensional models of psychopathology origi-
nated in the developmental literature [3, 139], neurode-
velopmental disorders are yet to be fully integrated into 
the HiTOP model [163]. The HiTOP framework con-
ceptualises psychopathology as a multi-dimensional 
hierarchy, with an overarching factor for general psy-
chopathology, or ‘p’ factor, represented at the top of the 
hierarchy and reflecting a common liability for mental 
disorder [48, 66]. Below this ‘p’ factor are super spectra; 
internalising, externalising, and psychosis; representing 
shared vulnerabilities to more specific ranges of prob-
lems. Internalising symptoms encompass depression, 
anxiety and somatic, eating and sexual difficulties, and 
subsumes the narrower and distinct subspectra of fear 

and distress. The externalising domain subsumes sub-
stance abuse and antisocial behaviours and is further 
differentiated into the disinhibited externalising (e.g. 
impulse-control problems) and antagonistic externalising 
(e.g. antisocial personality traits) subspectra. The psycho-
sis super-spectra captures phenotypic variance related to 
psychotic disorders, but can be further differentiated into 
thought disorder (i.e. positive symptoms, experiences, 
and traits, such as reality distortion) and detachment 
(negative symptoms, experience, and traits, such as social 
withdrawal and emotional detachment).

To date, the full HiTOP model is more clearly articu-
lated in adult populations [158, 163] and existing work 
examining the placement of neurodevelopmental disor-
ders within dimensional models of psychopathology has 
been characterized by low specificity in focusing exclu-
sively on broad band psychopathology factors (i.e., p fac-
tor, externalizing and internalizing superspectra [202, 
228, 265]). Despite this work, there is still insufficient 
evidence to indicate the placement of neurodevelopmen-
tal disorders within HiTOP [157]. An advantage of the 
HiTOP conceptualization beyond general dimensional 
approaches in developmental psychopathology is that 
relevant phenotypes can be examined at varying levels 
of generality and specificity, from broad spectra, to sub-
spectra, empirical syndromes, symptom components and 
maladaptive traits [158]. If neurodevelopmental disorders 
are to be included in the HiTOP framework, more evi-
dence is needed to determine whether a general neurode-
velopmental disorder subfactor [265] or alternatively, 
more granular hyperactive, inattentive [228], and social 
communication [202] subfactors, might best explain the 
relationship between psychopathology and neurodevel-
opmental conditions.

MAGNET is uniquely positioned to examine the rela-
tionship of ADHD and ASD to other forms of psychopa-
thology within a hierarchical dimensional model, because 
phenotypes related to these conditions are being meas-
ured at a finer level of granularity compared to previous 
studies [202, 228]. For example, a dimension related to 
stereotyped behavior has yet to be incorporated into the 
HiTOP model [157]. The MAGNET protocol will be able 
to investigate the position of this phenotype using the 
Childhood Routines Inventory—Revised and Restricted 
Interests and Repetitive Behavior subscale of the Social 
Responsiveness Scale, 2nd Edition. Furthermore, studies 
that have examined the placement of ADHD and ASD 
within HiTOP have not taken into consideration poten-
tial phenotypic subdimensions or subtypes of ADHD and 
ASD [6, 201]. Finally, MAGNET is unique in concurrent 
measurement of RDoC-relevant constructs (e.g., cogni-
tion, genetics) compared to previous studies (e.g., [265]), 
which enables us to address method variance, validate 
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the findings with objective cognitive assessment and 
observer ratings, as well as address the RDoC-HiTOP 
interface [188].

A conceptual cross-mapping between RDoC and 
HiTOP has previously been outlined [162, 188]. HiTOP 
spectra, subspectra, empirical syndromes, symptom 
components, and maladaptive traits form the phenotypic 
targets to which biologically informed RDoC constructs 
can be related [162]. Thus, there is synergy between these 
two complementary dimensional approaches to psycho-
pathology. Leveraging the RDoC and HiTOP approaches 
has the potential to pave the way for a unified nosology, 
which is biologically informed and has clinical applica-
tion [158, 169, 188, 212]. Symptom ratings, behavioural 
measures and neurocognitive tasks selected to measure 
psychopathology, and more specifically core ASD-ADHD 
traits, will allow for characterisation of ASD-ADHD 
within an integrated RDoC-HiTOP framework. However, 
although the RDoC-HiTOP interface has been broadly 
outlined, the relationships between specific HiTOP and 
biologically informed constructs has yet to be fully artic-
ulated and empirically tested at a fine-grained level of 
analysis [188].

The MAGNET study addresses several limitations of 
existing research. First, by incorporating multiple meas-
ures of ADHD and ASD symptomatology within the 
same structural modelling study, along with measures 
of other HiTOP spectra and subspectra (i.e., the Child 
Behavior Checklist), we are in a position to investigate 
the placement of these neurodevelopmental conditions, 
their potential subdimensions and/or subtypes, within a 
broader structural model of child psychopathology (i.e., 
internalizing, externalizing, thought disorder). Second, 
our methodology includes an array of measures that 
align with the constructs and subconstructs included in 
the RDoC matrix and across multiple levels of analysis, 
including behavioural assessment, cognitive paradigms, 
and genes. This uniquely positions the MAGNET study 
to address multiple potential points of convergence at 
the RDoC-HiTOP interface, as well as utilize the biologi-
cally-informed constructs of RDoC to test the validity of 
any ADHD/ASD phenotypic subdimensions or clusters. 
Of particular relevance is the cross-mapping of HiTOP 
dimensions and the RDoC Sensorimotor Process con-
struct, for which there is currently no evidence [188]. 
The MAGNET study methodology includes multiple 
measures of Sensorimotor subconstructs, including Sen-
sorimotor Dynamics (e.g., sinusoidal pursuit), Initiation 
(e.g., Reflexive saccades), and Inhibition and Termination 
(e.g., stop signal and antisaccade; [199]). Furthermore, we 
will be able to directly assess the mapping of Social Pro-
cesses subconstructs, including Reception of Facial Com-
munication and Understanding of Mental States, onto 

the Disinhibition Externalizing spectrum and overlap 
between this and the Detachment spectrum (i.e., ADHD 
and comorbid ASD/ADHD), which has not yet been 
investigated [188]. Our comprehensive cognitive bat-
tery aligns with multiple RDoC subconstructs, including 
Language, Limited Capacity, Inhibition/Suppression, and 
Interference Control, enabling us to test specific associa-
tions with symptom dimensions, as well as determine if 
cognitive profiles may differentiate subtypes [99]. Finally, 
we extend upon previous studies by including genotyp-
ing, enabling us to investigate the RDoC-HiTOP interface 
at the level of genes by calculating polygenic risk scores 
for ADHD, ASD, and related phenotypes [83, 126].

Precision phenotyping to facilitate genetic discovery
Current studies attempting to uncover the neurobiologi-
cal correlates of ASD and ADHD typically take one of 
two approaches. The first approach aims to recruit large 
sample sizes to facilitate high powered genetic analyses, 
with the trade-off being that only surface level phenotyp-
ing of behaviour is typically captured [239]. The second 
approach recruits smaller samples with deeper pheno-
typing using multiple modalities and informants, at the 
cost of reduced sample sizes, lower statistical power and 
greater financial expense per participant [239]. Large 
biobanking projects for ASD (e.g. SFARI, [1], Australian 
Autism CRC biobank, [8], and Norweigian Autism Birth 
Cohort [272]) and ADHD (e.g. International Multicentre 
ADHD Genetics [IMAGE] program; [10], The Lundbeck 
Foundation Initiative for Integrative Psychiatric Research 
[iPSYCH]; [83]) have achieved large sample sizes but only 
capture clinical symptom level data which provides mini-
mal insight into the structure of developmental psycho-
pathology and associated neurobiology. Other projects 
with more comprehensive phenotyping protocols includ-
ing clinical, neurocognitive and imaging measures such 
as the EU-AIMS (LEAP) study [178], Biological Origins 
of Autism (BOA) study [269], and ENIGMA-ADHD/
ASD [35, 136, 137]. However, these projects typically 
confine recruitment to DSM-5 categories for either ASD 
or ADHD, either excluding on the basis of comorbidity or 
not accounting for the effects.

There is increasing momentum toward transdiagnos-
tic research efforts, as evidenced through projects such 
as the NIMH-funded Bipolar Schizophrenia Network 
on Intermediate Phenotypes (B- SNIP) project [58], 
which applied a dimensional framework to schizophre-
nia and bipolar disorder, as well as biobank initiatives 
like the Healthy Brain Network [7], and the Adolescent 
Brain Cognitive Development (ABCD) study [173]. Of 
these studies, the B-SNIP project is the only transdiag-
nostic study to our knowledge that incorporates first-
degree relatives in its design. The inclusion of siblings of 
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first degree relatives enhances the power to detect novel 
biomarkers with robust biological plausibility, relative 
to case–control designs, as relatedness is consistently 
known to reduce the amount of variance within outcome 
measures [50, 253].

Although there is consistent evidence suggesting 
shared genetic liability and family aggregation for ASD 
and ADHD, direct evidence for shared DNA variation 
from techniques such as GWAS or DNA has been harder 
to discern [12, 242]. One contributing factor to the ina-
bility of techniques such as GWAS to identify shared 
genetic variation between ADHD and ASD, for exam-
ple, may be the coarseness of the phenotyping employed 
and imprecise mapping of comorbidities [42, 236]. A 
hierarchical approach to psychopathology and neurode-
velopment, such as that proposed by HiTOP, whereby 
phenotypic variation is dimensionally measured in both 
cases and key comparison groups, and at multiple lev-
els of measurement, provides more specific phenotypic 
targets for genetic discovery [291]. This circumvents the 
current difficulties that broad heterogeneous diagnostic 
categories pose for mapping the underlying genetic archi-
tecture of psychiatric illness [239, 291]. Looking outside 
of the confines of DSM-defined diagnostic categories for 
genetic associations using a hierarchical framework will 
allow for identification of both general and specific lev-
els of genetic risk. Indeed, GWAS studies suggest plei-
otropy is prevalent in psychopathology, with multiple 
genes and common genetic variation implicated across 
a number of disorders [275, 291]. Further, dimensional 
approaches confer substantially higher statistical power 
to detect trait-associated genetic variation [258, 259]. 
Case–control designs have the potential to weaken the 
genetic signal, with classification of subthreshold cases 
as controls increasing the breadth of phenotypic and 
genetic variability within groups [303]. To improve our 
mapping of the genetic architecture of the ASD-ADHD 
spectra, and neurodevelopment more broadly, we need to 
have greater precision in our studies of phenotype-gen-
otype associations. Ways to achieve this can be through 
family designs, high precision phenotyping grounded in 
theoretically and biologically informed frameworks (e.g. 
HiTOP, RDoC), and comprehensive clinical review of all 
cases.

The Monash Autism‑ADHD Genetics 
and Neurodevelopment (MAGNET) project
To our knowledge there is no current study taking a 
truly transdiagnostic approach to understand the symp-
tomatic, neurobiological (neurocognitive and neuroim-
aging) and genetic overlap between ASD and ADHD. A 
transdiagnostic sampling strategy that combines a fam-
ily study design with deep dimensional phenotyping 

is needed across the ASD-ADHD spectra. By drawing 
on both RDoC and HiTOP frameworks, the MAGNET 
Project will contribute to our understanding of how 
neurodevelopmental disorders fit into a data-driven hier-
archical taxonomy. Further, by understanding how these 
dimensional phenotypes present in families of children 
with ASD and ADHD, and whether siblings share simi-
lar behavioural signatures  will provide crucial evidence 
for familiality of different ASD-ADHD phenotypes. The 
MAGNET Project therefore aims to: (1) identify data-
driven symptom clusters across ADHD-ASD spectra 
using deep phenotyping of symptoms and behaviours; (2) 
investigate the degree of familiality for these data-driven 
symptom clusters; (3) map the neurocognitive and brain 
imaging correlates of these data-driven symptom clus-
ters; and (4) explore their genetic correlates.

Methods
Study design
The MAGNET Project will enrol 1200 families with chil-
dren aged between 4 and 18 years of age. Children who 
are typically developing, as well as those with a diagno-
sis of ASD, ADHD, or ASD + ADHD will be recruited to 
ensure both ends of the ASD-ADHD spectra are appro-
priately sampled. Children who are under investigation 
for ASD and/or ADHD and are referred to the study 
by their paediatrician will also be recruited. In addi-
tion, unaffected and affected siblings of probands will be 
recruited. A dimensional enhancement approach to sam-
pling will be taken, as it augments clinical samples with 
non-clinical participants and those exhibiting subthresh-
old symptoms [75, 161]. This sampling strategy, whereby 
typically developing children are transdiagnostically 
phenotyped alongside probands and subthreshold cases 
(e.g. siblings, children currently under investigation for 
ASD or ADHD) combines the strengths and offsets the 
weaknesses of categorical and dimensional approaches 
to psychopathology research by increasing statistical 
power [50, 253] whilst maintaining clinical validity and 
enabling direct comparisons with existing diagnostic 
classifications systems [75, 131]. The MAGNET proto-
col comprehensively phenotypes all children and sib-
lings, irrespective of case–control status, for behavioural 
and neurocognitive constructs that are central to ASD 
and ADHD symptomatology and align with RDoC and 
HiTOP frameworks (e.g. internalising and externalis-
ing symptoms, attention and cognitive control, arousal, 
reward, working memory, perception, social processes, 
and sensorimotor processes). The battery uniquely cap-
tures dimensional traits across ASD-ADHD spectra 
using a range of symptom, parent-report, neurocogni-
tive, and direct behavioural observation measures to cap-
ture the target domains from multiple perspectives. This 
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approach will provide a rich source of data unconfounded 
by informant bias and method bias, with the opportunity 
to model the correspondence and complex interactions 
of information obtained from multiple informants [2, 
176, 176, 177, 177, 213, 215, 219].

Targeted sampling through hospitals, schools, private 
practice clinicians, and social media across Victoria, 
Australia will allow for a broad and representative distri-
bution of socioeconomic status (SES) and symptom pres-
entation. Currently the MAGNET Project is in an open 
recruitment phase. The MAGNET Project will actively 
recruit females and children with mild-severe intellec-
tual disability, as these children are typically under-rep-
resented, or excluded from, studies of ASD and ADHD. 
The study has been piloted on control and clinical chil-
dren aged 4 to 18  years of age (see Table  1 for prelimi-
nary demographic and clinical data) to assist in deciding 
appropriate age and cognitive ranges for tasks and mini-
mum dataset requirements. See Fig.  1 for an overview 
of the MAGNET Project study protocol (see Additional 
file 1 for the MAGNET Project Protocol).

Participant eligibility
Children with a diagnosis of ASD and/or ADHD pro-
vide the clinical report from their clinician with evidence 
of diagnosis. Children who are under investigation, or 
queried for, ASD and/or ADHD are required to have a 
clinician (paediatrician, psychologist, and/or general 
practitioner) currently managing their care. Siblings 

Fig. 1 The MAGNET Project study protocol. Participant grouping: The MAGNET Project is a single‑site study recruiting children who are typically 
developing, as well as those with elevated ASD, ADHD, or ASD + ADHD symptoms. Affected and unaffected siblings of probands will also be 
recruited. All children undergo comprehensive dimensional phenotyping across behavioural constructs central to ASD and ADHD target domains. 
Clustering: The MAGNET Project will use both supervised and unsupervised methods for discovery of ASD‑ADHD clusters using measures of 
symptoms and behaviours. As these methods are hypothesis free and diagnosis naïve, the number of clusters will not be determined a priori. 
Uniquely, the battery captures target domains from multiple perspectives (self‑report, parent‑report, clinician rated measures, and direct child 
measures [e.g. eye‑tracking and neurocognitive tasks]). All control children, probands, and siblings and parents of probands provide a saliva sample 
for genetic analysis. Structural and functional brain measures (magnetic resonance imaging [MRI], resting state MRI, and diffusion weight imaging) 
are also collected. The neurocognitive, brain imaging, genetic, and functional outcomes will then be mapped to the data‑driven symptom clusters

Table 1 Preliminary demographic and clinical data for the 
MAGNET project for N = 216 participants across controls, 
probands and siblings

ASD, autism spectrum disorder; ADHD, attention-deficit/hyperactivity disorder; 
Sus., suspected; Age, average age in months

Controls Probands Sibling 
unaffected

Sibling 
affected

Total

Total 33 95 56 32 216

Diagnosis

ASD – 34 – 8 42

ADHD – 25 – 7 32

ASD/ADHD – 27 – 4 31

Sus. ASD/ADHD – 9 – 13 22

Sex

Male 15 69 18 17 119

Female 18 26 38 15 97
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of probands must share two biological parents with the 
proband. The healthy control children are required to 
have no neurodevelopmental diagnosis, no first-degree 
relative with a diagnosis of ASD and/or ADHD, and 
no history of a psychiatric (e.g. depression or anxi-
ety) or neurological illness (e.g. head injury or tuberous 
sclerosis).

Probands and siblings with comorbidities such as anxi-
ety, depression, oppositional defiant disorder (ODD), 
conduct disorder (CD), and obsessive–compulsive dis-
order (OCD) are not excluded. As a large proportion of 
children with ASD and ADHD experience these comor-
bid disorders [79, 183, 306], exclusion of these disorders 
may result in a sample that is not representative of the 
target population. Where possible, one or both biologi-
cal parents complete a battery of questionnaires exam-
ining ASD and ADHD symptomatology, mental health, 
and quality of life. Exclusion criteria for all children 
include known genetic (e.g. Fragile X, Angelman’s Syn-
drome, tuberous sclerosis) or environmental (e.g. trau-
matic brain injury, foetal alcohol syndrome) causes. A 
peri/prenatal environment questionnaire retrospectively 
captures maternal alcohol and drug use, medication, ill-
ness/infection, and complications during the pregnancy 
and delivery. Retrospective information on the child’s 
development, including developmental milestones and 
regression is obtained via parent-report. As the question-
naire battery is extensive, at least one parent/caregiver 
is required to speak English. Parents complete approxi-
mately 3 hours of online questionnaires, and one (control 
families) or two (clinical families) 3-hour research visits 
at Monash University to complete the testing protocol.

All children undergo case review by a registered psy-
chologist and paediatrician, and speech pathologist if 
available, to determine a ‘best clinical estimate’ of that 
child’s current diagnostic status. A best clinical estimate 
will be given for ASD, ADHD, comorbid ASD/ADHD, 
intellectual disability (ID), CD, and ODD (see Addi-
tional file 2). The best clinical estimate will not be used 
as exclusion criteria for the study. Children who do not 
meet thresholds for ASD and/or ADHD will still provide 
useful information about the dimensionality of ASD and 
ADHD symptoms. Children with an estimated full-scale 
intelligence quotient (FSIQ) in the range for ID (IQ ≤ 70) 
as measured using standardised psychometric assess-
ment (e.g., Wechsler assessments) are administered a 
minimum dataset protocol (see Additional file  3), but 
will attempt additional tasks from the battery wherever 
possible.

Ethnicity
Single-nucleotide polymorphisms (SNPs) may vary 
between ethnic populations and potentially cause false 

positive results in genetic association studies. To avoid 
the potential impact of population stratification only 
children with four grandparents of European ancestry 
are invited to complete the genetic component of the 
protocol.

Siblings
Only full biological siblings will be eligible to take part in 
the study. Within simplex families, that is, families where 
only one child has an ASD and/or ADHD diagnosis, the 
child with the ASD/ADHD diagnosis is nominated as the 
proband. In multiplex families, families where more than 
one child has an ASD and/or ADHD diagnosis, the eld-
est child is denoted as the proband and younger children 
are designated as affected or unaffected siblings. Unaf-
fected siblings of ASD/ADHD probands have no diagno-
sis of ASD/ADHD, are not under investigation for ASD/
ADHD, and are not assigned a neurodevelopmental dis-
order diagnostic category during their best clinical esti-
mate review.

Medication
The child’s current and previous medication history, 
medication prescriber (e.g. paediatrician, general practi-
tioner), and reasons for any medication changes, will be 
recorded.

Children who are taking medication remain on their 
medication during Visit 2 when their relevant Wechsler 
and Autism Diagnostic Observation Schedule—Second 
Edition (ADOS-2) assessments are completed (see Addi-
tional file  4 for clinical assessment protocol). However 
children taking stimulant or non-stimulant medication 
for ADHD including methylphenidate, lisdexamfeta-
mine, or dexamfetamine are required to withdraw from 
their medication 48–72  hours prior to completing the 
neurocognitive test battery during Visit 1 [51, 195]. Par-
ticipants taking guanfacine or antipsychotics (e.g. risperi-
done, aripiprazole) do not withdraw for any component 
of the protocol as abrupt withdrawal from these medica-
tions may be associated with adverse side effects [138, 
273, 307]. Children taking melatonin are not required to 
withdraw prior to participating.

Phenotyping overview
Each of the measures or tasks included were selected as 
gold standard measures that are widely used, have bio-
logical plausibility, and show robust effect sizes when 
differentiating controls from either ASD or ADHD (See 
Table 2 for the MAGNET Project symptom and environ-
mental phenotyping measures, and Table 3 for neurocog-
nitive phenotyping measures).

The components of the MAGNET protocol intended 
to measure phenotypic dimensions relevant to ASD were 
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chosen in consultation and collaboration with the Euro-
pean Autism Interventions—A Multicentre Study for 
Developing New Medications—Longitudinal European 
Autism Project (EU-AIMS [LEAP]) study team [144, 
178]. The EU-AIMS (LEAP) study is a European multi-
centre study that aims to identify risk factors contribut-
ing to differences in brain development, social difficulties 
and other core ASD symptoms. Through aligning parts 
of the MAGNET and EU-AIMS (LEAP) protocols, the 
MAGNET project will also act as a replication site for 
the EU-AIMS (LEAP) study. The addition of measures 
for dimensional phenotyping of ADHD symptoms and 
relevant neurocognitive traits are unique to the MAG-
NET project and make ours the first large-scale family-
based project to take a truly transdiagnostic approach to 

understanding ASD and ADHD (see Additional file 1 for 
MAGNET protocol summary).

Characterisation of ASD, ADHD and comorbid symptoms
Dimensional ASD symptomatology is measured through 
parent-report measures capturing social communica-
tion (Autism Quotient—Child [AQ-C], [17], Child Com-
munication Checklist—Second Edition [CCC-2], [33], 
Social Responsive Scale—Second Edition [SRS-2], [64]), 
social competence (Child Behaviour Checklist [CBCL], 
[4], restricted, repetitive, and stereotyped behaviours 
(SRS-2, [64],The Childhood Routines Inventory—Revised 
[CRI-R], [96]), and autism symptomatology overall (AQ-
C; [17], SRS-2; [64]). Dimensional traits central to ADHD 
are captured through parent-report questionnaires, and 

Table 2 The MAGNET project symptom phenotyping measures

WISC-V =Wechsler Intelligence Scale for Children—Fifth Edition; WPPSI-IV =Wechsler Preschool and Primary Scale of Intelligence—Fourth Edition; WAIS-IV = 
Wechsler Adult Intelligence Scale—Fourth Edition; SWAN =Strengths and Weaknesses of ADHD symptoms and Normal Behaviour; DAWBA = Development and Well-
Being Assessment; CELF-5 =Clinical Evaluation of Language Fundamentals—Fifth edition; CELF-P2 =Clinical Evaluation of Language Fundamentals—Preschool-2; 
PLS-5 =Preschool Language Scales—Fifth Edition; PEP-3 =Psychoeducation Profile—Third Edition; WHO =World Health Organisation

Tasks Attention Working 
memory

Speech 
and 
language

Social 
Processes

Cognitive 
control

Reward Sensori‑motor Perception

WISC‑V/WPPSI‑IV/WAIS‑IV/WAIS‑II X X X X X X X

Dimensional measures of ASD traits

 ADOS‑2 + 3DI X X X X

 Childhood & Adult Routines Inventory X

 Autism Quotient X X X X X

 Social Responsiveness Scale X X X

Dimensional measures of ADHD traits

 Conners’ Parent Rating Scale—Revised X X X X X

 SWAN X X X

 Scale of Attention in Intellectual Dis‑
ability

X X X

Comorbid Symptoms

 Aberrant Behaviour Checklist X X

 Child Behaviour Checklist X X

 DAWBA X X X X X X

 Children’s Communication Checklist 2 X X

 CELF‑5 X X X X X X X

 CELF‑P2 X X X X X X

 PLS‑5 X X X X

 PEP‑3 X X X X X X X

 Strengths and Difficulties Questionnaire X X X

 Spence Childhood Anxiety Scale X

 Childhood Depression Inventory X

 Beck Depression Inventory X

 Beck Anxiety Inventory X

Domain general rating scales

 Child Health and Illness Profile X X X

 WHO Quality of Life Questionnaire X X X

 Vineland Adaptive Behaviour Scale X X X X X X X
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an in-house observation checklist for ADHD behaviours 
completed during ADOS-2 coding. Parent rated meas-
ures of attention and inattention (Strengths and Weak-
nesses of ADHD Symptoms and Normal Behaviour 
[SWAN]; [13], Conners’ Parent Rating Scale—Revised 
[CPRS-R]; [62], Development and Wellbeing Assessment 
[DAWBA], [122]), hyperactivity (Aberrant Behaviour 
Checklist [ABC], [9], Strengths and Difficulties Ques-
tionnaire [SDQ], [121], DAWBA, [122]), impulsivity, and 
overall ADHD symptomatology (CPRS-R, [62]), are com-
prehensively assessed, alongside an additional measure of 
attention appropriate for children with intellectual disa-
bility (Scale of Attention in Intellectual Disability [SAID], 
[110]). Teachers are invited to complete the SRS-2, 
SDQ, and Conners’ Teacher Rating Scale—Revised [63], 
although completion rates are typically lower than for 
parent report. Height, weight, head circumference, and 
joint mobility and hypomobility [26] are also recorded for 
every child.

Comorbidities
Comorbidities commonly observed in ASD and ADHD 
are captured in all children, including anxiety (Child 
Behaviour Checklist [CBCL], [5], Spence Children’s 
Anxiety Scale [SCAS], [263]) and depression (CBCL, 
[5], DAWBA, [122], Childhood Depression Inven-
tory—Second Edition [CDI-2], [159, 260]). Conduct 
problems and oppositional defiant problems are also 
indexed (CBCL, [5], CPRS-R, [62], DAWBA, [122]). 
Level of current cognitive function is determined using 
age appropriate Wechsler intelligence scales [293, 294, 
295, 296]. See Additional file  4 for clinical assessment 
protocol.

Adaptive behaviours and quality of life
Adaptive behaviour (Vineland Adaptive Behaviour 
Scale—Third Edition [VABS-3]; [262]) and quality of life 
(Child Health and Illness Profile—Child Edition [CHIP-
CE], [229]) are measured in all children through parent-
report questionnaires.

Language assessment
Language profiles in ASD are heterogeneous, rang-
ing from non-verbal [114] to superior linguistic abilities 
[154]. Although language impairments are not a hall-
mark diagnostic criteria for ADHD, both linguistic and 
pragmatic deficits are commonly part of the symptom 
presentation [27]. Recent empirical records on the co-
occurrence of language impairments in ASD and ADHD 
have identified impairments in structural and pragmatic 
aspects of language in both the groups [19, 164, 203, 
250]. Despite the presence of language difficulties in ASD 
and ADHD, and indeed, in a number of other neurode-
velopmental disorders and psychopathology, language 
constructs are not currently included in RDoC or HiTOP 
frameworks. Thus, the inclusion of language assessments 
in the MAGNET Project protocol will provide a novel 
and unique contribution to these nosologies.

A standardised screening measure for language dif-
ficulties (Clinical Evaluation of Language Fundamen-
tals—Fifth Edition [CELF-5]: Screening Test; [297]) is 
administered to all enrolled children over 5  years of 
age. Children with a diagnosis of ASD and/or ADHD 
or those who are under investigation for these disor-
ders, and control children who fall below criterion on 
the screening measure for language difficulties, are 
administered the Australian adaptation of the Clinical 

Table 3 The MAGNET project neurocognitive phenotyping measures

Neurocognitive tasks Attention Working 
memory

Speech and 
language

Social 
processes

Cognitive 
control

Reward Sensori‑motor Perception

Go/No‑Go X X

Stop signal task X X X

Reflexive saccade task X X

Anti‑saccades X X X X X

Sinusoidal pursuit X X X

Step‑ramp pursuit X X

Spatial working memory X X X

Probabilistic reversal learning X X X X

Cambridge gambling task X X X

Facial recognition task X X X X

Karolinska directed emotional faces X X X

Reading the mind in the eyes X X X X

Continuous false belief task X X
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Evaluation of Language Fundamentals—Fifth Edition 
(CELF-5; Age group 5 to 21 years; [70], [298]) or Clini-
cal Evaluation of Language Fundamentals—Preschool 
Edition (CELF-P2; Age group 3 to 6  years 11  months; 
[251]). This clinician-administered assessment provides 
a comprehensive global measure of language abilities, 
and characterises structural and pragmatic language in 
children.

The Preschool Language Scale—Fifth Edition (PLS-5; 
[310]) is administered to younger minimally verbal chil-
dren. The PLS-5 incorporates information from clinical 
observation, direct measurement and parent report to 
assess domains of attention, play, gesture, vocal develop-
ment, social communication, semantics, language struc-
ture, integrative language skills and emergent literacy 
skills in children from birth to 7 years 11 months. A car-
egiver rated questionnaire, the  Children’s Communica-
tion Checklist 2 (CCC-2; [33]), measures both structural 
(language form/content) and pragmatic traits of com-
munication impairment in children. The CCC-2 includes 
an overall measure of communication skills and a Social 
Interaction Deviance Composite (SIDC) which indexes 
the strength of relationships between the social domains 
of communication and structural components of lan-
guage, thereby aiming to attain and identify traits asso-
ciated with pragmatic language difficulties. With poorer 
overall language performance and SIDC linked to ASD 
traits [33], these measures provide valuable informa-
tion when differentiating comorbid presentations of lan-
guage impairment in neurodevelopmental disorders. The 
SRS-2 also provides a parent-reported index of social 
communication. Recordings from the ADOS-2 provide 
high-resolution natural speech and language samples. 
See Additional file 4 for clinical assessment protocol.

Measures of neurocognition
We assess the domains of sustained attention, inhibition, 
cognitive control, arousal, reward, working memory, per-
ception, social processes, and sensorimotor processes with 
the view to utilise neurocognitive data to discover neu-
robiological correlates of novel ASD-ADHD data-driven 
clusters. The tasks chosen are widely used, have biologi-
cal plausibility and show robust effects sizes when differ-
entiating clinical cases from controls. See Table 2 for the 
MAGNET Project neurocognitive phenotyping meas-
ures. Additional file  5 summarises the MAGNET Pro-
ject’s neurocognitive assessment protocol.

Neurocognitive tasks
The neurocognitive tasks will be completed on a desk-
top computer and touchscreen laptops. Amsterdam 

Neuropsychological Tasks (ANT), Psytools, PsychoPy 
and STOP-IT software programmes were used for task 
administration [261, 81, 214, 282, 283].

Response inhibition, sustained attention and cognitive 
control
Response inhibition refers to the ability to withhold 
or cancel a motor response [52]. Sustained attention, 
or vigilance, can be defined as the ability to main-
tain engagement in a task over a prolonged period of 
time [109]. This component of attention is thought to 
be mediated by top down, or endogenous processes, 
and is controlled by internal goals [192]. These cogni-
tive functions are measured using a Go/No-Go (ANT; 
[261]) and Stop Signal Task which are standard meas-
ures of top-down/endogenous sustained attention and 
response inhibition. Response inhibition is indexed 
through stop-signal reaction time (SSRT) and the per-
centage of failed attempts to inhibit a response on 
tasks. Longer stop signal reaction times and commis-
sion errors indicate poor inhibition and more omission 
errors and are indicative of poorer sustained attention 
[282]. Response inhibition and sustained attention defi-
cits are central to the conceptualisation of ADHD [20, 
28, 221, 300, 301], with some support for deficits in 
ASD [21, 54, 152, 246, 218]. Further, these deficits are 
heritable, with unaffected siblings of ADHD probands 
demonstrating response inhibition and sustained atten-
tion difficulties [53, 111, 243, 257]. Similarly, reduced 
inhibitory control has been demonstrated to be familial 
in ASD families [246].

Arousal
Arousal can be understood as an individual’s state of 
reactivity, and although arousal is intimately linked with 
constructs like attention, the neural correlates of these 
processes are largely distinct [72]. Arousal will be exam-
ined by deriving measures of intra-individual variability 
in response times across tasks of sustained attention and 
response inhibition, as suboptimal arousal is thought to 
underpin intra-individual variability in ADHD [28, 29, 
49, 254]. Increased response time variability is a hallmark 
feature of neurocognitive performance in ADHD [29, 
148, 150, 151, 256] and is familial [165, 200]. Variability 
in response time is thought to be a marker for dysfunc-
tion in the frontal areas of the brain [30, 181], which is 
consistent with theories of hypo-arousal and fronto-stri-
atal dysfunction in ADHD [74, 241]. Although children 
with ASD show similar response time variability to typi-
cally developing children [151], variability in response 
time appears to index ADHD symptomatology across 
diagnostic boundaries as children with comorbid ASD 
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and ADHD show similar variability to those with ADHD 
[279]. Thus, response time variability as a proxy measure 
for arousal shows promise for effectively stratifying chil-
dren with ASD, ADHD and ASD-ADHD.

Reward sensitivity
Reward sensitivity refers to the tendency to respond more 
strongly to incentives, or rewards, and is a process impli-
cated in decision making. ADHD is associated with diver-
gent decision making, differing sensitivity to reward, and 
elevated risk-taking behaviour [80, 147, 180, 309]. Effect 
sizes for decision making difficulties are comparable to 
the attention difficulties seen in ADHD [196]. Altered 
reward processing in ADHD is well-studied, and posited 
as central to the disorder [277]. Children with ADHD 
show poorer decision making as they have difficulty 
adjusting their responses in the face of changing levels 
of risk [59, 125, 276]. Biological plausibility is evidenced 
with correlative neuroimaging in ADHD of under activa-
tion in brain regions associated with decision making (i.e. 
ventral and dorsolateral prefrontal cortex, and insula; [39, 
94] and hypo-responsiveness in neural circuitry involved 
with reward anticipation (i.e. ventral striatal circuitry; 
[245]). Dopamine is one of the neurotransmitters impli-
cated in decision making and reward, and indeed, dopa-
mine deficiency is a leading hypothesis in ADHD [309]. 
Together, a task engaging decision making, reward sen-
sitivity, and risk-taking behaviour is a well-positioned 
ADHD trait for discovery of clusters.

In ASD, there is evidence for aberrant reward process-
ing, but to a lesser extent than that observed in ADHD 
[156, 277]. Children with ASD showed increased acti-
vation in the anterior cingulate cortex during reward 
achievement compared to controls [247]. This region is 
thought to be involved with self-monitoring of perfor-
mance in line with reward feedback [34, 232] and risk 
assessment [41]. However, there is some evidence to sug-
gest ASD and control groups perform similarly on goal-
directed decision making tasks in the context of explicit 
reward [100] and have similar sensitivity to monetary 
reward [85, 266], with no difference in neural activation 
while processing reward [168]. The less definitive evi-
dence in ASD may indicate that only a subgroup of these 
children may in fact have altered reward processing and 
decision making.

To assess decision making, reward sensitivity, and risk-
taking, the New Cambridge Gambling Task [44] will be 
used. It allows for delineation of risk-taking behaviours 
from impulsivity, and explicitly states the probability for 
each trial. Unlike other gambling tasks (e.g. Iowa Gam-
bling Task), explicit statement of probability reduces the 
working memory load, thus reducing confounds of addi-
tional working memory deficits.

Probabilistic reversal learning
Broadly, cognitive flexibility is a component of executive 
function that encompasses adaptability at a behavioural 
level and is studied from a variety of perspectives such 
as set shifting, task-switching, and reversal learning [67]. 
More specifically, contingency-related cognitive flexibil-
ity is the adaptation of behaviour after negative feedback, 
typically measured using probabilistic reversal learn-
ing paradigms. In typical development, contingency-
related cognitive flexibility specifically is associated with 
the orbitofrontal cortex, parietal cortex, and subcortical 
connections [107]. Impairments in contingency-related 
cognitive flexibility are seen in ASD [69, 91] and ADHD 
probands [145, 299], with impairments also observed in 
unaffected first degree relatives of ASD probands [246]. 
In ASD, cognitive inflexibility has been associated with 
restricted, repetitive, and stereotyped behaviours [91, 
174, 190]. Neuroimaging findings demonstrate aber-
rant activation of networks during cognitive flexibility 
tasks in children with ASD (lateral frontoparietal and 
midcingulo-insular networks; [280]) and fronto-striatal 
function, which is implicated in cognitive flexibility, is 
thought to be impaired in ADHD [47, 89]. In the MAG-
NET Project contingency-related cognitive flexibility 
will be measured using a probabilistic reversal learning 
paradigm with positive and negative feedback [178, 209]. 
The number of trials required to shift to a new response 
choice, perseverative errors, and regressive errors index 
cognitive inflexibility.

Working memory
Internationally, the definitions of working memory are 
contentious, with working memory and short-term 
memory sometimes still used interchangeably. Some 
conceptualise working memory as the process of holding 
information in the mind for a short period of time, which 
can also be thought of as short-term memory [118]. Oth-
ers understand working memory, also referred to as exec-
utive memory, as the ability to maintain and manipulate 
information, where this manipulation may have low or 
high executive demands [18, 77]. Tasks are then modal-
ity specific, using verbal or visual stimuli. The MAGNET 
Project’s conceptualisation of working memory aligns 
with executive memory that has high and low execu-
tive demands. Verbal and visual working memory diffi-
culties are seen in both ASD and ADHD [87, 153, 184, 
248, 249, 252], with deficits becoming more pronounced 
as the cognitive load increases [226, 227, 252, 267, 284]. 
These difficulties on working memory tasks with higher 
cognitive load correspond with atypical neural process-
ing in children with ASD [222, 284], providing biological 
plausibility for working memory performance as a neu-
rocognitive marker of ASD. Further, unaffected siblings 
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of children with ASD and ADHD showed more impaired 
verbal and visuospatial working memory performance 
than typically developing controls [31, 204, 252]. The ver-
bal and visuospatial working memory divergence seen 
in unaffected siblings of children with ASD and ADHD 
positions working memory as a good candidate endophe-
notype [108, 191]. Verbal [292, 293, 297, 298] and visu-
ospatial [45, 46] working memory tasks which increase 
in cognitive load across trials allows us to index work-
ing memory capacity across the broad range of cognitive 
abilities captured in the study.

Social processes
Emotion recognition is the ability to correctly identify 
another person’s emotion based on their facial expres-
sion and is crucial for effective social communication. 
Emotion recognition difficulties in children with ASD are 
a consistent and robustly replicated finding [128, 281]. 
Atypical processing of emotions is also thought to be 
familial, with unaffected relatives of individuals with ASD 
also showing less severe, but still significant emotion rec-
ognition difficulties [78, 206]. Although emotion recog-
nition is not as extensively researched in ADHD, there 
is some evidence for emotion recognition divergence in 
these children [14, 36, 84, 287]. Emotion recognition in 
the MAGNET project is conceptualised, and measured, 
as the ability to recognise both simple and complex emo-
tional states (Reading the Mind in the Eyes Task [RMET]; 
[22]; Karolinska Directed Emotional Faces [KDEF]; 
[119]).

Theory of Mind (ToM) is the ability to understand 
and attribute mental states to oneself and to others and 
understand that others can have different mental states 
to yourself. Profound difficulties with understanding oth-
ers’ thoughts and intentions in day-to-day life are com-
mon in ASD [216]. These difficulties with ToM have been 
linked to genetic anomalies associated with ASD [231]. 
False-belief tasks are widely used for assessing ToM and 
individuals with ASD typically show egocentric biases 
when completing these tasks compared to their typically 
developing peers [25]. These difficulties are less defini-
tive in high functioning individuals with ASD however, 
with some able to successfully complete continuous false-
belief tasks [244]. The ability of such a task to separate 
different individuals with ASD positions it well to stratify 
these individuals. Conversely, the findings within ADHD 
are currently heterogeneous. More research is necessary 
to understand whether these deficits are present in only a 
subset of these children [217].

Oculomotor measures
Saccade and pursuit eye movement abnormalities have 
the potential to reliably distinguish ASD and ADHD 

children from controls [149]. Oculomotor abnormali-
ties can arise as the result of abnormalities in a range 
of well-mapped neural circuitry throughout the brain, 
spanning motion sensitive visual area V5, parietal and 
frontal areas supporting visual attention and sensori-
motor transformation, basal ganglia, brainstem and cer-
ebellar circuitry [149]. Oculomotor control is ideal to 
measure in children, as it is quick, and affords sensitive, 
high-resolution recording, and requires minimal-to-no 
language comprehension for children to perform. Sen-
sorimotor measures from ocular motor tasks include 
accuracy, motor dynamics (e.g. velocity profiles), initial 
eye acceleration in response to the onset of a visual target 
or target movement and integration of visual feedback 
in motor responses. The anti-saccade task, completed in 
children eight years and over, also provides a measure of 
how attentional processes and inhibition interface with 
oculomotor control [97, 140, 155, 198]. Other studies in 
schizophrenia and bipolar disorder have found unique 
relationships between genes associated with nervous 
system development and function and with sensorimo-
tor processing and pursuit maintenance [171]. See Addi-
tional file 6 for oculomotor testing protocol.

Brain structure and function
Large-scale neuroimaging studies have identified robust 
structural differences associated with ASD and ADHD, 
demonstrating both common and disorder-specific 
brain alterations. In both ASD and ADHD, cases showed 
reduced subcortical volumes [134, 235] and cortical thin-
ning in temporal regions [136, 235]. Reduced surface 
areas were specific to ADHD [136], whereas ASD showed 
increased cortical thickness in frontal regions [235]. Evi-
dence regarding differences in diffusion weighted imag-
ing (DWI) and resting state fMRI (rs-fMRI) are based on 
smaller studies demonstrating wide-spread alterations in 
fractional anisotropy [86, 98] and less consistent changes 
in rsfMRI [170, 308].

Structural and functional brain imaging (resting state 
fMRI) will be collected to determine if neurobiologi-
cal differences exist as a function of symptom-based 
data-driven clusters. All scans will be performed using 
Siemens Skyra 3  T scanner following previously estab-
lished protocols [207, 237]. Data processing pipelines will 
include extensive correction for in-scanner motion [207, 
211] which is the most prevalent MRI artefact in paediat-
ric populations.

Genetics
Saliva is collected from all probands, affected and unaf-
fected biological siblings, biological parents of probands, 
and healthy controls for DNA extraction (see Additional 
file 7 for DNA collection and extraction protocol). DNA 
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will be subjected to array-based genotyping (e.g. Illumina 
Global Screen Array for GWAS) and/or whole genome 
sequencing, as funding allows. Because our study sam-
ple size has limited power to reliably detect novel asso-
ciations with DNA variants, we will capitalise on existing 
publicly available data and consortia science in the fol-
lowing ways. First, we will derive Polygenic Risk Scores 
(PGRS; [55, 95]) for ASD and ADHD using international 
datasets as the base dataset (e.g. Psychiatric Genomic 
Consortium [PGC] and iPSYCH; [83, 126]) and our 
entire sample of probands as the target dataset. We will 
estimate the relationships between polygenic risk scores 
for ADHD and/or ASD and each of our symptom-based 
data-driven clusters. Second, our family-based design 
is optimal for whole genome sequencing and will allow 
us to determine whether patterns of inherited versus de 
novo mutations differentially cluster across the data-
driven clusters [50, 253]. Again, we acknowledge the 
limited power of our sample for whole genome sequenc-
ing, and will join collaborative efforts (e.g. PGC,iPSYCH; 
Autism Speaks MSSNG Project; EU-Aims; Province of 
Ontario Neurodevelopmental Network [POND]).

Parent phenotyping
Both biological parent’s complete self-report dimensional 
measures of ASD (Autism Quotient—Adults [AQ-A, 
[38]; SRS-2, [64], Adult Routines Inventory [ARI], [96]) 
and ADHD symptomatology (SWAN, [13], Conners’ 
Adult ADHD Rating Scale, Conners et  al. [61]; SDQ, 
[121]. Parent’s complete self-report measures of depres-
sion (Beck Depression Inventory [BDI], [24], anxiety 
(Beck Anxiety Inventory [BAI], [23]), and a quality of life 
measures (World Health Organisation Quality of Life 
Measure [WHOQOL-BREF], [285]) as parents of chil-
dren with ASD and ADHD can experience poorer mental 
health and quality of life outcomes compared to parents 
with typically developing children [124, 167, 288].

Database access
All raw data is stored on a central database with access 
only granted to current members of the research team 
who have personalised login details. Oculomotor and 
neuroimaging data are downloaded to local devices from 
the central database for cleaning, pre-processing, and 
analysis. Currently, access to the MAGNET Project’s data 
is only granted for members of the MAGNET research 
team and our collaborators from the EU-AIMS (LEAP) 
study [178]. Genotyping information will be made avail-
able to international research consortia, such as the 
PGC, where participant consent for sharing has been 
given. Upon completion of the project, the MAGNET 
Project data set will be changed to open access. Con-
sent for sharing neuroimaging data will be in line with 

recommendations from the Open Brain Consent working 
group [208].

Planned statistical analysis
A combination of supervised psychometric analyses and 
unsupervised clustering approaches will be used to con-
verge on data-driven homogeneous ASD-ADHD clusters 
embedded within biologically-relevant dimensions based 
on previously derived factor score estimates [37, 106]. By 
using multiple measures of target constructs to create 
latent variable phenotypes, we can maximise our study’s 
statistical power and strengthen the representation of 
our key constructs [259]. The utility of dimensional 
approaches for improving statistical power in psychopa-
thology research, particularly psychiatric genetics, is well 
established [160, 275, 258]. Similarly, the advantages of 
phenotypic precision in improving signal-to-noise ratio 
and thus statistical power for detecting relationships with 
external criterion variables, including genetic variation, 
has also been outlined [56, 259, 302]. Hierarchical models 
of psychopathology, such as HiTOP, which parse pheno-
typic variation into homogeneous components at vary-
ing levels of granularity and specificity are a particularly 
powerful approach to linking with genetics [239, 291]. 
Accounting for phenotypic heterogeneity through latent 
subtyping using hybrid models also has the potential to 
confer increased statistical power [105, 106]. Further-
more, combining measures of a construct across modali-
ties removes confounding method variance [92, 219]. 
Obtaining information from multiple informants also 
controls for informant bias, whilst discrepancies between 
informant reports provides additional sources of infor-
mation relevant to developmental psychopathology that 
can be the subject of further analysis [176, 176, 177, 177]. 
The MAGNET study leverages all of these approaches in 
combination, which not only improves power, but also 
increases consistency and efficiency and reduces bias in 
statistical estimation [238, 255]. Moreover, the MAGNET 
Project’s representative sample and measures are impor-
tant prerequisites for robust clustering methods to avoid 
model overfitting and poor reproducibility [43, 223].

Dimension reduction strategies, such as exploratory 
factor analysis and exploratory structural equation mod-
elling [15, 71, 182], or multidimensional item response 
theory [224], will be used on each participant’s raw scores 
to first identify their factor or scale score estimates repre-
senting their standing on these latent dimensions. Unbi-
ased feature selection and optimising latent model fit in 
this step, prior to later clustering analyses, can reduce 
the interference of variance from extraneous noise. It is 
also acknowledged that there may be clustering and nest-
ing within the data based on sampling (e.g. participants 
from the same family) and testing (e.g. testing sessions, 
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assessors) procedures [57, 187]. Subsequent analyses will 
account for these effects, though the choice of correction 
method will depend on the characteristics of our final 
dataset.

Factor mixture modelling is one possible supervised 
clustering method that we will employ for our subtyping 
analyses. Factor mixture modelling can uncover homo-
geneous clusters within continuous and categorical data 
embedded within dimensional models of psychopathol-
ogy by utilising probabilistic modelling techniques [37, 
179, 189]. The flexibility of factor mixture modelling 
permits the testing and comparison of multiple models 
with varying numbers of a priori specified clusters. Alter-
natively, unsupervised machine learning techniques may 
be better suited for addressing specific research ques-
tions related to uncovering underlying structures in the 
data, and identifying clusters in a "bottom up" way. For 
example, HiTOP approaches to taxonomy make few 
assumptions regarding symptom-level data, and instead 
take the structure or shape of the subtypes from the data 
itself [133]. Community detection is one possible unsu-
pervised approach, which combines graph theoretic 
analyses to detect homogeneous communities/clusters 
(i.e., highly connected sets of nodes). By ensuring that the 
algorithm achieves a connected graph, our analyses will 
parsimoniously account for all participants. These super-
vised, unsupervised, and hybrid approaches will help to 
empirically unify the theoretical grounding of MAG-
NET’s research questions with the power of cutting-edge 
data-driven analysis techniques to address heterogene-
ity. Moreover, these techniques are diagnosis-naïve, thus 
allowing MAGNET to fully embrace the transdiagnostic 
features of our biobehavioural subtypes. Finally, although 
MAGNET aims towards data-driven clusters using 
symptom and behavioural data, the potential utility of 
incorporating neurocognitive or genetic components in 
defining clusters will not be overlooked [58, 99].

Discussion
The MAGNET Project has completed initial piloting 
of the study protocol and entered into an open recruit-
ment phase. It is the first large-scale study using a family 
design to take a truly transdiagnostic approach to ASD 
and ADHD that aligns with the principles of the RDoC 
matrix and HiTOP model of psychopathology.

Challenges in study design, recruitment, and data quality
Study design
A significant amount of time is required in the con-
ceptualisation of an assessment battery that is appro-
priate for the large range of cognitive abilities and 
ages, while adequately capturing dimensional ASD 
and ADHD traits. As a number of the measures 

included in the protocol were not initially intended for 
use across broad age ranges or levels of cognitive abil-
ity, it is important to allow for extra time during pilot-
ing to determine the minimum age and cognitive level 
for tasks with novel applications. Although such an 
approach required more time initially, it will translate 
into a high-quality dataset upon project completion.

One of the measures used to confirm an ASD diag-
nosis, the ADOS-2, was chosen as it is internation-
ally recognised as part of gold standard assessment. 
Uniquely, all children who participate in the MAGNET 
Project complete an ADOS-2. The ADOS-2 research 
training dictates coding of observed behaviours with 
no clinical interpretation to ensure research-reliable 
coding. Differentiating the social difficulties of chil-
dren with ADHD on the ADOS-2 can be challenging, 
which has also been previously noted by Grzadzinski 
et  al. [127]. ADOS data from children with ASD and 
ADHD also has the potential to improve clinical phe-
notyping across the ASD-ADHD spectra. Analysis of 
individual ADOS items may elucidate which items are 
more sensitive to ASD and which items are driven by 
ADHD presentations. Clinical cases are reviewed using 
all measures, including the ADOS-2 and the DAWBA, 
by the team’s paediatrician and psychologist to deter-
mine a best clinical estimate (see Additional file 2). The 
best clinical estimate process has been imperative in 
confirming diagnostic status.

Recruitment
The inclusion of children with ID will facilitate a sample 
that is largely representative of our target population, 
specifically within ASD. However, recruitment uptake for 
families of children with ID has been slow. These fami-
lies often have children with high treatment needs which 
can be time consuming, in turn reducing the likelihood 
of these parents enrolling in a time-intensive research 
protocol. An alternative targeted recruitment strategy for 
these families will be needed moving forward, including 
direct communication with specialist school settings to 
engage teaching staff in the recruitment process for their 
learning community. Partnering with community grant 
funds and the Australian National Disability Insurance 
Scheme (NDIS) are further strategies the MAGNET team 
intends to utilise for recruitment of these children.

As ASD and ADHD are highly heritable, with evi-
dence for shared genetic liability in families, this inher-
ently limits the number of possible unaffected siblings. 
A large number of families with children with ASD and/
or ADHD will therefore be required to achieve sufficient 
numbers of unaffected siblings for high powered statisti-
cal analysis.
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Data quality
A number of the large-scale biobanking projects and 
multi-site studies can experience significant missing-
ness in their data. Protecting against missing data has 
been a key priority in the MAGNET Project protocol 
development. Initial piloting highlighted that ensur-
ing parents completed all online questionnaires before 
attending the in-person research visits reduced missing 
data, and increased attendance rates to research vis-
its. Comprehensive data collection at the initial point 
of contact with families will also allow us to determine 
if attrition and resulting missingness is attributed to 
characteristics of the family or child, thus allowing us 
to model the missingness and avoid bias in our results. 
With the oversight from the project’s supervising psy-
chologist, families are provided with a results summary 
after participating, including outcomes from cognitive 
assessments, language assessments (where applicable), 
ASD and ADHD symptom scales, and ADOS-2 ratings. 
To increase retention rates between the first and sec-
ond research visit for each family, the neurocognitive 
tasks are completed in the first research visit and the 
cognitive assessment and ADOS-2 are completed in the 
second. Importantly, other measures used in the best 
clinical estimate review, such as the DAWBA, are com-
pleted prior to participants first research visit. Saliva 
collection from all members of the family pedigree has 
also been challenging, especially from fathers. Cur-
rently we have noted that mothers will primarily bring 
children to their research visits. Good follow-up and 
regular contact with the family is imperative in ensur-
ing the least amount of missing genetic data. Minimal 
manual handling of data with automatic backups of all 
clinical, neurocognitive, and oculomotor data reduces 
the risk of missing data through technical or human 
error. Sophisticated analysis strategies to manage miss-
ingness will be utilised by the MAGNET Project that 
accommodates some missing data under assumptions 
of Missing Completely At Random, or Missing At Ran-
dom, such as multiple imputation, auxiliary variables, 
and expectations-maximisation algorithm [93, 123].

The diversity of clinical specialists on the MAGNET 
Project team, including psychologists, cognitive neurosci-
entists, paediatricians, psychiatrists, and speech patholo-
gists, is relatively unique. When research teams are large, 
this increases potential variability in administration of 
assessments, and thus variability in data quality. The 
MAGNET Project team undergo regular and ongoing staff 
training and clinical supervision from the project’s super-
vising psychologist. As a result, all members are consist-
ently building skills to maximise participant engagement 
and data-capture across all tasks and assessments.

Limitations
It is possible that the MAGNET Project’s sampling 
strategy will not achieve a true community sample 
upon completion. However, a variety of recruitment 
avenues and methods will be utilised to achieve a sam-
ple with breadth in symptomatology and phenotype. 
The project will provide insight into ASD and ADHD’s 
place within a hierarchical taxonomy of psychopathol-
ogy and neurodevelopment. Although the study pri-
marily targets traits central to these disorders, the full 
breadth of neurodevelopmental difficulties and com-
mon comorbidities (e.g. anxiety) are not captured with 
the same degree of granularity. The MAGNET Project 
will therefore provide one piece of the much larger 
puzzle in the quest for understanding neurodevelop-
ment in a hierarchical framework. The broad range 
of cognitive abilities captured by the project, which 
allows a more representative sample, also means a 
proportion of children with more severe ID may not 
be able to complete all neurocognitive and/or imaging 
protocols. Nevertheless, our minimum dataset proto-
col is designed to provide minimal missing data across 
key tasks.

Conclusion
Clinical heterogeneity and unitary conceptualisations 
of ASD and ADHD have hampered attempts to under-
stand the structure of developmental psychopathol-
ogy and associated neuropsychology, neurobiology 
and genetics. Current attempts to uncover the genetic 
aetiology of ASD/ADHD are limited with respect 
to one or more of the following: (1) recruitment is 
restricted to diagnostic categories that ignore the 
dimensional organisation of psychopathology symp-
toms, comorbidity, and within-group heterogeneity 
[163]; (2) minimal phenotyping in large samples; or 
(3) deep phenotyping in smaller samples [239]. Using 
deep phenotyping, dimension reduction techniques, 
factor mixture modelling, and machine learning tech-
niques, the MAGNET Project aims to identify unique, 
homogeneous ASD-ADHD clusters of individuals 
with similar behavioural, neurocognitive, neuroimag-
ing and, potentially, genetic profiles. The MAGNET 
Project will be one of the first studies to combine a 
dimensional conceptualisation of developmental psy-
chopathology, in combination with deep phenotyp-
ing in a large sample to investigate the behavioural, 
neurocognitive, neuroimaging and genetic markers 
in ASD and ADHD. This study is well-positioned to 
uncover novel, homogeneous data-driven clusters 
with potential implications for ASD and ADHD diag-
nosis and treatment.
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