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Mitochondria are cellular organelles involved in several biological processes, especially

in energy production. Several studies have found a relationship between mitochondrial

dysfunction andmood disorders, such as major depressive disorder and bipolar disorder.

Impairments in energy production are found in these disorders together with higher

levels of oxidative stress. Recently, many agents capable of enhancing antioxidant

defenses or mitochondrial functioning have been studied for the treatment of mood

disorders as adjuvant therapy to current pharmacological treatments. A better knowledge

of mitochondrial physiology and pathophysiology might allow the identification of new

therapeutic targets and the development and study of novel effective therapies to

treat these specific mitochondrial impairments. This could be especially beneficial for

treatment-resistant patients. In this article, we provide a focused narrative review of the

currently available evidence supporting the involvement of mitochondrial dysfunction

in mood disorders, the effects of current therapies on mitochondrial functions, and

novel targeted therapies acting on mitochondrial pathways that might be useful for the

treatment of mood disorders.
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INTRODUCTION

Mitochondria are cellular organelles known to be involved in
diverse biological processes, such as adenosine triphosphate
(ATP) production, metabolism of reactive oxygen species (ROS),
calcium (Ca2+) homeostasis, cell death and survival (1), as well
as in synaptic plasticity. Mitochondria are abundant in neuronal
dendrites and synaptic terminals. In the brain, which uses high
amounts of ATP and does not have the ability to store it (2),
their activity is crucial for the modulation of neuronal activity,
short- and long-term neuronal plasticity, cellular resilience, and
behavioral adaptations, mainly through actions on long-term
potentiation (3–6). Moreover, several lines of evidence suggest
roles for mitochondria in supporting the different bioenergetic
requirements of highly proliferative neural stem cells and
postmitotic neurons (7). In this respect, the adaptation of the
energy supply to the energy demand and mitochondrial health
is central to cellular homeostasis, and appropriate neuronal
function (8–10).

Mitochondrial dysfunction is considered a multifactorial
phenomenon since it may have multiple causes and affects
numerous neurobiological processes, altering synapsis and
enhancing apoptosis, which could play a role in the potentially
progressive long-term course of some psychiatric disorders (1).
Several studies have focused on the presence of impaired energy
metabolism in patients with mood disorders, which indicates
that mitochondrial dysfunction may play an important role
in various aspects of these conditions (2). In summary, the
“mitochondrial hypothesis” suggests that mood disorders are
triggered, in part, by mitochondrial dysfunction, which can
be intimately linked to a wide range of processes associated
with treatment outcomes, disease progression, and severity (11,
12). Moreover, mitochondrial dysfunction could pre-dispose
vulnerable individuals to these disorders and lastly, be an
important target for current and novel potential therapies for
mood disorders (2).

Every cell depends on energy production from mitochondria,
with much higher demand in neurons, especially in gray matter,
which has a high number of synapses and mitochondria (13–15).
Besides energy production, mitochondria are sources of cellular
growth substrates and play crucial roles in oxidative/nitrosative
stress, cell resilience, and death pathways (3, 16, 17).

Mitochondria are the only organelles in the cell that contain
their own DNA, called mitochondrial DNA (mtDNA), which
contains 37 genes that encode 13 proteins, 22 tRNA, and 2
rRNAs. These genes encode 13 protein subunits of the electron
transport chain (ETC). Genes from nuclear DNA (nDNA) code
the rest of the mitochondrial proteins (15) and play a role in
the regulation of mitochondrial function. In contrast to nDNA,
mtDNA is vulnerable to DNA damage due to constant exposure
to reactive oxygen species (ROS) and at times insufficient DNA
repair mechanisms (18). Moreover, a number of proteomic
studies have been conducted to decipher the mitochondrial
proteome. Several mitochondrial databases that list the number
of mitochondrial proteins are available nowadays (19).

Mitochondria contain two membranes, an outer and an
inner membrane, an intermembrane space, and an intracellular

matrix. The intracellular matrix contains several enzymes,
which participate in the tricarboxylic acid (TCA) cycle and are
responsible for the generation of NADH and FADH2 (20). These
redox cofactors are required for the generation of ATP through
oxidative phosphorylation via the ETC, present within the folds
on the inner mitochondrial membrane or cristae, as explained in
Figure 1 (21–23).

Given their diverse roles, mitochondria possess several
mechanisms to maintain a healthy and functional mitochondrial
pool (29), such as neutralizing ROS by antioxidant defenses,
the unfolded protein response (UPR), mitochondrial dynamics,
biogenesis, and mitophagy (30).

Apart from their involvement in cellular energy production,
mitochondria also play an important role in regulating the
process of apoptosis through both intrinsic and extrinsic
pathways (31). In normal conditions, apoptosis removes those
neurons and glia that are functionally compromised or unable to
make neuronal connections (15). In the intrinsic mitochondrial-
mediated pathway, stimuli such as high levels of intracellular
cytoplasmic Ca2+ or ROS, as well as the activation of
proapoptotic proteins (i.e., Bcl-2 family members) in the outer
mitochondrial membrane (32), trigger a cascade of processes
that activate caspases. This results in cleavage of several proteins,
DNA fragmentation and cell death (33, 34). In the extrinsic
pathway, activation of extracellular death receptors enhances
processes that alter membrane permeability, resulting in leakage
of proapoptotic factors and apoptosis (34).

Ca2+ homeostasis is another key process in which
mitochondria are involved, with Ca2+ a principal secondary
messenger that is involved in the regulation of neurotransmission
and neuroplasticity in the brain (15). The mitochondrial outer
membrane is permeable to Ca2+, and the inner membrane
contains Ca2+ uniporters for its inward movement, and
Na+/Ca2+ and Ca2+/H+ antiporters for its outward movement
(35). Moreover, mitochondria form highly specialized signaling
hubs with the ER through the mitochondria-associated
membranes (MAMs), allowing the regulation of lipid
synthesis and rapid transmission of Ca2+ signals between
these organelles (36).

Mitochondrial Ca2+ concentrations increase when cytosolic
Ca2+ levels are high and in case of high-energy demand, and
decrease when cytosolic levels are low, or the ATP/ADP ratio is
high. Ca2+ can modulate oxidative phosphorylation machinery
by different mechanisms, including direct binding, enhancing
post-transcriptional modification, and also by the activity of
a Ca2+-dependent binding protein. It also binds to complex
IV and reduces ATP inhibition of this enzyme, enhancing
ATP production even in situations of high ATP concentrations
(24). ATP synthesis is also enhanced by stimulation of
the aspartate-glutamate carriers (AGCs) and the ATP-Mg/Pi
(i.e., Ca2+-binding mitochondrial carrier protein, SCaMC-3)
transporters on the inner mitochondrial membrane. Ca2+ also
leads to increased NADH synthesis and higher production of
pyruvate (15).

However, when Ca2+ levels are excessive in the intracellular
space or mitochondria they induce stress and excitotoxicity,
ATP production is reduced (37, 38), and Ca2+ is extruded
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FIGURE 1 | Mitochondria at normal physiological conditions. Dashed lines represent electron transport in the electron transport chain reaction (ETC). The ETC is

localized within the inner mitochondrial membrane or cristae of the mitochondria (21–23) and is composed of five multimeric protein complexes (I-IV and

ATP-synthase or complex V) that are responsible for ATP production by oxidative phosphorylation. Complex I, or nicotinamide adenine dinucleotide (NAD+), and/or

complex II (succinate dehydrogenase), begin the process of oxidative phosphorylation by catalyzing the transfer of electrons from NADH and FADH2, respectively, to

coenzyme Q (or ubiquinone). The transfer of electrons is serially conducted through complex III (ubiquinol: cytochrome c oxidoreductase), cytochrome c and complex

IV (cytochrome c oxidase), to the terminal acceptor, generating an electrochemical proton gradient that enhances ATP production in complex V via oxidative

phosphorylation (1, 24, 25). During this process, single-electrons can escape and produce a single-electron reduction of O2, forming superoxides and other ROS

(24, 26, 27). Impaired functioning of ETC can result in excessive ROS production, which leads to the damage of DNA, lipids, proteins, and other molecules in a process

known as oxidative damage (1, 24, 27). The generation of ROS is also related to signaling physiological processes, such as synaptic plasticity and memory (28). C,

complex; Cyt c, cytocrome c; e-, electron; ECT, electron transport chain; FAD, flavin adenine dinucleotide; Q, coenzyme Q; NAD, nicotinamide adenine dinucleotide.

through the Na+/Ca2+exchanger and the mitochondrial
permeability transition pore (mPTP). Impairment in the
control of mitochondrial membrane permeabilization, by
mPTP, has been suggested to be responsible for the mitophagy
of depolarized mitochondria, induction of apoptosis, and
necrosis (15). Ca2+ homeostasis is regulated by different
proteins, enzymes, and cellular signaling networks, which
may be risk pathways for mood disorders when they are
altered (15).

The maintenance of a healthy mitochondrial pool is critically
regulated by the dynamics and turnover of the mitochondrial
population (29). At the organelle level, mitochondrial quality
is sustained through the synthesis of new mitochondria, fusion
and fission, and the elimination of damaged mitochondria (30,
39). The balance between fusion and fission events shapes
mitochondrial networks to meet metabolic demands (40, 41).

A considerable amount of literature has demonstrated that
neuronal activity regulates mitochondria and synapses (42, 43).
Neurons depend on oxidative metabolism to meet their high-
energy needs (10). Thus, to match the actual local needs
in neurons, mitochondria constantly move along microtubes
networks, changing mitochondrial trafficking, distribution,
anchoring, and membrane dynamics (44).

Mitochondria also regulate synaptic plasticity by transducing
some of the effects of glutamate and BDNF. BDNF expression
and signaling are promoted by some environmental factors, such
as physical activity and cognitive stimulation (2, 45). On the other
hand, studies have shown that BDNF enhances ATP synthesis
and mitochondrial respiration through several mechanisms,
including increases in glucose transport, upregulation of the
mitochondrial biogenesis, and respiratory coupling efficiency
(46, 47). Moreover, ATP is necessary for the mobilization of
synaptic vesicles to the active sites of synapse in neurons. The
ATPase complex, by producing cAMP, activates PKA kinase,
which allows the mobilization of synaptic vesicles (48). When
ATP production is reduced, as in mood disorders, neuronal
transmission is consequently impaired (15, 49, 50).

Mitochondria also play a critical role in the neurogenesis,
the process of neural stem cell proliferation and differentiation
into new neurons. Numerous studies have shown that the
mitochondrial genome and mitochondrial proteins are required
for neuronal differentiation (51–53). Moreover, accumulating
evidence has indicated that the development of a mature
mitochondrial network in terms of mitochondrial function and
structure is necessary during the differentiation of induced
pluripotent stem cells (iPSCs) (54–56).
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The aim of this article is to provide a focused narrative
review of the currently available evidence supporting (1) the
involvement of mitochondrial dysfunction in mood disorders,
(2) the effects of current therapies on mitochondria, and (3)
novel targeted therapies acting on mitochondrial pathways that
might be useful for the treatment of mood disorders. To this
end, a literature search was conducted to identify relevant
original research articles, reviews including systematic reviews
and meta-analyses containing evidence regarding the role of
mitochondria in mood disorders, from MEDLINE, SCOPUS,
EMBASE, ClinicalTrials, ISI Web of Science and Google Scholar.
Based on these reports, we provide a critical overview of the
current state of the role of mitochondria in mood disorders,
ranging from physiology to pathophysiology, and therapeutic
strategies, as well as perspectives on future directions.

Take-Home Message
Mitochondria are cellular organelles involved in a number
of biological processes, with a key role in maintaining
neuronal homeostasis. They are involved in energy production,
metabolism of ROS, calcium homeostasis, apoptosis, synaptic
plasticity and neurogenesis, modulating neuronal activity and
preventing neuronal damage. In mood disorders, mitochondrial
dysfunction leads to the impairment in cellular homeostasis with
dysregulation in these mechanisms.

OVERVIEW AND DISCUSSION

Mitochondrial Dysfunction in Mood
Disorders
As mentioned above, mitochondria are the main source for
cellular energy but are also responsible for other processes
that are crucial for cell functioning and survival, such as
apoptosis and Ca2+ homeostasis (57). Impaired mitochondrial
functioning may result from a number of causes, including
altered expression of mitochondria-related genes, changes
in the regulation of mitochondrial biogenesis, mitochondrial
structural abnormalities, changes in oxidative phosphorylation
and variations in metabolite levels (57). The above-discussed
functions make mitochondria indispensable in several network
processes, as well as they are associated with aging and a plethora
of pathological conditions, such as Alzheimer’s, Parkinson’s,
and Huntington’s disease, amyotrophic lateral sclerosis,
and psychiatric diseases (6, 8, 57–60). The hypothesis that
mitochondrial dysfunction is associated with these conditions is
supported by reports that have associated mitochondrial diseases
with psychiatric symptoms, especially mood and cognition
(1, 61, 62).

Mitochondrial Bioenergetics and Redox in
Mood Disorders
The brain is an organ with the highest energy consumption,
unique membrane lipid composition, and depends on
mitochondrial oxidative phosphorylation, being unable to store
glycogen. Since brain mitochondria produce high quantities
of ATP but also ROS and RNS, this organ is vulnerable to

oxidative damage, which occurs when the oxidative load exceeds
antioxidant capacity (2).

Metabolic Changes
A number of studies using neuroimaging and post-mortem
brain tissue from patients with BD have shown lower numbers
of neuronal and glial cells and lower brain volume in
prefrontal and limbic brain regions. Growing evidence suggests
mitochondrial dysfunction is implicated in these changes
through a reduction in oxidative bioenergetic generation and
a shift to anaerobic glycolysis and consequently impaired
neuroplasticity, phospholipid metabolism and Ca2+ homeostasis
(15, 24). In addition, alterations in various regions of the brain
in neurometabolites, including high-energy compounds, have
been found in patients with mood disorders. In summary, it
has been described that patients with mood disorders have
lower levels of phosphocreatine (PCr), N-acetyl-aspartate (NAA),
adenosine diphosphate (ADP), and ATP (63, 64). In patients
with major depressive disorder (MDD), hypermetabolism
could be a consequence of depression severity (65), whereas
hypometabolism appears linked to less severe illness (66–69).

Moreover, studies have noted negative correlations between
NAA/Creatine + PCr or NAA levels and illness duration in
BD (70, 71), with an enzymatic reaction rate abnormality
present in BD in the creatine kinase (CK) system, based on the
decrease in the forward rate constant of the CK enzyme without
alterations on ATP and PCr levels, as well as by downregulation
of CK in post-mortem brains of BD patients (72, 73). This
hypothesis is consistent with a previous study that showed that
individuals with BD couldmaintain average brain concentrations
of high-energy compounds at rest, but there is an underlying
abnormality in the mechanism that generates new ATP, which
can be uncovered when energy demand is increased (72). Apart
from this, studies showing increased lactate and taurine levels
and a reduced brain intracellular pH suggest that there is a
shift from oxidative phosphorylation to glycolysis as a major
source of energy generation in BD (74, 75). Elevated lactate
is present, especially in manic phases, in the frontal cortex,
caudate, cingulate, and anterior cingulate cortex, which could
mean either an overall increase in ATP demand, or defective
oxidative metabolism (76).

Mitochondrial Changes in the Electron Transport

Chain
By drawing on the hypothesis of mitochondrial impairment on
mood disorders, several studies in post-mortem brain, skeletal
muscle or blood from patients with mood disorders have shown
changes in the enzymatic activities linked to the TCA cycle
and ETC, as well as impairment in mitochondrial oxygen
consumption. Studies in post-mortem samples of patients with
BD and MDD have shown that many mitochondria-related
genes are downregulated compared with controls (77). For
instance, some studies reported decreased expression of some
of the complex I subunits in the cerebellum in bipolar and
depressed patients compared with controls (57, 78–81). Not only
is decreased expression present, but decreased activity is also
reported in MDD and BD patients. A recent study confirmed
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previous findings showing that the citrate synthase (CS), complex
II, and complex IV activities were decreased, while the complex
I activity and complex I/citrate synthase ratio were significantly
increased in blood platelets of BD patients during a depressive
episode. Supporting these findings, Valvassori et al. (82) in
isolated mitochondria from peripheral blood mononuclear cells
(PBMCs) showed a decrease only in complex II activity in bipolar
depressed patients. In contrast, in MDD patients, physiological
respiration, the maximal capacity of the electron transport
system, and respiratory rate after complex I inhibition are
decreased, as well as activity of complex II and CS (83). However,
there are studies on mitochondria isolated from PBMCs and
blood platelet showing no significant differences in ETC activity
in MDD and BD patients (84–87).

Oxidative Damage
Based on the premise that mitochondria are the primary
source of ROS, replicated studies documented alterations in
multiple aspects of oxidative stress, including an increase in the
production of ROS and a reduction of the antioxidant capacity, in
MDD and BD patients. Compared to healthy controls, depressed
patients show an increase in oxidative stress markers involved in
lipid peroxidation (88–90) and a decrease in antioxidant markers
(91), as well as lower brain ATP levels (92). Patients with BD have
increased lipid peroxidation products in the cingulate cortex (93),
and also increased markers of oxidative and nitrosative damage
in the prefrontal cortex (1, 94, 95). A meta-analysis that assessed
eight oxidative stress markers in patients with BD, including
971 patients with BD and 886 controls, reported an increase
of markers of lipid peroxidation, DNA/RNA damage and nitric
oxide in the group with BD (96).

Since oxidative damage is the result of the balance between
oxidative products and the antioxidant defense, some studies
in mood disorders have investigated this system, including
superoxide dismutase (SOD), catalase, glutathione S-transferase
(GST), and glutathione peroxidase (GPx) (34, 97). Animal studies
have shown that chronic stress is associated with lower brain
concentrations of GSH, SOD and catalase (98–100). Studies
in post-mortem brains of patients with BD have shown lower
expression of SOD, microsomal GST, and GPx in frontal areas
and lower expression of GPx in the hippocampus (101–103), and
reduced activity of SOD and catalase in these patients (104, 105).

However, in some studies SOD activity appears increased in
BD during the manic and depressive episodes (104, 106–108),
whereas there are studies showing decreased SOD levels in manic
patients (1, 109). Savas et al. (106) found increased SOD levels in
euthymic bipolar patients (106), whereas others found decreased
activity in the euthymic phase (104, 107). A study reported
increased activity of GPx in euthymic bipolar patients (107) but
not in depressed or manic patients, whereas another showed
increased GPx levels in depressed bipolar patients compared
to healthy controls (110). Other studies did not find any
differences in GPx activity compared to a control group or across
different mood states (95, 104). The same uncertain pattern is
observed regarding catalase activity. Studies in chronic patients
have shown decreased or unaltered catalase activity (105, 107).
Contrary to these reports, BD depression at baseline presented

a significant increase in catalase levels, with a lower SOD/CAT
ratio (110), which was confirmed by previous findings (108). This
may be explained by a compensatory mechanism in the early
phases of BD, or heterogeneity in other data domains. Compared
to controls, reduced GSH and glutathione S-transferase were
increased among patients with late-stage BD (95).

Calcium-Dependent Functions
When ATP production is reduced, mitochondrial and cellular
functions are impaired due to changes in mitochondrial
membrane potential, reducing mitochondrial capability for Ca2+

uptake. Studies in brains from bipolar subjects have shown
altered intracellular free Ca2+ levels in blood cells and olfactory
neurons (111, 112). Bipolar patients evidence high cellular
Ca2+ levels in all states, but especially in mania (113, 114),
and also changes in the expression of genes involved in Ca2+

signaling, neuroactive ligand-receptor interaction, and protein
kinase PKA/PKC signaling pathways. Moreover, the authors also
found changes in the action potential system (115). Indeed, excess
Ca2+ affects both neuronal excitability and signaling cascades
regulating gene expression, leading to perturbation of multiple
neuronal processes, such as dendrite development, synaptic
plasticity, and excitatory/inhibitory balance (116).

Calcium/Calmodulin Dependent Protein Kinase Kinase 2
(CaMKK2), is the core component of the Ca2+-calmodulin
(Ca2+-CaM) dependent signaling pathway in neurons (117).
Through activation of AMP-activated protein kinase (AMPK)
and the master mitochondrial regulator, PGC1α, tightly linked
to the circadian clock (118), CaMKK2 regulates mitochondrial
function and whole-body energy balance. Bipolar disorder is
associated withmutations that affect the function or experssion of
CaMKK2 (119). Decreased CaMKK2 function leads to decreased
BDNF expression, a known biomarker of BD. Lastly, the activity
of CAMKK2 is regulated at least in part by the multi-site
phosphorylation of the catalytic domain termed the S3-node in
a switchable bidirectional manner, a phenomenon critical for
understanding the biphasic nature of the disorder (120, 121).

Studies have also reported that DISC1, a protein involved in
mitochondrial dynamics and a putative risk factor for BD and
MDD (122), interacts with the IP3R1 modulating endoplasmic
reticulum-mitochondria Ca2+ transfer (123). One study by
Dwivedi et al. (124) showed an increase in IP3R1 binding sites
and protein levels in platelets of depressed patients. Moreover,
Scaini et al. (125) found that BD patients had higher levels
of VDAC and TSPO, suggesting that these could deregulate
mitochondrial Ca2+ signaling and increase ROS production.

Mitochondrial Morphology
Other findings that support the hypothesis about the association
between mitochondrial dysfunction and mood disorders are
changes in mitochondrial morphology, distribution, and
degradation. A study undertaken by Cataldo et al. (126) showed
that prefrontal neurons from post-mortem brain samples
obtained from patients with BD and peripheral cells from
patients with BD contain a larger number of smaller-sized
mitochondria. The same authors showed an abnormal pattern of
clumping and marginalization in the intracellular distribution
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of mitochondria in peripheral cells, as well as atypically shaped
mitochondria (ring- or cup-shaped mitochondrial profiles),
suggesting subtle changes in the critical network architecture
of mitochondria in the cells (127). Moreover, Mertens et al.
(115) showed that iPSC-derived hippocampal dentate gyrus-like
neurons of patients with BD had smaller mitochondria than
those from healthy controls. As previously described, the balance
of fusion and fission modifies the overall morphology of the
mitochondrial network (40, 127). Thus, the alterations in these
processes observed by downregulation of the mitochondrial
fusion-related proteins Mfn-2 and Opa-1 and an upregulation
of the fission protein Fis-1 in PBMCs from BD patients (128)
might explain the abnormal mitochondrial morphology and
distribution findings in patients with BD.

Mitochondrial Degradation and Apoptosis
By drawing on the concept of mitochondrial quality control,
Scaini et al. (125) have been able to show that BD patients
presented a downregulation of mitophagy-related proteins,
Parkin, p62/SQSTM1 and LC3A in PBMCs, followed by
NLRP3-inflammasome activation. In summary, the imbalance in
mitochondrial fission and fusion toward fission, followed by a
decrease in the levels ofmitophagy proteins and an increase in the
caspase-3 protein levels (125, 128) could suggest that the number
of damaged mitochondria exceeds the capacity of mitophagy,
and apoptosis becomes the dominant pathway to minimize tissue
damage in BD (129, 130). Indeed, evidence has shown that
apoptotic genes, such as FAS, BAK and APAF-1 are upregulated
in the hippocampus of patients with BD (103). Moreover, Bcl-
2, an antiapoptotic protein, is downregulated in BD patients
due to different polymorphisms, resulting in Ca2+ homeostasis
dysregulation and increased glutamate levels. This is added to the
endoplasmic reticulum (ER) stress response seen in all states of
BD, mainly in mania (34, 129). Chronic mild stress was shown to
reduce the expression of BAG-1, a gene that enhances the anti-
apoptotic effects of Bcl-2. This causes the activation of caspases,
BCL-2-associated X protein (BAX), and BCL-2 antagonist/killer
(BAK) in the mitochondria, which leads to the alteration of
membrane permeability and neuronal death (15).

PI3K and Akt are other proteins related to cell survival
and proliferation. Their transcription is upregulated in mania,
and this pathway is activated by oxidative stress and IL-6, and
regulated by AMPK, suggesting that this pathway is active in
bipolar mania (103). Akt promotes mitochondrial survival via
different routes, such as inhibiting cytochrome c release into
the cytosol, which is the final act of mitochondrial apoptosis
(131). It also activates the ETC and promotes a shift to glycolytic
energy generation in BD. PI3K activates mTOR, which stimulates
oxidative phosphorylation (76). Moreover, GSK-3α and GSK-3β
are activated in an environment of chronic oxidative stress, such
as in BD, with greater activation in mania than in depression.
Their inactivation has been correlated with measured clinical
improvement (76).

GSK-3 promotes cellular apoptosis by the activation of
Fas receptor, also promoted by TNF-α, but which also has a
role in neuroprotection. In mania, TNF-α activates GSK-3 to
promote neuronal survival, since GSK-3 upregulates NFκβ, and

this inhibits TNF-α mediated apoptosis, may inhibit oxidative
phosphorylation and promote aerobic glycolysis. TNF-α inhibits
mitochondrial biogenesis, which is prevented when SIRT-1
activity is increased (76). Increased levels of NFκβ and SIRT-
1 have been found in mania compared to bipolar depression
and healthy controls (76). SIRT-1 levels are lower in bipolar
depression than in euthymia, and TNF-α levels may be lower
in depression than in mania (76). A dysregulated NFκβ system
plus genetically influenced anti-apoptotic elements might enable
the increased mitochondrial function in mania and the cyclical
nature of BD (132). A recent study found an association between
the downregulation of 20 genes related to the apoptosis pathway,
TNF-α, TLR, and NFκβ signaling pathways and major depressive
disorder (76). Moreover, NFkβ causes an increase in cytoplasmic
CREB levels in BD patients, which is of interest as the activity
of BDNF against ROS is mediated via CREB transcription,
and BDNF levels are lower in mania than in depression and
lower in BD patients compared to controls (133). Studies also
demonstrated that CREB is involved in neurogenesis and is
reduced in depression (134).

Inflammatory Changes
Chronic inflammation has been found to be present in all phases
of BD (135), since it promotes a pro-inflammatory environment
with an increase in cytokine levels, such as IL-1β, IL-6, and
TNF-α, and increased nitric oxide in brain and plasma (2).
These changes are higher in bipolar depression than in unipolar
depression and highest in mania. A meta-analysis showed that
patients with major depressive disorder had higher levels of
plasma IL-6, TNF-α, and soluble interleukin-2 receptors (sIL-
2R) (2).

The aforementioned evidence on mitochondrial bioenergetics
pathophysiology in mood disorders is summarized in Figure 2,
which represents the biphasic mitochondrial model in
BD in depression (reduced mitochondrial biogenesis) and
mania (increased mitochondrial biogenesis), and the derived
biological processes in the mitochondria, including oxidative
stress, inflammation, genetic damage, increased permeability,
cytotoxicity, and apoptosis.

Other specific changes have been observed in mood disorders,
which are mentioned in the next sections.

Genetic Changes
Genetic findings also support mitochondrial dysfunction in
BD. Some studies have shown that subjects suffering from
mitochondrial diseases frequently develop psychiatric symptoms,
especially mood symptoms (134).

Increased expression of mitochondrial fission genes and
a decreased expression of mitochondrial fusion genes have
been associated with depressive behavior in mice (126, 136).
Pathological isoforms of DISC1 lead to abnormal neuronal
development and mood disorders (137). Genome-wide
association studies (GWASs) studies have identifiedmultiple loci,
with a small effect, associated with BD risk, including CACNA1C,
ANK3, ODZ4, SYNE1, and TRANK1 (34, 122, 138, 139). In
addition, Kataoka et al. (140, 141) demonstrated the potential
roles of de novo protein-altering mutations and calcium-related
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FIGURE 2 | The biphasic mitochondrial model in bipolar disorders. Left: Depression mitochondrial model—Decreased mitochondrial biogenesis. Changes during

depressive phases include mitochondrial DNA damage (including mutations and polymorphisms), membrane permeability, and increased formation of ROS. These

imbalances lead to a pro-inflammatory state, with increased levels of pro-inflammatory cytokines (IL-1, IL-6 and TNFα) and decreased antioxidant enzymes

(glutathione, SOD and catalase). These disturbances can cause cytotoxicity, increased apoptosis, and dampened synaptic plasticity and neuronal differentiation.

Antidepressant drugs have shown the capacity to restore mitochondrial disregulation by reestablishing the oxidant/antioxidant balance and counteract the negative

effects of depression on the mitochondria. Right: Mania mitochondrial model—Increased mitochondrial biogenesis. Upward arrows symbolize an increase. Changes

during manic phases include increased inflammation and elevated production of ROS and RNS, driven by increased activity of the NF-kB signaling pathway. NF-kB

signaling stimulates mitochondrial biogenesis via the upregulation of PGC-1α, Nrf-2, and TFAM. PGC-1α and Nrf-2 stimulate mitochondrial respiration, which is a

further source of oxidative stress via ROS and RNS production. Increased oxidative stress could induce an increase in the levels of cytosolic Ca2+ ions seen in mania

compared to other phases of the disease. Elevated Ca2+ levels can stimulate oxidative phosphorylation and ATP production and may lead to the activation of AMPK

and SIRT1, which may increase the activity of NAD+. In an environment of increasing oxidative stress, the activity of SIRT1, AMPK, PKC PI3/K are increased. This can

foster mitochondrial survival leading to cytotoxicity and cell death via activation of proapoptotic pathway cascades (Bcl-2, Akt and mTor among others). Increased uric

acid levels increase the uptake of Ca2+ ions by mitochondria, increase the mitochondrial membrane potential and therefore enhance ATP production. Antimanic drugs

including mood stabilizers and antipsychotics may restore mitochondrial dysregulation by counteracting the mitochondrial imbalance leading to neurogenesis,

neuroplasticity, and cell survival. ADP, adenosine diphosphate; ATP, adenosine triphosphate; BDNF, brain-derived neurotrophic factor; C, complex; Cyt c, cytochrome

c; e-, electron; ECT, electron transport chain; FAD, flavin adenine dinucleotide; IL, Interleukin; Q, coenzyme Q; mt DNA, mitochondrial DNA; mTOR, mechanistic target

of rapamycin; NAD, nicotinamide adenine dinucleotide; NF, nuclear factor; Pi, inorganic phosphate; PI3/K, Inositol 1,4,5 triphosphate; PKC, Protein Kinase C; ROS,

reactive oxygen species; RNS, reactive nitrogen species; TFAM, mitochondrial transcription factor A; TNFα, tumor necrosis factor-alpha.

genes in BD. Considering the relationship between de novo
mutations and clinical phenotypes, the same authors observed
significantly earlier disease onset among the BD probands with
de novo protein-altering mutations when compared with non-
carriers. Although no specific mutations in mtDNA have been
associated with BD (142), some mtDNA haplogroups showed
significantly lower cerebellar pH, which is also seen in the
disorder. Moreover, a rare gene variant of mtDNA, 3644T>C,
might be associated with BD, since patients showed a prevalence
of 1.43% of the gene variant whereas the prevalence was 0.13%
in healthy controls (34, 143). On the other hand, deletions of
mtDNA were more commonly found in post-mortem cerebral
cortex of patients with BD compared to controls (34, 144),
and also in a patient who suffered from depression (145–147).
However, other studies did not replicate these findings, which
may be due to different methodologies and different brain
regions studied (148).

Another study reported higher levels of circulating cell-
free mtDNA in patients with MDD compared to healthy
controls, while mtDNA content was not significantly different
(149–151). Moreover, a recent study found a higher mtDNA
copy number and a decreased DNA methylation status in the
peroxisome proliferator-activated receptor-gamma coactivator 1-
alpha (PGC1α) promoter in patients with MDD, which leads to
reduced expression of mitochondrial genes (2, 152). In contrast,
Czarny et al. (153) showed that the cellular mtDNA copy number

did not differ between healthy and depressed subjects, but it
showed a lower capacity for degradation and a higher number
of lesions compared to controls (154).

In BD, a meta-analysis for BD-mtDNA copy number studies
with a low level of heterogeneity revealed a significant lower
mtDNA copy number in patients (154). In contrast, another
meta-analysis with a higher level of heterogeneity identified
no significant differences between mtDNA copy numbers in
BD patients. A recent study showed a decrease in mtDNA
copy number and an epigenetic aging acceleration in post-
mortem hippocampus from BD patients (155). Focusing on
mood-specific states, Wang et al. (156) found that during the
depressed and manic states, patients with BD had significantly
lower mtDNA copy numbers (157), with the degree of DNA
damage associated with the severity of manic and depressive
symptoms (157).

Purinergic Dysfunction
The purinergic system appears dysregulated in patients with
depression and BD (158). In oxidative stress, the activity of
SIRT-1, AMPK, PKA, PKC, GSK, and inositol triphosphate are
increased, as well as antiapoptotic proteins, such as Bcl-2, PI3K,
mTOR, Akt, and uric acid. Their activation stimulates oxidative
phosphorylation via different routes. As the mitochondrial
function is increased, oxidative stress is higher and different
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pathways are activated in order to mitigate the cytotoxic effects
of oxidative stress without inducing apoptosis.

Uric acid levels seem to be increased in all phases of BD
but are higher in mania than depression or euthymia, which
reflects an increase in energy production (159). Increased uric
acid levels allow a greater uptake of Ca2+ ions by mitochondria,
increased mitochondrial membrane potential, and thus higher
ATP production. Lowered levels of uric acid have been described
as a risk factor for developing mood disorders. Uric acid acts as a
scavenger of peroxynitrite, which has high mitotoxic activity (2).
It has other neuroprotective effects, such as increasing AMPK
activity, which regulates the function of the CLOCK:BMAL-1
complex and upregulates the activity of SIRT-1, leading also
to adaptative responses to oxidative stress for mitochondrial
survival and functioning.

Other studies have found that cAMP and PKA are upregulated
in BD and regulate the rate of oxidative phosphorylation
through the phosphorylation of proteins and enzymes involved
in ATP synthesis, such as cytochrome c oxidase, enhancing
mitochondrial protection. Cytochrome c oxidase, the terminal
respiratory enzyme, key for ATP synthesis, is a metabolic marker
for neuronal functional activity (160), with its alterations related
to depressive symptoms. The cAMP response element-binding
protein (CREB) stimulates cAMP-dependent transcription of
ETC enzyme complexes and other proteins from mtDNA, thus
stimulating oxidative phosphorylation. The activity of CREB,
which enhances the upregulation of CK, key for neuroprotection
and energy production, is altered in BD, leading to higher or
lower levels of CK in mania and lower levels in mixed states (76).

Genetic variations in the purinergic system and in a number of
genes involved in cAMP signaling have been found in BD, which
highlights the role of cAMP/CREB on circadian clock genes and
to maintain ATP production. Higher activity of antiapoptotic
proteins, enzymes and signaling cascades has been observed in
mania, which enhances mitochondrial activity (2, 76).

Circadian Clock Genes and Oxidative
Phosphorylation
Oxidative stress can enhance changes in circadian clock systems,
although chronic oxidative stress provokes pro-survival effects.
High levels of ROS resets circadian clocks and induces a
range of prosurvival responses and different expression of clock
genes secondarily to a pro-inflammatory environment, such as
activation of cAMP/CREB signaling. Polymorphisms in clock
genes can modify cellular sensitivity to oxidative stress or
genotoxic insults. Dysregulation of systems involved in oxidative
stress and genetic changes in clock proteins could explain some
of the observations in circadian systems in BD.

PKC and inositol triphosphate play a role in the pathogenesis
of BD, being associated with and downstream of intracellular
Ca2+ levels. In mania, elevated functioning of PKC has been
found, which acts by stimulating and protecting mitochondria.
Cytosolic Ca2+ activates ATP synthesis enhancing the activity of
AMPK through different routes, such as increasing NAD+ and
the activity of SIRT-1 (2).

A number of gene variations have shown increased
susceptibility for developing more severe forms of BD. These
genes control circadian NAD+ concentrations, which increase
the activity of SIRT-1 and SIRT-3, and this stimulates oxidative
phosphorylation. NAD+ and SIRT-1 directly activate ATP
production and upregulate circadian genes, suggesting a pathway
of influence in mood disorders (2).

Hypothalamic-Pituitary-Adrenal Axis
Depression is linked to hyperactivity of the hypothalamic-
pituitary-adrenal (HPA) axis due to an impairment of the
corticosteroid receptor-mediated feedback. This leads to
increased secretion of corticotropin-releasing factor (CRF) in the
hypothalamus and causes increased levels of glucocorticoids both
in the brain and peripherally, being translated into increased
mitochondrial activity (2).

In the mitochondria, glucocorticoids form a complex with
the antiapoptotic protein Bcl-2 to inhibit the formation of
Bax-containing pores on the mitochondrial outer membrane.
They also reduce the release of Ca2+ and cytochrome
c from the mitochondria, inhibiting apoptosis (134, 161).
Nevertheless, a chronic increase in glucocorticoid levels can cause
neuronal toxicity and respiratory chain dysfunction, excessive
ROS generation, apoptosis, and cell death in skeletal muscle
cells and hippocampus (134, 162). Studies in rats treated
with lipopolysaccharide have found sex-specific alterations in
glucocorticoid receptors, which could be explained by changes in
inflammation-induced expression of genes involved in oxidative
metabolism (15, 163, 164).

Glutamate and Dopamine in Mitochondrial
Dysfunction
Glutamate
Glutamate is implicated in mood disorders. Ketamine, an
N-methyl-D-aspartate (NMDA) receptor antagonist, causes a
rapid antidepressant effect in patients with MDD (165, 166).
This effect might be due to increased BDNF expression (134,
163), modulation by 5-HT receptors, and interactions with
inflammatory processes (134, 164). Glutamate levels are higher
in brains of patients with mania than other phases of illness,
suggestive of dysfunction of the glutamatergic system. In
depression, astrocyte density is reduced and, as a consequence,
the ratio of glutamine to glutamate is not properly maintained
by the glutamate recycling pathway (134, 167). Moreover,
mitochondrial energy production is reduced in glutamatergic
neurons in patients with MDD (168). High glutamate levels and
consequently high intracellular Ca2+ levels promote apoptosis.
On the other hand, activation of glutamate receptors also
stimulates ATP production, and expression of p53, which can
produce an increase of mitochondrial respiration, production of
ROS and reduction of GSH (169).

Dopamine
Increased dopamine levels have been noted in mania. Some
studies report lower dopamine transporter (DAT) binding in
the striatum in unmedicated depressed or euthymic bipolar
patients (2). Higher dopamine transmission and impaired DAT
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function in mania could be explained by elevated oxidative
and nitrosative stress, which is higher in mania than in other
phases of illness (170). Excessive dopamine levels in mania
can also cause damage to nuclear and mtDNA by chronic
nitrosative and oxidative stress. However, this is repaired by
high dopamine and uric acid levels, which act in a synergistic
way to repair free radical-mediated damage (76). In this
environment, dopamine can protect neurons against glutamate-
induced excitotoxicity, stimulate oxidative phosphorylation, and
activate p53, which induces anti-apoptotic activity and inactivates
tyrosine hydroxylase, which is necessary for the synthesis of
dopamine. Consequently, high dopamine and glutamate levels
together with high uric acid levels may not have the expected
detrimental effects. Moreover, pro-apoptotic signals may induce
the expression of anti-apoptotic genes such as BCL-2, inhibiting
the protein Bcl-2 toxicity and apoptosis and stimulating oxidative
phosphorylation (76).

All this evidence suggests that changes in mitochondrial
function in MDD and BD could be key elements in order to
better understand the role of the currently used pharmacotherapy
and also to develop novel therapies and new treatment strategies,
which will be covered in the next section.

Take-Home Message
Mitochondrial dysfunction may result from different causes,
being some of the alterations related with several network
processes in which mitochondria are indispensable.

Some of the changes observed in mood disorders include
alterations in mitochondrial neurometabolites and metabolic
dysfunction, decreased expression and activity of the ETC
complexes, increased oxidative damage, altered calcium
homeostasis, and changes in mitochondrial morphology,
distribution, and degradation. In addition, increased

apoptosis, chronic inflammation, Increased expression
of mitochondrial fission genes and other genetic changes,
including polymorphisms in clock genes, have been observed
in mood disorders. Increased mtDNA degradation, purinergic
dysfunction, and hyperactivity of the HPA axis, with higher
glucocorticoid levels, are other findings reported in mood
disorders. Finally, increased glutamate and dopamine levels have
been reported in manic episodes. Nevertheless, current evidence
is scarce and further studies are needed to assess these changes in
mood disorders.

EFFECTS OF PHARMACOTHERAPY ON
MITOCHONDRIAL FUNCTIONS

Since mitochondrial dysfunction has been related to the
pathophysiology of mood disorders, including factors such
as increased oxidative stress, decreased ATP production,
and dysregulation of Ca2+ homeostasis (2), numerous
studies have focused on their role as possible drug targets
for pharmacological treatments (171, 172). In this regard,
conventional psychotropic drugs for mood disorders, including
mood stabilizers, antidepressants, and antipsychotics, have
demonstrated to have molecular mitochondrial properties, such
as neuroprotection, enhancement of mitochondrial function or
prevention of cellular apoptosis (173), illustrated in Table 1. In
addition, novel interventions are being studied and developed to
be used as adjunctive therapies for mood disorders, as noted in
Table 2.

Mood-Stabilizing Drugs
Mood stabilizers are considered first-line drugs in BD to either
treat mood episodes or to prevent future recurrences (214).
Although the mechanism of action of mood-stabilizing drugs is

TABLE 1 | Effects of conventional pharmacotherapy on mitochondrial functions.

Molecular mitochondrial

properties

Clinical properties

Neuronal survival Inflammation and oxidative/nitrosative

stress

Mood stabilizers

Lithium (174–177) Reduces apoptosis* Prevents excessive mitochondrial calcium

influx*

Mood-stabilizing properties in BD and

antidepressant properties in MDD

Enhanced neuroprotection and

neurotrophism

Reduces oxidative stress*

Reduced cortical atrophy in BD Antioxidant effect*

Valproic acid (178, 179) Reduces apoptosis* Reduces oxidative stress in mitochondria* Mood-stabilizing properties in BD

Antioxidant effect*

Antidepressants

(99, 180, 181)

Reduce apoptosis* Increase mitochondrial biogenesis* Antidepressant properties in BD

Enhanced neurotrophism Reduce oxidative stress (mitochondrial and

peripheral)*

Risk of manic switch

Antipsychotics (182–185) Reduce oxidative stress in brain mitochondria* Antimanic and mood-stabilizing

properties in BD

All data represents human clinical studies unless explicitly stated in table (*animal studies).

BD, bipolar disorder; MDD, major depressive disorder.
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TABLE 2 | Effects of novel therapies on mitochondrial function.

Novel therapies Molecular mitochondrial properties Clinical properties

Neuronal survival Inflammation and oxidative/nitrosative

stress

Pramipexole (186, 187) Antidepressant efficacy in

treatment-resistant BD

Nutraceuticals

N-acetylcysteine (188–190)

Reduces oxidative stress (in brain and

periphery)*

Improves depressive and reduces

manic symptoms

Omega-3 fatty acids

(191, 192)

Reduce oxidative stress Better functioning in BD

Increase antioxidants Improve depressive symptoms

Alpha-lipoic acid (193–196) Reduces apoptosis* Reduces oxidative stress* Reverses and prevents

amphetamine-induced behavioral and

neurochemical alterations*

Enhanced neuroprotection*

Acetyl-L-carnitine (194–196) Reduces apoptosis* Improvements in depressive disorders

Enhanced neuroprotection*

S-Adenosylmethionine

(197–199)

Reduces oxidative stress* Improvements if supplemented in

depressive disorders

Potential risk of manic switch in BD

(one study)

Creatine monohydrate (200) Improvements in depressive

symptoms

Potential risk of manic switch in BD

(one study)

Leucine, isoleucine, and

valine (201)

Reduction in manic severity (one

study)

L-tryptophan (202) Reduction of manic symptoms

Potential risk of depressive switch in

BD (one study)

Carnosine (203, 204) Reduces oxidative stress* Improvement of behavior, cognition,

and overall well-being

Inositol (205, 206) Improvements in depressive

symptoms in BD

Coenzyme Q10 (207) Reduces oxidative stress Improvements in depressive

symptoms and functioning in BD

Melatonin (208–210) Increases BDNF and ERK1/2* Improvements in depressive

symptoms. Scarce effects proven in

BD.

Reduces peripheral oxidative stress*

Vitamin C and E (211) Improve severity in depression

Vitamin B3 (211) Reduces oxidative stress* Enhances social behavior*

Folic acid (212) Reduces oxidative stress* Reduction in manic symptoms

Ketogenic diet (213) Reports on mood stabilization

All data represents human clinical studies unless explicitly stated in table (*animal studies).

BD, bipolar disorder; BDNF, brain-derived neurotrophic factor; ERK1/2, extracellular signal regulated kinases.

not clear, some studies suggest that mitochondrial dysfunction
and oxidative stress may be therapeutic targets of these drugs.

Some studies have reported that mood stabilizers, apart from
altering glutamatergic neurotransmission, decrease intracellular
pH, increase expression of the anti-apoptotic gene BCL-2
(by blocking the inhibition produced by histones), regulate
expression of other genes, reduce elevated intracellular Ca2+

and increase Ca2+ storage capacity in the ER, and also induce
mitochondrial migration to synaptic terminals, modulating

neurotransmission (174, 215–217). These findings in aggregate
suggest that they may reduce the symptoms of mood disorders
at least in part by augmenting mitochondrial activity (63, 214).
Lithium and valproate inhibit glutamate-induced apoptosis and
oxidative damage to lipid and protein in cerebral cortical
cells (218, 219). They also inhibit cytochrome c release from
mitochondria. This reduces oxidative stress by stabilizing the
inner transmembrane potential of mitochondria and prevents
caspase-2 and caspase-3 activation, and cell death (174). Chronic
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treatment with lithium and valproate has also been shown to
inhibit amphetamine-induced hyperactivity (24, 219). Lithium,
valproate and carbamazepine are known to reduce inositol levels
(220) and augment autophagy in cell cultures (221).

Other animal studies on the antioxidative properties of mood
stabilizers have shown that chronic treatment with valproate
or lithium is associated with increased ER stress proteins and
related proteins, such as calreticulin (222), in cortical and PC12
cells (215, 223). These proteins are involved in antioxidative
effects and mitochondrial functioning (216, 224). Moreover,
lithium and valproate have other neuroprotective functions, such
as regulation of the expression of GST isoenzymes in cerebral
cortex, which is a group of detoxification enzymes that inhibit
oxidative damage to lipid and protein in cerebral cortical cells,
and GSH levels, accelerating conjugation processes (225, 226).
However, with low levels of the rate-limiting synthesis enzyme
(glutamate-cysteine ligase) and low levels of GSH, lithium and
valproate neuroprotective effects are inhibited, which indicates
that adequate GSH levels could be important for efficacy (227,
228). Other studies have shown increased oxidative damage
to lipids in patients with BD, with higher lipid peroxidation
ameliorated after mood-stabilizer treatment, which supports the
previous findings (24, 229). Together this evidence indicates that
mood stabilizers may reduce the symptoms of BD by enhancing
mitochondrial activity (24).

Lithium
Apart from its neuroprotective functions mentioned above,
lithium ameliorates BD associated cortical atrophy andmaintains
cortical thickness (219). Regarding Ca2+ regulation, lithium
prevents excessive Ca2+ influx triggered by the N-methyl-D-
aspartate receptor. In contrast, animal studies suggest that
lithium can allow an increase of Ca2+ concentrations by
desensitizing mitochondria against Ca2+, preventing a further
response leading to apoptosis. Lithium is also correlated
with increased activity of complexes I, II and III, enhances
the expression of the scavenger glutathione transferase (184),
facilitates mitochondrial respiration, and has other antiapoptotic
properties previously mentioned (177, 230).

In rat studies lithium has been shown to inhibit inflammatory
signaling pathways related to toll-like receptor 4 (TLR4), which
may reduce phosphorylation of NFkβ, reducing inflammatory
gene expression and also levels of caspase-3, whichmight prevent
neuronal apoptosis (175, 231). Other studies have shown that the
c-Jun N-terminal kinase, which is known to mediate oxidative
toxicity, is inhibited by lithium (184, 232). Apart from enhancing
this antioxidant defense, lithium has also been reported to
increase the activity of SOD (233), of GPx, and total antioxidant
reactivity levels in the brain (234).

Lithium also inhibits GSK-3b, a phosphorylating kinase
that inhibits the conversion of pyruvate into acetyl-CoA by
pyruvate dehydrogenase and also activates BAX (235). Its
mutations have been shown to alter lithium response in BD. The
inhibition produced by lithium may enhance ATP production
and inhibit apoptosis (235, 236). Moreover, in rat models
where amphetamines were used, GSK-3b was shown to enhance

dopamine activation, leading to the hypothesis that lithium may
contribute to maintaining normal levels of dopamine (94).

GSK-3b and phosphoinositide signaling pathways regulate
BDNF, which has a complex role in mood disorders.
Nevertheless, it is thought to be a potential drug target,
since neurotrophic effects of lithium have been related to the
increase in hippocampal BDNF in the presence of a neurotoxic
insult (235, 237). Phosphoinositol is increased in patients with
BD in the central nervous system and is reduced by lithium
(184), causing lower levels of myoinositol in this group of
patients (238, 239). In contrast, few animal studies have shown
contrary effects of lithium treatment, such as the lowering of
complex II and IV activity and enhanced ROS formation (240),
with reduced antioxidant levels (241). It has also been shown to
enhance the activity of caspase-3, leading to apoptosis (242).

Valproic Acid
In rats, valproate has shown to lower amphetamine-induced
citrate synthase and to inhibit succinate dehydrogenase, thought
to be related to its mood-stabilizing effects (243). Valproate also
protects mitochondria from ouabain-induced lipid peroxidation
and superoxide formation (176, 244). It could act as a
cytoprotective agent in the presence of cytotoxic factors, but
alone could inhibit mitochondrial functions (245, 246).

Nevertheless, other studies have shown valproate lowers levels
of some cofactors, such as creatine and CoA, involved in the
uptake of long-chain fatty acids into mitochondria, which leads
to reduced beta-oxidation (214). Valproate has also been shown
to enhance ROS generation by inhibition of complex II, and to
induce mPTP opening, with a reduction of membrane potential,
leading to the release of cytochrome c and apoptosis. Valproate
inhibits ATP synthesis when pyruvate is used as a substrate (214).
In rat studies, valproate has shown to inhibit glutamate-driven
oxidative phosphorylation (247, 248). In cases of impaired ETC
structure, valproate inhibits complexes I and IV activity and SOD
levels (179).

Other Mood Stabilizers
Although there is scant evidence regarding othermood stabilizers
apart from lithium and valproate, changes found in animal
studies with carbamazepine treatment include the reduction
in mitochondrial respiration, ATP synthesis, and membrane
potential, and also the inhibition of Ca2+-induced swelling of
liver cells (241, 249, 250). Lamotrigine has been shown to
inhibit the effects of rotenone, a cytotoxic agent, and maintain
mitochondrial membrane potential, preventing mPTP opening
and increasing GSH levels (251). Its neuroprotective effects could
be due to complex I inhibition (252).

Antidepressants
In animal models of depression (214, 253), antidepressants
seem to increase mitochondrial biogenesis and enhance
antioxidative capacity against oxidative stress (139, 184).
For instance, venlafaxine increases expression of anti-
apoptotic and antioxidant mitochondrial genes (254), and
agomelatine may similarly scavenge free radicals (11, 255).
As with electroconvulsive therapy, they reduce peripheral
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inflammatory cytokines (33), which is supported by the reported
antidepressant activity of celecoxib, a cyclooxygenase 2 (COX-2)
inhibitor (256, 257). Antidepressants also increase autophagy
and neural plasticity (134, 258). Since mitochondrial dysfunction
has been linked to mental disorders (184), cytochrome c oxidase
and apoptosis inhibition have been studied as potential new
treatment approaches (259).

In patients treated with antidepressants, there is an increase
in the levels of BDNF mRNA (260) and a reversion of the
decrease in CREB levels seen in patients with depression (261),
which could be mechanisms of action in mood disorders (262).
Animal studies have also shown that some antidepressants
inhibit complex I in brain mitochondria, reducing its metabolic
function (263). A number of studies have shown that some
antidepressants, including fluvoxamine, fluoxetine, sertraline,
paroxetine, nortriptyline, and venlafaxine, alter ETC activity in
mitochondria (241, 264). The reduction of ROS production could
explain their beneficial effects (265–267).

Fluoxetine also promotes cytochrome c oxidase and glutamate
dehydrogenase activity in presynaptic mitochondria of rat
hippocampus (160, 268), and inhibits multiple other enzymes
in mitochondria (11, 181). Increased cytochrome c oxidase
activity in the female hippocampus by fluoxetine could
improve outcomes in women (269–271). Apart from altering
mitochondrial energy production, fluoxetine might affect the
mitochondrial processes via the glucocorticoid receptor (GR)
(33, 272).

Antidepressants are also involved in apoptosis, playing a
complex role that depends on cell and brain structure type.
One study reported that paroxetine, fluoxetine and clomipramine
increased levels of apoptotic markers (cytochrome c and DNA
fragments), but imipramine did not have any effect (24,
273). Desipramine induced apoptosis by activating the caspase
pathway in glioma cells (274), while fluoxetine and amitriptyline
protected PC12 cells from cell death (275). Nortriptyline
inhibited neuronal cell death, protecting isolated mitochondria
against programmed cell death, inhibiting the release of apoptotic
mitochondrial factors and caspases (276). Fluoxetine has been
shown to prevent stress-induced apoptosis in the hippocampus,
but not in the prefrontal cortex (277, 278). In summary, different
mitochondrial functions, such as ATP synthesis, generation of
ROS, and cell death, are important targets of antidepressants.

Antipsychotics
Few studies have explored mitochondrial modulation by
antipsychotics (279, 280). Olanzapine has shown to increase SOD
activity and protect PC12 cells from oxidative damage by H2O2

(20, 281), and also to prevent the decrease in membrane potential
and ROS overproduction induced by beta-amyloid peptide (282).
In two mice studies, quetiapine increased mitochondrial ETC
activity and reduced markers of oxidative stress in the prefrontal
cortex, nucleus accumbens, amygdala, and hippocampus (24,
282–284). Scaini et al. [183, 185, 186) showed a significant
decrease in all the functional parameters of mitochondrial oxygen
consumption after treatment with clozapine and olanzapine
in lymphoblastoid cell lines (LCLs) from healthy controls,
and these effects were more prominent in cells treated with

olanzapine. The same authors also demonstrated that the
treatment with clozapine and olanzapine at high doses further
decreased mRNA expression of Mfn-2 and Drp-1 in LCLs,
supporting the notion that clozapine and olanzapine can
potentiate mitochondrial dysfunction.

Novel Therapies
In the last years, a number of agents have been studied
as potential therapeutic factors aimed to treat and improve
the course of mood disorders, including factors involved
in the glutamatergic pathway, insulin transduction pathway,
melatoninergic system, purinergic system, endopeptidases, and
also mitochondrial modulators (183). A number of the latter
agents have been developed or studied with the aim of enhancing
antioxidant defenses or mitochondrial functioning as adjuvant
therapy to antidepressants (285).

Studies of Ca2+ channel blockers, such as diltiazem and
verapamil, have been conducted as potential treatments for
BD, but results in the literature are still controversial. It was
hypothesized that their therapeutic effect may be due to the
protection of neurons against the damage induced by excessive
Ca2+ levels (2).

Pramipexole, a D2/D3 agonist approved for the treatment of
Parkinson’s disease and restless legs syndrome, upregulates Bcl-
2 (286). It has also shown antidepressant efficacy in treatment-
resistant bipolar patients (287), with a superior response rate
compared to placebo and similar to SSRIs.

Some dietary supplements (or nutraceuticals) have been
assessed as potential treatments in mood disorders (186, 187),
since they may enhance mitochondrial function and brain
energy metabolism and prevent ROS-induced damage. These
include N-acetylcysteine (NAC), alpha-lipoic acid (ALA), acetyl-
L-carnitine (ALCAR), S-adenosylmethionine (SAMe), coenzyme
Q10 (CoQ10), creatinemonohydrate (CM), andmelatonin (201).

The molecular mitochondrial properties shown by novel
therapies for mood disorders are summarized in Table 2.

Nutraceuticals

N-Acetylcysteine
N-acetylcysteine (NAC) is a GSH precursor, the major
antioxidant agent in the brain (288) for preventing oxidative
damage in the mitochondrial ETC (289). By increasing GSH
levels, NACmay increase mitochondrial respiratory capacity and
have neuroprotective functions by other mechanisms (285, 290).
It can prevent oxidative damage to complex I (184), can enhance
GST activity, and act directly against oxidant radicals (290, 291).

Some studies in BD have demonstrated that treatment with
NAC can improve depressive symptoms, clinical response rates,
symptom remission, quality of life and functioning (292, 293).
Few clinical trials assessing the efficacy of NAC as adjunctive
treatment in patients with BD have shown promising results
(189, 281, 289, 294–298), with benefits in depressive symptoms
of BD patients (63, 189, 285, 289), but not as maintenance
treatment (189, 294). Post-hoc analyses suggested that NACmight
be effective in later stages of BD (289) and also to reduce manic
symptoms (281). However, there are recent negative trials, albeit
smaller and of a shorter duration (298).
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Clinical trials in depressive disorders also suggest the potential
of NAC as adjunctive treatment in depression (299, 300).
Although no differences in depressive symptoms were found
in another clinical trial comparing NAC with placebo (189,
301), the NAC group showed a better response at the 16-
week post-discontinuation endpoint. A meta-analysis including
five studies assessing depressive symptoms with a follow-up
of 12–24 weeks revealed significantly greater improvements in
depressive symptoms and functionality with NAC compared to
placebo (190).

Omega-3 Fatty Acids
Some studies have demonstrated modulatory effects of omega-3
fatty acids on mitochondria. Eicosapentaenoic acid (EPA; 20:5n-
3) is a fatty acid that seems to protect against oxidative stress by
replenishing oxidized lipids and increasing oxygen and glucose
supply to the brain (301). Diets rich in omega-3 fatty acids have
shown to upregulate cytochrome c oxidase, cytochrome b, and
ATP synthases, leading to increased ATP formation (302, 303).

In a study of rodents with methylphenidate-induced mania,
omega-3 fatty acids alone and in combination with lithium and
aripiprazole reduced levels of SOD, CAT, and lipid peroxidation
products (304). Stanley et al. (63, 305) demonstrated that
docosahexaenoic acid (DHA; 22:6n-3) changes mitochondrial
membrane phospholipid composition and mitochondrial
function, protecting mitochondria against damage (306).
A pilot study found significantly higher remission, greater
improvements in depressive symptoms, and better global
functioning in bipolar patients supplemented with omega-3 fatty
acids, while no benefits in mania were found (306). Clinical
improvements associated with omega-3 fatty acids intake are
produced at least in part by modulation of BDNF levels (192).
A study that included 10 different countries found a correlation
between lower fish or seafood consumption with a higher
prevalence of bipolar spectrum disorders (307, 308). Patients
with BD have shown lower levels of erythrocyte DHA, ALA
and EPA when compared to healthy controls (63, 309). Another
study showed a trend toward lower levels of omega-3 fatty acids
in relatives of patients with BD (191).

A systematic review of clinical trials assessing nutraceuticals
showed positive and statistically significant results on depression
in four out of nine studies (201), but none showed positive
findings in mania. However, sample sizes were small, reducing
the chance of positive results (192, 310). The previous evidence
suggests that supplementation or increased consumption of
omega-3 fatty acids may be beneficial in mood disorders, but
additional studies are necessary to define their clinical efficacy
more accurately.

Alpha-Lipoic Acid
Alpha-lipoic acid (ALA) is an antioxidant found in red meats,
spinach, yeast, and other products (201). It facilitates glucose
entrance into cells for ATP synthesis and recycling of endogenous
antioxidants, such as CoQ10, vitamins C and E, and GSH
(193). ALA has been demonstrated to reduce metabolic deficits,
oxidative stress and apoptosis (by preventing glutamate-induced
Ca2+ cellular influx) (311, 312), stimulate glucose uptake into

cells, improve cognitive function and enhance neuroprotection
(312, 313) and to stimulate mitochondrial biogenesis (195), but
studies in mood disorders are lacking (312).

Acetyl-L-Carnitine
L-carnitine (ALCAR) is a compound obtained through the
diet (314) that is biosynthesised from lysine and methionine.
It enhances the entrance of fatty acids into the mitochondria
for ROS scavenging and beta-oxidation, which leads to
ATP and acyl-coenzyme A (acyl-CoA) production (315).
Acyl-CoA enters the citric acid cycle (316, 317). Reported
functions of ALCAR include neuroprotection, anti-apoptotic
properties (315), inhibition of GABA production (316, 318),
and enhancing of mitochondrial functioning (319). Animal
studies of ALCAR show increased levels of ATP and PCr (195).
Results regarding the reduction of oxidative stress are mixed, but
coadministration with NAC or ALA has shown benefits (320).
Moreover, supplementation with ALA and ALCARmay promote
mitochondrial integrity in the hippocampus of aged rats (321).
Some early clinical trials suggest the ALCAR has significantly
greater efficacy than placebo as an augmentation treatment
depressive disorders (63, 194). However, another study found
no significant differences in depressive scores of ALCAR/ALA
treatment compared to placebo (322–324).

S-Adenosylmethionine
S-Adenosylmethionine (SAMe) is formed from ATP and
methionine and is needed for the synthesis of many
neurotransmitters and for repairment and degradation of
dysfunctional proteins. It is a precursor for GSH production,
which plays an important role in reducing oxidative stress.
It is also used for homocysteine synthesis, which in turn can
regenerate SAMe (196).

Some studies suggest the efficacy of SAMe supplementation
for depressive episodes as adjunctive therapy with a number of
antidepressants SSRI, venlafaxine, or SNRIs (288). Nevertheless,
studies with older antidepressants, including phenelzine,
mianserin, and maprotiline, showed inconsistent results
(197, 199, 325–327). One study in patients with BD showed
SAMemight pose a risk for amanic switch (288), but randomized
clinical trials in BD are still lacking (328). A recent large scale
trial showed a numerical but not statistically significant benefit
of SAMe in depression (198).

Creatine Monohydrate
Creatine is an antioxidant agent synthesized by the liver and
kidneys which is also found in meat and fish (288). It can be
obtained as a supplement in the form of creatine monohydrate
(CM). Creatine is the precursor of PCr, a reservoir of inorganic
phosphate, used for ATP synthesis by donating a phosphate to
ADP (329). In the context of high-energy demand, PCr is rapidly
converted to creatine to donate a high-energy phosphate to ADP
to obtain ATP (330).

Creatine also attenuates the decreases in N-acetyl-aspartate
(NAA), which acts as a marker of impaired mitochondrial
function, and inhibits the activation of the mitochondrial
permeability transition, suggesting neuroprotective effects
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(331, 332). Other neuroprotective effects are intracellular
Ca2+ buffering, extracellular glutamate reduction, and
antioxidant effects (333–335). PCr and NAA concentrations
are reduced in BD patients and this reduction correlates with
clinical severity (336). Where PCr levels are diminished, CM
supplementation may increase PCr and NAA production to
promote neuroprotection (70, 337).

Despite limited evidence in mood disorders, CM has been
associated with improvement in depressive symptoms in case
studies (63). Benefits were seen in treatment-resistant depression
in a small open-label study (338), which also suggested a risk of
a manic switch after CM treatment in patients with BD (200).
Before CM might be considered as an adjunctive treatment
for the management of BD and depressive disorders, RCTs
are necessary.

Other Aminoacids
In one study assessing the efficacy of leucine, isoleucine, and
valine combination vs. placebo in 25 patients with BD, positive
results were seen with significant reductions of the severity
of mania within 6 h in the verum group, whose activity may
be explained by competitive inhibition of phenylalanine and
tyrosine, which are necessary for dopamine synthesis (288). L-
tryptophan reduced manic symptoms in a study of 24 patients
(339, 340). Moreover, a meta-analysis reported significantly
reduced plasma tryptophan levels in patients with MDD (202).
This aminoacid was shown to reduce depression scores in people
with unipolar depression in methodologically limited studies,
so further evidence is required in order to consider it as an
adjunctive therapy (341).

Carnosine is a dipeptide made up of the amino acids beta-
alanine and histidine that protects brain mitochondria and
regulates the immune system (201, 342). It has also been studied
for adjuvant treatment of depression (343, 344). So far, it has
been demonstrated to reduce the effects of chronic stress in
animal studies and to improve behavior, cognition, and overall
well-being in human studies (204, 345).

Inositol
A pilot study using inositol, a glucose isomer, in 24 patients with
BD found a significant reduction in depression scores after 3
weeks of treatment but not after 6 weeks (2, 203). Another 6-week
study in 17 subjects with BD showed no significant reduction
in depression or mania scores (206). Notwithstanding, both
studies found a greater clinical response with inositol compared
to controls, which suggests a potential benefit of this agent in
BD (205).

Coenzyme Q10
Coenzyme Q10 is a component of the ETC complex involved in
ATP synthesis (201). It acts as an antioxidant in mitochondria
and lipid membranes (346). CoQ10 has been suggested to
stabilize the mitochondrial membrane in the context of oxidative
stress (63, 347). It also inhibits the activity of mPTP and increases
complex I activity (348). One open-label placebo-controlled trial
reported clinical improvement in depressive symptoms in older
adults with bipolar depression using this supplement (63).

A randomized controlled trial comparing nutraceutical
treatment (including ALC, CoQ10 and ALA, in addition to
co-factors involved in mitochondrial function) with NAC and
placebo in patients with depression did not show a significant
difference between groups at the primary endpoint. However,
the rate of change between baseline and week 20 post-
discontinuation was significantly greater in the group previously
treated with nutraceuticals compared with the placebo group
on depression scores, and also on functioning. This suggests a
delayed benefit of the combination or improvement of symptoms
on withdrawal, which should be assessed in future studies (285).
Thus, current evidence suggests that CoQ10 might be beneficial
in mood disorders (288), but further clinical trials in mood
disorders are necessary to confirm these early promising but
non-definitive signals.

Melatonin
Melatonin is a hormone released in a circadian pattern by
the pineal gland and other tissues in the body, including the
brain. It has a number of functions and is an important
antioxidant free radical scavenger (207, 288). Specifically, it
stimulates the production of GSH (349) and increases the
expression of genes related to antioxidative functions, such as
glutathione peroxidase and SOD (210). Melatonin also seems
to directly enhance mitochondrial function since it activates
ETC complexes, increases mitochondrial membrane fluidity, and
closes the mPTP. It also protects mtDNA against degradation,
promotes the expression of mitochondrial genes coding for ETC
complex subunits, and has neuroprotective properties (209). The
beneficial effects of melatonin seem to be those related to ROS
scavenging and actions linked to cytosolic proteins (209, 288).

Clinical studies in mood disorders do not show conclusive
results. So far, melatonin has shown benefits improving
depressive symptoms in patients with “winter depression” (209,
288) compared to placebo, whereas a controlled study in seasonal
affective disorder did not show changes in atypical depressive
symptoms (208), and a crossover study on patients with severe
depression showed that patients taking melatonin had worsened
dysphoria, sleeping patterns and weight gain (350).

Regarding evidence assessing melatonin for BD, one open-
label study showed no significant effects on mood or sleep in
rapid-cycling patients (351), whereas in another small open-
label study it showed sleep-enhancing and antimanic effects in
manic patients (352). As mentioned previously, agomelatine, an
agonist of melatonin MT1 and MT2 receptors, has demonstrated
preliminary evidence of efficacy in bipolar depression (353), but
agomelatine has other actions on the serotonin system.

Vitamins and Minerals
Supplementation with vitamins C and E was shown to
significantly improve severity in depression. One study where
they were combined with monoaminergic antidepressants for
12 weeks showed they improved oxidative stress in subjects
with MDD (354), but it was not a placebo-controlled design.
Nicotinamide is a form of vitamin B3 found in food, used as an
antioxidative substance, and is also a precursor of NAD+. It is
hypothesized to be effective for the treatment of mood disorders
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(211), since it increases oxidative phosphorylation in the brain
and enhances social behavior in high-anxiety rats (355). A small
clinical trial evaluating magnesium as a potential adjunctive
therapy for treating acute mania or rapid cycling BD showed
a greater reduction of manic symptoms compared to controls
(356), which might be due to the modulation of Ca2+ channel
activity and its participation in neurotransmitter release (357).
One study using folic acid for 17 BD participants showed no
statistically significant differences on symptoms of depression
compared to controls (201, 358), but in another where 88 patients
with acute mania were initiated on valproate, folic acid at doses
of 3 g showed a significant reduction of manic symptoms at week
3 compared to placebo (359). Thus, assessing folate levels and
administering supplementation in patients with mood disorders
could be beneficial for the clinical course of the acute episodes.

Ketogenic Diet
The effects of specific diets in mood disorders are still not
clear despite evidence reporting that they can alter several
biological processes. The exception is the Mediterranean diet,
which has been associated with antioxidative properties and
has shown antidepressant effects in a RCT (201, 360). One
study assessing rats on a calorie-restricted diet showed that
mitochondrial efficiency and oxidative damage in skeletal muscle
were significantly increased in these rats, while antioxidant effects
were significantly lowered in food-restricted rats that followed
a high-fat diet. Thus, caloric restriction seems to predispose
to higher mitochondrial efficiency and also to high-fat induced
oxidative damage (361). Other studies have shown that the
ketogenic diet (KD) upregulates mitochondrial antioxidant status
and protects mtDNA from oxidant-induced damage (362). It
has also shown effective anticonvulsant properties and has been
suggested as a potential adjunctive therapy as a mood stabilizer.

The ketogenic diet consists of a low-carbohydrate diet that
substantially changes the energetic source of the organism
(213, 363), which switches from glucose to ketones bodies,
obtained by breakdown of fatty acids. This causes alterations
in neurotransmitter levels, hormones, and peptides (364), and
an increase in oxidative phosphorylation and ATP synthesis
(365, 366), increased GSH levels, reduced ROS production
(367), reduced inflammatory levels and neuroprotection (368).
A ketogenic diet seems to influence epigenetic changes involved
in increased mitochondrial function and biogenesis (369), which
might also be responsible for the increase of BDNF (370). The
ketogenic diet stimulates the endogenous antioxidant system
through the activation of nuclear factor erythroid-derived 2 (NF-
E2)-related factor 2 (Nrf2), the major inducer of detoxification
genes (371, 372), especially in the hippocampus (373). Despite
the limited data regarding the ketogenic diet for the treatment
of mood disorders, early reports support the hypothesis about its
beneficial effects on mood stabilization (374).

Physical Exercise
Physical activity is directly related to increased mitochondrial
biogenesis, increased mitochondrial content and oxygen
utilization capabilities, and that aerobic exercise in the elderly
ameliorates loss of skeletal muscle mitochondrial content (369).

One study assessing the efficacy of fluoxetine and exercise in
muscle cells of rats reported that physical activity increased
cytochrome c oxidase activity compared with the group treated
only with fluoxetine. Exercise increased citrate synthase activity
in both fluoxetine and non-fluoxetine groups, and fluoxetine
increased its activity only in the exercise group. On the other
hand, exercise significantly decreased ROS levels in both
fluoxetine and non-fluoxetine groups, with this reduction higher
in the fluoxetine group (375). Post-hoc analysis of a trial of a
mitochondrial combination therapy found the greatest benefits
in those with the highest levels of physical activity (376). There
is a meta-analytic level of evidence from RCT’s that exercise has
antidepressant effects. Hence, enhancing mitochondrial function
through physical activity may provide a novel way to treat mood
disorders (377).

Take-Home Message
Numerous studies have focused on the role of therapeutic agents
targeting different mitochondrial functions that are altered in
mood disorders. On one hand, mood stabilizers, antidepressants
and antipsychotics have shown to promote neuroprotection,
reduce oxidative stress and enhance mitochondrial function.
On the other hand, novel interventions have been assessed as
potential adjunctive therapies for mood disorders.

Some mitochondrial modulators have been developed or
studied with the aim of enhancing antioxidant defenses or
mitochondrial functioning as adjuvant therapies in mood
disorders. Pramipexole has shown antidepressant effects
by the upregulation of Bcl-2. Some dietary supplements or
nutraceuticals have been found to enhance mitochondrial
function and brain energy metabolism mainly by the reduction
of oxidative stress. These include N-acetylcysteine (NAC),
alpha-lipoic acid (ALA), acetyl-L-carnitine (ALCAR), S-
adenosylmethionine (SAMe), coenzyme Q10 (CoQ10), creatine
monohydrate (CM), and melatonin. Even though current
evidence suggests they might be beneficial in mood disorders,
further clinical trials are necessary to confirm these findings.

Melatonin has antioxidative functions and also enhances
mitochondrial function. However, clinical studies in
mood disorders have not shown positive results. Vitamin
supplementation, ketogenic diet and physical exercise have also
shown positive effects in mitochondrial function and mood
disorders, with scarce evidence.

CONCLUSION

Mitochondria play a key role in different cellular functions,
especially those related to energy production. A number of
studies indicate the possible role of mitochondria in the
pathophysiology of mood disorders, raising the possibility that
the processes of energy generation and oxidative damage could
be significant therapeutic targets for the treatment of BD with
mood-stabilizing or other kinds of drugs as well as lifestyle
approaches. A better knowledge of mitochondrial functioning
could help identify impaired processes and specific treatment
targets. This would increase the understanding of mechanisms
of action of the drugs currently used and aid the development of
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novel effective therapies to treat specific mitochondrial functions
that might be used as the main therapy or as adjunctive
treatment, especially for subjects that do not fully respond to
conventional therapies. Research on changes in mitochondrial
processes in patients with mood disorders might clarify how
mitochondrial dysfunction can be considered a biological target.
Further studies are needed to confirm that pharmacological
treatments reduce or delay neuroprogressive changes in mood
disorders, and to demonstrate the potential benefits of putative
antioxidant substances.
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