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Abstract
Aims/hypothesis Type 2 diabetes increases the risk of cardiovascular and renal complications, but early risk prediction could lead
to timely intervention and better outcomes. Genetic information can be used to enable early detection of risk.
Methods We developed a multi-polygenic risk score (multiPRS) that combines ten weighted PRSs (10 wPRS) composed of 598
SNPs associated with main risk factors and outcomes of type 2 diabetes, derived from summary statistics data of genome-wide
association studies. The 10 wPRS, first principal component of ethnicity, sex, age at onset and diabetes duration were included
into one logistic regression model to predict micro- and macrovascular outcomes in 4098 participants in the ADVANCE study
and 17,604 individuals with type 2 diabetes in the UK Biobank study.
Results The model showed a similar predictive performance for cardiovascular and renal complications in different cohorts. It
identified the top 30% of ADVANCE participants with a mean of 3.1-fold increased risk of major micro- and macrovascular
events (p = 6.3 × 10−21 and p = 9.6 × 10−31, respectively) and a 4.4-fold (p = 6.8 × 10−33) higher risk of cardiovascular death.
While in ADVANCE overall, combined intensive blood pressure and glucose control decreased cardiovascular death by 24%,
the model identified a high-risk group in whom it decreased the mortality rate by 47%, and a low-risk group in whom it had no
discernible effect. High-risk individuals had the greatest absolute risk reduction with a number needed to treat of 12 to prevent
one cardiovascular death over 5 years.
Conclusions/interpretation This novel multiPRS model stratified individuals with type 2 diabetes according to risk of compli-
cations and helped to target earlier those who would receive greater benefit from intensive therapy.
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ESRD End-stage renal disease
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UACR Urinary albumin/creatinine ratio
wPRS Weighted PRS

Introduction

Diabetes increases the risk of serious and costly cardiovascu-
lar and renal complications [1, 2]. Prediction of risk prior to
development of these complications is crucial to enable the
targeting of individuals who could benefit from early interven-
tion [3]. Genetic information, with which one is born, can be
used to enable early detection of risk. Genome-wide associa-
tion studies (GWAS) identified multiple common variants
associated with type 2 diabetes [4–6], renal [7, 8] and cardio-
vascular diseases [9], and hypertension [10]. Individually,
these genetic variants account for only a small effect size but
the combination of hundreds of them into polygenic risk
scores (PRSs) or genome-wide polygenic scores was recently
introduced to predict risk of diseases [11–14] including type 2
diabetes [15]. Recent studies suggest that combining several
PRSs of related traits into a joint model could optimise predic-
tion [16–18]. Our aim was to develop a multi-polygenic risk
score (multiPRS) prediction model that did not include any
past risk/outcome data. Because of their common risk factors,
overlap of its pathogenic mechanisms and correlations among
them, a multiPRS composed of ten weighted PRSs (10
wPRS), gathering genomic variants associated with cardio-
vascular and renal complications and their key risk factors,
was combined with sex and first principal component (PC1)
of ethnicity, age at onset and diabetes duration into one

logistic regression model, to classify or to predict micro- and
macrovascular endpoints of type 2 diabetes [19–23]. The
performance of the model was assessed by C-statistics in indi-
viduals of European descent with type 2 diabetes in the
ADVANCE trial [24, 25] extended to its post-trial follow-
up, ADVANCE-ON [26], for a total of nearly 10 years of
observation. The multiPRS developed in ADVANCE was
validated in participants with type 2 diabetes in the UK
Biobank [27] and three smaller external cohorts. We also
assessed whether this approach could help in early identifica-
tion of individuals who could benefit most from the intensive
therapy such as administered in ADVANCE [28, 29].

Methods

Ethics The ADVANCE, CLINPRADIA, CanPath and post-
MONICA studies were approved by the ethics commitees of
their coordinating centres and by each participating centre.
Only participants who provided written informed consent to
the genetic sub-studies took part in the analysis. A material
transfer agreement was signed with UK Biobank that covers
Research Tissue Bank (RTB) under projects 49731 and
59642. The data analysis was approved by the ethics commit-
tee of the Centre hospitalier de l’Université de Montéal
(CHUM).

Patient cohorts Five cohorts were studied here, details of
which can be found in the electronic supplementary material
(ESM) Methods. ADVANCE (Action in Diabetes and
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Vascular Disease: Preterax and Diamicron MR Controlled
Evaluation) was used to construct the prediction model and
to assess its clinical utility. It was a 2 × 2 factorial design, RCT
of BP lowering (perindopril-indapamide vs placebo) and
intensive glucose control (gliclazide-MR-based intensive
intervention with a target of 6.5% [48 mmol/mol] HbA1c vs
standard care) in individuals with type 2 diabetes
(ClinicalTrials.gov registration no. NCT00145925). A total
of 11,140 participants were recruited from 215 centres in 20
countries. Participants were older than 55 years and diagnosed
with type 2 diabetes after the age of 30 years. ADVANCE-ON
was a 5 year post-trial observational extension of ADVANCE
conducted in 80% of participants [26]. Here, we studied a
subset of 4098 genotyped individuals of European descent
with type 2 diabetes whose clinical characteristics are
summarised in ESM Table 1. Data from the UK Biobank
[18] were used to validate the model developed in
ADVANCE and construct an independent model in 17,604
participants of white British origin with type 2 diabetes (ESM
Fig. 1, ESM Table 1). The model was validated in three inde-
pendent cohorts with phenotypes available in each one. The
Czech post-MONICA (the WHO Monitoring Trends and
Determinants in Cardiovascular Disease) study was a cross-
sectional survey investigating the determinants of cardiovas-
cular risk factors in a 1% random sample of the general popu-
lation in nine districts of the Czech Republic, stratified by age
and sex [30]. Among the 502 individuals genotyped, 106 had
albuminuria. CLINPRADIA (Management of Albuminuria in
Hypertensive Diabetics) (ClinicalTrials.gov registration no.
NCT 01907958) was a multicentre study to evaluate the
management of microalbuminuria in hypertensive patients
with type 2 diabetes in Canada. The study was performed in
230 individuals with type 2 diabetes (mean age 67 years).
Forty per cent of participants had albuminuria at study entry.
CanPath (Canadian Partnership for Tomorrow’s Health)
brings together five Canadian regional cohorts: 488 (mean
age 58 years) individuals of European origin with type 2
diabetes were analysed here.

Outcomes descriptionMacroalbuminuria is defined as urinary
albumin/creatinine ratio (UACR) of >33.9 mg/mmol (300mg/
g). Low eGFR is defined as eGFR below 60 ml min−1

[1.73 m]−2. New or worsening nephropathy is defined as the
development of macroalbuminuria, doubling of serum creati-
nine to a level of at least 200 mmol/l, or end-stage renal
disease (ESRD). ESRD is defined as the need for dialysis or
renal transplantation, or death due to renal disease. The
outcome ‘major microvascular events’ is a composite of
ESRD, defined as the requirement for renal replacement ther-
apy, death from renal disease, requirement for retinal photo-
coagulation or diabetes-related blindness in either eye. The
outcome ‘major macrovascular events’ is a composite of
non-fatal myocardial infarction, non-fatal stroke or

cardiovascular death. The outcome ‘combined major micro-
vascular or macrovascular events’ is defined as death from
CVD, non-fatal stroke or non-fatal myocardial infarction,
and new or worsening renal or diabetic eye disease.

Creation of wPRS and multiPRS We identified 26 factors and
outcomes that we grouped into ten groups of risk/outcomes:
diabetes, obesity, BP, albuminuria, GFR, biomarkers, lipids,
stroke, CVDs and low birthweight, with SNPs obtained from
47 publications cited in ESM Table 2 of large-scale GWAS
consortia conducted in hundreds of thousands of individuals
of European descent. We used their summary statistics,
included in the National Human Genome Research Institute
GWAS Catalog and HuGE navigator (https://www.ebi.ac.uk/
gwas/home), and extracted 598 SNPs, listed in ESM Table 3
together with their effect size (β). Descriptive summary statis-
tics were computed, using frequencies (%) for categorical
variables and means (±SD) for continuous variables. A bino-
mial test was used to compare the two proportions of categor-
ical variables. We constructed 10 wPRS for the ten risk
groups, as different SNPs contribute with different weights
to the PRS value, by summing the product of the number of
risk alleles for each participant by the effect size of those

SNPs, i.e. wPRSki ¼ ∑m
j¼1X

k
ij � βk

j , where X k
ij is the allele

frequency of ith subject in jth SNP for kth phenotype and β is
the effect size attributed to the SNP for the same phenotype in
the original GWAS (ESM Figs 2, 3 and ESM Table 3). The
effect size attributed to each of the 598 SNPs was obtained
from the same group of complications or risk factors. As an
example, the effect size of a SNP associated with diabetes was
used in the generation of the PRSdiabetes only. If the same SNP
was also shown to be associated with albuminuria in meta-
analyses, the effect size used in the other PRS was the one
from the original meta-analysis of albuminuria and not the
effect size derived from the meta-analysis of diabetes.
Variants in five genes (TCF7L2, ADCY5, FTO, GCKR and
HNF1A) were used in two PRSs. The number of SNPs or the
unit used is not the same for the 26 predictors, so the wPRS
had to be scaled by the sum of its effect coefficients and
multiplied by the number of loci of that specific trait. With
this scaling, each risk predictor will have an equivalent weight
at an equivalent number of loci. The 10 wPRS, sex, PC1 of
ethnicity, age at onset and diabetes duration were included as
covariates in a logistic regression model, that we named
multiPRS model, to classify prevalent or to predict new type
2 diabetes complications as illustrated in ESM Fig. 3. For
clarity, we generated a PRS for each of the ten following traits:
PRSdiabetes, PRSobesity, PRSblood pressure, PRSalbuminuria,
PRSglomerular filtration rate, PRSbiomarkers, PRSlipids, PRSstroke,
PRScardiovascular diseases and PRSlow birthweight. These 10 wPRS
were constructed as described above and the effect sizes from
the logistic regression model for each of these 10 wPRS are
shown in ESM Fig. 3.

Diabetologia (2021) 64:2012–20252014

http://clinicaltrials.gov
http://clinicaltrials.gov
https://www.ebi.ac.uk/gwas/home
https://www.ebi.ac.uk/gwas/home


We developed the model using the ADVANCE cohort
(referred to herein as the ADVANCE model) and compared
the accuracy of the model using C-statistics with tenfold cross-
validation with a 10–90 data split of ADVANCE, to avoid
overfitting. We tested the model in the UK Biobank (used as
an external validation dataset) and three other smaller cohorts
of individuals with type 2 diabetes, using pROC package
(https://cran.r-project.org/web/packages/pROC/pROC.pdf) in
R. Given the size of the UK Biobank resource, an alternative
(white British-specific) model was also fit to the UK Biobank
samples, with tenfold cross-validation, to replicate the
approach (referred to herein as the UK Biobank model).

Statistical analyses

MultiPRS thirds and treatment effects were examined through
cumulative hazards curves with the use of Cox proportional
hazard models. The logrank test was used to compare the
cumulative hazards over the period of 9.5 years
(ADVANCE and ADVANCE-ON) to examine trial and
post-trial effects of the intensive BP-lowering and intensive
glucose therapies on cardiovascular death, all-cause death and
ESRD in the three genetic risk groups. The Hosmer–
Lemeshow test is used to test for goodness of fit of
multiPRS in logistic regression models. The test assesses
whether the observed event rates match expected event rates
in subgroups of the model population. The subgroups
analysed are sex and ethnicity. Unless stated otherwise, a p
value less than 0.05 is considered statistically significant.
Additional details of statistical analyses, genotyping, imputa-
tion as well as the stepwise approach for selection of SNPs and
creation of multiPRS are included in ESM Methods, ESM
Figs 2, 3 and ESM Tables 2, 3.

Genotyping and imputation ADVANCE participants were
genotyped using the Affymetrix Genome-Wide Human SNP
Arrays 5.0 or 6.0 or the Affymetrix UK Biobank Axiom
Arrays (Affymetrix, Santa Clara, CA, USA). The genotype
calling of participants from UK Biobank was performed by
Affymetrix on two closely related purpose-designed arrays:
~50,000 participants were run on the UK BiLEVE Axiom
array and the remaining ~450,000 were run on the UK
Biobank Axiom array. The post-MONICA samples were
genotyped with the Affymetrix Genome-Wide array 6.0 and
those from CLINPRADIA with UK Biobank Axiom arrays.
Participants in CanPath were genotyped using UK BioBank
Axiom or GSA Illumina arrays. Quality control was
performed on the final genotypes before imputation as
described in ESM Methods [25]. A PC analysis using
34,570 independent SNPs on individuals of European descent
in ADVANCE was done with EIGENSOFT 3.0 package
(https://github.com/argriffing/eigensoft, version 3.0). It was

used to adjust for genetic ethnicity and all individuals from
other cohorts were projected onto these PCs (ESM Fig. 4).
Only PC1 was used here, as it reflects best the genetic
structure from East (Balto-Slavic) and West (Celtic) of
Europe within these cohorts. Additional PCs could be needed
when expanding to other geo-ethnic groups, such as southern
European individuals for which population structure is
reflected on second PC (PC2) (ESM Fig. 4).

Hierarchical clusteringWe performed unsupervised hierarchi-
cal clustering (hclust complete method) as described by the R
Core Team [31] on the Euclidean distance matrix of the
predicted risk values of our models (myocardial infarction,
stroke, heart failure, major macrovascular events, cardiovas-
cular and all-cause death). Heatmaps were constructed using
R heatmap.2 from gplots library [31, 32].

Prediction using clinical risk scores For comparison between
clinical and multiPRS-based scores, we calculated the
ADVANCE clinical risk score that includes age at diagnosis,
known duration of diabetes, sex, and baseline pulse pressure,
treated hypertension, atrial fibrillation, retinopathy, HbA1c,
UACR and non-HDL-cholesterol [33], and the widely used
Framingham risk score (FRS) that includes age, sex, total
cholesterol, HDL-cholesterol, smoking status, diabetes,
systolic BP and BP treatment as predictors [34].

Results

Performance metrics of the multiPRS model as a classifier and
predictor of cardiovascular and renal outcomes of type 2
diabetes We developed a multiPRS model using the
ADVANCE cohort, with tenfold cross-validation (referred to
herein as the ADVANCEmodel). The baseline characteristics
of 4098 individuals with type 2 diabetes in ADVANCE are
shown in ESM Table 1. They were recruited in 14 European
countries and in Australia, New Zealand and Canada allowing
other European-descent cohorts to be projected appropriately
onto principal components reflecting population structure
(ESM Fig. 4). The percentages of ADVANCE participants
who had an outcome including death during the 5 year
follow-up increased exponentially according to multiPRS
score rising sharply in the last 3 deciles of the distribution
(Fig. 1). The ADVANCE model was validated in the UK
Biobank and three smaller cohorts of individuals with type 2
diabetes (Table 1). The ADVANCE multiPRS model had
similar area under the receiver operating characteristic
(ROC) curves, AUCs (95% CI) for classification of prevalent
stroke, myocardial infarction, low eGFR and albuminuria in
ADVANCE and UK Biobank (Table 1). The AUCs were
higher for stroke and myocardial infarction in the CanPath
cohort while they were almost identical for albuminuria in
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ADVANCE, UKBiobank and CLINPRADIA. The multiPRS
had a low but significant AUC for albuminuria in individuals
with the metabolic syndrome from the general population of
post-MONICA. Given the size of the UK Biobank resource
(ESM Table 1), the multiPRS model was also fit to the UK
Biobank samples, with tenfold cross-validation, to replicate
the approach (referred to herein as the UK Biobank model).
The UK Biobank model’s AUCs were similar to those of the

ADVANCEmodel when tested in the UK Biobank (Table 1).
These results show that the multiPRS model developed in
ADVANCE had a similar discrimination power for cardiovas-
cular and renal complications of type 2 diabetes in different
patient cohorts.

The primary outcome of the ADVANCE trial was the
composite of major macrovascular and microvascular events
as intention-to-treat by intensive control of BP [24, 26, 28,

Table 1 Performance (AUC) of the multiPRS model for prevalent and incident cases of T2D complications in different cohorts

T2D complication Training/testing cohorts Validation cohorts

ADVANCE model
n=4098

UKBB
model
n=17,574

UK Biobank
n=17,574

CanPath
n=488

CLINPRADIA
n=230

Czech post-MONICA
n=502

Stroke 0.61 (0.59, 0.64) 0.61 (0.59, 0.63) 0.59 (0.57, 0.60) 0.80 (0.63, 0.97) – –

Myocardial infarction 0.58 (0.56, 0.60) 0.67 (0.66, 0.68) 0.63 (0.62, 0.64) 0.78 (0.68, 0.89) – –

Low eGFR 0.72 (0.70, 0.74) 0.70 (0.69, 0.72) 0.67 (0.65, 0.69) – – –

Macroalbuminuria 0.63 (0.59, 0.68) 0.65 (0.62, 0.69) 0.63 (0.59, 0.66) – 0.62 (0.53, 0.71) 0.56 (0.50, 0.62)

Incident stroke 0.62 (0.58, 0.67) 0.65 (0.62, 0.67) 0.62 (0.59, 0.65) – – –

Incident myocardial infarction 0.64 (0.61, 0.68) 0.65 (0.63, 0.67) 0.61 (0.59, 0.64) – – –

Data expressed as AUC (95% CI)

30 participants with missing genotypes were excluded from the analysis of UK Biobank

The multiPRS model is composed of the 10 wPRS, PC1, sex, age at diagnosis and diabetes duration. The classification of cases vs non-cases of
cardiovascular and renal complications of T2D by the multiPRS model was assessed in parallel in the ADVANCE (ADVANCE model) and the UK
Biobank (UKBB model) sets. Incident cases are defined as having an outcome during the study (free of outcome at baseline), and control participants
were those who did not have a specific outcome at any time during the study. AUCs and percentile-based CIs were estimated from ROC curves and
calculated from the predicted risks derived from the regression models with tenfold cross-validation. The predictors of the ADVANCE model (dataset
where the model was constructed) were also tested in the UKBiobank that was used as a validation dataset. The ADVANCEmodel was also assessed in
three independent cohorts for complications available in each of them

T2D, type 2 diabetes

H
ea

rt
 fa

ilu
re

M
aj

or
m

ic
ro

va
sc

ul
ar

C
ar

di
ov

as
cu

la
r

de
at

h

N
ew

 o
r 

w
or

se
ni

ng
ne

ph
ro

pa
th

y
S

tr
ok

e
A

ll-
ca

us
e 

de
at

h

M
ac

ro
al

bu
m

in
ur

ia
M

yo
ca

rd
ia

l
in

fa
rc

tio
n

M
aj

or
m

ac
ro

va
sc

ul
ar

0

2

4

6

8

10

0
2
4
6
8

10
12

0
5

10
15
20
25
30
35

0

5

10

15

0

2

4

6

8

10

0

5

10

15

20

0

10

20

30

40

50

0

10

20

30

40

0

5

10

15

20

25

0 1 2 3 6 7 8 9 10 3 4 7 8 9 10 3 4 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 3 40 1 2 5 6 7 8 9 10

0 1 2 3

4 5

4 5 6 7 8 9 10

0 1 2

0 1 2 3 4 7 8 9 10

0 1 2

0 1 2 3 4

5 6 5 6

5 6 5 6 7 8 9 10

MultiPRS value

cba

fed

ihg

E
ve

nt
 (

%
)

Fig. 1 (a–i) Percentage of events
along multiPRS deciles.
ADVANCE participants were
stratified into equal deciles along
multiPRS scoring, from lowest to
highest score. Each point
represents the percentage of event
occurrence in the decile
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29]. The AUCs of Table 2 represent the discrimination
between incident cases, defined as having an outcome during
the ADVANCE trial (free of outcome at baseline), and control
participants who did not have a specific outcome at any time
during the study. The AUCs were 0.67 (95% CI 0.65, 0.70)
for combined micro- and macrovascular events, 0.67 (0.64,
0.70) for microvascular and 0.68 (0.66, 0.70) for
macrovascular events (Table 2). The ADVANCE model
predicted incident stroke with the same AUC of 0.62 in
ADVANCE and UK Biobank (Table 1). It predicted incident
myocardial infarction with AUC values of 0.64 (0.61, 0.68) in
ADVANCE and 0.61 (0.59, 0.64) in UKBiobank; these AUC
values were slightly lower than with the UK Biobank predic-
tive model (AUC = 0.65 for both incident stroke and myocar-
dial infarction) (Table 1).

Higher AUCs (AUC1 in Table 2) were observed for most
outcomes when cases were compared with normotensive indi-
viduals who did not have a specific outcome at any time
during the study with AUCs1 around 0.70 for most cardiovas-
cular outcomes and death. Adjustment for treatment assign-
ment did not modify the AUC values (ESM Table 4). The
multiPRS model was well calibrated (expected vs observed
event rates are similar) for cardiovascular death in the whole
population (π = 0.67) with better fit (the closer the π value is
to 1, the better the fit) for men (π = 0.66) than women (π =
0.48) and for Slavic (π = 0.77) than Celtic (π = 0.44) individ-
uals. The best fit was observed for all-cause death, π-values

exceeding 0.8 in both Celtic (West of Europe) and Slavic (East
of Europe) individuals (ESM Fig. 5).

These results indicate that the multiPRS model can predict
individual as well as combined cardiovascular and renal
complications of type 2 diabetes before these complications
appear.

Risk stratification In order to determine the optimal risk
thresholds, we explored two possible cut-offs: one of 10% that
corresponds to the last decile of multiPRS score shown in Fig.
1 and a higher threshold of 30% that corresponds to the last 3
deciles. As expected, the positive predictive value (PPV) was
higher for the top 10% than the 30% high-risk threshold
(Table 2). However, when the frequency of the high risk is
lower than the prevalence of the complication, as in the case of
total death, low eGFR, micro- and macrovascular events and
their combination that have prevalence higher than 10%, the
PPV is high but the sensitivity (% of people who are at risk are
detected) is low, and the 10% high-risk threshold will identify
a lower percentage of individuals who will have an outcome.
False negatives must be minimised and moderate PPV (with
its greater proportion of false positives) is more acceptable as
no harm is likely to be done in protecting patients against a
diabetic complication even if that complication would not
occur without it. The 30% threshold showed in general similar
or even better negative predictive values (NPVs) than the 10%
threshold. Furthermore, the ratio of events between the 10%

Table 2 Prediction performance and risk stratification thresholds of incident cases in ADVANCE

Prediction of incident cases (n) ADVANCE High risk (30%) High risk (10%)

PP
%

AUC
95% CI

AUC1

95% CI
OR PPV

%
NPV
%

OR PPV
%

NPV
%

Combined micro- or macrovascular (844) 40 0.67 (0.65, 0.70) 0.71 (0.68, 0.74) 3.1 68 54 3.5 80 60

Major microvascular (334) 13 0.67 (0.64, 0.70) 0.68 (0.64, 0.72) 3.1 28 86 3.7 41 81

Major macrovascular (559) 21 0.68 (0.66, 0.70) 0.73 (0.70, 0.76) 3.1 44 74 3.5 55 66

Stroke (154) 4 0.66 (0.62, 0.71) 0.74 (0.70, 0.79) 3.1 12 94 2.9 16 96

Myocardial infarction (192) 7 0.67 (0.63, 0.70) 0.69 (0.65, 0.74) 2.2 16 92 2.1 19 94

Heart failure (225) 6 0.68 (0.65, 0.72) 0.74 (0.68, 0.78) 3.1 15 93 3.9 29 90

Macroalbuminuria (150) 4 0.65 (0.60, 0.69) 0.67 (0.62, 0.72) 2.3 19 91 2.1 27 97

Low eGFR (1009) 41 0.64 (0.62, 0.66) 0.69 (0.66, 0.72) 4.0 59 55 5.1 74 46

New/worsening nephropathy (198) 5 0.64 (0.60, 0.68) 0.66 (0.62, 0.70) 2.5 27 94 2.5 21 95

Cardiovascular death (283) 7 0.72 (0.69, 0.75) 0.78 (0.74, 0.81) 4.4 20 91 4.7 35 87

All-cause death (549) 13 0.69 (0.67, 0.72) 0.74 (0.72, 0.77) 3.1 33 84 4.4 47 74

The multiPRS model is composed of the 10 wPRS, PC1, sex, age at diagnosis and diabetes duration. The number of cases as well as the period
prevalence (PP) of each event during the 5 year follow-up of ADVANCE are indicated. AUC represents the discrimination between incident cases,
defined as having an outcome during the 5 years of ADVANCE (free of outcome at baseline), and control participants who did not have a specific
outcome at any time during the ADVANCE trial. AUC1 was calculated using a control group that includes normotensive participants only. PPV and
NPV were adjusted for the prevalence of the specific outcome. OR: frequency of a specific outcome in high-risk group/frequency of the outcome in the
remainder of the population

Outcomes are defined in the Methods section
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and 30% thresholds and the remainder of the population
demonstrated a clear enrichment of at-risk individuals with no
clinically relevant differences between the two thresholds. For
instance, the ADVANCE participants in the 30% high-risk
threshold had a mean of 3.1-fold increased risk of major
micro- and macrovascular events (p = 6.3 × 10−21 and p =
9.6 × 10−31, respectively), and a 4.4-fold (p = 6.8 × 10−33)
increased risk of cardiovascular death than the remainder of
participants. The pertinence of the 30% high-risk cut-off was
confirmed by unsupervised hierarchical clustering analysis that
identified three main clusters of individuals representing
37.1%, 33.5% and 29.4% of ADVANCE individuals having
a low, medium or high risk of major macrovascular events
including myocardial infarction, stroke, heart failure, and
cardiovascular death (Fig. 2a). Twenty per cent of individuals
in the highmultiPRS stratum have died during the 5 years of the
ADVANCE trial compared with 8% in the low multiPRS cate-
gory (Fig. 2c). The difference between these two groups was
also highly significant for renal events known to contribute to
the high mortality rate in high-risk individuals (Fig. 2d,e).

Contribution of genomic and non-genomic factors to the risk
prediction modelWe conducted several complementary anal-
yses to assess the contribution of the different factors to the

prediction performance. For the outcomes for which we had a
single wPRS developed specifically for the trait, we could
determine that: (1) each one of the 10 wPRS contributed
significantly to at least one of these traits (ESM Table 5); (2)
the contribution of a trait-specific PRS was generally more
important than the contribution of the other PRSs; (3) the
outcomes were best predicted by more than one PRS; and
finally, (4) the combination of 10 wPRS improved the
AUCs (ESM Table 5). We previously reported significant
differences in several of the diabetes outcomes between
Europeans of Slavic and Celtic origins that can be stratified
by PC1 of genetic diversity [25]. Here, we are showing that
PC1 by itself had a variable impact on the AUC values, but its
addition generally improved the prediction performance of the
model. (ESMTable 5). Negligible changes were noted here by
adding more PCs of ethnicity. The genomic component (10
wPRS and PC1) was generally more predictive than sex or age
at onset of diabetes (Fig. 3). Diabetes duration had a higher
AUC than the 10 wPRS particularly for heart failure, micro-
and macrovascular events and death. The combination of
genomic and non-genomic determinants yielded the model
with the highest predictive performance (Fig. 3).

Figure 4a shows that the highest risk of microvascular
events was seen in carriers of high genomic (10 wPRS and
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Fig. 2 (a–e) Clustering of combined macrovascular disease risk by
multiPRS using unsupervised hierarchical clustering algorithm. This
clustering method identified three main clusters of individuals with low
(blue; L), medium (pink; M) or high (red; H) combined macrovascular
risk representing 37.1%, 33.5% and 29.4%, respectively, of ADVANCE
participants. (a) The multiPRS values for each participant and each
outcome are represented by z score (blue colour: negative score, red

colour: positive score) in the heat map. (b, c) The incidence (%) of
cardiovascular (*p = 1.5 × 10−13) (b) and all-cause death (†p = 1.8 ×
10−21) (c) were compared between the high and the low clusters. (d, e)
Differences in UACR (‡p = 1 × 10−4) (d) and eGFR (§p = 2 × 10−44) (e)
values were determined between the high and the low clusters. eGFR is
based on CKD-EPI formula
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PC1) risk with OR High vs Low = 1.53 (95% CI 1.08, 2.17), p =
0.017 and younger age at onset of diabetes (OR Old vs Young =
0.61 [0.43, 0.87], p = 0.0057). This contrasts with
macrovascular events, for which the highest risk was seen in
the highest genomic risk group with OR High vs Low = 2.78
(2.02, 3.81), p = 2.6 × 10−10 independently of the age at onset
of diabetes (Fig. 4b). It is noteworthy that the stratification
capacity of the genomic component of the model was best in
people with earlier onset of diabetes for both major micro- and
macrovascular events, as shown by the ptrend values of 4.6 ×
10−3 for major microvascular and 1.7 × 10−7 for major
macrovascular events (Fig. 4c, d).

Clinical utility of the multiPRSmodelThemultiPRSmodel did
not perform better than the ADVANCE clinical score, know-
ing that the latter must be considered ‘optimistic’ as our subset
of patients was part of the population fromwhich it was devel-
oped and included such clinical outcomes as atrial fibrillation,
albuminuria and low eGFR (ESM Table 6). However, its
AUC values were generally higher than those of the FRS.
Even though our primary aim was not to develop a model that
outperforms existing clinical scores but one that can predict
before symptoms appear, it should be noted that the multiPRS
improved the prediction of diabetes outcomes of the two

clinical scores. For instance, the continuous net reclassifica-
tion index (NRI) was 45% for myocardial infarction and 62%
for cardiovascular death of people initially classified by the
FRS, and was 41% for myocardial infarction and 26% for
cardiovascular death of those initially classified with the
ADVANCE clinical score (ESM Table 7).

The cumulative incidence of death was significantly differ-
ent (p < 0.0001) between individuals with low, medium and
high predicted risk (ESM Fig. 6). We also noted that the inten-
sive BP control achieved during ADVANCE led to a signifi-
cant reduction of total death (HR 0.797, p = 0.046) and cardio-
vascular death (HR 0.677, p = 0.009) in individuals within the
highest third of predicted risk, and these reductions remained
significant during ADVANCE-ON (ESM Fig. 6, left panel).
No such benefit was observed with intensive glycaemic
control (ESM Fig. 6, right panel), while glucose control
reduced ESRD in individuals carrying the highest predicted
risk values (HR 0.345, p = 0.043 in ADVANCE), remaining
significant at the end of ADVANCE-ON (HR 0.455, p =
0.026) (ESM Fig. 7). Fifty-nine per cent of ESRD cases
occurred in the highest multiPRS third (ESM Fig. 7). The
reduction of cardiovascular death by ADVANCE therapy
occurred mainly in the high-risk group (HR 0.61 [95% CI
0.40, 0.93], p = 0.021) and remained significant during

Model

Sex

Macroalbuminuria

Low eGFR

New or worsening
nephropathy

Major microvascular

Stroke

Myocardial infarction

Heart failure

Major macrovascular

Combined major micro or
macrovascular

All cause death

Cardiovascular death

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76

10 wPRS + PC1

Diabetes duration

10 wPRS + PC1 + sex +

age at diagnosis + diabetes
duration

Age at diagnosis

AUC (95% CI)

Fig. 3 Contribution of genomic and non-genomic factors to the risk
prediction model. AUCs (95% CI) are shown for incident complications
(free of outcome at study entry). White circles indicate AUCs with geno-
mic component 10 wPRS + PC1 only; black circles indicate AUCs with
sex alone; black triangles represent AUCs with age at diagnosis alone;

black squares are AUCs with diabetes duration alone; white triangles
indicate AUCs of the full model. Upper section: microvascular and renal
outcomes; middle section: macrovascular and cardiac outcomes; lower
section: combined micro- and macrovascular outcomes and death
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ADVANCE-ON (Fig. 5a) and the number needed to treat
(NNT) to prevent one cardiovascular death could be reduced
by as much as fivefold. For instance, NNT = 12 (p = 0.0062)
in the high-risk third compared with NNT = 64 (not signifi-
cant) in the low-risk third (Fig. 5b).

Discussion

Novel evidence suggests that for many adult-onset common
diseases, a significant degree of the heritability could be
captured with a large number of common SNPs identified
through GWAS [35]. Diabetes is associated with microvascu-
lar and macrovascular outcomes and the line of demarcation
between their pathogenetic mechanisms is blurred [19–21].
For instance, in ADVANCE, we previously reported that
increases in UACR or decreases in eGFR in individuals with
type 2 diabetes were independent predictors of cardiovascular
events and death [22]. More recently, we showed that the
combination of changes in both eGFR and UACR is a better
predictor of major macrovascular events than when the two
are assessed separately [23]. Other groups showed that a clin-
ical score that captures different types of complications is
more powerful in predicting mortality risk than a simple count
of complications [36]. Furthermore, we reported a polygenic

overlap between ischaemic stroke and kidney function [37],
and a shared genetic architecture has been revealed between
type 2 diabetes and BP regulation [10]. We included SNPs
associated with micro- and macrovascular outcomes in addi-
tion to their common risk factors in our multiPRS and provide
evidence that combining 10 wPRS of related traits with sex,
PC1, age at onset and diabetes duration into a joint prediction
model (named here multiPRS model) allows the prediction of
both microvascular and macrovascular endpoints of type 2
diabetes. Our study provides the first evidence that combining
10 wPRS of related traits in a joint model could optimise the
prediction of microvascular and macrovascular endpoints of
type 2 diabetes. The accuracy and generalisation of prediction
of cardiovascular and renal outcomes of diabetes with the
multiPRS was shown in individuals with type 2 diabetes of
five independent cohorts (Table 1).

Our multiPRS model yielded an AUC of 0.65 for incident
stroke in UK Biobank. An AUC of 0.64 was recently reported
with a metaGRS (defined as multiple GRSs combined into
onemeta-score) used to predict ischaemic stroke in the general
white British population of the UK Biobank [18, 27]. Our
predictionmodel was slightly superior to the genetic risk score
derived from 204 variants associated with coronary risk
published by ACCORD, a clinical trial with a design similar
to that of ADVANCE, [38] suggesting that integration of 10
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Fig. 4 Frequency of major microvascular and macrovascular events by
genomic (10wPRS + PC1) and age at onset of diabetes strata.
ADVANCE participants were stratified into equal thirds of low, medium
and high genomic risk strata and of <55, 55–63 and >63 years of age at
diagnosis of diabetes. The control participants used are normotensive
individuals with nomajormicrovascular (a) andmacrovascular (b) events
at any time during the 4.5 year follow-up of the ADVANCE study. ORs
were calculated between high and low genomic component of the
multiPRS (OR 1.53 [95% CI 1.08, 2.17] p = 0.017) and between age at

onset >63 years and <55 years (OR 0.61 [0.43, 0.87] p = 0.0057) for
microvascular events. For macrovascular events, the ORs between high
and low genomic component of the multiPRSwere (OR 2.78 [2.02, 3.81]
p = 2.6 × 10−10) and (OR 1.22 [0.91, 1.64] p = 0.19) between age at onset
>64 years and <57 years. (c, d) The trend testing was done within formal
regression analysis using parametric method separately for different age
categories and genomic strata. Major macrovascular and major microvas-
cular events are defined in the Methods
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wPRS of related traits into a multiPRS model could improve
the performance of the model.

The prediction model developed here outperformed the
FRS, and improved the individual 5 year risk reclassifica-
tion when added to the ADVANCE and FRS clinical
scores but, more importantly, it can be used well before
the apparition of outcomes. In ADVANCE, we observed
that the penetrance of outcomes differs between macro-
and microvascular complications [39]. Here, we are show-
ing that, for macrovascular events, the greatest risk was in
the oldest age groups with the longest duration of diabe-
tes. By contrast, for microvascular events, the highest risk
was also seen with the longest duration of diabetes, but in
people with the youngest onset of diabetes (Fig. 4).
Individuals in the high-risk group had a diagnosis of
diabetes 3 years younger (57 years) than those of the
low-risk group (60 years) for microvascular events, while
for macrovascular events, the age at onset of diabetes was
62 years in the high-risk and 58 years in the low-risk
groups. Finally, the efficacy of stratifying participants
along a gradient of multiPRS was better seen in younger
participants or in those with early onset of type 2 diabetes
for both micro- and macrovascular complications,

suggesting that the usefulness of a multiPRS is in primary
prevention before target organ damage occurs.

Clinical utility of genetic risk scores emerged over the past
few years with the demonstration that individuals in the
highest genetic risk category had the largest clinical benefit
from therapy [40]. The capacity to detect individuals with the
best response to medication is one of the most important
results of our study. Figure 5 illustrates three components of
this study: (1) individuals classified into the low multiPRS
category did not benefit from intensive therapies compared
with participants of the higher multiPRS thirds; (2) the combi-
nation of intensive glucose and BP control showed the best
reduction in risk, as reported in ADVANCE [29]; and finally,
(3) the highest thirds of multiPRS had the lowest NNT with
combined therapies of ADVANCE, i.e. PRS risk classifica-
tion is clinically effective in reducing the burden of the
disease. A limitation of our study is that ADVANCE partici-
pants were older than 65 years at entry or 55 years if they had a
substantial elevated risk of cardiovascular disease. The possi-
bility that all individuals with newly diagnosed type 2 diabetes
could benefit from our multiPRS screening should be
explored further. The UK Prospective Diabetes Study showed
that at diagnosis, 20% of individuals already had diabetes-
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related complications. We are showing here that our predic-
tion model could identify individuals with albuminuria in the
prediabetes phase of the post-MONICA study suggesting that
individuals at high risk for diabetes should also be screened
using the multiPRS model.

We recently completed a cost–utility analysis to evaluate
the practical implications of the prediction of pre-ESRD and
death with the multiPRS vs usual albuminuria screening from
a Canadian healthcare system and societal perspective. The
analysis showed that, for a lifetime horizon, the polygenic risk
scoring was less expensive and more efficacious in terms of
quality adjusted life years than usual screening [41].

Our multiPRS scoring is generalisable to individuals of
European descent, and our multi-ethnic study in preparation
suggests a potential of applying our model to diverse popula-
tions. It is possible that, in the future, more SNPs will be added
and that this, in addition to more complex machine learning
models that would capture non-linear effects between the
wPRS and existing clinical predictors, will further improve
the predictive power [42]. The possibility that our multiPRS
model could predict multimorbidity in non-diabetic individuals
should also be explored, as recent evidence demonstrated that
novel classes of glucose-lowering medication such as SGLT2
class, which improves heart failure in individuals with diabetes,
are also effective in individuals without diabetes [43], suggest-
ing common determinants. The polygenic prediction model
developed here is based on common genomic variants that are
present at birth, and a few reliable demographic variables that
are routinely collected during clinical practice without requiring
the presence of any clinical manifestations or initial outcomes,
i.e. in the pre-symptomatic phase, suggesting its usefulness in
primary prevention. It could be applied in a trial to help identify
participants who could benefit from novel glucose-lowering
treatments or high-risk individuals for cardiovascular outcomes
trials for type 2 diabetes medications by reducing cost or time to
obtain sufficient endpoints to allow a better estimate of risk.
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