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Abstract19

Outliers due to technical errors in water quality data from in situ sensors can reduce data20

quality and have a direct impact on inference drawn from subsequent data analysis. How-21

ever, outlier detection through manual monitoring is infeasible given the volume and ve-22

locity of data the sensors produce. Here we introduce an automated procedure, named23

oddwater, that provides early detection of outliers in water-quality data from in situ sen-24

sors caused by technical issues. Our oddwater procedure is used to first identify the data25

features that differentiate outlying instances from typical behaviours. Then, statistical26

transformations are applied to make the outlying instances stand out in a transformed27

data space. Unsupervised outlier scoring techniques are applied to the transformed data28

space and an approach based on extreme value theory is used to calculate a threshold29

for each potential outlier. Using two datasets obtained from in situ sensors in rivers flow-30

ing into the Great Barrier Reef lagoon, Australia, we show that oddwater successfully31

identifies outliers involving abrupt changes in turbidity, conductivity and river level, in-32

cluding sudden spikes, sudden isolated drops and level shifts, while maintaining very low33

false detection rates. We have implemented this oddwater procedure in the open source34

R package oddwater.35

1 Introduction36

Water-quality monitoring traditionally relies on water samples collected manually.37

The samples are then analyzed within laboratories to determine the water-quality vari-38

ables of interest. This type of rigorous laboratory analysis of field-collected samples is39

crucial in making natural resources management decisions that affect human welfare and40

environmental conditions. However, with the rapid advances in hardware technology, the41

use of in situ water-quality sensors positioned at different geographic sites is becoming42

an increasingly common practice used to acquire real-time measurements of environmen-43

tal and water-quality variables. Though only a subset of the required water-quality vari-44

ables can be measured by these sensors, they have several advantages. Their ability to45

collect large quantities of data and to archive historic records allows for deeper analy-46

sis of water-quality variables to improve understanding about field conditions and water-47

quality processes (Glasgow, Burkholder, Reed, Lewitus, & Kleinman, 2004). Near-real-48

time monitoring also allows operators to identify and respond to potential issues quickly49

and thus manage the operations efficiently. Further, the use of in situ sensors can greatly50

reduce the labor involved in field sampling and laboratory analysis.51

Water-quality sensors are exposed to changing environments and extreme weather52

conditions, and thus are prone to errors, including failure. Automated detection of out-53

liers in water-quality data from in situ sensors has therefore captured the attention of54

many researchers both in the ecology and data science communities (Archer, Baptista,55

& Leen, 2003; Hill, Minsker, & Amir, 2009; Koch & McKenna, 2010; McKenna, Hart,56

Klise, Cruz, & Wilson, 2007; Raciti, Cucurull, & Nadjm-Tehrani, 2012). This problem57

of outlier detection in water-quality data from in situ sensors can be divided into two58

sub-topics according to their focus: (1) identifying errors in the data due to issues un-59

related to water events per se, such as technical aberrations, that make the data unre-60

liable and untrustworthy; and (2) identifying real events (e.g. rare but sudden spikes in61

turbidity associated with rare but sudden high-flow events). Both problems are equally62

important when making natural resource management decisions that affect human wel-63

fare and environmental conditions. Problem 1 can also be considered as a data prepro-64

cessing phase before addressing Problem 2.65

In this work we focus on Problem 1, i.e. detecting unusual measurements caused66

by technical errors that make data unreliable and untrustworthy, and affect performance67

of any subsequent data analysis under Problem 2. According to Yu (2012), the degree68

of confidence in the sensor data is one of the main requirements for a properly defined69
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environmental analysis procedure. For instance, researchers and policy makers are un-70

able to use water-quality data containing technical outliers with confidence for decision71

making and reporting purposes because erroneous conclusions regarding the quality of72

the water being monitored could ensue, leading, for example, to inappropriate or unnec-73

essary water treatment, land management or warning alerts to the public (Kotamäki et74

al., 2009; Rangeti, Dzwairo, Barratt, & Otieno, 2015). Missing values and corrupted data75

can also have an adverse impact on water-quality model building and calibration pro-76

cesses (Archer et al., 2003). Early detection of these technical outliers will limit the use77

of corrupted data for subsequent analysis. For instance, it will limit the use of corrupted78

data in real-time forecasting and online applications such as on-line drinking water-quality79

monitoring and early warning systems (Storey, Van der Gaag, & Burns, 2011), predict-80

ing algal bloom outbreaks leading to fish kill events and potential human health impacts,81

forecasting water level and currents, etc. (Archer et al., 2003; Glasgow et al., 2004; Hill82

& Minsker, 2006). However, because data arrive near continuously at high speed in large83

quantities, manual monitoring is highly unlikely to be able to capture all the errors. These84

issues have therefore increased the importance of developing automated methods for early85

detection of outliers in water-quality data from in situ sensors (Hill et al., 2009).86

Different statistical approaches are available to detect outliers in water-quality data87

from in situ sensors. For example, Hill and Minsker (2006) addressed the problem of out-88

lier detection in environmental sensors using regression-based time series models. In this89

work they addressed the scenario as a univariate problem. Their prediction models are90

based on four data-driven methods: naive, clustering, perceptron, and Artificial Neural91

Networks (ANN). Measurements that fell outside the bounds of an established predic-92

tion interval were declared as outliers. They also considered two strategies: anomaly de-93

tection (AD) and anomaly detection and mitigation (ADAM) for the detection process.94

ADAM replaces detected outliers with the predicted value prior to the next predictions95

whereas AD simply uses the previous measurements without making any alteration to96

the detected outliers. These types of data-driven methods develop models using sets of97

training examples containing a feature set and a target output. Later, Hill et al. (2009)98

addressed the problem by developing three automated anomaly detection methods us-99

ing dynamic Bayesian networks (DBN) and showed that DBN-based detectors, using ei-100

ther robust Kalman filtering or Rao-Blackwellized particle filtering, outperformed that101

of Kalman filtering.102

Another common approach for detecting outliers in environmental sensor data is103

based on residuals (the differences between predicted and actual values). Due to the abil-104

ity of ANNs to model a wide range of complex non-linear phenomena, Moatar, Fessant,105

and Poirel (1999) used ANN techniques to detect anomalies such as abnormal values,106

discontinuities and drifts in pH readings. After developing the pH model, the Student107

t-test and the cumulative Page–Hinkley test were applied to detect changes in the mean108

of the residuals to detect measurement error occurring over short periods of time. The109

work was later expanded to a multivariate scenario with some additional water-quality110

variables including dissolved oxygen, electrical conductivity, pH and temperature (Moatar,111

Miquel, & Poirel, 2001). Their proposed algorithm used both deterministic and stochas-112

tic approaches for the model building process. Observed data were then compared with113

the model forecasts using a set of classical statistical tests to detect outliers, demonstrat-114

ing the effectiveness and advantages of the multimodel approach. Later, Archer et al.115

(2003) proposed a method to detect failures in the water-quality sensors due to biofoul-116

ing based on a sequential likelihood ratio test. Their method also had the ability to pro-117

vide estimates of biofouling onset time, which was useful for the subsequent step of out-118

lier correction.119

A common feature of all of the above methods is that they are usually employed120

in a supervised or semi-supervised context and thus require training data pre-labeled with121

known outliers or data that are free from the anomalous features of interest. In many122
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cases, however, not all the possible outliers are known in advance and can arise spon-123

taneously as new outlying behaviors during the test phase. In such situations, supervised124

methods may fail to detect those outliers. Semi-supervised methods are also unsuitable125

for certain applications due to the unavailability of training data containing only typ-126

ical instances that are free from outliers (Goldstein & Uchida, 2016). The datasets that127

we consider in this paper suffer from both of these limitations highlighting the need for128

a more general approach.129

This paper develops a method for detecting technical outliers in water-quality data130

derived from in situ sensors. Prior work by Leigh et al. (2019) emphasises the impor-131

tance of different anomaly types and end-user needs and provides the starting point for132

constructing a framework for automated anomaly detection in high frequency water-quality133

data from in situ sensors. Their work briefly introduced unsupervised feature based meth-134

ods for detecting technical-outliers in such data. The present paper differs substantially135

from Leigh et al. (2019) as (1) the unsupervised feature based procedure we present for136

detecting technical-outliers in high frequency water-quality data measured by in situ sen-137

sors is its sole focus (2) the unsupervised feature based procedure is fully elaborated in138

both details and depth and (3) the experimental results are enhanced through empha-139

sis on the multivariate capabilities of the unsupervised feature based procedure. Further-140

more, we focus on outliers involving abrupt changes in value, including sudden spikes,141

sudden isolated drops and level shifts (high priority outliers as described in Leigh et al.142

(2019)) rather than the broader suite considered by Leigh et al. (2019).143

First, we present in detail our unsupervised feature based procedure that provides144

early detection of technical outliers in water-quality data from in situ sensors. Rule-based145

methods are also incorporated into the procedure to flag occurrences of impossible, out-146

of-range, and missing values. Second, we provide a comparative analysis of the efficacy147

and reliability of both density- and nearest neighbor distance-based outlier scoring tech-148

niques. Third, we introduce an R (R Core Team, 2018) package, oddwater (Talagala &149

Hyndman, 2019b) that implements the feature-based procedure and related functions.150

Further, to facilitate reproducibility and reuse of the results presented in this paper, we151

have made all of the code and associated datasets available on zenodo (Talagala & Hyn-152

dman, 2019a).153

Our feature-based procedure has many advantages: (1) it can take the correlation154

structure of the water-quality variables into account when detecting outliers; (2) it can155

be applied to both univariate and multivariate problems; (3) the outlier scoring techniques156

that we consider are unsupervised, data-driven approaches and therefore do not require157

training datasets for the model building process and can be extended easily to other time158

series from other sites; (4) the outlier thresholds have a probabilistic interpretation as159

they are based on extreme value theory; (5) the approach has the ability to deal with160

irregular (unevenly spaced) time series; and (6)it can easily be extended to streaming161

data. In contrast to a batch scenario, which assumes that the entire dataset is available162

prior to the analysis with the focus on detecting complete events, the streaming data sce-163

nario gives many additional challenges due to high velocity, unbounded, nonstationary164

data with incomplete events (Hill et al., 2009; Talagala, Hyndman, Smith-Miles, Kan-165

danaarachchi, & Muñoz, 2019). In this paper, although our oddwater procedure is in-166

troduced as a batch method, it can easily be extended to streaming data such that it can167

provide near-real-time support using a sliding window technique.168

2 Materials and Methods169

Our unsupervised feature-based procedure for detecting outliers in water-quality170

data from in situ sensors has six main steps (Figure 1), and the structure of this section171

is organised accordingly. For easy reference, we named our unsupervised feature-based172
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procedure as oddwater procedure, which stands for Outlier Detection in Data from WA-173

TER-quality sensors.174

Figure 1. Unsupervised feature-based procedure, named oddwater procedure for outlier de-

tection in water quality data from in situ sensors. Squares represents the main steps involved.

Circles correspond to input and output.

175

176

177

2.1 Study region and data178

To evaluate the effectiveness of our oddwater procedure we considered a challeng-179

ing real-world problem of monitoring water-quality using in situ sensors in a natural river180

system. This is challenging because the system is susceptible to a wide range of envi-181

ronmental, biological and human impacts that can lead to variation in water-quality and182

affect the technological performance of the sensors. For comparison, we evaluated two183

study sites, Sandy Creek and Pioneer River (PR), both in the Mackay-Whitsunday re-184

gion of northeastern Australia (Mitchell, Brodie, & White, 2005). These two rivers flow185

into the Great Barrier Reef lagoon and have catchment areas of 1466 km2 and 326 km2,186

respectively. In this region, the wet season typically occurs from December to April and187

is dominated by higher rainfall and air temperatures, whereas the dry season typically188

occurs from May to November with lower rainfall and air temperatures (McInnes et al.,189

2015). The sensors at these two sites are housed within monitoring stations on the river190

banks. Water is pumped from the rivers to the stations approximately every 60 or 90191

minutes to take measurements of various water-quality variables that are logged by the192

sensors. Here we focused on three water-quality variables: turbidity(NTU), conductiv-193

ity (strictly, specific conductance at 250C; µS/cm) and river level (m).194

The water-quality data obtained from in situ sensors located at Sandy Creek were195

available from 12 March 2017 to 12 March 2018. The data set included 5402 recorded196

points. These time series were irregular (i.e. the frequency of observations was not con-197

stant) with a minimum time gap of 10 minutes and a maximum time gap of around 4198

hours. The data obtained from Pioneer River were available from 12 March 2017 to 12199

March 2018, and included 6303 recorded points. Many missing values were observed dur-200

ing the initial part of all three series, i.e. turbidity, conductivity and river level, at Pi-201

oneer River. With the help of a group of water-quality experts who were familiar with202

the study region and with over 40 years of combined knowledge of river water quality,203

observations were labeled as outliers or not, with the aim of evaluating the performance204

of the procedure. Our Shiny web application available through the oddwater R package205

was used during the labeling process to pinpoint observations and provide greater visual206

insight into the data. Using this interactive visualization tool and expert knowledge, the207

ground-truth labels were decided by consensus vote.208

2.2 Apply rule-based approaches209

Following Thottan and Ji (2003), we incorporated simple rules into our oddwater210

procedure to detect outliers such as out-of-range values, impossible values (e.g. negative211

values) and missing values, and labeled them prior to applying the statistical transfor-212

mations introduced in Section 2.4.213

If a sensor reading was outside the corresponding sensor detection range, it was marked214

as an outlier. Negative readings are also inaccurate and impossible for river turbidity,215

conductivity and level. We therefore imposed a simple constraint on the algorithm to216

filter these values and mark them as outliers. Missing values are also frequently encoun-217
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tered in water-quality sensor data (Rangeti et al., 2015). We detected missing values by218

calculating the time gaps between readings. If a gap exceeded the maximum allowable219

time difference between any two consecutive readings, the corresponding time stamp was220

then marked as an outlier due to missingness. Here the maximum allowable time differ-221

ence was set at 180 minutes, given that the water-quality measurements were set to be222

taken at most every 90 minutes (measurements were often taken at higher frequencies223

during high-flow events, e.g. every 10-15 minutes, and occasionally as one-off measure-224

ments at times of interest to water managers).225

2.3 Identify data features226

After labeling out-of-range, impossible and missing values as outliers, further in-227

vestigation was done with the remaining observations. We initiated this investigation by228

identifying common characteristics or patterns of the possible types of outliers in water-229

quality data that would differentiate them from typical instances or events. For turbid-230

ity, for example, “extreme” deviations upward are more likely than deviations downward231

(Panguluri, Meiners, Hall, & Szabo, 2009). The opposite is true for conductivity (Tut-232

mez, Hatipoglu, & Kaymak, 2006). Further, in a turbidity time series, a sudden isolated233

upward shift (spike) is a point outlier (a single observation that is surprisingly large, in-234

dependent of the neighboring observations (Goldstein & Uchida, 2016)), but if the sud-235

den upward shift is followed by a gradually decaying tail then it becomes part of the typ-236

ical behavior. For river level, rates of rise are often fast compared with fall rates. In gen-237

eral, isolated data points that are outside the general trend are outliers. Further, nat-238

ural water processes under typical conditions generally tend to be comparatively slow;239

sudden changes therefore mostly correspond to outlying behaviors. Hereafter, these char-240

acteristics will be referred to as ‘data features’.241

2.4 Apply statistical transformations242

After identifying the data features, different statistical transformations were ap-243

plied to the time series to highlight different types of outliers focusing on sudden isolated244

spikes, sudden isolated drops, sudden shifts, and clusters of spikes (Table 1) that devi-245

ate from the typical characteristics of each variable (Leigh et al., 2019).246

In this work, we considered the outlier detection problem in a multivariate setting.250

By applying different transformations on water-quality variables, we converted our orig-251

inal problem of outlier detection in the temporal context to a non-temporal context through252

a high dimensional data space with three dimensions defined by the three variables: tur-253

bidity, conductivity and river level. Different transformations were applied on different254

axes of the three dimensional data space resulting in different data patterns. We eval-255

uated the performance of the transformations (Dang & Wilkinson, 2014) using the max-256

imum separability of the two classes: outliers and typical points in the three dimensional257

data space. To provide a better visual illustration, in Figure 2 we present only the two258

dimensional data space defined by turbidity and conductivity; however, our actual data259

space is three dimensional. In this work our focus was to evaluate whether each point260

in time is an outlier or not such that an alarm could be triggered in the presence of an261

outlier. However, it was not our interest to investigate which variable(s) is (are) respon-262

sible for the outlier in time. Therefore, in Figure 2, a point is marked as an outlier in263

the two dimensional space if at least one variable corresponding to that point was labelled264

as an outlier by the water-quality experts.265

When the transformation involves both the current value, Yt, and the lagged value,266

Yt−1, (as in the first difference and first derivative) both the outlier and immediate neigh-267

bour are highlighted in the transformed space. For example, if an outlier occurs at time268

point t, then the two values derived from the first derivative transformation ((yt−yt−1)269

and (yt+1−yt)) are highlighted as outlying values, because they both involve yt. There-270
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Table 1. Transformation methods used to highlight different types of outliers in water-quality

sensor data. Let Yt represent an original series from one of the three variables: turbidity, conduc-

tivity and level at time t.

247

248

249

Data Feature Requirement Possible

Transformation

Formula

High variability of the data. Stabilize the variance across

time series and make the pat-

terns more visible (e.g. level

shifts)

Log transformation log(yt)

Isolated spikes (in both posi-

tive and negative directions)

that are outside the general

trend are considered as out-

liers. Under typical behavior,

sudden upward (downward)

shifts are possible for turbid-

ity (conductivity), but their

rate of fall (rise) is generally

slower than the rate of rise

(fall).

Separate isolated spikes from

the general upward/downward

trend patterns.

First difference log(yt/yt−1)

Missing values in the data.

the maximum allowable time

difference between observa-

tions is 180 minutes.

Identify missing values. Time gap ∆t

Data are unevenly spaced

time series.

Handle irregular time series. First derivative

(Data points with

large gaps will get

small value. Large

gaps indicate the

lack of information to

make a claim regard-

ing the points.)

xt = log(yt/yt−1)/∆t

One sided derivative

Extreme upward trend in

turbidity and level under

typical behavior.

Separate spikes from typical

upward trends.

Turbidity or level min{xt, 0}

Extreme downward trend

in conductivity under typical

behavior.

Separate isolated drops from

typical downward trends.

Conductivity max{xt, 0}

High or low variability in the

data.

Detect change points in vari-

ance.

Rate of change (yt − yt−1)/yt

Natural processes are compar-

atively slow. Sudden changes

(upward or downward move-

ments) typically correspond to

outlying instances.

Detect sudden changes (both

upward and downward move-

ments)

Relative difference yt− (1/2)(yt−1 +yt+1)
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fore, each outlying instance is now represented by two consecutive values under the first271

derivative or first difference transformation. As a result, one outlying instance is now rep-272

resented by two points in the transformed data space (Figure 2(c, d)). The goal of the273

one sided derivative transformation is to select only one high value as a representative274

point for each outlying instance. However, the high values obtained could correspond275

to either the actual outlying time point or the neighboring time point, because each trans-276

formed value is derived from two consecutive observations. For example, in the data ob-277

tained from Sandy Creek, the one sided derivative transformation (Figure 2(e)) clearly278

separates all of the target outlying instances from the typical points using only one point279

for each outlying instance, shown as either red triangles (corresponding to outliers) or280

green squares (corresponding to the immediate neighbours of outliers). The second rep-281

resentative member of each outlying instance mingles with the typical points, allowing282

only one point to standout on behalf of the corresponding outlying instance. If the pri-283

mary focus of detecting technical outliers is to alert managers of sensor failures, then it284

will be inconsequential if the alarm is triggered either at the actual time point correspond-285

ing to the outlier or at the next immediate time point. However, if the purpose is dif-286

ferent, such as producing a trustworthy dataset by labeling or correcting detected out-287

liers, then additional conditions should be imposed to ensure that the time points de-288

clared as outliers correspond to the actual outlying points and not to their immediate289

neighboring points.290
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./fig/transformType-1.png

Figure 2. Bivariate relationships between transformed series of turbidity and conductivity

measured by in situ sensors at Sandy Creek. In each scatter plot, outliers determined by water-

quality experts are shown in red, while typical points are shown in black. Neighboring points are

marked in green. (a) Original series, (b) Log transformation, (c) First difference, (d) First deriva-

tive, (e) One sided derivative, and (f) Rate of change, (g) Relative difference (for original series),

(h) Relative difference (for log transformed series). In each scatter plot, data are normalised such

that they are bounded by the unit hypercube.

291

292

293

294

295

296

297

2.5 Calculate outlier scores298

We considered eight commonly used, unsupervised outlier scoring techniques for299

high dimensional data involving nearest neighbor distances or densities of the observa-300

tions and applied them to the three dimensional data space defined by the three vari-301

ables: turbidity, conductivity and river level. Methods based on k-nearest neighbor dis-302

tances (where k ∈ Z+) were the NN-HD algorithm (details of this algorithm, which was303

inspired by HDoutliers algorithm (Wilkinson, 2018) are provided in Supporting Infor-304

mation), KNN-AGG and KNN-SUM algorithms (Angiulli & Pizzuti, 2002; Madsen, 2018)305

and Local Distance-based Outlier Factor (LDOF) algorithm (Zhang, Hutter, & Jin, 2009),306

which calculate the outlier score under the assumption that any outlying point (or out-307
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lying clusters of points) in the data space is (are) isolated; therefore the outliers are those308

points having the largest k-nearest neighbor distances. In contrast, the density based Lo-309

cal Outlier Factor (LOF) (Breunig, Kriegel, Ng, & Sander, 2000), Connectivity-based310

Outlier Factor (COF) (Tang, Chen, Fu, & Cheung, 2002), Influenced Outlierness (IN-311

FLO) (Jin, Tung, Han, & Wang, 2006) and Robust Kernel-based Outlier Factor (RKOF)312

(Gao, Hu, Zhang, Zhang, & Wu, 2011) algorithms calculate an outlier score based on how313

isolated a point is with respect to its surrounding neighbors, and therefore, the outliers314

are those points having the lowest densities (see Supporting Information for detail). Each315

algorithm assigns outlier scores for all of the data points in the high dimensional space316

that describe the degree of outlierness of the individual data points such that outliers317

are those points having the largest scores (Kriegel, Kröger, & Zimek, 2010; Shahid, Naqvi,318

& Qaisar, 2015). This step allowed us to set a data driven threshold (Section 2.6) for319

the outlier scores to select the most relevant outliers (Chandola, Banerjee, & Kumar, 2009).320

2.6 Calculate outlier threshold321

Following Schwarz (2008), Burridge and Taylor (2006) and Wilkinson (2018), we322

used extreme value theory (EVT) to calculate a separate outlier threshold for each set323

of outlier scores calculated using a given unsupervised outlier scoring technique (intro-324

duced in Section 2.5) and assign a bivariate label for each point either as an outlier or325

typical point. Thus, 8 outlier scoring techniques resulted 8 different thresholds for a given326

dataset. The threshold calculation process started from a subset of data containing 50%327

of observations with the smallest outlier scores, under the assumption that this subset328

contained the outlier scores corresponding to typical data points and the remaining sub-329

set contained the scores corresponding to the possible candidates for outliers. Follow-330

ing Weissman’s spacing theorem (Weissman, 1978), the algorithm then fit an exponen-331

tial distribution to the upper tail of the outlier scores of the first subset, and computed332

the upper 1−α (in this work α was set to 0.05) points of the fitted cumulative distri-333

bution function, thereby defining an outlying threshold for the next outlier score. From334

the remaining subset, the algorithm then selected the point with the smallest outlier score.335

If this outlier score exceeded the cutoff point, all the points in the remaining subset were336

flagged as outliers and searching for outliers ceased. Otherwise, the point was declared337

as a non-outlier and was added to the subset of the typical points. The threshold was338

then updated by including the latest addition. The searching algorithm continued un-339

til an outlier score was found that exceeded the latest threshold (Schwarz, 2008). We per-340

formed this threshold calculation under the assumption that the distribution of outlier341

scores produced by each of the eight unsupervised outlier scoring techniques for high di-342

mensional data was in the maximum domain of attraction of the Gumbel distribution,343

which consists of distribution functions with exponentially decaying tails including the344

exponential, gamma, normal and log-normal (Embrechts, Klüppelberg, & Mikosch, 2013).345

2.7 Performance evaluation346

In this paper, we focused on high priority outliers as described in Leigh et al. (2019)347

in which importance ranking of different outlier types was done by taking into account348

the end-user goals and the potential impact of outliers going undetected. However, it is349

beyond the scope of this paper to discuss in detail the different types of outliers and their350

importance ranking. For more detail, we refer the reader to Leigh et al. (2019). We per-351

formed an experimental evaluation on the accuracy and computational efficiency of our352

oddwater procedure with respect to the eight outlier scoring techniques using the dif-353

ferent transformations (Table 1) and different combinations of variables (turbidity, con-354

ductivity and river level). These experimental combinations were evaluated with respect355

to common measures for binary classification based on the values of the confusion ma-356

trix, which summarizes the false positives (FP; i.e. when a typical observation is mis-357

classified as an outlier), false negatives (FN; i.e. when an actual outlier is misclassified358
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as a typical observation), true positives (TP; i.e. when an actual outlier is correctly clas-359

sified), and true negatives (TN; i.e. when an observation is correctly classified as a typ-360

ical point). In this work, false positives and false negatives are equally undesirable as false361

positives may demand unnecessary and/or expensive actions for corrections and refine-362

ment, and false negatives greatly reduce confidence in the data and results derived from363

them. The measures we considered include accuracy364

accuracy = (TP + TN)/(TP + FP + FN + TN), (1)

which explains the overall effectiveness of a classifier; and geometric-mean365

GM =
√
TP ∗ TN, (2)

which explains the relative balance of TP and TN of the classifier (Sokolova & Lapalme,366

2009). According to Hossin and Sulaiman (2015), these measures are not enough to cap-367

ture the poor performance of the classifiers in the presence of imbalanced datasets where368

the size of the typical class (positive class) is much larger than the outlying class (neg-369

ative class). The datasets obtained from in situ sensors were highly imbalanced and neg-370

atively dependent (i.e. containing many more typical observations than outliers). There-371

fore, we used three additional measures that are recommended for imbalanced problems372

with only two classes (i.e. typical and outlying) by Ranawana and Palade (2006): the373

negative predictive value374

NPV = TN/(FN + TN), (3)

which measures the probability of a negatively predicted pattern actually being nega-375

tive; positive predictive value376

PPV = TP/(TP + FP ), (4)

which measures the probability of a positively predicted pattern actually being positive;377

and optimized precision, which is a combination of accuracy, sensitivity and specificity378

metrics (Ranawana & Palade, 2006). The optimized precision is calculated as379

OP = P −RI, (5)

where380

P = SpNn + SnNp (6)
381

RI = |Sp − Sn|/(Sp + Sn) (7)
382

Sp = TN/(TN + FP ) (8)
383

Sn = TP/(TP + FN) (9)

and Np and Nn represent the proportion of positives (outliers) and negatives (typical)384

within the entire dataset).385

To evaluate the performance of our oddwater procedure, we incorporated additional386

steps after detecting the outlying time points using the outlying threshold based on EVT.387

This was done because the time points declared as outliers by the outlying threshold could388

correspond to either the actual outlying points or to their neighbors. Once the time points389

were declared as outliers, the corresponding points in the three dimensional space were390

further investigated by comparing their positions with respect to the median of the typ-391

ical points declared by the oddwater procedure. This step allowed us to find the most392

influential variable for each outlying point. For example, in Figure 2(e) the isolated point393

in the first quadrant is an outlier in the two dimensional space due to the outlying be-394

havior of the conductivity measurement. This allowed us because the deviation of this395

point from the median of the typical points (around (0, 0)) happens primarily along the396

conductivity axis. In contrast, the four isolated points in the third quadrant are outliers397

due to the outlying behavior of the turbidity measurement because the deviations of the398
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four points from the median of the typical points (around (0, 0)) happen primarily along399

the turbidity axis. After detecting the most influential variable for each outlying instance400

in the three dimensional space, further investigations were carried out separately for each401

individual outlying instance with respect to the most influential variable detected. This402

allowed us to see whether the outlying instance was due to a sudden spike or a sudden403

drop by comparing the direction of the detected points with respect to the mean of its404

two immediate surrounding neighbors and itself. These additional steps in the oddwa-405

ter procedure allowed us to trigger an alarm at the actual outlying point in time if the406

neighboring points were declared as outliers instead of the actual outliers. However, we407

acknowledge that these additional steps select only the most influential variable, not all408

of the influential variables in the presence of more than one influential variable. The ad-409

ditional steps were incorporated solely to measure the performance of the oddwater pro-410

cedure. In practice, because the goal is to trigger an alarm in an occurrence of a tech-411

nical outlier, it is inconsequential if the alarm is triggered either at the actual time point412

or at the immediate neighbouring time points corresponding to the actual outlier. As413

such, users of the oddwater procedure can ignore these additional steps.414

Using the outlier threshold, our oddwater procedure assigns a bivariate label (ei-415

ther as outlier or typical point) to each observed time point and thereby creates a vec-416

tor of predicted class labels. That is, if a time point is declared as an outlier by oddwa-417

ter procedure, then that could be due to at least one variable in the dataset. We also418

declared each time point as an outlier or not based on the labels assigned by the water-419

quality experts. At a given time point, if at least one variable was labeled as an outlier420

by the water-quality experts then the corresponding time point was marked as an out-421

lier, thereby creating a vector of ground-truth labels. Then, the performance measures422

were calculated based on these two vectors of ground-truth labels and predicted class423

labels. Thus, this performance evaluation was done with respect to the algorithm’s abil-424

ity to label a point in time as an outlier or not (i.e. a point in time is an outlier if the425

observed value for any one or more of the three variables measured at that point in time426

are outliers).427

2.8 Software implementation428

The oddwater procedure was implemented in the open source R package oddwater429

(Talagala & Hyndman, 2019b), which provides a growing list of transformation and out-430

lier scoring methods for high dimensional data together with visualization and perfor-431

mance evaluation techniques. In addition to the implementations available through oddwater432

package, DDoutlier package (Madsen, 2018) was also used for outlier score calculations.433

We measured the computation time (mean execution time) using the microbenchmark434

package (Mersmann, 2018) for different combinations of algorithms, transformations and435

variable combinations on 28 core Xeon-E5-2680-v4 @ 2.40GHz servers. We also devel-436

oped an R Shiny web application (available via oddwater R package) to provide inter-437

active visual analytic tools to gain greater insight into the data and perform preliminary438

investigations of the relationships between water-quality variables at different sites. To439

facilitate reproducibility of the results presented herein, we have archived a snapshot of440

version 0.7.0 of the R package on zenodo (Talagala & Hyndman, 2019a) along with the441

code and datasets used. The latest version and on-going development of the oddwater442

R package are available from Github (https://github.com/pridiltal/oddwater).443

3 Results444

3.1 Analysis of water-quality data from in situ sensors at Sandy Creek445

A negative relationship was clearly visible between the water-quality variables tur-446

bidity and conductivity and also between conductivity and river level measured by in situ447

sensors at Sandy Creek (Figures 3 (a–i, b–i, c–i) and 4(a,c)). Further, no clear separa-448

–12–This article is protected by copyright. All rights reserved.



manuscript submitted to Water Resources Research

tion was observed between the target outliers and the typical points in the original data449

space (Figure 4(a–c)). However, a clear separation was apparent between the two sets450

of points once the one sided derivative transformation (an appropriate transformation451

for unevenly spaced data) was applied to the original series (Figures 4(d–f) and 3 (a–452

ii, b–ii, c–ii) ).453

KNN-AGG and KNN-SUM algorithms performed on all three water-quality vari-454

ables together using the one sided derivative transformation gave the highest OP (0.83)455

and NPV values(0.9996), which are the most recommended measurements for negatively456

dependent data where the focus is more on sensitivity (the proportion of positive pat-457

terns being correctly recognized as being positive) than specificity (Ranawana & Palade,458

2006).459

./fig/transDemoTCL-1.png

Figure 3. Time series for turbidity (NTU) (a–i), conductivity (µS/cm) (b–i) and river level

(m) (c–i) measured by in situ sensors at Sandy Creek. Transformed series (one sided derivatives)

of turbidity (NTU) (a–ii), conductivity (µS/cm) (b–ii) and river level (m) (c–ii) measured by in

situ sensors at Sandy Creek. In each plot outliers determined by water-quality experts are shown

in red, while typical points are shown in black. Neighboring points are marked in green.
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./fig/VisualiseOutlierPairsTransData-1.png

Figure 4. Top panel (a–c): Bi-variate relationships between original water-quality variables

(turbidity (NTU), conductivity (µS/cm) and river level (m)) measured by in situ sensors at

Sandy Creek. Bottom panel (d–f): Bi-variate relationships between transformed series (one sided

derivative) of turbidity (NTU), conductivity (µS/cm) and river level (m) measured by in situ

sensors at Sandy Creek. In each scatter plot, outliers determined by water-quality experts are

shown in red, while typical points are shown in black. Neighboring points are marked in green.
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Based on OP values, the one sided derivative transformation outperformed the first475

derivative transformation (Table 2, rows 1–2 compared to rows 3–4). Further, the distance-476

based outlier detection algorithms NN-HD, KNN-AGG and KNN-SUM outperformed477

all others (Table 2, rows 1–10 compared to rows 11–48). Among the three methods, the478

performance of k-nearest neighbor distance-based algorithms were only slightly higher479

(OP = 0.83) than the NN-HD algorithm (OP= 0.80), which is based only on the near-480

est neighbor distance. The algorithm combinations with the two highest OP values also481

had highest NPV (0.9996) and PPV (approximately 0.83). Furthermore, considering river482

level for the detection of outliers in the water-quality sensors slightly improved the per-483

formance (OP = 0.83). Among the analysis with transformed series, LOF with the first484

derivative transformation performed the least well (OP= 0.25). For most of the outlier485

detection algorithms (KNN-SUM, KNN-AGG, NN-HD , COF, LOF and INFLO) the poor-486
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Table 2. Performance metrics of outlier detection algorithms performed on multivariate water-

quality time series data (T, turbidity; C, conductivity; L, river level) from in situ sensors at

Sandy Creek, arranged in descending order of OP values. See Sections 2.7-8 for performance

metric codes and details.

471

472

473

474

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)

1 T-C-L One sided Derivative KNN-AGG 0.9994 164.23 0.83 0.83 0.9996 404.0
2 T-C-L One sided Derivative KNN-SUM 0.9994 164.23 0.83 0.83 0.9996 186.8
3 T-C First Derivative NN-HD 0.9991 146.87 0.80 0.57 0.9996 45.0
4 T-C First Derivative KNN-AGG 0.9989 146.86 0.80 0.50 0.9996 415.8
5 T-C One sided Derivative NN-HD 0.9996 146.91 0.80 1.00 0.9996 112.9

6 T-C One sided Derivative KNN-AGG 0.9994 146.90 0.80 0.80 0.9996 411.7
7 T-C One sided Derivative KNN-SUM 0.9994 146.90 0.80 0.80 0.9996 190.4
8 T-C-L First Derivative KNN-AGG 0.9993 127.22 0.60 1.00 0.9993 404.4
9 T-C-L First Derivative KNN-SUM 0.9993 127.22 0.60 1.00 0.9993 188.9

10 T-C First Derivative KNN-SUM 0.9993 103.88 0.50 1.00 0.9993 189.5

11 T-C First Derivative LDOF 0.9991 103.87 0.50 0.67 0.9993 17444.7
12 T-C One sided Derivative LDOF 0.9991 103.87 0.50 0.67 0.9993 17253.8
13 T-C-L First Derivative NN-HD 0.9991 103.87 0.44 1.00 0.9991 52.5
14 T-C-L First Derivative INFLO 0.9965 103.74 0.44 0.12 0.9991 1107.9
15 T-C-L First Derivative COF 0.9987 103.86 0.44 0.50 0.9991 5939.8

16 T-C-L First Derivative RKOF 0.9963 103.73 0.44 0.12 0.9991 369.7
17 T-C-L One sided Derivative NN-HD 0.9991 103.87 0.44 1.00 0.9991 118.2
18 T-C-L One sided Derivative INFLO 0.9985 103.85 0.44 0.40 0.9991 1113.6
19 T-C-L One sided Derivative COF 0.9987 103.86 0.44 0.50 0.9991 5787.4
20 T-C-L One sided Derivative LDOF 0.9985 103.85 0.44 0.40 0.9991 17261.9

21 T-C-L One sided Derivative LOF 0.9985 103.85 0.44 0.40 0.9991 516.9
22 T-C-L One sided Derivative RKOF 0.9976 103.80 0.44 0.20 0.9991 370.5
23 T-C-L Original series KNN-AGG 0.9989 103.87 0.44 0.67 0.9991 391.6
24 T-C-L Original series INFLO 0.9974 103.79 0.44 0.18 0.9991 1070.7
25 T-C-L Original series LDOF 0.9987 103.86 0.44 0.50 0.9991 17156.9

26 T-C-L Original series RKOF 0.9985 103.85 0.44 0.40 0.9991 354.0
27 T-C First Derivative INFLO 0.9983 73.43 0.28 0.20 0.9991 1194.9
28 T-C First Derivative COF 0.9991 73.46 0.28 1.00 0.9991 5991.8
29 T-C First Derivative LOF 0.9987 73.44 0.28 0.33 0.9991 512.3
30 T-C First Derivative RKOF 0.9983 73.43 0.28 0.20 0.9991 363.2

31 T-C One sided Derivative INFLO 0.9987 73.44 0.28 0.33 0.9991 1207.0
32 T-C One sided Derivative COF 0.9987 73.44 0.28 0.33 0.9991 5880.8
33 T-C One sided Derivative LOF 0.9969 73.38 0.28 0.08 0.9991 511.3
34 T-C One sided Derivative RKOF 0.9961 73.35 0.28 0.06 0.9991 368.3
35 T-C Original series KNN-AGG 0.9989 73.45 0.28 0.50 0.9991 405.1

36 T-C Original series INFLO 0.9974 73.40 0.28 0.10 0.9991 1143.6
37 T-C Original series LDOF 0.9987 73.44 0.28 0.33 0.9991 17022.9
38 T-C Original series RKOF 0.9985 73.44 0.28 0.25 0.9991 351.8
39 T-C-L First Derivative LDOF 0.9989 73.45 0.25 1.00 0.9989 17323.2
40 T-C-L First Derivative LOF 0.9989 73.45 0.25 1.00 0.9989 517.1

41 T-C-L Original series NN-HD 0.9987 73.44 0.25 0.50 0.9989 48.6
42 T-C-L Original series KNN-SUM 0.9989 73.45 0.25 1.00 0.9989 177.3
43 T-C-L Original series COF 0.9989 73.45 0.25 1.00 0.9989 5931.7
44 T-C-L Original series LOF 0.9989 73.45 0.25 1.00 0.9989 505.0
45 T-C Original series NN-HD 0.9987 0.00 0.00 0.00 0.9989 41.7

46 T-C Original series KNN-SUM 0.9989 0.00 0.00 NaN 0.9989 184.6
47 T-C Original series COF 0.9989 0.00 0.00 NaN 0.9989 5896.4
48 T-C Original series LOF 0.9989 0.00 0.00 NaN 0.9989 502.7
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est performances were associated with the untransformed original series, having the low-487

est OP and NPV values, highlighting how data transformation can improve the ability488

of outlier detection algorithms while maintaining low false detection rates.489

./fig/onesidedderivativeTCLsandy-1.png

Figure 5. Classification of outlier scores produced from different algorithms as true negatives

(TN), true positives (TP), false negatives (FN), false positives (FP). The top three panels (i,

ii, iii) correspond to the original series (turbidity, conductivity and river level) measured by in

situ sensors at Sandy Creek. The target outliers (detected by water-quality experts) are shown

in red, while typical points are shown in black. The remaining panels (a–h) give outlier scores

produced by different outlier detection algorithms for high dimensional data when applied to the

transformed series (one sided derivative) of the three variables: turbidity, conductivity and level.

Through different outlier scoring algorithms (Panel a - h), we are evaluating whether each point

in time is an outlier or not. Therefore, from Panel a-h, if the outlier scoring algorithm is effective,

then there should be either TP or TN at each point in time when either a red triangle is plotted

in at least one of the three panels (i- iii), or black dots are plotted in all of the top three panels

(i - iii), respectively. Because outlier scores are non negative and are mostly clustered near zero,

with some occasional high values, a square root transformation was applied to reduce skewness of

the data in Panel (a) to (h).
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The three outlier detection algorithms that demonstrated the highest level of ac-504

curacy (NN-HD, KNN-AGG and KNN-SUM) also outperformed the others with respect505

to computational time. NN-HD algorithm required the least computational time. Among506

the remaining two, the mean computational time of KNN-AGG (≈ 400 milliseconds) was507

twice that of KNN-SUM’s (< 200 milliseconds). LOF and its extensions (INFLO, COF508

and LDOF) demonstrated the poorest performance with respect computational time (>509

500 milliseconds on average).510

Only KNN-SUM and KNN-AGG assigned high scores to most of the targeted out-511

liers in turbidity, conductivity and level data transformed using the one-sided derivative512

(Figure 5(a,b)). For each outlying instance, however, the next immediate neighboring513

point was assigned the high outlier score instead of the true outlying point. After de-514

termining the most influential variable using the additional steps of the algorithm (Sec-515

tion 2.7), adjustments were made to correct this to the actual outlier. Because of this516

correction, the first orange triangle for the True Positive in Figure 5(a – h), for instance,517

is always plotted next to the high outlier score (corresponding to the neighboring point),518

pointing to the actual outlier instead of the neighbouring point. The outlier scores pro-519

duced by LOF and COF (Figure 5(d,e)) were unable to capture the outlying behaviors520

correctly and demonstrated high scattering. In comparison to other outlier scoring al-521

gorithms, KNN-SUM algorithm displayed a good compromise between accuracy and com-522

putational efficiency ( Table 2).523

3.2 Analysis of water-quality data from in situ sensors at Pioneer River524

Compared to Sandy Creek where the river level is mostly less than 1 meter with525

occasional bursts of atypical spikes and flow events resulting in levels up to 14.8 meters526

(Figure 3 (c–i)), Pioneer River is much deeper with the river level ranging between 13.9527

and 16.5 metres during the period of study (Figure 6 (c–i)). Two small dense clusters528

of points gathered around zero were observed for all three variables from late March to529

mid April in 2017 (Figure 6). These co-occurrences of values around zero are atypical530

behaviour and may have been due to technical issues with the sensor equipment. These531

type of anomalies can be easily detected by incorporating rule based methods.532

Some of the target outliers in the data obtained from the in situ sensors at Pio-533

neer River only deviated slightly from the general trend (Figure 6 (a–i)), making out-534

lier detection challenging. A negative relationship was clearly visible between turbidity535

and conductivity (Figure 7(a)), however, the relationship between level and conductiv-536

ity was complex (Figure 7(c)). Most of the target outliers were masked by the typical537

points in the original space (Figure 7(a–c)). Similar to Sandy Creek, data obtained from538

the sensors at Pioneer River showed good separation between outliers and typical points539

under the one sided derivative transformation (Figures 7(d–f) and 6 (a–ii, b–ii, c–ii).540

However, the sudden spikes in turbidity labeled as outliers by water-quality experts could541

not be separated from the majority by a large distance and were only visible as a small542

group (micro cluster (Goldstein & Uchida, 2016)) in the boundary defined by the typ-543

ical points (Figure 7(d, e)).544

From the performance analysis, it was observed that turbidity and conductivity to-545

gether produced better results (Table 3, rows 1–8) than when combined with river level,546

which tended to reduce the performance (i.e. generating lower OP and NPV values) while547

increasing the false negative rate (Table 3, rows 9–13). KNN-AGG and KNN-SUM (Ta-548

ble 3, rows 2–3) had the highest accuracy (0.9978), highest geometric means (492.8012),549

highest OP (0.88) and highest NPV (0.9984). Despite the challenge given by the small550

spikes which could not be clearly separated from the typical points, KNN-AGG, KNN-551

SUM and NN-HD with one sided derivatives of turbidity and conductivity still detected552

some of those points as outliers while maintaining low false negative and false positive553

rates. Similar to Sandy Creek, NN-HD (< 200 milliseconds on average) and KNN-SUM554
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(< 230 milliseconds on average) demonstrated the highest computational efficiency for555

the data obtained from Pioneer River.556

./fig/transdemoTCLPioneer-1.png

Figure 6. Time series for turbidity (NTU) (a–i), conductivity (µS/cm) (b–i) and river level

(m) (c–i) measured by in situ sensors at Pioneer River. Transformed series (one sided deriva-

tives) of turbidity (NTU) (a–ii), conductivity (µS/cm) (b–ii) and river level (m) (c–ii) measured

by in situ sensors at Pioneer River. In each plot, outliers determined by water-quality experts are

shown in red, while typical points are shown in black. Neighboring points are marked in green.
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./fig/VisualiseOutlierPairsOriginalDataPioneer-1.png

Figure 7. Top panel (a–c): Bi-variate relationships between original water-quality variables

(turbidity (NTU), conductivity (µS/cm) and river level (m)) measured by in situ sensors at Pi-

oneer River. Bottom panel (d–f): Bi-variate relationships between transformed series (one sided

derivative) of turbidity (NTU), conductivity (µS/cm) and river level (m) measured by in situ

sensors at Pioneer River. In each scatter plot, outliers determined by water-quality experts are

shown in red, while typical points are shown in black. Neighboring points are marked in green.
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./fig/onesidedderivativeTCpioneer-1.png

Figure 8. Classification of outlier scores produced from different algorithms as true negatives

(TN), true positives (TP), false negatives (FN), false positives (FP). The top two panels (i and

ii) correspond to the original series (turbidity and conductivity) measured by in situ sensors at

Pioneer River. The target outliers (detected by water-quality experts) are shown in red, while

typical points are shown in black. The remaining panels (a–h) give outlier scores produced by

different outlier detection algorithms for high dimensional data when applied to the transformed

series (one sided derivative) of the two variables: turbidity and conductivity. Through differ-

ent outlier scoring algorithms (Panel a - h), we are evaluating whether each point in time is an

outlier or not. Therefore, from Panel a-h, if the outlier scoring algorithm is effective, then there

should be either TP or TN at each point in time when either a red triangle is plotted in at least

one of the two panels (i- ii), or black dots are plotted in both of the top two panels (i - ii), re-

spectively. Because outlier scores are non negative and are mostly clustered near zero, with some

occasional high values, a square root transformation was applied to reduce skewness of the data

in Panel (a) to (h).
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Table 3. Performance metrics of outlier detection algorithms performed on multivariate water-

quality time series data (T, turbidity; C, conductivity; L, river level) from in situ sensors at

Pioneer River, arranged in descending order of OP values. See Sections 2.7-8 for performance

metric codes and details.

582

583

584

585

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)

1 T-C One sided Derivative NN-HD 0.9976 492.76 0.88 0.89 0.9984 136.5
2 T-C One sided Derivative KNN-AGG 0.9978 492.80 0.88 0.91 0.9984 478.8
3 T-C One sided Derivative KNN-SUM 0.9978 492.80 0.88 0.91 0.9984 222.2
4 T-C First Derivative NN-HD 0.9978 480.08 0.86 0.95 0.9981 182.0
5 T-C First Derivative KNN-AGG 0.9978 480.08 0.86 0.95 0.9981 488.5

6 T-C First Derivative KNN-SUM 0.9978 480.08 0.86 0.95 0.9981 225.3
7 T-C First Derivative INFLO 0.9971 479.92 0.86 0.86 0.9981 1525.0
8 T-C First Derivative RKOF 0.9970 479.88 0.86 0.84 0.9981 430.4
9 T-C-L One sided Derivative KNN-AGG 0.9975 492.72 0.86 0.91 0.9981 465.2

10 T-C-L One sided Derivative KNN-SUM 0.9975 492.72 0.86 0.91 0.9981 214.5

11 T-C-L First Derivative RKOF 0.9951 485.82 0.85 0.68 0.9979 425.9
12 T-C-L First Derivative KNN-AGG 0.9975 480.00 0.84 0.95 0.9978 478.0
13 T-C-L First Derivative KNN-SUM 0.9975 480.00 0.84 0.95 0.9978 220.0
14 T-C First Derivative COF 0.9978 473.58 0.84 0.97 0.9979 7908.2
15 T-C First Derivative LDOF 0.9978 473.58 0.84 0.97 0.9979 23435.7

16 T-C First Derivative LOF 0.9975 473.51 0.84 0.92 0.9979 594.4
17 T-C One sided Derivative INFLO 0.9973 473.47 0.84 0.90 0.9979 1559.9
18 T-C One sided Derivative COF 0.9976 473.54 0.84 0.95 0.9979 7505.5
19 T-C One sided Derivative LDOF 0.9975 473.51 0.84 0.92 0.9979 22986.0
20 T-C One sided Derivative LOF 0.9975 473.51 0.84 0.92 0.9979 596.9

21 T-C One sided Derivative RKOF 0.9960 473.16 0.84 0.75 0.9979 419.7
22 T-C Original Series INFLO 0.9973 473.47 0.84 0.90 0.9979 1498.5
23 T-C-L First Derivative COF 0.9975 473.51 0.83 0.97 0.9976 7910.7
24 T-C-L First Derivative LDOF 0.9975 473.51 0.83 0.97 0.9976 23357.7
25 T-C-L One sided Derivative NN-HD 0.9975 473.51 0.83 0.97 0.9976 131.9

26 T-C Original Series NN-HD 0.9976 466.96 0.83 0.97 0.9978 171.0
27 T-C Original Series KNN-AGG 0.9970 466.81 0.83 0.88 0.9978 468.7
28 T-C Original Series KNN-SUM 0.9970 466.81 0.83 0.88 0.9978 211.6
29 T-C Original Series COF 0.9978 467.00 0.83 1.00 0.9978 7617.6
30 T-C Original Series LDOF 0.9978 467.00 0.83 1.00 0.9978 22910.4

31 T-C Original Series LOF 0.9978 467.00 0.83 1.00 0.9978 579.1
32 T-C Original Series RKOF 0.9963 466.66 0.83 0.80 0.9978 401.9
33 T-C-L First Derivative NN-HD 0.9973 473.47 0.82 0.95 0.9976 167.1
34 T-C-L One sided Derivative INFLO 0.9971 473.43 0.82 0.92 0.9976 1418.8
35 T-C-L One sided Derivative COF 0.9973 473.47 0.82 0.95 0.9976 7497.9

36 T-C-L One sided Derivative LDOF 0.9973 473.47 0.82 0.95 0.9976 23090.7
37 T-C-L One sided Derivative RKOF 0.9952 472.97 0.82 0.71 0.9976 422.1
38 T-C-L First Derivative INFLO 0.9975 466.92 0.81 1.00 0.9974 1398.3
39 T-C-L First Derivative LOF 0.9975 466.92 0.81 1.00 0.9974 600.7
40 T-C-L One sided Derivative LOF 0.9965 466.70 0.81 0.85 0.9974 596.1

41 T-C-L Original Series NN-HD 0.9973 466.88 0.81 0.97 0.9974 163.0
42 T-C-L Original Series KNN-AGG 0.9967 466.73 0.81 0.88 0.9974 456.3
43 T-C-L Original Series KNN-SUM 0.9967 466.73 0.81 0.88 0.9974 201.4
44 T-C-L Original Series INFLO 0.9975 466.92 0.81 1.00 0.9974 1372.8
45 T-C-L Original Series COF 0.9975 466.92 0.81 1.00 0.9974 7707.2

46 T-C-L Original Series LDOF 0.9975 466.92 0.81 1.00 0.9974 127337.1
47 T-C-L Original Series LOF 0.9975 466.92 0.81 1.00 0.9974 580.9
48 T-C-L Original Series RKOF 0.9955 466.47 0.81 0.74 0.9974 406.8
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4 Discussion586

We introduced a new procedure, named oddwater procedure for the detection of587

outliers in water-quality data from in situ sensors, where outliers were specifically de-588

fined as due to technical errors that make the data unreliable and untrustworthy. We589

showed that our oddwater procedure, with carefully selected data transformation meth-590

ods derived from data features, can greatly assist in increasing the performance of a range591

of existing outlier detection algorithms. Our oddwater procedure and analysis using data592

obtained from in situ sensors positioned at two study sites, Sandy Creek and Pioneer593

River, performed well with outlier types such as sudden isolated spikes, sudden isolated594

drops and level shifts, while maintaining low false detection rates. As an unsupervised595

procedure, our approach can be easily extended to other water-quality variables, other596

sites and also to other outlier detection tasks in other application domains. The only re-597

quirement is to select suitable transformation methods according to the data features598

that differentiate the outlying instances from the typical behaviors of a given system.599

Studies have shown that transforming variables affects densities, relative distances600

and orientation of points within the data space and therefore can improve the ability to601

perceive patterns in the data which are not clearly visible in the original data space (Dang602

& Wilkinson, 2014). This was the case in our study where no clear separation was vis-603

ible between outliers and typical data points in the original data space but a clear sep-604

aration was obtained between the two sets of points once the one-sided derivative trans-605

formation was applied to the original series. Having this type of a separation between606

outliers and typical points is important before applying unsupervised outlier detection607

algorithms for high dimensional data because the methods are usually based on the def-608

inition of outliers in terms of distance or density (Talagala, Hyndman, Smith-Miles, Kan-609

danaarachchi, & Muñoz, 2019). Most of the outlier detection algorithms (KNN-SUM,610

KNN-AGG, NN-HD, COF, LOF and INFLO) performed least well with the untransformed611

original series, demonstrating how data transformation methods can assist in improv-612

ing the ability of outlier detection algorithms while maintaining low false detection rates.613

In our modified algorithm, the NN-HD algorithm, we did not incorporate the clus-614

tering step of the HDoutliers algorithm because the data obtained from the two study615

sites are free from micro clusters (Talagala, Hyndman, & Smith-Miles, 2019) and there-616

fore free from the masking problem. Because the datasets have only local and global out-617

liers, incorporating a clustering step that forms small clusters using a small ball with a618

fixed radius (the Leader Algorithm in Wilkinson (2018)) does not significantly change619

the structure of the data points in the high dimensional data space. Furthermore, be-620

cause NN-HD has the additional requirement of isolation in addition to clear separation621

between outlying points and typical points, it performed poorly in comparison to the two622

KNN distance-based algorithms (KNN-AGG and KNN-SUM) which are not restricted623

to the single most nearest neighbor (Talagala, Hyndman, & Smith-Miles, 2019). For the624

current work, k was set to 10, the maximum default value of k in Madsen (2018), be-625

cause too large a value of k could skew the focus towards global outliers (points that de-626

viates significantly from the rest of the dataset) alone (Zhang et al., 2009) and make the627

algorithms computationally inefficient. On the other hand, too small a value of k could628

incorporate an additional assumption of isolation into the algorithm, as in the NN-HD629

algorithm where k = 1. Among the analyses using transformed series, LOF with the630

first derivative transformation performed the least well, which could also be due to its631

additional assumption of isolation (Tang et al., 2002). However, using the same k across632

all algorithms may bias direct comparison because the performance of the algorithms can633

depend on the value of k and algorithms can reach their peak performance for different634

choices of k (Campos et al., 2016). Therefore, performing an optimisation to select the635

best k is non trivial and we leave it for future work.636

We took the correlation structure between the variables into account when detect-637

ing outliers given some were apparent only in the high dimensional space but not when638
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each variable was considered independently (Ben-Gal, 2005). A negative relationship was639

observed between conductivity and turbidity and also between conductivity and level640

for the Sandy Creek data. However, for Pioneer River, no clear relationship was observed641

between level and the remaining two variables, turbidity and conductivity. This could642

be one reason why the variable combination with river level gave poor results for the Pi-643

oneer River dataset, while results for other combinations were similar to those of Sandy644

Creek. The one-sided derivative transformation outperformed the derivative transfor-645

mation. This was expected, because in an occurrence of a sudden spike or isolated drop,646

the first derivative assigns high values to two consecutive points, the actual outlying point647

as well as the neighboring point, and therefore increases the false positive rate (because648

the neighboring points that are declared to be outliers actually correspond to typical points649

in the original data space). Therefore, to detect technical outliers in water-quality data650

from Sandy Creek and Pioneer River, the one sided derivative transformation is recom-651

mended because it outperformed the other transformations during the comparative anal-652

ysis. For Sandy Creek, all three water-quality variables together with the one-sided deriva-653

tive transformation is recommended. However, for Pioneer River, the use of river level654

is not advisable due its complex relationships with the other variables and its tempo-655

ral variability. For both rivers, the use of KNN-SUM algorithm is recommended because656

it provides a good compromise between accuracy and computational efficiency.657

In this study, our goal was to detect suitable transformations, combinations of vari-658

ables, and the algorithms for outlier score calculation for the data from two study sites.659

Results may depend on the characteristics of the time series (site and time dependent660

for example), and what is best for one site may not be the best for another site. There-661

fore, care should be taken to select transformations most suitable for the problem at hand.662

According to Dang and Wilkinson (2014), any transformation used on a dataset must663

be evaluated in terms of a figure of merit (i.e. a numerical quantity used to character-664

ize the performance of a method, relative to its alternatives). For our work on detect-665

ing outliers, the figure of merit was the maximum separability of the two classes gener-666

ated by outliers and typical points. However, we acknowledge that the set of transfor-667

mations that we used for this work was relatively limited and influenced by the data ob-668

tained from the two study sites. Therefore, the set of transformations we considered (Ta-669

ble 1) should be viewed only as an illustration of our oddwater procedure for detecting670

outliers. We expect that the set of transformations will expand over time as the oddwa-671

ter procedure is used for other data from other study sites and for applications to other672

fields.673

For the current work, we selected transformation methods that could highlight abrupt674

changes in the water-quality data.We hope to expand the ability of oddwater procedure675

so that it can detect other outlier types not previously targeted but commonly observed676

in water-quality data (e.g. low/high variability, drift etc. as per Leigh et al. (2019)). One677

possibility is to consider the residuals at each point, defined as the difference between678

the actual values and the fitted values (similar to Schwarz (2008)) or the difference be-679

tween the actual values and the predicted values (similar to Hill and Minsker (2006)),680

as a transformation and apply outlier detection algorithms to the high dimensional space681

defined by those residuals. Here the challenge will be to identify the appropriate curve682

fitting and prediction models to generate the residual series. In this way, continuous sub-683

sequences of high values could correspond to other kinds of technical outliers such as high684

variability or drift. However, the range of applications and the space of the transforma-685

tions are extremely diverse, which makes it challenging to provide a structured formal686

vision that covers all of the possible transformations that could be considered. The trans-687

formations we present in this paper were mainly chosen as appropriate to the data col-688

lected from Sandy Creek and Pioneer River. We observed that different transformations689

can lead to entirely different data structures and that the selection of suitable transfor-690

mations is directed by the data features and typical patterns imposed by a given appli-691

cation. Domain specific knowledge plays a vital role when selecting suitable transforma-692
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tions and, as such, defining structured guidelines for the selection of suitable transfor-693

mations remains problematic.694

Not surprisingly, NN-HD algorithm required the least computational time given695

the outlying score calculation only involves searching for the single most nearest neigh-696

bors of each test point (Wilkinson, 2018). The mean computational time of KNN-AGG697

was twice as high as that of KNN-SUM because the KNN-AGG algorithm has the ad-698

ditional requirement of calculating weights that assign nearest neighbors higher weight699

relative to the neighbors farther apart (Angiulli & Pizzuti, 2002). LOF and its exten-700

sions (INFLO, COF and LDOF) required the most computational time; all four algo-701

rithms involve a two step searching mechanism at each test point when calculating the702

corresponding outlying score. This means that at each test point each algorithm searches703

its k nearest neighbors as well those of the detected nearest neighbors for the outlier score704

calculation (Breunig et al., 2000; Jin et al., 2006; Tang et al., 2002; Zhang et al., 2009).705

Assessing performance of the detection methods based on the classification crite-706

ria, while traditional, has limitations . During performance evaluation, we observed that707

some outliers were detected by all the approaches, some were detected as outliers only708

by certain methods and some were identified by no method. Therefore, incorporating709

ensemble methods as proposed in Unwin (2019) would assist in selecting the best per-710

forming approaches for a particular outlier type and enable further insight into the re-711

sults obtained from the oddwater procedure.712

We hope to extend our multivariate outlier detection framework into space and time713

so that it can deal with the spatio-temporal correlation structure along branching river714

networks. Further, in the current paper, we have introduced our oddwater procedure as715

a batch method. However, due to the unsupervised nature of our oddwater procedure716

it can be easily extended to a streaming data scenario with the help of a sliding window717

of fixed length. A streaming data scenario always demands a near-real-time support. There-718

fore, one significant challenge is to find efficient methods that allow us to update out-719

lier scores taking account of the newest observations and removing the oldest observa-720

tions introduced by overlapping sliding windows, rather than recalculating scores cor-721

responding to observations which are not affected by either new arrivals or the oldest722

observations (that are no longer covered by the latest window). Further work will be needed723

to investigate the efficient computation of regenerating nearest neighbours in a data stream-724

ing context.725

Notation726

FP False Positives (i.e. when a typical observation is misclassified as an outlier)727

FN False Negatives (i.e. when an actual outlier is misclassified as a typical observa-728

tion)729

TP True Positives (i.e. when an actual outlier is correctly classified)730

TN True Negatives (i.e. when an observation is correctly classified as a typical point)731
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