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8 Anti-βc mAb CSL311 inhibits human nasal polyp pathophysiology in a humanized 

9 mouse xenograft model  

10

11 To the Editor,

12 Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease of the nose 

13 and paranasal sinuses characterised by eosinophilia, elevated levels of local IgE and Type 2 

14 (T2) inflammatory cytokines(1) and mucus production. Interleukin (IL)-5, together with the 

15 other T2 beta common (βc) cytokines IL-3 and granulocyte-macrophage colony-stimulating 

16 factor (GM-CSF), support the survival, and  enhance the differentiation and activation of 

17 myeloid cells, which play a key role in the pathogenesis of this disease(2, 3).  

18

19 We have developed a fully-human therapeutic monoclonal antibody (mAb), CSL311, with 

20 specificity for the common cytokine binding site of the human βc receptor(4). The ability of 

21 CSL311 to block IL-3, IL-5 and GM-CSF signals simultaneously may offer distinct 

22 advantages in the treatment of inflammatory diseases compared to mAbs targeting single 

23 cytokines. Preclinical testing of CSL311 is limited in animal models due to the species-

24 specificity of CSL311. To overcome this constraint we modified the human nasal polyp (NP) 

25 xenograft model described previously(5), and utilised Rag2−/−Il2rg−/−hIL-3/GM-CSF knock-

26 in mice, which express human IL-3 and GM-CSF to support longer-term survival, growth and 

27 differentiation of human myeloid cells to evaluate, for the first time, the in vivo efficacy of 

28 CSL311, on NP progression in a preclinical proof-of-concept study. 
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30 NPs from 12 patients, who were withdrawn from any medication one month prior to 

31 polypectomy, were used in this study. The most frequent comorbidities in these patients were 

32 allergic rhinitis (50%) and asthma (41.7%) (Table S1); consistent with atopy, histological 

33 analysis revealed that the NPs were highly eosinophilic (11/12), demonstrating characteristic 

34 T2 inflammation (data not shown). High levels of βc cytokines were detected in the NP 

35 compared to normal sinus tissues (Figure S1), suggesting a role of βc cytokines in 

36 contributing to the pathogenesis of CRSwNP. NP from each patient was engrafted into 4–10 

37 mice with all treatment groups included in each independent experiment (Table S2). CSL311 

38 significantly suppressed NP progression in recipient mice after 5 weeks compared with 

39 isotype control mAb (Figure 1A, Figure S3). We found that treatment with CSL311 for one 

40 week resulted in an immediate reduction of NP volume measured externally, which was not 

41 observed with positive control prednisolone treatment. After 5 weeks treatment, CSL311 

42 significantly suppressed NP volume in recipient mice when compared with isotype control 

43 mAb.

44

45 To understand how CSL311 treatment inhibited NP growth, we examined the immune cell 

46 profiles in the xenografted NPs collected at the end of the 5-week engraftment. The 

47 percentage of eosinophils, neutrophils and plasma B cells (Figure 1B, Figure S2, Table S3), 

48 as well as the number of mast cells (Figure 1C) were significantly reduced in the presence of 

49 CSL311 when compared with isotype control mAb treatment. These cells are known to 

50 express βc receptor and when activated by βc cytokines produce chemical mediators that 

51 directly promote tissue remodelling and oedema. Next, we assessed the effect of CSL311 on 

52 mucous gland hyperplasia, a general feature of NPs(6). Histological examination revealed a 

53 significant decrease in mucous gland number and mucus production in NPs treated with 

54 CSL311 that was not observed in those treated with isotype control mAb (Figure 1D, Figure 

55 S3). The stroma of NPs contains increased levels of fibroblasts(7). Fibroblast-specific protein 

56 1(FSP-1) is expressed in fibroblasts in different organs that undergo tissue remodelling and is 

57 commonly used as a marker to identify fibroblasts(8). Using immunofluorescence staining, 

58 we found that CSL311 significantly decreased the percentage of FSP-1 positive fibroblasts 

59 compared to isotype control mAb (Figure 1E, Figure S3). 

60

61 We also performed transcriptome analysis by RNA sequencing to understand the impact of 

62 CSL311 on the global gene expression profile in the xenografted NPs. Treatment with 

63 CSL311 resulted in differential expression of 29 genes with a fold change >2 (|log2FC| >1) 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

64 and false discovery rate < 0.05. The top 25 differentially expressed (DE) genes (Figure 2A) 

65 were used to calculate a gene score based on the average counts per gene, which confirmed 

66 that CSL311 significantly reduces expression of this gene set compared to isotype control 

67 mAb; no significant effect of prednisolone was observed on expression of these genes (Figure 

68 2B). The average log fold change (log2FC) in gene expression, induced by CSL311 vs isotype 

69 control mAb and prednisolone vs saline, is shown in Figure 2C.  These DE genes encode: i) 

70 surface markers associated with macrophage/dendritic cells e.g. CD14, CD206, CD209 and 

71 granulocytic cell subsets e.g. CLEC4A, CD32, FCERG1, ii) chemokines that recruit T2 cells 

72 (basophils, eosinophils, TH2 cells) e.g. CCL7, CCL13, CCL18 CCL23 and iii) inflammatory 

73 response proteins including complement components C1QA, C1QB and C1QC. Ingenuity 

74 Pathway Analysis (IPA) upstream regulator tool, which predicts the most likely regulators of 

75 the DE genes, identified GM-CSF (Figure 2D) and IL-3 (Table S4) as regulators of genes 

76 down-regulated by CSL311.  In addition, this analysis identified other cytokines that may 

77 contribute to airway inflammation, such as IL-4, IL-13, IFNγ, IL-17A and IL1β as 

78 contributing to gene expression down-regulated by CSL311(Figure 2D and Table S4). This is 

79 consistent with reduced IL-4 and IL-13 protein production observed in allergic βc
-/- mice and 

80 point to a potentially important link between the βc-signaling cytokines and the IL-4/IL-13 

81 axis in T2 cytokine-mediated diseases(9).

82

83 mAbs that target T2 inflammation have emerged as important alternative therapeutics for 

84 patients with CRSwNP. Clinical trials using omalizumab (anti-IgE), mepolizumab (anti-IL-5), 

85 and dupilumab (anti-IL-4 receptor α) have demonstrated that these mAbs shrink NPs and 

86 improve clinical symptoms (10). The key mechanisms of these drugs on blocking the IgE-

87 dependent mast cell activation, IL-5-driven eosinophil activities, and IL-4/IL-13-mediated 

88 inflammation were replicated by CSL311 treatment in our xenograft model. Our study 

89 provides the first demonstration that targeting βc with a therapeutic mAb may be an effective 

90 strategy for treating CRSwNP.  Intrapolyp local drug delivery, as has been utilised in this 

91 model, has been reported to be an effective and safe method for treatment of NPs(11).  

92 Systemic efficacy of CSL311 treatment in this mouse model, as well as clinical trials will be 

93 required to assess the safety and therapeutic potential of CSL311 in improving clinical 

94 outcomes of patients with nasal polyposis. 
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FIGURE 1. CSL311 restrains human nasal polyp xenograft progression and pathophysiology in vivo.

CSL311 mAb treatment reduces (A) volume of nasal polyp measured externally every week, (B)

granulocytes and plasma B cell populations, (C) mast cell numbers, (D) mucous gland numbers and

mucus production and (E) fibroblast numbers in xenografted nasal polyps compared to isotype control

mAb treatment. #/*p<0.01, ##/**p<0.01, ###/***p<0.001, (A) data are mean + S.E.M of 12 independent

experiments with n = 16 to 22 mice for each group. Two-way ANOVA with Bonferroni post-test for

comparison on indicated time points between isotype control mAb vs CSL311 and saline vs

prednisolone treatments; (B – E) data: median  range, with the number of mice in each group indicated
below x-axis. Mann-Whitney U test for indicated comparisons.
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FIGURE 2. RNA sequencing and Ingenuity Pathway Analysis (IPA) reveal CSL311 targets type 2

inflammation-associated genes in xenografted human NPs. (A) Hierarchical clustering of top 25

differentially expressed (DE) genes. (B) The average expression of the top 25 DE genes was calculated

for each treatment and expressed as a “gene score”. The difference in gene score between isotype control

and CSL311 mAb and between saline control and prednisolone was determined (** p<0.01, one-way

ANOVA with Tukey’s multiple comparison tests). (C) The heat map shows average fold change in DE

genes (isotype control mAb vs CSL311 and saline control vs prednisolone) and genes annotated for

cellular expression or function. (D) IPA Upstream Regulator Analysis reveals top 5 targeted upstream

regulators by CSL311 treatment in xenografted NPs.
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