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Abstract

Age structure is a fundamental aspefcanimal population biologyAge is strongly
related tandividual physiological condition, reproductive potential and mortality
rate Currently, there are no robusblecularmethods for agestimationin birds.
Instead, mdividuals must be ringed as chicks to establish known-age populations,
whichis.a labour intensive and expensp®cessThe estimation of chronological
age using.DNA methylation is emerging as a robust approanhnmmalsncluding
humansmiceand some nomodel speciedHere we quantified DNA methylation in
wholeblood samples from @tal of 71 known-age Shottiled shearwaterg\{denna
tenuirostris) using digital restriction enzyme analysis of methylation (DREAME
DREAM.method measurd3NA methylation levels at thousands of CpG
dinucleetides throughout the genoridée identifiedseven CpG sitewith DNA
methylationdevels that correlated with agemodelbased on these relationships
estimated'age with a medifferenceof 2.8 years to known ageased on validation
estimates from models created by repeated sampling ahtyand validation data
subsetsLengitudinal observation of individuals re-sampled over 1 or 2 years
generally showed an increase in estimated age (6/7 ceee$he first time, we have
shown that epigenetic changes with age can be detecteulohlaird. This approach
shouldbe of broad interest to research&tsdyingage biomarkers in non-model
species and will allow identification of markerat can be assessed udiageted

techniquedor. accurateageestimation in large populatiotuslies

1 | INFRODUCTION

Understanding the age structure of populations is a key aspect of animal ecology and

conservationAge estimate information can help to determine animal mortality,
susceptibility to parasites, reproductive life history and the impact of anthropogenic
activities(Froy et al. 2013; Gianucat al. 2017; Musick 1999; Scott 1988). However,
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measuring the chronological agensdnywild animals isa difficult taskdue to the
lack of external changekat refect age Some animalbavequantifiable physical
changess they increase in ager example, tooth lengtin deer(Pérez- Barberiaet
al. 2014)andgrowth rings infish otoliths (Buckmeieret al. 2002; Campana 2001;
Gunnet al. 2008) However, few of these cdre measured without capturingesren
killing the animal The impact and ethics of these interventions on animals is often the
subject of debat@-estaBianchetet al. 2002; Nelson 2002). Other amals canshow
generakhangesvith life stage for example, plumageariationin some seabirds
(Weimerskirchet al. 1989); or larval stage of arthropods and molluscs (Cobb &
Wabhle 1994; Ernandet al. 2003), but these often only provide age information for
immature individualsThis lack ofaccessiblehronological age information limits our
understandingf manywild animal species and it is only through long term,
expensive tracking or marking studies thgé data can bmollectedand used

effectively

Molecularbiomarkers of age have recently been the focas ofcreasing number of
studieqlto et'al. 2018; Maegawat al. 2017; Wrightet al. 2018). Neithertelomere
lengther DNA damage markers have been successfully fasexhronological age
estimationin a wild animal populatipso there is interest in developing alternative
molecular age biomarke(Bunsheat al. 2011; Jarmaset al. 2015). One promising
avenue is measuring epigenetic modification controlling changes in gene expressi
that occur during animal ageing. Epigenetic regulation of ggpeession can occur

at several different levelnd can include histone modification, non-coding RNA
(ncRNA).and,DNA methylation (DNAm). DNAmthe addition of a methyl group a
cytosine. followed by a guanif€pG site) has been examined in the most detail and
recent-evidence supports the use of this epigenetic modification for individual age
determination{Hannumet al. 2013; Horvath 2013; VidaBralo et al. 2016).

Here,we refer to twaypes of changes in DNAm with age that could be used to
estimateagesin wild animalsEpigenetic drift’generally refers tboroadDNAmM

signalsat sites distributed across the genpwmieich in mammals, birds and fish has
been reported to decline with age (Gryzinekal. 2013; Jakubczaét al. 2016;
Shimodaet al. 2014).Drift signalscanalso be enriched in CpG islands and enhancers
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(Sliekeret al. 2016).‘Clock-type’ markersare specificCpG sites that show a strong
correlation with known chronological age. Correlations observed in this category can
be tissue specifiand can involve an increase (hypermethylationfiecrease
(hypomethylation) with agéHorvath 2013; Sliekeet al. 2018). Clock-type CpG age
markers-have recently been referred to as-fafgged DNA methylation positions”
(aDMPS)(Lowe et al. 2018; Sliekeet al. 2018) aDMPs arggenerallylocatedwithin
the promoter or first exon of a gefigekaertet al. 2015; Gronnigeet al. 2010;
Horvath 2013; Szirakét al. 2018; Zbie¢-Piekarskaet al. 2015).Epigenetic drift is
thought.tooccurdue to a decliner imperfect replication ddNAm by anepigenetic
maintenance systewmith increasing age (Horvath 2013; Horvath & Raj 2018).
However the:mechanismi®r specific ‘clocktype’ aDMP changéave not yet been

characterised

Very little is known about DNAmM in most namodel species, especialyrds

Available fsudies have mostly focused on model species such as the Red junglefowl
(Gallus gallus) (Gryzinskaet al. 2013; Huet al. 2013; Liet al. 2011)andJapanese

quail Ceturnix japonica) (Andraszelet al. 2014).These studieshow a distribution

of DNAm'inthe genome similar to that observed in mamnigtggenetic drift is the

only agerelated DNAmM change that has been reported in bBdginskaat al.
(2013)observedDNAmM changes between chickens aged between 1 day and 32 week
using acolorimetricimmunoenzymatidasedorotocol. We havereviouslyreported
thatthe DNAm status aseveramammaliarclock-type age-related genes were not

conserved in homologous regions of a sealie Paolilseppiet al. 2017).

Here, weused known age individualiom a longtem study of Shortailed
sheapwate(Ardenna tenuirostris) to investigate age related changBse shearwater

has high*breeding site and partner fidelity and is lloregd, making it an ideal species

in whichstesstudy population status and chronological ageing in a seabird population.
Fisherdsland (Tasmania, Australia), is the site of a-tengn banding study of this
species and.as such can be used to collect known age blood and feather samples for
the investigation of DNAmM and chronological ggeadleyet al. 1991). Epigenetic

age estimates of seabirds would be particularly valuable for use in populatiortyviabili
analyses and could further our understanding of environmental effects on animal

performance or foragin@/elarde & Ezcurra 2018}-or the first time, we have used
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digital restriction enzyme analysis of methylation (DREAM) to assess DNAm in a
nonimodel vertebraté/Ve identifiedsevenaDMPsin DNA extracted fronv1 whole
blood samplesA modelrelating methylation at these aDMPs to agesmadeand

the precisionevaluated using themean absolute differen¢MAD) betweenthe
estimated-and known chronological ages. Our sisitlye first to identifyfDNAmM
changesvith ehronological age iawild sedird and willprovide afoundation for

further'study of age-related DNAm in nammmalian vertebrates

2 | METHODS

2.1 |Samplesand DNA extraction

In sampling.trips betwee2015 — 2018, lbod samples were collected fradult
(November.-December) and chick (March) tenuirostris from Fisher Island
(40°13:00:7"S 148°14'20.7"Hasmaniaunder Department of Primary Industries,
Parks, Water and Environment (DPIPWE) perm#16230 and University of
Tasmania (UTAS) AnimdEthics Committee pernst A14277 and A0016107. Blood
wascolleeted onto Whatman FTA® Micro (WB120210) cards and stored as
previously describe(De Paolilseppiet al. 2017).DNA was extracted frorma 3 mm
punch ef immobilised blood usiran Epicentre MasterPure™ (@D85201) DNA
Purification Kit according to themanufacturer’'snstructions. We examined blood

DNA in two high-throughput sequencing runsaofotal ofN = 71 knownage
individuals=Age was determined by recording the band number of birds first marked
as chicks,.and was rounded to whole years as all sampling occurred in a short time
windew-each year. Rundonsisted 085 known-ageanimals(5 — 21 years old, mean

= 12.14 years Two individuals aged 8 and i#ars oldwere replicatedvithin this

run. Run2'consisted &fNA from 36 additional knowragesampleq6 — 21 years

old, mean = 14.18 years). Run 2 contaittedetechnicalreplicates from Run (65,

12 and 21 years old@ndthreewithin-runreplicates aged,84 and 21 years old.
Several birds were recaptured in sampling trips in different years allowing us to
perform some limited longitudinal observations (RuiNz 3 x 2 samples and = 4

x 2samplesat 1 and 2 year resights respectivelg)total,N = 63 knownage
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165 shearwater were used to calibrate the model following removal of repliBatsex
166  wasdetermined byYCHD-1 gene amplification in blood DNA using a previously

167  described methofFauxet al. 2014).Sampledetailsfor each age group and known
168 age distributiorare shown in Table 1 and Supplementégure 1 respectively

169

170 2.2 | Analysis of genomeavide ‘CCCGGG’ methylation

171  We examinedNAm at CpG sites throughout the genome usingjtel restriction

172  enzyme analysis of methylatioDREAM) of 71 Shorttailed shearwater whole blood
173  DNA samplegqJelinek & Madzo 2016). Briefly, genomic DNA pg) extracted from
174  shearwater blood FTA samples was segaéintcut with two enzymes that recognise
175 the'CCCGGEG’ sequence motif in DNAFigure 1) Methyl-sensitiveSmal first cuts
176  only unmethylated sites leaving bluntGGG endsThen Xmal cleaveshe

177  remaining methylated sites leaving 5-CCGGG ends. Thus, arggguences are
178 made for methylated or unmethylated CpG sites. Following this sequentist, dige
179 DNA was used to create sequencing librangagNEBNextMultiplex Oligos for

180 lllumina.ndex Primer Sets4 3andstandardllumina protocols Blunt-end ligation
181  is doneusing NEBNext adaptor (10 um) and T4 DNA ligase with hairpin loop

182 cleavage with USER enzymBual size selection for 250450 bp fragmentwas

183  done using’/AMPure XP beaddnique barcodes wetben addedo DNA from

184 individual samples with 12x rounds of PCR using AmpliTag Gold DNA Polymerase
185 (seeSupplementaryrablel). Individual arcoded samples were analy$edcorrect
186 library size distribution (256 450 bp) using high sensitivity DNA 1000 kits on the
187  Bioanalyzer 2100Two microlitersof each samplevasalso quantified using a Qubit
188 2.0 to ensure equal volumes were pooled in the final libtaloyaries wereunat2 —
189 4 ng/uL.onthelllumina NextSegb00platformwith a 15 — 25%hiX control at the
190 Ramaciotti. Centre for Genomics (UNSWydney, AU$.

191

192

193 2.3 |Statistical analysis and onstruction of an ageprediction model

194  Sequencing.data analysis pipeline

195 Raw DNA sequence readgererunthrough an irhouse data analysis pipeline in the

196 following steps.
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1. Quality filtering. Demultiplexed~astgsequences were filtedevith a
maximum expected error (maxee) rate of 0.5 and converted to Fasta format
(Edgar & Flyvbjerg 2015).

2. Dereplication. A database of unigue reafilsm all samples was generated
(dereplication)using trimmed sequences and the USEARCetdfimand
‘fastx uniques’ (Edgar 2010), with a min_unique size = 150.

3. Methylated and non-methylated motif databases. These dereplicated
sequences were duplicated to contain the unique sequence with either the 5'-
GGG or 5:CCGGG maotif, in separate databa@e& or CC databases)

4. Motif database hits. Eachsample was then compared to each database using
the'usearckglobal’ command with 97% identity amdquired an exact match
to the first 2 bp of the relevant motifl( prefix =2). Hits for eachsequence
againstoth methylatiordatabasewere recorded

5. DNAm level calculation. The methylation levdbr each sample/as then
calculated as the count thfe methylated signature divided by the total number
of:hits'for aspecific CpG marker and the value was recorded between Q and 1
A value of 0 is umethylatedi.e. all sequences from that site matoh @G
sequence generated by metbghsitiveSmal) and 1 is methylateg.e. all
seguences from that site match the CC sequence generagaly

Methylation scores wenmetainedfor read depths betwe@® and2000reads.Scores
thatwerecalculated outside of this range weomverted to &NA’. To retain

potentially informativemarkers in the final analysis, markevih less tharsevenNA

values across all samplegre imputed using the mean of tieenainingnonNA

values for the marker. This method ensured that potential age-related marklets w

not be omitted based enissingscores anthatimputed values would have a
relatively'small effect on any correlat®observedSince variation is requireo find
correlations:with ageve removed markers that ha®BAm standarddeviation of
lessthan5% across all sampleé small run effect was observed, so the mean DNAmM
difference between run 1 and 2 replicates was used to adjust the score of each marker

inrun 2.

Predictor selection and age estimation model
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Markers that passditering werethen used to fit penalised lasso regularisation paths
to each predictor using the R package ‘glmnet’ (Friedebah 2010). The penalty
valueused to select coefficieniambda 1 standard error (A1se), was calculated after
repeated runs (100x) tie default k-fold cross validation function of gimnet
(cv.gimnet;*20kold) with an alpha = 1 (lasso). This method randomly subsets the data
each cycle and assesses the linear relationship between age and DNAm. Following
repeated runs of this functi@mean Alse value wasgeneratedThe Alse value
generallyselectCpG sitedor the simplest model withneerrorsimilar to the best

model (A.minimum), given thecrossvalidationuncertainty

Individual matkers that passed the Alse cut-off were inspected visually usirggmple
linear regression and markers that an R< 0.2 orshowed small changes in DNAm
range(< 15%)were removedrom further analysisRemaining ageelatedCpG sites
werethen incorporated to a multiple linear regression mod&b test the selected
markers, the original data set wasidomlysplit into 75/25% trainingN = 47) and

test (N =.16).data sets respectiveljraining set DNAm values for each aDMP were
used to.creata multiple linear regression moddlhe modelwas then tested with
remaining samples in the test sBtis random sub-sampling method was run for 100
iterations.By substituting the calculated methylation values for each of the individual
shearwaters used in the training and sestinto the equation, we obtained the
predicted epigenetic ag®eanabsolutedifference(MAD), the uncertainty of age
estimates expressed in yedrstween the knowand estimated age was then
calculated.The 77 bp sequence following t8& motif was analysetdly BLASTn
searches dbird genomes available on the NCBI databtasilentify any regions

conservedetween specigaltschul et al. 1990).

2.4 |Global"'DNA methylation analyses

Global analysis of 2338 CpG sites using DREAM

The mean DNAmM of 2338 CpG sites identified using DREAM were analysed by age
group in'years as follows: Chicks: 0.12 — 0.5=(2), Young breeder: 5 — 81 16),
Middle: 10 — 18 Nl = 39), Old: 19+ = 6). CpGs were analysed using a avesr
ANOVA followed by posttest for multiple comparisons (Tukey’s HSD). Mean

DNAm differences were calculated in both the chick and gdareeder context and

analysed as above. Significance was sbt<0.05.
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264

265  Colorimetric DNA methylation analysis

266 We also measuregpigenetic drift in global DNAnusing acommercially available
267  methylated DNA quantificatioassay forelative5-mC content (Abcam,

268  Colorimetric; ab117128). Briefly, 42hearwateblood DNA samples (chicks, 5 - 21
269 years old, mean = 10.9 years) were analysed in duplicate, alongside the supplied
270  positive(5ng) and negativeontrols. Methylated DNA was captured and detected
271  using diluted (1:1000, 1:2000) 5-mC antibodies. Following the addition of a

272  developing,solution, colour change was monitored and quantified at 450 nm (Tecan
273  Spark).,Using the mean absorbance values of the duplioaltgs;e5-mC for each
274  sample'was calculatex$ follows:(((Sample OD- Negative control OD) DNA input
275  (ng)) /(((Positive controlDD — Negative control OD) 2) / Positive control input (5
276  ng))) * 100.Analysis of duplicate colorimetric data was done using aveme

277  ANOVA with Sidak correctiorfor multiple comparisons for each age group in years
278 as above.

279

280

281

282 3| RESULTS

283 3.1 |Sequencing metrics

284  Qualityranalysi®f DREAM librariesshowed bands in the expected post clean-up
285 range,range =194 — 974 bp, mean = 451 bp; Bioanalyzer geledectropherogram
286 traces are shown in Supplementary Figure 2A — Dpta&l of 125 millionsequences
287  (mean of-1761622 per sampfgssed initiabioinformaticQC (maxee =0.5 and

288  matehed:restriction site motif; Supplementary TabldBe sum of reads from

289 sequences'with a mean high read depth 0020represented approximatelo6

290 (mean =B84518reads) of the total mean sequences per sapliewingfiltering and
291 dereplicatim, we identified93884unique sequences that were used to create a
292 databaser reference sequences (i.e. markers for specific CpG sites) for sample
293  matching (Supplementary Figure 3). Following the pipdiiitering described, #otal
294  of 2338 uniqueCpGswere used for lasso dgais (gimnet)

295
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3.2 |Developmentand testingof an age prediction model in theShort-tailed
shearwater

DNAm data fromsevenCpG sites obtainedsingDREAM wereincludedin the age
prediction modebased on our selection crite(leigure 2A — G). Information on
removedCpG sites with weaker age correlatiomprovided in Supplementary Table

3 (e.g. just below our mean Alse cut-off of 1.2; see Supplementary Figure #9.
investigate potential serelated DNAm effects in the seveDMPsused in thege
prediction model, eparatdinearregression were donéor each seXSupplementary
Figure 5A-G). Sex had a significant effectDNAm age correlatiomn a single
aDMPin.isolation(M1801,P = 0.0031, Bonferroni correctedyjth males driving the
association{Supplementary Figure 3CHowever, thee was no sespecific effect
when the methylation scores for all seven aDMPs were then used to create the age
estimation model (Figure 3, sex regression slopes and diagnostics are shown in
Supplementary Figures 5H and 6 respectively). Read depth had a mearfaf 51x
these CpG sitesS(pplementary Figure 7). The MAD between the known and
estimated.age reports the uncertaintggeestimates expressed in yedfsllowing
repeated crosgalidation, thesevenaDMP age assaprovided epigenetic age
estimatesn training susamplesvith aMAD of 2.34 + 1.73SD) years(meanR? =

.605 range:0.46- 0.72) (Supplementary Figur&g In the validation test
subsampledhe age estimates had an increasedr, across all agestimates MAD =
2.81 + 2.08years (mean R= 404, range: 0.03 — 0.80) (Supplementary Figik 8
The significant yintercept of5.13indicatedthat the predicted ages were
overesimated for chicks and young birds and underestimated fer widividuals,

and may indicate a ndimear relationshipThe training set MAD ranged from 1.17 —
6.25years, whilst in the test sBtAD ranged from 1.58 — 7.8¢ears.The MADs for
each year.and grouped age, as described in the methods, are shown in Figure 4.
Betweenrun‘replicates for seven agkated CpG sites showed a mean DNAmM score
differemecerof 11.29% (range: 3.79 — 12.80%) and 6.83% (range: 4.21 — 11.04%) pre-
and post=run adjustment respectively (Supplementary Tablithin run replicates
showed a mean absolute difference in DNAm of 8.65% (range: 5.18 — 11.91%) for the
agerelatedmarkers.

3.3 | Bomarker sequenceand geneconservaton
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ThesevenaDMPs wedentified wereused to search for conserved regioms

available bird genomes and scaffoldsng BLASTn.Of thesesevenmarkersfour

had low E valueand > 50% query covendicating areasonablenatchwith a known
sequence in thavailableaviandatabases (Table 2). Marked71 matched with the

G3BP1 region in the Zebra finc{Taeniopygia guttata) genome, however the query
cover was only slightly above 50%. Marker 1934 had a 100% query cover match with
an uncharacterised locus in the Mallatgds platyrhynchos) genomeMarker 2083
matched againstaffold 4695 in the North Island brown kiwAgteryx australis
mantelli).genome. Finally, marker 3169 had a 100% query cover match BiHHe

gene inseveral species with the top hit to the Eurasian blu€ydr({stes caeruleus)

genome.

3.4 |Longitudinal observationsof DNA methylation in resighted individuals

We observed that/ (85%)age estimates for resighted individusésnpled 1 or 2
years aparshowed thexpectedositiveincrease in predicteale relative to their
known age.from leg bands (Figure Bt many individual aDMPs the longitudinal
samples didnot follow the expected DNAm trend (Supplementary Figure 9A-B).
However, when combined into the model, only one individual showed a negative
change in.estimated age from two samples taken at 15 and 17 yearsi¢feagean
absolutedifference between estimated and known agefgg resights wal.74

years(N = 8) and 0.8Fears(N = 6) for Lyear resights.

3.5 |DNA methylation of 2338 CpGausing DREAM assay

We show that a large proportion of the 2338 CpG sites that passed the filtering cut off
are highly methylated, with 50.2% of CpGs showing DNAm levels greater than 80%
acrosslall.ages (Figurdh We alsoobserveda smal) but non-significanlinear
change“in"DNAmM from young animals to old. The mean DNAm was .712, .724, .725
and .729¢for chicks, young breeders, middle @ddirds respectively (FigureB§.

The differencen mean DNAmyelative tochick levels, for eacindividual CpG site

is shownrin,Eigure 6. This shows thatelative to older birds, chicks are less

methylated at low DNAm levels (approximately < 10%) and more methylated at high

DNAm levels (approximately > 90%).

3.6 |Global 5-mC using colorimetric assay
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363 Relative5-mCwas quantified against the supplied 5 ng positive control. Global blood
364 DNAmMm levels of the Short-tailed shearwater were combined into age grsups

365 described in the methods. Chicks and young breeders showed sataiteve’5-mC

366 levels, (mean = @25,N = 4 and mean = 0.72[,= 15 respectively). Both of these
367 groups hadsslightly higheelative5-mC than that observed in middigedbirds

368 (mean/= (®14,N = 17) and old birds (mean = 0.4%87= 5). Following adjustment
369 for multiple comparisons, nsignificantdifferences werebserved between the age
370 groupsy(Figure 7).

371

372

373 4| DISCUSSION

374

375  Seabirds exhibiittle or noexternalphysical changes with age atigre are currently
376  no reliablebiomarkers otthronological age imostlong-lived seabirds beyond

377 fledging.The dentification of an accurate age biomankeuld be a substantial

378 advancesinsouability to understandeabirdagerelateddemographics. éabird age
379 estimationusing molecular methods aurrently not possibleDNAmM changes with
380 age have been reported for both wild and model mammalian species in sevegl tissue
381 indicatingsthat DNAm age biomarkers may be useful in birds. In this study, we
382 quantifiedthe DNAm profile of knownageShorttailed shearwaterusingdigital

383 restriction enzyme analysis of methylation (DREAMJe presenevidenceor

384 DNAm changes with chronological agesevenCpG sites

385

386 4.1 | Age.related biomarkers in birds

387

388 Previeushirdageingresearch hacusedprimarily ontelomere length assays and
389 pentosidine‘accumulation in collagen. Studieteahinaltelomere estriction

390 fragments(TRFshave shown thaelomere lengtltan shorten witincreasing age
391 and thatthe rate of changerrespondso lifespan in several spesigBize et al. 2009;
392  Juolaet al.2006; Tricolaet al. 2018) However, this trend is not consistent amongst
393 all birds, withsome species showing increases in TRF with age, as in the Leach’s
394  stormpetrel Oceanodroma leucorhoa) (Haussmant al. 2003), andho declinein

395 length, or both as reported for the Magellanic pengBheni scus magellanicus)
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396 (Cerchiaraet al. 2017).Forindividuals in someavianspecies change in telomere

397 length can be trackddngitudinallyand correlate with reproductive timinigowever
398 the use off RFfor crosssectional analysis @afgehas yet to be demonstrat@huer
399 etal.2018).

400

401 Pentosidinasa lesdrequentlystudied age biomarkéor birds. Itforms crosdinks

402 betweeramino acidresidues in collageandaccumulates with age in bir@allonet
403 al. 2006; Igbakt al. 1999). Pentosidine hasdieshown to accumulate in a linear
404  fashion_in terrestrial birdand some seabirds including California gullar(is

405  californicus)(Chaney Jet al. 2003) and Doublerested cormorani{®hal ocrocorax
406 auritus)(Fallenet al. 2006) This technique has yielded age estimates ajgrecision
407 of 2 —4'years in wild bird€Chaney Jet al. 2003; Falloret al. 2006; Rattistet al.

408 2015). However, in a study of another ldnged seabird, the Bridled tern

409  (Onychoprion anaethetus), no correlation between pentosidine levels andnage

410 found (Labbé 2017). It is not known how pentosidine levels may respond to the
411  effectsof.ehangingoiological ageor environmentastressorsAs a result of the

412  limited'successn age estimation by these methods, our research aimed to build upon
413  recent successes in mammals by assessingnbéstimates of age in the Shaailed
414  shearwater:

415

416  We previouslyestablished that specific aDMPs fremammals were not conserved in
417  the shearwater (De Pad$ieppiet al. 2017). We therefore sought to identify bird-
418 specific aDMPr a global DNAm signature associated with age using DREAM of
419  whole blood sampledhis is the first epigenetic age assay developed for use in a
420 seabirdand one of the few uséda wild speciesUsingthe DREAM method, we

421 identifiedseven novel aDMPs in shearwatdfsllowing repeated cross-validation of
422  our knownage samples to train and test the-agiémation modelve reported #est
423  set MADsforall ages 02.81 + 2.08years.The linearelationship with age in these
424  CpG sites Is not as strong as those reportedtiates(Polanowskiet al. 2014) or

425 dogs (Thompsost al. 2017),but was similar to that reported for a bat species

426  (Wrightet al. 2018). We also observedriationin MAD for different age classes,
427  with birdsaged 5 — 9 yeamnd 19+ providing less accurate age estimates compared to
428  other groupgFigure4A). Additionally, the significant Yintercept in our model

429  (Figure 3) causes an overestimation of age in younger individualagle marker
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(M1801) showed evidence for male driven DNAmM age correlation. Due to the reduced
sample size when comparing by seXypomore known-age samples would be
required to confirm the lack of association in females and ideally, whole genome

informationcould determine if this marker is located on a sex chromosome.

However, the biggest limitatioin developing our modelasthe low number of

young non-breeding bird samples that we could capture in the field, which hinders our
understanding of the rate of DNAmM charmpweerchicksandearly breedergs — 9
years), and,with more samples, this may be correctable in fUtueshearwaters
studiedheretypically do not return to their island of birth until their first year of
breedingatagefive (Bradleyet al. 1991; Bradleyet al. 1989). However, for unknown
reasons we"did not recover many individuals in the 5 — 9 esrdbr age rangé&he
larger DNAm variability in these young animals could be due to the stressful effects
of the first year of breeding. Shearwaters lay one of the largest eggs reldioay

mass of all seabirds, and individuals faballengesncluding incubatory fastingnd
intermittent.foragingdWooller et al. 1990). Additionally, bth migration and
parentheod.can reduce body condition, and evidence sadbasthese birds may
undergo intermittent breeding if an individual determines its body condition is too
low (Bradleyet al. 2000).

Despite some unceiinty in ages estimated with our model, this approach could
discriminate between relevant age classes (e.g. young and old achéts).
epigenetic age estimates, in combination with other parameters including sex and
weight, could be used to examine tlfieet of climate chang®n population viability
(Lee 2017)Recent studies also highlightherareas in which estimated age data
could.beinformative including postpesteradicatiormonitoring of island-breeding
seabird"populations (Broolet al. 2018),parasite load in the Blue tit (Aguilat al.
2016) and=modelling thienpactsof longline fisheries on effective population size
(Cortésetal. 2018; Mills & Ryan 2005).

Obtaininga broadage range of samples from long-lived, known-aigés isdifficult
as extensive banding studies are ravhilst the Fisher Islandhearwatepopulation
has been followed for several decadhs youngest anoldestadult individualsve

recoveredvere 5 an®1 years oldespectivelyTheoldest individualat21 years old
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represents a little over half of the maximum reported lifespan for this spé&@s

years However research on age demnt survival on Fisher Islarmrdsshows few
animals living beyond 25 years post first breeding, which wplaldeour oldest
individual at closer td0% ofthe expected lifespawf approximately 30 yea(8aylis

et al. 2018;'Bradleyet al. 1989). The relationship we have observed with age should
be investigated further for older individuals, however previous studies in mammals
haveprimarily shown linear correlations with agiaegaweet al. 2010; Polanowski

et al. 2014; Spierst al. 2016). Although no recaptures were made within the 1 — 4
year age range, as these {iowaeding birds are not at the nesting sites, the
relationship.of adultto the DNAm level of the chicks suggest birds at these ages will

have asimilartrend to theest of the calibration range.

We quantifiedepigenetic drift’ inDNAm levels observed across all 2338 CpG sites
included in our analysi&Ve did not identify aignificant trend wittchronological
age.However, we did obsenaomeinteresting differences betwegaung and old

age groups.at the lower and upper limits of DNAm. In conteastammaliarand the
only otherbird studywe found no clear trend @NA hypomethylation in older
animalscompared to that in yourgindividuals (Gaudett al. 2003; Gryzinskat al.
2016; Portela & Esteller 2010yhe lack of statistical significan@®uld be due to the
analysis othis relatively smallsubsebf total CpGs in the bird genome.
Immunoenzymatic analyses of chickem&> levels have shown decreased global
methylation with ag€Gryzinskaet al. 2013). Using the same method, we found no
relationship betweerelative5-mC levels and age in 42 known-aearwatewhole
bloods. Howevenye observed a nosignificanttrend towards decreasing
methylationacrossage groups. Our study of aggated global DNAm in shearwaters
is only.the second of this phenomenon in birds and further work will be required to

determinesifithis approaatould be suitable for age estimation in other bird species.

4.2 | Measuring methylation in nonmodel organisms

Despite the identification of several thousand unique CpG sites using the DREAM
method, the 20x read depth requirement for DNAm calculation resulted in the
exclusion of many sitefsom further analysisA small percentage of the total resad

was also lost to repetitive elemenitéiere is little doubt that as technologies improve
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sequencing depshwill increaseand direct analysis of CoG DNAm will be possible,
(Randet al. 2017; Slatkaet al. 2018). Improvements ibioinformaticswill also help

to validate DNAmM markers angredict age in large data s€¥&daki et al. 2017).The
DREAM technique has been used previously to idemNAm changes following
compound-exposure in zebrafish embrg@suwmeesteet al. 2016)andcaloric
restriction in'micgMaegaweet al. 2017).A similar method EpiIRADSeq also uses a
methylation sensitive restriction enzyniépéll) and NGS to quantify DNAm in CpG
sites(Schieldet al. 2016). This technique differs from DREAM in that only a single
methylation.sensitive enzyme is used in combination with a frequent degtigr (

Hpall recognises a ‘CCGG’ motif, whicis likely to lead to highegenomic coverage
of CpGrsites due to increased cut frequehtywever DNAmM scores generated using
this method are relative to the count of unmethylated EpiRADSeq readd bislys
avoided when using a dual methylation stwsidigest as in DREAMas reads are
generated for both methylated and unmethylated CpGs (Jelinek & Madzo 2016).
Reduced representation bisulphite sequencing (RRBS) can also be used to quantify
CpGDNAm;but does require a higher quantityirafial genomic DNA(Meissneret

al. 2005). The output of these various techniques dependsseperal molecular,
platform and bioiformatic factors and choices, which is discusseditailelsewhere
(O'Learyetal. 2018).0ur results now show that the DREAM method can also be
used to quantify global DNAmM and screen for aDMPs in maael animalsThe
primary limitation in applying this method is the high read depth required per CpG
site, particularly in organisms with relatively high quantities of repetitive DNA. This
makesit cosprohibitive as a method for applying to populatisitle samplesbut
certainly effective as a screening method for identifying aDMPs. Once aDMPs are
identified by DREAM, targeted DNAm scoring assays could be developed to reduce
costs.for.high-throughput applications.

An additienal limitation to the simple analysis of shearwater DREAM and indeed
mostnenmodeNGS datais the limited genomic resources availaiolefurther
analysesMultiplex restriction site PCR (mMRBCR) could be used to obtain both up
and downstrearsequence around an aDMP of inte(&strkaret al. 1993; Webeegt

al. 1998). This method cagenerate larger reference sequences for use in targeted
bisulphite assays such as EpiTYPER, pyrosequenciantherNGS based techniques

(Ehrichet al. 2005).More sequence information may also result in more accurate
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comparative genomic analyses agaimei genomes that are currently undergoing
scaffold alignmentThe gene®HH andG3BP1 were identified as conserved age
related sequences from our datal these could be used in future as part of a targeted
gene assay shearwatefTable 2, M1071 and M3169). Whilst we cannot comment
on any potential functional effects of DNAIDHH andG3BP1 encode for signalling
molecules in cell morphogenesis and a DiAwinding enzyme, respectively. Two
other markers also showed high conservation with other bird speciesyer these

hits were either unassign@d2083) or uncharacteriseM1934).These factors limit

our ability to identify biomarkers that have the potential to be used in closely related

speciesand.design a cosfffective, targeted age assay

5| CONCLUSIONS

This study demonstrates that seabird age estimates can be generated from a DNA
methylation.age assayhis minimally invasivemethod could be used to produce age
estimates'foShorttailed shearwaters from chicks to 21 years old. This is the first
timelan epigenetic assay has been appliedivitdeseabird and add be used in

future toestimatepopulation age structururther refinement of this method could
result in thadentification validation and usef target genes, similar to that in
mammals, for related seabird species and see wider use for mongoding

conservation.

Data and code availability

DREAM count data, adjusted DNAm values for 2338 CpGs, fasta pipeline and
variable.selection R scripts used in this publication have been deposited in the
Dryad Digital Repository at [doi: 10.5061/dryad.n4h3672]. Sample details and
raw [llumina sequence data (FASTQ) are available from NCBI/SRA using
accession:

PRJNA507458, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA507458.
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