") Check for updates

THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

ABSTRACT. We present a comprehensive classification of closed smooth 2-connected mani-
folds of dimension 7. This builds on the almost-smooth classification from the first author’s
thesis. The main new ingredient is a generalisation of the Eells—Kuiper invariant that is
defined for any closed spin 7-manifold M, regardless of whether the spin characteristic
class ppy € H*(M) is torsion.

We also determine the inertia group of 2-connected M—equivalently the number of
oriented smooth structures on the underlying topological manifold—in terms of py; and
the torsion linking form.

1. INTRODUCTION

Throughout this paper M will be a closed smooth spin 7-manifold and all homeo-
morphisms and diffeomorphisms are assumed to preserve spin structures, unless stated
otherwise.

1.1. Background. Wall classified (s—1)-connected (2s+1)-manifolds up to connected sum
with homotopy spheres except when s = 1,2,3 or 7 [50, Theorem 7]. In this paper, we leave
connected 3-manifolds aside, recall that Barden classified 1-connected 5-manifolds [3] and
focus on 2-connected 7-manifolds (leaving dimension 15 to Remark 1.15 below).

The topologically simplest 7-manifolds are homotopy 7-spheres, whose spin (equivalently
oriented) diffeomorphism classes form the group ©;. Kervaire and Milnor [29] computed
that ©; = Z/28. Eells and Kuiper [16] defined an invariant p(M) of certain spin 7-manifolds
M with rationally trivial first Pontrjagin class, which distinguishes all homotopy 7-spheres.

At this point, it made sense to study 7-manifolds up to almost diffeomorphism; i.e., up
to the action of ©7 via connected sum. Wilkens did this in his PhD [52], using the triple of
invariants (see Section 2.1)

(H4(M)»bM7pM)7
where H*(M) is the integral cohomology group, by : THY(M) x TH*(M) — Q/Z is the
torsion linking form and py; € 2H*(M) is the spin characteristic class of M. We call this
triple the base of M. Modulo a finite ambiguity if |TH*(M)] is even, Wilkens proved that
the base classifies 2-connected M up to almost diffeomorphism. When M is the total space
of an S3-bundle over S*, this ambiguity was resolved by the first author and Escher [9].

The first author completed the almost diffeomorphism classification of 2-connected M
in his PhD [7] by defining a quadratic refinement gy, of the torsion linking form by, when
H*(M) is torsion, and a family of such refinements in general. When H*(M) = TH*(M) is
torsion, [7] also proves that the triple (TTH*(M), qas, 1(M)) gives a complete diffeomorphism
invariant. This left the smooth classification open when H*(M) is infinite: the difficulty
being that the classical Eells-Kuiper invariant is not defined when py; € H*(M) has infinite

order.
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2 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

In this paper we present a comprehensive smooth classification of closed 2-connected
7-manifolds by defining a generalisation of the Eells-Kuiper invariant for all spin 7-manifolds.
The uniqueness part of this classification has also been proven by Kreck [32, Theorem 1]. Our
main classification results are stated in Sections 1.2 and 1.3 and Section 1.4 describes the
definition of the Generalised Eells-Kuiper invariant. We give applications of the classification
results to the inertia groups and mapping class groups of 7-manifolds in Section 1.5 and we
continue the discussion of the background in Sections 1.6 and 1.7.

An important motivation for this paper is the study of Riemannian manifolds with
holonomy the exceptional Lie group Gs: such manifolds always have py; of infinite order
(see Joyce [26, Proposition 10.2.7]). In [12] we use the generalized Eells-Kuiper invariant to
distinguish pairs of closed Go-manifolds which are homeomorphic but not diffeomorphic.

1.2. The classification. To any closed smooth spin 7-manifold M we shall associate the
following algebraic invariants:

e The integral cohomology group H*(M), which is a finitely generated abelian group;

e The torsion linking form by, : TH*(M) x TH*(M) — Q/Z, which is a torsion form on
the torsion subgroup TH*(M) C H*(M), by this we mean that by, is symmetric, bilinear
and nonsingular (see (8) and Lemma 2.22);

e The spin characteristic class pys, which is an even element of H*(M) (see Lemma 2.2(i)).
It is a homeomorphism invariant by Remark 2.1, and it is related to the first Pontrjagin
class by 2py = p1(M);

e The quadratic linking family ¢5; (see Definition 2.23), which is a family of quadratic
refinements of the base (H*(M), bar, par);

e The generalised Eells-Kuiper invariant iy (see Definition 1.8), which is a mod 28 Gauss
refinement of the triple (H*(M), 4%, par)-

Let us describe ¢3, and then indicate the type of uys (leaving a more detailed introduction

of pps to §1.4).

A quadratic refinement of by, is a function ¢: TH*(M) — Q/Z which satisfies the
equation ¢(z+y) = q(x) + q(y) + ba(z,y) and we denote the set of such ¢ by Q(byr). We
note that for t € TH*(M), the function ¢;(z) := q(x) + b(z,t) also belongs to Q(bas).
The homogeneity defect of ¢ € Q(by) is the unique element 3 € 2T'H*(M) such that

a(z) — a(—) = bu(z, B). Let
Sy :={h € H*(M) : pys — 2h is torsion}.
That ¢35, is a family of quadratic refinements of (H*(M),byr, par) means that it is a function
G Sa = Qlbm),  h = djy,

such that ¢2f* = (¢h,)_, for all t € TH*(M) and ¢}, has homogeneity defect 3}, := par — 2h.
The family of quadratic refinements ¢}, is defined in Definition 2.23.

Let d, be the greatest integer dividing py; modulo torsion (or d, := 0 if py; is torsion),
d. = lem (4,d,) and cir = gcd(‘{f, 28). If d > 0 we set

Sa, = {k € HY(M) : pps — d,k is torsion},
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THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS 3

and if d; = 0 set Sq_ := TH*(M). We set 8 := py — dk for each k € S;_ and note that
for e, := d, /2 we have e,k € Sy. By saying that the generalised Eells-Kuiper invariant of
M is a mod 28 Gauss refinement of (H*(M), q5;, par) we mean (see Definition 2.34) that it
is a function N

v Sa, — Q/dAZ,
such that pps(k) = A(¢57") mod Z (where A is the Arf invariant of a quadratic refinement,
computed in terms of a Gauss sum in (10)), and such that the following transformation rule

ek +1) = par (k) = engig (0) = (57 bar(t.1) mod d W
holds for all k € Sy, and t € TH*(M) (note that both terms on the RHS have coefficient
divisible by Cff, so are in particular well-defined in Q/ c/i\,rZ). The Generalised Eells-Kuiper
invariant of M is defined in Definition 1.8.

Two of the main consequences of (1) are that a Gauss refinement is defined by its
value at a single element in S;_, and that the difference between two Gauss refinements of
(H*(M), q5;, par) is constant. The constraint in terms of the Arf invariant then forces this
constant to take values in Z/ d,Z.

Remark 1.1. If py; is a torsion element then d, = 0 and d, = 28, while S, = THY(M)
contains the distinguished element 0. The value 5z1a(0) € Q/Z recovers the original
Eells-Kuiper invariant. See Remark 2.38 for related statements even when p,; is not torsion.

If G is a finitely generated abelian group, p € 2G and b is a torsion form on 7' C G,
the torsion subgroup of G, then we call (G,b,p) a base. If ¢° is a family of quadratic
refinements of (G, b, p) then we call (G, ¢°,p) a refinement; we suppress b since it can be
recovered from ¢" for any h and hence from ¢°. If ;i is a mod 28 Gauss refinement of
(G, q%p), then we call the quadruple (G, ¢° i, p) a mod 28 distillation. If F': G' — G is a
group isomorphism then we can define another mod 28 distillation (G’, F#q, F# u, F#p) by
pulling back: F#(p) := F~Y(p), (F#q)"(x) := ¢"W(F(x)), and F#p:=po F.

The mod 28 distillation (H*(M), q%;, ptar, par) of M is an invariant of diffeomorphisms:
if f: M — M’ is a diffeomorphism then f*: H*(M’') — H*(M) is an isomorphism and
(@Sprs vy paar) = ((F)#QSy, (F)F uar, (fF)#par). In fact, only pas depends on the smooth
structure and the refinement (H*(M), ¢3,, par) is also invariant under spin homeomorphisms.

An almost diffeomorphism f: My = M; is a homeomorphism which is smooth except
perhaps at a finite number of points. It follows from results of the first author’s thesis, see
Lemma 3.1, that 2-connected 7-manifolds are classified up to almost diffeomorphism and
homeomorphism by their refinements.

Theorem 1.2 (Almost diffeomorphism and homeomorphism classification). Every refine-
ment (G, ¢°,p) is isomorphic to (H*(M), g5, par) for some 2-connected 7T-manifold M. More-
over, if My and M, are 2-connected, then an isomorphism F: H*(M,) — H*(My) is realised
as f* for some almost diffeomorphism f: My = M, if and only if (¢35, Pary) = F#(q}’wo,pMO).

The same statement holds with “almost diffeomorphism” replaced by “homeomorphism”.

The central result of this paper is that the generalised Eells-Kuiper invariant is precisely
what needs to be added to Theorem 1.2 to obtain a smooth classification of 2-connected
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4 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

7-manifolds. Consequently, 2-connected 7-manifolds are classified up to diffeomorphism by
their mod 28 distillations.

Theorem 1.3 (Smooth classification). Every mod 28 distillation (G, ¢° p, p) is isomorphic
to (HY (M), q5y, par, par) for some 2-connected 7-manifold M. Moreover, if My and M,
are 2-connected, then an isomorphism F: H*(M,) — H*(My) is realised as f* for some

diffeomorphism f: My = My if and only if (q3;,, pary» Pary) = F#(qjﬁ), KMo s PMo ) -

1.3. Elaboration of the classification. Theorem 1.3 is a “polarised” classification result
in the sense that it identifies whether a given isomorphism of the cohomology is realised by
some diffeomorphism. If we are simply interested in whether My and M; are diffeomorphic
(without specifying how the diffeomorphism acts on cohomology) then we can consider a
coarser invariant than the generalised Eells-Kuiper invariant. Let Aut(by,) be the group
of automorphisms of the linking form by, and recall that for each k& € S; we have
Br = par — drk € TH*(M), which is the homogeneity defect of the quadratic refinement
qu. We define the smooth splitting set of M to be the set

QM) = {([8i]. ar(k)) + k € Sa } € (2T H*(M)/Aut(b)) x Q/dZ.
An isomorphism F': (H*(M,), byr,, par,) = (H* (M), bagy, Pasg,) induces the map
F#: (2T HY(My)/Aut(bo)) — (2TH*(M,)/Aut(b)), [8] — [F~1(B)].

The following theorem generalises [9, Theorem 1.5] from the case when M is the total space
of a smooth S3-bundle over S* to all 2-connected M.

Theorem 1.4 (Unpolarised smooth classification). Let My and M, be 2-connected, and
let F': (H*(My), b, par,) — (HY (M), bag, s Pas,) be an isomorphism. Then the following are
equivalent:
(i) My is diffeomorphic to M;;
(i) (F* x 14)(Q(My)) = Q(My);
(ili) (F# x Id)(Q(Mo)) N Q(My) # 0.

The corresponding result for almost diffeomorphisms is given in Corollary 3.5.

We now formulate the polarised classification of Theorem 1.3 in categorical language,
giving more information about the monoidal structure of 2-connected 7-manifolds under
connected sum. Let ® denote the category of mod 28 distillations (G, ¢°, i, p) with morphisms
isomorphisms:

Ob(D) ={(G,¢" 1, p)}
Let M?gin denote the category of 2-connected spin 7-manifolds with morphisms diffeomor-
phisms:
Ob(M3™) = {M : 7 (M) = 0 = m(M)}
Given a diffeomorphism f: My = M, write f*: H*(M;) = H*(M,) for the induced action
on cohomology. Hence we obtain the contravariant functor

. Spin M = (H4(M)7q?V[7;uM>pM)7
D: M7y — D, {f:MOZMl s I
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THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS 5

The operations of connected sum and reversing orientation in M?gn are mirrored by
corresponding operations in ®. For ¢ = 0,1 the orthogonal sum of two distillations

(Gi, @7, piy pi) is defined as follows. Noting that d., = ¢;dr,ex for some integer ¢;, in
which case CoSd,,O X 184, C Sdm@m, we define the orthogonal sum gy @ ¢ at cokg + c1k1 by

(g0 ® @)™t * = gf° @ g,
and 5
(10 @ 1) (coko + k) = pio(ho) + pa (k) mod ged (28, em ).

Since qp @ ¢ and o & py are determined by their values on a single k € Sy, ., this
suffices to define the sum of distillations and the transformations laws for refinements and
distillations ensure that the orthogonal sum is well-defined. We define the negative of a
distillation by

_(Ga qO> /'va) = (G7 _qO> _luap)

Theorem 1.5 (Categorical version of smooth classification). The functor D: /\/l?pgin —+

18 surjective and faithful. Moreover
(i) D(MofiMy) = D(My) © D(M,) and
(ii) D(—M) = —D(M).

We next present an oriented homotopy classification for 2-connected M. Such a classifi-
cation was given in [7, Theorem 6.11] and we re-formulate that classification in the setting
of this paper. An important feature of the homotopy classification is that py, € H*(M) is
not a homotopy invariant but pos(par) € HY(M;Z/24), the mod 24-reduction of pyy, is a
homotopy invariant, [37, Theorem 1]. As a consequence, there is a precise sense in which
the homotopy classification is the “mod 24 reduction” of the homeomorphism classification.

For a linking form (b,7") define JQ(b) to be the quotient of Q(b) where we identify two
refinements ¢y and ¢; if ¢; = (qo)12: for some t € T" and write p12: Q(b) — JQ(b) for the
quotient map. A J-quadratic refinement of a base (G, b, p) is a triple (G, Jq°, p24(p)) where
Jq°: Sy — JQ(b) is a map such that J¢" = (J¢")_; and poy(Br) = pas(p—2h) € TRZ/24.
The pull-back of J-refinements is defined analogously to the pull-back of refinements and
the J-refinement of M is defined to be the triple (H*(M), p12 © ¢35, p2a(par))-

Theorem 1.6 (Homotopy classification). Every J-refinement (G, Jq°, pe4(p)) is isomorphic
to (HY(M), p12 © @5, paa(par)) for some smooth 2-connected T-manifold M. Moreover, if
My and M, are 2-connected, then an isomorphism F: H*(M,) — H*(My) is realised
as f* for some orientation preserving homotopy equivalence f: My ~ My if and only if

(P12 o Aoy pas(Pary)) = F#(Pm O qhy s p24(Pay ))-

1.4. The generalised Eells-Kuiper invariant. As explained in Section 1.1, the main
novelty of Theorem 1.3 lies in the smooth classification when H*(M) is infinite. The key
ingredient is the generalisation of the Eells-Kuiper invariant.

Let X be a closed spin 8-manifold. By the index theorem [2, Theorem 5.3] X(X), the

E—genus of X, is equal to the index of the Dirac operator on X, and so is an integer. The
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6 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

classical Eells-Kuiper invariant is derived from the relation
Py — o(X) = 224A(X), (2)

where X has signature o(X) and spin characteristic class px: the latter is defined in
Section 2.1. If M is a closed 7-manifold such that py is a torsion class (so rationally trivial)
and W is a spin coboundary of M, then p#, has a well-defined integral over W (it might in
general take values in Q and not just Z), and (2) implies that

Py —o(W)
(M) = =———

is independent of the choice of coboundary W. This defines the classical Eells-Kuiper
invariant, modulo normalisation by a factor of 28.

To deﬁne an analogue when py, is not a torsion class we have to let it take values not
modulo 28 but modulo the integer d, = = ged (%, 28), depending on the divisibility of py

€ Q/28Z (3)

modulo torsion as above. Moreover, the generalisation is not simply a constant in Q/ c/i\,rZ
but a function.

To define the generalised Eells-Kuiper invariant p,s, suppose that W is a spin coboundary
of M and that there exists n € H*(W) such that the image of py —d,n under the restriction
map j: HY(W) — H*(M) is a torsion class; equivalently j(n) € Sy, . If W is 3-connected
then such n exist and any spin M has 3-connected coboundaries: see the start of Section 2.2.
Since j(pw — drn) is torsion we can define (cf. (23))

o) = Gyt =)

€Q/%Z (4)

and then extend gy to a function Sy, — Q/ %’“Z by the transformation rule (1). Then gy
is independent of the choices of n. The following lemma (cf. (24)) implies that the residue

s = gw mod cir is independent of the choice of W, and functorial.

Lemma 1.7. Let f: OW, — 0W; be a diffeomorphism and X := (=Wy) Uy Wi. Then

gw — (F)*gw, = 284(X) mod |
Definition 1.8. The generalised Eells-Kuiper invariant of M is defined to be the function
pr: Sq, — Q/d, 7.

The idea of the definition is that the simplest way to change (3) to something that
is well-defined when the restriction of py to the boundary is rationally non-trivial is to
compensate by subtracting from py a class that is divisible by d; and has the same rational
image in H*(M). The essentially different ways of doing that are parametrised by Sy, and
that is why the generalised Eells-Kuiper invariant is a function defined on Sy_.

The definition of the s; invariant by Kreck and Stolz [33] provides as a byproduct a
way to compute the classical Eells-Kuiper invariant in terms of coboundaries that are not
spin, but merely spin®. Proposition 2.43 gives a similar way to compute the generalised
Eells-Kuiper invariant via spin® coboundaries. We use this method in [12] to compute the
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THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS 7

generalised Eells-Kuiper invariants of certain closed 7-manifolds with holonomy G, that are
homeomorphic but not diffeomorphic.

1.5. Inertia and reactivity. Let O; = {¥ : ¥ ~ S7} be the group of spin diffeomorphism
classes of homotopy 7-spheres 3. This is equivalent to the standard definition of ©7 in [29],
since homotopy spheres are simply connected. By [29], ©; is an abelian group under
connected sum and ©; = Z/28. The inertia group of M is defined to be the following
subgroup of ©:

I(M):={¥: Mt¥X = M}

Remark 1.9. Let M, denote the oriented manifold underlying M. If M is simply connected
then I(M) = I(M,), where I(M,) is the usual inertia group of M, , which is defined using
orientation preserving diffeomorphisms fy: M ¥, = M, .

It turns out that even with Theorem 1.3 in hand, the determination of I(M) can be a
delicate problem. The reason is that s is not a constant but rather a function and so it
is possible for almost diffeomorphisms of M to act non-trivially on py,. Equivalently, the
automorphism group of a refinement (G, ¢° p) can act non-trivially on the set of mod 28
Gauss refinements.

The inertia group is closely related to what we (therefore) call the reactivity of M. Let
ADiff(M) denote the group of spin almost diffeomorphisms of M. Given f € ADiff(M),
the mapping torus T of f has as well-defined spin characteristic class pr, € H 4(Ty) and
we define the integer p?(f) := (p%f, [T%]). This defines a homomorphism

p*: ADiff(M) = Z,  f = p*(f),

and the reactivity of M is the non-negative integer R(M) defined by

p*(ADiff(M)) = R(M)Z. (5)
Clearly R(M) is an almost diffeomorphism invariant of M. Since T has zero signature
and pr, is characteristic for the intersection form of Ty we have R(M) € 8Z. It is well
understood that f € ADiff(M) is pseudo-isotopic to a diffeomorphism if and only if p?(f)
is divisible by 224 (see Lemma 3.7) and consequently
R(M)

8

To determine R(M) when M is 2-connected, we first determine the values of p?(f)
which are realised when H*(f) = Id (see Proposition 3.10). This reduces the determina-
tion of R(M) to understanding the action of the automorphism group Aut,(H*(M)) of
(HY(M), q5;, par) on mod 28 Gauss refinements. That can in turn be reduced to under-
standing the automorphism group Auty(H*(M)) of (H*(M), bas, par), which is much easier
to deal with in practice. In fact, R(M) is almost completely determined just using the

following ‘intermediate’ notion of the divisibility of py;, whose significance was pointed out
by Wilkens [54, Conjecture p. 548]:

4 0 if pps is torsion, (7)
° | Max{s:s,m € Z, sm*divides mpy } otherwise.

I(M) = 0. (6)
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8 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

Corollary 4.17 and (6) give the next theorem, where for a fraction ¢ written in lowest terms

b
Num (%) = q.

Theorem 1.10. Let M be 2-connected and let d, = d,(M). There is an integer r € {0, 1,2}
depending only on the base (H*(M), by, par), such that

R(M) = lem(8,2"d,).
In particular, by (6),

I(M) = Num (28d0) O7.

If TH*(M) has odd order then r = 1.

If HY(M) does have some 2-torsion then in general one needs to look at the torsion
linking form in detail to determine r. Wilkens’ conjecture [54, Conjecture p. 548] for the
inertia group is equivalent to supposing that r = 1 always, which is not true. The invariant
r =r(G,b,p) is defined in Definition 4.5 and while we do not have a closed formula for r,
it is feasible to compute r for any given example. For examples where r = 0,1 or 2, see
Example 5.2.

We next discuss some consequences of Theorem 1.10 and its proof. If N is a closed
smooth manifold, let ny(N) denote the number of oriented diffeomorphism classes of
smooth structures on the topological manifold underlying N. From Theorems 1.2 and 1.10
and Remark 1.9 we deduce

Corollary 1.11. If M is 2-connected then n, (M) = ged (Num(2"3d,), 28).

We call a homotopy equivalence f: Ny — Nj of smooth manifolds tangential if there is
a bundle isomorphism f*T'N; = T Ny, where T'N; is the tangent bundle of N;, 2 =0, 1. In
Lemma 5.5 we show that a homotopy equivalence f: My ~ M; of 2-connected 7-manifolds
with f*par, = pu, 1s tangential. Together with Theorem 1.10 this entails

Corollary 1.12. Let My and M be 2-connected and let f: My ~ M, be a tangential
homotopy equivalence. Then I(My) = I(M;).

One may wonder if Corollary 1.12 is true because tangentially homotopy equivalent
2-connected 7-manifolds are almost diffeomorphic (equivalently homeomorphic by Theorem
1.2). However this was shown not to be the case in [7, p. 114], contradicting statements of
Madsen, Taylor and Williams [35, Theorem C and Theorem 5.10]: see Proposition 5.6 and
Remark 5.7.

The computation of the reactivity of M also has applications in Gs-topology. We define
the smooth reactivity of M, RP(M), using the equation p?(Diff(M)) = RP¥(M)Z, and
in [11, Section 6] we show that RP¥(M) determines the number of Ga-structures on M
modulo homotopies and diffeomorphisms. By Corollary 4.17,

RPE(M) = lem(27d,, 224)

for 2-connected M, and this allows us to generalise Theorem 1.3 to give a classification
of 2-connected 7-manifolds equipped with a Ga-structure, up to diffeomorphisms and
homotopies of Go-structures [11, Theorem 6.9].
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THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS 9

The proof of Theorem 1.10 gives subtle information about the mapping class group of M.
Let Ig(M) C I(M) be the subgroup of the inertia group of M consisting of homotopy
spheres Y such that there is a diffeomorphism f: M#¥ = M where H*(f) = Id, considering
M3 and M as the same topological space. Using the delicate algebra in Section 4.3 we
construct a surjective homomorphism

P: Autg(H*(M)) — I(M)/Iy (M),

such that ' € Aut,(H*(M)) is realised by a diffeomorphism of M if and only if IB(F ) =0.
Now by Theorem 1.2, every F' € Auty(H*(M)) is realised by an almost diffeomorphism of
M and in Proposition 6.4 we prove that every nested pair of subgroups I; C I, C ©; can
be realised as [(M)y C I(M) for some 2-connected M. As consequence we have

Theorem 1.13. There exist 2-connected M with automorphisms F € Autye (H*(M)) which
are not realised by any diffeomorphism of M. Necessarily every such F is realised by an
almost diffeomorphism of M.

Remark 1.14. Let us call an homeomorphism f: M — M exotic if it is not topologically
isotopic to a diffeomorphism. Applying Theorem 1.13 gives examples of exotic homeomor-
phisms f: M — M whose exoticness is detected by their action on integral cohomology;
see Example 6.5. To the best of our knowledge, these are the first examples of exotic
homeomorphisms of this kind.

1.6. An overview of the proof of Theorem 1.3 and some remarks on surgery.
Every 2-connected M bounds a 3-connected 8-manifold W and we define the characteristic
form of W to be the triple (H*(W,0W), \w, pw ), where

A HAW,0W) x HY(W,0W) — Z,

is the intersection form of W, and py, € H*(W) is the spin characteristic class of W (see
Section 2.1). A key feature of dimension 8 is that py is characteristic for Ay, which means
that A\ (z,7) = 2 U py mod 2 for all x € HY(W,0W) (see Lemma 2.2(iii)). In [48] Wall
classified the manifolds W by proving that every isomorphism of characteristic forms is
realised by a diffeomorphism. He also proved that every abstract triple (H, A, «), where
A H x H is a symmetric bi-linear form and a: H — Z is characteristic for A in the sense
above, is realised as the characteristic form of some W.

Following Wall, Wilkens [52, Theorem 3.2] proved that any diffeomorphism f: My — M,
between 2-connected M extends to a diffeomorphism F': Wy — W; for some 3-connected
coboundaries W; of M;, i = 0, 1. The results of Wall and Wilkens’ reduced the classification
of 2-connected 7-manifolds to the classification of characteristic forms up to isometry
and orthogonal sum with spherical forms, where we call a characteristic form spherical if
the boundary of the corresponding handlebody is diffeomorphic to S7; cf. [50, §14]. This
algebraic problem boils down to finding the correct notion of the algebraic boundary of a
characteristic form. Wilkens’ base (G, b, p) and the first author’s refinement (G, ¢°, p) were
partial solutions to this problem and the mod 28 distillation (G, ¢°, i, p) of this paper gives
a complete solution.
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10 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

The fundamental input to Wall and Wilkens’ theorems is Smale’s h-cobordism theorem
[46]. In addition, both proofs make use of handlebody theory. Hence the topological inputs
to our proofs are relatively elementary from a modern perspective. The reader may ask
whether developments in manifold theory, e.g. the classical surgery theory of Browder-
Novikov-Sullivan-Wall or the modified surgery of Kreck, give more powerful tools to classify
2-connected 7-manifolds?

In the case of classical surgery, the answer to the above question is simply “no”. The
homotopy classification of 2-connected 7-manifolds via the study of C'W-decompositions
and attaching maps, is surely harder than the smooth classification of these manifolds. The
reader may consult [45] as a starting point. Even if the homotopy classification is known,
the computation of the surgery structure set via the surgery exact sequence and then the
action of the self-equivalences on the structure set is a delicate problem. Here the reader
may consult [8, Theorem 2.2] for the case M = 5% x S*.

The situation is different with modified surgery, which provides a powerful tool for
classifying 1-connected 7-manifolds. Until recently the relevant results from modified surgery
came from working over the normal 2-type and rested on the general classification theorem
[31, Theorem 6], which in the 2-connected case makes the very restrictive hypothesis that
H*(M) is generated by pys. In [32] Kreck defines an enhanced normal 2-type which applies
to all 2-connected M and which he uses to give an alternative proof of the uniqueness part
of Theorem 1.3. The enhanced normal 2-type encodes what Kreck calls a d-structure which,
in the notation of this paper, is a pair (M, k), where k € S,_.

1.7. Dimensions 7 and 15. Dimension 7 and 15 were exceptional for Wall’s methods in
[50] because the tangent bundles of S* and S are trivial and this prevented Wall from
defining a quadratic refinement of the linking form. We discuss this further in Section 2.8,
where we show how Wall’s methods can be extended to 2-connected 7-manifolds by adding
additional tangential structure. In this way we are able to give an intrinsic definition of the
quadratic refinement of the linking form.

Remark 1.15. To discuss dimension 15, let String := O(6) denote the 6-connected cover
of the stable orthogonal group. This is a well-defined homotopy type with models which
are topological groups (see [47, Theorem 5.1]). In particular there is a well-defined notion
of a stable string structure on a manifold and hence a well-defined notion of a stable
string manifold. For the almost diffeomorphism classification, a 15-dimensional analogue
of Theorem 1.2 was proven in [7, Theorem B|. For the smooth classification, we have
©15 = Z/8,128 @ 7Z/2, where the Z /8,128 summand is the subgroup of homotopy 15-spheres
which bound string manifolds and the Z/2 summand maps isomorphically to QI 29, 17].
The 15-dimensional analogue of Theorem 1.3 requires the following modifications. Firstly the
universe of 6-connected 15-dimensional manifolds has two disjoint classes: those manifolds
which bound string manifolds and those which do not. Secondly, within each of these classes
a version of Theorem 1.3 holds, where mod 28 Gauss refinements are replaced by mod 8,128
Gauss refinements, in the sense of Definition 2.34.
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1.8. Organisation. The rest of this paper is organised as follows. In Section 2 we define
the invariants used in Theorems 1.2 and 1.3. In particular, families of quadratic refinements,
Gauss refinements and the generalised Eells-Kuiper invariant are defined in Sections 2.4,
2.5 and 2.6 respectively. In Section 3 we prove our main classification results and we discuss
the connected sum splitting of 2-connected 7-manifolds in Theorems 3.4 and 3.14. Section 4
is an algebraic section in which we analyse the automorphisms of refinements and bases and
the action of these automorphisms on Gauss refinements. This section contains the proof of
Theorem 1.10, which follows from the computation of the reactivity of M in Corollary 4.17.

In Section 5 we illustrate the classification of 2-connected M with examples and we also
we present a refinement of Wilkens’ identification of the set of indecomposable generators for
the monoid of almost diffeomorphism classes of 2-connected 7-manifolds under the operation
of connected sum; see Theorem 5.8. In Section 6 we investigate the relationship between
the inertia groups of M and the mapping class groups of M and prove Theorem 1.13.
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Kreck for helpful comments and discussions. We would also like to thank Matthias Kreck for
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granted by the Deutsche Forschungsgemeinschaft. JN thanks the Simons Foundation for its
support under the Simons Collaboration on Special Holonomy in Geometry, Analysis and
Physics (grant #488631, Johannes Nordstrom).

2. INVARIANTS

In this section we define the invariants needed to classify 2-connected spin 7-manifolds M.
In Section 2.1 we introduce the linking form by, of M and the spin characteristic class
pur € 2H*(M). In Section 2.2 we recall the characteristic form

(H4(W7 aW)a /\W>pW)

of a spin coboundary W for M and identify it as the salient algebraic model for W. In
sections Sections 2.3, 2.4 and 2.5 we progressively build algebraic “boundary invariants”
of characteristic forms. Section 2.3 recalls the theory of refinements of torsion forms and
Section 2.4 shows how a characteristic form defines a family of refinements on its boundary.
In Section 2.5 we define the generalisAed Eells-Kuiper invariant py, of M using Hirzebruch’s
characteristic class formulae for the A-genus and the L-genus. The generalised Eells-Kuiper
invariant is a reduced defect invariant of the A-genus. In Section 2.7 we show how py, can
be computed via a coboundary W which is spin® rather than spin. Finally, in Section 2.8
we give an intrinsic definition of the quadratic refinements defined via coboundaries in
Section 2.4.
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12 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

2.1. Basic invariants. To any closed spin 7-manifold M we associate its integral cohomo-
logy group H*(M), torsion linking form by, and spin characteristic class py; € 2H*(M). We
call the triple (H*(M), by, par) the base of M. More generally, a base is a triple (G, b, p)
consisting a finite abelian group G, a torsion form b on the torsion subgroup of G' and
an element p € 2G. For later use we introduce the category B consisting of bases with
morphisms isomorphisms

Ob(B) = {(G,b,p)}-

We now define in the invariants by, and pjy, in turn.

The linking form by;. Recall that the linking form of a closed oriented (4k—1)-manifold N
is a nonsingular symmetric bilinear pairing

by : TH*(N) x TH*(N) - Q/Z
defined on the torsion subgroup of H?*(N). Given z,y € TH?**(N) and T € H*"Y(N;Q/Z),

a lift of x along the Bockstein 3: H*~1(N;Q/Z) — TH?:(N) associated to the coefficient
sequence Z — Q — Q/Z, the linking form by of N is defined by the equation

b (z,y) = (Ty, [N]) € Q/Z.
If N is the boundary of an oriented 4k-manifold Y, then the linking form of N and the
intersection form of Y are related, as explained in [1, II]. Let i: H**(Y, N; Q) — H**(Y;Q)
be the natural map and define a rational-valued intersection form on the image of i by

Ay Im(d) x Im(i) = Q, Ay (i(w),i(2)) := (wUi(2),[Y]).
Let j: H**(Y) — H?*(N) be the restriction map. If + € TH?*(N) and 7 € H*(Y) is a
preimage, j(Z) = z, then the image of Z in H**(Y;Q) is in the kernel of the restriction
H*(Y;Q) — H*(N;Q). Thus the image of j=Y(TH?*(N)) C H*(Y) in H?**(Y;Q) equals
Im(4). The linking form of N satisfies

by (z,y) = —Ay(Z,7) mod Z, (8)

whenever 7,5 € H?*(Y) are lifts of x and y respectively. Note that if the image of j contains
TH?(N), then (8) describes by, completely. The appearance of the minus sign in (8) is
explained in [1, Proof of Theorem 2.1] and also in [21, §3].

The spin characteristic class pyr. The classifying space BSpin is 3-connected and has
74(BSpin) & Z. Tt follows that H*(BSpin) & Z is infinite cyclic. A generator is denoted
+% and the notation is justified since for the canonical map 7: BSpin — BSO we have
m*py = 28 where p; € H*(BSO) is the first Pontrjagin class, see e.g. [36, Lemma 2.2].

One way to explain the claims in the previous paragraph is to note that the canonical
homomorphism SU — Spin, which maps the stable special unitary group to the stable spin
group, induces an isomorphism H*(BSpin) — H*(BSU). Since H*(BSU) is cyclic with a
generator (namely the universal second Chern class ¢;) whose image in H*(BSO) is 2p;,
the same is true for H*(BSpin) (see also Lemma 2.39 below).

Given a spin manifold N we write

Py = %(N) e HY(N).
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Remark 2.1. In order to prove the topological invariance of invariants we define in the later
subsections, we consider py for general topological spin manifolds Y. We let BTop denote
the classifying space for stable topological microbundles, see [30, Essay IV, Proposition 8.1],
and BTop(4) its 3-connected cover. Equivalently, BT op(4) is the classifying space for stable
spin topological microbundles. By [24, (3)] there is a split short exact sequence

0 — m4(BSpin) — my(BTop(4)) — Z/2 — 0.

It follows that the canonical homomorphism H*(BTop(4)) — H*(BSpin) is an isomorphism
and so py € H*(N) is a homeomorphism invariant of topological spin manifolds.

By [33, Lemma 6.5], the mod 2 reduction of py; is the 4th Stiefel-Whitney class wy. This
has the following consequences for the parity of the characteristic class of a closed spin
manifold.

Lemma 2.2.

(i) Let M be a closed spin T-manifold. Then py € 2H*(M).
(ii) Let X be a closed spin 8-manifold. For all v € H*(X;7Z/2)

2’ =xUpx € H¥(X;Z/2).
(iii) Let W be a compact spin 8-manifold with boundary M. For all x € H*(W, M;Z/2)
v* =z Upy € HX(W, M;Z/2).

Proof. By Wu's formula, see e.g. [42, Theorem 11.14], wy = vy for any closed spin manifold
since the first three Wu classes of a spin manifold vanish.

(i) Now vy(M) = 0 since M is 7-dimensional, the Wu class satisfies vy (M) Uz = S¢*(z)
for all x € H3(M;Zs) by definition, and Sq* vanishes on classes of degree three.
(ii) 2% = S¢*(z) = v Uvy(X) = 2 U px.
(iii) Let X := W Uyq,, (=W). The push-forward i.: H*(W, M) — H*(X) of the inclusion
i: W — X is dual under the Poincaré pairing to the restriction i*: H*(X) — HY(W).
Since i*px = pw, (ii) gives

o® = (ix2)* = iux Upx = 2 Upy,
where the equalities take place in Z/2 = H®(X;Z/2) = H3(W, M;Z/2). d

Remark 2.3. The characteristic class py; is the primary and final obstruction to the triviality
TM, the tangent bundle of M; i.e. T'M is trivial if and only if py; = 0. This is because
of Bott periodicity, which states that m5(BSO(7)) = mg(BSO(7)) = 0 and we have the
exceptional fact that m;(BSO(7)) = 0 by [28, p. 162]. Hence all obstructions to the triviality
of the tangent bundle of M after py,s vanish. Indeed, any rank 7 (or higher) spin vector
bundle E over a C'W-complex X is trivial over the 7-skeleton of X if and only if p(F) = 0.
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14 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

2.2. Algebraic models of coboundaries. Let M be a closed spin 7-manifold. Since the
bordism group Q5P™ vanishes by [40], there is a compact spin 8-manifold W such that
OW = M. Applying surgery below the middle dimension to W [39, Theorem 3], we can
assume that W is 3-connected. We define FH*(W,0W) := H*(W,0W)/TH*(W,0W) to
be the torsion-free quotient of H*(W,dW). Since W is 3-connected, H*(W) is torsion-free
and so the relative cohomology sequence of (W, M) gives exactness of

FHYW,0W) — HYW) — H(M) — 0. (9)

For an abelian group H, let H* := Hom(H,Z) be the dual of H. Since H*(W) is
torsion-free, the composition H*(W) — Hy(W,0W) — H*(W,0W)* of the Kronecker
homomorphism with the Poincaré-Lefschetz duality isomorphism is an isomorphism. Hence
the first homomorphism in (9) can be thought of as the adjoint homomorphism,

\w: FHYW,0W) — FHY(W,W)*,

of the intersection pairing Ay on FH*(W,0W). The principle we follow is to regard the
pair (FHY(W,0W), \w) as a “model” for a coboundary W.

Let us set up some terminology to deal with these models. We say that (H,\) is an
integral form if H is a finitely generated free abelian group and A\: H x H — Z is symmetric
and bilinear. Let A denote the adjoint homomorphism H — H*. The “boundary” of (H, \)

~

is G := coker(A). We say that an element a € H* is characteristic for X if A\(z,x) = a(x)
mod 2 for all x € H. We then call (H, A, «) a characteristic form.

If W is a 3-connected coboundary of M then the pair (FH*(W,0W), A\y) is an integral
form with boundary H*(M). By Lemma 2.2(iii), (FH*(W,0W), Aw, pw) is characteristic.
(If M is 2-connected then Wall’s classification of 3-connected 8-manifolds [48] ensures that
the characteristic form of W is a complete invariant of W under diffeomorphisms; i.e. every
isomorphism of characteristic forms is realised by a diffeomorphism, see [7, Corollary 2.5].) In
the next subsections we study the structures that an integral or characteristic form induces
on its boundary. By applying this to the algebraic model of a 3-connected coboundary of
M we obtain the desired algebraic invariants of M. To prove that they are independent of
the choice of W we will combine a splitting result for the algebraic constructions with the
following lemma whose proof is a simple application of the Mayer-Vietoris theorem.

Lemma 2.4. Let W; be compact 3-connected spin 8-manifolds with 2-connected boundaries,
f: OWy — OWy a homeomorphism, and X = (—=Wy) Uy Wy (a closed spin topological
manifold). Then for i = 0,1 we have injections H*(W;, 0W;) — H*(X) whose images are
orthogonal to each other with respect to the intersection form Ax of X. Further, the restriction
map HY(X) — H*(M) is surjective, with kernel H*(Wy, OWy) + H* (W, 0W1). O

Remark 2.5. We note that by Lemma 2.2(ii), the triple (H*(X), \x, px) of the manifold X
in Lemma 2.4 is a (nonsingular) characteristic form. Moreover, the image of px under the
restriction map H*(X) — H*(W;) is of course py,.

2.3. Torsion forms and quadratic refinements on finite groups. Throughout this
paper T is a finite abelian group. We say that b: T'x T — Q/Z is a torsion form on T if it is
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symmetric, bilinear, and nonsingular in the sense that the induced map T'— Hom(7T,Q/Z)
is an isomorphism. We call a function ¢: T'— Q/Z a quadratic refinement of b if
gz +y) =q(@) +q(y) +b(z,y), Vo,y eT.
The homogeneity defect of ¢ is the unique element § = (q) € 2T such that for all x € G
q(x) —q(—z) = b(x,B). If § =0 then ¢(x) = ¢(—z) and g is called homogeneous. We define
Q(b) :={q : q is quadratic refinement of b}

and we let Q°(b) C Q(b) be the set of homogeneous quadratic refinements of b. In this
subsection we consider the problem of classifying the quadratic refinements in Q(b) up to
isomorphism. For Q°(b) this problem was solved by Nikulin [43] and the general solution
was given independently by Deloup and Massuyeau [14] and the first author [7].

The first basic results [7, Lemmas 2.30 & 2.31] are that Q(b) and Q"(b) are both non-empty
and that T acts freely and transitively on Q(b) via the action

Q(b) x T — Q(b), (Qa t) =,
where we recall from the introduction that for all t € T,
a:(x) = q(z) + bz, 1) = q(z +t) — q(t).
It is clear that the homogeneity defects of ¢ and ¢, are related by B(¢) = B(q) + 2t.

Ezample 2.6. If T'= 7 /rZ is cyclic then all torsion forms and refinements on 7" are given
by the following examples. Given 6 € Z/r coprime to r, let <g> denote Z/r equipped with

the torsion form

b(z,y) = 9::3/ € Q/Z.

Given 6 € Z/2r coprime to r and v € Z/r (so that 2y € Z/2r), we define a quadratic
refinement <<%>>7 of <§> by

2+ 2yx

q(z) =10 <2T> € Q/Z.

Beyond the homogeneity defect, we introduce two further equivalent invariants of ¢q. The
first of these is the Gauss sum of ¢ which is the complex number

GS(q) := Z i@ ¢ C,
zeT

where i = v/—1 and e is Euler’s number. From the fact that ¢,(z) = g(z +t) — q(t) one
easily obtains the following useful

Lemma 2.7 ([14, (4.1)]). GS(q;) = e 2" WGS(q). O

It is a theorem of Milgram [41, Theorem, p. 127, Appendix 4] that if ¢ is homogeneous,
then GS(q) is a non-zero complex number with modulus /|7T'|: by Lemma 2.7, this holds
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16 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

for all ¢ € Q(b). We define the Arf invariant of ¢ to be the number A(q) € Q/Z which is
the argument of G'S(q) divided by 27. That is

GS(q) = +/|T|e*™4@ ¢ C. (10)

Then Lemma 2.7 is equivalent to
Alqr) = Alg) — q(t). (11)
Before giving the classification theorems for Q(b), we review how elements of Q(b) can
be presented as the boundaries of nondegenerate characteristic forms (H, A, o) and how

A(q) is determined by (H, A, «) in this situation. If A is nondegenerate then the boundary
T := coker(\) of (H, \) fits into the short exact sequence

0—H 2 H 5T 0. (12)
We write Ag: (H ® Q) x (H ® Q) — Q for the rational form induced by A. Its adjoint
Ao: H®Q — H*®Q is an isomorphism, and we use the inverse (Ag) ™ ': H*®@Q — H xQ

to pull back the form Ag on H ® Q. We obtain a rational symmetric bilinear form on
H*® Q, and restricting to H* C H* ® Q gives the rational-valued bilinear form

A= () Q) - H* x H* = Q.
Explicitly, if y, 2 € H* and if y = kA(§) and z = IA(Z) for some integers k and I then,

Xw.2) = 235 ). 35 (2) = 282 = (351, ).

Remark 2.8. In [7] the form A\: H* x H* — Q is denoted A7!.

Remark 2.9. When the sequence (12) is the sequence H*(W,0W) — H*(W) - H*(M)
of a 3-connected coboundary W as in Section 2.2 with H*(M) = TH*(M), then the form
\: H* x H* — Q is precisely the restriction of the rational-valued intersection form of W,
A HY(W;Q) x HY(W;Q) — Q, to j~Y(TH*(M)) = H*(W) Cc H{(W;Q).

Given a nondegenerate characteristic form (H,\,«) and z,y € T, let Z,y € H* be such
that j(Z) = z and j(y) = y. We define the torsion form by
by: TxT—Q/Z, (z,y)+— —\(,y) mod Z,
and the quadratic refinement of by

Do: T —=Q/Z, z— — (x,x)2— Az, ) mod Z. (13)

We regard (T, ¢xa,j(«)) as the boundary of (H, A\, o) and note that the homogeneity defect
of ¢r is exactly j(«).

Remark 2.10. The minus signs in (13) are introduced to correspond to the sign in (8). The
sign differs from [7, Definition 2.32]. As a consequence, the definition of the linking form
and quadratic linking family in [7, Definition 2.50] have the wrong signs.
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Ezample 2.11. Let us discuss the calculation of (7,b) from (H, A) in more detail. If H has
basis {v1,...,v,} and \ is represented with respect to this basis by the symmetric integer
matrix B then B is invertible over Q and the rational symmetric matrix B~! expresses
A H*x H* — Q with respect to the dual basis {v], ..., v} of H*. It follows that the mod Z
values of B~! express the linking form b with respect to the generating set {j(v}),...,7(v})}
of T.

For example, suppose that H = Z? with basis {v1,v2}, and A and « are given by

B= ( SZ % ) ;o av)) =2a1, a(vy) = 2as,

where ay,ay € Z. Then T = Z/2" @ Z/2" with generating set {(j(v}), (j(v3))}, b has linking

matrix _
0o -2
270 0

with respect to {j(v}),j(v3)} and gy, is given by the formula
% .ok —kl—agl—alk
Ao (kj (v7) +1j (UQ)) = 9 .
The following fundamental theorem of Wall states that every linking form and quadratic
refinement are realised as the boundary of some even nondegenerate form.

Theorem 2.12 ([49, Theorem 6]). For all torsion forms b and for every q € Q°(b), there
is an even nondegenerate form (H,\) and an isomorphism q = gy .

We now state Milgram’s theorem on the Gauss sums of homogeneous quadratic torsion
forms.

Theorem 2.13 (Milgram [41, Theorem, p. 127, Appendix 4]). Let ¢ € Q°(b) and (H,\) be
an even nondegenerate integral form with signature o(X). Then

(i) 8A(q) € Z;

(i) 8A(gro) = —0(X) mod 8.

Following Milgram’s theorem, we can restate Nikulin’s classification of homogeneous
quadratic refinements of b as follows.

Theorem 2.14 ([43, Theorem 1.11.3]). If qo,q1 € Q°(b) then qo is isomorphic to q if and
only if A(qo) = Alq1).

For general quadratic refinements of b we have the following results.

Proposition 2.15 ([7, Proposition 5.19]). Any nondegenerate characteristic form (H,\, «)
has _

Ma,a) —a(A
Algra) = 22020 g

Theorem 2.16 ([7, Theorem 5.22], [14, Theorem 4.1]). Let qo,q1 € Q(b) be quadratic
refinements with homogeneity defects By and 1 respectively. Then qo and q, are isomorphic
if and only if the following hold:
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18 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

(i) There is an automorphism f: T =T of b such that f(5y) = p1;
(ii) A(qo) = Alq1)-

Remark 2.17. The proof of Theorem 2.14 in [43] and the proof of Theorem 2.16 in [7] both
apply classification results for torsion forms and case by case checking. In contrast, the
proof of Theorem 2.16 in [14] is short and general, with one elegant argument covering all
cases.

2.4. Families of quadratic refinements. Let GG be a finitely generated abelian group,
p an element of 2G, and b a torsion form on the torsion subgroup 7’; i.e. (G, b,p) is a base
and so is an object in the category B. Define

Sy :={heG:p—2nheT},
and for h € Sy write By, := par — 2h. Note that T acts simply transitively on Sy by addition.

Definition 2.18. A family of quadratic refinements of a base (G, b, p) is defined to be a
function ¢°: Sy — Q(b), h +— ¢", such that:

(i) the homogeneity defect of ¢" is fB;

(ii) ¢"*tt = ¢", for any t € T
The triple (G, ¢°,p) is called a refinement of (G, b, p).

An isomorphism F': G — G’ obviously maps Sy — S, and F pulls back a family of
quadratic refinements ¢’° on G’ to one on G by setting

(F#q/)h — q/F(h) o Fir.

In this case ¢° and ¢’° are isomorphic via F', and so are (G, ¢°, p) and (G', ¢°, F~1(p)).
The orthogonal sum of two refinements (G, qg,po) and (Gi,¢5,p1) is the refinement
(Go® G1,45 D q7,po @ p1) as defined in Section 1.3. The negative of a refinement (G, ¢°, p)

of (G, b,p) is the refinement (G, —¢°,p) of (Q, —b, p) defined by (—q)" = —¢". For later use
we introduce the category R consisting of refinements with morphisms isomorphisms

Ob(R) =A{(G. ¢°p)}-

Refinements as in Definition 2.18 are defined naturally on the boundaries of characteristic
forms (H,\,«) when X is allowed to be degenerate. First we define the base (G,b,p).
Let G := coker(\), let K := ker(\) C H be the radical of A and let R C H* the
annihilator of K. Then R = (H/K)*, and the form A descends to a nondegenerate form
Nk H/K x H/K — Z with R/ Im(/):/K) = T. Hence we obtain a torsion form b = by on
T as in Section 2.3. To define p we let j: H* — G be the projection and set p := j(«).
Regardless of whether A is degenerate or not, the classification of Zy-valued bilinear forms
implies that there is always an z € H such that A(z,y) = A(y,y) mod 2 for any y € H.

Then oo — A(z) € H* is even, so p = j(a) € G is even as required.

Definition 2.19. The boundary base of a characteristic form (H, A, «) is defined to be the
triple (G, b, p) := (coker(A), by, j(«)).
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Next we define the induced family of quadratic refinements. For any h € Sy, pick m € H*
such that j(m) = h and set «,;, = @ — 2m. Then j(a,,) is a torsion element and so a,, € R
which is characteristic for (H/K, A k) and we let

h —
UH N a) = Dyxoom

be the quadratic refinement of b defined in (13) in the previous subsection, i.e. if € R
and j(z) = x then
AE T) 4+ Mag, 7)  AGHE), T + o)
qh(x)(H,A,a) = (#.2) 5 ( ) =2 5 € Q/Z. (14)

This is independent of the choice of m, since if m’ =m + X(T’) then

A2m/ &) — AN(2m, Z) = 2(r, T) € 2Z.

That (i) of Definition 2.18 is satisfied is immediate from ), = j(,). Meanwhile, if A’ = h+t
for some t € T then j(m' —m) =t, so

qéLI,-I,)\,a)(x) - qélH,)\,a)(x) = <_)\([_21(j)7m - m/> = —b)\(.f,t),
which shows that (ii) of Definition 2.18 holds.
Definition 2.20. The boundary of a characteristic form (H, A, «) is the triple

O(H, \, ) := (coker()), Gtre 4(0)).

~

It is a refinement of the boundary base (coker(\), by, j(«)) of Definition 2.19.

It is clear that an isomorphism of characteristic forms E: (Hy, Ao, ap) = (Hy, A1, o)
induces an isomorphism 0F: 0(Hy, Ao, ag) = O(Hy, A\, aq) of the boundary refinements. It
is also clear that the boundary of an orthogonal sum of characteristic forms is the orthogonal
sum of the boundaries and that 0(H, —\, a) = —0(H, \, a).

We call a characteristic form (H, A\, «) nonsingular if A is, i.e. if the adjoint \: H — H*
is an isomorphism. Suppose that (H, A, ) is a nonsingular characteristic form, Hy is some
primitive subgroup of H and H; is the A-orthogonal subspace to Hy. Let a;; € H be the
restrictions of « to H;. Let A\; be the restriction of A to Hy, and A the restriction of —\
to Hy. In this case we say that (Hy, Ao, ) and (Hy, A1, ) are orthogonal in (H, A, o). For
the groups G; = Coker(/):i) of the boundaries of (H;, \;, a;), the restriction maps H* — H}
and the isomorphism N\ H =~ g give rise to homomorphisms H — H* — H? — G; which
induce isomorphisms

H’i: H/(Ho@Hl) = Gi'
Given (Hy, A, ) orthogonal to (Hy, A, 1) in (H,\ «), we thus have the canonical
isomorphism
Fy:=1oll;": Gy = G. (15)
(There is a slight asymmetry in the definition of orthogonal forms: If (Hy, Ao, a) is orthogonal
to (Hi, A\, 1) in (H, A\, ), then (Hy, Aj, 1) is orthogonal to (Hy, Ao, ap) in (H,—\, ).
However, the isomorphisms F) : Go — G and F_, : G; — Gg are precisely inverse to each
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other.) The following lemma is a routine calculation using (14) and the fact that (H, A, @)
is nonsingular: see [7, Lemma 3.10] for the case where (H;, \;, ;) are nondegenerate.

Lemma 2.21. Let (Hy, Ao, ) and (Hy, A1, 1) be orthogonal characteristic forms in the
nonsingular characteristic form (H,\,«). If for i =0,1, (G;, ¢}, p;) denotes the boundary
of (Hy;, \i, «;), then the canonical isomorphism Fy of (15) induces an isomorphism of the
boundaries:

F¥ (g3, m) = (45, po)- O

As discussed in Section 2.2, if W is a 3-connected coboundary of a closed spin 7-manifold
M then (FH*(W,0W), \w, pw) is a characteristic form. Note that the associated boundary
in B in the sense of Definition 2.19 is precisely the base of M, (H*(M), bas, par), where by
the torsion linking form of M as described in (8). Hence we have the following

Lemma 2.22. The base of a spin 7T-manifold M is the boundary base of the characteristic
form of any 3-connected coboundary W of M ; i.e.

(H*(M), bag, par) = O(H (W, 0W), Aw, pw). 0

Definition 2.23. The quadratic linking family q3, of M is the family of quadratic re-
finements of (H*(M), by, par) defined by the characteristic form (FH*(W,0W), A\w, pw),
where W is any 3-connected coboundary W of M. Explicitly, applying (14) we obtain for
all h € Sy that
_)\W(‘fu j) B Aw(Oém, 3_:)

where 7 € H4(W) is a lift of z, a,, = pw — 2m and m € H*(W) is a lift of h.

Moreover, if d, = 0—in particular if M is a rational homology sphere—then we have the
preferred element 0 € Sy = TH*(M) and qy := ¢Y, is the quadratic refinement of M.

If Wy and W are 3-connected coboundaries of My and M; respectively and f : My — M;
is a homeomorphism, let X be the closed topological spin manifold (—W,) Uy Wi. Then
Lemma 2.4 and Remark 2.5 imply that the characteristic forms (FH*(Wo, Mo), Aw,, P, )
and (FH*(Wy, My), Awy, pw, ) are orthogonal in (FH*(X), Ax, px) and also that the induced
isomorphism Fy, : H*(My) — H*(M,) is precisely (f*)~!. Together with Lemma 2.21, this
implies that g5, is independent of the choice of W and natural under homeomorphisms (in
the sense that (f*)#q¢5,, = ¢f;, for any homeomorphism f: My — M).

Remark 2.24. If d; = 0 then by [10, Definition 1.4 and Theorem 2.4], the function gy,
can be defined analytically using the eta invariant of a Dirac operator on M, twisted by
appropriate quaternionic line bundles. This definition is intrinsic to M, in the sense that
no co-boundary is required. For an alternative intrinsic definition of g3, in the case of
2-connected M, see Section 2.8 below.

Remark 2.25. The proof following Definition 2.23 that ¢j, is a homeomorphism invariant
relies on Remark 2.1 and Lemma 2.2. Tt is simpler than the proof given in [7, Theorem 6.1]
which used the full apparatus of smoothing theory.
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Notice, however, that smoothing theory and Theorem 1.2 imply that every 2-connected
M with H%(M;Z/2) # 0 admits exotic self-homeomorphisms; by which we mean homeo-
morphisms which are not isotopic to piecewise linear homeomorphisms. Self-homotopy
equivalences which are homotopic to exotic self-homeomorphisms were defined on certain
rational homotopy spheres in [10, §2.b], see [10, Lemma 2.17].

Remark 2.26. Given a section o: G/T — G of the projection 7: G — G /T, the image of
o is isomorphic to the free part of G, and there is a unique k(o) € Sy, N Im(c). We can
therefore define the family of quadratic refinements as a function on the set of sections
Sec() of 7 so that ¢°*: Sec(w) — Q(b), ¢° := ¢**). This presentation is relevant for
considering connected-sum splittings of M and is discussed further in Section 3.2.

2.5. Gauss refinements. We can associate a further boundary invariant to a characteristic
form which we refer to as a Gauss refinement of the family of quadratic refinements. Let
(G,b,p) € B, i.e. G is a finitely generated abelian group, p € 2G and b: T'x T — Q/Z is a
torsion form. Let m: G — G/T be the projection and define d, to be the greatest integer
dividing 7(p) if 7(p) # 0 and set d, := 0 if 7(p) = 0. If d, # 0, we define
Sa, ={keG:p—d;keT}

and if d = 0 set Sy, :=T. Given k € Sy, write By := p — d.k and note that 7" acts simply
transitively on S, by addition. As in the introduction, we abbreviate d/2 as é,.

Given (G, ¢%p) € R, i.e. if ¢° is a family of quadratic refinements of (G, b, p), let us define
A(k,t) € Q/2d,7Z by

A(k,t) = 4d,q* (t) — dy(de+2) b(t, 1) (16)

(note that if k € Sy, then e k € Sy, so ¢°* is a well-defined quadratic refinement of b).

Definition 2.27. Given (G,q%p) € R, we call a function g: S;. — Q/%"Z a Gauss
refinement of ¢° if

g(k) = A(¢°*) mod Z (17a)
for all £ € S4,, and the transformation rule
Ak, t
ok +0) — gl) = 200 (17h)

holds for all k € Sy, and t € T..

A Gauss refinement is completely determined by its value at any single k£ € S;_, using
(17b). The difference between two Gauss refinements of the same family of quadratic

refinements is a constant, and by (17a) the constant takes values in Z/ %Z'

Now suppose that (H, A, «) is a characteristic form. Given k € S;_, pick n € H* such
that j(n) = k, and set «, := o — d,n. Note that j(a,) = B, and that o, € R = (H/K)* is
a characteristic element for the intersection form on H/K. Let

M, o) — o(A)

g (k) = ; € Q/%=Z. (18)

Lemma 2.28. gy is well-defined, independent of the choices of n.
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Proof. Replacing n by n’ :=n + /):(’I") for some r € H*, so ayy =, — dﬂf)\\(r), changes the
value of gy (k) by

—2d A (@, A(r) + EAA() () _ —ds ( ron) — T)> |

8 4

The last factor is an integer, and it is even when d, is not divisible by 4 (i.e. when d, = 2d,)
because «,, is characteristic for A. O

Lemma 2.29. gy is a Gauss refinement of qE’H’/\ 0)-

Proof. First we check the condition (17a). The a, used in the definition of gy (k) co-incides
with the a,, used in the definition of ¢°=* in (14). Since a, is characteristic for X, Proposition
2.15 immediately gives (17a).

Next we check the transformation law (17b). Given k € Sy, and t € T', pick n’ such that
j(n’) = k+t. Then o,y — o, = —d,(n' —n), and j(n'—n) =t, so

Mo, @) — Mo, an) = —2d M, n'—n) + d2X(n'—n,n'—n)
5\ I I 5\ " I B
_ g Ammn ”); (@1 5 (. + 2 A0 =,/ —n)
= A(k,t) mod 2d,. 0

An isomorphism F: G’ — G with F(p') = p maps S, — Su,. If F#¢° = ¢’° then we
have A(F(k), F(t)) = A'(k,t) for all k € S and t € T, so if g: Sy, — @/%’“Z is a Gauss
refinement of ¢° then

Ftg:=goF
is a Gauss refinement of ¢’°.

Gauss refinements of orthogonal characteristic forms. We recall that if (H, A, «) is non-
singular and Hy C H is primitive with orthogonal complement Hy, then for the characteristic
forms (H;, \i, ;) defined by restriction from (£, «), there is a canonical isomorphism
Fy\: 0(Hy, Ao, ) = O(Hq, A1, 1) of the associated refinements.

Lemma 2.30. Let (Hy, Ao, ) and (Hy, A1, 1) be orthogonal characteristic forms in the
nonsingular characteristic form (H, A\, «). The canonical isomorphism Fy of (15) pulls back
gm, to a Gauss refinement of the linking family qf of (Hoy, Ao, o), and

)\(067 Oé) — U()\)
8
Proof. Note that since (H, \) is nonsingular, (/):)_1 : H* = H is an isomorphism from A to \.

Also, we have homomorphisms H* — H} — G; where we recall that G; = Coker(/):i). Pick a
k € Sq4.(Go), and then pick n € H* whose image in G equals k (the set-up means that the
image of n in Gy is F)\(k)). Let n; be the image of n in H}, and set o, := a; — d.n; € R;

as in the definition of gg,. Since o(\) = a(A1) — (\o), it suffices to show that
Ma, @) = M (s i, ) — Aoy, ) mod 2. (19)

ngHl—gHO = mod %".
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The image of o —dn in H*®Q can be written as a sum XO(%) —I—Xl (71) where v; € H;®Q
and \;(7;) = ay,. Thus, since the hypothesis involves A restricting to A\; on H; and —\g
on Ho,

e, a) = M(v1,71) = 20(10,%) + 2dA(n, & — drn) + d2X(n, n)
= 5\1(05711704711) - 5\0(067107 Oéno) mod 2(57”

that equality holds mod 4d, when d, is not divisible by 4 follows from a — d,n being a
characteristic element for \. U

Remark 2.31. Let us call a characteristic form (H, A\, «) neutral if it is nonsingular and
AMa, @) = o(A) and say that two characteristic forms are neutrally isomorphic if they
become isomorphic after addition of neutral forms (so this is a sharper condition than stable
isomorphism). Lemma 2.30 implies that Gauss refinements are invariant under neutral
isomorphism. The gluing and splitting arguments for characteristic forms reviewed in
Section 3.2, in particular Theorem 3.2, can be used to show that characteristic forms are
classified up to neutral isomorphism by their boundary distillations (G, ¢° g, p).

Linked functions. There is a certain redundancy in the definition of a Gauss refinement g,
in that the constraint (17a) on g mod Z forces the transformation rule (17b) to hold mod Z.
In the analysis of the action of automorphisms on Gauss refinements in §4, it will prove
convenient to replace (17b) with a condition that can be expressed purely in terms of the
base (G,b,p) rather than the refinement (G, ¢°, p), but nevertheless implies (17b) when
(17a) is assumed.

We call a function g: Sy, — Q/%Z (b, p)-linked if for all k € Sy, and t € T

Ak, t)
8 )

gk +1) = g(k) + (20)

where

Ak, t) == —d2b(t,t) + 2db(By, t) € Q/2d,Z. (21)

Lemma 2.32. g : Sy — Q/2d,Z is a Gauss refinement of (G, ¢°,p) if and only if (17a)
holds for some k € S,_, and the mod 2d, reduction of g is (b, p)-linked.

Proof. For ¢°** to be a refinement of b with inhomogeneity ; implies from the definitions
that

2¢°(t) = b(t, 1) + b(By, t) € Q/Z,
which in turn gives

A(k,t) = A(k,t) mod 2d,.
Similarly, combining
¢ (2t) = 2b(t,1) + b(B, 1) € Q/Z
and
¢ (—ent) = —exq™ (1) + (57) b(t, 1) € Q/Z
gives that
A(k,t) = —8¢°"*(—e,t) mod 8.
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By the Chinese remainder theorem, these two constraints completely characterise ﬁ(kz, t)
as an element of Q/2d,Z. Now observe that

Alg=®) = A(g"F ) = A(g™F) — ¢*F(—eqt) € Q/Z

by 2.18(ii) and (11). Thus (17b) is equivalent to requiring that g(k) — A(¢g°"*) mod Z is
constant and that (20) holds. O

Remark 2.33. We could make an analogy with factors of automorphy of automorphic forms
and think of A as a “term of automorphy”. For any linked functions to exist is clearly
equivalent to the cocycle condition

A(k,s+t) = Ak + s, t) + Ak, s), (22)

which can be checked directly from the definition in (20). The difference of two functions
with the same term of automorphy is invariant under the T" action; since T' acts transitively
on Sy, that simply means that the difference between two (p, b)-linked functions is a constant
in Q/2d,Z.

2.6. The generalised Eells—Kuiper invariant. Let M be a spin 7-manifold and W
a 3-connected coboundary of M. Let gw : Sq. — Q/ %’“Z be the Gauss refinement of
(HY(M), q5;, par) defined by the characteristic form (FH*(W,0W), \w, pw). Applying (18),
this means that for n € H*(W) such that j(n) € S;, € H*(M),
2
w (i) = 2O 20 0w) _ {ow = eV = o), (23)
as defined in (4) in the introduction. We pointed out before that if f: My — M; is a spin
homeomorphism then X := (—W,)U; W is a closed topological spin 8-manifold, Lemma 2.4
means that (FH*(Wy, My), Awy, pw,) and (FH(Wy, My), M\w,, pw, ) are orthogonal in the
nonsingular form (FH*(X), Ax, px), and the induced isomorphism F, : H*(My) — H*(M;)
is precisely (f*)~'. Hence Lemma 2.30 implies

2 —o(X -
gwy = () gw, = px8() mod % 7. (24)

If f is a diffeomorphism then X is smooth, the RHS of (24) equals 28A4(X), and A(X) is
an integer; this proves Lemma 1.7. Letting
d, = ged (%", 28) (25)
as in the introduction, it follows that
2 Sq. — (irZ,
KM : Ody, Q/ - (26)
pr = gw mod dy

is independent of the choice of W and natural under diffeomorphisms: If f: My — M; is a
diffeomorphism then (f*)# g, = par, by (24). Now s satisfies a transformation rule that
is a mod 28 reduction of (17b), and we say that this makes s a mod 28 Gauss refinement

of ¢3,.
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Definition 2.34. Given (G, q°%p) € R and a positive integer N, we call a function p: Sy —
Q/ ged(%, N)Z a mod N Gauss refinement of ¢° if

p(k) = A(¢*) mod Z
for all k € S;,, and the transformation rule

plk+t) — k) = Alk,t) mod gcd(%JV)

8
holds for all k € Sy, and t € T..

For N = 28 this transformation rule is equivalent to (1) stated in the introduction.

If W is not 3-connected, then (4) defines gy only on the subset Sq_ N j(H*(W)) of Sy._.
However, as long as that set is non-empty, this completely determines p,; by the transfor-
mation rule, so the description of y1y; from the introduction is valid. This point can be seen
as a special case of Proposition 2.43 below.

Remark 2.35. Analogously to Remark 2.26, we can define Gauss refinements (and i)
as functions of sections o: G/T — G rather than on Sy, gw(o) := gw(k(c)). Then
gw(o) = A(q”) mod Z, and the transformation rule (20) can also be rewritten in these
terms.

Remark 2.36. Recall Remark 1.1 saying that if pj; is torsion then S; = T contains the
distinguished element 0 and 5512/(0) € Q/Z recovers the original Eells-Kuiper invariant
u(M).

Although defined extrinsically using spin co-boundaries, the original Eells-Kuiper invariant
(M) was shown by Donnelly [15, Theorem 4.2] to have an intrinsic definition in terms of
the eta invariant of the Dirac operator of M. It would be interesting to find an intrinsic
definition of the generalised Eells-Kuiper invariant when py; # 0 € H*(M;Q).

For further information about the role of eta invariants in the classification of 7-manifolds,
we refer the reader to [18, §4].

Remark 2.37. In [7, §4.4], a pair of characteristic forms (H,\, «) are called smoothly
equivalent if they become isomorphic after addition of nonsingular characteristic forms with
AMa, a) = o(N\) mod 224 (so this is a weakening of the notion of neutral equivalence from
Remark 2.31). In algebraic terms, the definition of the generalised Eells-Kuiper invariant
can be used to show that the mod 28 distillation of M, (H*(M), ¢35, ptar, par), is a complete
invariant of the smooth equivalence class of the characteristic form (FH*(W,0W), \w, pw)
of a 3-connected coboundary for M. Hence Theorem 1.3 is a development of the dimension
7 case of [7, Theorem 4.9], which classifies 2-connected 7-manifolds up to diffeomorphism
by the smooth equivalence class of the characteristic form of a 3-connected coboundary.

Remark 2.38. Let us conclude this subsection by considering how the information captured
by the function pys : Sq, — Q/ %Z can in some special cases be presented more simply.
If pas is torsion or if the greatest divisor of pys is the same as d, (the greatest divisor
modulo torsion), then S;_ contains the distinguished element 0, and the function gy, can

be naturally identified by the value 13,(0) € Q/ %Z.
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More generally, for any divisor ¢ of d, we can relate py; to functions defined on
Se={k € G :py —ck € T}. Let us focus on the case when ¢ is even—because that is
more subtle than when ¢ is odd—and let ¢ = lem(4,¢). We can then define a function
gw : S. —> Q/ %Z analogously to gy . If d, = rc, then rS,_ is a non-empty subset of S.. For
any k € Sy, the mod £ reduction of gy (k) equals gy (rk).

Thus the mod % reduction of gy is completely determined by gy . In particular, if we
take ¢ = ged(28,d,), then gy determines pp,. Meanwhile gy can sometimes be easier to
describe.

In particular, if ¢ divides pys, then S, contains 0, and the function gy can be naturally
identified with its value at 0. In fact more is true: gy must be constant, except when d,
is an odd multiple of ¢ and the parameter r from Theorem 1.10 is 0. That ¢ divides pys
means that the image of py in H*(W;Z,.) is contained in the image of H*(W, M;Z,), and
thus has a well-defined square in H3(W, M; Z.) = Z.. The mod % reduction of gy is always
constant, determined by

Py —o(W)
gw =

mod ¢.

One can attempt to compute gy itself in a similar way using the Pontrjagin square
o(p) € H¥(W, M;Zy,.) of a pre-image p € H*(W, M;Z.) of py . This is independent of the
choice of p if and only if p(dz) = 0 for all z € H3(M;Z.). Because the suspension of the
Pontrjagin square is the Postnikov square, that is equivalent to requiring that, for j = ords ¢,
there are no 2/-torsion classes y € H*(M) with 27b(y,y) odd. Thus—in the terminology
of §4.1—if there are no split 2/-torsion elements in H*(M) then there is a well-defined
Pontrjagin square p(pw) € HY(W, M; Zs.) = Zs., and gy is determined by

—o(W
= SO

(This is compatible with the claim above that gy, could be non-constant if r = 0, because
Lemma 4.3 means that if H*(M) lacks certain split summands then r # 0.)

On the other hand, for any divisor ¢ of d, g is determined by its value at a single element
of S,, so gw is completely determined by gy . Regardless of the possible convenience in
some special settings of considering divisors ¢ other than d,, using d, captures the maximal
possible amount of information. For the purposes of studying the general classification theory
there is thus no advantage to considering anything other than gy and pjs as functions
of Sy, and that is therefore what we do in the rest of the paper.

2.7. The computation of u,; via spin® coboundaries. Inspired by calculations of
Kreck and Stolz for their s; invariant [33], we derive an expression for p), in terms of
coboundaries that are not necessarily spin (never mind 3-connected) but just spin®.

For a principal spin® bundle we use the canonical homomorphisms Spin‘(n) — SO(n)
and Spin®(n) — U(1) to define an associated real vector bundle E together with a complex
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line bundle L such that ¢;(L) = wy(E) mod 2. We can then define the characteristic classes

z =1 (L),
p=pEL),
pi=p— 2%

So 2p = pi(E® L) = pi(E) + 22 and 2p = p;(E) — 2% Recall that any U-bundle has a
natural spin® structure, defined as follows: if 7 : U(n) — SO(2n) is the natural inclusion
then the homomorphism i x det : U(n) — SO(2n) x U(1) has a lift under the double cover
Spin®(2n) — SO(2n) x U(1). If £ is a complex vector bundle then the fundamental line
bundle L of the corresponding spin® bundle is L := det E.

Lemma 2.39.
(i) p and 2* form a basis for H*(BSpin®).
(i) p(F) = —co(E) for any complex bundle E.
(iii) p(E) = wa(E) mod 2 for any spin® bundle E.

Proof. Observe that Spin®/U = Spin/SU is 5-connected, since Spin(6)/SU(3) = S7 and
Spin(6) and SU(3) have the same homotopy groups as Spin and SU in degree < 5. Letting
7w : BU — BSpin® denote the classifying map for £FU considered as a spin®-bundle, the maps
7*: H*(BSpin®) — H*(BU) and 7*: H*(BSpin®) — H?(BU) are therefore isomorphisms
(with both Z and Z, coefficients). Patently 7z = ¢;.

We know that H*(BU) has basis {cy,c?}. Because there is no 2-torsion, the equation

2P = p1 — (7°2)? = (—2c9 + ¢}) — ¢} implies 7*P = —cy, proving (i) and (ii).
The isomorphism on H*(—;Z,) implies that it suffices to check that (iii) holds when F is
complex. But that follows from (ii). O

Corollary 2.40. If X is a compact spin® 8-manifold then px is characteristic for the
intersection form Ax of X.

Proof. Lemma 2.39 gives

p=wy+ws mod 2.
Wu'’s formula implies that for any closed orientable manifold X the fourth Wu class is
v4(X) = wy(X) + wo(X)?, and by definition v, is characteristic for the intersection form
of a closed 2n-manifold. The compact case follows from the closed case, as in the proof of
Lemma 2.2(iii). d

Lemma 2.41. If X is a closed spin® 8-manifold then the Dirac operator of the fundamental
complex spinor bundle has
Py —o(X) 52%px 2

28ind T = X < T (27)

Proof. [34, Theorem D.15] expresses ind " as the integral of exp ( ) E(X ), whose degree

8 part expands to

z
2

—dps + TpF 2P*;y 24 B p? L 22p; n 24
27.45 248  24.16 277 257 263 273
Then substitute p; = 2p — 2 to obtain (27). O
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Now suppose M is a spin 7-manifold and W a spin® coboundary, such that the restriction
of z € H*(W) to M is trivial. Then z has a pre-image z € H?(W, M), and z? € H*(W, M)
is independent of the choice of Z.

Definition 2.42. Given k € S;_, suppose there is n € H*(W) such that j(n) = k. Then

let @, := pw — d,n, and
¢ (k) = Aw (@, @) —o(W) 52w
Jwil) = 8 12

If z =0 then of course g§;, = gw. The proof that g§;, (k) does not depend on the choice of
n is analogous to Lemma 2.28, using that & is characteristic for intersection form Ay .

Proposition 2.43. Let (W1, z1) be a spin® coboundary of M and j,: H*(Wy) — H*(M)
the natural homomorphism. Then

(i) giy, (k) = par(k) mod 28 for all k € Sg, N (HY (W),
(ii) The defined values of gfy, satisfy the transformation rule (17b), i.e.

24 7

c c E(k7 kl_k)
i () = g () + S0

whenever k, k' € Sy N j1(HY (W), where A in (16) is defined in terms of ¢3, and by

Proof. For part (i), let Wy be a 3-connected coboundary for M, and X := (—=W) Uya,, Wi.
Then X is a smooth spin® manifold, possibly with more than one choice of z € H?*(X)
restricting to z; on Wy and 0 on W,. While we do not trouble ourselves with separating the
algebra from the topology in this case, we essentially adapt the proof of Lemma 2.30 to
show o (X) 5:% A
-0 z z i

Iy, — 9wy = Ix 3 — 1§X + 1 mod %Z. (28)
Since the RHS equals 28ind " by Lemma 2.41, while gy = (i mod gcd(28,%") by
definition, the result then follows.

Pick some n; € H*(W;) such that j;(ny) € Sy, as in Definition 2.42. As W} is 3-connected,
there is some n € H*(X) whose restriction to W; equals n;. Then py — d,n is a sum of
push-forwards of v; € HY(W;, M; Q) and XWZ. (7i) = @;. Meanwhile, note that regardless of
the choice of z, 22 € H*(X) is the push-forward of 22 € H*(W,, M). Hence

~2 102%px
Px —

R 10 , .
+25" = o7 495 + 2den(Px — den) + don® — S ADw, + 224

10, - .
= A, (a1, a1) — ngpw1 + 2211 — Aw, (0, @)  mod 2d,.

The fact that the equality holds mod 4d, when d, is not divisible by 4 is due to px — d,n
being a characteristic element for the intersection form on X.
Part (ii) follows from (28) since gy, satisfies (17b) and the RHS of (28) is constant. [

As a consequence of Proposition 2.43 (ii), we can extend gf;, to a well-defined Gauss
refinement so long as Sy N j(H*(W)) is non-empty. Hence the generalised Eells-Kuiper
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invariant p,; can be computed in terms of any spin® coboundary W of M where the
intersection Sy_ N j(H*(W)) is non-empty.

2.8. An intrinsic definition of ¢,. In this subsection we define Spin(4, 2)-structures on
spin manifolds and use them to give an intrinsic definition of the linking family g3, for
2-connected M.

Recall from the proof of Lemma 2.2 that the mod 2 reduction of the universal spin class
p2(p) € HY(BSpin; Z/2) is identified with the 4th Wu class of the universal bundle over
BSpin. We regard v, as a map

vy: BSpin — K(Z/2,4)

and define BSpin(4,2) to be the homotopy fibre of vy. By construction there is a map
72 . BSpin(4,2) — BSpin and a sequence of maps

42 v
K(Z/2,3) — BSpin(4,2) ——— BSpin =+ K(Z/2,4),

where both successive pairs of maps defines a fibration sequence. Let N be a spin manifold
and let vy : N — BSpin the classifying map for the stable normal bundle of N. A Spin(4, 2)-
structure on N is an vertical homotopy class of lift 7y : N — BSpin. In particular, there is
a commutative diagram

BSpin(4, 2)

v
/ L ’y<4’2>

NI BSpin.

The diagram above ensures that 7: N — BSpin(4, 2) is canonically covered by a map of
stable vector bundles from the normal bundle of N to the pull-back of the universal bundle
over BSpin along {42

Lemma 2.44.
(i) BEwvery spin 7T-manifold M admits a Spin(4, 2)-structure.
(ii) The set of equivalence classes of Spin(4, 2)-structures on M is a torsor for H3(M;Z/2).
(iii) The induced map v*»*: H*(BSpin) — H*(BSpin(4,2)) is isomorphic to x2: Z — Z.

Proof. By Lemma 2.2(i) we have py(par) = 0 and so Part (i) follows from the right-hand
fibration in the sequence of maps defining BSpin(4, 2) above. Part (ii) and (iii) follow from
the left-hand fibration in the sequence of maps defining BSpin(4,2) above. U

For later use, we point out that Lemma 2.44(iii) shows that BSpin(4, 2)-manifolds (X, )
have a naturally defined characteristic class p% € H*(X) such that 2p% = px. For spin
7-manifolds M we set

Sy :={he€G:py=2h}CS
and then Lemma 2.44(ii) shows that every h € S, arises as p” for some Spin(4, 2)-structure

v on M. Of course, S, is a torsor for ,TH*(M), the subgroup of 2-torsion elements of
THY(M).
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In the usual way, we define the bordism groups of closed n-manifolds with Spin(4, 2)-
structure,
QP = {[N, 7]},
where [N, 7] denotes the BSpin(4, 2)-bordism class of (V, 7).

Lemma 2.45. Qspin<4’2> = 0, i.e. every closed spin 7-manifold has a spin coboundary W

with pyw even.

Proof. Consider a BSpin(4, 2)-manifold v: M — BSpin(4, 2). Since the space BSpin(4, 2)
is 3-connected, surgery below the middle dimension as in by [31, Proposition] ensures
that we may replace (M, ) in its BSpin(4, 2)-bordism class by a homotopy sphere with
Spin(4, 2)-structure (3, ). By Lemma 2.44(ii), ¥ has a unique Spin(4, 2)-structure. By
[29, Theorem 3.1] ¥ is stably parallelisable and and so its Spin(4, 2)-structure is induced
from a stably framing. By [29] ¥ bounds a parallelisable manifold. Hence (X, 75) bounds a

BSpin(4, 2)-manifold and so Qgpin<4’2> =0. N

Fix a Spin(4, 2)-structure 7 on M and recall the characteristic class p§, € H*(M). For
2-connected M we show how to define a homogeneous quadratic form

¢": TH* (M) — Q/Z

using just (M, 7) and in particular no coboundary. Moreover this definition recovers the
quadratic form obtained by evaluating the quadratic linking family ¢3, at h = p%, € So; i.e.
¢” = ¢". The idea is to repeat Wall’s definition of the quadratic refinement of the linking
form for (s—1)-connected (2s+1)-manifolds for s # 3,7 from [50, §12A]. We assume the
reader is familiar with this definition, recalling only its essential features.

Following Wall we work with the dual group T H3(M ), the torsion subgroup of Hs(M).
For brevity, we write Z € THs(M) for the Poincaré dual of x € TH*(M). Since M is
2-connected every element 7 € T H3(M) is represented by an embedding S* < M and since
every linear bundle over S? is trivial, this extends to an embedding f;: D* x S® < M. To
compute the self-linking number by;(z, z) we need to push fz({0} x S?) off itself and this can
be achieved by taking a section s: S* — S® x S? of the unit normal bundle S% x §% — S3.
Following Wall, we set X := M \ Int(fz(D?* x S?)), note that M is obtained from X by
attaching a 4-handle and a 7-handle and let y; := [s] € H3(X) and y2 € H3(X) be the
homology class of the meridian S* x {*}. For i: X — M the inclusion, y, generates the
kernel of i, : H3(X) — H3(M) and i.(y1) = « has order r for some positive integer . Hence
ix(ry1) = 0 and so ry; = A(s)ys for A(s) € Z. The homological definition of the linking form
gives

by (x,x) = )\5:9)

Wall defined a refinement of by, by restricting the choice of section s, and hence the
possible integers A(s) appearing in the description of by, above. To achieve a similar
restriction on the choice of sections in dimension 7 we use the Spin(4, 2)-structure 7 on
M. The codimension-0 submanifold fz(D* x S3) C M inherits a Spin(4, 2)-structure from
(M, ) and this induces a Spin(4, 2)-structure on S? x S3 which we also denote by 7. By
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construction the universal bundle on BSpin(4,2) in Wu 4-oriented in the sense of Brown
[4, Definition 1.10]. Now for any closed 6-manifold Y with a Wu 4-orientation 7y, Brown
[4, Corollary 1.11] defines a quadratic refinement, ¢ : H3(Y;Z/2) — Z/2, of the mod
2-intersection form of Y. In particular, we have the quadratic refinement

¢ H*(S® x S*7/2) — 7/2.
We then define ¢”: TH*(M) — Q/Z by the equation

’ Als)
Y(x) = cQ/Z
@) =2 ez,
where we restrict to sections s: S? — 5% x S3 such that ¢”(s*(u)) = 0 for u € H3(S3;,Z/2)
the generator.

Lemma 2.46. ¢": TH (M) — Q/Z is well-defined and refines by;. Moreover ¢° = gV

Proof. That ¢” is a well-defined refinement of by, follows the proof of [50, Lemma 26], using
the fact that Brown’s form is a refinement of the mod 2 intersection for a 6-manifold.

To see ¢” = qPm, we let (W, ) be a BSpin(4, 2)-coboundary for (M, 7), which exists by
Lemma 2.45. As for spin coboundaries, we may assume that W is 3-connected and consider
the characteristic form (H*(W,0W), \w,pw) of W. In the definition of ¢P in (14), we
may take m = p" so that a,, = 0. Then for x € TH*(M) and y € H*(W) with j(y) = z,
we have B

qufw (I’) _ _)\W2(y7 y) ’
where we note that Ay is even since pa(py) = 0. But in the proof of [50, Theorem 8] Wall
identifies his topologically defined refinement with the algebraically defined refinement
appearing in (29). It follows that Wall’s arguments in the proof of [50, Theorem 8] can be
repeated to show that ¢” = ¢¥i. O

(29)

Remark 2.47. Using Lemma 2.46 we can define ¢" intrinsically on 2-connected M for every
h € Sy C Sy and then use the transformation rule of Definition 2.18(ii) to determine ¢§,.
For example, if H*(M) is torsion then for each Spin(4, 2)-structure 7 on M we have

0 _
qM = Qyr = Qo
3. THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

In this section we classify closed smooth spin 2-connected 7-manifolds M up to dif-
feomorphism. Recall that a homotopy 7-sphere ¥ is a spin manifold which is homotopy
equivalent to S7. In Section 3.1 we recall that an almost diffeomorphism f: M, = M,
defines a diffeomorphism f: My = My, for some Y. In Section 3.2 we relate the algebra
of Section 2 to the algebra used in [7] and so give the almost diffeomorphism classification
of 2-connected M in terms of their refinements (H*(M), ¢5;, pas)-

With the almost diffeomorphism classification in hand, we consider the inertia group of M,
which is the group of homotopy spheres ¥ such that Mg> = M. In Section 3.4 we establish
basic facts relating the inertia group of M, the reactivity of M and certain mapping class
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groups of M. We also construct an important family of almost diffeomorphisms f: M = M
in Proposition 3.10. The almost diffeomorphisms of Proposition 3.10 allow us to show that
the generalised Eells-Kuiper invariant of M, s, precisely measures the gap between the
almost diffeomorphism classification and the diffeomorphism classification. In Section 3.5
we prove that the mod 28 distillation of M, (H*(M), ¢3;, par, Pas), is a complete invariant
of diffeomorphisms.

3.1. Almost diffeomorphisms. In this subsection we briefly review the almost smooth
spin category in dimension 7. An almost diffeomorphism f: My = M; is a homeomorphism
which is smooth except perhaps at a finite set of singular points {my, ..., m,} C My. Notice
that we do not require f to be non-smooth at m;, but we rather allow it. The composition
of almost diffeomorphisms is again an almost diffeomorphism and so almost diffeomorphism
defines an equivalence relation on smooth spin 7-manifolds.

Let f: My = M; be an almost diffecomorphism with singular set {my,...,m,}. We shall
associate a homotopy 7-sphere to each singular point m;. For i = 0,...,a, let D! > m; be
a small disc containing m; and disjoint from D;- if i # j. The manifold f(D]) C M, is a
co-dimension zero submanifold of M; and so inherits a smooth structure from M; such that

Ji = Fpmy: D] = {mi} = f(D] — {mi})
is a diffeomorphism. We can therefore define the smooth homotopy 7-sphere

;= DI Ug, (—£(D]))

by gluing D] and — f(D) together along ﬁ

We set X := Xof¥f...45,. If D" C My contains the singular points of f in its
interior, then by [7, Proposition 2.1] there is a diffeomorphism f’: Myf¥; — M; such that
f'\vo—p7 = flam—pr- It follows that M, is almost diffeomorphic to M; if and only if there
is a homotopy sphere ¥ and a diffeomorphism Myf¥ = M.

Before defining pseudo-isotopy for almost diffeomorphisms with one singular point we
recall the definition for diffeomorphisms. Let Diff(M) be the group of diffeomorphisms
of M. A pseudo-isotopy between fo, fi € Diff(M) is a diffeomorphism F: M x I =2 M x I
which restricts to f; on M x {i}. We define

moDiff (M) == {[f: M = M]},

the group of the pseudo-isotopy classes of diffeomorphisms of M.

For my € M, let ADiff(M,my) be the group of almost diffeomorphisms of M with
singular point mg. A pseudo-isotopy between fo, fi € ADiff(M,mg) is a homeomorphism
F: MxI— MxI with F|y,xqy = fi and which is smooth, except possibly along {mg} x 1.
We define

ToADIff (M, mg) :={[f: M = M]},

the group of pseudo-isotopy classes of almost diffeomorphisms of M with singular point my.

This article is protected by copyright. All rights reserved.



THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS 33

3.2. The almost diffeomorphism classification. In this subsection we show how Theo-
rem 1.2 follows from the classification results of [7]. The almost diffeomorphism classification
given in [7] used a different but closely related definition of a quadratic linking family.
We begin by explaining the relationship between the two definitions of linking family and
showing that Theorem 1.2 is equivalent to [7, Theorem BJ]. We then describe the main ideas
of the proof of [7, Theorem B] and interpret linking families in terms of connected sum
splittings. Throughout this subsection M is 2-connected and we have the global notation
G = H*(M) with torsion subgroup 7' C G and free quotient F' = G/T.

Let us start with some elementary algebra for the group G. Let ¢: T'— G be the inclusion
and 7: G — F be the canonical projection. We let Sec(r) := {o: F' — G} be the set of
sections of 7: G — F and we let Proj(t) := {7: G — T} be the set of projections over ;
i.e. 7 ot = Idp. The sets Sec(m) and Proj(¢) are in bijection by mapping o +— 7,, where
Im(o) = ker(7,). Both sets admit simple transitive actions of hom(F,T") via addition of
functions. For ¢ € hom(F,T), f € F and g € G we have

(c+0)(f)=0c(f)+o(f) and (74 ¢)(g) =7(9) + &(n(g))
Notice that 7,44 = 7, — ¢.

Remark. The action of hom(F,T) on Sec(w) used above differs by a sign from the corre-
sponding action in [7, p. 39].

Let (G, b,p) be a base so that b is a torsion form on T and p € 2G. Recall that Q(b) is
the set of refinements of b and given g € Q(b), let us write 5(q) for the homogeneity defect
of ¢: see Section 2.3. In [7, Definition 2.39] a quadratic linking family on a base (G, b, p)
was defined as a function

q*: Sec(m) — Q(b)
such that for all o € Sec(m) and for all ¢ € hom(G,T),

07 = @ gnyy and B(g7) = 7,(p).

We explain the topological significance of these conditions below, focussing for now on the
algebra.

In this paper we work with linking families which are functions on Sy and we now explain
how to pass between linking families defined on S, and linking families defined on Sec(7).
Given a section o € Sec(w) there is a unique element k(o) := o(mw(p)/d,) of Sg, which lies
in Im(o) and so we obtain the function

Sec(mw) = Sa,, o k(o) € Im(o) N Sy,.

Now multiplication by e, = %“ gives a map Sy, — Sy and we set §2 = ex5g, C Sy Given
a refinement ¢°: Sy — Q(b) we define

¢*: Sec(r) — Q(b), ¢ = ¢, (30a)
Conversely, given ¢*: Sec(m) — Q(b) we define
q°: Sy — Qb), ¢~k = ¢ (30b)
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and extend ¢° to all of Sy by the transformation rule of Definition 2.18 (ii). The trans-
formation rules for ¢* and ¢° ensure that they are determined by their value on a sin-
gle section or element of S;. Moreover, these transformation rules are compatible since

k(o + ) = k(o) + ¢(n(p)/dx), 477 = 67 yn(p)j2) 20

exk(o)+o(m(p)/2) _ exk(o)

FrHETO) — gD/ — 9 o(m)/2)°
A

q
Hence we have

Lemma 3.1. The mappings ¢° — ¢° and ¢* — ¢° of (30a) and (30b) define inverse
equivalences of categories between linking families defined on Sy and linking families defined
on Sec(m). d

Proof of Theorem 1.2. Let M be 2-connected, ¢}, the linking family of M as defined in
Definition 2.23 and —g}, the linking family of M as defined in [7, Definition 2.39] (we
have introduced the sign to correct the mistake in [7, Definition 2.50]: see Remark 2.10.)
Comparing these definitions, we see that for each o € Sec(7)

" = df;. (31)

Now [7, Theorem B] states that all linking families defined on Sec(7) arise as the quadratic
linking families of 2-connected M and that any isomorphism of linking families defined on
Sec(m) is realised by an almost diffeomorphism. Hence Theorem 1.2 follows by combining
[7, Theorem B], (31) and Lemma 3.1. O

We now explain the proof of [7, Theorem B]. Recall that every 2-connected M is the
boundary of a 3-connected W and that the characteristic form of W, (H*(W,0W), Aw, ),
is a complete invariant of 3-connected W under diffeomorphisms by [48]; see [7, Corollary 2.5].
Let g denote the boundary connected sum of manifolds with boundary. A foundational
theorem of Wilkens [52, Theorem 3.2] (see also [7, Theorem 2.24]) states that for any
diffeomorphism f: W, = OW,, there are Wy and W5 with OW, = 0W5 = S7 and a
diffeomorphism

g: WoiWo = WigWs

extending f. The boundary of W is a homotopy sphere, if and only if (H*(W,0W), A\w, aww)
is nonsingular. Hence we say that two characteristic forms are stably isomorphic if they
become isomorphic after addition of nonsingular characteristic forms. The above dis-
cussion shows that classifying 2-connected 7-manifolds up to almost diffeomorphism is
equivalent to classifying characteristic forms up to stable isomorphism. This was achieved
in [7, Theorem 3.4] by extending ideas of Wall [51, Theorem p.156] from the setting
of even forms to the setting of characteristic forms. The point is that an isomorphism
F: 0(Hy, Ao, ap) = O(Hy, A1, ) of the boundaries of characteristic forms can be used to
glue them together to obtain a nonsingular characteristic form

(H(], —)\0, Oé()) UF (Hl, Al, al).
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It is then possible to explicitly write down an isomorphism of characteristic forms

E: (Ho, )\0,0[0) ) ((Ho, —)\0,040) Up (Hl, )\1,0[1)) —
(Hla )\17 Oé]) S ((H07 _)\07 Oéo) UId (H07 )\07 Oéo)),

such that 0F = F. Combined with Lemma 2.21, these methods give the following theorem,
which is a refinement of a special case of [7, Theorem 3.4].

Theorem 3.2 (cf. [7, Theorem 3.4]). For i = 0,1, let (H;, \;, ;) be two characteristic
forms. The following are equivalent:

(i) There is an isomorphism of refinements F': O(Hy, Ao, ) = O(Hq, Ay, 1)

(ii) There are nonsingular characteristic forms (H;, \;, o), j = 2,3, and an isomorphism

E: (H()a )\0;050) @ (H27 )\2,0(2) = (H17 )\17051) S (H37 )\37043)

such that OF = F;
(iii) There is a nonsingular characteristic form (H,\,«) containing (Hy, —No, o) and
(Hy, A1, 1) as orthogonal summands.
In addition, there is a canonical isomorphism Fy = F: O(Hy, Ao, ) = O(Hy, A1, 1) in
case (iii).

Remark. By Lemma 3.1 the statement of Theorem 3.2 and the discussion before it applies
equally well to linking families defined over Sec(7) and linking families defined over S,.

Proof of Theorem 3.2. This follows from [7, Lemma 3.12] and the proof of [7, Theorem 3.4].
O

We now explain how the linking family g3, of M parametrises connected sum decom-
positions of M into a summand with torsion-free homology and a summand which is a
rational homotopy sphere. By Theorem 1.2, 2-connected rational homotopy spheres M with
torsion linking form (T, b) are classified up to almost diffeomorphism by their quadratic
refinements ¢3, € Q(b). We shall write M(q) for any rational homotopy sphere with linking
form isomorphic to g. The simplest examples of 2-connected M with H*(M) torsion-free
are given in the following

Definition 3.3. Let F = ZP be a free abelian group of rank b and d, be an even integer.
We define the 2-connected 7-manifold

M(F,dx) = #(5*%4,5%),

where S®x 4 S* is the total space of the S3-bundle over S* with trivial Euler class and first
Pontrjagin class equal to 2d, times the the preferred generator of H4(S*) and f;, denotes
the b-fold connected sum of a manifold with itself. The base of M (F,d,) is identified with
(78,0, (dy, . .., dy)).

We define an almost splitting of M to be an almost diffeomorphism with a singular point
mo € M
f: M= M(g)tM(F,dy),
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where ¢/ is some quadratic refinement of by, and fy(mg) € M(q’). Two almost splittings
fo and f; are called H*-equivalent if there is an almost diffeomorphism g € ADiff(M, mg)
with g(mg) = mg and H*(g) = Id, an almost diffeomorphism gr: M(q¢/0) = M(q")
with singular point fy(mg) and a diffeomorphism gp: M(F,d,) = M(F,d,) such that
gr(fo(mo)) = f1(mg) and the following diagram commutes up to pseudo-isotopy:

M M (gR)M(F, dy)

[9 lgTiin

M L M(gP)M(F, dy)

We define ASplit(M) := {[f] : f an almost splitting of M} to be the set of H*-equivalence
classes of almost splittings of M and note that there is a well-defined map

ASplit(M) — Sec(m), [f]— o(f),
where Im(o(f)) = f*(H*(M(F,d,))). The following theorem is implicit in [7, Definition 2.50].

Theorem 3.4. Let M have linking family q3,: Sec(mw) — Q(b). For each o € Sec(r) there
1s a unique H*-equivalence class of almost splitting

for M = M(q3 )M (F, dx).
Consequently the map ASplit(M) — Sec(n) is a bijection.

Proof. Let W be a 3-connected coboundary of M with characteristic form (H,\, ) =
(HYW,0W), \w, ). We recall from the definition of the linking family defined by W
in (14), that there are orthogonal splittings of (H, A, a)

w: (H,)\,Oé) = (R7)\R,Oé¢) @(F,0,0&|F),

where (R, Ag,ay) is nondegenerate. For every such splitting ¢, the classification of 3-
connected coboundaries (see [7, Corollary 2.5]) implies that there is a corresponding
boundary connected sum splitting g,,: W = Wy iWp. In addition, there is a corresponding
section o = o () € Sec(w) where Im(c) = j(H*(W};)), for j the natural homomorphism
H*(W, M) — H*(M). By definition, (cf. [7, Definition 2.50]),

q?\/l = a(Rv )‘R> 011[,)7
and we define f,: M = M(q5,)tM(F,d,) to be the diffeomorphism on the boundary induced
by the the splitting g,,. This shows that ASplit(M) — Sec(m) is onto.
Suppose that fy and f; are two splittings of M defining the same section ¢. Then the
H*-equivalence class of f; is determined by the almost diffeomorphism type of M(qf?).
Now the Poincaré dual of Im(o) is a finitely generate free abelian group Fc H3(M). We

o~

choose a basis {x1,...,2,} for F' and this is represented by a set of disjoint embeddings
¢: L0 2 D*x S3 C M. We let M, be the outcome of surgery on ¢. Clearly there are choices
¢o and ¢ for ¢ so that My, = M(q’"). We claim that the almost diffeomorphism type of M,
is independent of the choice of ¢ and this implies that o: ASplit(M) — Sec(r) in injective.

To prove the claim, let Wy be the trace of surgeries on ¢ and let Wy := W Uy W, be the
union of Wy and our original 3-connected coboundary. By construction, we see that there
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is a fixed a, € R* such that the characteristic form of W is isomorphic to the orthogonal
sum (R, Ag, ay) @ (Hi, A1, 1) where (Hy, A1, ) is nonsingular. It follows that the almost
diffeomorphism type of M, is well-defined. O

We conclude this subsection by identifying a simpler complete almost diffeomorphism
invariant of 2-connected M. Recall that the quadratic refinements ¢ € Q(b) of a torsion
form (b, T') are classified by their homogeneity defect 5 € 27" and Arf invariant A(q) € Q/Z.
For a refinement (G, ¢°, p) with torsion form (b, T), 8, = p — 2h is the homogeneity defect
of ¢" and Aut(b), the group of automorphisms of b, acts on Q(b), the set of refinements
of b. We define the almost smooth splitting set of M to be the set

Q*(M) := {([Bn], A(¢")) : h € So} C (2T H*(M)/Aut(b)) x Q/Z.
The following classification theorem is a direct corollary of Theorem 3.4 and (31).

Corollary 3.5. Let F': (H*(My),bas,, par,) — (H*(My), bar,, Pas,) be an isomorphism of
the bases of My and My. The following are equivalent:

(i) My is almost diffeomorphic to M;
(ii) (F7# x 1d)(Q*(M)) = Q*(M);
(iii) (F'7# x 1d)(Q*(My)) N Q*(M,) # 0. O

3.3. The homotopy classification. In [7, §6] 2-connected M were classified up to homo-
topy equivalence using J-quadratic linking families, as we now review. For a torsion form
(b,T), Qs(b) C 22" was defined to be the set of subsets of Q(b) of the form

S(q) :={quat : t € T}.

Notice that for qo, g1 € S(q), 5(q0) —5(q1) € 24T and so S(q) has a well-defined homogeneity
defect 8(S(q)) € T ® Z/24. For a group G, recall that T C G is the torsion subgroup,
m: G — F = G/T is the map to the torsion-free quotient of G, o: F — G denotes a
section of m and 7,: G — T denotes the projection defined by o. A J-quadratic linking
family was defined to be a triple (G, q%, p24(p)), where pay(p) € G ® Z/24 is an even
element and ¢5: Sec(m) — Q;(b) is a function such that for all ¢ € Hom(F,T") we have
¢ = (45)—s(rp)) and B(q7) = (7, @ Id)(p24(p)). The J-quadratic linking family of M,
written (H*(M), 501> P24(par)) s induced from its quadratic linking family in the obvious
way.

We now up-date the notion of a J-quadratic linking family to that of a J-refinement.
Recall from Section 1.3 that pja: @ — JQ(b) is the quotient map which identifies quadratic
refinements ¢ ~ ¢2, and that a J-refinement of a base (G, b, p) is a triple (G, J¢°, p24(p))
where Jq°: Sy — JQ(b) is a function satisfying J¢"* = (J¢?)_; and pos(Bh) = pas(p — 2h).
The J-refinement of M is the triple (H*(M), p12 © ¢35, p24(par))-

Given a J-refinement (G, Jq°, p24(p)) we define the corresponding J-quadratic linking
family by setting

¢*: Sec(r) — Q;(b), ¢ := Jg°® (32a)
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and given the function ¢*: Sec(mw) — Q,(b) of a J-quadratic linking family we define the
corresponding J-refinement by setting

¢°: 5 = Q), ¢ = ¢ (32b)

and we then extend the definition of Jg° to all of S; using the transformation rule for
J-refinements. The correspondence between quadratic linking functions define on Sec()
and on Ss identified in Lemma 3.1 is easily modified to give

Lemma 3.6. The mappings Jq° — ¢5% and ¢ — Jq¢° of (32a) and (32b) define inverse
equivalences of categories between J-refinements defined on Sy and J-quadratic linking
families defined on Sec(r). O

Proof of Theorem 1.6. Let (G, Jq°, p24(p)) be a J-refinement. The transformation rule for
J-refinements ensures that a J-refinement is determined by [¢"] for any h € S,. Since
Q(b) — Qi2(b) is onto, it follows that every J-refinement (G, [¢°], p24(p)) is the mod 24
reduction of a refinement (G, ¢°, p). Theorem 1.2 then entails that every J-refinement is
realised as (H*(M), p12 © ¢S, p24(pas), for a 2-connected M.

If F: (H*(My),bns, par,) — (HY(My), bagy, Pasy) is an isomorphism of bases where M,
and M; are 2-connected, then by [7, Theorem 6.11], F' = f* for a homotopy equivalence
f: My — My if and only if (¢% . p24(Pary)) = FH(5ar, > 24(Pay)) and Lemma 3.6, this is

happens if and only if (Jq5y,, p24(Pary)) = FHJ a5y, p24(Pary))- O

3.4. Inertia and reactivity in more detail. Recall that (M), the inertia group of M,
is the subgroup of the group of homotopy spheres ¥ € ©; such that M#> = M, and that

Iy(M) C I(M),

is the subgroup of homotopy spheres ¥ for which there is a diffeomorphism f: Mf» = M
such that H*(f) = Id, where we regard M£Y and M as the same topological space.

One might expect that a complete understanding of (M) is needed to pass from the
almost diffeomorphism classification of 2-connected 7-manifolds to the diffeomorphism
classification, but it turns that that a lower bound on the order of /(M) suffices. The main
result of this subsection, Proposition 3.10, establishes this required lower bound on Iy (M)
for 2-connected M: see Remark 3.11. In general, computing (M) is a delicate problem
which we take up for 2-connected M in Section 4. We begin this section by relating the
groups Iy (M) and I(M) to certain mapping class groups of M.

Given an almost diffeomorphism f € ADiff(M, mg), we consider the problem of deciding
whether f is pseudo-isotopic to a diffeomorphism. From Section 3.1 we recall the homotopy
sphere Yy which measures the singularity of f at mg. From the definition of pseudo-isotopy
in Section 3.1 we see that the diffeomorphism class of the homotopy sphere

Zf = 20
is invariant under pseudo-isotopies. Moreover, it is clear that f defines a diffeomorphism

f: MES; = M, (33)
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and that ¥, = 3 /f3,. Further, an application of the Alexander trick—see Rourke and
Sanderson [44, Proposition 3.22]—shows that f is pseudo-isotopic to a diffeomorphism if
and only if ¥y = S7. Tt follows that there is a singularity homomorphism,
8: %QADIH(M7 mo) — @7, [f] — Ef,

with kernel isomorphic to the image of moDiff(M) in Ty ADiff(M, mg). We define the subgroup
ToADiffy (M, mg) C TeADIff(M, mg) of pseudo-isotopy classes inducing the identity on
H*(M) and define the singularity homomorphism 0y : moADiffy (M, mg) — ©7 to be the
restriction of 0. From (33) we see that

In(M) =1Im(0y) and I(M)=Im(0). (34)

Given f € ADIiff(M, my) we now show how to determine ¥; € O using the mapping
torus of f, T, which is the almost smooth manifold constructed from the cylinder M x I
by using f to identify points at either end:

Ty := (M x [0,1])/(m, 0) ~ (f(m), 1)

Since f is an almost diffeomorphism, the closed 8-manifold 7T admits a smooth structure
except perhaps at the point g = [myg, 0] corresponding to the singular point of f. Indeed
if B§ > m; is a small open ball containing 7, then

Wy :=T; — B} (35)
is a compact smooth manifold with boundary
We choose a spin structure on 7t and denote the corresponding 8-dimensional almost
smooth spin manifold by T} also: no confusion shall arise since we are interested only in
the characteristic number

P(f) = (1, [T4]) € Z,

which depends only on the oriented almost diffeomorphism type of T since 2pr, = pi(Ty)
and H®(Ty) = 7Z (in fact pr, is independent of the choice of spin structure by [5, p. 170]).
It follows that p?(f) is an invariant of the pseudo-isotopy class of f. For the statement of

the next lemma, we recall the renormalised Eells-Kuiper invariant of a homotopy sphere 3,
w(X) € Z/28, defined in (3). By [16, (13)], u(X1) = p(X2) if and only if ¥; = ¥.

Lemma 3.7. For every almost diffeomorphism f € ADiff(M,mg) the following hold:
(i) p*(f) € 82,
(ii) p(Ey) = = € Z/28,
(iii) f is pseudo-isotopic to a diffeomorphism if and only if p*(f) € 224Z.

Proof. (i) This follows since by Lemma 2.2(iii), pr, is characteristic for the intersection
form of T. Hence by [41, Lemma 5.2, §5], p*(f) = o(T}) mod 8. But by Novikov additivity,
the signature of 7% is zero.

(ii) This follows since W} defined in (35) above is a smooth spin coboundary for ¥; and so
can be used to compute p(Xy). Since o(Wy) = o(Ty) = 0, applying (3) gives the result.
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(iii) The almost diffeomorphism f is pseudo-isotopic to a diffeomorphism if and only if
¥, = S7. Hence (iii) follows directly from (ii). O

In the light of Lemma 3.7, we define the function
p*: ToADIff (M, mg) — Z,  [f] — p*(f).

Since the image of p? plays a key role, we define non-negative integers called the reactivity
of M, R(M), and the (co)homologically fixed reactivity of M, Rg(M), by the following
equations
By Lemma 3.7 (i), R(M) and Ry (M) are both divisible by 8. By Lemma 3.7 (ii) and the
definition of reactivity we have
Proposition 3.8.

(i) 1(M) = Hle.,

(i) Iy(M) = F2Dg,, O

For other problems, for example counting the number of deformation equivalence classes
of Gy-structures on M as in [11], it important to know the value of p? for diffeomorphisms.
Hence we defined the smooth reactivity of M, RP(M), and the smooth (co)homologically
fized reactivity of M, RP¥(M) by the equations

p*(TDiff(M)) = RPT(M)Z and  p*(7oDiffy(M)) = RYT(M)Z,

where T Diff (M) C 7yDiff(M) is the subgroup of pseudo-isotopy classes acting trivially
on H*(M). By Lemma 3.7 (iii) we have

Lemma 3.9.
(i) RPHE(M) = lem(R(M),224),
(ii) RYE(M) = lem(Ry (M), 224). O

We next construct almost diffeomorphisms f € ADiff(M, mg) on 2-connected M with
p*(f) # 0. Recall that d; is the divisibility of w(py;) € H*(M)/TH*(M) and dr = lem(4, d).

Proposition 3.10. If M is 2-connected then Ry (M)|2d,; i.e. 2d,Z C p*(RoADiff i (M, my)).

Remark 3.11. If M is 2-connected, Propositions 3.8 and 3.10 together give %”@7 CIy(M).
In Corollary 4.17 (i) below we will show that Ry (M) = 2d, and hence %07 = I;y(M).

For the proof of Proposition 3.10 it will be useful to compute the characteristic number
p*(Ty) using a co-bounding spin 8-manifold W. We define the closed almost smooth
8-manifold

Xf = (—W) Uf w.
Lemma 3.12. With the notation above, p*(f) = (pg(f, [(X¢]).
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Proof. Since p*(f) = <p2va [T%]) and (p% ;+[Xy]) are characteristic numbers, if suffices to
prove that T} is oriented bordant to Xy. Consider the manifolds M x [ and W LU —W.
Both have boundary —M U M, Ty is formed from M x I by gluing —M to M via f and
X if formed from —W UW by gluing —M to M via f. It therefore suffices to prove that
—W U W is bordant relative to the boundary to M x I. But the manifold W x [ is a
rel. boundary bordism from —W U W to M x I, and we are done. U

Proof of Proposition 3.10. We assume d, # 0, since otherwise there is nothing to prove.
By Theorem 3.4 or by [53, Theorem 1], we may decompose M as a connected sum of spin
manifolds

M = Mg,
where My = M(Z,d,) = S3x4.S* is the total space of a 3-sphere bundle over S* from
Definition 3.3. We shall produce the required almost diffeomorphisms on the manifold M,
and then extend by the identity to M. Let

Mg := My — Int(D")

be My minus a small open disc. Since M, is the total space of an S3-bundle over S*, there
is a diffeomorphism
Mg = (D*x4.S*) Ugaps (D? x DY),

where D3x,;_S*is a tubular neighbourhood of a section of My — S* and D?x D* is a 3-handle
added to D*x4_S* along the tubular neighbourhood of a fibre 2-sphere, S? x D* C §%x4_S%.

By [48, p. 171 (2)] we may identify 73(SO(4)) as the group of pairs of integers (n, p) where
n = p mod 2, so that the corresponding S3-bundle over S* has Euler class n € H*(S*) = Z
and first Pontrjagm class 2p. Let v,,: (D3 5?) — (SO(4),1d) be a smooth function
representing (n, p). We define a diffeomorphism

frps Mg = M

where f3 |psx_ge is the identity and on the 3-handle we use the D3 co-ordinate to twist
the D*-coordinate using 7, ,. To be explicit:

Jplp3xpi(w,0) = (u, g p(w) (V).

We observe that there is a subspace SV S* C M} such that the restriction f;p\ g3yge 18
the identity and M} deformation retracts to SV S. It follows that I, acts trivially on
cohomology.

Let mg C D" C M, be the centre of the disc removed to make M. By coning the
restriction of f»  to the boundary of Mg, we extend f; , to an almost dlffeomorphlsm frp
of My with a bmgle singular point myg. Since f; , acts tr1v1ally on cohomology, so does f,, ;.
Since M, admits a unique spin structure for each orientation and since f,, is orientation
preserving, f,, is a spin almost diffeomorphism. By construction, f,, is the identity on
any 7-disc contained in D3x 4 S* and hence we may we extend f,, to M by taking the
connected sum with the identity on M;. Thus we define the spin almost diffeomorphism

9np = fn,pﬂIdMlt M =M
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with single singularity at mg and which acts trivially on cohomology. We claim that

pQ(gn,p) = pQ(fn,p) = d(2p — ndy). (36)

The manifold My = S3x,;_S* bounds the 8-dimensional D*-bundle W, := D*x 4 S*, and we

let W1 be any spin coboundary for M;. We form the twisted doubles Xy,  := (=Wy)Uy, , Wo
and

X

In,p

= (—Woh — Wl) U
Applying Lemma 3.12 we have,

P (9np) = (P*(Xo,,): [ X, ) = 0° (X)), (X500 = 97 (frn)

where the second equality holds by (37) since the characteristic number p? is a bordism
invariant, which is additive for connected sums and (—W;) U W, = 0(W; x I). Writing
X, p = X, ,, it therefore remains to compute (p*(X,), [Xn,p]). From the construction of
X,p we see that Hy(X,, ) = Z(x) @ Z(y) where z is represented by the zero section of W,
and y = [D* U D] is represented by an embedded 4-sphere obtained by gluing two fibres
of the D*-bundle W, together, one from each copy of W,. By construction, the normal
bundle of the 4-sphere D* U D* has characteristic function 7, and hence Euler number n.
It follows that the intersection form of X, , with respect to the basis {x,y} is given by the

following matrix:
0 1
1 n

Moreover since x is represented by an embedded 4-sphere with tubular neighbourhood
diffeomorphic to D*x4_S* and since y is represented by an embedded 4-sphere with normal
bundle v, ,, we have px, ,() = dr and px, ,(y) = p. We conclude that the Poincaré dual
of px,, is given by

In,p

(WoaWy) = an,pjj((—Wl) Uia Wl). (37)

PD(px,,) = (p — ndx)z + dry.
It follows that (p, ,[Xn,]) = 2d:(p — nd) + nd? = d.(2p — nd;), and the claim (36) is
proven.
Finally we need to choose n and p so that d.(2p — nd,) = 2(27,. Recall that we may choose
n and p freely subject to the constraint that n = p mod 2. If d, = 4k + 2, then 2d, = 4d,
and we choose (n,p) = (0,2). If d, = 4k, then 2d, = 2d, and we set (n,p) = (1,2k+1). O

3.5. The proof of the main classification theorem. The mod 28 distillation of M is
the quadruple (H*(M), q3,, 1tar, par) Where g5, is the quadratic linking family of M as in
Definition 2.23 and the generalised Eells-Kuiper invariant

Mar: Sdﬂ — Q/C/Z\WZ

is the mod 28 Gauss refinement of g5, defined by (26). In this subsection we prove Theorem
1.3 which states, in part, that mod 28 distillations give a complete invariant of diffeo-
morphisms of 2-connected M. For the remainder of the subsection M is 2-connected.

Recall that the (renormalised) classical Eells-Kuiper invariant, as defined by (3), gives a
group isomorphism
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The following lemma is obvious from the definitions of ¢}, and pp,.

Lemma 3.13. For all ¥ € O, ¢y = ¢y and pargs = piar + [1(X)], where [u(X)] is the
mod d, reduction of u(X). O

Proof of Theorem 1.3. The existence of a smooth M with mod 28 distillation isomorphic
to a prescribed (G,q°, u,p) € © follows from the corresponding existence statement in
Theorem 1.2, since Lemma 3.13 lets us freely change the Eells-Kuiper invariant of a manifold
with a prescribed refinement (G, ¢°, p) € R.

By Lemma 1.7, which is proven in (24), the generalised Eells-Kuiper invariant is a diffeo-
morphism invariant. Now we suppose F7# (@31 Matos Paso) = (Gigys Hany > Py )- As explained in
(33), Theorem 1.2 means that there is a homotopy sphere 3 and a diffeomorphism

[+ MotZ = M,

such that H*(f) = F: H*(M;) = H*(M,). It remains to show that > € I(M,). For if so,
there is a diffeomorphism
h: MO = Moﬁz
with H*(h) = Id and then foh: My = M is a diffeomorphism with H*(foh) = H*(f) = F.
Since f is a diffeomorphism it preserves the mod 28 Gauss refinements. Applying Lemma
3.13 we have

par, = F* (pagy + 1(2)) = F* () + ().
On the other hand, our assumption is that F'#(ppg,) = par, - Since dyg, = da,

/L(E) = Mry — F#(/“LMO) =0¢€ Z/dM1Z = Z/dMOZ'
By Remark 3.11, ¥ € Iy(Mj) and this completes the proof. O

Proof of Theorem 1.5. That the functor D: M?p;n — ® is surjective and faithful is a
restatement of Theorem 1.3. To see that D is additive and compatible with orientation
reversal, let i = 0,1, and let M; = OW; where W; has characteristic from (H;, \;, ;) with
boundary refinement ¢f. The mod 28 Gauss refinement of M; is (g7, dgw,) where we set
dgw, = gw, mod d, as in (26). Since the characteristic form of —W; is (H;, —\;, ;) and
the characteristic form of the boundary connected sum WytW; is (Ho, Ao, o) & (H1, A1, 1),
it follows that mod 28 Gauss refinements of —M; and MygM; are (—qf, —Ogw,) and
(qfa 8gVVo) ©® (q(l)a 8gVVl) respeCtivelY' U

3.6. Smooth splitting functions. In this subsection we consider connected sum splittings
of 2-connected M in the smooth category and we prove a smooth analogue of Theorem 3.4.
We also prove Theorem 1.4, which is the smooth analogue of Corollary 3.5. Throughout
this subsection M is 2-connected.

Let (T,b) be a torsion linking form and d an even integer. We define the set

Q4(b) := {(g,5)} C Q(b) x Q/dZ,

which consists of pairs of quadratic refinements ¢ of b and rational residues mod d where
A(q) = s mod Z. By Theorem 1.3, rational homotopy spheres M with torsion linking forms
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(H*(M),by) = (T, b) are classified up to diffeomorphism by the pair (qaz, p(M)) € Oas(b).
We denote this rational homotopy sphere by
M = M(q,s),
where ¢ = qay and s = p(M). Suppose that we are given a base (G, b, p) with F' = G/T = 7°
and 7(p) € F of divisibility d,; as in §2.5, 7 denotes the projection G — F'. By Theorem 3.4,
if M has base (HY(M),par,bar) = (G,b,p), then for some rational homotopy sphere
M (q, s(f)) and base-point mgy € M, there is a connected sum splitting
fo M= M(q,s(f)$M(F,dr),

where f(mg) € M(q, s(f)). Recall that o(f) € Sec(n) is given by Im(c) = f*(H*(M(F,d,))).
In considering the uniqueness of M(q, s) in such a splitting, we note that by Theorem 1.3,
I(M(F,d,)) = 4,07 (see also Remark 3.11). As a consequence, for i = 0, 1, we see that if
(q,5:) € Qas(b) and sy = 51 mod d,7, then there is a diffeomorphism

h: M(q, s0)2M(F,dx) = M(q, s1)2M(F, dr) (38)
such that H*(h) preserves the induced splittings of H*. We define two splittings f; and f; to
be H*-equivalent if there is an almost diffeomorphism g € ADiff(M, mg) with g(mg) = mo,
H*(g) = Id and X, € d,O7, an almost diffeomorphism gr: M(q,so) = M(q,s1) with
singular point fy(mp) and X, = X, and a diffeomorphism gp: M(F,d,) = M(F,d,) such
that gr(fo(mg)) = f1(mg) and the following diagram commutes up to pseudo-isotopy:

M~ M (gh, s(fo))$M(F, )

g Lgﬂigp
M L M(gh s(f1)EM(F, dy)

We define Split(M) := {[f]} to be the set of H*-equivalence classes of splittings of M.
We also define the smooth splitting function of M
~e 2 ~0 exk(oc
@i Sec(m) = Qg (1), 0= @i = (a7 1 (k(0)),
where we recall that k(o) € Sy, is defined by k(o) € Im(c) N Sy,. From the diffeomorphism

in (38), we see that M (¢°**), u(k(0))) M (F, d,) gives a well-defined diffeomorphism type
for each section o.

Theorem 3.14. Let M have smooth splitting function @y : Sec(m) — /Q\Jﬂ(bM). For each
o € Sec(m) there is a unique H*-equivalence class of splitting

fo: M= M(qy)iM(F. d).
Consequently the map Split(M) — Sec(w), [f] — o(f) is a bijection.

Proof. The proof is a refined version of the proof Theorem 3.4 and we adopt the notation of
that proof so that M has 3-connected coboundary W. Specifically, the proof of the existence
of f, is verbally the same, except that now by [7, Definition 2.50] we have

i1 = (O(R, =g, ay), [(Ar(ay, ay) — a(Ar))/8]) -
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Hence the splitting W = W, iWp defines the splitting f,: M = M (q;)iM (F,d,).

To show that splittings fp and f; defining the same section o are H*-equivalent, we
consider the nonsingular characteristic form (Hy, A, ;). The symmetric form (Hy, Ay)
has a Lagrangian L C H; corresponding to H*(M) and hence «y(L) = d,Z. The proof
of Proposition 3.10 now shows that % divides (A;(aq, 1) — o(A;1))/8. Consequently the

diffeomorphism type of M, is determined up to connected sum with ¥ & czr@% and this
shows that fy, and f; are H*-equivalent splittings. O

Proof of Theorem 1.4. For a 2-connected M, define an action of Aut(bys) on Qgﬂ(bM) by
F-(q,8) = (qo F,s) and let [g, s] denote the Aut(bys) orbit of (g, s). We define the map

B: Qg (bar) = 2T/Aut(by) x Q/d:Z, (q,5) = (B, 5).

Since the Gauss sum of each ¢ is given by A(q) = s mod Z, we note that Theorem 2.16
ensures that [¢, s] = [¢/, ¢'] if and only if 8(q, s) = B(¢, ).

Now for i = 0,1, let My and M; have smooth splitting functions g;*: Sec(m;) — @cjﬂ(bMi),
where ;: HY(M;) — H*(M;)/TH*(M;) is the projection and suppose there there is an
isomorphism F': (H*(My),bas,, par,) — (H*(My), bag,, Pasy) of their bases. By Theorem 3.14,
My and M; are diffeomorphic if and only if there are sections o and ¢’, a homotopy
sphere ¥ € 4,07 and a diffeomorphism M (gy) = M(g)4E. But this happens if and
only if there is an isomorphism ¢ = ¢ and po(k(c)) = u1(k(0”)); i.e. if and only if
(F# x1d)(B(qy)) = B(g). With the notation above the smooth splitting set of M, defined
in the introduction just prior to the statement of Theorem 1.4, is the set

Q(M;) = {B(a7) : o € Sec(m;)}.

The above shows that My and M are diffeomorphic if and only if the sets (F# x 1d) (Q(My))
and Q(M,) intersect and consequently this happens if and only if these sets coincide. [J

4. AUTOMORPHISMS OF H*(M)

The smooth classification Theorem 1.3 implies that the number of different smooth
structures on the same 2-connected almost-smooth 7-manifold corresponds to the number

of different mod 28 Gauss refinements of the linking family (H*(M), ¢, pa). The first
estimate of the number of smooth structures on M, d, = gcd(%, 28), only counts smooth
structures on M modulo almost diffeomorphisms that act trivially on H*(M). To get the
full picture, we need to understand how automorphisms of the quadratic linking family ¢,
act on the Gauss refinements. We begin this process in Section 4.2.

Conveniently enough, it turns out that this problem can be reduced to understanding
how automorphisms of the base (H*(M), bys, pas) act on linked functions: see Proposition
4.10 in Section 4.3. While we do not have a complete description of this action in general we
still have control up to a factor 2", where r € {0, 1,2} is explicitly defined in (42). Moreover
it is feasible to understand it for explicit examples: see Examples 4.7, 4.8, 4.12 and 4.13.
With Proposition 4.10 in hand, we proceed in Section 4.4 to determine the reactivity of

2-connected M in terms of  and the integer d, defined in (7) and recalled in Section 4.1.
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4.1. Notation. We begin by setting up some terminology. Given a finitely generated
abelian group G, p € 2G, and b: T x T — Q/Z a torsion form, let Aut, denote the group
of isomorphisms F': G — G preserving p and b. If ¢° is a family of quadratic refinements of
(G,b,p), let Autge be the subgroup of Aut, that preserves ¢° too.

Let m: G — G/T be the projection to the free quotient of G. Let Shr, C Aut, be
the subgroup of “pure shears”, i.e. F' acting trivially on 7" and G/T. In other words,
F = 1dg + p o w for some homomorphism p: G/T — T such that p(”(p )) is d,-torsion
(the last condition is equivalent to F(p) = p); so actually Shr, does not depend on b
at all. Similarly let Shr,/, = Shr, N Autg, the subgroup of shears in Autg. For h € S,

=(p)

Shrp/g simply corresponds to homomorphlsms p: G/T — T such that ,0( (p )) ” -torsion.
In particular: Shr,/; actually depends on neither ¢° nor b but only on p, and if F € Shr,
then F? € Shr, /.

We say that a cyclic subgroup C' C T is a split summand if T is a direct sum of C' and
its b-orthogonal complement. We call x € T split if it generates a split summand; this is
equivalent to

, so for F' to preserve ¢ we need p(”(p )) = 0. Hence

m
b = —
(w0) =2,
where n is the order of x and m is coprime to n.
Given the element p € 2G we consider the following notions of its divisibility (if p is a
torsion element we set all three integers to be 0):
d :=Max{s € Z: s divides p € G},
d, :=Max{s € Z : s divides 7(p) € G/T},
d, := Max{s : s,m € Z, sm? divides mp € G}.
We have an obvious chain of divisibilities
2|d|d,|ds.

Further d = d, if and only if d, = d,, since the latter implies that the maximum in the
definition of d, is attained with m = 1.

For an integer s, let ords s denote the exponent of 2 in the prime factorisation of s;
e.g. ordy 27 = j.

Definition 4.1. A non-negative integer e is a 2-extremal exponent for (G, p) if for some m
such that d,m? divides mp, ordym = e.

Example 4.2. Let p = (2%,2°) € Z x Z/2°Z with a,b > ¢ > 1. Then d, = 2%, d = 2¢, and
d, = max(2¢,297%¢). The 2-extremal exponents are 0 for a < b, and b — ¢ for a > b.

4.2. The action of Aut, on linked functions. Given F' € Aut, and any k € S,_, set
t:= F(k) —k € T (not necessarily d.-torsion, unless Fr is the identity) and g, := p — d.k,
and let

P(F) = d?b(t,t) — 2d:b(B, 1) € Q/2d,Z. (39)
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In other words, P(F') = —A(k,t) from (21). Equivalently, we can characterise P(F') by
P

Ftg=yg— PUF) mod &7, (40)
8 4
for any linked function g (use that (F#g)(k) = g(F(k)) = g(k +1t) = g(k) + % by the
condition (20) for ¢ to be a linked function.) The first characterisation, (39), is independent
of g and the second, (40), of k, so in fact P depends on neither. If F' preserves a family of
quadratic refinements, then taking g to be a Gauss refinement of that family shows that P
takes values in 8Z/2d,Z (in the next subsection we study a corresponding 87 /2d, Z-valued
function 15) Even if F' does not preserve a family of quadratic refinements, the fact that the
mod iZ reduction of the Arf invariant of a quadratic refinement of (b, p) depends only on
(b, p) itself shows that P takes values in 2Z. It is also clear from (40), or from (39) together
with (22), that P is a homomorphism Aut, — 27/2d,Z.
Let 5, = ordy d,;, and j, = ords d,.

Lemma 4.3. P(Aut,) C d,Z/2d,Z. If b lacks a split 2**™e summand for some 2-extremal
exponent e, then P(Auty) C 2d,Z/2d,Z.

Proof. Pick some y € G such that m2d,y = mp. Then s := Fy — y is an m?2d,-torsion
element. It suffices to show that

P(F) = m?*d?b(s,s) mod 2d,, (41)
because the RHS is d, if the 2-primary part of s is split, and 0 otherwise.
Note that u := fl—z and ™ are integers. Let k := ™y. Then k € Sy, and ut = ms, so (39)
implies
P(F) = w*db(t,t) — 2ud,b(B, t) = d2b(ms, ms) — 2d,b(Bx, ms) mod 2d,.
Since S = p — dk is m-torsion, (41) and the result follows. O

If F € Shr, C Auty, i.e. F' =Idg + p o for some homomorphism p: G/T — T, then

t=Fk)—k= p(%f)) is independent of the choice of k € S;_. Since %f) € G/T is a
primitive element of a free abelian group, we can prescribe its image under a homomorphism
p arbitrarily. Determining the image P(Shr,) therefore amounts to computing the RHS of

(39) for all d, torsion elements t € T'.

Lemma 4.4. 4d,7/2d,7 C P(Shr,). Moreover, if j. # j, + 1 or if b has no split 2=
summand, then 2d,Z/2d,Z C P(Shry).

Proof. The key claim is that there exists a d,-torsion element ¢ such that b(fy,t) = %,
where d, = ud,. By the non-degeneracy of b, this is equivalent to 8y having order at least u,
and not being divisible by more than d,. That any divisor of [ also divides d, is obvious,
and if mf; = 0 then mp is divisible by md,, which indeed implies u | m by the definition
of d,.

Let p be any homomorphism G /T — T mapping %1:) —t, and F':=Idg + pom € Shr,,.

If the 2-primary part of ¢ does not generate a split 2= summand then d2b(t,t) is divisible
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by 2d,, so

P(F) = d2b(t,t) — 2d.b(By,t) = 2d, mod 2d,,
and we are done. Otherwise P(F) = d, — 2d, = (u — 2)d, mod 2d,. The subgroup this
generates is precisely nd,Z/2d,Z, where n = ged(u—2,2u) = ged(u—2,4). Clearly n is 1 or
2 except when j. = j, + 1, in which case n = 4. U

Lemmas 4.3 and 4.4 imply that the following is well-defined.
Definition 4.5. Define r = r(G, p,b) € {0,1,2} by
Im P = 2"d,Z/2d,Z. (42)
Remark 4.6. Lemmas 4.3 and 4.4 provide necessary conditions for r = 0 or r = 2. In

particular, if G has no 2-torsion then r = 1. The next examples show that there are bases
with » = 0 and bases with r = 2.

Ezample 4.7. Let G =Z D 7Z/27, b= (&) and p = (27,0) (so dr = d, = 27). Then the shear

{37/ and
F: (z,y) = (z,z +y) has P(F) =2/ mod 2/, i.e. P(F) = d, mod 2d,. Thus r = 0.
Example 4.8. Let G =Z ®Z/2), b = <2%> and p = (27,2971 (so d, = 27, while d, = 2771).
Now any ¢ € T has d2b(t,t) + 2d. (B, t) = 0 mod 27F! so r = 2.

4.3. The action of Aut,c on Gauss refinements. Now let ¢° be a family of quadratic
refinements of the base (G, b, p), and let Aut, denote its group of automorphisms. For an

automorphism F € Aut, we define P(F) € 87./2d,7 by
A(F) = ~4dnq (1) + de(ds+2) b, 1)
for any k € Sy, and t := F(k) — k; equivalently, ]S(F) = —ﬁ(k‘,t). Now P is a homo-
morphism P: Autge — 8Z/2d,Z, such that
P(F dy
for any Gauss refinement g of ¢°. Notice that, similarly to the proof of Lemma 2.32, P can
alternatively be characterised by

P(F)=P(F) mod 2d,,
P(F)=0 mod 8.

We can therefore get some control on the image of the shear subgroup Shry,; C Autg. just
from the observation that F? € Shry,/, for any F' € Shr,,.

Lemma 4.9. ﬁ(Shrp/Q) ) 4doZ/2cZﬂZ.

Proof. The proof of Lemma 4.4 showed that we can achieve P(F') = 2d, or P(F) = 2d,+d,
for some F € Shry,. Then F? € Shry,/, has P(F?) = 4d,. O

Conveniently, it turns out that the image of P can be determined directly from the image
of P.
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Proposition 4.10. Im P = {n € 82Z/2d,Z : n mod 2d, € Im P} = lem(8, 2"d,)Z/2d,Z.

Proof. If d, is not divisible by 4 then lem(8,2"d,) = 4d,, so the result follows from
Lemma 4.9.
If 4| d, and F € Auty, then that for any k € Sy, t := F(k) — k and h := %k we have

P(F
¢ (%50 =" ez
Thus P(F) = n € 8Z/2d,Z implies that (F#q)" = ¢"'") = qfdlt and ¢", which have equal
2

inhomogeneity [, = p — 2h by definition, also have equal Arf invariant by (11). Therefore by
Theorem 2.16 there is an automorphism Fr of (T, b) such that (F#q)"o Fr = ¢" (necessarily
Fr fixes ().

Now suppose that ¢ is a section of 7, and k € Imo N Sy, (¢f. Remark 2.26). Then
GZImo®T, and we may define Idy, , + Fr € Aut,. This fixes k and h, so the composition
F'=Fo (Id[ma -+ FT) has

(F#)" = ((Idm(e) + Fr)#F#q)" = (F#q)" o Fr = ¢".
Hence I € Autge, and F'(k) = F'(k) implies P(F") = P(F). O
Ezample 4.11. For the base (Z ® Z/27, (55), (27,0)) of Example 4.7 let ¢° be the refinement

with q(2j_l’0) = <<2]%>> The isomorphism F' of the base in Example 4.7 does not preserve ¢°:

if 7 > 1 then F alters the homogeneity defect of q(2j71’0) and if j = 1 then F' alters the Arf
invariant. However, if j > 3 then F": (z,y) = (v, v + (277141)y) is an isomorphism of ¢°
with P(F') = P(F) = 2™ mod 2771,

The following examples illustrate that r, and hence Im ﬁ, can depend on b as well as (G, p).

Ezample 4.12. Let G = Z @ (Z/2?)* and p = (27,0,0) (so d, = d, = 27). Choosing the
torsion form by = (55) @ (55) on TG, using Example 4.7 shows that ro = 0. Let by be the
hyperbolic torsion form on T'G with matrix

0 277
2770 )

Since d, = d,, it follows that r; = 0 or 1. But b; contains no split cyclic summands, and so
by Lemma 4.4, we conclude that r; = 1.

The next example shows that r cannot be determined merely from the type of splitting
of b (cyclics versus hyperbolics), but can depend on the isomorphism classes of split cyclic
summands.

Ezample 4.13. Let G = Z ® Z/8 ® /64 ® Z/512 with torsion form (£) & (3;) ® (z5)
(e = £1), and p = (64,0,8,0). Then d, = 64 and d, = 8, so r is 0 or 1. The 2-extremal
exponents are 0 and 3. If F' € Aut,, then by (41)

P(F) = d, mod 2d, < (Id — F)(1,0,0,0) split 512-torsion
< (Id — F)(8,0,1,0) split 8-torsion.
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Thus if 7 = 0 there must be some automorphism f of (7', b) such that (Id — f)(0,1,0) plus a
split 8-torsion element is divisible by 8, i.e. f(0,1,0) = (a,8b+ 1,8¢) with a odd. If € = +1
then the would-be image has norm &; for any a, b, ¢, so there can be no such f; hence r = 1.
On the other hand, if e = —1 we can define such an f by the matrix

1 -8 0
1 1 8
1 1 1

Setting F' = Idgz + p+ f with p: Z — T, n — (0,0, —n) makes Id — F map (8,0, 1 ,O)GGto
the split 8-torsion element (1,0,0) € T" (and (1,0,0,0) to (0,0,—1)), so P(F) = d, mod 2d,,
and r = 0.

Corollary 4.14. Modulo the action of Autge, the number of possible Gauss refinements of

(G,q%p) is ]
2’/’
N (o}
um< . >

and the number of possible mod 28 Gauss refinements is

27"
ged (28, Num < 8d0>> .

Remark 4.15. Notice that Corollary 4.14 combined with Theorems 1.2 and 1.3 gives the
computation of the inertia group I (M) for 2-connected M from Theorem 1.10.

4.4. The computation of reactivity. In this subsection we use Proposition 4.10 to prove
lower bounds on the reactivity of every spin 7-manifold M. When M is 2-connected we
also prove that this lower bound is sharp and so compute the reactivity of 2-connected M.
Recall from Section 3.4 that if f is a self-almost diffeomorphism of M, then the mapping
torus T is almost smooth, the spin characteristic class pr, € H 4(Ty) is well defined and so
is the integer
P*(f) = (p1,. [Ty]) € 8L.

The next lemma provides the bridge between the algebraic arguments of Sections 4.2 and
4.3 and the computation of reactivity of M, as defined in (5). Note that if f is a self-almost
diffeomorphism of M, then the induced map f* : H*(M) — H*(M) preserves q5;, i.e. we
have f* € Autge and so P(f*) € 82,/2d,Z is defined.

Proposition 4.16. ﬁ(f*) = p2(f) mod 2d, for any self-almost diffeomorphism of M.

Proof. Let f: M = M be a self-almost diffeomorphism and let W be a 3-connected spin
coboundary for M. In §2.6 we used gy to denote the Gauss refinement of ¢, induced by
the form (FH*(W, M), \w,pw) (and used that to define p,7). We can use f to glue two
copies of W together along M and form the almost smooth spin manifold X := (=W)U; W.
Lemma 3.12 gives p*(f) = p%. Applying (43) to F' = f* and combining with the comparison
of Gauss refinements in (24) we obtain

P(f) = 8(gw = (f)Pgw) = & — o(X) =p% =p*(f) mod 24y,
where 0(X) = (W) — (W) = 0 by Novikov additivity. O
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Corollary 4.17. For any closed spin 7-manifold M we have that:
(i) Ry(M) is divisible by 2d,;
(ii) R(M) s divisible by lem(8,27d,);
(iil) RYT(M) is divisible by lem(224,2d,,);
(iv) RPH(M) is divisible by lem(224,2"d,,).
If M is 2-connected then equality holds in each case.

Proof. For part (i), recall that for [f] to belong to moADiffy (M, my) by definition means
that f* = Id on H*(M). Thus P(f*) = 0 € 8Z/2d,, and Proposition 4.16 implies that
2d, | Ry (M). Meanwhile Proposition 3.10 shows that Ry (M) | 2d, if M is 2-connected.

For part (ii), let M have refinement (G, ¢°, p). Proposition 4.10 computes the image
Im P = lem(8,2"d,)Z/2d,, so Proposition 4.16 gives lem(8,2"d,) | R(M). On the other
hand, if M is 2-connected then Theorem 1.2 states that every automorphism of (G, ¢°, p)
is realised by an almost diffeomorphism f: M = M, and so part (i) and Proposition 4.10
imply the equality.

Parts (iii) and (iv) follow from parts (i) and (ii) and Lemma 3.9. O

Proof of Theorem 1.10. The computation of R(M) = lem(8,2"d,) is given in Corollary
4.17(ii). Then I(M) = Num(%)©; by Proposition 3.8(i). By Remark 4.6, r = 1 if
TH*(M) is of odd order. O

5. EXAMPLES

Ever since Milnor’s discovery of exotic 7-spheres [38], 2-connected 7-manifolds have
provided interesting examples in topology and geometry. In this section we discuss various
examples of 2-connected 7-manifolds. In Section 5.1 we consider the total spaces of 3-sphere
bundles over S* and their connected sums. In Section 5.2 we mention some examples
admitting interesting metrics. In Section 5.3 we give examples which are tangentially
homotopy equivalent but not homeomorphic. Finally in Section 5.4 we present a refinement
of Wilkens’ list [53, Theorem 1] of the indecomposable generators for the monoid of almost
diffeomorphism classes of 2-connected 7-manifolds.

5.1. 3-sphere bundles over S* and their connected sums. Following the notation
of [10], let (n, p) be integers with same parity and let M, , := S(&,,,) denote the total space
of the 3-sphere bundle over S* which there corresponding vector bundle &, , has Euler class
e(&np) =n € H*(S*) and spin characteristic class 8 (&,,) = p € H*(S*). By definition, we
have My, = M(Z, p), where M(Z, p) is as defined in Definition 3.3. Using (14) and (18) and
recalling the notation of Example 2.6, we compute for n # 0 that there is a diffeomorphism

m=a((50).- [E5]).

Ezample 5.1. The Milnor sphere, ¥y := M; 3, is homeomorphic to S7 but not diffeomorphic
to ST since pu(Xy;) = 1 # 0 mod 28: see [38] and [16].
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In [9] the total spaces of 3-sphere bundles over S* were classified up to homotopy homeo-
morphism and diffeomorphism.

We now give an example which illustrates the subtleties of the inertia group. Building on
Examples 4.7 and 4.8, Theorem 1.10 gives to the following

Example 5.2. The connected sums
My = Mfs,oﬁMo,s, M, = M78,2ﬁM0,8 and M, := M78,4ﬁM0,87

have r(M;) = i. In each case d.(M;) = 8, whereas d,(My) = 8, d,(M;) = 2 and d,(Ms) = 4.
From Theorem 1.10 we have I(My) = I(M;) = ©7 and [(M;) = 20;.

Notice that when r = 1 the [54, Conjecture p.548] correctly predicts I(M;) = ©5.
However when r # 1, [54, Conjecture p. 548] incorrectly predicts that [(My) is 207 and
that I(MQ) is @7.

Ezample 5.3. While [54, Theorem 1] and Theorem 1.10 give I(M(Z*,d)) = Num (%) ©7,
the classical Eells-Kuiper invariant is not defined for M(Z°, d) when d, = d # 0. Using (18)
we compute that

n(M(Z', d)3%) = [W(Z)] € Z/d, L.

Hence we have pu(M(Z° 8)) = 0, whereas pu(M(Z°,8)#X\;) = 1 € Z/27Z and we see that the
generalised Eells-Kuiper invariant distinguishes the diffeomorphism types of M (Z?,8) and
M(Z°, 8)#X .

We can also deduce from Theorem 1.5, for example, that M(Z° 8)f¥y; admits an
orientation reversing diffeomorphism, whereas M (Z", 16)4Xy; does not.

Ezample 5.4. Let N be a simply-connected oriented 6-manifold with m(N) = Z and
suppose that S — M — N is a principal S! bundle with primitive first Chern class. Then
M is 2-connected with a preferred orientation and hence spin structure. Conversely, by
25, Lemma 2.1], every free S action on M is equivalent to such a principal bundle action.

In [25, Theorem 1.3] Yi Jiang identifies the homeomorphism and diffeomorphism types
of all 2-connected M which admit free circle actions. In particular, by [25, Theorem 1.3]
every such M is almost diffeomorphic to a connected sum My, p(rt12m)f2- Moo for b € {1,2},
r € Z2% and m, k € Z.

5.2. Examples from geometry. There are a many 2-connected 7-manifolds that admit
metrics with interesting geometric properties. Indeed, according to [13, Theorem B], every
2-connected 7-manifold admits a metric with positive Ricci curvature.

The Gromoll-Meyer sphere. Let Sp(n) denote the n-dimensional symplectic group of ortho-
gonal n X n quaternionic matrices. The Gromoll-Meyer sphere is a certain quotient of
Sp(2) x Sp(1) by Sp(1) x Sp(1) and the smooth manifold underlying the Gromoll-Meyer
sphere, Yy, is an exotic 7-sphere admitting a metric of non-negative sectional curvature [22].
By [22, Theorem 1], there are diffeomorphisms Ygy = M_y _5 = 3X);.
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Berger Space. The smooth manifold underlying the Berger space B is a homogeneous space
of the form B = SO(5)/SO(3) (where SO(3) — SO(5) by the adjoint representation)
that admits a metric of positive sectional curvature. The Berger space is 2-connected
with H*(B) = Z/10 and Goette, Kitchloo and Shankar [20, Corollary 2] proved there is a
diffeomorphism

B = Mgs.

The manifold P,. More recently Grove, Verdiani and Ziller [23, Theorem A] constructed a
metric of positive sectional curvature on a 2-connected 7-manifold P, with an isomorphism
H*(P,) = 7Z/2. Applying [7, Theorem A], they deduced that there is an almost diffeo-
morphism P, & S(T'S*), where S(T'S*) = My is the unit tangent sphere bundle of S*.
In [19, Theorem 0.3, Example 3.12] Goette proved that there are diffeomorphisms

P2 = Mggﬂ(—EMi) and P2 = —M274.

Computation shows that P, is not orientation preserving diffeomorphic to the total space
of any S3-bundle over S*.

Go-manifolds. In [6] Corti, Haskins, the second author and Pacini constructed a very
large class of examples of simply connected manifolds with GG holonomy metrics. Many of
these examples are 2-connected with H*(M) torsion-free. For instance, [6, Table 3| gives 7
explicit ways to construct holonomy G5 metrics on M (Z®,2). By [54, Theorem 1(ii)], see also
Corollary 1.11, the underlying topological manifold admits a unique smooth structure. In [12]
we find examples of manifolds with G5 holonomy where the smooth structure is not unique
and calculating the Generalised Eells-Kuiper invariant we find pairs of closed Go-manifolds
that are homeomorphic but not diffeomorphic. For example (M (Z%,8), M (Z%,8)1%\y) is a
pair of homeomorphic but not diffeomorphic smooth manifolds both of which admit metrics
with G5 holonomy.

5.3. Tangentially homotopy equivalent manifolds. Let Ny and N; be closed smooth
manifolds with tangent bundles TNy and T'N;. A homotopy equivalence f: Ny — NV; is
called tangential if there is a bundle isomorphism f*T'N; = T'N,. It is natural to ask under
what conditions tangentially homotopy equivalent manifolds are necessarily homeomorphic,
and this question was studied in detail by Madsen, Taylor and Williams in [35].

In [7, p.144] it was proven the 2-connected manifolds give rise to examples of non-
homeomorphic tangentially homotopy equivalent manifolds. We present a simplified version
of the proof here, which starts with the following

Lemma 5.5. Let My and M, be 2-connected and let f: Mg >~ M be a homotopy equivalence
such that f*pany, = pa,- Then fis tangential.

Proof. The proof is a relative version of Remark 2.3. The bundles T My and f*TM,; are
classified by maps My — BSO(7). Since M, is 2-connected, the primary obstruction to a
null-homotopy between these maps may be identified with py, — f*par,. The computations
of [28] show that m;(BSO(7)) = 0 for i = 5,6,7 and so there are no further obstructions to
finding a homotopy between the classifying maps of 7'M, and f*T'M,. Hence if prr, = f*pasy
then f*T'My = T M. O
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Proposition 5.6 (cf. [7, p. 114]). The manifolds M_g 1 and M_g 5 are tangentially homotopy
equivalent but not homeomorphic.

Proof. We first show that M_go and Mg 1o are tangentially homotopy equivalent. By
Definition 2.19, both manifolds have base (Z/8, (%), ps(2)) and applying (14), we sce that
their quadratic refinements are respectively <<;—61>>_2 and <<I—61>>_10. Now

(0= (o)),

and pg(4) € 12(Z/8). By Theorem 1.6, it follows that M_go and M_g5 are orientation
preserving homotopy equivalent via a homotopy equivalence f: M_g, — M_g 5, which is
the identity with respect to the above bases. It follows that f*pas_g; = pa_g,, and so f is
tangential by Lemma 5.5.

Applying Proposition 2.15 we compute that A(qa,) = —1/16 mod Z but A(qar,) = —9/16
mod Z and by Theorem 1.2, the quadratic refinement ¢, is a homeomorphism invariant
and hence M_go and M_g 10 are not homeomorphic. [l

Remark 5.7. Proposition 5.6 contradicts [35, Theorem C and Theorem 5.10] where it
is stated, amongst other things, that all tangentially homotopy equivalent 2-connected
7-manifolds are homeomorphic. The source of the mistake in the arguments of [35] can be
found in [35, Theorem 3.12] which is not correct. It is claimed that a certain cohomology
class
frr*(l,) € H™(S*Q*(SG[3, 00)); Za))

vanishes. Here SG[3, 00| is the 2-connected cover of SG, the space of orientation preserving
stable self-homotopy equivalences of the sphere, S?Q? denotes the double suspension of
the double loop space, the coefficient group Z) is the integers localised at 2 and we shall
not define the maps f or 7 or the class [,,. However the argument given for the proof of
35, Theorem 3.12] only shows that f*7*(l,) = 2z for some x € H*"(S*Q*(SG[3, ]); Z(2))
and not that f*7*(l,) = 0. To the best of our knowledge, this is the only flaw in the
arguments of [35].

5.4. Generators for the monoid of 2-connected 7-manifolds. The connected sum
operation gives the set of spin diffeomorphism classes of 2-connected 7-manifolds the
structure of a commutative monoid with unit S”. Owing to the existence of homotopy
7-spheres, every M has non-trivial connected sum splittings

M = (ME)s(-%)
for each 3 € ©;. Hence we call M topologically decomposable if there is a diffeomorphism
M = MoiM,

where neither My nor M, is a homotopy sphere and topologically indecomposable otherwise.

By Theorem 1.5, every connected sum splitting of M gives rise to an orthogonal splitting
of the refinement of M, and by Theorem 1.3 every orthogonal splitting of the refinement
of M is realised by a connected sum splitting of M. Hence we call a refinement (G, ¢° p)
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or a base (G, b, p) decomposable if it can be written as a non-trivial orthogonal sum and
indecomposable otherwise. It is clear from the definitions that a refinement is indecomposable
if and only if its base if indecomposable. Moreover, the indecomposable bases are of the
form (Z,0,p) and (T,b,p) where b is an indecomposable torsion form; i.e. b cannot be
written as a non-trivial orthogonal sum. In this case we also call ¢ indecomposable. A list of
all isomorphism classes of indecomposable torsion forms was given by Wall [49, Theorem 4]
and torsion forms were then classified by Kawauchi and Kojima [27, Theorem 4.1]. We do
not go into details but note that if (7', b,p) is indecomposable then T' = Z/r* for a prime r
or T 2 (Z/2%)%. Summarising the above discussion we have the following refinement of a
theorem of Wilkens.

Theorem 5.8 (cf. [53, Theorem 1)). Every 2-connected M is diffeomorphic to a connected
sum of topologically indecomposable manifolds M; :

M =7 M,

Moreover, M is topologically indecomposable if and only if it is almost diffeomorphic to a
manifold of one of the following forms

S, M(Z,d), M(q,s),

where in the final case, q is a prime refinement and hence H*(M(q,s)) = Z/r* for r a
prime or HY(M(q,s)) = (Z/2%)2. O

Even up to almost diffeomorphism, the splitting M = § ; M; of Theorem 5.8 is in general
far from being unique. For example the manifolds M,y and My have non-isomorphic bases
(Z/4,(5),0) and (Z/4, (L), 2) respectively, but My oMo and My 2§Mo 5 are diffeomorphic.
Even when H* is torsion, there are many examples of torsion forms where by @ by = by @ by
but by is isomorphic to neither b; nor by and the same holds for by: see for example [27, §3].
This leads to non-uniqueness of connected sum splittings for manifolds with torsion linking
form isomorphic to by & bs.

6. MAPPING CLASS GROUPS AND INERTIA

In this section we point out some implications of our classification results for mapping
class groups of 2-connected M. Throughout this section M will be 2-connected.

Recall the mapping class group moDiff(M) of pseudo-isotopy classes of diffeomorphisms
from Section 3.1 and the subgroup mDiffy (M) C moDiff(M) of classes acting trivially on
H*(M) from Section 3.4. For brevity, let Aut,(H*(M)) denote the group of automorphisms
of the mod 28 distillation (H*(M), ¢5;, piar, par) and let Autye (H*(M)) denote the group
of automorphisms of the refinement (H*(M),q3,, par). As an immediate consequence of
Theorem 1.3 we obtain

Proposition 6.1. For each 2-connected M, there is a short exact sequence

0 — ToDiffy (M) — ToDiff (M) — Aut,(H*(M)) — 0. O
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Remark 6.2. The exact sequence of Proposition 6.1 serves as a starting point for studying
the mapping class groups moDiff(M). The determination of 7yDiff (M) and the extension
in the sequence of Proposition 6.1 lie outside the scope of this paper. For example, we do
not currently know if wyDiffy (M) is abelian in general.

Recall the mapping class groups moADiffy (M, mg) C moADiff(M, mg) defined in Sections
3.1 and 3.4 and the homomorphism P: Autge (H4(M)) — lem(8, 27d,)Z/2d, 7 from Section

~

4.3; see (43) and Proposition 4.10. Noting that d, = gcd(%’r, 28), we define
3) 4 r—3 7 IS(F) 7
P: Autge(H*(M)) — Num (2"°d,) Z/d:Z, F 5 mod d,

to be the mod c?,r reduction of P (iivided by 8. By Theorem 1.10 and Remark 3.11 we have
I(M)/I(M) = Num (2"3d,) Z/d,Z and so we can equally regard P as a homomorphism
P: Autye(HY(M)) — I(M)/Ig(M).

Theorem 6.3. For each 2-connected M there is a commutative diagram of group homo-
morphisms with short exact sequences for rows and with exact columns:

0 #oDiff (M) FoDiff (M) Aut, (HA(M)) —= 0

00— %OADIHH(M, mo) —_— %QADlﬁ(M, mo) —_— Autqo (H4(M)) —0

O 7] p

0 Iy (M) I(M) I(M)/I (M) ——0

0 0 0

In particular, an automorphism F € Auty (H*(M)) is realised by a diffeomorphism of M if
and only if P(F) = 0.

Proof. The top row is the exact sequence of Proposition 6.1. The exactness of the second
row follows from Theorem 1.2. The first two columns are exact by the discussion at the
beginning of Section 3.4 and in particular (34) and the third column is exact by the
definition of P. The only part of the commutativity of the diagram which needs comment is
the bottom right hand square, where the commutativity follows from from Lemma 3.7 (ii)
and Proposition 4.16. The final statement follows from the exactness of final row and the
top column. O

We shall call an almost diffeomorphism ezotic if it is not pseudo-isotopic to a diffeo-
morphism. A feature of the diagram in Proposition 6.3 is that when I(M)/Iy (M) # 0,
M admits exotic almost diffeomorphisms which are detected by their action on H*(M).
Specifically, if f: M = M is an almost diffeomorphism, then ﬁ( f*) is the obstruction to
f*: HY(M) = H*(M) being induced by any diffeomorphism of M. Since P is onto, it is
enough to find cases where I(M)/Ix(M) is non-zero to show that P is non-zero.
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Proposition 6.4. Any pair of subgroups Iy C I C O can arise as the pair of inertia
groups (o, 1) = (Ig (M), I(M)) for some 2-connected M.

Proof. There are three pairs of subgroups (T, 77) in Z/7 and six pairs of subgroups (Tp, T7)
in Z/4, leaving 18 cases to realise. By Theorem 1.10 and Remark 3.11, I(M) and Iy (M)
depend only on the base (G, b, p). We list manifolds, their bases (G,b,p) and the pairs
(Ig,I) of inertia groups they realise in the following table, where it is helpful to note that
112 =7 x 16:

M G b p Iy 1 I/IH

S7 {0} 0 0 0 0 0

My 56 Z 0 56 7)2 7.)2 0

Mo 28 Z 0 28 7/4 Z./4 0

Mo 16 Z 0 16 7T 77 0

Mo s Z 0 8 Z/14 7/14 0

Mo, Z 0 4 7./28 7./28 0
M_1608Mo 112 Z/16 7 (1/16) (0,112) 0 Z)2 7/2
M _g 08 Mo 56 7Z)8®7 (1/8)  (0,56) 7)2 7.J4 7./2
M_1628Mo 112 Z/16 7 (1/16) (2,112) 0 Z/4 7/4
M_1608Mo 16 7Z/16 7 (1/16)  (0,16) 7.7 7]14 7./2
M_g oMo g Z)8®7 (1/8) (0,8) 714 7,/28 7./2
M_ 1628 Mo 16 Z/16 7 (1/16)  (2,16) 7)7T 7.)28 7./4
M_718Mj 112 Z)Te7Z (1/7)  (1,112) 0 Z/7 77
M_718Mo 56 Z)TeZ  (1/7)  (1,56) 7.2 7]14 7)7
M_q 148 Mo 14 Z)TeZ  (1)7)  (1,14) 7./4 7.)28 7.)7
M_718Mi1216 711267 (1/112) (16,112) 0 Z/14 7./14
M _56.08Mo 56 7/56 ®Z (1/56) (8,56) 7]2 17]28 7]14
M 11228 Mg 112 711267 (1/112) (2,112) 0 Z/28 7.)28

O

Theorem 1.13 follows immediately from Theorem 6.3 and Proposition 6.4. We conclude
with an example drawn from the bottom line of the table above.

Ezample 6.5. Let M = M_j1998My 112 so that H*(M) = Z/112 & Z and consider the
automorphism of (H*(M), ¢3,,par) defined by

1 1
0 1
In this case (i, = 28 and from the proof of Proposition 6.4 we see that M admits an almost
diffeomorphism f: M = M with f* = F, and ﬁ(f) = 1€ Z/287Z. By Theorem 6.3, F™ is
realised by a diffeomorphism of M if and only if n = 0 mod 28.

F—( ):2/112@222/112@2.
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