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THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

Abstract. We present a comprehensive classification of closed smooth 2-connected mani-
folds of dimension 7. This builds on the almost-smooth classification from the first author’s
thesis. The main new ingredient is a generalisation of the Eells–Kuiper invariant that is
defined for any closed spin 7-manifold M , regardless of whether the spin characteristic
class pM ∈ H4(M) is torsion.

We also determine the inertia group of 2-connected M—equivalently the number of
oriented smooth structures on the underlying topological manifold—in terms of pM and
the torsion linking form.

1. Introduction

Throughout this paper M will be a closed smooth spin 7-manifold and all homeo-
morphisms and diffeomorphisms are assumed to preserve spin structures, unless stated
otherwise.

1.1. Background. Wall classified (s−1)-connected (2s+1)-manifolds up to connected sum
with homotopy spheres except when s = 1, 2, 3 or 7 [50, Theorem 7]. In this paper, we leave
connected 3-manifolds aside, recall that Barden classified 1-connected 5-manifolds [3] and
focus on 2-connected 7-manifolds (leaving dimension 15 to Remark 1.15 below).

The topologically simplest 7-manifolds are homotopy 7-spheres, whose spin (equivalently
oriented) diffeomorphism classes form the group Θ7. Kervaire and Milnor [29] computed
that Θ7

∼= Z/28. Eells and Kuiper [16] defined an invariant µ(M) of certain spin 7-manifolds
M with rationally trivial first Pontrjagin class, which distinguishes all homotopy 7-spheres.

At this point, it made sense to study 7-manifolds up to almost diffeomorphism; i.e., up
to the action of Θ7 via connected sum. Wilkens did this in his PhD [52], using the triple of
invariants (see Section 2.1)

(H4(M), bM , pM),

where H4(M) is the integral cohomology group, bM : TH4(M)× TH4(M) → Q/Z is the
torsion linking form and pM ∈ 2H4(M) is the spin characteristic class of M . We call this
triple the base of M . Modulo a finite ambiguity if |TH4(M)| is even, Wilkens proved that
the base classifies 2-connected M up to almost diffeomorphism. When M is the total space
of an S3-bundle over S4, this ambiguity was resolved by the first author and Escher [9].

The first author completed the almost diffeomorphism classification of 2-connected M
in his PhD [7] by defining a quadratic refinement qM of the torsion linking form bM when
H4(M) is torsion, and a family of such refinements in general. When H4(M) = TH4(M) is
torsion, [7] also proves that the triple (TH4(M), qM , µ(M)) gives a complete diffeomorphism
invariant. This left the smooth classification open when H4(M) is infinite: the difficulty
being that the classical Eells-Kuiper invariant is not defined when pM ∈ H4(M) has infinite
order.
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2 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

In this paper we present a comprehensive smooth classification of closed 2-connected
7-manifolds by defining a generalisation of the Eells-Kuiper invariant for all spin 7-manifolds.
The uniqueness part of this classification has also been proven by Kreck [32, Theorem 1]. Our
main classification results are stated in Sections 1.2 and 1.3 and Section 1.4 describes the
definition of the Generalised Eells-Kuiper invariant. We give applications of the classification
results to the inertia groups and mapping class groups of 7-manifolds in Section 1.5 and we
continue the discussion of the background in Sections 1.6 and 1.7.

An important motivation for this paper is the study of Riemannian manifolds with
holonomy the exceptional Lie group G2: such manifolds always have pM of infinite order
(see Joyce [26, Proposition 10.2.7]). In [12] we use the generalized Eells-Kuiper invariant to
distinguish pairs of closed G2-manifolds which are homeomorphic but not diffeomorphic.

1.2. The classification. To any closed smooth spin 7-manifold M we shall associate the
following algebraic invariants:

• The integral cohomology group H4(M), which is a finitely generated abelian group;
• The torsion linking form bM : TH4(M)× TH4(M)→ Q/Z, which is a torsion form on

the torsion subgroup TH4(M) ⊆ H4(M), by this we mean that bM is symmetric, bilinear
and nonsingular (see (8) and Lemma 2.22);
• The spin characteristic class pM , which is an even element of H4(M) (see Lemma 2.2(i)).

It is a homeomorphism invariant by Remark 2.1, and it is related to the first Pontrjagin
class by 2pM = p1(M);
• The quadratic linking family q◦M (see Definition 2.23), which is a family of quadratic

refinements of the base (H4(M), bM , pM);
• The generalised Eells-Kuiper invariant µM (see Definition 1.8), which is a mod 28 Gauss

refinement of the triple (H4(M), q◦M , pM).

Let us describe q◦M and then indicate the type of µM (leaving a more detailed introduction
of µM to §1.4).

A quadratic refinement of bM is a function q : TH4(M) → Q/Z which satisfies the
equation q(x+y) = q(x) + q(y) + bM(x, y) and we denote the set of such q by Q(bM). We
note that for t ∈ TH4(M), the function qt(x) := q(x) + b(x, t) also belongs to Q(bM).
The homogeneity defect of q ∈ Q(bM) is the unique element β ∈ 2TH4(M) such that
q(x)− q(−x) = bM(x, β). Let

S2 := {h ∈ H4(M) : pM − 2h is torsion}.
That q◦M is a family of quadratic refinements of (H4(M), bM , pM ) means that it is a function

q◦M : S2 → Q(bM), h 7→ qhM ,

such that qh+t
M = (qhM )−t for all t ∈ TH4(M) and qhM has homogeneity defect βh := pM − 2h.

The family of quadratic refinements q◦M is defined in Definition 2.23.
Let dπ be the greatest integer dividing pM modulo torsion (or dπ := 0 if pM is torsion),

d̃π := lcm (4, dπ) and d̂π := gcd
(
d̃π
4
, 28
)
. If dπ > 0 we set

Sdπ := {k ∈ H4(M) : pM − dπk is torsion},
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and if dπ = 0 set Sdπ := TH4(M). We set βk := pM − dπk for each k ∈ Sdπ and note that
for eπ := dπ/2 we have eπk ∈ S2. By saying that the generalised Eells-Kuiper invariant of
M is a mod 28 Gauss refinement of (H4(M), q◦M , pM ) we mean (see Definition 2.34) that it
is a function

µM : Sdπ → Q/d̂πZ,
such that µM(k) = A(qeπkM ) mod Z (where A is the Arf invariant of a quadratic refinement,
computed in terms of a Gauss sum in (10)), and such that the following transformation rule

µM(k + t)− µM(k) = eπq
eπk
M (t)−

(
eπ+1

2

)
bM(t, t) mod d̂π (1)

holds for all k ∈ Sdπ and t ∈ TH4(M) (note that both terms on the RHS have coefficient

divisible by d̃π
4

, so are in particular well-defined in Q/d̂πZ). The Generalised Eells-Kuiper
invariant of M is defined in Definition 1.8.

Two of the main consequences of (1) are that a Gauss refinement is defined by its
value at a single element in Sdπ , and that the difference between two Gauss refinements of
(H4(M), q◦M , pM) is constant. The constraint in terms of the Arf invariant then forces this

constant to take values in Z/d̂πZ.

Remark 1.1. If pM is a torsion element then dπ = 0 and d̂π = 28, while Sdπ = TH4(M)
contains the distinguished element 0. The value 1

28
µM(0) ∈ Q/Z recovers the original

Eells-Kuiper invariant. See Remark 2.38 for related statements even when pM is not torsion.

If G is a finitely generated abelian group, p ∈ 2G and b is a torsion form on T ⊆ G,
the torsion subgroup of G, then we call (G, b, p) a base. If q◦ is a family of quadratic
refinements of (G, b, p) then we call (G, q◦, p) a refinement ; we suppress b since it can be
recovered from qh for any h and hence from q◦. If µ is a mod 28 Gauss refinement of
(G, q◦, p), then we call the quadruple (G, q◦, µ, p) a mod 28 distillation. If F : G′ → G is a
group isomorphism then we can define another mod 28 distillation (G′, F#q, F#µ, F#p) by
pulling back: F#(p) := F−1(p), (F#q)h(x) := qF (h)(F (x)), and F#µ := µ ◦ F .

The mod 28 distillation (H4(M), q◦M , µM , pM) of M is an invariant of diffeomorphisms:
if f : M → M ′ is a diffeomorphism then f ∗ : H4(M ′) → H4(M) is an isomorphism and
(q◦M ′ , µM ′ , pM ′) = ((f ∗)#q◦M , (f

∗)#µM , (f
∗)#pM). In fact, only µM depends on the smooth

structure and the refinement (H4(M), q◦M , pM ) is also invariant under spin homeomorphisms.
An almost diffeomorphism f : M0 u M1 is a homeomorphism which is smooth except

perhaps at a finite number of points. It follows from results of the first author’s thesis, see
Lemma 3.1, that 2-connected 7-manifolds are classified up to almost diffeomorphism and
homeomorphism by their refinements.

Theorem 1.2 (Almost diffeomorphism and homeomorphism classification). Every refine-
ment (G, q◦, p) is isomorphic to (H4(M), q◦M , pM ) for some 2-connected 7-manifold M . More-
over, if M0 and M1 are 2-connected, then an isomorphism F : H4(M1)→ H4(M0) is realised
as f ∗ for some almost diffeomorphism f : M0 uM1 if and only if (q◦M1

, pM1) = F#(q◦M0
, pM0).

The same statement holds with “almost diffeomorphism” replaced by “homeomorphism”.

The central result of this paper is that the generalised Eells-Kuiper invariant is precisely
what needs to be added to Theorem 1.2 to obtain a smooth classification of 2-connected
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7-manifolds. Consequently, 2-connected 7-manifolds are classified up to diffeomorphism by
their mod 28 distillations.

Theorem 1.3 (Smooth classification). Every mod 28 distillation (G, q◦, µ, p) is isomorphic
to (H4(M), q◦M , µM , pM) for some 2-connected 7-manifold M . Moreover, if M0 and M1

are 2-connected, then an isomorphism F : H4(M1) → H4(M0) is realised as f ∗ for some
diffeomorphism f : M0

∼= M1 if and only if (q◦M1
, µM1 , pM1) = F#(q◦M0

, µM0 , pM0).

1.3. Elaboration of the classification. Theorem 1.3 is a “polarised” classification result
in the sense that it identifies whether a given isomorphism of the cohomology is realised by
some diffeomorphism. If we are simply interested in whether M0 and M1 are diffeomorphic
(without specifying how the diffeomorphism acts on cohomology) then we can consider a
coarser invariant than the generalised Eells-Kuiper invariant. Let Aut(bM) be the group
of automorphisms of the linking form bM and recall that for each k ∈ Sdπ we have
βk = pM − dπk ∈ TH4(M), which is the homogeneity defect of the quadratic refinement
qeπkM . We define the smooth splitting set of M to be the set

Q̄(M) := {
(
[βk], µM(k)

)
: k ∈ Sdπ} ⊂

(
2TH4(M)/Aut(b)

)
×Q/d̂πZ.

An isomorphism F : (H4(M1), bM1 , pM1) ∼= (H4(M0), bM0 , pM0) induces the map

F# :
(
2TH4(M0)/Aut(b0)

)
→
(
2TH4(M1)/Aut(b1)

)
, [β] 7→ [F−1(β)].

The following theorem generalises [9, Theorem 1.5] from the case when M is the total space
of a smooth S3-bundle over S4 to all 2-connected M .

Theorem 1.4 (Unpolarised smooth classification). Let M0 and M1 be 2-connected, and
let F : (H4(M1), bM1 , pM1)→(H4(M0), bM0 , pM0) be an isomorphism. Then the following are
equivalent:

(i) M0 is diffeomorphic to M1;
(ii) (F# × Id)

(
Q̄(M0)

)
= Q̄(M1);

(iii) (F# × Id)
(
Q̄(M0)

)
∩ Q̄(M1) 6= ∅.

The corresponding result for almost diffeomorphisms is given in Corollary 3.5.
We now formulate the polarised classification of Theorem 1.3 in categorical language,

giving more information about the monoidal structure of 2-connected 7-manifolds under
connected sum. Let D denote the category of mod 28 distillations (G, q◦, µ, p) with morphisms
isomorphisms:

Ob(D) = {(G, q◦, µ, p)}
Let MSpin

7,2 denote the category of 2-connected spin 7-manifolds with morphisms diffeomor-
phisms:

Ob(MSpin
7,2 ) = {M : π1(M) = 0 = π2(M)}

Given a diffeomorphism f : M0
∼= M1, write f ∗ : H4(M1) ∼= H4(M0) for the induced action

on cohomology. Hence we obtain the contravariant functor

D : MSpin
7,2 → D,

{
M 7→ (H4(M), q◦M , µM , pM),

f : M0
∼= M1 7→ f ∗.
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The operations of connected sum and reversing orientation in MSpin
7,2 are mirrored by

corresponding operations in D. For i = 0, 1 the orthogonal sum of two distillations
(Gi, q

◦
i , µi, pi) is defined as follows. Noting that dπi = cidπ0⊕π1 for some integer ci, in

which case c0Sdπ0
× c1Sdπ1

⊆ Sdπ0⊕π1
, we define the orthogonal sum q0⊕ q1 at c0k0 + c1k1 by

(q0 ⊕ q1)c0k0+c1k1 := qk0
0 ⊕ qk1

1 ,

and

(µ0 ⊕ µ1)(c0k0 + c1k1) := µ0(k0) + µ1(k1) mod gcd
(

28,
d̃π0⊕π1

4

)
.

Since q◦0 ⊕ q◦1 and µ0 ⊕ µ1 are determined by their values on a single k ∈ Sdπ0⊕π1
, this

suffices to define the sum of distillations and the transformations laws for refinements and
distillations ensure that the orthogonal sum is well-defined. We define the negative of a
distillation by

−(G, q◦, µ, p) := (G,−q◦,−µ, p).

Theorem 1.5 (Categorical version of smooth classification). The functor D : MSpin
7,2 → D

is surjective and faithful. Moreover

(i) D(M0]M1) = D(M0)⊕D(M1) and
(ii) D(−M) = −D(M).

We next present an oriented homotopy classification for 2-connected M . Such a classifi-
cation was given in [7, Theorem 6.11] and we re-formulate that classification in the setting
of this paper. An important feature of the homotopy classification is that pM ∈ H4(M) is
not a homotopy invariant but ρ24(pM) ∈ H4(M ;Z/24), the mod 24-reduction of pM , is a
homotopy invariant, [37, Theorem 1]. As a consequence, there is a precise sense in which
the homotopy classification is the “mod 24 reduction” of the homeomorphism classification.

For a linking form (b, T ) define JQ(b) to be the quotient of Q(b) where we identify two
refinements q0 and q1 if q1 = (q0)12t for some t ∈ T and write ρ12 : Q(b)→ JQ(b) for the
quotient map. A J-quadratic refinement of a base (G, b, p) is a triple (G, Jq◦, ρ24(p)) where
Jq◦ : S2 → JQ(b) is a map such that Jqh+t = (Jqh)−t and ρ24(βh) = ρ24(p−2h) ∈ T ⊗Z/24.
The pull-back of J-refinements is defined analogously to the pull-back of refinements and
the J-refinement of M is defined to be the triple (H4(M), ρ12 ◦ q◦M , ρ24(pM)).

Theorem 1.6 (Homotopy classification). Every J-refinement (G, Jq◦, ρ24(p)) is isomorphic
to (H4(M), ρ12 ◦ q◦M , ρ24(pM)) for some smooth 2-connected 7-manifold M . Moreover, if
M0 and M1 are 2-connected, then an isomorphism F : H4(M1) → H4(M0) is realised
as f ∗ for some orientation preserving homotopy equivalence f : M0 ' M1 if and only if
(ρ12 ◦ q◦M1

, ρ24(pM1)) = F#(ρ12 ◦ q◦M0
, ρ24(pM0)).

1.4. The generalised Eells-Kuiper invariant. As explained in Section 1.1, the main
novelty of Theorem 1.3 lies in the smooth classification when H4(M) is infinite. The key
ingredient is the generalisation of the Eells-Kuiper invariant.

Let X be a closed spin 8-manifold. By the index theorem [2, Theorem 5.3] Â(X), the

Â-genus of X, is equal to the index of the Dirac operator on X, and so is an integer. The
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6 THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS

classical Eells-Kuiper invariant is derived from the relation

p2
X − σ(X) = 224Â(X), (2)

where X has signature σ(X) and spin characteristic class pX : the latter is defined in
Section 2.1. If M is a closed 7-manifold such that pM is a torsion class (so rationally trivial)
and W is a spin coboundary of M , then p2

W has a well-defined integral over W (it might in
general take values in Q and not just Z), and (2) implies that

µ(M) :=
p2
W − σ(W )

8
∈ Q/28Z (3)

is independent of the choice of coboundary W . This defines the classical Eells-Kuiper
invariant, modulo normalisation by a factor of 28.

To define an analogue when pM is not a torsion class we have to let it take values not

modulo 28 but modulo the integer d̂π = gcd( d̃π
4
, 28), depending on the divisibility of pM

modulo torsion as above. Moreover, the generalisation is not simply a constant in Q/d̂πZ
but a function.

To define the generalised Eells-Kuiper invariant µM , suppose that W is a spin coboundary
of M and that there exists n ∈ H4(W ) such that the image of pW−dπn under the restriction
map j : H4(W )→ H4(M) is a torsion class; equivalently j(n) ∈ Sdπ . If W is 3-connected
then such n exist and any spin M has 3-connected coboundaries: see the start of Section 2.2.
Since j(pW − dπn) is torsion we can define (cf. (23))

gW
(
j(n)

)
:=

(pW−dπn)2 − σ(W )

8
∈ Q/ d̃π

4
Z (4)

and then extend gW to a function Sdπ → Q/ d̃π
4
Z by the transformation rule (1). Then gW

is independent of the choices of n. The following lemma (cf. (24)) implies that the residue

µM := gW mod d̂π is independent of the choice of W , and functorial.

Lemma 1.7. Let f : ∂W0 → ∂W1 be a diffeomorphism and X := (−W0) ∪f W1. Then

gW1 − (f ∗)#gW0 = 28Â(X) mod d̃π
4
.

Definition 1.8. The generalised Eells-Kuiper invariant of M is defined to be the function

µM : Sdπ → Q/d̂πZ.

The idea of the definition is that the simplest way to change (3) to something that
is well-defined when the restriction of pW to the boundary is rationally non-trivial is to
compensate by subtracting from pW a class that is divisible by dπ and has the same rational
image in H4(M). The essentially different ways of doing that are parametrised by Sdπ and
that is why the generalised Eells-Kuiper invariant is a function defined on Sdπ .

The definition of the s1 invariant by Kreck and Stolz [33] provides as a byproduct a
way to compute the classical Eells-Kuiper invariant in terms of coboundaries that are not
spin, but merely spinc. Proposition 2.43 gives a similar way to compute the generalised
Eells-Kuiper invariant via spinc coboundaries. We use this method in [12] to compute the
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generalised Eells-Kuiper invariants of certain closed 7-manifolds with holonomy G2 that are
homeomorphic but not diffeomorphic.

1.5. Inertia and reactivity. Let Θ7 = {Σ : Σ ' S7} be the group of spin diffeomorphism
classes of homotopy 7-spheres Σ. This is equivalent to the standard definition of Θ7 in [29],
since homotopy spheres are simply connected. By [29], Θ7 is an abelian group under
connected sum and Θ7

∼= Z/28. The inertia group of M is defined to be the following
subgroup of Θ7:

I(M) := {Σ : M]Σ ∼= M}
Remark 1.9. Let M+ denote the oriented manifold underlying M . If M is simply connected
then I(M) = I(M+), where I(M+) is the usual inertia group of M+, which is defined using
orientation preserving diffeomorphisms f+ : M+]Σ+

∼= M+.

It turns out that even with Theorem 1.3 in hand, the determination of I(M) can be a
delicate problem. The reason is that µM is not a constant but rather a function and so it
is possible for almost diffeomorphisms of M to act non-trivially on µM . Equivalently, the
automorphism group of a refinement (G, q◦, p) can act non-trivially on the set of mod 28
Gauss refinements.

The inertia group is closely related to what we (therefore) call the reactivity of M . Let
ADiff(M) denote the group of spin almost diffeomorphisms of M . Given f ∈ ADiff(M),
the mapping torus Tf of f has as well-defined spin characteristic class pTf ∈ H4(Tf) and
we define the integer p2(f) := 〈p2

Tf
, [Tf ]〉. This defines a homomorphism

p2 : ADiff(M)→ Z, f 7→ p2(f),

and the reactivity of M is the non-negative integer R(M) defined by

p2(ADiff(M)) = R(M)Z. (5)

Clearly R(M) is an almost diffeomorphism invariant of M . Since Tf has zero signature
and pTf is characteristic for the intersection form of Tf we have R(M) ∈ 8Z. It is well
understood that f ∈ ADiff(M) is pseudo-isotopic to a diffeomorphism if and only if p2(f)
is divisible by 224 (see Lemma 3.7) and consequently

I (M) =
R(M)

8
Θ7. (6)

To determine R(M) when M is 2-connected, we first determine the values of p2(f)
which are realised when H∗(f) = Id (see Proposition 3.10). This reduces the determina-
tion of R(M) to understanding the action of the automorphism group Autq◦(H

4(M)) of
(H4(M), q◦M , pM) on mod 28 Gauss refinements. That can in turn be reduced to under-
standing the automorphism group Autb(H

4(M)) of (H4(M), bM , pM ), which is much easier
to deal with in practice. In fact, R(M) is almost completely determined just using the
following ‘intermediate’ notion of the divisibility of pM , whose significance was pointed out
by Wilkens [54, Conjecture p. 548]:

do :=

{
0 if pM is torsion,

Max
{
s : s,m ∈ Z, sm2 divides mpM

}
otherwise.

(7)
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Corollary 4.17 and (6) give the next theorem, where for a fraction a
b

written in lowest terms

Num
(
a
b

)
= a.

Theorem 1.10. Let M be 2-connected and let do = do(M). There is an integer r ∈ {0, 1, 2}
depending only on the base (H4(M), bM , pM), such that

R(M) = lcm(8, 2rdo).

In particular, by (6),

I(M) = Num

(
2rdo

8

)
Θ7.

If TH4(M) has odd order then r = 1.

If H4(M) does have some 2-torsion then in general one needs to look at the torsion
linking form in detail to determine r. Wilkens’ conjecture [54, Conjecture p. 548] for the
inertia group is equivalent to supposing that r = 1 always, which is not true. The invariant
r = r(G, b, p) is defined in Definition 4.5 and while we do not have a closed formula for r,
it is feasible to compute r for any given example. For examples where r = 0, 1 or 2, see
Example 5.2.

We next discuss some consequences of Theorem 1.10 and its proof. If N is a closed
smooth manifold, let n+(N) denote the number of oriented diffeomorphism classes of
smooth structures on the topological manifold underlying N . From Theorems 1.2 and 1.10
and Remark 1.9 we deduce

Corollary 1.11. If M is 2-connected then n+(M) = gcd (Num(2r−3do), 28).

We call a homotopy equivalence f : N0 → N1 of smooth manifolds tangential if there is
a bundle isomorphism f ∗TN1

∼= TN0, where TNi is the tangent bundle of Ni, i = 0, 1. In
Lemma 5.5 we show that a homotopy equivalence f : M0 'M1 of 2-connected 7-manifolds
with f ∗pM1 = pM0 is tangential. Together with Theorem 1.10 this entails

Corollary 1.12. Let M0 and M1 be 2-connected and let f : M0 ' M1 be a tangential
homotopy equivalence. Then I(M0) = I(M1).

One may wonder if Corollary 1.12 is true because tangentially homotopy equivalent
2-connected 7-manifolds are almost diffeomorphic (equivalently homeomorphic by Theorem
1.2). However this was shown not to be the case in [7, p. 114], contradicting statements of
Madsen, Taylor and Williams [35, Theorem C and Theorem 5.10]: see Proposition 5.6 and
Remark 5.7.

The computation of the reactivity of M also has applications in G2-topology. We define
the smooth reactivity of M , RDiff(M), using the equation p2(Diff(M)) = RDiff(M)Z, and
in [11, Section 6] we show that RDiff(M) determines the number of G2-structures on M
modulo homotopies and diffeomorphisms. By Corollary 4.17,

RDiff(M) = lcm(2rdo, 224)

for 2-connected M , and this allows us to generalise Theorem 1.3 to give a classification
of 2-connected 7-manifolds equipped with a G2-structure, up to diffeomorphisms and
homotopies of G2-structures [11, Theorem 6.9].
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The proof of Theorem 1.10 gives subtle information about the mapping class group of M .
Let IH(M) ⊆ I(M) be the subgroup of the inertia group of M consisting of homotopy
spheres Σ such that there is a diffeomorphism f : M]Σ ∼= M where H∗(f) = Id, considering
M]Σ and M as the same topological space. Using the delicate algebra in Section 4.3 we
construct a surjective homomorphism

P̂ : Autq◦(H
4(M))→ I(M)/IH(M),

such that F ∈ Autq◦(H
4(M)) is realised by a diffeomorphism of M if and only if P̂ (F ) = 0.

Now by Theorem 1.2, every F ∈ Autq◦(H
4(M)) is realised by an almost diffeomorphism of

M and in Proposition 6.4 we prove that every nested pair of subgroups I1 ⊆ I2 ⊆ Θ7 can
be realised as I(M)H ⊆ I(M) for some 2-connected M . As consequence we have

Theorem 1.13. There exist 2-connected M with automorphisms F ∈ Autq◦(H
4(M)) which

are not realised by any diffeomorphism of M . Necessarily every such F is realised by an
almost diffeomorphism of M .

Remark 1.14. Let us call an homeomorphism f : M →M exotic if it is not topologically
isotopic to a diffeomorphism. Applying Theorem 1.13 gives examples of exotic homeomor-
phisms f : M → M whose exoticness is detected by their action on integral cohomology;
see Example 6.5. To the best of our knowledge, these are the first examples of exotic
homeomorphisms of this kind.

1.6. An overview of the proof of Theorem 1.3 and some remarks on surgery.
Every 2-connected M bounds a 3-connected 8-manifold W and we define the characteristic
form of W to be the triple (H4(W,∂W ), λW , pW ), where

λW : H4(W,∂W )×H4(W,∂W )→ Z,

is the intersection form of W , and pW ∈ H4(W ) is the spin characteristic class of W (see
Section 2.1). A key feature of dimension 8 is that pW is characteristic for λW , which means
that λW (x, x) ≡ x ∪ pW mod 2 for all x ∈ H4(W,∂W ) (see Lemma 2.2(iii)). In [48] Wall
classified the manifolds W by proving that every isomorphism of characteristic forms is
realised by a diffeomorphism. He also proved that every abstract triple (H,λ, α), where
λ : H ×H is a symmetric bi-linear form and α : H → Z is characteristic for λ in the sense
above, is realised as the characteristic form of some W .

Following Wall, Wilkens [52, Theorem 3.2] proved that any diffeomorphism f : M0 →M1

between 2-connected M extends to a diffeomorphism F : W0 → W1 for some 3-connected
coboundaries Wi of Mi, i = 0, 1. The results of Wall and Wilkens’ reduced the classification
of 2-connected 7-manifolds to the classification of characteristic forms up to isometry
and orthogonal sum with spherical forms, where we call a characteristic form spherical if
the boundary of the corresponding handlebody is diffeomorphic to S7; cf. [50, §14]. This
algebraic problem boils down to finding the correct notion of the algebraic boundary of a
characteristic form. Wilkens’ base (G, b, p) and the first author’s refinement (G, q◦, p) were
partial solutions to this problem and the mod 28 distillation (G, q◦, µ, p) of this paper gives
a complete solution.
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The fundamental input to Wall and Wilkens’ theorems is Smale’s h-cobordism theorem
[46]. In addition, both proofs make use of handlebody theory. Hence the topological inputs
to our proofs are relatively elementary from a modern perspective. The reader may ask
whether developments in manifold theory, e.g. the classical surgery theory of Browder-
Novikov-Sullivan-Wall or the modified surgery of Kreck, give more powerful tools to classify
2-connected 7-manifolds?

In the case of classical surgery, the answer to the above question is simply “no”. The
homotopy classification of 2-connected 7-manifolds via the study of CW -decompositions
and attaching maps, is surely harder than the smooth classification of these manifolds. The
reader may consult [45] as a starting point. Even if the homotopy classification is known,
the computation of the surgery structure set via the surgery exact sequence and then the
action of the self-equivalences on the structure set is a delicate problem. Here the reader
may consult [8, Theorem 2.2] for the case M = S3 × S4.

The situation is different with modified surgery, which provides a powerful tool for
classifying 1-connected 7-manifolds. Until recently the relevant results from modified surgery
came from working over the normal 2-type and rested on the general classification theorem
[31, Theorem 6], which in the 2-connected case makes the very restrictive hypothesis that
H4(M) is generated by pM . In [32] Kreck defines an enhanced normal 2-type which applies
to all 2-connected M and which he uses to give an alternative proof of the uniqueness part
of Theorem 1.3. The enhanced normal 2-type encodes what Kreck calls a d-structure which,
in the notation of this paper, is a pair (M,k), where k ∈ Sdπ .

1.7. Dimensions 7 and 15. Dimension 7 and 15 were exceptional for Wall’s methods in
[50] because the tangent bundles of S3 and S7 are trivial and this prevented Wall from
defining a quadratic refinement of the linking form. We discuss this further in Section 2.8,
where we show how Wall’s methods can be extended to 2-connected 7-manifolds by adding
additional tangential structure. In this way we are able to give an intrinsic definition of the
quadratic refinement of the linking form.

Remark 1.15. To discuss dimension 15, let String := O〈6〉 denote the 6-connected cover
of the stable orthogonal group. This is a well-defined homotopy type with models which
are topological groups (see [47, Theorem 5.1]). In particular there is a well-defined notion
of a stable string structure on a manifold and hence a well-defined notion of a stable
string manifold. For the almost diffeomorphism classification, a 15-dimensional analogue
of Theorem 1.2 was proven in [7, Theorem B]. For the smooth classification, we have
Θ15
∼= Z/8,128⊕Z/2, where the Z/8,128 summand is the subgroup of homotopy 15-spheres

which bound string manifolds and the Z/2 summand maps isomorphically to ΩString
15 , [29, 17].

The 15-dimensional analogue of Theorem 1.3 requires the following modifications. Firstly the
universe of 6-connected 15-dimensional manifolds has two disjoint classes: those manifolds
which bound string manifolds and those which do not. Secondly, within each of these classes
a version of Theorem 1.3 holds, where mod 28 Gauss refinements are replaced by mod 8,128
Gauss refinements, in the sense of Definition 2.34.



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

THE CLASSIFICATION OF 2-CONNECTED 7-MANIFOLDS 11

1.8. Organisation. The rest of this paper is organised as follows. In Section 2 we define
the invariants used in Theorems 1.2 and 1.3. In particular, families of quadratic refinements,
Gauss refinements and the generalised Eells-Kuiper invariant are defined in Sections 2.4,
2.5 and 2.6 respectively. In Section 3 we prove our main classification results and we discuss
the connected sum splitting of 2-connected 7-manifolds in Theorems 3.4 and 3.14. Section 4
is an algebraic section in which we analyse the automorphisms of refinements and bases and
the action of these automorphisms on Gauss refinements. This section contains the proof of
Theorem 1.10, which follows from the computation of the reactivity of M in Corollary 4.17.

In Section 5 we illustrate the classification of 2-connected M with examples and we also
we present a refinement of Wilkens’ identification of the set of indecomposable generators for
the monoid of almost diffeomorphism classes of 2-connected 7-manifolds under the operation
of connected sum; see Theorem 5.8. In Section 6 we investigate the relationship between
the inertia groups of M and the mapping class groups of M and prove Theorem 1.13.

Acknowledgements: We would like to thank Jim Davis, Sebastian Goette and Matthias
Kreck for helpful comments and discussions. We would also like to thank Matthias Kreck for
pointing out a mistake in the formulation of Theorem 1.4 in the first version of this paper
and for sharing drafts of his paper [32]; in particular the explicit form of the transformation
rule in (1) is based on [32, (2)]. In addition, we thank the referee for their careful comments,
which have improved the paper.

DC thanks the Mathematics Departments at Imperial College and the University of Bath
for their hospitality and acknowledges support from EPSRC Mathematics Platform grant
EP/I019111/1. DC also acknowledges the support of the Leibniz Prize of Wolfgang Lück,
granted by the Deutsche Forschungsgemeinschaft. JN thanks the Simons Foundation for its
support under the Simons Collaboration on Special Holonomy in Geometry, Analysis and
Physics (grant #488631, Johannes Nordström).

2. Invariants

In this section we define the invariants needed to classify 2-connected spin 7-manifolds M .
In Section 2.1 we introduce the linking form bM of M and the spin characteristic class
pM ∈ 2H4(M). In Section 2.2 we recall the characteristic form

(H4(W,∂W ), λW , pW )

of a spin coboundary W for M and identify it as the salient algebraic model for W . In
sections Sections 2.3, 2.4 and 2.5 we progressively build algebraic “boundary invariants”
of characteristic forms. Section 2.3 recalls the theory of refinements of torsion forms and
Section 2.4 shows how a characteristic form defines a family of refinements on its boundary.
In Section 2.5 we define the generalised Eells-Kuiper invariant µM of M using Hirzebruch’s

characteristic class formulae for the Â-genus and the L-genus. The generalised Eells-Kuiper

invariant is a reduced defect invariant of the Â-genus. In Section 2.7 we show how µM can
be computed via a coboundary W which is spinc rather than spin. Finally, in Section 2.8
we give an intrinsic definition of the quadratic refinements defined via coboundaries in
Section 2.4.
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2.1. Basic invariants. To any closed spin 7-manifold M we associate its integral cohomo-
logy group H4(M), torsion linking form bM and spin characteristic class pM ∈ 2H4(M). We
call the triple (H4(M), bM , pM) the base of M . More generally, a base is a triple (G, b, p)
consisting a finite abelian group G, a torsion form b on the torsion subgroup of G and
an element p ∈ 2G. For later use we introduce the category B consisting of bases with
morphisms isomorphisms

Ob(B) = {(G, b, p)}.
We now define in the invariants bM and pM in turn.

The linking form bM . Recall that the linking form of a closed oriented (4k−1)-manifold N
is a nonsingular symmetric bilinear pairing

bN : TH2k(N)× TH2k(N)→ Q/Z
defined on the torsion subgroup of H2k(N). Given x, y ∈ TH2k(N) and x̂ ∈ H2k−1(N ;Q/Z),
a lift of x along the Bockstein β : H2k−1(N ;Q/Z)→ TH2k(N) associated to the coefficient
sequence Z→ Q→ Q/Z, the linking form bN of N is defined by the equation

bN(x, y) := 〈x̂y, [N ]〉 ∈ Q/Z.
If N is the boundary of an oriented 4k-manifold Y , then the linking form of N and the

intersection form of Y are related, as explained in [1, II]. Let i : H2k(Y,N ;Q)→ H2k(Y ;Q)
be the natural map and define a rational-valued intersection form on the image of i by

λ̄Y : Im(i)× Im(i)→ Q, λ̄Y (i(w), i(z)) := 〈w ∪ i(z), [Y ]〉.
Let j : H2k(Y ) → H2k(N) be the restriction map. If x ∈ TH2k(N) and x̄ ∈ H2k(Y ) is a
preimage, j(x̄) = x, then the image of x̄ in H2k(Y ;Q) is in the kernel of the restriction
H2k(Y ;Q)→ H2k(N ;Q). Thus the image of j−1(TH2k(N)) ⊂ H2k(Y ) in H2k(Y ;Q) equals
Im(i). The linking form of N satisfies

bN(x, y) = −λ̄Y (x̄, ȳ) mod Z, (8)

whenever x̄, ȳ ∈ H2k(Y ) are lifts of x and y respectively. Note that if the image of j contains
TH2k(N), then (8) describes bM completely. The appearance of the minus sign in (8) is
explained in [1, Proof of Theorem 2.1] and also in [21, §3].

The spin characteristic class pM . The classifying space BSpin is 3-connected and has
π4(BSpin) ∼= Z. It follows that H4(BSpin) ∼= Z is infinite cyclic. A generator is denoted
±p1

2
and the notation is justified since for the canonical map π : BSpin→ BSO we have

π∗p1 = 2p1

2
where p1 ∈ H4(BSO) is the first Pontrjagin class, see e.g. [36, Lemma 2.2].

One way to explain the claims in the previous paragraph is to note that the canonical
homomorphism SU → Spin, which maps the stable special unitary group to the stable spin
group, induces an isomorphism H4(BSpin)→ H4(BSU). Since H4(BSU) is cyclic with a
generator (namely the universal second Chern class c2) whose image in H4(BSO) is 2p1,
the same is true for H4(BSpin) (see also Lemma 2.39 below).

Given a spin manifold N we write

pN :=
p1

2
(N) ∈ H4(N).
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Remark 2.1. In order to prove the topological invariance of invariants we define in the later
subsections, we consider pY for general topological spin manifolds Y . We let BTop denote
the classifying space for stable topological microbundles, see [30, Essay IV, Proposition 8.1],
and BTop〈4〉 its 3-connected cover. Equivalently, BTop〈4〉 is the classifying space for stable
spin topological microbundles. By [24, (3)] there is a split short exact sequence

0→ π4(BSpin)→ π4(BTop〈4〉)→ Z/2→ 0.

It follows that the canonical homomorphism H4(BTop〈4〉)→ H4(BSpin) is an isomorphism
and so pN ∈ H4(N) is a homeomorphism invariant of topological spin manifolds.

By [33, Lemma 6.5], the mod 2 reduction of pM is the 4th Stiefel-Whitney class w4. This
has the following consequences for the parity of the characteristic class of a closed spin
manifold.

Lemma 2.2.

(i) Let M be a closed spin 7-manifold. Then pM ∈ 2H4(M).
(ii) Let X be a closed spin 8-manifold. For all x ∈ H4(X;Z/2)

x2 = x ∪ pX ∈ H8(X;Z/2).

(iii) Let W be a compact spin 8-manifold with boundary M . For all x ∈ H4(W,M ;Z/2)

x2 = x ∪ pW ∈ H8(W,M ;Z/2).

Proof. By Wu’s formula, see e.g. [42, Theorem 11.14], w4 = v4 for any closed spin manifold
since the first three Wu classes of a spin manifold vanish.

(i) Now v4(M) = 0 since M is 7-dimensional, the Wu class satisfies v4(M) ∪ x = Sq4(x)
for all x ∈ H3(M ;Z2) by definition, and Sq4 vanishes on classes of degree three.

(ii) x2 = Sq4(x) = x ∪ v4(X) = x ∪ pX .
(iii) Let X := W ∪IdM (−W ). The push-forward i∗ : H∗(W,M)→ H∗(X) of the inclusion

i : W ↪→ X is dual under the Poincaré pairing to the restriction i∗ : H4(X)→ H4(W ).
Since i∗pX = pW , (ii) gives

x2 = (i∗x)2 = i∗x ∪ pX = x ∪ pY ,

where the equalities take place in Z/2 ∼= H8(X;Z/2) ∼= H8(W,M ;Z/2). �

Remark 2.3. The characteristic class pM is the primary and final obstruction to the triviality
TM , the tangent bundle of M ; i.e. TM is trivial if and only if pM = 0. This is because
of Bott periodicity, which states that π5(BSO(7)) = π6(BSO(7)) = 0 and we have the
exceptional fact that π7(BSO(7)) = 0 by [28, p. 162]. Hence all obstructions to the triviality
of the tangent bundle of M after pM vanish. Indeed, any rank 7 (or higher) spin vector
bundle E over a CW -complex X is trivial over the 7-skeleton of X if and only if p(E) = 0.
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2.2. Algebraic models of coboundaries. Let M be a closed spin 7-manifold. Since the
bordism group ΩSpin

7 vanishes by [40], there is a compact spin 8-manifold W such that
∂W = M . Applying surgery below the middle dimension to W [39, Theorem 3], we can
assume that W is 3-connected. We define FH4(W,∂W ) := H4(W,∂W )/TH4(W,∂W ) to
be the torsion-free quotient of H4(W,∂W ). Since W is 3-connected, H4(W ) is torsion-free
and so the relative cohomology sequence of (W,M) gives exactness of

FH4(W,∂W )→ H4(W )→ H4(M)→ 0. (9)

For an abelian group H, let H∗ := Hom(H,Z) be the dual of H. Since H4(W ) is
torsion-free, the composition H4(W ) → H4(W,∂W ) → H4(W,∂W )∗ of the Kronecker
homomorphism with the Poincaré-Lefschetz duality isomorphism is an isomorphism. Hence
the first homomorphism in (9) can be thought of as the adjoint homomorphism,

λ̂W : FH4(W,∂W )→ FH4(W,∂W )∗,

of the intersection pairing λW on FH4(W,∂W ). The principle we follow is to regard the
pair (FH4(W,∂W ), λW ) as a “model” for a coboundary W .

Let us set up some terminology to deal with these models. We say that (H, λ) is an
integral form if H is a finitely generated free abelian group and λ : H×H → Z is symmetric

and bilinear. Let λ̂ denote the adjoint homomorphism H → H∗. The “boundary” of (H,λ)

is G := coker(λ̂). We say that an element α ∈ H∗ is characteristic for λ if λ(x, x) = α(x)
mod 2 for all x ∈ H. We then call (H,λ, α) a characteristic form.

If W is a 3-connected coboundary of M then the pair (FH4(W,∂W ), λW ) is an integral
form with boundary H4(M). By Lemma 2.2(iii), (FH4(W,∂W ), λW , pW ) is characteristic.
(If M is 2-connected then Wall’s classification of 3-connected 8-manifolds [48] ensures that
the characteristic form of W is a complete invariant of W under diffeomorphisms; i.e. every
isomorphism of characteristic forms is realised by a diffeomorphism, see [7, Corollary 2.5].) In
the next subsections we study the structures that an integral or characteristic form induces
on its boundary. By applying this to the algebraic model of a 3-connected coboundary of
M we obtain the desired algebraic invariants of M . To prove that they are independent of
the choice of W we will combine a splitting result for the algebraic constructions with the
following lemma whose proof is a simple application of the Mayer-Vietoris theorem.

Lemma 2.4. Let Wi be compact 3-connected spin 8-manifolds with 2-connected boundaries,
f : ∂W0 → ∂W1 a homeomorphism, and X := (−W0) ∪f W1 (a closed spin topological
manifold). Then for i = 0, 1 we have injections H4(Wi, ∂Wi) ↪→ H4(X) whose images are
orthogonal to each other with respect to the intersection form λX of X. Further, the restriction
map H4(X)→ H4(M) is surjective, with kernel H4(W0, ∂W0) +H4(W1, ∂W1). �

Remark 2.5. We note that by Lemma 2.2(ii), the triple (H4(X), λX , pX) of the manifold X
in Lemma 2.4 is a (nonsingular) characteristic form. Moreover, the image of pX under the
restriction map H4(X)→ H4(Wi) is of course pWi

.

2.3. Torsion forms and quadratic refinements on finite groups. Throughout this
paper T is a finite abelian group. We say that b : T ×T → Q/Z is a torsion form on T if it is
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symmetric, bilinear, and nonsingular in the sense that the induced map T → Hom(T,Q/Z)
is an isomorphism. We call a function q : T → Q/Z a quadratic refinement of b if

q(x+ y) = q(x) + q(y) + b(x, y), ∀x, y ∈ T.
The homogeneity defect of q is the unique element β = β(q) ∈ 2T such that for all x ∈ G
q(x)− q(−x) = b(x, β). If β = 0 then q(x) = q(−x) and q is called homogeneous. We define

Q(b) := {q : q is quadratic refinement of b}
and we let Q0(b) ⊆ Q(b) be the set of homogeneous quadratic refinements of b. In this
subsection we consider the problem of classifying the quadratic refinements in Q(b) up to
isomorphism. For Q0(b) this problem was solved by Nikulin [43] and the general solution
was given independently by Deloup and Massuyeau [14] and the first author [7].

The first basic results [7, Lemmas 2.30 & 2.31] are thatQ(b) andQ0(b) are both non-empty
and that T acts freely and transitively on Q(b) via the action

Q(b)× T → Q(b), (q, t) 7→ qt,

where we recall from the introduction that for all t ∈ T ,

qt(x) = q(x) + b(x, t) = q(x+ t)− q(t).
It is clear that the homogeneity defects of q and qt are related by β(qt) = β(q) + 2t.

Example 2.6. If T ∼= Z/rZ is cyclic then all torsion forms and refinements on T are given
by the following examples. Given θ ∈ Z/r coprime to r, let

〈
θ
r

〉
denote Z/r equipped with

the torsion form

b(x, y) :=
θxy

r
∈ Q/Z.

Given θ ∈ Z/2r coprime to r and γ ∈ Z/r (so that 2γ ∈ Z/2r), we define a quadratic
refinement

〈〈
θ
2r

〉〉
γ

of
〈
θ
r

〉
by

q(x) := θ

(
x2 + 2γx

2r

)
∈ Q/Z.

Beyond the homogeneity defect, we introduce two further equivalent invariants of q. The
first of these is the Gauss sum of q which is the complex number

GS(q) :=
∑

x∈T
e2πiq(x) ∈ C,

where i =
√
−1 and e is Euler’s number. From the fact that qt(x) = q(x + t) − q(t) one

easily obtains the following useful

Lemma 2.7 ([14, (4.1)]). GS(qt) = e−2πiq(t)GS(q). �

It is a theorem of Milgram [41, Theorem, p. 127, Appendix 4] that if q is homogeneous,

then GS(q) is a non-zero complex number with modulus
√
|T |: by Lemma 2.7, this holds
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for all q ∈ Q(b). We define the Arf invariant of q to be the number A(q) ∈ Q/Z which is
the argument of GS(q) divided by 2π. That is

GS(q) =
√
|T |e2πiA(q) ∈ C. (10)

Then Lemma 2.7 is equivalent to

A(qt) = A(q)− q(t). (11)

Before giving the classification theorems for Q(b), we review how elements of Q(b) can
be presented as the boundaries of nondegenerate characteristic forms (H,λ, α) and how
A(q) is determined by (H, λ, α) in this situation. If λ is nondegenerate then the boundary

T := coker(λ̂) of (H,λ) fits into the short exact sequence

0→ H
λ̂−−→ H∗

j−→ T → 0. (12)

We write λQ : (H ⊗ Q) × (H ⊗ Q) → Q for the rational form induced by λ. Its adjoint

λ̂Q : H ⊗Q→ H∗⊗Q is an isomorphism, and we use the inverse (λ̂Q)−1 : H∗⊗Q→ H ×Q
to pull back the form λQ on H ⊗ Q. We obtain a rational symmetric bilinear form on
H∗ ⊗Q, and restricting to H∗ ⊂ H∗ ⊗Q gives the rational-valued bilinear form

λ̄ := (λ̂−1
Q )∗(λQ)|H∗×H∗ : H∗ ×H∗ → Q.

Explicitly, if y, z ∈ H∗ and if y = kλ̂(ỹ) and z = lλ̂(z̃) for some integers k and l then,

λ̄(y, z) = λQ(λ̂−1
Q (y), λ̂−1

Q (z)) =
λ(ỹ, z̃)

kl
= 〈λ̂−1

Q (y), z〉.

Remark 2.8. In [7] the form λ̄ : H∗ ×H∗ → Q is denoted λ−1.

Remark 2.9. When the sequence (12) is the sequence H4(W,∂W ) −→ H4(W )
j−→ H4(M)

of a 3-connected coboundary W as in Section 2.2 with H4(M) = TH4(M), then the form
λ̄ : H∗ ×H∗ → Q is precisely the restriction of the rational-valued intersection form of W ,
λW : H4(W ;Q)×H4(W ;Q)→ Q, to j−1(TH4(M)) = H4(W ) ⊂ H4(W ;Q).

Given a nondegenerate characteristic form (H,λ, α) and x, y ∈ T , let x̄, ȳ ∈ H∗ be such
that j(x̄) = x and j(ȳ) = y. We define the torsion form bλ

bλ : T × T → Q/Z, (x, y) 7→ −λ̄(x̄, ȳ) mod Z,

and the quadratic refinement of bλ

qλ,α : T → Q/Z, x 7→ −λ̄(x̄, x̄)− λ̄(x̄, α)

2
mod Z. (13)

We regard (T, qλ,α, j(α)) as the boundary of (H,λ, α) and note that the homogeneity defect
of qλ,α is exactly j(α).

Remark 2.10. The minus signs in (13) are introduced to correspond to the sign in (8). The
sign differs from [7, Definition 2.32]. As a consequence, the definition of the linking form
and quadratic linking family in [7, Definition 2.50] have the wrong signs.
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Example 2.11. Let us discuss the calculation of (T, b) from (H, λ) in more detail. If H has
basis {v1, . . . , vn} and λ is represented with respect to this basis by the symmetric integer
matrix B then B is invertible over Q and the rational symmetric matrix B−1 expresses
λ : H∗×H∗ → Q with respect to the dual basis {v∗1, . . . , v∗n} of H∗. It follows that the mod Z
values of B−1 express the linking form b with respect to the generating set {j(v∗1), . . . , j(v∗n)}
of T .

For example, suppose that H = Z2 with basis {v1, v2}, and λ and α are given by

B =

(
0 2i

2i 0

)
, α(v1) = 2a1, α(v2) = 2a2,

where a1, a2 ∈ Z. Then T = Z/2i ⊕ Z/2i with generating set {(j(v∗1), (j(v∗2))}, b has linking
matrix (

0 −2−i

−2−i 0

)

with respect to {j(v∗1), j(v∗2)} and qλ,α is given by the formula

qλ,α
(
kj(v∗1) + lj(v∗2)

)
=
−kl − a2l − a1k

2i
.

The following fundamental theorem of Wall states that every linking form and quadratic
refinement are realised as the boundary of some even nondegenerate form.

Theorem 2.12 ([49, Theorem 6]). For all torsion forms b and for every q ∈ Q0(b), there
is an even nondegenerate form (H,λ) and an isomorphism q ∼= qλ,0.

We now state Milgram’s theorem on the Gauss sums of homogeneous quadratic torsion
forms.

Theorem 2.13 (Milgram [41, Theorem, p. 127, Appendix 4]). Let q ∈ Q0(b) and (H, λ) be
an even nondegenerate integral form with signature σ(λ). Then

(i) 8A(q) ∈ Z;
(ii) 8A(qλ,0) ≡ −σ(λ) mod 8.

Following Milgram’s theorem, we can restate Nikulin’s classification of homogeneous
quadratic refinements of b as follows.

Theorem 2.14 ([43, Theorem 1.11.3]). If q0, q1 ∈ Q0(b) then q0 is isomorphic to q1 if and
only if A(q0) = A(q1).

For general quadratic refinements of b we have the following results.

Proposition 2.15 ([7, Proposition 5.19]). Any nondegenerate characteristic form (H, λ, α)
has

A(qλ,α) =
λ̄(α, α)− σ(λ)

8
∈ Q/Z.

Theorem 2.16 ([7, Theorem 5.22], [14, Theorem 4.1]). Let q0, q1 ∈ Q(b) be quadratic
refinements with homogeneity defects β0 and β1 respectively. Then q0 and q1 are isomorphic
if and only if the following hold:
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(i) There is an automorphism f : T ∼= T of b such that f(β0) = β1;
(ii) A(q0) = A(q1).

Remark 2.17. The proof of Theorem 2.14 in [43] and the proof of Theorem 2.16 in [7] both
apply classification results for torsion forms and case by case checking. In contrast, the
proof of Theorem 2.16 in [14] is short and general, with one elegant argument covering all
cases.

2.4. Families of quadratic refinements. Let G be a finitely generated abelian group,
p an element of 2G, and b a torsion form on the torsion subgroup T ; i.e. (G, b, p) is a base
and so is an object in the category B. Define

S2 := {h ∈ G : p− 2h ∈ T},
and for h ∈ S2 write βh := pM − 2h. Note that T acts simply transitively on S2 by addition.

Definition 2.18. A family of quadratic refinements of a base (G, b, p) is defined to be a
function q◦ : S2 → Q(b), h 7→ qh, such that:

(i) the homogeneity defect of qh is βh;
(ii) qh+t = qh−t for any t ∈ T .

The triple (G, q◦, p) is called a refinement of (G, b, p).

An isomorphism F : G → G′ obviously maps S2 → S ′2, and F pulls back a family of
quadratic refinements q′◦ on G′ to one on G by setting

(F#q′)h := q′F (h) ◦ F|T .
In this case q◦ and q′◦ are isomorphic via F , and so are (G, q◦, p) and (G′, q′◦, F−1(p)).

The orthogonal sum of two refinements (G0, q
◦
0, p0) and (G1, q

◦
1, p1) is the refinement

(G0 ⊕G1, q
◦
0 ⊕ q◦1, p0 ⊕ p1) as defined in Section 1.3. The negative of a refinement (G, q◦, p)

of (G, b, p) is the refinement (G,−q◦, p) of (Q,−b, p) defined by (−q)h = −qh. For later use
we introduce the category R consisting of refinements with morphisms isomorphisms

Ob(R) = {(G, q◦, p)}.
Refinements as in Definition 2.18 are defined naturally on the boundaries of characteristic

forms (H,λ, α) when λ is allowed to be degenerate. First we define the base (G, b, p).

Let G := coker(λ̂), let K := ker(λ̂) ⊂ H be the radical of λ and let R ⊆ H∗ the
annihilator of K. Then R ∼= (H/K)∗, and the form λ descends to a nondegenerate form

λ/K : H/K ×H/K → Z with R/ Im(λ̂/K) ∼= T . Hence we obtain a torsion form b = bλ on
T as in Section 2.3. To define p we let j : H∗ → G be the projection and set p := j(α).
Regardless of whether λ is degenerate or not, the classification of Z2-valued bilinear forms
implies that there is always an x ∈ H such that λ(x, y) = λ(y, y) mod 2 for any y ∈ H.

Then α− λ̂(x) ∈ H∗ is even, so p = j(α) ∈ G is even as required.

Definition 2.19. The boundary base of a characteristic form (H, λ, α) is defined to be the

triple (G, b, p) :=
(
coker(λ̂), bλ, j(α)

)
.
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Next we define the induced family of quadratic refinements. For any h ∈ S2, pick m ∈ H∗
such that j(m) = h and set αm = α− 2m. Then j(αm) is a torsion element and so αm ∈ R
which is characteristic for (H/K, λ/K) and we let

qh(H,λ,α) := qλ/K ,αm

be the quadratic refinement of b defined in (13) in the previous subsection, i.e. if x̄ ∈ R
and j(x̄) = x then

qh(x)(H,λ,α) =
λ̄(x̄, x̄) + λ̄(αm, x̄)

2
=
〈λ̂−1

Q (x̄), x̄+ αm〉
2

∈ Q/Z. (14)

This is independent of the choice of m, since if m′ = m+ λ̂(r) then

λ̄(2m′, x̄)− λ̄(2m, x̄) = 2〈r, x̄〉 ∈ 2Z.
That (i) of Definition 2.18 is satisfied is immediate from βh = j(αm). Meanwhile, if h′ = h+t
for some t ∈ T then j(m′ −m) = t, so

qh
′

(H,λ,α)(x)− qh(H,λ,α)(x) = 〈−λ̂−1
Q (x̄),m−m′〉 = −bλ(x, t),

which shows that (ii) of Definition 2.18 holds.

Definition 2.20. The boundary of a characteristic form (H,λ, α) is the triple

∂(H,λ, α) := (coker(λ̂), q◦(H,λ,α), j(α)).

It is a refinement of the boundary base (coker(λ̂), bλ, j(α)) of Definition 2.19.

It is clear that an isomorphism of characteristic forms E : (H0, λ0, α0) ∼= (H1, λ1, α1)
induces an isomorphism ∂E : ∂(H0, λ0, α0) ∼= ∂(H1, λ1, α1) of the boundary refinements. It
is also clear that the boundary of an orthogonal sum of characteristic forms is the orthogonal
sum of the boundaries and that ∂(H,−λ, α) = −∂(H,λ, α).

We call a characteristic form (H, λ, α) nonsingular if λ is, i.e. if the adjoint λ̂ : H → H∗

is an isomorphism. Suppose that (H,λ, α) is a nonsingular characteristic form, H0 is some
primitive subgroup of H and H1 is the λ-orthogonal subspace to H0. Let αi ∈ H∗i be the
restrictions of α to Hi. Let λ1 be the restriction of λ to H1, and λ0 the restriction of −λ
to H0. In this case we say that (H0, λ0, α0) and (H1, λ1, α1) are orthogonal in (H, λ, α). For

the groups Gi = coker(λ̂i) of the boundaries of (Hi, λi, αi), the restriction maps H∗ → H∗i
and the isomorphism λ̂ : H ∼= H∗ give rise to homomorphisms H → H∗ → H∗i → Gi which
induce isomorphisms

Πi : H/(H0 ⊕H1) ∼= Gi.

Given (H0, λ0, α0) orthogonal to (H1, λ1, α1) in (H,λ, α), we thus have the canonical
isomorphism

Fλ := Π1 ◦ Π−1
0 : G0

∼= G1. (15)

(There is a slight asymmetry in the definition of orthogonal forms: If (H0, λ0, α0) is orthogonal
to (H1, λ1, α1) in (H,λ, α), then (H1, λ1, α1) is orthogonal to (H0, λ0, α0) in (H,−λ, α).
However, the isomorphisms Fλ : G0 → G1 and F−λ : G1 → G0 are precisely inverse to each
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other.) The following lemma is a routine calculation using (14) and the fact that (H,λ, α)
is nonsingular: see [7, Lemma 3.10] for the case where (Hi, λi, αi) are nondegenerate.

Lemma 2.21. Let (H0, λ0, α0) and (H1, λ1, α1) be orthogonal characteristic forms in the
nonsingular characteristic form (H,λ, α). If for i = 0, 1, (Gi, q

◦
i , pi) denotes the boundary

of (Hi, λi, αi), then the canonical isomorphism Fλ of (15) induces an isomorphism of the
boundaries:

F#
λ (q◦1, p1) = (q◦0, p0). �

As discussed in Section 2.2, if W is a 3-connected coboundary of a closed spin 7-manifold
M then (FH4(W,∂W ), λW , pW ) is a characteristic form. Note that the associated boundary
in B in the sense of Definition 2.19 is precisely the base of M , (H4(M), bM , pM ), where bM
the torsion linking form of M as described in (8). Hence we have the following

Lemma 2.22. The base of a spin 7-manifold M is the boundary base of the characteristic
form of any 3-connected coboundary W of M ; i.e.

(H4(M), bM , pM) = ∂(H4(W,∂W ), λW , pW ). �

Definition 2.23. The quadratic linking family q◦M of M is the family of quadratic re-
finements of (H4(M), bM , pM) defined by the characteristic form (FH4(W,∂W ), λW , pW ),
where W is any 3-connected coboundary W of M . Explicitly, applying (14) we obtain for
all h ∈ S2 that

qhM(x) =
−λW (x̄, x̄)− λW (αm, x̄)

2
,

where x̄ ∈ H4(W ) is a lift of x, αm = pW − 2m and m ∈ H4(W ) is a lift of h.
Moreover, if dπ = 0—in particular if M is a rational homology sphere—then we have the

preferred element 0 ∈ S2 = TH4(M) and qM := q0
M is the quadratic refinement of M .

If W0 and W1 are 3-connected coboundaries of M0 and M1 respectively and f : M0 →M1

is a homeomorphism, let X be the closed topological spin manifold (−W0) ∪f W1. Then
Lemma 2.4 and Remark 2.5 imply that the characteristic forms (FH4(W0,M0), λW0 , pW0)
and (FH4(W1,M1), λW1 , pW1) are orthogonal in (FH4(X), λX , pX) and also that the induced
isomorphism FλX : H4(M0)→ H4(M1) is precisely (f ∗)−1. Together with Lemma 2.21, this
implies that q◦M is independent of the choice of W and natural under homeomorphisms (in
the sense that (f ∗)#q◦M0

= q◦M1
for any homeomorphism f : M0 →M1).

Remark 2.24. If dπ = 0 then by [10, Definition 1.4 and Theorem 2.4], the function qM
can be defined analytically using the eta invariant of a Dirac operator on M , twisted by
appropriate quaternionic line bundles. This definition is intrinsic to M , in the sense that
no co-boundary is required. For an alternative intrinsic definition of q◦M in the case of
2-connected M , see Section 2.8 below.

Remark 2.25. The proof following Definition 2.23 that q◦M is a homeomorphism invariant
relies on Remark 2.1 and Lemma 2.2. It is simpler than the proof given in [7, Theorem 6.1]
which used the full apparatus of smoothing theory.
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Notice, however, that smoothing theory and Theorem 1.2 imply that every 2-connected
M with H2(M ;Z/2) 6= 0 admits exotic self-homeomorphisms; by which we mean homeo-
morphisms which are not isotopic to piecewise linear homeomorphisms. Self-homotopy
equivalences which are homotopic to exotic self-homeomorphisms were defined on certain
rational homotopy spheres in [10, §2.b], see [10, Lemma 2.17].

Remark 2.26. Given a section σ : G/T → G of the projection π : G→ G/T , the image of
σ is isomorphic to the free part of G, and there is a unique k(σ) ∈ Sdπ ∩ Im(σ). We can
therefore define the family of quadratic refinements as a function on the set of sections
Sec(π) of π so that q• : Sec(π) → Q(b), qσ := qeπk(σ). This presentation is relevant for
considering connected-sum splittings of M and is discussed further in Section 3.2.

2.5. Gauss refinements. We can associate a further boundary invariant to a characteristic
form which we refer to as a Gauss refinement of the family of quadratic refinements. Let
(G, b, p) ∈ B, i.e. G is a finitely generated abelian group, p ∈ 2G and b : T × T → Q/Z is a
torsion form. Let π : G→ G/T be the projection and define dπ to be the greatest integer
dividing π(p) if π(p) 6= 0 and set dπ := 0 if π(p) = 0. If dπ 6= 0, we define

Sdπ := {k ∈ G : p− dπk ∈ T}
and if dπ = 0 set Sdπ := T . Given k ∈ Sdπ write βk := p− dπk and note that T acts simply
transitively on Sdπ by addition. As in the introduction, we abbreviate dπ/2 as eπ.

Given (G, q◦, p) ∈ R, i.e. if q◦ is a family of quadratic refinements of (G, b, p), let us define

∆̃(k, t) ∈ Q/2d̃πZ by

∆̃(k, t) = 4dπq
eπk(t)− dπ(dπ+2) b(t, t) (16)

(note that if k ∈ Sdπ then eπk ∈ S2, so qeπk is a well-defined quadratic refinement of b).

Definition 2.27. Given (G, q◦, p) ∈ R, we call a function g : Sdπ → Q/ d̃π
4
Z a Gauss

refinement of q◦ if
g(k) = A(qeπk) mod Z (17a)

for all k ∈ Sdπ , and the transformation rule

g(k + t)− g(k) =
∆̃(k, t)

8
(17b)

holds for all k ∈ Sdπ and t ∈ T .

A Gauss refinement is completely determined by its value at any single k ∈ Sdπ , using
(17b). The difference between two Gauss refinements of the same family of quadratic

refinements is a constant, and by (17a) the constant takes values in Z/ d̃π
4
Z.

Now suppose that (H,λ, α) is a characteristic form. Given k ∈ Sdπ , pick n ∈ H∗ such
that j(n) = k, and set αn := α− dπn. Note that j(αn) = βk, and that αn ∈ R ∼= (H/K)∗ is
a characteristic element for the intersection form on H/K. Let

gH(k) :=
λ̄(αn, αn)− σ(λ)

8
∈ Q/ d̃π

4
Z. (18)

Lemma 2.28. gH is well-defined, independent of the choices of n.
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Proof. Replacing n by n′ := n+ λ̂(r) for some r ∈ H∗, so αn′ = αn − dπλ̂(r), changes the
value of gH(k) by

−2dπλ̄
(
αn, λ̂(r)

)
+ d2

πλ̄
(
λ̂(r), λ̂(r)

)

8
=
−dπ

4

(
〈r, αn〉 −

dπ
2
λ(r, r)

)
.

The last factor is an integer, and it is even when dπ is not divisible by 4 (i.e. when d̃π = 2dπ)
because αn is characteristic for λ. �
Lemma 2.29. gH is a Gauss refinement of q◦(H,λ,α).

Proof. First we check the condition (17a). The αn used in the definition of gH(k) co-incides
with the αm used in the definition of qeπk in (14). Since αn is characteristic for λ, Proposition
2.15 immediately gives (17a).

Next we check the transformation law (17b). Given k ∈ Sdπ and t ∈ T , pick n′ such that
j(n′) = k + t. Then αn′ − αn = −dπ(n′ − n), and j(n′−n) = t, so

λ̄(αn′ , αn′)− λ̄(αn, αn) = −2dπλ̄(αn, n
′−n) + d2

πλ̄(n′−n, n′−n)

= − 4dπ
λ̄(n′−n, n′−n) + λ̄(αn, n

′−n)

2
+ dπ(dπ + 2)λ̄(n′−n, n′−n)

= ∆̃(k, t) mod 2d̃π. �
An isomorphism F : G′ → G with F (p′) = p maps S ′dπ → Sdπ . If F#q◦ = q′◦ then we

have ∆(F (k), F (t)) = ∆′(k, t) for all k ∈ S ′dπ and t ∈ T ′, so if g : Sdπ → Q/ d̃π
4
Z is a Gauss

refinement of q◦ then
F#g := g ◦ F

is a Gauss refinement of q′◦.

Gauss refinements of orthogonal characteristic forms. We recall that if (H,λ, α) is non-
singular and H0 ⊂ H is primitive with orthogonal complement H1, then for the characteristic
forms (Hi, λi, αi) defined by restriction from (±λ, α), there is a canonical isomorphism
Fλ : ∂(H0, λ0, α0) ∼= ∂(H1, λ1, α1) of the associated refinements.

Lemma 2.30. Let (H0, λ0, α0) and (H1, λ1, α1) be orthogonal characteristic forms in the
nonsingular characteristic form (H, λ, α). The canonical isomorphism Fλ of (15) pulls back
gH1 to a Gauss refinement of the linking family q◦0 of (H0, λ0, α0), and

F#
λ gH1 − gH0 =

λ̄(α, α)− σ(λ)

8
mod d̃π

4
.

Proof. Note that since (H, λ) is nonsingular, (λ̂)−1 : H∗ ∼= H is an isomorphism from λ̄ to λ.

Also, we have homomorphisms H∗ → H∗i → Gi where we recall that Gi = coker(λ̂i). Pick a
k ∈ Sdπ(G0), and then pick n ∈ H∗ whose image in G0 equals k (the set-up means that the
image of n in G1 is Fλ(k)). Let ni be the image of n in H∗i , and set αni := αi − dπni ∈ Ri

as in the definition of gHi . Since σ(λ) = σ(λ1)− σ(λ0), it suffices to show that

λ̄(α, α) = λ̄1(αn1 , αn1)− λ̄0(αn0 , αn0) mod 2d̃π. (19)
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The image of α−dπn in H∗⊗Q can be written as a sum λ̂0(γ0)+λ̂1(γ1) where γi ∈ Hi⊗Q
and λ̂i(γi) = αni . Thus, since the hypothesis involves λ restricting to λ1 on H1 and −λ0

on H0,

λ̄(α, α) = λ1(γ1, γ1)− λ0(γ0, γ0) + 2dπλ̄(n, α− dπn) + d2
πλ̄(n, n)

= λ̄1(αn1 , αn1)− λ̄0(αn0 , αn0) mod 2d̃π;

that equality holds mod 4dπ when dπ is not divisible by 4 follows from α − dπn being a
characteristic element for λ. �
Remark 2.31. Let us call a characteristic form (H,λ, α) neutral if it is nonsingular and
λ(α, α) = σ(λ) and say that two characteristic forms are neutrally isomorphic if they
become isomorphic after addition of neutral forms (so this is a sharper condition than stable
isomorphism). Lemma 2.30 implies that Gauss refinements are invariant under neutral
isomorphism. The gluing and splitting arguments for characteristic forms reviewed in
Section 3.2, in particular Theorem 3.2, can be used to show that characteristic forms are
classified up to neutral isomorphism by their boundary distillations (G, q◦, g, p).

Linked functions. There is a certain redundancy in the definition of a Gauss refinement g,
in that the constraint (17a) on g mod Z forces the transformation rule (17b) to hold mod Z.
In the analysis of the action of automorphisms on Gauss refinements in §4, it will prove
convenient to replace (17b) with a condition that can be expressed purely in terms of the
base (G, b, p) rather than the refinement (G, q◦, p), but nevertheless implies (17b) when
(17a) is assumed.

We call a function g : Sdπ → Q/dπ
4
Z (b, p)-linked if for all k ∈ Sdπ and t ∈ T

g(k + t) = g(k) +
∆(k, t)

8
, (20)

where
∆(k, t) := −d2

πb(t, t) + 2dπb(βk, t) ∈ Q/2dπZ. (21)

Lemma 2.32. g : Sdπ → Q/2d̃πZ is a Gauss refinement of (G, q◦, p) if and only if (17a)
holds for some k ∈ Sdπ , and the mod 2dπ reduction of g is (b, p)-linked.

Proof. For qeπk to be a refinement of b with inhomogeneity βk implies from the definitions
that

2qeπk(t) = b(t, t) + b(βk, t) ∈ Q/Z,
which in turn gives

∆̃(k, t) = ∆(k, t) mod 2dπ.

Similarly, combining
qeπk(2t) = 2b(t, t) + b(βk, t) ∈ Q/Z

and
qeπk(−eπt) = −eπqeπk(t) +

(
eπ+1

2

)
b(t, t) ∈ Q/Z

gives that

∆̃(k, t) = −8qeπk(−eπt) mod 8.
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By the Chinese remainder theorem, these two constraints completely characterise ∆̃(k, t)

as an element of Q/2d̃πZ. Now observe that

A(qeπ(k+t)) = A(qeπk−eπt) = A(qeπk)− qeπk(−eπt) ∈ Q/Z

by 2.18(ii) and (11). Thus (17b) is equivalent to requiring that g(k) − A(qeπk) mod Z is
constant and that (20) holds. �
Remark 2.33. We could make an analogy with factors of automorphy of automorphic forms
and think of ∆ as a “term of automorphy”. For any linked functions to exist is clearly
equivalent to the cocycle condition

∆(k, s+ t) = ∆(k + s, t) + ∆(k, s), (22)

which can be checked directly from the definition in (20). The difference of two functions
with the same term of automorphy is invariant under the T action; since T acts transitively
on Sdπ that simply means that the difference between two (p, b)-linked functions is a constant
in Q/2dπZ.

2.6. The generalised Eells–Kuiper invariant. Let M be a spin 7-manifold and W

a 3-connected coboundary of M . Let gW : Sdπ → Q/ d̃π
4
Z be the Gauss refinement of

(H4(M), q◦M , pM ) defined by the characteristic form (FH4(W,∂W ), λW , pW ). Applying (18),
this means that for n ∈ H4(W ) such that j(n) ∈ Sdπ ⊆ H4(M),

gW (j(n)) =
λ̄W (αn, αn)− σ(λW )

8
=

(pW − dπn)2 − σ(W )

8
, (23)

as defined in (4) in the introduction. We pointed out before that if f : M0 →M1 is a spin
homeomorphism then X := (−W0)∪fW1 is a closed topological spin 8-manifold, Lemma 2.4
means that (FH4(W0,M0), λW0 , pW0) and (FH4(W1,M1), λW1 , pW1) are orthogonal in the
nonsingular form (FH4(X), λX , pX), and the induced isomorphism FλX : H4(M0)→ H4(M1)
is precisely (f ∗)−1. Hence Lemma 2.30 implies

gW1 − (f ∗)#gW0 =
p2
X − σ(X)

8
mod d̃π

4
Z. (24)

If f is a diffeomorphism then X is smooth, the RHS of (24) equals 28Â(X), and Â(X) is
an integer; this proves Lemma 1.7. Letting

d̂π := gcd
(
d̃π
4
, 28
)

(25)

as in the introduction, it follows that

µM : Sdπ → Q/d̂πZ,

µM := gW mod d̂π
(26)

is independent of the choice of W and natural under diffeomorphisms: If f : M0 →M1 is a
diffeomorphism then (f ∗)#µM0 = µM1 by (24). Now µM satisfies a transformation rule that
is a mod 28 reduction of (17b), and we say that this makes µM a mod 28 Gauss refinement
of q◦M .
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Definition 2.34. Given (G, q◦, p) ∈ R and a positive integer N , we call a function µ : Sdπ →
Q/ gcd( d̃π

4
, N)Z a mod N Gauss refinement of q◦ if

µ(k) = A(qeπk) mod Z
for all k ∈ Sdπ , and the transformation rule

µ(k + t)− µ(k) =
∆̃(k, t)

8
mod gcd( d̃π

4
, N)

holds for all k ∈ Sdπ and t ∈ T .

For N = 28 this transformation rule is equivalent to (1) stated in the introduction.
If W is not 3-connected, then (4) defines gW only on the subset Sdπ ∩ j(H4(W )) of Sdπ .

However, as long as that set is non-empty, this completely determines µM by the transfor-
mation rule, so the description of µM from the introduction is valid. This point can be seen
as a special case of Proposition 2.43 below.

Remark 2.35. Analogously to Remark 2.26, we can define Gauss refinements (and µM)
as functions of sections σ : G/T → G rather than on Sdπ , gW (σ) := gW (k(σ)). Then
gW (σ) = A(qσ) mod Z, and the transformation rule (20) can also be rewritten in these
terms.

Remark 2.36. Recall Remark 1.1 saying that if pM is torsion then Sdπ = T contains the
distinguished element 0 and 1

28
µM(0) ∈ Q/Z recovers the original Eells-Kuiper invariant

µ(M).
Although defined extrinsically using spin co-boundaries, the original Eells-Kuiper invariant

µ(M) was shown by Donnelly [15, Theorem 4.2] to have an intrinsic definition in terms of
the eta invariant of the Dirac operator of M . It would be interesting to find an intrinsic
definition of the generalised Eells-Kuiper invariant when pM 6= 0 ∈ H4(M ;Q).

For further information about the role of eta invariants in the classification of 7-manifolds,
we refer the reader to [18, §4].

Remark 2.37. In [7, §4.4], a pair of characteristic forms (H,λ, α) are called smoothly
equivalent if they become isomorphic after addition of nonsingular characteristic forms with
λ(α, α) ≡ σ(λ) mod 224 (so this is a weakening of the notion of neutral equivalence from
Remark 2.31). In algebraic terms, the definition of the generalised Eells-Kuiper invariant
can be used to show that the mod 28 distillation of M , (H4(M), q◦M , µM , pM ), is a complete
invariant of the smooth equivalence class of the characteristic form (FH4(W,∂W ), λW , pW )
of a 3-connected coboundary for M . Hence Theorem 1.3 is a development of the dimension
7 case of [7, Theorem 4.9], which classifies 2-connected 7-manifolds up to diffeomorphism
by the smooth equivalence class of the characteristic form of a 3-connected coboundary.

Remark 2.38. Let us conclude this subsection by considering how the information captured

by the function µM : Sdπ → Q/ d̃π
4
Z can in some special cases be presented more simply.

If pM is torsion or if the greatest divisor of pM is the same as dπ (the greatest divisor
modulo torsion), then Sdπ contains the distinguished element 0, and the function µM can

be naturally identified by the value µM(0) ∈ Q/ d̃π
4
Z.
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More generally, for any divisor c of dπ we can relate µM to functions defined on
Sc = {k ∈ G : pM − ck ∈ T}. Let us focus on the case when c is even—because that is
more subtle than when c is odd—and let c̃ = lcm(4, c). We can then define a function
ḡW : Sc → Q/ c̃

4
Z analogously to gW . If dπ = rc, then rSdπ is a non-empty subset of Sc. For

any k ∈ Sdπ , the mod c̃
4

reduction of gW (k) equals ḡW (rk).

Thus the mod c̃
4

reduction of gW is completely determined by ḡW . In particular, if we
take c = gcd(28, dπ), then ḡW determines µM . Meanwhile ḡW can sometimes be easier to
describe.

In particular, if c divides pM , then Sc contains 0, and the function ḡW can be naturally
identified with its value at 0. In fact more is true: ḡW must be constant, except when do
is an odd multiple of c and the parameter r from Theorem 1.10 is 0. That c divides pM
means that the image of pW in H4(W ;Zc) is contained in the image of H4(W,M ;Zc), and
thus has a well-defined square in H8(W,M ;Zc) ∼= Zc. The mod c̃

8
reduction of ḡW is always

constant, determined by

ḡW =
p2
W − σ(W )

8
mod c

8
.

One can attempt to compute ḡW itself in a similar way using the Pontrjagin square
℘(p̄) ∈ H8(W,M ;Z2c) of a pre-image p̄ ∈ H4(W,M ;Zc) of pW . This is independent of the
choice of p̄ if and only if ℘(∂x) = 0 for all x ∈ H3(M ;Zc). Because the suspension of the
Pontrjagin square is the Postnikov square, that is equivalent to requiring that, for j = ord2 c,
there are no 2j-torsion classes y ∈ H4(M) with 2jb(y, y) odd. Thus—in the terminology
of §4.1—if there are no split 2j-torsion elements in H4(M) then there is a well-defined
Pontrjagin square ℘(pW ) ∈ H8(W,M ;Z2c) ∼= Z2c, and ḡW is determined by

ḡW =
℘(pW )− σ(W )

8
mod c

4
.

(This is compatible with the claim above that ḡW could be non-constant if r = 0, because
Lemma 4.3 means that if H4(M) lacks certain split summands then r 6= 0.)

On the other hand, for any divisor c of dπ, ḡW is determined by its value at a single element
of Sc, so ḡW is completely determined by gW . Regardless of the possible convenience in
some special settings of considering divisors c other than dπ, using dπ captures the maximal
possible amount of information. For the purposes of studying the general classification theory
there is thus no advantage to considering anything other than gW and µM as functions
of Sdπ , and that is therefore what we do in the rest of the paper.

2.7. The computation of µM via spinc coboundaries. Inspired by calculations of
Kreck and Stolz for their s1 invariant [33], we derive an expression for µM in terms of
coboundaries that are not necessarily spin (never mind 3-connected) but just spinc.

For a principal spinc bundle we use the canonical homomorphisms Spinc(n) → SO(n)
and Spinc(n)→ U(1) to define an associated real vector bundle E together with a complex
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line bundle L such that c1(L) = w2(E) mod 2. We can then define the characteristic classes

z := c1(L),

p̂ := p(E ⊕ L),̂
p := p̂− z2.

So 2p̂ = p1(E ⊕ L) = p1(E) + z2 and 2
̂
p = p1(E) − z2. Recall that any U -bundle has a

natural spinc structure, defined as follows: if i : U(n) → SO(2n) is the natural inclusion
then the homomorphism i× det : U(n)→ SO(2n)× U(1) has a lift under the double cover
Spinc(2n)→ SO(2n)× U(1). If E is a complex vector bundle then the fundamental line
bundle L of the corresponding spinc bundle is L := detE.

Lemma 2.39.

(i)
̂
p and z2 form a basis for H4(BSpinc).

(ii)
̂
p(E) = −c2(E) for any complex bundle E.

(iii)
̂
p(E) = w4(E) mod 2 for any spinc bundle E.

Proof. Observe that Spinc/U ∼= Spin/SU is 5-connected, since Spin(6)/SU(3) ∼= S7 and
Spin(6) and SU(3) have the same homotopy groups as Spin and SU in degree ≤ 5. Letting
π : BU → BSpinc denote the classifying map for EU considered as a spinc-bundle, the maps
π∗ : H4(BSpinc)→ H4(BU) and π∗ : H2(BSpinc)→ H2(BU) are therefore isomorphisms
(with both Z and Z2 coefficients). Patently π∗z = c1.

We know that H4(BU) has basis {c2, c
2
1}. Because there is no 2-torsion, the equation

2π∗
̂
p = p1 − (π∗z)2 = (−2c2 + c2

1)− c2
1 implies π∗

̂
p = −c2, proving (i) and (ii).

The isomorphism on H4(−;Z2) implies that it suffices to check that (iii) holds when E is
complex. But that follows from (ii). �
Corollary 2.40. If X is a compact spinc 8-manifold then p̂X is characteristic for the
intersection form λX of X.

Proof. Lemma 2.39 gives
p̂ = w4 + w2

2 mod 2.

Wu’s formula implies that for any closed orientable manifold X the fourth Wu class is
v4(X) = w4(X) + w2(X)2, and by definition vn is characteristic for the intersection form
of a closed 2n-manifold. The compact case follows from the closed case, as in the proof of
Lemma 2.2(iii). �
Lemma 2.41. If X is a closed spinc 8-manifold then the Dirac operator of the fundamental
complex spinor bundle has

28 ind /D
+

=
p̂2
X − σ(X)

8
− 5z2p̂X

12
+
z4

4
. (27)

Proof. [34, Theorem D.15] expresses ind /D
+

as the integral of exp
(
z
2

)
Â(X), whose degree

8 part expands to

−4p2 + 7p2
1

27.45
− z2p1

24.8
+

z4

24.16
=

p2
1

27.7
− L

25.7
− z2p1

26.3
+

z4

27.3
.

Then substitute p1 = 2p̂− z2 to obtain (27). �
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Now suppose M is a spin 7-manifold and W a spinc coboundary, such that the restriction
of z ∈ H2(W ) to M is trivial. Then z has a pre-image z̄ ∈ H2(W,M), and z̄2 ∈ H4(W,M)
is independent of the choice of z̄.

Definition 2.42. Given k ∈ Sdπ , suppose there is n ∈ H4(W ) such that j(n) = k. Then
let α̂n := p̂W − dπn, and

gcW (k) :=
λ̄W (α̂n, α̂n)− σ(W )

8
− 5z̄2p̂W

12
+
z4

4
∈ Q/ d̃π

4
Z.

If z = 0 then of course gcW = gW . The proof that gcW (k) does not depend on the choice of
n is analogous to Lemma 2.28, using that α̂ is characteristic for intersection form λW .

Proposition 2.43. Let (W1, z1) be a spinc coboundary of M and j1 : H4(W1) → H4(M)
the natural homomorphism. Then

(i) gcW1
(k) = µM(k) mod 28 for all k ∈ Sdπ ∩ j1(H4(W1));

(ii) The defined values of gcW1
satisfy the transformation rule (17b), i.e.

gcW1
(k′) = gcW1

(k) +
∆̃(k, k′−k)

8

whenever k, k′ ∈ Sdπ ∩ j1(H4(W1)), where ∆̃ in (16) is defined in terms of q◦M and bM .

Proof. For part (i), let W0 be a 3-connected coboundary for M , and X := (−W0) ∪IdM W1.
Then X is a smooth spinc manifold, possibly with more than one choice of z ∈ H2(X)
restricting to z1 on W1 and 0 on W0. While we do not trouble ourselves with separating the
algebra from the topology in this case, we essentially adapt the proof of Lemma 2.30 to
show

gcW1
− gW0 =

p̂2
X − σ(X)

8
− 5z2p̂X

12
+
z4

4
mod d̃π

4
Z. (28)

Since the RHS equals 28 ind /D
+

by Lemma 2.41, while gW = µM mod gcd(28, d̃π
4

) by
definition, the result then follows.

Pick some n1 ∈ H4(W1) such that j1(n1) ∈ Sdπ as in Definition 2.42. As W0 is 3-connected,
there is some n ∈ H4(X) whose restriction to W1 equals n1. Then p̂X − dπn is a sum of

push-forwards of γi ∈ H4(Wi,M ;Q) and λ̂Wi
(γi) = α̂i. Meanwhile, note that regardless of

the choice of z, z2 ∈ H4(X) is the push-forward of z̄2
1 ∈ H4(W1,M). Hence

p̂2
X −

10z2p̂X
3

+ 2z4 = γ2
1 + γ2

0 + 2dπn(p̂X − dπn) + d2
πn

2 − 10

3
z̄2

1 p̂W1 + 2z4
1

= λ̄W1(α̂1, α̂1)− 10

3
z̄2

1 p̂W1 + 2z4
1 − λ̄W0(α̂0, α̂0) mod 2d̃π.

The fact that the equality holds mod 4dπ when dπ is not divisible by 4 is due to p̂X − dπn
being a characteristic element for the intersection form on X.

Part (ii) follows from (28) since gW0 satisfies (17b) and the RHS of (28) is constant. �
As a consequence of Proposition 2.43 (ii), we can extend gcW to a well-defined Gauss

refinement so long as Sdπ ∩ j(H4(W )) is non-empty. Hence the generalised Eells-Kuiper
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invariant µM can be computed in terms of any spinc coboundary W of M where the
intersection Sdπ ∩ j(H4(W )) is non-empty.

2.8. An intrinsic definition of q◦M . In this subsection we define Spin〈4, 2〉-structures on
spin manifolds and use them to give an intrinsic definition of the linking family q◦M for
2-connected M .

Recall from the proof of Lemma 2.2 that the mod 2 reduction of the universal spin class
ρ2(p) ∈ H4(BSpin;Z/2) is identified with the 4th Wu class of the universal bundle over
BSpin. We regard v4 as a map

v4 : BSpin→ K(Z/2, 4)

and define BSpin〈4, 2〉 to be the homotopy fibre of v4. By construction there is a map
γ〈4,2〉 : BSpin〈4, 2〉 → BSpin and a sequence of maps

K(Z/2, 3) −→ BSpin〈4, 2〉 γ〈4,2〉−−−−→ BSpin
v4−−→ K(Z/2, 4),

where both successive pairs of maps defines a fibration sequence. Let N be a spin manifold
and let νN : N → BSpin the classifying map for the stable normal bundle of N . A Spin〈4, 2〉-
structure on N is an vertical homotopy class of lift ν̄N : N → BSpin. In particular, there is
a commutative diagram

BSpin〈4, 2〉
γ〈4,2〉

��
N

νN //

ν̄
99

BSpin.

The diagram above ensures that ν̄ : N → BSpin〈4, 2〉 is canonically covered by a map of
stable vector bundles from the normal bundle of N to the pull-back of the universal bundle
over BSpin along γ〈4,2〉.

Lemma 2.44.

(i) Every spin 7-manifold M admits a Spin〈4, 2〉-structure.
(ii) The set of equivalence classes of Spin〈4, 2〉-structures on M is a torsor for H3(M ;Z/2).

(iii) The induced map γ〈4,2〉∗ : H4(BSpin)→ H4(BSpin〈4, 2〉) is isomorphic to ×2: Z→ Z.

Proof. By Lemma 2.2(i) we have ρ2(pM) = 0 and so Part (i) follows from the right-hand
fibration in the sequence of maps defining BSpin〈4, 2〉 above. Part (ii) and (iii) follow from
the left-hand fibration in the sequence of maps defining BSpin〈4, 2〉 above. �

For later use, we point out that Lemma 2.44(iii) shows that BSpin〈4, 2〉-manifolds (X, ν̄)
have a naturally defined characteristic class pν̄X ∈ H4(X) such that 2pν̄X = pX . For spin
7-manifolds M we set

S̄2 := {h ∈ G : pM = 2h} ⊂ S2

and then Lemma 2.44(ii) shows that every h ∈ S̄2 arises as pν̄ for some Spin〈4, 2〉-structure
ν̄ on M . Of course, S̄2 is a torsor for 2TH

4(M), the subgroup of 2-torsion elements of
TH4(M).
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In the usual way, we define the bordism groups of closed n-manifolds with Spin〈4, 2〉-
structure,

ΩSpin〈4,2〉
n = {[N, ν̄]},

where [N, ν̄] denotes the BSpin〈4, 2〉-bordism class of (N, ν̄).

Lemma 2.45. Ω
Spin〈4,2〉
7 = 0; i.e. every closed spin 7-manifold has a spin coboundary W

with pW even.

Proof. Consider a BSpin〈4, 2〉-manifold ν̄ : M → BSpin〈4, 2〉. Since the space BSpin〈4, 2〉
is 3-connected, surgery below the middle dimension as in by [31, Proposition] ensures
that we may replace (M, ν̄) in its BSpin〈4, 2〉-bordism class by a homotopy sphere with
Spin〈4, 2〉-structure (Σ, ν̄Σ). By Lemma 2.44(ii), Σ has a unique Spin〈4, 2〉-structure. By
[29, Theorem 3.1] Σ is stably parallelisable and and so its Spin〈4, 2〉-structure is induced
from a stably framing. By [29] Σ bounds a parallelisable manifold. Hence (Σ, ν̄Σ) bounds a

BSpin〈4, 2〉-manifold and so Ω
Spin〈4,2〉
7 = 0. �

Fix a Spin〈4, 2〉-structure ν̄ on M and recall the characteristic class pν̄M ∈ H4(M). For
2-connected M we show how to define a homogeneous quadratic form

qν̄ : TH4(M)→ Q/Z
using just (M, ν̄) and in particular no coboundary. Moreover this definition recovers the
quadratic form obtained by evaluating the quadratic linking family q◦M at h = pν̄M ∈ S̄2; i.e.
qν̄ = qp

ν̄
M . The idea is to repeat Wall’s definition of the quadratic refinement of the linking

form for (s−1)-connected (2s+1)-manifolds for s 6= 3, 7 from [50, §12A]. We assume the
reader is familiar with this definition, recalling only its essential features.

Following Wall we work with the dual group TH3(M), the torsion subgroup of H3(M).
For brevity, we write x̂ ∈ TH3(M) for the Poincaré dual of x ∈ TH4(M). Since M is
2-connected every element x̂ ∈ TH3(M) is represented by an embedding S3 ↪→M and since
every linear bundle over S3 is trivial, this extends to an embedding fx̂ : D4 × S3 ↪→M . To
compute the self-linking number bM (x, x) we need to push fx̂({0}×S3) off itself and this can
be achieved by taking a section s : S3 → S3 × S3 of the unit normal bundle S3 × S3 → S3.
Following Wall, we set X := M \ Int(fx̂(D

4 × S3)), note that M is obtained from X by
attaching a 4-handle and a 7-handle and let y1 := [s] ∈ H3(X) and y2 ∈ H3(X) be the
homology class of the meridian S3 × {∗}. For i : X → M the inclusion, y2 generates the
kernel of i∗ : H3(X)→ H3(M) and i∗(y1) = x has order r for some positive integer r. Hence
i∗(ry1) = 0 and so ry1 = λ(s)y2 for λ(s) ∈ Z. The homological definition of the linking form
gives

bM(x, x) =
λ(s)

r
.

Wall defined a refinement of bM by restricting the choice of section s, and hence the
possible integers λ(s) appearing in the description of bM above. To achieve a similar
restriction on the choice of sections in dimension 7 we use the Spin〈4, 2〉-structure ν̄ on
M . The codimension-0 submanifold fx̂(D

4 × S3) ⊂M inherits a Spin〈4, 2〉-structure from
(M, ν̄) and this induces a Spin〈4, 2〉-structure on S3 × S3, which we also denote by ν̄. By
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construction the universal bundle on BSpin〈4, 2〉 in Wu 4-oriented in the sense of Brown
[4, Definition 1.10]. Now for any closed 6-manifold Y with a Wu 4-orientation ν̄Y , Brown
[4, Corollary 1.11] defines a quadratic refinement, φν̄Y : H3(Y ;Z/2) → Z/2, of the mod
2-intersection form of Y . In particular, we have the quadratic refinement

φν̄ : H3(S3 × S3;Z/2)→ Z/2.
We then define qν̄ : TH4(M)→ Q/Z by the equation

qν̄(x) :=
λ(s)

2r
∈ Q/Z,

where we restrict to sections s : S3 → S3 × S3 such that φν̄(s∗(u)) = 0 for u ∈ H3(S3;Z/2)
the generator.

Lemma 2.46. qν̄ : TH4(M)→ Q/Z is well-defined and refines bM . Moreover qν̄ = qp
ν̄
M .

Proof. That qν̄ is a well-defined refinement of bM follows the proof of [50, Lemma 26], using
the fact that Brown’s form is a refinement of the mod 2 intersection for a 6-manifold.

To see qν̄ = qp
ν̄
M , we let (W, ν̄W ) be a BSpin〈4, 2〉-coboundary for (M, ν̄), which exists by

Lemma 2.45. As for spin coboundaries, we may assume that W is 3-connected and consider
the characteristic form (H4(W,∂W ), λW , pW ) of W . In the definition of qp

ν̄
M in (14), we

may take m = pν̄W so that αm = 0. Then for x ∈ TH4(M) and y ∈ H4(W ) with j(y) = x,
we have

qp
ν̄
M (x) =

−λ̄W (y, y)

2
, (29)

where we note that λW is even since ρ2(pW ) = 0. But in the proof of [50, Theorem 8] Wall
identifies his topologically defined refinement with the algebraically defined refinement
appearing in (29). It follows that Wall’s arguments in the proof of [50, Theorem 8] can be
repeated to show that qν̄ = qp

ν̄
M . �

Remark 2.47. Using Lemma 2.46 we can define qh intrinsically on 2-connected M for every
h ∈ S̄2 ⊂ S2 and then use the transformation rule of Definition 2.18(ii) to determine q◦M .
For example, if H4(M) is torsion then for each Spin〈4, 2〉-structure ν̄ on M we have

qM = q0
M = qν̄pν̄ .

3. The classification of 2-connected 7-manifolds

In this section we classify closed smooth spin 2-connected 7-manifolds M up to dif-
feomorphism. Recall that a homotopy 7-sphere Σ is a spin manifold which is homotopy
equivalent to S7. In Section 3.1 we recall that an almost diffeomorphism f : M0 u M1

defines a diffeomorphism f : M0]Σ ∼= M1, for some Σ. In Section 3.2 we relate the algebra
of Section 2 to the algebra used in [7] and so give the almost diffeomorphism classification
of 2-connected M in terms of their refinements (H4(M), q◦M , pM).

With the almost diffeomorphism classification in hand, we consider the inertia group of M ,
which is the group of homotopy spheres Σ such that M]Σ ∼= M . In Section 3.4 we establish
basic facts relating the inertia group of M , the reactivity of M and certain mapping class
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groups of M . We also construct an important family of almost diffeomorphisms f : M uM
in Proposition 3.10. The almost diffeomorphisms of Proposition 3.10 allow us to show that
the generalised Eells-Kuiper invariant of M , µM , precisely measures the gap between the
almost diffeomorphism classification and the diffeomorphism classification. In Section 3.5
we prove that the mod 28 distillation of M , (H4(M), q◦M , µM , pM), is a complete invariant
of diffeomorphisms.

3.1. Almost diffeomorphisms. In this subsection we briefly review the almost smooth
spin category in dimension 7. An almost diffeomorphism f : M0 uM1 is a homeomorphism
which is smooth except perhaps at a finite set of singular points {m0, . . . ,ma} ⊂M0. Notice
that we do not require f to be non-smooth at mi, but we rather allow it. The composition
of almost diffeomorphisms is again an almost diffeomorphism and so almost diffeomorphism
defines an equivalence relation on smooth spin 7-manifolds.

Let f : M0 uM1 be an almost diffeomorphism with singular set {m0, . . . ,ma}. We shall
associate a homotopy 7-sphere to each singular point mi. For i = 0, . . . , a, let D7

i 3 mi be
a small disc containing mi and disjoint from D7

j if i 6= j. The manifold f(D7
i ) ⊂ M1 is a

co-dimension zero submanifold of M1 and so inherits a smooth structure from M1 such that

f̂i := f |D7
i−{mi} : D

7
i − {mi} ∼= f(D7

i − {mi})

is a diffeomorphism. We can therefore define the smooth homotopy 7-sphere

Σi := D7
i ∪f̂i (−f(D7

i ))

by gluing D7
i and −f(D7

i ) together along f̂i
We set Σf := Σ0]Σ1] . . . ]Σa. If D7 ⊂ M0 contains the singular points of f in its

interior, then by [7, Proposition 2.1] there is a diffeomorphism f ′ : M0]Σf →M1 such that
f ′|M0−D7 = f |M0−D7 . It follows that M0 is almost diffeomorphic to M1 if and only if there
is a homotopy sphere Σ and a diffeomorphism M0]Σ ∼= M1.

Before defining pseudo-isotopy for almost diffeomorphisms with one singular point we
recall the definition for diffeomorphisms. Let Diff(M) be the group of diffeomorphisms
of M . A pseudo-isotopy between f0, f1 ∈ Diff(M) is a diffeomorphism F : M × I ∼= M × I
which restricts to fi on M × {i}. We define

π̃0Diff(M) := {[f : M ∼= M ]},

the group of the pseudo-isotopy classes of diffeomorphisms of M .
For m0 ∈ M , let ADiff(M,m0) be the group of almost diffeomorphisms of M with

singular point m0. A pseudo-isotopy between f0, f1 ∈ ADiff(M,m0) is a homeomorphism
F : M×I →M×I with F |M0×{i} = fi and which is smooth, except possibly along {m0}×I.
We define

π̃0ADiff(M,m0) := {[f : M uM ]},
the group of pseudo-isotopy classes of almost diffeomorphisms of M with singular point m0.
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3.2. The almost diffeomorphism classification. In this subsection we show how Theo-
rem 1.2 follows from the classification results of [7]. The almost diffeomorphism classification
given in [7] used a different but closely related definition of a quadratic linking family.
We begin by explaining the relationship between the two definitions of linking family and
showing that Theorem 1.2 is equivalent to [7, Theorem B]. We then describe the main ideas
of the proof of [7, Theorem B] and interpret linking families in terms of connected sum
splittings. Throughout this subsection M is 2-connected and we have the global notation
G = H4(M) with torsion subgroup T ⊆ G and free quotient F = G/T .

Let us start with some elementary algebra for the group G. Let ι : T → G be the inclusion
and π : G → F be the canonical projection. We let Sec(π) := {σ : F → G} be the set of
sections of π : G→ F and we let Proj(ι) := {τ : G→ T} be the set of projections over ι;
i.e. τ ◦ ι = IdT . The sets Sec(π) and Proj(ι) are in bijection by mapping σ 7→ τσ, where
Im(σ) = ker(τσ). Both sets admit simple transitive actions of hom(F, T ) via addition of
functions. For φ ∈ hom(F, T ), f ∈ F and g ∈ G we have

(σ + φ)(f) = σ(f) + φ(f) and (τ + φ)(g) = τ(g) + φ(π(g)).

Notice that τσ+φ = τσ − φ.

Remark. The action of hom(F, T ) on Sec(π) used above differs by a sign from the corre-
sponding action in [7, p. 39].

Let (G, b, p) be a base so that b is a torsion form on T and p ∈ 2G. Recall that Q(b) is
the set of refinements of b and given q ∈ Q(b), let us write β(q) for the homogeneity defect
of q: see Section 2.3. In [7, Definition 2.39] a quadratic linking family on a base (G, b, p)
was defined as a function

q• : Sec(π)→ Q(b)

such that for all σ ∈ Sec(π) and for all φ ∈ hom(G, T ),

qσ+φ = qσ−φ(π(p)/2) and β(qσ) = τσ(p).

We explain the topological significance of these conditions below, focussing for now on the
algebra.

In this paper we work with linking families which are functions on S2 and we now explain
how to pass between linking families defined on S2 and linking families defined on Sec(π).
Given a section σ ∈ Sec(π) there is a unique element k(σ) := σ(π(p)/dπ) of Sdπ which lies
in Im(σ) and so we obtain the function

Sec(π)→ Sdπ , σ 7→ k(σ) ∈ Im(σ) ∩ Sdπ .
Now multiplication by eπ = dπ

2
gives a map Sdπ → S2 and we set Ŝ2 := eπSdπ ⊂ S2. Given

a refinement q◦ : S2 → Q(b) we define

q• : Sec(π)→ Q(b), qσ := qeπk(σ). (30a)

Conversely, given q• : Sec(π)→ Q(b) we define

q◦ : Ŝ2 → Q(b), qeπk(σ) := qσ (30b)
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and extend q◦ to all of S2 by the transformation rule of Definition 2.18 (ii). The trans-
formation rules for q• and q◦ ensure that they are determined by their value on a sin-
gle section or element of S2. Moreover, these transformation rules are compatible since
k(σ + φ) = k(σ) + φ(π(p)/dπ), qσ+φ = qσ−φ(π(p)/2) and

qeπk(σ+φ) = qeπ(k(σ)+φ(π(p)/dπ)) = qeπk(σ)+φ(π(p)/2) = q
eπk(σ)
−φ(π(p)/2).

Hence we have

Lemma 3.1. The mappings q◦ 7→ q• and q• 7→ q◦ of (30a) and (30b) define inverse
equivalences of categories between linking families defined on S2 and linking families defined
on Sec(π). �

Proof of Theorem 1.2. Let M be 2-connected, q◦M the linking family of M as defined in
Definition 2.23 and −q•M the linking family of M as defined in [7, Definition 2.39] (we
have introduced the sign to correct the mistake in [7, Definition 2.50]: see Remark 2.10.)
Comparing these definitions, we see that for each σ ∈ Sec(π)

q
eπk(σ)
M = qσM . (31)

Now [7, Theorem B] states that all linking families defined on Sec(π) arise as the quadratic
linking families of 2-connected M and that any isomorphism of linking families defined on
Sec(π) is realised by an almost diffeomorphism. Hence Theorem 1.2 follows by combining
[7, Theorem B], (31) and Lemma 3.1. �

We now explain the proof of [7, Theorem B]. Recall that every 2-connected M is the
boundary of a 3-connected W and that the characteristic form of W , (H4(W,∂W ), λW , αW ),
is a complete invariant of 3-connected W under diffeomorphisms by [48]; see [7, Corollary 2.5].
Let \ denote the boundary connected sum of manifolds with boundary. A foundational
theorem of Wilkens [52, Theorem 3.2] (see also [7, Theorem 2.24]) states that for any
diffeomorphism f : ∂W0

∼= ∂W1, there are W2 and W3 with ∂W2 = ∂W3 = S7 and a
diffeomorphism

g : W0\W2
∼= W1\W3

extending f . The boundary of W is a homotopy sphere, if and only if (H4(W,∂W ), λW , αW )
is nonsingular. Hence we say that two characteristic forms are stably isomorphic if they
become isomorphic after addition of nonsingular characteristic forms. The above dis-
cussion shows that classifying 2-connected 7-manifolds up to almost diffeomorphism is
equivalent to classifying characteristic forms up to stable isomorphism. This was achieved
in [7, Theorem 3.4] by extending ideas of Wall [51, Theorem p. 156] from the setting
of even forms to the setting of characteristic forms. The point is that an isomorphism
F : ∂(H0, λ0, α0) ∼= ∂(H1, λ1, α1) of the boundaries of characteristic forms can be used to
glue them together to obtain a nonsingular characteristic form

(H0,−λ0, α0) ∪F (H1, λ1, α1).
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It is then possible to explicitly write down an isomorphism of characteristic forms

E : (H0, λ0, α0)⊕
(
(H0,−λ0, α0) ∪F (H1, λ1, α1)

)
→

(H1, λ1, α1)⊕
(
(H0,−λ0, α0) ∪Id (H0, λ0, α0)

)
,

such that ∂E = F . Combined with Lemma 2.21, these methods give the following theorem,
which is a refinement of a special case of [7, Theorem 3.4].

Theorem 3.2 (cf. [7, Theorem 3.4]). For i = 0, 1, let (Hi, λi, αi) be two characteristic
forms. The following are equivalent:

(i) There is an isomorphism of refinements F : ∂(H0, λ0, α0) ∼= ∂(H1, λ1, α1);
(ii) There are nonsingular characteristic forms (Hj, λj, αj), j = 2, 3, and an isomorphism

E : (H0, λ0, α0)⊕ (H2, λ2, α2) ∼= (H1, λ1, α1)⊕ (H3, λ3, α3)

such that ∂E = F ;
(iii) There is a nonsingular characteristic form (H,λ, α) containing (H0,−λ0, α0) and

(H1, λ1, α1) as orthogonal summands.

In addition, there is a canonical isomorphism Fλ = F : ∂(H0, λ0, α0) ∼= ∂(H1, λ1, α1) in
case (iii).

Remark. By Lemma 3.1 the statement of Theorem 3.2 and the discussion before it applies
equally well to linking families defined over Sec(π) and linking families defined over S2.

Proof of Theorem 3.2. This follows from [7, Lemma 3.12] and the proof of [7, Theorem 3.4].
�

We now explain how the linking family q◦M of M parametrises connected sum decom-
positions of M into a summand with torsion-free homology and a summand which is a
rational homotopy sphere. By Theorem 1.2, 2-connected rational homotopy spheres M with
torsion linking form (T, b) are classified up to almost diffeomorphism by their quadratic
refinements q0

M ∈ Q(b). We shall write M(q) for any rational homotopy sphere with linking
form isomorphic to q. The simplest examples of 2-connected M with H4(M) torsion-free
are given in the following

Definition 3.3. Let F ∼= Zb be a free abelian group of rank b and dπ be an even integer.
We define the 2-connected 7-manifold

M(F, dπ) := ]b(S
3×̃dπS4),

where S3×̃dπS4 is the total space of the S3-bundle over S4 with trivial Euler class and first
Pontrjagin class equal to 2dπ times the the preferred generator of H4(S4) and ]b denotes
the b-fold connected sum of a manifold with itself. The base of M(F, dπ) is identified with
(Zb, 0, (dπ, . . . , dπ)).

We define an almost splitting of M to be an almost diffeomorphism with a singular point
m0 ∈M

f : M uM(qf )]M(F, dπ),
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where qf is some quadratic refinement of bM and f0(m0) ∈M(qf). Two almost splittings
f0 and f1 are called H∗-equivalent if there is an almost diffeomorphism g ∈ ADiff(M,m0)
with g(m0) = m0 and H∗(g) = Id, an almost diffeomorphism gT : M(qf0) u M(qf1)
with singular point f0(m0) and a diffeomorphism gF : M(F, dπ) ∼= M(F, dπ) such that
gT (f0(m0)) = f1(m0) and the following diagram commutes up to pseudo-isotopy:

M

g

��

f0 // M(qf0)]M(F, dπ)

gT ]gF
��

M
f1 // M(qf1)]M(F, dπ)

We define ASplit(M) := {[f ] : f an almost splitting of M} to be the set of H∗-equivalence
classes of almost splittings of M and note that there is a well-defined map

ASplit(M) 7→ Sec(π), [f ] 7→ σ(f),

where Im(σ(f)) = f ∗
(
H4(M(F, dπ))

)
. The following theorem is implicit in [7, Definition 2.50].

Theorem 3.4. Let M have linking family q•M : Sec(π)→ Q(b). For each σ ∈ Sec(π) there
is a unique H∗-equivalence class of almost splitting

fσ : M uM(qσM)]M(F, dπ).

Consequently the map ASplit(M)→ Sec(π) is a bijection.

Proof. Let W be a 3-connected coboundary of M with characteristic form (H,λ, α) =
(H4(W,∂W ), λW , αW ). We recall from the definition of the linking family defined by W
in (14), that there are orthogonal splittings of (H, λ, α)

ψ : (H, λ, α) ∼= (R, λR, αψ)⊕ (F, 0, α|F ),

where (R, λR, αψ) is nondegenerate. For every such splitting ψ, the classification of 3-
connected coboundaries (see [7, Corollary 2.5]) implies that there is a corresponding
boundary connected sum splitting gψ : W ∼= Wψ\WF . In addition, there is a corresponding
section σ = σ(ψ) ∈ Sec(π) where Im(σ) = j(H4(Wf)), for j the natural homomorphism
H4(W,M)→ H4(M). By definition, (cf. [7, Definition 2.50]),

qσM = ∂(R, λR, αψ),

and we define fσ : M ∼= M(qσM )]M(F, dπ) to be the diffeomorphism on the boundary induced
by the the splitting gψ. This shows that ASplit(M)→ Sec(π) is onto.

Suppose that f0 and f1 are two splittings of M defining the same section σ. Then the
H∗-equivalence class of fi is determined by the almost diffeomorphism type of M(qfi).

Now the Poincaré dual of Im(σ) is a finitely generate free abelian group F̂ ⊂ H3(M). We

choose a basis {x1, . . . , xb} for F̂ and this is represented by a set of disjoint embeddings
φ : tbi=1 : D4×S3 ⊂M . We let Mφ be the outcome of surgery on φ. Clearly there are choices
φ0 and φ1 for φ so that Mφi uM(qfi). We claim that the almost diffeomorphism type of Mφ

is independent of the choice of φ and this implies that σ : ASplit(M)→ Sec(π) in injective.
To prove the claim, let Wφ be the trace of surgeries on φ and let W1 := W ∪M Wφ be the

union of Wφ and our original 3-connected coboundary. By construction, we see that there
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is a fixed ασ ∈ R∗ such that the characteristic form of W1 is isomorphic to the orthogonal
sum (R, λR, ασ)⊕ (H1, λ1, α1) where (H1, λ1, α1) is nonsingular. It follows that the almost
diffeomorphism type of Mφ is well-defined. �

We conclude this subsection by identifying a simpler complete almost diffeomorphism
invariant of 2-connected M . Recall that the quadratic refinements q ∈ Q(b) of a torsion
form (b, T ) are classified by their homogeneity defect β ∈ 2T and Arf invariant A(q) ∈ Q/Z.
For a refinement (G, q◦, p) with torsion form (b, T ), βh = p− 2h is the homogeneity defect
of qh and Aut(b), the group of automorphisms of b, acts on Q(b), the set of refinements
of b. We define the almost smooth splitting set of M to be the set

Q̄as(M) := {
(
[βh], A(qh)

)
: h ∈ S2} ⊂

(
2TH4(M)/Aut(b)

)
×Q/Z.

The following classification theorem is a direct corollary of Theorem 3.4 and (31).

Corollary 3.5. Let F : (H4(M1), bM1 , pM1) → (H4(M0), bM0 , pM0) be an isomorphism of
the bases of M0 and M1. The following are equivalent:

(i) M0 is almost diffeomorphic to M1;
(ii) (F# × Id)(Q̄as(M0)) = Q̄as(M1);

(iii) (F# × Id)(Q̄as(M0)) ∩ Q̄as(M1) 6= ∅. �

3.3. The homotopy classification. In [7, §6] 2-connected M were classified up to homo-
topy equivalence using J-quadratic linking families, as we now review. For a torsion form
(b, T ), QJ(b) ⊂ 2Q(b) was defined to be the set of subsets of Q(b) of the form

S(q) := {q12t : t ∈ T}.

Notice that for q0, q1 ∈ S(q), β(q0)−β(q1) ∈ 24T and so S(q) has a well-defined homogeneity
defect β(S(q)) ∈ T ⊗ Z/24. For a group G, recall that T ⊆ G is the torsion subgroup,
π : G → F = G/T is the map to the torsion-free quotient of G, σ : F → G denotes a
section of π and τσ : G → T denotes the projection defined by σ. A J-quadratic linking
family was defined to be a triple (G, q•J , ρ24(p)), where ρ24(p) ∈ G ⊗ Z/24 is an even
element and q◦J : Sec(π) → QJ(b) is a function such that for all φ ∈ Hom(F, T ) we have

qσ+φ
J = (qσJ )−φ(π(p)) and β(qσJ ) = (τσ ⊗ Id)(ρ24(p)). The J-quadratic linking family of M ,

written (H4(M), q•J,M , ρ24(pM)) is induced from its quadratic linking family in the obvious
way.

We now up-date the notion of a J-quadratic linking family to that of a J-refinement.
Recall from Section 1.3 that ρ12 : Q → JQ(b) is the quotient map which identifies quadratic
refinements q ' q12t and that a J-refinement of a base (G, b, p) is a triple (G, Jq◦, ρ24(p))
where Jq◦ : S2 → JQ(b) is a function satisfying Jqh+t = (Jqj)−t and ρ24(βh) = ρ24(p− 2h).
The J-refinement of M is the triple (H4(M), ρ12 ◦ q◦M , ρ24(pM)).

Given a J-refinement (G, Jq◦, ρ24(p)) we define the corresponding J-quadratic linking
family by setting

q• : Sec(π)→ QJ(b), qσJ := Jqeπk(σ) (32a)
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and given the function q• : Sec(π)→ QJ(b) of a J-quadratic linking family we define the
corresponding J-refinement by setting

q◦ : Ŝ2 → Q(b), qeπk(σ) := qσ (32b)

and we then extend the definition of Jq◦ to all of S2 using the transformation rule for
J-refinements. The correspondence between quadratic linking functions define on Sec(π)
and on S2 identified in Lemma 3.1 is easily modified to give

Lemma 3.6. The mappings Jq◦ 7→ q•J and q•J 7→ Jq◦ of (32a) and (32b) define inverse
equivalences of categories between J-refinements defined on S2 and J-quadratic linking
families defined on Sec(π). �

Proof of Theorem 1.6. Let (G, Jq◦, ρ24(p)) be a J-refinement. The transformation rule for
J-refinements ensures that a J-refinement is determined by [qh] for any h ∈ S2. Since
Q(b) → Q12(b) is onto, it follows that every J-refinement (G, [q◦], ρ24(p)) is the mod 24
reduction of a refinement (G, q◦, p). Theorem 1.2 then entails that every J-refinement is
realised as (H4(M), ρ12 ◦ q◦M , ρ24(pM), for a 2-connected M .

If F : (H4(M1), bM1 , pM1) → (H4(M0), bM0 , pM0) is an isomorphism of bases where M0

and M1 are 2-connected, then by [7, Theorem 6.11], F = f ∗ for a homotopy equivalence
f : M0 → M1 if and only if (q•J,M0

, ρ24(pM0)) = F ](q•J,M1
, ρ24(pM1)) and Lemma 3.6, this is

happens if and only if (Jq◦M0
, ρ24(pM0)) = F ](Jq◦M1

, ρ24(pM1)). �

3.4. Inertia and reactivity in more detail. Recall that I(M), the inertia group of M ,
is the subgroup of the group of homotopy spheres Σ ∈ Θ7 such that M]Σ ∼= M , and that

IH(M) ⊆ I(M),

is the subgroup of homotopy spheres Σ for which there is a diffeomorphism f : M]Σ ∼= M
such that H∗(f) = Id, where we regard M]Σ and M as the same topological space.

One might expect that a complete understanding of I(M) is needed to pass from the
almost diffeomorphism classification of 2-connected 7-manifolds to the diffeomorphism
classification, but it turns that that a lower bound on the order of IH(M) suffices. The main
result of this subsection, Proposition 3.10, establishes this required lower bound on IH(M)
for 2-connected M : see Remark 3.11. In general, computing I (M) is a delicate problem
which we take up for 2-connected M in Section 4. We begin this section by relating the
groups IH(M) and I(M) to certain mapping class groups of M .

Given an almost diffeomorphism f ∈ ADiff(M,m0), we consider the problem of deciding
whether f is pseudo-isotopic to a diffeomorphism. From Section 3.1 we recall the homotopy
sphere Σ0 which measures the singularity of f at m0. From the definition of pseudo-isotopy
in Section 3.1 we see that the diffeomorphism class of the homotopy sphere

Σf := Σ0

is invariant under pseudo-isotopies. Moreover, it is clear that f defines a diffeomorphism

f : M]Σf
∼= M, (33)
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and that Σf◦g = Σf ]Σg. Further, an application of the Alexander trick—see Rourke and
Sanderson [44, Proposition 3.22]—shows that f is pseudo-isotopic to a diffeomorphism if
and only if Σf

∼= S7. It follows that there is a singularity homomorphism,

∂ : π̃0ADiff(M,m0)→ Θ7, [f ] 7→ Σf ,

with kernel isomorphic to the image of π̃0Diff(M) in π̃0ADiff(M,m0). We define the subgroup
π̃0ADiffH(M,m0) ⊆ π̃0ADiff(M,m0) of pseudo-isotopy classes inducing the identity on
H∗(M) and define the singularity homomorphism ∂H : π̃0ADiffH(M,m0)→ Θ7 to be the
restriction of ∂. From (33) we see that

IH(M) = Im(∂H) and I(M) = Im(∂). (34)

Given f ∈ ADiff(M,m0) we now show how to determine Σf ∈ Θ7 using the mapping
torus of f , Tf , which is the almost smooth manifold constructed from the cylinder M × I
by using f to identify points at either end:

Tf := (M × [0, 1])/(m, 0) ∼ (f(m), 1)

Since f is an almost diffeomorphism, the closed 8-manifold Tf admits a smooth structure
except perhaps at the point m0 = [m0, 0] corresponding to the singular point of f . Indeed
if B8

0 3 mi is a small open ball containing m0, then

Wf := Tf −B8
0 (35)

is a compact smooth manifold with boundary

∂Wf
∼= Σf .

We choose a spin structure on Tf and denote the corresponding 8-dimensional almost
smooth spin manifold by Tf also: no confusion shall arise since we are interested only in
the characteristic number

p2(f) := 〈p2
Tf
, [Tf ]〉 ∈ Z,

which depends only on the oriented almost diffeomorphism type of Tf since 2pTf = p1(Tf )
and H8(Tf) ∼= Z (in fact pTf is independent of the choice of spin structure by [5, p. 170]).
It follows that p2(f) is an invariant of the pseudo-isotopy class of f . For the statement of
the next lemma, we recall the renormalised Eells-Kuiper invariant of a homotopy sphere Σ,
µ(Σ) ∈ Z/28, defined in (3). By [16, (13)], µ(Σ1) = µ(Σ2) if and only if Σ1

∼= Σ2.

Lemma 3.7. For every almost diffeomorphism f ∈ ADiff(M,m0) the following hold:

(i) p2(f) ∈ 8Z,

(ii) µ(Σf ) = p2(f)
8
∈ Z/28,

(iii) f is pseudo-isotopic to a diffeomorphism if and only if p2(f) ∈ 224Z.

Proof. (i) This follows since by Lemma 2.2(iii), pTf is characteristic for the intersection
form of Tf . Hence by [41, Lemma 5.2, §5], p2(f) ≡ σ(Tf ) mod 8. But by Novikov additivity,
the signature of Tf is zero.
(ii) This follows since Wf defined in (35) above is a smooth spin coboundary for Σf and so
can be used to compute µ(Σf ). Since σ(Wf ) = σ(Tf ) = 0, applying (3) gives the result.
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(iii) The almost diffeomorphism f is pseudo-isotopic to a diffeomorphism if and only if
Σf
∼= S7. Hence (iii) follows directly from (ii). �

In the light of Lemma 3.7, we define the function

p2 : π̃0ADiff(M,m0)→ Z, [f ] 7→ p2(f).

Since the image of p2 plays a key role, we define non-negative integers called the reactivity
of M , R(M), and the (co)homologically fixed reactivity of M , RH(M), by the following
equations

p2(π̃0ADiff(M,m0)) = R(M)Z and p2(π̃0ADiffH(M,m0)) = RH(M)Z.

By Lemma 3.7 (i), R(M) and RH(M) are both divisible by 8. By Lemma 3.7 (ii) and the
definition of reactivity we have

Proposition 3.8.

(i) I(M) = R(M)
8

Θ7,

(ii) IH(M) = RH(M)
8

Θ7. �

For other problems, for example counting the number of deformation equivalence classes
of G2-structures on M as in [11], it important to know the value of p2 for diffeomorphisms.
Hence we defined the smooth reactivity of M , RDiff(M), and the smooth (co)homologically
fixed reactivity of M , RDiff

H (M) by the equations

p2(π̃0Diff(M)) = RDiff(M)Z and p2(π̃0DiffH(M)) = RDiff
H (M)Z,

where π̃0DiffH(M) ⊆ π̃0Diff(M) is the subgroup of pseudo-isotopy classes acting trivially
on H∗(M). By Lemma 3.7 (iii) we have

Lemma 3.9.

(i) RDiff(M) = lcm(R(M), 224),
(ii) RDiff

H (M) = lcm(RH(M), 224). �

We next construct almost diffeomorphisms f ∈ADiff(M,m0) on 2-connected M with

p2(f) 6= 0. Recall that dπ is the divisibility of π(pM ) ∈ H4(M)/TH4(M) and d̃π = lcm(4, dπ).

Proposition 3.10. If M is 2-connected then RH(M)|2d̃π; i.e. 2d̃πZ ⊆ p2(π̃0ADiffH(M,m0)).

Remark 3.11. If M is 2-connected, Propositions 3.8 and 3.10 together give d̃π
4

Θ7 ⊆ IH(M).

In Corollary 4.17 (ii) below we will show that RH(M) = 2d̃π and hence d̃π
4

Θ7 = IH(M).

For the proof of Proposition 3.10 it will be useful to compute the characteristic number
p2(Tf) using a co-bounding spin 8-manifold W . We define the closed almost smooth
8-manifold

Xf := (−W ) ∪f W.
Lemma 3.12. With the notation above, p2(f) = 〈p2

Xf
, [Xf ]〉.
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Proof. Since p2(f) = 〈p2
Tf
, [Tf ]〉 and 〈p2

Xf
, [Xf ]〉 are characteristic numbers, if suffices to

prove that Tf is oriented bordant to Xf . Consider the manifolds M × I and W t −W .
Both have boundary −M tM , Tf is formed from M × I by gluing −M to M via f and
Xf if formed from −W tW by gluing −M to M via f . It therefore suffices to prove that
−W tW is bordant relative to the boundary to M × I. But the manifold W × I is a
rel. boundary bordism from −W tW to M × I, and we are done. �
Proof of Proposition 3.10. We assume dπ 6= 0, since otherwise there is nothing to prove.
By Theorem 3.4 or by [53, Theorem 1], we may decompose M as a connected sum of spin
manifolds

M ∼= M0]M1

where M0 = M(Z, dπ) = S3×̃dπS4 is the total space of a 3-sphere bundle over S4 from
Definition 3.3. We shall produce the required almost diffeomorphisms on the manifold M0

and then extend by the identity to M . Let

M•
0 := M0 − Int(D7)

be M0 minus a small open disc. Since M0 is the total space of an S3-bundle over S4, there
is a diffeomorphism

M•
0
∼= (D3×̃dπS4) ∪S2×D4 (D3 ×D4),

whereD3×̃dπS4 is a tubular neighbourhood of a section ofM0 → S4 andD3×D4 is a 3-handle
added to D3×̃dπS4 along the tubular neighbourhood of a fibre 2-sphere, S2×D4 ⊂ S2×̃dπS4.

By [48, p. 171 (2)] we may identify π3(SO(4)) as the group of pairs of integers (n, p) where
n ≡ p mod 2, so that the corresponding S3-bundle over S4 has Euler class n ∈ H4(S4) = Z
and first Pontrjagin class 2p. Let γn,p : (D3, S2) → (SO(4), Id) be a smooth function
representing (n, p). We define a diffeomorphism

f •n,p : M•
0
∼= M•

0

where f •n,p|D3×̃αS4 is the identity and on the 3-handle we use the D3 co-ordinate to twist

the D4-coordinate using γn,p. To be explicit:

f •n,p|D3×D4(u, v) = (u, γn,p(u)(v)).

We observe that there is a subspace S3 ∨ S4 ⊂ M•
1 such that the restriction f •n,p|S3∨S4 is

the identity and M•
1 deformation retracts to S3 ∨ S4. It follows that f •n,p acts trivially on

cohomology.
Let m0 ⊂ D7 ⊂ M0 be the centre of the disc removed to make M•

0 . By coning the
restriction of f •n,p to the boundary of M•

0 , we extend f •n,p to an almost diffeomorphism fn,p
of M0 with a single singular point m0. Since f •n,p acts trivially on cohomology, so does fn,p.
Since M0 admits a unique spin structure for each orientation and since fn,p is orientation
preserving, fn,p is a spin almost diffeomorphism. By construction, fn,p is the identity on
any 7-disc contained in D3×̃dπS4 and hence we may we extend fn,p to M by taking the
connected sum with the identity on M1. Thus we define the spin almost diffeomorphism

gn,p := fn,p]IdM1 : M ∼= M
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with single singularity at m0 and which acts trivially on cohomology. We claim that

p2(gn,p) = p2(fn,p) = dπ(2p− ndπ). (36)

The manifold M0
∼= S3×̃dπS4 bounds the 8-dimensional D4-bundle W0 := D4×̃dπS4, and we

let W1 be any spin coboundary for M1. We form the twisted doubles Xfn,p := (−W0)∪fn,pW0

and
Xgn,p := (−W0\−W1) ∪gn,p (W0\W1) ∼= Xfn,p]

(
(−W1) ∪id W1

)
. (37)

Applying Lemma 3.12 we have,

p2(gn,p) = 〈p2(Xgn,p), [Xgn,p ]〉 = 〈p2(Xfn,p), [Xfn,p ]〉 = p2(fn,p),

where the second equality holds by (37) since the characteristic number p2 is a bordism
invariant, which is additive for connected sums and (−W1) ∪W1 = ∂(W1 × I). Writing
Xn,p := Xfn,p , it therefore remains to compute 〈p2(Xn,p), [Xn,p]〉. From the construction of
Xn,p we see that H4(Xn,p) ∼= Z(x)⊕ Z(y) where x is represented by the zero section of W1

and y = [D4 ∪D4] is represented by an embedded 4-sphere obtained by gluing two fibres
of the D4-bundle W1 together, one from each copy of W0. By construction, the normal
bundle of the 4-sphere D4 ∪D4 has characteristic function γn,p and hence Euler number n.
It follows that the intersection form of Xn,p with respect to the basis {x, y} is given by the
following matrix: (

0 1
1 n

)

Moreover since x is represented by an embedded 4-sphere with tubular neighbourhood
diffeomorphic to D4×̃dπS4 and since y is represented by an embedded 4-sphere with normal
bundle γn,p, we have pXn,p(x) = dπ and pXn,p(y) = p. We conclude that the Poincaré dual
of pXn,p is given by

PD(pXn,p) = (p− ndπ)x+ dπy.

It follows that 〈p2
Xn,p

, [Xn,p]〉 = 2dπ(p− ndπ) + nd2
π = dπ(2p− ndπ), and the claim (36) is

proven.
Finally we need to choose n and p so that dπ(2p−ndπ) = 2d̃π. Recall that we may choose

n and p freely subject to the constraint that n ≡ p mod 2. If dπ = 4k + 2, then 2d̃π = 4dπ
and we choose (n, p) = (0, 2). If dπ = 4k, then 2d̃π = 2dπ and we set (n, p) = (1, 2k+ 1). �

3.5. The proof of the main classification theorem. The mod 28 distillation of M is
the quadruple (H4(M), q◦M , µM , pM) where q◦M is the quadratic linking family of M as in
Definition 2.23 and the generalised Eells-Kuiper invariant

µM : Sdπ → Q/d̂πZ
is the mod 28 Gauss refinement of q◦M defined by (26). In this subsection we prove Theorem
1.3 which states, in part, that mod 28 distillations give a complete invariant of diffeo-
morphisms of 2-connected M . For the remainder of the subsection M is 2-connected.

Recall that the (renormalised) classical Eells-Kuiper invariant, as defined by (3), gives a
group isomorphism

Θ7
∼= Z/28Z, Σ 7→ µ(Σ) := µΣ(0).
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The following lemma is obvious from the definitions of q◦M and µM .

Lemma 3.13. For all Σ ∈ Θ7, q◦M]Σ = q◦M and µM]Σ = µM + [µ(Σ)], where [µ(Σ)] is the

mod d̂π reduction of µ(Σ). �
Proof of Theorem 1.3. The existence of a smooth M with mod 28 distillation isomorphic
to a prescribed (G, q◦, µ, p) ∈ D follows from the corresponding existence statement in
Theorem 1.2, since Lemma 3.13 lets us freely change the Eells-Kuiper invariant of a manifold
with a prescribed refinement (G, q◦, p) ∈ R.

By Lemma 1.7, which is proven in (24), the generalised Eells-Kuiper invariant is a diffeo-
morphism invariant. Now we suppose F#(q◦M0

, µM0 , pM0) = (q◦M1
, µM1 , pM1). As explained in

(33), Theorem 1.2 means that there is a homotopy sphere Σ and a diffeomorphism

f : M0]Σ ∼= M1

such that H∗(f) = F : H4(M1) ∼= H4(M0). It remains to show that Σ ∈ IH(M0). For if so,
there is a diffeomorphism

h : M0
∼= M0]Σ

with H∗(h) = Id and then f ◦h : M0
∼= M1 is a diffeomorphism with H∗(f ◦h) = H∗(f) = F .

Since f is a diffeomorphism it preserves the mod 28 Gauss refinements. Applying Lemma
3.13 we have

µM1 = F#(µM0 + µ(Σ)) = F#(µM0) + µ(Σ).

On the other hand, our assumption is that F#(µM0) = µM1 . Since dM0 = dM1 ,

µ(Σ) = µM1 − F#(µM0) = 0 ∈ Z/dM1Z = Z/dM0Z.
By Remark 3.11, Σ ∈ IH(M0) and this completes the proof. �

Proof of Theorem 1.5. That the functor D : MSpin
7,2 → D is surjective and faithful is a

restatement of Theorem 1.3. To see that D is additive and compatible with orientation
reversal, let i = 0, 1, and let Mi = ∂Wi where Wi has characteristic from (Hi, λi, αi) with
boundary refinement q◦i . The mod 28 Gauss refinement of Mi is (q◦i , ∂gWi

) where we set

∂gWi
:= gWi

mod d̂π as in (26). Since the characteristic form of −Wi is (Hi,−λi, αi) and
the characteristic form of the boundary connected sum W0\W1 is (H0, λ0, α0)⊕ (H1, λ1, α1),
it follows that mod 28 Gauss refinements of −Mi and M0]M1 are (−q◦i ,−∂gWi

) and
(q◦1, ∂gW0)⊕ (q◦1, ∂gW1) respectively. �

3.6. Smooth splitting functions. In this subsection we consider connected sum splittings
of 2-connected M in the smooth category and we prove a smooth analogue of Theorem 3.4.
We also prove Theorem 1.4, which is the smooth analogue of Corollary 3.5. Throughout
this subsection M is 2-connected.

Let (T, b) be a torsion linking form and d an even integer. We define the set

Q̂d(b) := {(q, s)} ⊂ Q(b)×Q/dZ,
which consists of pairs of quadratic refinements q of b and rational residues mod d where
A(q) ≡ s mod Z. By Theorem 1.3, rational homotopy spheres M with torsion linking forms
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(H4(M), bM) = (T, b) are classified up to diffeomorphism by the pair (qM , µ(M)) ∈ Q̂28(b).
We denote this rational homotopy sphere by

M = M(q, s),

where q = qM and s = µ(M). Suppose that we are given a base (G, b, p) with F = G/T ∼= Zb
and π(p) ∈ F of divisibility dπ; as in §2.5, π denotes the projection G→ F . By Theorem 3.4,
if M has base (H4(M), pM , bM) ∼= (G, b, p), then for some rational homotopy sphere
M(q, s(f)) and base-point m0 ∈M , there is a connected sum splitting

f : M ∼= M(q, s(f))]M(F, dπ),

where f(m0) ∈M(q, s(f)). Recall that σ(f) ∈ Sec(π) is given by Im(σ) = f ∗(H4(M(F, dπ))).
In considering the uniqueness of M(q, s) in such a splitting, we note that by Theorem 1.3,

I(M(F, dπ)) = d̂πΘ7 (see also Remark 3.11). As a consequence, for i = 0, 1, we see that if

(q, si) ∈ Q28(b) and s0 ≡ s1 mod d̂πZ, then there is a diffeomorphism

h : M(q, s0)]M(F, dπ) ∼= M(q, s1)]M(F, dπ) (38)

such that H∗(h) preserves the induced splittings of H4. We define two splittings f0 and f1 to
be H∗-equivalent if there is an almost diffeomorphism g ∈ ADiff(M,m0) with g(m0) = m0,

H∗(g) = Id and Σg ∈ d̂πΘ7, an almost diffeomorphism gT : M(q, s0) u M(q, s1) with
singular point f0(m0) and ΣgT = Σg and a diffeomorphism gF : M(F, dπ) ∼= M(F, dπ) such
that gT (f0(m0)) = f1(m0) and the following diagram commutes up to pseudo-isotopy:

M

g

��

f0 // M(qf0 , s(f0))]M(F, dπ)

gT ]gF
��

M
f1 // M(qf1 , s(f1))]M(F, dπ)

We define Split(M) := {[f ]} to be the set of H∗-equivalence classes of splittings of M .
We also define the smooth splitting function of M

q̂ •M : Sec(π)→ Q̂d̂π(b), σ 7→ q̂ σM :=
(
q
eπk(σ)
M , µM(k(σ))

)
,

where we recall that k(σ) ∈ Sdπ is defined by k(σ) ∈ Im(σ)∩ Sdπ . From the diffeomorphism
in (38), we see that M

(
qeπk(σ), µ(k(σ))

)
]M(F, dπ) gives a well-defined diffeomorphism type

for each section σ.

Theorem 3.14. Let M have smooth splitting function q̂ •M : Sec(π)→ Q̂d̂π(bM). For each
σ ∈ Sec(π) there is a unique H∗-equivalence class of splitting

fσ : M ∼= M(q̂ σM)]M(F, dπ).

Consequently the map Split(M)→ Sec(π), [f ] 7→ σ(f) is a bijection.

Proof. The proof is a refined version of the proof Theorem 3.4 and we adopt the notation of
that proof so that M has 3-connected coboundary W . Specifically, the proof of the existence
of fσ is verbally the same, except that now by [7, Definition 2.50] we have

q̂ σM =
(
∂(R,−λR, αψ),

[(
λ̄R
(
αψ, αψ

)
− σ(λR)

)
/8
])
.
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Hence the splitting W ∼= Wψ\WF defines the splitting fσ : M ∼= M(q̂ σM)]M(F, dπ).
To show that splittings f0 and f1 defining the same section σ are H∗-equivalent, we

consider the nonsingular characteristic form (H1, λ1, α1). The symmetric form (H1, λ1)
has a Lagrangian L ⊂ H1 corresponding to H3(M) and hence α1(L) = dπZ. The proof

of Proposition 3.10 now shows that d̃π
4

divides (λ̄1(α1, α1) − σ(λ1))/8. Consequently the

diffeomorphism type of Mφ is determined up to connected sum with Σ ∈ d̂πΘ7, and this
shows that f0 and f1 are H∗-equivalent splittings. �

Proof of Theorem 1.4. For a 2-connected M , define an action of Aut(bM) on Q̂d̂π(bM) by
F · (q, s) = (q ◦ F, s) and let [q, s] denote the Aut(bM) orbit of (q, s). We define the map

β : Q̂d̂π(bM)→ 2T/Aut(bM)×Q/d̂πZ, (q, s) 7→ ([βq], s).

Since the Gauss sum of each q is given by A(q) = s mod Z, we note that Theorem 2.16
ensures that [q, s] = [q′, s′] if and only if β(q, s) = β(q′, s′).

Now for i = 0, 1, let M0 and M1 have smooth splitting functions q̂ •i : Sec(πi)→ Q̂d̂π(bMi
),

where πi : H
4(Mi) → H4(Mi)/TH

4(Mi) is the projection and suppose there there is an
isomorphism F : (H4(M1), bM1 , pM1)→ (H4(M0), bM0 , pM0) of their bases. By Theorem 3.14,
M0 and M1 are diffeomorphic if and only if there are sections σ and σ′, a homotopy

sphere Σ ∈ d̂πΘ7 and a diffeomorphism M(q̂ σ0 ) ∼= M(q̂ σ
′

1 )]Σ. But this happens if and
only if there is an isomorphism qσ0

∼= qσ
′

1 and µ0(k(σ)) = µ1(k(σ′)); i.e. if and only if
(F#× Id)(β(q̂ σ0 )) = β(q̂ σ

′
1 ). With the notation above the smooth splitting set of Mi, defined

in the introduction just prior to the statement of Theorem 1.4, is the set

Q̄(Mi) = {β(q̂ σi ) : σ ∈ Sec(πi)}.
The above shows that M0 and M1 are diffeomorphic if and only if the sets (F#×Id)

(
Q̄(M0)

)

and Q̄(M1) intersect and consequently this happens if and only if these sets coincide. �

4. Automorphisms of H4(M)

The smooth classification Theorem 1.3 implies that the number of different smooth
structures on the same 2-connected almost-smooth 7-manifold corresponds to the number
of different mod 28 Gauss refinements of the linking family (H4(M), q◦M , pM). The first

estimate of the number of smooth structures on M , d̂π = gcd( d̃π
4
, 28), only counts smooth

structures on M modulo almost diffeomorphisms that act trivially on H4(M). To get the
full picture, we need to understand how automorphisms of the quadratic linking family q◦M
act on the Gauss refinements. We begin this process in Section 4.2.

Conveniently enough, it turns out that this problem can be reduced to understanding
how automorphisms of the base (H4(M), bM , pM) act on linked functions: see Proposition
4.10 in Section 4.3. While we do not have a complete description of this action in general we
still have control up to a factor 2r, where r ∈ {0, 1, 2} is explicitly defined in (42). Moreover
it is feasible to understand it for explicit examples: see Examples 4.7, 4.8, 4.12 and 4.13.
With Proposition 4.10 in hand, we proceed in Section 4.4 to determine the reactivity of
2-connected M in terms of r and the integer do defined in (7) and recalled in Section 4.1.
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4.1. Notation. We begin by setting up some terminology. Given a finitely generated
abelian group G, p ∈ 2G, and b : T × T → Q/Z a torsion form, let Autb denote the group
of isomorphisms F : G→ G preserving p and b. If q◦ is a family of quadratic refinements of
(G, b, p), let Autq◦ be the subgroup of Autb that preserves q◦ too.

Let π : G → G/T be the projection to the free quotient of G. Let Shrp ⊆ Autb be
the subgroup of “pure shears”, i.e. F acting trivially on T and G/T . In other words,

F = IdG + ρ ◦ π for some homomorphism ρ : G/T → T such that ρ
(π(p)
dπ

)
is dπ-torsion

(the last condition is equivalent to F (p) = p); so actually Shrp does not depend on b
at all. Similarly let Shrp/2 = Shrp ∩ Autq◦ , the subgroup of shears in Autq◦ . For h ∈ S2,

(F#q)h = qF (h) = qh+ρ(π(p)
2 ) = qh−ρ(π(p)

2 )
, so for F to preserve q we need ρ

(
π(p)

2

)
= 0. Hence

Shrp/2 simply corresponds to homomorphisms ρ : G/T → T such that ρ
(π(p)
dπ

)
is dπ

2
-torsion.

In particular: Shrp/2 actually depends on neither q◦ nor b but only on p, and if F ∈ Shrp
then F 2 ∈ Shrp/2.

We say that a cyclic subgroup C ⊆ T is a split summand if T is a direct sum of C and
its b-orthogonal complement. We call x ∈ T split if it generates a split summand; this is
equivalent to

b(x, x) =
m

n
,

where n is the order of x and m is coprime to n.
Given the element p ∈ 2G we consider the following notions of its divisibility (if p is a

torsion element we set all three integers to be 0):

d := Max{s ∈ Z : s divides p ∈ G},
dπ := Max{s ∈ Z : s divides π(p) ∈ G/T},
do := Max{s : s,m ∈ Z, sm2 divides mp ∈ G}.

We have an obvious chain of divisibilities

2 | d | do | dπ.
Further d = dπ if and only if do = dπ, since the latter implies that the maximum in the
definition of do is attained with m = 1.

For an integer s, let ord2 s denote the exponent of 2 in the prime factorisation of s;
e.g. ord2 2j = j.

Definition 4.1. A non-negative integer e is a 2-extremal exponent for (G, p) if for some m
such that dom

2 divides mp, ord2m = e.

Example 4.2. Let p = (2a, 2c) ∈ Z× Z/2bZ with a, b ≥ c ≥ 1. Then dπ = 2a, d = 2c, and
do = max(2c, 2a−b+c). The 2-extremal exponents are 0 for a ≤ b, and b− c for a ≥ b.

4.2. The action of Autb on linked functions. Given F ∈ Autb and any k ∈ Sdπ , set
t := F (k)− k ∈ T (not necessarily dπ-torsion, unless F|T is the identity) and βk := p− dπk,
and let

P (F ) := d2
πb(t, t)− 2dπb(βk, t) ∈ Q/2dπZ. (39)
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In other words, P (F ) = −∆(k, t) from (21). Equivalently, we can characterise P (F ) by

F#g = g − P (F )

8
mod

dπ
4
Z (40)

for any linked function g (use that (F#g)(k) = g(F (k)) = g(k + t) = g(k) + ∆(k,t)
8

by the
condition (20) for g to be a linked function.) The first characterisation, (39), is independent
of g and the second, (40), of k, so in fact P depends on neither. If F preserves a family of
quadratic refinements, then taking g to be a Gauss refinement of that family shows that P
takes values in 8Z/2dπZ (in the next subsection we study a corresponding 8Z/2d̃πZ-valued

function P̃ ). Even if F does not preserve a family of quadratic refinements, the fact that the
mod 1

4
Z reduction of the Arf invariant of a quadratic refinement of (b, p) depends only on

(b, p) itself shows that P takes values in 2Z. It is also clear from (40), or from (39) together
with (22), that P is a homomorphism Autb → 2Z/2dπZ.

Let jπ = ord2 dπ, and jo = ord2 do.

Lemma 4.3. P (Autb) ⊆ doZ/2dπZ. If b lacks a split 22e+jo summand for some 2-extremal
exponent e, then P (Autb) ⊆ 2doZ/2dπZ.

Proof. Pick some y ∈ G such that m2doy = mp. Then s := Fy − y is an m2do-torsion
element. It suffices to show that

P (F ) = m2d2
ob(s, s) mod 2do, (41)

because the RHS is do if the 2-primary part of s is split, and 0 otherwise.
Note that u := dπ

do
and m

u
are integers. Let k := m

u
y. Then k ∈ Sdπ , and ut = ms, so (39)

implies

P (F ) = u2d2
ob(t, t)− 2udob(βk, t) = d2

ob(ms,ms)− 2dob(βk,ms) mod 2do.

Since βk = p− dπk is m-torsion, (41) and the result follows. �
If F ∈ Shrp ⊆ Autb, i.e. F = IdG + ρ ◦ π for some homomorphism ρ : G/T → T , then

t = F (k) − k = ρ
(π(p)
dπ

)
is independent of the choice of k ∈ Sdπ . Since π(p)

dπ
∈ G/T is a

primitive element of a free abelian group, we can prescribe its image under a homomorphism
ρ arbitrarily. Determining the image P (Shrp) therefore amounts to computing the RHS of
(39) for all dπ torsion elements t ∈ T .

Lemma 4.4. 4doZ/2dπZ ⊆ P (Shrp). Moreover, if jπ 6= jo + 1 or if b has no split 2jπ

summand, then 2doZ/2dπZ ⊆ P (Shrp).

Proof. The key claim is that there exists a dπ-torsion element t such that b(βk, t) = 1
u
,

where dπ = udo. By the non-degeneracy of b, this is equivalent to βk having order at least u,
and not being divisible by more than do. That any divisor of βk also divides do is obvious,
and if mβk = 0 then mp is divisible by mdπ, which indeed implies u | m by the definition
of do.

Let ρ be any homomorphism G/T → T mapping π(p)
dπ
7→ t, and F := IdG + ρ ◦ π ∈ Shrp.

If the 2-primary part of t does not generate a split 2jπ summand then d2
πb(t, t) is divisible
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by 2dπ, so
P (F ) = d2

πb(t, t)− 2dπb(βk, t) = 2do mod 2dπ,

and we are done. Otherwise P (F ) = dπ − 2do = (u − 2)do mod 2dπ. The subgroup this
generates is precisely ndoZ/2dπZ, where n = gcd(u−2, 2u) = gcd(u−2, 4). Clearly n is 1 or
2 except when jπ = jo + 1, in which case n = 4. �

Lemmas 4.3 and 4.4 imply that the following is well-defined.

Definition 4.5. Define r = r(G, p, b) ∈ {0, 1, 2} by

ImP = 2rdoZ/2dπZ. (42)

Remark 4.6. Lemmas 4.3 and 4.4 provide necessary conditions for r = 0 or r = 2. In
particular, if G has no 2-torsion then r = 1. The next examples show that there are bases
with r = 0 and bases with r = 2.

Example 4.7. Let G = Z⊕ Z/2j , b = 〈 1
2j
〉 and p = (2j, 0) (so dπ = do = 2j). Then the shear

F : (x, y) 7→ (x, x+ y) has P (F ) = 2j mod 2j+1, i.e. P (F ) = do mod 2dπ. Thus r = 0.

Example 4.8. Let G = Z⊕ Z/2j, b = 〈 1
2j
〉 and p = (2j, 2j−1) (so dπ = 2j, while do = 2j−1).

Now any t ∈ T has d2
πb(t, t) + 2dπ(βk, t) = 0 mod 2j+1, so r = 2.

4.3. The action of Autq◦ on Gauss refinements. Now let q◦ be a family of quadratic
refinements of the base (G, b, p), and let Autq◦ denote its group of automorphisms. For an

automorphism F ∈ Autq◦ we define P̃ (F ) ∈ 8Z/2d̃πZ by

∆̃(F ) = −4dπq
eπk(t) + dπ(dπ+2) b(t, t)

for any k ∈ Sdπ and t := F (k) − k; equivalently, P̃ (F ) = −∆̃(k, t). Now P̃ is a homo-

morphism P̃ : Autq◦ → 8Z/2d̃πZ, such that

F#g = g − P̃ (F )

8
mod

d̃π
4
Z (43)

for any Gauss refinement g of q◦. Notice that, similarly to the proof of Lemma 2.32, P̃ can
alternatively be characterised by

P̃ (F ) = P (F ) mod 2dπ,

P̃ (F ) = 0 mod 8.

We can therefore get some control on the image of the shear subgroup Shrp/2 ⊆ Autq◦ just
from the observation that F 2 ∈ Shrp/2 for any F ∈ Shrp.

Lemma 4.9. P̃ (Shrp/2) ⊇ 4doZ/2d̃πZ.

Proof. The proof of Lemma 4.4 showed that we can achieve P (F ) = 2do or P (F ) = 2do+dπ
for some F ∈ Shrp. Then F 2 ∈ Shrp/2 has P (F 2) = 4do. �

Conveniently, it turns out that the image of P̃ can be determined directly from the image
of P .
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Proposition 4.10. Im P̃ = {n ∈ 8Z/2d̃πZ : n mod 2dπ ∈ ImP} = lcm(8, 2rdo)Z/2d̃πZ.

Proof. If dπ is not divisible by 4 then lcm(8, 2rdo) = 4do, so the result follows from
Lemma 4.9.

If 4 | dπ and F ∈ Autb, then that for any k ∈ Sdπ , t := F (k)− k and h := dπ
2
k we have

qh
(
−dπ

2
t
)

=
P (F )

8
mod Z.

Thus P (F ) = n ∈ 8Z/2dπZ implies that (F#q)h = qF (h) = qh− dπ
2
t

and qh, which have equal

inhomogeneity βh = p−2h by definition, also have equal Arf invariant by (11). Therefore by
Theorem 2.16 there is an automorphism FT of (T, b) such that (F#q)h ◦FT = qh (necessarily
FT fixes βh).

Now suppose that σ is a section of π, and k ∈ Imσ ∩ Sdπ (cf. Remark 2.26). Then
G ∼= Imσ⊕T , and we may define IdImσ +FT ∈ Autb. This fixes k and h, so the composition
F ′ := F ◦ (IdImσ + FT ) has

(F ′#q)h =
(
(IdIm(σ) + FT )#F#q

)h
= (F#q)h ◦ FT = qh.

Hence F ′ ∈ Autq◦ , and F ′(k) = F (k) implies P (F ′) = P (F ). �
Example 4.11. For the base (Z⊕ Z/2j, 〈 1

2j
〉, (2j, 0)) of Example 4.7 let q◦ be the refinement

with q(2j−1,0) =
〈〈

1
2j+1

〉〉
. The isomorphism F of the base in Example 4.7 does not preserve q◦:

if j > 1 then F alters the homogeneity defect of q(2j−1,0) and if j = 1 then F alters the Arf
invariant. However, if j ≥ 3 then F ′ : (x, y) 7→ (x, x+ (2j−1+1)y) is an isomorphism of q◦

with P̃ (F ′) = P (F ) = 2m mod 2j+1.

The following examples illustrate that r, and hence Im P̃ , can depend on b as well as (G, p).

Example 4.12. Let G = Z ⊕ (Z/2j)2 and p = (2j, 0, 0) (so dπ = do = 2j). Choosing the
torsion form b0 = 〈 1

2j
〉 ⊕ 〈 1

2j
〉 on TG, using Example 4.7 shows that r0 = 0. Let b1 be the

hyperbolic torsion form on TG with matrix(
0 2−j

2−j 0

)
.

Since dπ = do, it follows that r1 = 0 or 1. But b1 contains no split cyclic summands, and so
by Lemma 4.4, we conclude that r1 = 1.

The next example shows that r cannot be determined merely from the type of splitting
of b (cyclics versus hyperbolics), but can depend on the isomorphism classes of split cyclic
summands.

Example 4.13. Let G = Z ⊕ Z/8 ⊕ Z/64 ⊕ Z/512 with torsion form
〈

1
8

〉
⊕
〈

1
64

〉
⊕
〈

ε
512

〉

(ε = ±1), and p = (64, 0, 8, 0). Then dπ = 64 and do = 8, so r is 0 or 1. The 2-extremal
exponents are 0 and 3. If F ∈ Autb then by (41)

P (F ) = do mod 2do ⇔ (Id− F )(1, 0, 0, 0) split 512-torsion

⇔ (Id− F )(8, 0, 1, 0) split 8-torsion.
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Thus if r = 0 there must be some automorphism f of (T, b) such that (Id− f)(0, 1, 0) plus a
split 8-torsion element is divisible by 8, i.e. f(0, 1, 0) = (a, 8b+ 1, 8c) with a odd. If ε = +1
then the would-be image has norm 17

64
for any a, b, c, so there can be no such f ; hence r = 1.

On the other hand, if ε = −1 we can define such an f by the matrix


1 −8 0
1 1 8
1 1 1


 .

Setting F = IdZ +ρ+ f with ρ : Z→ T, n 7→ (0, 0,−n) makes Id−F map (8, 0, 1, 0) ∈ G to
the split 8-torsion element (1, 0, 0) ∈ T (and (1, 0, 0, 0) to (0, 0,−1)), so P (F ) = do mod 2do,
and r = 0.

Corollary 4.14. Modulo the action of Autq◦, the number of possible Gauss refinements of
(G, q◦, p) is

Num

(
2rdo

8

)
,

and the number of possible mod 28 Gauss refinements is

gcd

(
28,Num

(
2rdo

8

))
.

Remark 4.15. Notice that Corollary 4.14 combined with Theorems 1.2 and 1.3 gives the
computation of the inertia group I(M) for 2-connected M from Theorem 1.10.

4.4. The computation of reactivity. In this subsection we use Proposition 4.10 to prove
lower bounds on the reactivity of every spin 7-manifold M . When M is 2-connected we
also prove that this lower bound is sharp and so compute the reactivity of 2-connected M .
Recall from Section 3.4 that if f is a self-almost diffeomorphism of M , then the mapping
torus Tf is almost smooth, the spin characteristic class pTf ∈ H4(Tf ) is well defined and so
is the integer

p2(f) = 〈p2
Tf
, [Tf ]〉 ∈ 8Z.

The next lemma provides the bridge between the algebraic arguments of Sections 4.2 and
4.3 and the computation of reactivity of M , as defined in (5). Note that if f is a self-almost
diffeomorphism of M , then the induced map f ∗ : H4(M)→ H4(M) preserves q◦M , i.e. we

have f ∗ ∈ Autq◦M and so P̃ (f ∗) ∈ 8Z/2d̃πZ is defined.

Proposition 4.16. P̃ (f ∗) = p2(f) mod 2d̃π for any self-almost diffeomorphism of M .

Proof. Let f : M u M be a self-almost diffeomorphism and let W be a 3-connected spin
coboundary for M . In §2.6 we used gW to denote the Gauss refinement of q◦M induced by
the form (FH4(W,M), λW , pW ) (and used that to define µM). We can use f to glue two
copies of W together along M and form the almost smooth spin manifold X := (−W )∪fW .
Lemma 3.12 gives p2(f) = p2

X . Applying (43) to F = f ∗ and combining with the comparison
of Gauss refinements in (24) we obtain

P̃ (f ∗) ≡ 8(gW − (f ∗)#gW ) ≡ p2
X − σ(X) ≡ p2

X ≡ p2(f) mod 2d̃π,

where σ(X) = σ(W )− σ(W ) = 0 by Novikov additivity. �
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Corollary 4.17. For any closed spin 7-manifold M we have that:

(i) RH(M) is divisible by 2d̃π;
(ii) R(M) is divisible by lcm(8, 2rdo);

(iii) RDiff
H (M) is divisible by lcm(224, 2d̃π);

(iv) RDiff(M) is divisible by lcm(224, 2rdo).

If M is 2-connected then equality holds in each case.

Proof. For part (i), recall that for [f ] to belong to π̃0ADiffH(M,m0) by definition means

that f ∗ = Id on H4(M). Thus P̃ (f ∗) = 0 ∈ 8Z/2d̃π, and Proposition 4.16 implies that

2d̃π | RH(M). Meanwhile Proposition 3.10 shows that RH(M) | 2d̃π if M is 2-connected.
For part (ii), let M have refinement (G, q◦, p). Proposition 4.10 computes the image

Im P̃ = lcm(8, 2rdo)Z/2d̃π, so Proposition 4.16 gives lcm(8, 2rdo) | R(M). On the other
hand, if M is 2-connected then Theorem 1.2 states that every automorphism of (G, q◦, p)
is realised by an almost diffeomorphism f : M uM , and so part (i) and Proposition 4.10
imply the equality.

Parts (iii) and (iv) follow from parts (i) and (ii) and Lemma 3.9. �

Proof of Theorem 1.10. The computation of R(M) = lcm(8, 2rdo) is given in Corollary
4.17(ii). Then I(M) = Num

(
2rdo

8

)
Θ7 by Proposition 3.8(i). By Remark 4.6, r = 1 if

TH4(M) is of odd order. �

5. Examples

Ever since Milnor’s discovery of exotic 7-spheres [38], 2-connected 7-manifolds have
provided interesting examples in topology and geometry. In this section we discuss various
examples of 2-connected 7-manifolds. In Section 5.1 we consider the total spaces of 3-sphere
bundles over S4 and their connected sums. In Section 5.2 we mention some examples
admitting interesting metrics. In Section 5.3 we give examples which are tangentially
homotopy equivalent but not homeomorphic. Finally in Section 5.4 we present a refinement
of Wilkens’ list [53, Theorem 1] of the indecomposable generators for the monoid of almost
diffeomorphism classes of 2-connected 7-manifolds.

5.1. 3-sphere bundles over S4 and their connected sums. Following the notation
of [10], let (n, p) be integers with same parity and let Mn,p := S(ξn,p) denote the total space
of the 3-sphere bundle over S4 which there corresponding vector bundle ξn,p has Euler class
e(ξn,p) = n ∈ H4(S4) and spin characteristic class p1

2
(ξn,p) = p ∈ H4(S4). By definition, we

have M0,p = M(Z, p), where M(Z, p) is as defined in Definition 3.3. Using (14) and (18) and
recalling the notation of Example 2.6, we compute for n 6= 0 that there is a diffeomorphism

Mn,p
∼= M

(〈〈−1

2n

〉〉
−p
,

[
p2 − |n|

8n

])
.

Example 5.1. The Milnor sphere, ΣMi := M1,3, is homeomorphic to S7 but not diffeomorphic
to S7 since µ(ΣMi) = 1 6= 0 mod 28: see [38] and [16].
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In [9] the total spaces of 3-sphere bundles over S4 were classified up to homotopy homeo-
morphism and diffeomorphism.

We now give an example which illustrates the subtleties of the inertia group. Building on
Examples 4.7 and 4.8, Theorem 1.10 gives to the following

Example 5.2. The connected sums

M0 := M−8,0]M0,8, M1 := M−8,2]M0,8 and M2 := M−8,4]M0,8,

have r(Mi) = i. In each case dπ(Mi) = 8, whereas do(M0) = 8, do(M1) = 2 and do(M2) = 4.
From Theorem 1.10 we have I(M0) ∼= I(M1) ∼= Θ7 and I(M2) ∼= 2Θ7.

Notice that when r = 1 the [54, Conjecture p. 548] correctly predicts I(M1) = Θ7.
However when r 6= 1, [54, Conjecture p. 548] incorrectly predicts that I(M0) is 2Θ7 and
that I(M2) is Θ7.

Example 5.3. While [54, Theorem 1] and Theorem 1.10 give I(M(Zb, d)) = Num
(
d
4

)
Θ7,

the classical Eells-Kuiper invariant is not defined for M(Zb, d) when dπ = d 6= 0. Using (18)
we compute that

µ
(
M(Zb, d)]Σ

)
= [µ(Σ)] ∈ Z/d̂πZ.

Hence we have µ(M(Zb, 8)) = 0, whereas µ(M(Zb, 8)]ΣMi) = 1 ∈ Z/2Z and we see that the
generalised Eells-Kuiper invariant distinguishes the diffeomorphism types of M(Zb, 8) and
M(Zb, 8)]ΣMi.

We can also deduce from Theorem 1.5, for example, that M(Zb, 8)]ΣMi admits an
orientation reversing diffeomorphism, whereas M(Zb, 16)]ΣMi does not.

Example 5.4. Let N be a simply-connected oriented 6-manifold with π2(N) ∼= Z and
suppose that S1 →M → N is a principal S1 bundle with primitive first Chern class. Then
M is 2-connected with a preferred orientation and hence spin structure. Conversely, by
[25, Lemma 2.1], every free S1 action on M is equivalent to such a principal bundle action.

In [25, Theorem 1.3] Yi Jiang identifies the homeomorphism and diffeomorphism types
of all 2-connected M which admit free circle actions. In particular, by [25, Theorem 1.3]
every such M is almost diffeomorphic to a connected sum Mbk,b(k+12m)]2rM0,0 for b ∈ {1, 2},
r ∈ Z≥0 and m, k ∈ Z.

5.2. Examples from geometry. There are a many 2-connected 7-manifolds that admit
metrics with interesting geometric properties. Indeed, according to [13, Theorem B], every
2-connected 7-manifold admits a metric with positive Ricci curvature.

The Gromoll-Meyer sphere. Let Sp(n) denote the n-dimensional symplectic group of ortho-
gonal n × n quaternionic matrices. The Gromoll-Meyer sphere is a certain quotient of
Sp(2)× Sp(1) by Sp(1)× Sp(1) and the smooth manifold underlying the Gromoll-Meyer
sphere, ΣGM , is an exotic 7-sphere admitting a metric of non-negative sectional curvature [22].
By [22, Theorem 1], there are diffeomorphisms ΣGM

∼= M−1,−5
∼= 3ΣMi.
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Berger Space. The smooth manifold underlying the Berger space B is a homogeneous space
of the form B = SO(5)/SO(3) (where SO(3) ↪→ SO(5) by the adjoint representation)
that admits a metric of positive sectional curvature. The Berger space is 2-connected
with H4(B) ∼= Z/10 and Goette, Kitchloo and Shankar [20, Corollary 2] proved there is a
diffeomorphism

B ∼= M10,8.

The manifold P2. More recently Grove, Verdiani and Ziller [23, Theorem A] constructed a
metric of positive sectional curvature on a 2-connected 7-manifold P2 with an isomorphism
H4(P2) ∼= Z/2. Applying [7, Theorem A], they deduced that there is an almost diffeo-
morphism P2 u S(TS4), where S(TS4) = M2,0 is the unit tangent sphere bundle of S4.
In [19, Theorem 0.3, Example 3.12] Goette proved that there are diffeomorphisms

P2
∼= M2,2](−ΣMi) and P2

∼= −M2,4.

Computation shows that P2 is not orientation preserving diffeomorphic to the total space
of any S3-bundle over S4.

G2-manifolds. In [6] Corti, Haskins, the second author and Pacini constructed a very
large class of examples of simply connected manifolds with G2 holonomy metrics. Many of
these examples are 2-connected with H4(M) torsion-free. For instance, [6, Table 3] gives 7
explicit ways to construct holonomy G2 metrics on M(Z85, 2). By [54, Theorem 1(ii)], see also
Corollary 1.11, the underlying topological manifold admits a unique smooth structure. In [12]
we find examples of manifolds with G2 holonomy where the smooth structure is not unique
and calculating the Generalised Eells-Kuiper invariant we find pairs of closed G2-manifolds
that are homeomorphic but not diffeomorphic. For example (M(Z89, 8),M(Z89, 8)]ΣMi) is a
pair of homeomorphic but not diffeomorphic smooth manifolds both of which admit metrics
with G2 holonomy.

5.3. Tangentially homotopy equivalent manifolds. Let N0 and N1 be closed smooth
manifolds with tangent bundles TN0 and TN1. A homotopy equivalence f : N0 → N1 is
called tangential if there is a bundle isomorphism f ∗TN1

∼= TN0. It is natural to ask under
what conditions tangentially homotopy equivalent manifolds are necessarily homeomorphic,
and this question was studied in detail by Madsen, Taylor and Williams in [35].

In [7, p. 144] it was proven the 2-connected manifolds give rise to examples of non-
homeomorphic tangentially homotopy equivalent manifolds. We present a simplified version
of the proof here, which starts with the following

Lemma 5.5. Let M0 and M1 be 2-connected and let f : M0 'M1 be a homotopy equivalence
such that f ∗pM1 = pM0. Then f is tangential.

Proof. The proof is a relative version of Remark 2.3. The bundles TM0 and f ∗TM1 are
classified by maps M0 → BSO(7). Since M0 is 2-connected, the primary obstruction to a
null-homotopy between these maps may be identified with pM0 − f ∗pM1 . The computations
of [28] show that πi(BSO(7)) = 0 for i = 5, 6, 7 and so there are no further obstructions to
finding a homotopy between the classifying maps of TM0 and f ∗TM1. Hence if pM0 = f ∗pM1

then f ∗TM0
∼= TM1. �
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Proposition 5.6 (cf. [7, p. 114]). The manifolds M−8,1 and M−8,5 are tangentially homotopy
equivalent but not homeomorphic.

Proof. We first show that M−8,2 and M8,−10 are tangentially homotopy equivalent. By
Definition 2.19, both manifolds have base

(
Z/8,

〈−1
8

〉
, ρ8(2)

)
and applying (14), we see that

their quadratic refinements are respectively
〈〈−1

16

〉〉
−2

and
〈〈−1

16

〉〉
−10

. Now

〈〈−1

16

〉〉
−10

=

(〈〈−1

16

〉〉
−2

)

ρ8(4)

and ρ8(4) ∈ 12(Z/8). By Theorem 1.6, it follows that M−8,2 and M−8,5 are orientation
preserving homotopy equivalent via a homotopy equivalence f : M−8,2 →M−8,5, which is
the identity with respect to the above bases. It follows that f ∗pM−8,5 = pM−8,1 , and so f is
tangential by Lemma 5.5.

Applying Proposition 2.15 we compute that A(qM0) = −1/16 mod Z but A(qM1) = −9/16
mod Z and by Theorem 1.2, the quadratic refinement qM is a homeomorphism invariant
and hence M−8,2 and M−8,10 are not homeomorphic. �
Remark 5.7. Proposition 5.6 contradicts [35, Theorem C and Theorem 5.10] where it
is stated, amongst other things, that all tangentially homotopy equivalent 2-connected
7-manifolds are homeomorphic. The source of the mistake in the arguments of [35] can be
found in [35, Theorem 3.12] which is not correct. It is claimed that a certain cohomology
class

f ∗π∗(ln) ∈ H4n(S2Ω2(SG[3,∞]);Z(2))

vanishes. Here SG[3,∞] is the 2-connected cover of SG, the space of orientation preserving
stable self-homotopy equivalences of the sphere, S2Ω2 denotes the double suspension of
the double loop space, the coefficient group Z(2) is the integers localised at 2 and we shall
not define the maps f or π or the class ln. However the argument given for the proof of
[35, Theorem 3.12] only shows that f ∗π∗(ln) = 2x for some x ∈ H4n(S2Ω2(SG[3,∞]);Z(2))
and not that f ∗π∗(ln) = 0. To the best of our knowledge, this is the only flaw in the
arguments of [35].

5.4. Generators for the monoid of 2-connected 7-manifolds. The connected sum
operation gives the set of spin diffeomorphism classes of 2-connected 7-manifolds the
structure of a commutative monoid with unit S7. Owing to the existence of homotopy
7-spheres, every M has non-trivial connected sum splittings

M ∼= (M]Σ)](−Σ)

for each Σ ∈ Θ7. Hence we call M topologically decomposable if there is a diffeomorphism

M ∼= M0]M1

where neither M0 nor M1 is a homotopy sphere and topologically indecomposable otherwise.
By Theorem 1.5, every connected sum splitting of M gives rise to an orthogonal splitting

of the refinement of M , and by Theorem 1.3 every orthogonal splitting of the refinement
of M is realised by a connected sum splitting of M . Hence we call a refinement (G, q◦, p)
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or a base (G, b, p) decomposable if it can be written as a non-trivial orthogonal sum and
indecomposable otherwise. It is clear from the definitions that a refinement is indecomposable
if and only if its base if indecomposable. Moreover, the indecomposable bases are of the
form (Z, 0, p) and (T, b, p) where b is an indecomposable torsion form; i.e. b cannot be
written as a non-trivial orthogonal sum. In this case we also call q indecomposable. A list of
all isomorphism classes of indecomposable torsion forms was given by Wall [49, Theorem 4]
and torsion forms were then classified by Kawauchi and Kojima [27, Theorem 4.1]. We do
not go into details but note that if (T, b, p) is indecomposable then T ∼= Z/rk for a prime r
or T ∼= (Z/2k)2. Summarising the above discussion we have the following refinement of a
theorem of Wilkens.

Theorem 5.8 (cf. [53, Theorem 1]). Every 2-connected M is diffeomorphic to a connected
sum of topologically indecomposable manifolds Mi :

M ∼= ]ni=1Mi.

Moreover, M is topologically indecomposable if and only if it is almost diffeomorphic to a
manifold of one of the following forms

S7, M(Z, d), M(q, s),

where in the final case, q is a prime refinement and hence H4(M(q, s)) ∼= Z/rk for r a
prime or H4(M(q, s)) ∼= (Z/2k)2. �

Even up to almost diffeomorphism, the splitting M ∼= ]ni=1Mi of Theorem 5.8 is in general
far from being unique. For example the manifolds M4,0 and M4,2 have non-isomorphic bases
(Z/4, 〈−1

4
〉, 0) and (Z/4, 〈−1

4
〉, 2) respectively, but M4,0]M0,2 and M4,2]M0,2 are diffeomorphic.

Even when H4 is torsion, there are many examples of torsion forms where b0 ⊕ b2
∼= b1 ⊕ b3

but b0 is isomorphic to neither b1 nor b3 and the same holds for b2: see for example [27, §3].
This leads to non-uniqueness of connected sum splittings for manifolds with torsion linking
form isomorphic to b0 ⊕ b2.

6. Mapping class groups and inertia

In this section we point out some implications of our classification results for mapping
class groups of 2-connected M . Throughout this section M will be 2-connected.

Recall the mapping class group π̃0Diff(M) of pseudo-isotopy classes of diffeomorphisms
from Section 3.1 and the subgroup π̃0DiffH(M) ⊆ π̃0Diff(M) of classes acting trivially on
H∗(M) from Section 3.4. For brevity, let Autµ(H4(M)) denote the group of automorphisms
of the mod 28 distillation (H4(M), q◦M , µM , pM) and let Autq◦(H

4(M)) denote the group
of automorphisms of the refinement (H4(M), q◦M , pM). As an immediate consequence of
Theorem 1.3 we obtain

Proposition 6.1. For each 2-connected M , there is a short exact sequence

0→ π̃0DiffH(M)→ π̃0Diff(M)→ Autµ(H4(M))→ 0. �
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Remark 6.2. The exact sequence of Proposition 6.1 serves as a starting point for studying
the mapping class groups π̃0Diff(M). The determination of π̃0DiffH(M) and the extension
in the sequence of Proposition 6.1 lie outside the scope of this paper. For example, we do
not currently know if π̃0DiffH(M) is abelian in general.

Recall the mapping class groups π̃0ADiffH(M,m0) ⊆ π̃0ADiff(M,m0) defined in Sections

3.1 and 3.4 and the homomorphism P̃ : Autq◦(H
4(M))→ lcm(8, 2rdo)Z/2d̃πZ from Section

4.3; see (43) and Proposition 4.10. Noting that d̂π = gcd( d̃π
4
, 28), we define

P̂ : Autq◦(H
4(M))→ Num

(
2r−3do

)
Z/d̂πZ, F 7→ P̃ (F )

8
mod d̂π,

to be the mod d̂π reduction of P̃ divided by 8. By Theorem 1.10 and Remark 3.11 we have

I(M)/IH(M) ∼= Num (2r−3do)Z/d̂πZ and so we can equally regard P̂ as a homomorphism

P̂ : Autq◦(H
4(M))→ I(M)/IH(M).

Theorem 6.3. For each 2-connected M there is a commutative diagram of group homo-
morphisms with short exact sequences for rows and with exact columns:

0 // π̃0DiffH(M)

��

// π̃0Diff(M)

��

// Autµ(H4(M))

��

// 0

0 // π̃0ADiffH(M,m0)

∂H
��

// π̃0ADiff(M,m0)

∂
��

// Autq◦(H
4(M))

P̂
��

// 0

0 // IH(M)

��

// I(M)

��

// I(M)/IH(M)

��

// 0

0 0 0

In particular, an automorphism F ∈ Autq◦(H
4(M)) is realised by a diffeomorphism of M if

and only if P̂ (F ) = 0.

Proof. The top row is the exact sequence of Proposition 6.1. The exactness of the second
row follows from Theorem 1.2. The first two columns are exact by the discussion at the
beginning of Section 3.4 and in particular (34) and the third column is exact by the

definition of P̂. The only part of the commutativity of the diagram which needs comment is
the bottom right hand square, where the commutativity follows from from Lemma 3.7 (ii)
and Proposition 4.16. The final statement follows from the exactness of final row and the
top column. �

We shall call an almost diffeomorphism exotic if it is not pseudo-isotopic to a diffeo-
morphism. A feature of the diagram in Proposition 6.3 is that when I(M)/IH(M) 6= 0,
M admits exotic almost diffeomorphisms which are detected by their action on H4(M).

Specifically, if f : M u M is an almost diffeomorphism, then P̂(f ∗) is the obstruction to

f ∗ : H4(M) ∼= H4(M) being induced by any diffeomorphism of M . Since P̂ is onto, it is

enough to find cases where I(M)/IH(M) is non-zero to show that P̂ is non-zero.
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Proposition 6.4. Any pair of subgroups I0 ⊆ I1 ⊆ Θ7 can arise as the pair of inertia
groups (I0, I1) = (IH(M), I(M)) for some 2-connected M .

Proof. There are three pairs of subgroups (T0, T1) in Z/7 and six pairs of subgroups (T0, T1)
in Z/4, leaving 18 cases to realise. By Theorem 1.10 and Remark 3.11, I(M) and IH(M)
depend only on the base (G, b, p). We list manifolds, their bases (G, b, p) and the pairs
(IH , I) of inertia groups they realise in the following table, where it is helpful to note that
112 = 7× 16:

M G b p IH I I/IH

S7 {0} 0 0 0 0 0
M0,56 Z 0 56 Z/2 Z/2 0
M0,28 Z 0 28 Z/4 Z/4 0
M0,16 Z 0 16 Z/7 Z/7 0
M0,8 Z 0 8 Z/14 Z/14 0
M0,4 Z 0 4 Z/28 Z/28 0

M−16,0]M0,112 Z/16⊕ Z 〈1/16〉 (0, 112) 0 Z/2 Z/2
M−8,0]M0,56 Z/8⊕ Z 〈1/8〉 (0, 56) Z/2 Z/4 Z/2
M−16,2]M0,112 Z/16⊕ Z 〈1/16〉 (2, 112) 0 Z/4 Z/4
M−16,0]M0,16 Z/16⊕ Z 〈1/16〉 (0, 16) Z/7 Z/14 Z/2
M−8,0]M0,8 Z/8⊕ Z 〈1/8〉 (0, 8) Z/14 Z/28 Z/2
M−16,2]M0,16 Z/16⊕ Z 〈1/16〉 (2, 16) Z/7 Z/28 Z/4
M−7,1]M0,112 Z/7⊕ Z 〈1/7〉 (1, 112) 0 Z/7 Z/7
M−7,1]M0,56 Z/7⊕ Z 〈1/7〉 (1, 56) Z/2 Z/14 Z/7
M−0,14]M0,14 Z/7⊕ Z 〈1/7〉 (1, 14) Z/4 Z/28 Z/7
M−7,1]M112,16 Z/112⊕ Z 〈1/112〉 (16, 112) 0 Z/14 Z/14
M−56,0]M0,56 Z/56⊕ Z 〈1/56〉 (8, 56) Z/2 Z/28 Z/14
M−112,2]M0,112 Z/112⊕ Z 〈1/112〉 (2, 112) 0 Z/28 Z/28 �

Theorem 1.13 follows immediately from Theorem 6.3 and Proposition 6.4. We conclude
with an example drawn from the bottom line of the table above.

Example 6.5. Let M = M−112,2]M0,112 so that H4(M) = Z/112 ⊕ Z and consider the
automorphism of (H4(M), q◦M , pM) defined by

F =

(
1 [1]
0 1

)
: Z/112⊕ Z ∼= Z/112⊕ Z.

In this case d̂π = 28 and from the proof of Proposition 6.4 we see that M admits an almost

diffeomorphism f : M uM with f ∗ = F , and P̂ (f) = 1 ∈ Z/28Z. By Theorem 6.3, F n is
realised by a diffeomorphism of M if and only if n ≡ 0 mod 28.
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